WO2018062513A1 - Led sealant composition - Google Patents

Led sealant composition Download PDF

Info

Publication number
WO2018062513A1
WO2018062513A1 PCT/JP2017/035565 JP2017035565W WO2018062513A1 WO 2018062513 A1 WO2018062513 A1 WO 2018062513A1 JP 2017035565 W JP2017035565 W JP 2017035565W WO 2018062513 A1 WO2018062513 A1 WO 2018062513A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
mol
led
organopolysiloxane
Prior art date
Application number
PCT/JP2017/035565
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 首藤
加藤 拓
淳平 小林
正睦 鈴木
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201780057547.7A priority Critical patent/CN109716544B/en
Priority to JP2018542951A priority patent/JP6764135B2/en
Priority to KR1020197010081A priority patent/KR102211570B1/en
Publication of WO2018062513A1 publication Critical patent/WO2018062513A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/068Containing also other elements than carbon, oxygen or nitrogen in the polymer main chain
    • C09K2200/0685Containing silicon

Definitions

  • the present invention relates to an LED sealing material composition, a cured product obtained by curing the composition, and an LED device in which an LED element is sealed with the cured product.
  • the silicone composition forms a cured product having excellent rubber properties such as weather resistance, heat resistance, hardness, and elongation, it is used for the purpose of protecting LED elements, electrodes, substrates and the like in LED devices. Further, silver or silver-containing alloys having good conductivity are used as electrodes in the LED device, and the substrate may be silver-plated in order to improve luminance.
  • a cured product made of a silicone composition has high gas permeability, and when this is used for a high-brightness LED with high light intensity and large heat generation, discoloration of the sealing material due to corrosive gas in the environment, There exists a subject that the brightness
  • Patent Document 1 discloses (A) a diorganopolysiloxane containing at least two alkenyl groups bonded to a silicon atom, (B) SiO 4/2 units, Vi (R 2 ) 2 SiO 1/2 units, and R 2. 3 Resin-structured organopolysiloxane composed of 3 1/2 SiO units, (C) organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms in one molecule, and (D) platinum group metal catalyst There has been proposed an addition-curable silicone composition containing the above.
  • Patent Document 2 (A) an organopolysiloxane represented by an average unit formula, any (B) a straight chain having at least two alkenyl groups in one molecule and having no silicon-bonded hydrogen atom
  • a curable silicone composition comprising at least an organopolysiloxane, (C) an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule, and (D) a catalyst for hydrosilylation reaction.
  • the curable silicone composition described in Patent Document 2 is an organopolysiloxane that has a high hydrosilylation reactivity and forms a cured product having a low gas permeability, a high reactivity, and a low gas permeability. It is said that a curable silicone composition that forms a cured product and a cured product with low gas permeability are provided.
  • the object of the present invention was made in view of the above circumstances, and is an LED sealing that is excellent in heat-resistant transparency, adhesion to an LED substrate, and that does not corrode silver plating even in a harsh environment of 80 ° C. in a sulfur atmosphere.
  • the object is to provide a material composition, a cured product obtained by curing the composition, and an LED device in which an LED element is sealed with the cured product.
  • an LED encapsulant composition (A) 1 type of alkenyl group having three structural units and bonded to a silicon atom. Linear organopolysiloxane having at least two molecules in the molecule, (B) Linear organopolysiloxane having three structural units and having at least two hydrogen atoms bonded to silicon atoms in one molecule And (C) an organopolysiloxane having a structural unit having a biphenylyl group bonded to a silicon atom, at least one of the organopolysiloxane (A) and the organopolysiloxane (B) in the composition comprising the hydrosilylation reaction catalyst.
  • the LED encapsulant formed from the composition has excellent heat-resistant transparency, adhesion to the LED substrate, and 80 ° C. in a sulfur atmosphere. Cormorant found that silver plating is not corroded even in a severe environment, thereby completing the present invention.
  • the present invention provides the first aspect as follows: (A) a linear organopolysiloxane having three structural units represented by the following formula (1) and having at least two alkenyl groups bonded to silicon atoms in one molecule; (R 1 R 2 R 3 SiO 1/2 ) a (R 4 R 5 SiO 2/2 ) b (R 6 2 SiO 2/2 ) c (1) (Wherein R 1 represents an alkenyl group having 2 to 12 carbon atoms, R 2 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and R 3 represents the number of carbon atoms.
  • R 4 represents an aryl group or biphenylyl group having 6 to 20 carbon atoms
  • R 5 represents an aryl group having 6 to 20 carbon atoms or Represents an alkyl group having 1 to 12 carbon atoms
  • two R 6 s represent an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms
  • a, b and c are each an O.D.
  • two R 12 represent an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms
  • a hydrosilylation reaction catalyst wherein at least one of R 4 in the formula (1) and R 10 in the formula (2) represents a biphenylyl group.
  • an aryl group having 6 to 20 carbon atoms is defined as not including a biphenylyl group or a terphenylyl group.
  • R 4 in the formula (1) relates to the LED encapsulant composition according to the first aspect, which represents a phenyl group or a biphenylyl group.
  • R 10 represents a phenyl group or a biphenylyl group, LED encapsulating material composition according to the first aspect or the second aspect in.
  • the present invention relates to the LED encapsulant composition according to any one of the first aspect to the third aspect, further including (D) an adhesion-imparting agent.
  • a 5th viewpoint it is related with the hardened
  • a 6th viewpoint it is related with the LED apparatus by which the LED element was sealed with the hardened
  • the LED encapsulant composition of the present invention is characterized by forming a cured product excellent in heat-resistant transparency, sulfurization resistance and adhesion. Moreover, the LED element sealed with the hardened
  • the LED encapsulant composition of the present invention will be described in detail.
  • the linear organopolysiloxane of component (A) has three structural units represented by the following formula (1), and has at least two alkenyl groups bonded to silicon atoms in one molecule. (R 1 R 2 R 3 SiO 1/2 ) a (R 4 R 5 SiO 2/2 ) b (R 6 2 SiO 2/2 ) c (1)
  • R 1 represents an alkenyl group having 2 to 12 carbon atoms
  • examples of the alkenyl group include vinyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, A dodecenyl group is illustrated, Preferably it is a vinyl group.
  • R 2 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms. When R 2 represents an aryl group, the aryl group may be a phenyl group, a tolyl group, a xylyl group, a naphthyl group.
  • Examples of the substituted group include a phenyl group.
  • R 2 represents an alkyl group
  • the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl.
  • Examples of the group include a methyl group.
  • R 3 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms.
  • the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group.
  • a substituted group is exemplified, and a phenyl group is preferable.
  • R 3 represents an alkyl group
  • the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl.
  • Examples of the group include a methyl group.
  • R 4 represents an aryl group having 6 to 20 carbon atoms or a biphenylyl group, and the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group thereof.
  • R 4 is preferably a biphenylyl group.
  • R 5 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and when R 5 represents an aryl group, as the aryl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom.
  • a substituted group is exemplified, and a phenyl group is preferable.
  • R 5 represents an alkyl group
  • the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group.
  • R 6 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and when R 6 represents an aryl group, the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group.
  • An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom.
  • a substituted group is exemplified, and a phenyl group is preferable.
  • R 6 represents an alkyl group
  • the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group.
  • the linear organopolysiloxane of the component (A) may further have a siloxane unit represented by SiO 4/2 as long as the object of the present invention is not impaired.
  • the organopolysiloxane has an alkoxy group bonded to a silicon atom such as a methoxy group, an ethoxy group, or a propoxy group, or a hydroxyl group bonded to a silicon atom bond within a range not impairing the object of the present invention. Also good.
  • R 1 R 2 R 3 SiX 1 Is a raw material for introducing a siloxane unit represented by the formula: R 1 R 2 R 3 SiO 1/2 into organopolysiloxane.
  • R 1 represents an alkenyl group having 2 to 12 carbon atoms
  • R 2 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms
  • R 3 represents An aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms is represented.
  • X 1 represents an alkoxy group, an acyloxy group, a hydroxyl group or a —OSiR 1 R 2 R 3 group.
  • X 1 represents an alkoxy group
  • examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • X 1 represents an acyloxy group
  • an acetoxy group can be exemplified as the acyloxy group.
  • silane compounds include alkoxysilanes such as dimethylvinylmethoxysilane, dimethylvinylethoxysilane, methylphenylvinylmethoxysilane, and methylphenylvinylethoxysilane, acetoxysilane such as dimethylvinylacetoxysilane, and methylphenylvinylacetoxysilane, dimethyl
  • alkoxysilanes such as dimethylvinylmethoxysilane, dimethylvinylethoxysilane, methylphenylvinylmethoxysilane, and methylphenylvinylethoxysilane
  • acetoxysilane such as dimethylvinylacetoxysilane
  • methylphenylvinylacetoxysilane dimethyl
  • hydroxysilanes such as vinylhydroxysilane and methylphenylvinylhydroxysilane, and 1,3-divinyl-1,1,3,3-tetramethyldisi
  • R 4 R 5 Si (X 2 ) 2 Is a raw material for introducing a siloxane unit represented by the formula: R 4 R 5 SiO 2/2 into an organopolysiloxane.
  • R 4 represents an aryl group or a biphenylyl group having 6 to 20 carbon atoms
  • R 5 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms.
  • X 2 represents an alkoxy group, an acyloxy group, or a hydroxyl group.
  • X 2 represents an alkoxy group
  • examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • X 2 represents an acyloxy group, as the acyloxy group, acetoxy group and the like.
  • silane compounds include methylphenyldimethoxysilane, methylphenyldiethoxysilane, ethylphenyldimethoxysilane, ethylphenyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylbiphenylyldimethoxysilane, methylbiphenylyldiethoxy.
  • Silanes alkoxysilanes such as phenylbiphenylyldimethoxysilane, phenylbiphenylyldiethoxysilane, methylphenyldiacetoxysilane, ethylphenyldiacetoxysilane, diphenyldiacetoxysilane, methylbiphenylyldiacetoxysilane, phenylbiphenylyldiacetoxysilane, etc.
  • alkoxysilanes such as phenylbiphenylyldimethoxysilane, phenylbiphenylyldiethoxysilane, methylphenyldiacetoxysilane, ethylphenyldiacetoxysilane, diphenyldiacetoxysilane, methylbiphenylyldiacetoxysilane, phenylbiphenylyldiacetoxysilane
  • Acetoxysilane, methylphenyldihydroxysilane, ethylphenyldihydroxysilane, diphenyldihydride Kishishiran, methyl biphenylyl dihydroxysilane, hydroxy silanes and phenyl biphenylyl dihydroxysilane are exemplified.
  • R 6 2 Si (X 3 ) 2 Is a raw material for introducing a siloxane unit represented by the formula: R 6 2 SiO 2/2 into an organopolysiloxane.
  • R 6 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms
  • X 3 represents an alkoxy group, an acyloxy group, a halogen atom, or a hydroxyl group.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • X 3 represents an acyloxy group, as the acyloxy group, acetoxy group and the like.
  • silane compounds examples include alkoxysilanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane, acetoxysilanes such as dimethyldiacetoxysilane and diphenyldiacetoxysilane, dimethyldihydroxysilane, and diphenyldihydroxy. Examples include hydroxysilanes such as silane.
  • the linear organopolysiloxane of component (A) is composed of silane compound (I), silane compound (II), silane compound (III) and, if necessary, other silane compounds, cyclic silicone compounds, or silane oligomers. It is obtained by hydrolysis / condensation reaction in the presence of acid or alkali.
  • Examples of the acid that can be used include hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid, trifluoromethanesulfonic acid, and ion exchange resin.
  • alkalis examples include inorganic alkalis such as potassium hydroxide and sodium hydroxide, triethylamine, diethylamine, monoethanolamine, diethanolamine, triethanolamine, aqueous ammonia, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, amino
  • organic base compounds such as alkoxysilane having a group and aminopropyltrimethoxysilane.
  • an organic solvent can be used.
  • the organic solvent that can be used include ethers, ketones, alcohols, acetates, aromatic or aliphatic hydrocarbons, ⁇ -butyrolactone, and mixtures of two or more thereof.
  • Preferred organic solvents include diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropanol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether And propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ⁇ -butyrolactone, pentane, hexane, heptane, toluene and xylene.
  • water or a mixed solution of water and alcohols in order to promote the hydrolysis / condensation reaction of each of the above components.
  • this alcohol methanol, ethanol, and isopropanol are preferable. This reaction is accelerated by heating, and when an organic solvent is used, the reaction is preferably performed at the reflux temperature.
  • the linear organopolysiloxane of component (B) has three structural units represented by the following formula (2), and has at least two hydrogen atoms bonded to silicon atoms in one molecule. (R 7 R 8 R 9 SiO 1/2 ) d (R 10 R 11 SiO 2/2 ) e (R 12 2 SiO 2/2 ) f (2)
  • R 7 represents a hydrogen atom.
  • R 8 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and when R 8 represents an aryl group, as the aryl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom.
  • a substituted group is exemplified, and a phenyl group is preferable.
  • R 8 represents an alkyl group
  • the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group.
  • R 9 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and when R 9 represents an aryl group, as the aryl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom.
  • a substituted group is exemplified, and a phenyl group is preferable.
  • the alkyl group may be a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group. Examples of the group include a methyl group.
  • R 10 represents an aryl group having 6 to 20 carbon atoms or a biphenylyl group
  • the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group thereof.
  • Examples include a group in which a hydrogen atom is substituted with an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom.
  • R 11 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms.
  • the aryl group may be a phenyl group, a tolyl group, a xylyl group, a naphthyl group.
  • a substituted group is exemplified, and a phenyl group is preferable.
  • R 11 represents an alkyl group
  • the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl.
  • Examples of the group include a methyl group.
  • R 12 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms.
  • the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group.
  • a substituted group is exemplified, and a phenyl group is preferable.
  • R 12 represents an alkyl group
  • the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl.
  • Examples of the group include a methyl group.
  • the organopolysiloxane of the component (B) may have a siloxane unit represented by SiO 4/2 as long as the object of the present invention is not impaired.
  • the organopolysiloxane may have a silicon atom-bonded alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group, or a hydroxyl group bonded to a silicon atom, as long as the object of the present invention is not impaired.
  • R 7 R 8 R 9 SiX 1 Is a raw material for introducing a siloxane unit represented by the formula: R 7 R 8 R 9 SiO 1/2 into the organopolysiloxane.
  • R 7 represents a hydrogen atom
  • R 8 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms
  • R 9 represents a carbon atom having 6 to 20 carbon atoms.
  • An aryl group or an alkyl group having 1 to 12 carbon atoms is represented
  • X 1 represents an alkoxy group, an acyloxy group, a hydroxyl group, or a —OSiR 7 R 8 R 9 group.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • examples of the acyloxy group include an acetoxy group.
  • silane compounds include alkoxysilanes such as dimethylmethoxysilane, dimethylethoxysilane, methylphenylmethoxysilane, and methylphenylethoxysilane, acetoxysilanes such as dimethylacetoxysilane and methylphenylacetoxysilane, dimethylhydroxysilane, and methylphenylhydroxy. Examples thereof include hydroxysilane such as silane and 1,1,3,3-tetramethyldisiloxane.
  • R 10 R 11 Si (X 2 ) 2 Is a raw material for introducing a siloxane unit represented by the formula: R 10 R 11 SiO 2/2 into an organopolysiloxane.
  • R 10 represents an aryl group or biphenylyl group having 6 to 20 carbon atoms
  • R 11 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms
  • X 2 represents an alkoxy group, an acyloxy group, or a hydroxyl group.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • X 2 represents an acyloxy group, as the acyloxy group, acetoxy group and the like.
  • silane compounds include methylphenyldimethoxysilane, methylphenyldiethoxysilane, ethylphenyldimethoxysilane, ethylphenyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylbiphenylyldimethoxysilane, methylbiphenylyldiethoxy.
  • Silanes alkoxysilanes such as phenylbiphenylyldimethoxysilane, phenylbiphenylyldiethoxysilane, methylphenyldiacetoxysilane, ethylphenyldiacetoxysilane, diphenyldiacetoxysilane, methylbiphenylyldiacetoxysilane, phenylbiphenylyldiacetoxysilane, etc.
  • alkoxysilanes such as phenylbiphenylyldimethoxysilane, phenylbiphenylyldiethoxysilane, methylphenyldiacetoxysilane, ethylphenyldiacetoxysilane, diphenyldiacetoxysilane, methylbiphenylyldiacetoxysilane, phenylbiphenylyldiacetoxysilane
  • Acetoxysilane, methylphenyldihydroxysilane, ethylphenyldihydroxysilane, diphenyldihydride Kishishiran, methyl biphenylyl dihydroxysilane, hydroxy silanes and phenyl biphenylyl dihydroxysilane are exemplified.
  • R 12 2 Si (X 2 ) 2 Is a raw material for introducing a siloxane unit represented by the formula: R 12 2 SiO 2/2 into an organopolysiloxane.
  • R 12 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms
  • X 2 represents an alkoxy group, an acyloxy group, or a hydroxyl group.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • X 2 represents an acyloxy group, as the acyloxy group, acetoxy group and the like.
  • silane compounds examples include alkoxysilanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane, acetoxysilanes such as dimethyldiacetoxysilane and diphenyldiacetoxysilane, dimethyldihydroxysilane, and diphenyldihydroxy Examples include hydroxysilanes such as silane.
  • the organopolysiloxane of component (B) is composed of silane compound (IV), silane compound (V), silane compound (VI), and, if necessary, other silane compounds, cyclic silicone compounds, or silane oligomers. It is obtained by hydrolysis / condensation reaction in the presence.
  • Examples of the acid that can be used include hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid, trifluoromethanesulfonic acid, and ion exchange resin.
  • R 4 of the silane compound represented by the general formula (II) used in the synthesis of the linear organopolysiloxane of the component (A) and the linear organopolysiloxane of the component (B).
  • At least one of R 10 of the silane compound represented by the general formula (V) represents a biphenylyl group.
  • an organic solvent can be used.
  • the organic solvent that can be used include ethers, ketones, alcohols, acetates, aromatic hydrocarbons, aliphatic hydrocarbons, ⁇ -butyrolactone, and mixtures of two or more thereof.
  • Preferred organic solvents include diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropanol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether And propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ⁇ -butyrolactone, pentane, hexane, heptane, toluene and xylene.
  • water or a mixed solution of water and alcohols in order to promote the hydrolysis / condensation reaction of each of the above components.
  • this alcohol methanol, ethanol, and isopropanol are preferable. This reaction is accelerated by heating, and when an organic solvent is used, the reaction is preferably performed at the reflux temperature.
  • the content of component (B) is such that the silicon-bonded hydrogen atoms in this component are within the range of 0.1 to 5 moles per mole of alkenyl groups in component (A). Yes, and preferably in an amount in the range of 0.5 to 2 moles. This is because if the content of the component (B) is less than the lower limit of the above range, the composition does not sufficiently cure, and if it exceeds the above range, the heat-resistant transparency of the cured product will be adversely affected. The cured product is gradually discolored in a high temperature state, and cannot be used as an LED sealing material. When it is within the above range, the composition is sufficiently cured, exhibits sufficient sulfidation resistance, and the reliability of the LED device manufactured using the composition of the present invention is improved.
  • the component (C) is a hydrosilylation reaction catalyst for accelerating the curing of the composition, and examples thereof include a platinum-based catalyst, a rhodium-based catalyst, and a palladium-based catalyst.
  • the component (C) is preferably a platinum-based catalyst because curing of the composition can be significantly accelerated.
  • the platinum-based catalyst include fine platinum powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex, preferably a platinum-alkenylsiloxane complex. is there.
  • the content of the component (C) is an effective amount for accelerating the curing of the present composition.
  • the total amount of the component (A) and the component (B) is 100 parts by mass in the component (C).
  • the amount of the catalyst metal is preferably in the range of 0.000001 to 0.05 parts by mass, more preferably 0.000001 to 0.03 parts by mass.
  • the amount is preferably in the range of 000001 to 0.01 parts by mass.
  • the organopolysiloxane of component (A) and the organopolysiloxane of component (B), or an organopolysiloxane having a biphenylyl group in one of them it is preferable that the organopolysiloxane having a biphenylyl group in one of them.
  • the organopolysiloxane having a biphenylyl group is contained, the sulfurization resistance of the cured product of the present composition is remarkably improved.
  • the component (D) is preferably an organosilicon compound having at least one alkoxy group bonded to a silicon atom in one molecule.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group is particularly preferable in terms of excellent adhesion to a substrate.
  • Examples of the group other than the alkoxy group bonded to the silicon atom of the organosilicon compound include substituted or unsubstituted monovalent hydrocarbon groups such as alkyl groups, alkenyl groups, aryl groups, aralkyl groups, and halogenated alkyl groups, 3 -Glycidoxyalkyl groups such as glycidoxypropyl group and 4-glycidoxybutyl group, epoxies such as 2- (3,4-epoxycyclohexyl) ethyl group and 3- (3,4-epoxycyclohexyl) propyl group Epoxy group-containing monovalent organic groups such as cyclohexylalkyl group, 4-oxiranylbutyl group, 8-oxiranyloctyl group and the like, and acrylic group-containing monovalent organic groups such as 3-methacryloxypropyl group Examples thereof include a hydrogen atom.
  • This organosilicon compound preferably has an alkenyl group bonded to a silicon atom or a hydrogen atom bonded to a silicon atom. Moreover, since it can provide favorable adhesiveness to various types of substrates, the organosilicon compound preferably has at least one epoxy group-containing monovalent organic group in one molecule.
  • organosilicon compounds include organosilane compounds, organosiloxane oligomers, and alkyl silicates.
  • Examples of the molecular structure of the organosiloxane oligomer or alkyl silicate include linear, partially branched linear, branched, cyclic, and network, particularly linear, branched, and network. Preferably there is.
  • organosilicon compounds examples include 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, silane compounds such as 3-methacryloxypropyltrimethoxysilane, A siloxane compound having at least one silicon atom-bonded alkenyl group or silicon atom-bonded hydrogen atom and silicon atom-bonded alkoxy group, a silane compound having at least one silicon atom-bonded alkoxy group, or a siloxane compound in one molecule Examples thereof include a mixture of a silicon atom-bonded hydroxyl group and a siloxane compound having at least one silicon atom-bonded alkenyl group, methyl polysilicate, ethyl polysilicate, and epoxy group-containing ethyl polysilicate.
  • the content of the component (D) is not limited, but it adheres favorably to the substrate that is in contact with the curing process, so the components (A), (B), (C)
  • the content is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the components.
  • other optional components include 3-butyn-2-ol, 2-methyl-3-butyn-2-ol, 1-pentyn-3-ol, and 3,4-dimethyl-1-pentyne.
  • -3-ol 3-methyl-1-pentyn-3-ol, 3-ethyl-1-pentyn-3-ol, 1-heptin-3-ol, 5-methyl-1-hexyn-3-ol, -Octin-3-ol, 4-ethyl-1-octin-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 3-ethyl-1-heptin-3-ol, 1-ethynyl-1 Alkyne compounds such as cyclohexanol, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5, 7-tetrahexenylcyclo Siloxane compound
  • a phosphor can be contained as another optional component.
  • This phosphor is, for example, yellow made of oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, oxysulfide phosphors and the like widely used in LEDs. , Red, green, and blue light emitting phosphors.
  • Oxide-based phosphors include yttrium, aluminum, garnet-based YAG-based green to yellow light-emitting phosphors containing cerium ions, terbium, aluminum, garnet-based TAG-based yellow light-emitting phosphors including cerium ions, and cerium And silicate green to yellow light emitting phosphors containing europium ions.
  • Examples of the oxynitride-based phosphor include silicon, aluminum, oxygen, and nitrogen-based sialon-based red to green light-emitting phosphors containing europium ions.
  • nitride-based phosphors include calcium, strontium, aluminum, silicon, and nitrogen-based casoon-based (CASN and S-CASN) red-emitting phosphors containing europium ions.
  • sulfide-based phosphors include ZnS-based green coloring phosphors including copper ions and aluminum ions.
  • the oxysulfide phosphor is exemplified by a Y 2 O 2 S red light-emitting phosphor containing europium ions.
  • These phosphors may use one kind or a mixture of two or more kinds.
  • the content of the phosphor is not particularly limited, but is within the range of 1 to 20 parts by mass with respect to 100 parts by mass in total of the components (A), (B), and (C). It is preferable.
  • the LED encapsulant composition of the present invention can contain additives as necessary within the range not impairing the object and effect of the present invention in addition to the above components.
  • additives include inorganic fillers, antioxidants, ultraviolet absorbers, thermal light stabilizers, dispersants, antistatic agents, polymerization inhibitors, antifoaming agents, solvents, inorganic phosphors, radical inhibitors, and surface active agents.
  • Agents, conductivity imparting agents, pigments, dyes, metal deactivators are exemplified, and various additives are not particularly limited.
  • the organopolysiloxane of the component (A), the organopolysiloxane of the component (B), and the hydrosilylation reaction catalyst of the component (C) are separated from liquids containing one or more of these components.
  • the LED encapsulant composition according to the present invention may be prepared by mixing a plurality of liquids immediately before use. For example, the first liquid containing the organopolysiloxane (A) and the second liquid containing the organopolysiloxane (B) are prepared separately, and the first liquid The LED encapsulant composition according to the present invention may be prepared by mixing with the second liquid. At least one of the first liquid and the second liquid contains the hydrosilylation reaction catalyst of the component (C).
  • the first liquid preferably contains a hydrosilylation reaction catalyst.
  • the LED encapsulant composition of the present invention can be cured by heating.
  • the temperature for curing the LED sealing material composition of the present invention is preferably about 80 to 200 ° C.
  • the method for the heat treatment is not particularly limited, and examples thereof include a method of using a hot plate or an oven in an appropriate atmosphere, that is, in the atmosphere, an inert gas such as nitrogen, or in a vacuum.
  • the LED encapsulant composition of the present invention can be used for LED encapsulation.
  • the LED element to which the LED encapsulant composition of the present invention can be applied is not particularly limited.
  • the method for applying the LED sealing material composition of the present invention to an LED element is not particularly limited.
  • the LED sealing material composition of the present invention can be used as, for example, an optical lens in addition to LED sealing.
  • the characteristics of the cured product obtained from the LED encapsulant composition of the present invention were measured as follows.
  • the LED encapsulant composition of the present invention was baked in an oven at 100 ° C for 1 hour, and then at 150 ° C, 3 ° C. After baking for a time, a cured product having a thickness of 1 mm was prepared on an alkali-free glass substrate.
  • the LED encapsulant composition of the present invention was applied to an LED substrate provided with a silver-plated electrode, and 100% in an oven. After baking at 1 degreeC for 1 hour, it baked at 150 degreeC for 3 hours, and produced the LED device.
  • Example 1 Component (A), organopolysiloxane P-1 (10 g), component (B), organopolysiloxane P-15 (10 g), and component (C), 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
  • Example 2 Component (A) Organopolysiloxane P-2 (10 g), Component (B) Organopolysiloxane P-16 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
  • Example 3 Component (A) Organopolysiloxane P-3 (10 g), Component (B) Organopolysiloxane P-17 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
  • Example 4 Component (A) Organopolysiloxane P-4 (10 g), Component (B) Organopolysiloxane P-18 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
  • Example 5 Component (A) Organopolysiloxane P-5 (10 g), Component (B) Organopolysiloxane P-19 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
  • Example 6 Component (A) Organopolysiloxane P-1 (10 g), Component (B) Organopolysiloxane P-28 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
  • Example 7 Component (A) Organopolysiloxane P-14 (10 g), Component (B) Organopolysiloxane P-15 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
  • the cured products obtained from the LED encapsulant compositions prepared in Examples 1 to 7 are all heat-resistant and transparent, have high sulfidation resistance, and discoloration of the silver substrate. I could't. Moreover, the high adhesiveness with respect to the LED board was shown.
  • the cured product obtained from the composition prepared in Comparative Example 1 did not satisfy all of heat-resistant transparency, sulfidation resistance, and adhesion. Specifically, in Comparative Example 1 using a polyorganosiloxane that does not contain a biphenylyl group, the resistance to sulfuration was insufficient. Therefore, it was judged that it could not be used as a sealing material composition for LED.
  • the LED encapsulant composition of the present invention has heat-resistant transparency and high sulfidation resistance, so that it does not corrode the silver-plated electrode of the LED substrate and exhibits high adhesion to the LED substrate. It turned out that it was suitable as a sealing material of the LED element in an LED device.
  • the LED encapsulant composition of the present invention has heat-resistant transparency and high resistance to sulfurization, it does not corrode the silver-plated electrode of the LED substrate, and exhibits high adhesion to the LED substrate. It is suitable as a sealing material for LED elements in the above, or as a silver plating protective agent for silver electrodes and substrates at liquid crystal edges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Polymers (AREA)
  • Sealing Material Composition (AREA)

Abstract

[Problem] To provide: an LED sealant composition; a cured product obtained by curing said LED sealant composition; and an LED device having an LED element sealed with said cured product. [Solution] This LED sealant composition comprises (A) a linear organopolysiloxane that has at least two alkenyl groups bound to a silicon atom per molecule and that has three types of structural units represented by formula (1): (R1R2R3SiO1/2)a(R4R5SiO2/2)b(R6 2SiO2/2)c, (B) a linear organopolysiloxane that has at least two hydrogen atoms bound to a silicon atom per molecule and that has three types of structural units represented by formula (2): (R7R8R9SiO1/2)d(R10R11SiO2/2)e(R12 2SiO2/2)f, and (C) a hydrosilylation catalyst, wherein R4 in formula (1) and/or R10 in formula (2) represents a biphenylyl group.

Description

LED用封止材組成物LED encapsulant composition
 本発明は、LED用封止材組成物、当該組成物を硬化して得られる硬化物、及び当該硬化物によりLED素子が封止されたLED装置に関する。 The present invention relates to an LED sealing material composition, a cured product obtained by curing the composition, and an LED device in which an LED element is sealed with the cured product.
 シリコーン組成物は耐候性、耐熱性、硬度、伸び等のゴム的性質に優れた硬化物を形成することから、LED装置におけるLED素子、電極、基板などの保護を目的に使用されている。また、LED装置には導電性の良い銀もしくは銀含有合金が電極として使用され、輝度を向上させるため基板には銀メッキが施されている場合がある。 Since the silicone composition forms a cured product having excellent rubber properties such as weather resistance, heat resistance, hardness, and elongation, it is used for the purpose of protecting LED elements, electrodes, substrates and the like in LED devices. Further, silver or silver-containing alloys having good conductivity are used as electrodes in the LED device, and the substrate may be silver-plated in order to improve luminance.
 一般に、シリコーン組成物からなる硬化物はガス透過性が高く、これを光の強度が強く、発熱が大きい高輝度LEDに用いた場合に、環境中の腐食性ガスによる封止材の変色や、電極や基板にメッキされた銀の腐食による輝度の低下が生じるという課題がある。 Generally, a cured product made of a silicone composition has high gas permeability, and when this is used for a high-brightness LED with high light intensity and large heat generation, discoloration of the sealing material due to corrosive gas in the environment, There exists a subject that the brightness | luminance falls by the corrosion of the silver plated on the electrode or the board | substrate.
 特許文献1には、(A)ケイ素原子に結合するアルケニル基を少なくとも2個含有するジオルガノポリシロキサン、(B)SiO4/2単位、Vi(RSiO1/2単位及びR  SiO1/2単位からなるレジン構造のオルガノポリシロキサン、(C)一分子中にケイ素原子に結合する水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン、及び(D)白金族金属系触媒を含有してなる付加硬化型シリコーン組成物が提案されている。 Patent Document 1 discloses (A) a diorganopolysiloxane containing at least two alkenyl groups bonded to a silicon atom, (B) SiO 4/2 units, Vi (R 2 ) 2 SiO 1/2 units, and R 2. 3 Resin-structured organopolysiloxane composed of 3 1/2 SiO units, (C) organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms in one molecule, and (D) platinum group metal catalyst There has been proposed an addition-curable silicone composition containing the above.
 しかし、このような付加硬化型シリコーン組成物は、環境中の腐食性ガスを非常に透過させやすく、容易に電極や基板にメッキされた銀が腐食されていた。 However, such an addition-curable silicone composition is very easy to permeate corrosive gas in the environment, and the silver plated on the electrode and the substrate is easily corroded.
 特許文献2には、(A)平均単位式で表されるオルガノポリシロキサン、任意の(B)一分子中に少なくとも2個のアルケニル基を有し、ケイ素原子結合水素原子を有さない直鎖状オルガノポリシロキサン、(C)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン、および(D)ヒドロシリル化反応用触媒から少なくともなる硬化性シリコーン組成物が提案されている。 In Patent Document 2, (A) an organopolysiloxane represented by an average unit formula, any (B) a straight chain having at least two alkenyl groups in one molecule and having no silicon-bonded hydrogen atom There has been proposed a curable silicone composition comprising at least an organopolysiloxane, (C) an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule, and (D) a catalyst for hydrosilylation reaction.
 特許文献2に記載されている硬化性シリコーン組成物は、高いヒドロシリル化反応性を有し、ガス透過性の低い硬化物を形成するオルガノポリシロキサン、高い反応性を有し、ガス透過性の低い硬化物を形成する硬化性シリコーン組成物、ガス透過性の低い硬化物を提供するとされている。 The curable silicone composition described in Patent Document 2 is an organopolysiloxane that has a high hydrosilylation reactivity and forms a cured product having a low gas permeability, a high reactivity, and a low gas permeability. It is said that a curable silicone composition that forms a cured product and a cured product with low gas permeability are provided.
 しかし、電極や基板が銀メッキされたLED基板を特許文献2に記載されている硬化性シリコーン組成物で封止しても、例えば、硫黄雰囲気下80℃の環境では銀メッキが腐食されることがわかり、LEDが発光する光の明るさが低下するという問題があった。 However, even if the LED substrate on which the electrodes and the substrate are silver-plated is sealed with the curable silicone composition described in Patent Document 2, for example, the silver plating is corroded in an environment of 80 ° C. in a sulfur atmosphere. As a result, there was a problem that the brightness of the light emitted from the LED was lowered.
特開2000-198930号公報JP 2000-198930 A 特開2014-84417号公報JP 2014-84417 A
 本発明の目的は、上記事情に鑑みなされたもので、耐熱透明性、LED基板との密着性に優れ、かつ硫黄雰囲気下80℃という過酷な環境下においても銀メッキが腐食されないLED用封止材組成物、当該組成物を硬化して得られる硬化物、及び当該硬化物によりLED素子が封止されたLED装置を提供することにある。 The object of the present invention was made in view of the above circumstances, and is an LED sealing that is excellent in heat-resistant transparency, adhesion to an LED substrate, and that does not corrode silver plating even in a harsh environment of 80 ° C. in a sulfur atmosphere. The object is to provide a material composition, a cured product obtained by curing the composition, and an LED device in which an LED element is sealed with the cured product.
 本発明者らは、上記の課題を解決するため鋭意検討を重ねた結果、LED用封止材組成物として、(A)3種の構造単位を有し、ケイ素原子と結合したアルケニル基を1分子中に少なくとも2個有する直鎖状のオルガノポリシロキサン、(B)3種の構造単位を有し、ケイ素原子と結合した水素原子を1分子中に少なくとも2個有する直鎖状のオルガノポリシロキサン及び(C)ヒドロシリル化反応触媒を含む組成物を構成する際、オルガノポリシロキサン(A)及びオルガノポリシロキサン(B)の少なくとも一方を、ケイ素原子に結合されたビフェニリル基を有する構造単位を有するオルガノポリシロキサンにすると、該組成物により形成されたLED用封止材は、耐熱透明性、LED基板との密着性に優れ、かつ硫黄雰囲気下80℃という過酷な環境下においても銀メッキが腐食されないことを見出し、本発明を完成させた。
 即ち、本発明は、第1観点として、
(A)下記式(1)で表される3種の構造単位を有し、ケイ素原子と結合したアルケニル基を1分子中に少なくとも2個有する直鎖状のオルガノポリシロキサン、
(RSiO1/2(RSiO2/2(R SiO2/2 (1)
(式中、Rは炭素原子数2~12のアルケニル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rは炭素原子数6~20のアリール基又はビフェニリル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、2つのRは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、a、bおよびcは、それぞれ、0.01≦a≦0.5、0.01≦b≦0.7、0.1≦c≦0.9、かつa+b+c=1を満たす数である。)
(B)下記式(2)で表さる3種の構造単位を有し、ケイ素原子と結合した水素原子を1分子中に少なくとも2個有する直鎖状のオルガノポリシロキサン、
(RSiO1/2(R1011SiO2/2(R12 SiO2/2f (2)
(式中、Rは水素原子を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、R10は炭素原子数6~20のアリール基又はビフェニリル基を表し、R11は炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、2つのR12は炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、d、eおよびfは、それぞれ、0.01≦d≦0.5、0.01≦e≦0.7、0.1≦f≦0.9、かつd+e+f=1を満たす数である。)
及び
(C)ヒドロシリル化反応触媒
を含み、前記式(1)中のRおよび前記式(2)中のR10の少なくとも一方はビフェニリル基を表す、LED用封止材組成物に関する。
 なお、本発明において、炭素原子数6~20のアリール基は、ビフェニリル基及びターフェニリル基を含まないものと定義する。
As a result of intensive studies to solve the above-mentioned problems, the present inventors, as an LED encapsulant composition, (A) 1 type of alkenyl group having three structural units and bonded to a silicon atom. Linear organopolysiloxane having at least two molecules in the molecule, (B) Linear organopolysiloxane having three structural units and having at least two hydrogen atoms bonded to silicon atoms in one molecule And (C) an organopolysiloxane having a structural unit having a biphenylyl group bonded to a silicon atom, at least one of the organopolysiloxane (A) and the organopolysiloxane (B) in the composition comprising the hydrosilylation reaction catalyst. When polysiloxane is used, the LED encapsulant formed from the composition has excellent heat-resistant transparency, adhesion to the LED substrate, and 80 ° C. in a sulfur atmosphere. Cormorant found that silver plating is not corroded even in a severe environment, thereby completing the present invention.
That is, the present invention provides the first aspect as follows:
(A) a linear organopolysiloxane having three structural units represented by the following formula (1) and having at least two alkenyl groups bonded to silicon atoms in one molecule;
(R 1 R 2 R 3 SiO 1/2 ) a (R 4 R 5 SiO 2/2 ) b (R 6 2 SiO 2/2 ) c (1)
(Wherein R 1 represents an alkenyl group having 2 to 12 carbon atoms, R 2 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and R 3 represents the number of carbon atoms. Represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, R 4 represents an aryl group or biphenylyl group having 6 to 20 carbon atoms, and R 5 represents an aryl group having 6 to 20 carbon atoms or Represents an alkyl group having 1 to 12 carbon atoms, and two R 6 s represent an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and a, b and c are each an O.D. (01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 0.7, 0.1 ≦ c ≦ 0.9, and a + b + c = 1)
(B) a linear organopolysiloxane having three structural units represented by the following formula (2) and having at least two hydrogen atoms bonded to silicon atoms in one molecule;
(R 7 R 8 R 9 SiO 1/2 ) d (R 10 R 11 SiO 2/2 ) e (R 12 2 SiO 2/2 ) f (2)
(Wherein R 7 represents a hydrogen atom, R 8 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and R 9 represents an aryl group having 6 to 20 carbon atoms or Represents an alkyl group having 1 to 12 carbon atoms, R 10 represents an aryl group or biphenylyl group having 6 to 20 carbon atoms, and R 11 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms. Represents an alkyl group, and two R 12 represent an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and d, e, and f each represents 0.01 ≦ d ≦ 0.5. , 0.01 ≦ e ≦ 0.7, 0.1 ≦ f ≦ 0.9, and d + e + f = 1.)
And (C) a hydrosilylation reaction catalyst, wherein at least one of R 4 in the formula (1) and R 10 in the formula (2) represents a biphenylyl group.
In the present invention, an aryl group having 6 to 20 carbon atoms is defined as not including a biphenylyl group or a terphenylyl group.
 第2観点として、前記式(1)中のRはフェニル基またはビフェニリル基を表す、第1観点に記載のLED用封止材組成物に関する。
 第3観点として、前記式(2)中のR10はフェニル基またはビフェニリル基を表す、第1観点又は第2観点に記載のLED用封止材組成物に関する。
As a second aspect, R 4 in the formula (1) relates to the LED encapsulant composition according to the first aspect, which represents a phenyl group or a biphenylyl group.
As a third aspect relates to the formula (2) R 10 represents a phenyl group or a biphenylyl group, LED encapsulating material composition according to the first aspect or the second aspect in.
 第4観点として、さらに(D)接着付与剤を含む、第1観点乃至第3観点のいずれか一つに記載のLED用封止材組成物に関する。 As a fourth aspect, the present invention relates to the LED encapsulant composition according to any one of the first aspect to the third aspect, further including (D) an adhesion-imparting agent.
 第5観点として、第1観点乃至第4観点のいずれか一つに記載のLED用封止材組成物から得られる硬化物に関する。
 第6観点として、第5観点に記載の硬化物によりLED素子が封止されたLED装置に関する。
As a 5th viewpoint, it is related with the hardened | cured material obtained from the sealing material composition for LED as described in any one of a 1st viewpoint thru | or a 4th viewpoint.
As a 6th viewpoint, it is related with the LED apparatus by which the LED element was sealed with the hardened | cured material as described in a 5th viewpoint.
 本発明のLED用封止材組成物は、耐熱透明性、硫化耐性、密着性に優れた硬化物を形成するという特徴がある。また、本発明であるLED用封止材組成物から得られる硬化物で封止されたLED素子は、信頼性に優れる特徴がある。 The LED encapsulant composition of the present invention is characterized by forming a cured product excellent in heat-resistant transparency, sulfurization resistance and adhesion. Moreover, the LED element sealed with the hardened | cured material obtained from the sealing material composition for LED which is this invention has the characteristics which are excellent in reliability.
 本発明のLED用封止材組成物について詳細に説明する。
 (A)成分の直鎖状オルガノポリシロキサンは、下記式(1)で表される3種の構造単位を有し、ケイ素原子と結合したアルケニル基を1分子中に少なくとも2個有する。
(RSiO1/2(RSiO2/2(R SiO2/2 (1)
The LED encapsulant composition of the present invention will be described in detail.
The linear organopolysiloxane of component (A) has three structural units represented by the following formula (1), and has at least two alkenyl groups bonded to silicon atoms in one molecule.
(R 1 R 2 R 3 SiO 1/2 ) a (R 4 R 5 SiO 2/2 ) b (R 6 2 SiO 2/2 ) c (1)
 式中、Rは炭素原子数2~12のアルケニル基を表し、該アルケニル基として、ビニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基が例示され、好ましくはビニル基である。Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rがアリール基を表す場合、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示され、好ましくはフェニル基である。また、Rがアルキル基を表す場合、該アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rがアリール基を表す場合、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示され、好ましくは、フェニル基である。また、Rがアルキル基を表す場合、該アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。Rは炭素原子数6~20のアリール基又はビフェニリル基を表し、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示される。環境中の腐食性ガスによる封止材の変色、および電極や基板にメッキされた銀の腐食による輝度の低下を防ぐ観点から、Rとしてビフェニリル基が好ましい。Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rがアリール基を表す場合、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示され、好ましくは、フェニル基である。また、Rがアルキル基を表す場合、該アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rがアリール基を表す場合、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示され、好ましくは、フェニル基である。また、Rがアルキル基を表す場合、該アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。 In the formula, R 1 represents an alkenyl group having 2 to 12 carbon atoms, and examples of the alkenyl group include vinyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, A dodecenyl group is illustrated, Preferably it is a vinyl group. R 2 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms. When R 2 represents an aryl group, the aryl group may be a phenyl group, a tolyl group, a xylyl group, a naphthyl group. An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. Examples of the substituted group include a phenyl group. In addition, when R 2 represents an alkyl group, the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group. R 3 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms. When R 3 represents an aryl group, the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group. An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. A substituted group is exemplified, and a phenyl group is preferable. Further, when R 3 represents an alkyl group, the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group. R 4 represents an aryl group having 6 to 20 carbon atoms or a biphenylyl group, and the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group thereof. Examples include a group in which a hydrogen atom is substituted with an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. From the viewpoint of preventing discoloration of the sealing material due to corrosive gas in the environment and lowering of luminance due to corrosion of silver plated on the electrode or the substrate, R 4 is preferably a biphenylyl group. R 5 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and when R 5 represents an aryl group, as the aryl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. A substituted group is exemplified, and a phenyl group is preferable. Further, when R 5 represents an alkyl group, the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group. R 6 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and when R 6 represents an aryl group, the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group. An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. A substituted group is exemplified, and a phenyl group is preferable. In addition, when R 6 represents an alkyl group, the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group.
 また、式中、a、bおよびcは、それぞれ、0.01≦a≦0.5、0.01≦b≦0.7、0.1≦c≦0.9、かつa+b+c=1を満たす数であり、好ましくは、0.02≦a≦0.5、0.1≦b≦0.6、0.1≦c≦0.8、かつa+b+c=1を満たす数であり、更に好ましくは、0.05≦a≦0.5、0.2≦b≦0.6、0.1≦c≦0.7、かつ、a+b+c=1を満たす数である。これは、aが上記範囲の下限値未満であると、硬化物の強度が十分に得られず硬化物のガス耐性が低下するからであり、一方、上記範囲の上限値より大きいと硬化物が脆くなる。aが上記範囲以内であると、硬化物は十分な強度を有し、硬化物のガス耐性が良好となる。bが上記範囲の下限値未満であると硬化物のガス耐性が低下し、上記範囲の上限値より大きいと硬化物が白く濁る。bが上記範囲以内であると、硬化物のガス耐性が良好となり、透明な硬化物が得られる。cが上記範囲の下限値未満であると硬化物の耐クラック性が低下し、上記範囲の上限値より大きいと硬化物のガス耐性が低下する。cが上記範囲以内であると、耐クラック性があり、硬化物のガス耐性が高くなる。 In the formula, a, b, and c satisfy 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 0.7, 0.1 ≦ c ≦ 0.9, and a + b + c = 1, respectively. A number, preferably 0.02 ≦ a ≦ 0.5, 0.1 ≦ b ≦ 0.6, 0.1 ≦ c ≦ 0.8, and a + b + c = 1, more preferably 0.05 ≦ a ≦ 0.5, 0.2 ≦ b ≦ 0.6, 0.1 ≦ c ≦ 0.7, and a + b + c = 1. This is because if a is less than the lower limit of the above range, the strength of the cured product cannot be sufficiently obtained, and the gas resistance of the cured product is reduced. It becomes brittle. When a is within the above range, the cured product has sufficient strength, and the gas resistance of the cured product becomes good. If b is less than the lower limit of the above range, the gas resistance of the cured product will decrease, and if it is greater than the upper limit of the above range, the cured product will become white and turbid. When b is within the above range, the cured product has good gas resistance, and a transparent cured product is obtained. When c is less than the lower limit of the above range, the crack resistance of the cured product is lowered, and when it is larger than the upper limit of the above range, the gas resistance of the cured product is lowered. When c is within the above range, there is crack resistance and the gas resistance of the cured product is increased.
 なお、(A)成分の直鎖状オルガノポリシロキサンは、本発明の目的を損なわない範囲で、SiO4/2で表されるシロキサン単位をさらに有してもよい。また、このオルガノポリシロキサンには、本発明の目的を損なわない範囲で、メトキシ基、エトキシ基、プロポキシ基等のケイ素原子と結合したアルコキシ基、あるいはケイ素原子結合と結合した水酸基を有していてもよい。 In addition, the linear organopolysiloxane of the component (A) may further have a siloxane unit represented by SiO 4/2 as long as the object of the present invention is not impaired. In addition, the organopolysiloxane has an alkoxy group bonded to a silicon atom such as a methoxy group, an ethoxy group, or a propoxy group, or a hydroxyl group bonded to a silicon atom bond within a range not impairing the object of the present invention. Also good.
 (A)成分のオルガノポリシロキサンを合成する方法としては、例えば、
一般式(I):RSiX
で表されるシラン化合物、
一般式(II):RSi(X
で表されるシラン化合物、および
一般式(III):R Si(X
で表されるシラン化合物を、酸またはアルカリの存在下、加水分解・縮合反応させる方法が挙げられる。
As a method for synthesizing the organopolysiloxane of component (A), for example,
Formula (I): R 1 R 2 R 3 SiX 1
A silane compound represented by
General formula (II): R 4 R 5 Si (X 2 ) 2
And a general formula (III): R 6 2 Si (X 3 ) 2
The method of hydrolyzing and condensing the silane compound represented by these in presence of an acid or an alkali is mentioned.
 一般式(I):RSiX
で表されるシラン化合物は、オルガノポリシロキサンに、式:RSiO1/2で表されるシロキサン単位を導入するための原料である。一般式(I)中、Rは炭素原子数2~12のアルケニル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表す。また、式中Xは、アルコキシ基、アシロキシ基、水酸基または-OSiR基を表す。Xがアルコキシ基を表す場合、該アルコキシ基として、メトキシ基、エトキシ基、プロポキシ基が例示される。また、Xがアシロキシ基を表す場合、該アシロキシ基としてアセトキシ基が例示される。
Formula (I): R 1 R 2 R 3 SiX 1
Is a raw material for introducing a siloxane unit represented by the formula: R 1 R 2 R 3 SiO 1/2 into organopolysiloxane. In the general formula (I), R 1 represents an alkenyl group having 2 to 12 carbon atoms, R 2 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and R 3 represents An aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms is represented. In the formula, X 1 represents an alkoxy group, an acyloxy group, a hydroxyl group or a —OSiR 1 R 2 R 3 group. When X 1 represents an alkoxy group, examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Furthermore, when X 1 represents an acyloxy group, an acetoxy group can be exemplified as the acyloxy group.
 このようなシラン化合物としては、ジメチルビニルメトキシシラン、ジメチルビニルエトキシシラン、メチルフェニルビニルメトキシシラン、メチルフェニルビニルエトキシシラン等のアルコキシシラン、ジメチルビニルアセトキシシラン、メチルフェニルビニルアセトキシシラン等のアセトキシシラン、ジメチルビニルヒドロキシシラン、メチルフェニルビニルヒドロキシシラン等のヒドロキシシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンが例示される。 Examples of such silane compounds include alkoxysilanes such as dimethylvinylmethoxysilane, dimethylvinylethoxysilane, methylphenylvinylmethoxysilane, and methylphenylvinylethoxysilane, acetoxysilane such as dimethylvinylacetoxysilane, and methylphenylvinylacetoxysilane, dimethyl Examples thereof include hydroxysilanes such as vinylhydroxysilane and methylphenylvinylhydroxysilane, and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane.
 一般式(II):RSi(X
で表されるシラン化合物は、オルガノポリシロキサンに、式:RSiO2/2で表されるシロキサン単位を導入するための原料である。一般式(II)中、Rは炭素原子数6~20のアリール基又はビフェニリル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表す。また、式中Xは、アルコキシ基、アシロキシ基、または水酸基を表す。Xがアルコキシ基を表す場合、該アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基が例示される。また、Xがアシロキシ基を表す場合、該アシロキシ基として、アセトキシ基が例示される。
General formula (II): R 4 R 5 Si (X 2 ) 2
Is a raw material for introducing a siloxane unit represented by the formula: R 4 R 5 SiO 2/2 into an organopolysiloxane. In general formula (II), R 4 represents an aryl group or a biphenylyl group having 6 to 20 carbon atoms, and R 5 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms. In the formula, X 2 represents an alkoxy group, an acyloxy group, or a hydroxyl group. When X 2 represents an alkoxy group, examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Also, if X 2 represents an acyloxy group, as the acyloxy group, acetoxy group and the like.
 このようなシラン化合物としては、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、エチルフェニルジメトキシシラン、エチルフェニルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルビフェニリルジメトキシシラン、メチルビフェニリルジエトキシシラン、フェニルビフェニリルジメトキシシラン、フェニルビフェニリルジエトキシシラン等のアルコキシシラン、メチルフェニルジアセトキシシラン、エチルフェニルジアセトキシシラン、ジフェニルジアセトキシシラン、メチルビフェニリルジアセトキシシラン、フェニルビフェニリルジアセトキシシラン等のアセトキシシラン、メチルフェニルジヒドロキシシラン、エチルフェニルジヒドロキシシラン、ジフェニルジヒドロキシシラン、メチルビフェニリルジヒドロキシシラン、フェニルビフェニリルジヒドロキシシラン等のヒドロキシシランが例示される。 Examples of such silane compounds include methylphenyldimethoxysilane, methylphenyldiethoxysilane, ethylphenyldimethoxysilane, ethylphenyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylbiphenylyldimethoxysilane, methylbiphenylyldiethoxy. Silanes, alkoxysilanes such as phenylbiphenylyldimethoxysilane, phenylbiphenylyldiethoxysilane, methylphenyldiacetoxysilane, ethylphenyldiacetoxysilane, diphenyldiacetoxysilane, methylbiphenylyldiacetoxysilane, phenylbiphenylyldiacetoxysilane, etc. Acetoxysilane, methylphenyldihydroxysilane, ethylphenyldihydroxysilane, diphenyldihydride Kishishiran, methyl biphenylyl dihydroxysilane, hydroxy silanes and phenyl biphenylyl dihydroxysilane are exemplified.
 一般式(III):R Si(X
で表されるシラン化合物は、オルガノポリシロキサンに、式:R SiO2/2で表されるシロキサン単位を導入するための原料である。一般式(III)中、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Xは、アルコキシ基、アシロキシ基、ハロゲン原子、または水酸基を表す。Xがアルコキシ基を表す場合、該アルコキシ基として、メトキシ基、エトキシ基、プロポキシ基が例示される。また、Xがアシロキシ基を表す場合、該アシロキシ基として、アセトキシ基が例示される。
General formula (III): R 6 2 Si (X 3 ) 2
Is a raw material for introducing a siloxane unit represented by the formula: R 6 2 SiO 2/2 into an organopolysiloxane. In general formula (III), R 6 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and X 3 represents an alkoxy group, an acyloxy group, a halogen atom, or a hydroxyl group. When X 3 represents an alkoxy group, examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Also, if X 3 represents an acyloxy group, as the acyloxy group, acetoxy group and the like.
 このようなシラン化合物としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等のアルコキシシラン、ジメチルジアセトキシシラン、ジフェニルジアセトキシシラン等のアセトキシシラン、ジメチルジヒドロキシシラン、ジフェニルジヒドロキシシラン等のヒドロキシシランが例示される。 Examples of such silane compounds include alkoxysilanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane, acetoxysilanes such as dimethyldiacetoxysilane and diphenyldiacetoxysilane, dimethyldihydroxysilane, and diphenyldihydroxy. Examples include hydroxysilanes such as silane.
 (A)成分の直鎖状オルガノポリシロキサンは、シラン化合物(I)、シラン化合物(II)、シラン化合物(III)、さらに必要に応じて、その他のシラン化合物、環状シリコーン化合物、あるいはシランオリゴマーを、酸もしくはアルカリの存在下、加水分解・縮合反応させて得られたものであることを特徴とする。 The linear organopolysiloxane of component (A) is composed of silane compound (I), silane compound (II), silane compound (III) and, if necessary, other silane compounds, cyclic silicone compounds, or silane oligomers. It is obtained by hydrolysis / condensation reaction in the presence of acid or alkali.
 使用できる酸としては、塩酸、酢酸、蟻酸、硝酸、シュウ酸、硫酸、リン酸、ポリリン酸、多価カルボン酸、トリフルオロメタンスルホン酸、イオン交換樹脂が例示される。また、使用できるアルカリとしては、水酸化カリウム、水酸化ナトリウム等の無機アルカリ、トリエチルアミン、ジエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、アンモニア水、テトラメチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、アミノ基を有するアルコキシラン、アミノプロピルトリメトキシシラン等の有機塩基化合物が例示される。 Examples of the acid that can be used include hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid, trifluoromethanesulfonic acid, and ion exchange resin. Examples of alkalis that can be used include inorganic alkalis such as potassium hydroxide and sodium hydroxide, triethylamine, diethylamine, monoethanolamine, diethanolamine, triethanolamine, aqueous ammonia, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, amino Illustrative are organic base compounds such as alkoxysilane having a group and aminopropyltrimethoxysilane.
 また、上記の調製方法において、有機溶剤を使用することができる。使用できる有機溶剤としては、エーテル類、ケトン類、アルコール類、アセテート類、芳香族あるいは脂肪族炭化水素、γ-ブチロラクトン、およびこれらの2種以上の混合物が例示される。好ましい有機溶剤としては、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、イソプロパノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、γ-ブチロラクトン、ペンタン、ヘキサン、ヘプタン、トルエン、キシレンが例示される。 In the above preparation method, an organic solvent can be used. Examples of the organic solvent that can be used include ethers, ketones, alcohols, acetates, aromatic or aliphatic hydrocarbons, γ-butyrolactone, and mixtures of two or more thereof. Preferred organic solvents include diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropanol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether And propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, γ-butyrolactone, pentane, hexane, heptane, toluene and xylene.
 上記の調製方法では、上記各成分の加水分解・縮合反応を促進するため、水、または水とアルコール類との混合液を添加することが好ましい。このアルコール類としては、メタノール、エタノール、イソプロパノールが好ましい。この反応は、加熱により促進され、有機溶剤を使用する場合には、その還流温度で反応を行うことが好ましい。 In the above preparation method, it is preferable to add water or a mixed solution of water and alcohols in order to promote the hydrolysis / condensation reaction of each of the above components. As this alcohol, methanol, ethanol, and isopropanol are preferable. This reaction is accelerated by heating, and when an organic solvent is used, the reaction is preferably performed at the reflux temperature.
 (B)成分の直鎖状オルガノポリシロキサンは、下記式(2)で表さる3種の構造単位を有し、ケイ素原子と結合した水素原子を1分子中に少なくとも2個有する。
(RSiO1/2(R1011SiO2/2(R12 SiO2/2f (2)
The linear organopolysiloxane of component (B) has three structural units represented by the following formula (2), and has at least two hydrogen atoms bonded to silicon atoms in one molecule.
(R 7 R 8 R 9 SiO 1/2 ) d (R 10 R 11 SiO 2/2 ) e (R 12 2 SiO 2/2 ) f (2)
 式中、Rは水素原子を表す。Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rがアリール基を表す場合、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示され、好ましくは、フェニル基である。また、Rがアルキル基を表す場合、該アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rがアリール基を表す場合、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示され、好ましくは、フェニル基である。また、Rがアルキル基を表す場合、該アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。R10は炭素原子数6~20のアリール基又はビフェニリル基を表し、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示される。環境中の腐食性ガスによる封止材の変色、および電極や基板にメッキされた銀の腐食による輝度の低下を防ぐ観点から、R10としてビフェニリル基が好ましい。R11は炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、R11がアリール基を表す場合、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示され、好ましくは、フェニル基である。また、R11がアルキル基を表す場合、該アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。R12は炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、R12がアリール基を表す場合、該アリール基として、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、または塩素原子、臭素原子等のハロゲン原子で置換した基が例示され、好ましくは、フェニル基である。また、R12がアルキル基を表す場合、該アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。 In the formula, R 7 represents a hydrogen atom. R 8 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and when R 8 represents an aryl group, as the aryl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. A substituted group is exemplified, and a phenyl group is preferable. In addition, when R 8 represents an alkyl group, the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group. R 9 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and when R 9 represents an aryl group, as the aryl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. A substituted group is exemplified, and a phenyl group is preferable. Further, when R 9 represents an alkyl group, the alkyl group may be a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group. Examples of the group include a methyl group. R 10 represents an aryl group having 6 to 20 carbon atoms or a biphenylyl group, and the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group thereof. Examples include a group in which a hydrogen atom is substituted with an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. Discoloration of the encapsulant by corrosive gases in the environment, and from the viewpoint of preventing reduction in luminance due to corrosion of the plated silver electrode and the substrate, a biphenylyl group are preferred as R 10. R 11 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms. When R 11 represents an aryl group, the aryl group may be a phenyl group, a tolyl group, a xylyl group, a naphthyl group. An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. A substituted group is exemplified, and a phenyl group is preferable. In addition, when R 11 represents an alkyl group, the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group. R 12 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms. When R 12 represents an aryl group, the aryl group includes a phenyl group, a tolyl group, a xylyl group, a naphthyl group. An anthracenyl group, a phenanthryl group, a pyrenyl group, and an aryl group such as an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, or a halogen atom such as a chlorine atom or a bromine atom. A substituted group is exemplified, and a phenyl group is preferable. In addition, when R 12 represents an alkyl group, the alkyl group may be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Examples of the group include a methyl group.
 また、式中、d、eおよびfは、それぞれ、0.01≦d≦0.5、0.01≦e≦0.7、0.1≦f≦0.9、かつd+e+f=1を満たす数であり、好ましくは、0.02≦d≦0.5、0.1≦e≦0.6、0.1≦f≦0.8、かつd+e+f=1を満たす数であり、更に好ましくは、0.05≦d≦0.5、0.2≦e≦0.6、0.1≦f≦0.7、かつ、d+e+f=1を満たす数である。これは、dが上記範囲の下限値未満であると、硬化物の強度が十分に得られず硬化物のガス耐性が低下するからであり、一方、上記範囲の上限値より大きいと硬化物が脆くなる。dが上記範囲以内であると、硬化物は十分な強度を有し、硬化物のガス耐性が良好となる。eが上記範囲の下限値未満であると硬化物のガス耐性が低下し、上記範囲の上限値より大きいと硬化物が白く濁る。eが上記範囲以内であると、硬化物のガス耐性が良好となり、透明な硬化物が得られる。fが上記範囲の下限値未満であると硬化物の耐クラック性が低下し、上記範囲の上限値より大きいと硬化物のガス耐性が低下する。fが上記範囲以内であると、耐クラック性があり、硬化物のガス耐性が高くなる。 In the formula, d, e, and f satisfy 0.01 ≦ d ≦ 0.5, 0.01 ≦ e ≦ 0.7, 0.1 ≦ f ≦ 0.9, and d + e + f = 1, respectively. A number, preferably 0.02 ≦ d ≦ 0.5, 0.1 ≦ e ≦ 0.6, 0.1 ≦ f ≦ 0.8, and d + e + f = 1, more preferably 0.05 ≦ d ≦ 0.5, 0.2 ≦ e ≦ 0.6, 0.1 ≦ f ≦ 0.7, and d + e + f = 1. This is because if d is less than the lower limit of the above range, the strength of the cured product cannot be sufficiently obtained, and the gas resistance of the cured product is reduced. It becomes brittle. When d is within the above range, the cured product has sufficient strength, and the gas resistance of the cured product becomes good. If e is less than the lower limit of the above range, the gas resistance of the cured product will decrease, and if it is greater than the upper limit of the above range, the cured product will become white and turbid. When e is within the above range, the cured product has good gas resistance, and a transparent cured product can be obtained. When f is less than the lower limit of the above range, the crack resistance of the cured product is lowered, and when it is larger than the upper limit of the above range, the gas resistance of the cured product is lowered. When f is within the above range, there is crack resistance and the gas resistance of the cured product is increased.
 なお、(B)成分のオルガノポリシロキサンは、本発明の目的を損なわない範囲で、SiO4/2で表されるシロキサン単位を有してもよい。また、このオルガノポリシロキサンには、本発明の目的を損なわない範囲で、メトキシ基、エトキシ基、プロポキシ基等のケイ素原子結合アルコキシ基、あるいはケイ素原子と結合した水酸基を有していてもよい。 In addition, the organopolysiloxane of the component (B) may have a siloxane unit represented by SiO 4/2 as long as the object of the present invention is not impaired. The organopolysiloxane may have a silicon atom-bonded alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group, or a hydroxyl group bonded to a silicon atom, as long as the object of the present invention is not impaired.
 (B)成分のオルガノポリシロキサンを合成する方法としては、例えば、
一般式(IV):RSiX
で表されるシラン化合物、
一般式(V):R1011Si(X
で表されるシラン化合物、および
一般式(VI):R12 Si(X
で表されるシラン化合物を、酸もしくはアルカリの存在下、加水分解・縮合反応させる方法が挙げられる。
As a method for synthesizing the organopolysiloxane of component (B), for example,
General formula (IV): R 7 R 8 R 9 SiX 1
A silane compound represented by
Formula (V): R 10 R 11 Si (X 2 ) 2
And a general formula (VI): R 12 2 Si (X 2 ) 2
The method of hydrolyzing and condensing the silane compound represented by these in presence of an acid or an alkali is mentioned.
 一般式(IV):RSiX
で表されるシラン化合物は、オルガノポリシロキサンに、式:RSiO1/2で表されるシロキサン単位を導入するための原料である。一般式(IV)中、Rは水素原子を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Xはアルコキシ基、アシロキシ基、水酸基または-OSiR基を表す。Xがアルコキシ基を表す場合、該アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基が例示される。また、Xがアシロキシ基を表す場合、該アシロキシ基としては、アセトキシ基が例示される。
General formula (IV): R 7 R 8 R 9 SiX 1
Is a raw material for introducing a siloxane unit represented by the formula: R 7 R 8 R 9 SiO 1/2 into the organopolysiloxane. In the general formula (IV), R 7 represents a hydrogen atom, R 8 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and R 9 represents a carbon atom having 6 to 20 carbon atoms. An aryl group or an alkyl group having 1 to 12 carbon atoms is represented, and X 1 represents an alkoxy group, an acyloxy group, a hydroxyl group, or a —OSiR 7 R 8 R 9 group. When X 1 represents an alkoxy group, examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. In addition, when X 1 represents an acyloxy group, examples of the acyloxy group include an acetoxy group.
 このようなシラン化合物としては、ジメチルメトキシシラン、ジメチルエトキシシラン、メチルフェニルメトキシシラン、メチルフェニルエトキシシラン等のアルコキシシラン、ジメチルアセトキシシラン、メチルフェニルアセトキシシラン等のアセトキシシラン、ジメチルヒドロキシシラン、メチルフェニルヒドロキシシラン等のヒドロキシシラン、1,1,3,3-テトラメチルジシロキサンが例示される。 Examples of such silane compounds include alkoxysilanes such as dimethylmethoxysilane, dimethylethoxysilane, methylphenylmethoxysilane, and methylphenylethoxysilane, acetoxysilanes such as dimethylacetoxysilane and methylphenylacetoxysilane, dimethylhydroxysilane, and methylphenylhydroxy. Examples thereof include hydroxysilane such as silane and 1,1,3,3-tetramethyldisiloxane.
 一般式(V):R1011Si(X
で表されるシラン化合物は、オルガノポリシロキサンに、式:R1011SiO2/2で表されるシロキサン単位を導入するための原料である。一般式(V)中、R10は炭素原子数6~20のアリール基又はビフェニリル基を表し、R11は炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Xはアルコキシ基、アシロキシ基、または水酸基を表す。Xがアルコキシ基を表す場合、該アルコキシ基として、メトキシ基、エトキシ基、プロポキシ基が例示される。また、Xがアシロキシ基を表す場合、該アシロキシ基として、アセトキシ基が例示される。
Formula (V): R 10 R 11 Si (X 2 ) 2
Is a raw material for introducing a siloxane unit represented by the formula: R 10 R 11 SiO 2/2 into an organopolysiloxane. In the general formula (V), R 10 represents an aryl group or biphenylyl group having 6 to 20 carbon atoms, R 11 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, X 2 represents an alkoxy group, an acyloxy group, or a hydroxyl group. When X 2 represents an alkoxy group, examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Also, if X 2 represents an acyloxy group, as the acyloxy group, acetoxy group and the like.
 このようなシラン化合物としては、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、エチルフェニルジメトキシシラン、エチルフェニルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルビフェニリルジメトキシシラン、メチルビフェニリルジエトキシシラン、フェニルビフェニリルジメトキシシラン、フェニルビフェニリルジエトキシシラン等のアルコキシシラン、メチルフェニルジアセトキシシラン、エチルフェニルジアセトキシシラン、ジフェニルジアセトキシシラン、メチルビフェニリルジアセトキシシラン、フェニルビフェニリルジアセトキシシラン等のアセトキシシラン、メチルフェニルジヒドロキシシラン、エチルフェニルジヒドロキシシラン、ジフェニルジヒドロキシシラン、メチルビフェニリルジヒドロキシシラン、フェニルビフェニリルジヒドロキシシラン等のヒドロキシシランが例示される。 Examples of such silane compounds include methylphenyldimethoxysilane, methylphenyldiethoxysilane, ethylphenyldimethoxysilane, ethylphenyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylbiphenylyldimethoxysilane, methylbiphenylyldiethoxy. Silanes, alkoxysilanes such as phenylbiphenylyldimethoxysilane, phenylbiphenylyldiethoxysilane, methylphenyldiacetoxysilane, ethylphenyldiacetoxysilane, diphenyldiacetoxysilane, methylbiphenylyldiacetoxysilane, phenylbiphenylyldiacetoxysilane, etc. Acetoxysilane, methylphenyldihydroxysilane, ethylphenyldihydroxysilane, diphenyldihydride Kishishiran, methyl biphenylyl dihydroxysilane, hydroxy silanes and phenyl biphenylyl dihydroxysilane are exemplified.
 一般式(VI):R12 Si(X
で表されるシラン化合物は、オルガノポリシロキサンに、式:R12 SiO2/2で表されるシロキサン単位を導入するための原料である。一般式(VI)中、R12は炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Xはアルコキシ基、アシロキシ基、または水酸基を表す。Xがアルコキシ基を表す場合、該アルコキシ基として、メトキシ基、エトキシ基、プロポキシ基が例示される。また、Xがアシロキシ基を表す場合、該アシロキシ基として、アセトキシ基が例示される。
Formula (VI): R 12 2 Si (X 2 ) 2
Is a raw material for introducing a siloxane unit represented by the formula: R 12 2 SiO 2/2 into an organopolysiloxane. In the general formula (VI), R 12 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and X 2 represents an alkoxy group, an acyloxy group, or a hydroxyl group. When X 2 represents an alkoxy group, examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Also, if X 2 represents an acyloxy group, as the acyloxy group, acetoxy group and the like.
 このようなシラン化合物としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等のアルコキシシラン、ジメチルジアセトキシシラン、ジフェニルジアセトキシシラン等のアセトキシシラン、ジメチルジヒドロキシシラン、ジフェニルジヒドロキシシラン等のヒドロキシシランが例示される。 Examples of such silane compounds include alkoxysilanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane, acetoxysilanes such as dimethyldiacetoxysilane and diphenyldiacetoxysilane, dimethyldihydroxysilane, and diphenyldihydroxy Examples include hydroxysilanes such as silane.
 (B)成分のオルガノポリシロキサンは、シラン化合物(IV)、シラン化合物(V)、シラン化合物(VI)、さらに必要に応じて、その他のシラン化合物、環状シリコーン化合物、あるいはシランオリゴマーを、酸の存在下、加水分解・縮合反応させて得られたものであることを特徴とする。 The organopolysiloxane of component (B) is composed of silane compound (IV), silane compound (V), silane compound (VI), and, if necessary, other silane compounds, cyclic silicone compounds, or silane oligomers. It is obtained by hydrolysis / condensation reaction in the presence.
 使用できる酸としては、塩酸、酢酸、蟻酸、硝酸、シュウ酸、硫酸、リン酸、ポリリン酸、多価カルボン酸、トリフルオロメタンスルホン酸、イオン交換樹脂が例示される。 Examples of the acid that can be used include hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid, trifluoromethanesulfonic acid, and ion exchange resin.
 前記(A)成分の直鎖状オルガノポリシロキサンの合成時に使用する一般式(II)で表されるシラン化合物のR、および前記(B)成分の直鎖状オルガノポリシロキサンの合成時に使用する一般式(V)で表されるシラン化合物のR10のうち、少なくとも一方はビフェニリル基を表す。 Used when synthesizing R 4 of the silane compound represented by the general formula (II) used in the synthesis of the linear organopolysiloxane of the component (A) and the linear organopolysiloxane of the component (B). At least one of R 10 of the silane compound represented by the general formula (V) represents a biphenylyl group.
 また、上記の調製方法において、有機溶剤を使用することができる。使用できる有機溶剤としては、エーテル類、ケトン類、アルコール類、アセテート類、芳香族炭化水素、脂肪族炭化水素、γ-ブチロラクトン、およびこれらの2種以上の混合物が例示される。好ましい有機溶剤としては、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、イソプロパノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、γ-ブチロラクトン、ペンタン、ヘキサン、ヘプタン、トルエン、キシレンが例示される。 In the above preparation method, an organic solvent can be used. Examples of the organic solvent that can be used include ethers, ketones, alcohols, acetates, aromatic hydrocarbons, aliphatic hydrocarbons, γ-butyrolactone, and mixtures of two or more thereof. Preferred organic solvents include diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropanol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether And propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, γ-butyrolactone, pentane, hexane, heptane, toluene and xylene.
 上記の調製方法では、上記各成分の加水分解・縮合反応を促進するため、水、または水とアルコール類との混合液を添加することが好ましい。このアルコール類としては、メタノール、エタノール、イソプロパノールが好ましい。この反応は、加熱により促進され、有機溶剤を使用する場合には、その還流温度で反応を行うことが好ましい。 In the above preparation method, it is preferable to add water or a mixed solution of water and alcohols in order to promote the hydrolysis / condensation reaction of each of the above components. As this alcohol, methanol, ethanol, and isopropanol are preferable. This reaction is accelerated by heating, and when an organic solvent is used, the reaction is preferably performed at the reflux temperature.
 本組成物において、(B)成分の含有量は、(A)成分中アルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~5モルの範囲内となる量であり、好ましくは、0.5~2モルの範囲内となる量である。これは、(B)成分の含有量が上記範囲の下限値未満であると、組成物が十分に硬化しないからであり、上記範囲より多いと硬化物の耐熱透明性に悪影響を与える、すなわち、硬化物が高温状態において徐々に変色することになり、LED用封止材として使用できなくなる。上記範囲内であると、組成物が十分に硬化し、十分な硫化耐性を発現し、本発明の組成物を用いて作製したLED装置の信頼性が向上する。 In this composition, the content of component (B) is such that the silicon-bonded hydrogen atoms in this component are within the range of 0.1 to 5 moles per mole of alkenyl groups in component (A). Yes, and preferably in an amount in the range of 0.5 to 2 moles. This is because if the content of the component (B) is less than the lower limit of the above range, the composition does not sufficiently cure, and if it exceeds the above range, the heat-resistant transparency of the cured product will be adversely affected. The cured product is gradually discolored in a high temperature state, and cannot be used as an LED sealing material. When it is within the above range, the composition is sufficiently cured, exhibits sufficient sulfidation resistance, and the reliability of the LED device manufactured using the composition of the present invention is improved.
 (C)成分は、本組成物の硬化を促進するためのヒドロシリル化反応触媒であり、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示される。特に、本組成物の硬化を著しく促進できることから、(C)成分は白金系触媒であることが好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示され、好ましくは、白金-アルケニルシロキサン錯体である。 The component (C) is a hydrosilylation reaction catalyst for accelerating the curing of the composition, and examples thereof include a platinum-based catalyst, a rhodium-based catalyst, and a palladium-based catalyst. In particular, the component (C) is preferably a platinum-based catalyst because curing of the composition can be significantly accelerated. Examples of the platinum-based catalyst include fine platinum powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex, preferably a platinum-alkenylsiloxane complex. is there.
 また、本組成物において、(C)成分の含有量は、本組成物の硬化を促進するために有効な量である。具体的には、(C)成分の含有量は、本組成物の硬化反応を十分に促進できることから、(A)成分と(B)成分の合計100質量部に対して、(C)成分中の触媒金属が0.000001~0.05質量部の範囲内となる量であることが好ましく、0.000001~0.03質量部の範囲内となる量であることがさらに好ましく、特に0.000001~0.01質量部の範囲内となる量であることが好ましい。 In the present composition, the content of the component (C) is an effective amount for accelerating the curing of the present composition. Specifically, since the content of the component (C) can sufficiently accelerate the curing reaction of the present composition, the total amount of the component (A) and the component (B) is 100 parts by mass in the component (C). The amount of the catalyst metal is preferably in the range of 0.000001 to 0.05 parts by mass, more preferably 0.000001 to 0.03 parts by mass. The amount is preferably in the range of 000001 to 0.01 parts by mass.
 本発明において、(A)成分のオルガノポリシロキサンと、上記(B)成分のオルガノポリシロキサンの両方、または一方にビフェニリル基を有するオルガノポリシロキサンが含まれることが好ましい。ビフェニリル基を有するオルガノポリシロキサンが含まれると、本組成物の硬化物の硫化耐性が著しく向上する。 In the present invention, it is preferable that the organopolysiloxane of component (A) and the organopolysiloxane of component (B), or an organopolysiloxane having a biphenylyl group in one of them. When the organopolysiloxane having a biphenylyl group is contained, the sulfurization resistance of the cured product of the present composition is remarkably improved.
 本発明において、硬化途上で接触している基材に対する硬化物の接着性を向上させるため、(D)接着付与剤を含有してもよい。この(D)成分としては、ケイ素原子と結合したアルコキシ基を一分子中に少なくとも1個有する有機ケイ素化合物が好ましい。このアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基が例示され、特に基材との密着性に優れる点でメトキシ基が好ましい。また、この有機ケイ素化合物のケイ素原子と結合するアルコキシ基以外の基としては、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等の置換もしくは非置換の一価炭化水素基、3-グリシドキシプロピル基、4-グリシドキシブチル基等のグリシドキシアルキル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基等のエポキシシクロヘキシルアルキル基、4-オキシラニルブチル基、8-オキシラニルオクチル基等のオキシラニルアルキル基等のエポキシ基含有一価有機基、3-メタクリロキシプロピル基等のアクリル基含有一価有機基、水素原子が例示される。この有機ケイ素化合物はケイ素原子と結合したアルケニル基またはケイ素原子と結合した水素原子を有することが好ましい。また、各種の基材に対して良好な接着性を付与できることから、この有機ケイ素化合物は一分子中に少なくとも1個のエポキシ基含有一価有機基を有するものであることが好ましい。このような有機ケイ素化合物としては、オルガノシラン化合物、オルガノシロキサンオリゴマー、アルキルシリケートが例示される。このオルガノシロキサンオリゴマーあるいはアルキルシリケートの分子構造としては、直鎖状、一部分枝を有する直鎖状、分枝鎖状、環状、網状が例示され、特に、直鎖状、分枝鎖状、網状であることが好ましい。このような有機ケイ素化合物としては、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のシラン化合物、一分子中にケイ素原子結合アルケニル基もしくはケイ素原子結合水素原子、およびケイ素原子結合アルコキシ基をそれぞれ少なくとも1個ずつ有するシロキサン化合物、ケイ素原子結合アルコキシ基を少なくとも1個有するシラン化合物、またはシロキサン化合物と一分子中にケイ素原子結合水酸基とケイ素原子結合アルケニル基をそれぞれ少なくとも1個ずつ有するシロキサン化合物との混合物、メチルポリシリケート、エチルポリシリケート、エポキシ基含有エチルポリシリケートが例示される。 In this invention, in order to improve the adhesiveness of the hardened | cured material with respect to the base material which is in the process of hardening, you may contain (D) adhesion imparting agent. The component (D) is preferably an organosilicon compound having at least one alkoxy group bonded to a silicon atom in one molecule. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group is particularly preferable in terms of excellent adhesion to a substrate. Examples of the group other than the alkoxy group bonded to the silicon atom of the organosilicon compound include substituted or unsubstituted monovalent hydrocarbon groups such as alkyl groups, alkenyl groups, aryl groups, aralkyl groups, and halogenated alkyl groups, 3 -Glycidoxyalkyl groups such as glycidoxypropyl group and 4-glycidoxybutyl group, epoxies such as 2- (3,4-epoxycyclohexyl) ethyl group and 3- (3,4-epoxycyclohexyl) propyl group Epoxy group-containing monovalent organic groups such as cyclohexylalkyl group, 4-oxiranylbutyl group, 8-oxiranyloctyl group and the like, and acrylic group-containing monovalent organic groups such as 3-methacryloxypropyl group Examples thereof include a hydrogen atom. This organosilicon compound preferably has an alkenyl group bonded to a silicon atom or a hydrogen atom bonded to a silicon atom. Moreover, since it can provide favorable adhesiveness to various types of substrates, the organosilicon compound preferably has at least one epoxy group-containing monovalent organic group in one molecule. Examples of such organosilicon compounds include organosilane compounds, organosiloxane oligomers, and alkyl silicates. Examples of the molecular structure of the organosiloxane oligomer or alkyl silicate include linear, partially branched linear, branched, cyclic, and network, particularly linear, branched, and network. Preferably there is. Examples of such organosilicon compounds include 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, silane compounds such as 3-methacryloxypropyltrimethoxysilane, A siloxane compound having at least one silicon atom-bonded alkenyl group or silicon atom-bonded hydrogen atom and silicon atom-bonded alkoxy group, a silane compound having at least one silicon atom-bonded alkoxy group, or a siloxane compound in one molecule Examples thereof include a mixture of a silicon atom-bonded hydroxyl group and a siloxane compound having at least one silicon atom-bonded alkenyl group, methyl polysilicate, ethyl polysilicate, and epoxy group-containing ethyl polysilicate.
 本組成物において、(D)成分の含有量は限定されないが、硬化途上で接触している基材に対して良好に接着することから、上記(A)成分、(B)成分、(C)成分の合計100質量部に対して、0.01~10質量部の範囲内であることが好ましい。 In the present composition, the content of the component (D) is not limited, but it adheres favorably to the substrate that is in contact with the curing process, so the components (A), (B), (C) The content is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the components.
 また、本発明には、その他任意の成分として、3-ブチン-2-オール、2-メチル-3-ブチン-2-オール、1-ペンチン-3-オール、3,4-ジメチル-1-ペンチン-3-オール、3-メチル-1-ペンチン-3-オール、3-エチル-1-ペンチン-3-オール、1-ヘプチン-3-オール、5-メチル-1-ヘキシン-3-オール、1-オクチン-3-オール、4-エチル-1-オクチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-エチル-1-ヘプチン-3-オール、1-エチニル-1-シクロヘキサノール等のアルキン化合物、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のシロキサン化合物、ベンゾトリアゾール等の反応抑制剤を含有してもよい。本組成物において、この反応抑制剤の含有量は限定されないが、上記(A)成分、(B)成分、(C)成分の合計100質量部に対して、0.01~5質量部の範囲内であることが好ましい。 In the present invention, other optional components include 3-butyn-2-ol, 2-methyl-3-butyn-2-ol, 1-pentyn-3-ol, and 3,4-dimethyl-1-pentyne. -3-ol, 3-methyl-1-pentyn-3-ol, 3-ethyl-1-pentyn-3-ol, 1-heptin-3-ol, 5-methyl-1-hexyn-3-ol, -Octin-3-ol, 4-ethyl-1-octin-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 3-ethyl-1-heptin-3-ol, 1-ethynyl-1 Alkyne compounds such as cyclohexanol, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5, 7-tetrahexenylcyclo Siloxane compound tigers siloxanes, may contain a reaction inhibitor benzotriazole. In the present composition, the content of the reaction inhibitor is not limited, but it is in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of the components (A), (B), and (C). It is preferable to be within.
 本発明には、その他任意の成分として、蛍光体を含有することができる。この蛍光体は、例えば、LEDに広く利用されている、酸化物系蛍光体、酸窒化物系蛍光体、窒化物系蛍光体、硫化物系蛍光体、酸硫化物系蛍光体等からなる黄色、赤色、緑色、青色発光蛍光体が挙げられる。酸化物系蛍光体は、セリウムイオンを包含するイットリウム、アルミニウム、ガーネット系のYAG系緑色~黄色発光蛍光体、セリウムイオンを包含するテルビウム、アルミニウム、ガーネット系のTAG系黄色発光蛍光体、および、セリウムやユーロピウムイオンを包含するシリケート系緑色~黄色発光蛍光体が例示される。酸窒化物系蛍光体は、ユーロピウムイオンを包含するケイ素、アルミニウム、酸素、窒素系のサイアロン系赤色~緑色発光蛍光体が例示される。窒化物系蛍光体としては、ユーロピウムイオンを包含するカルシウム、ストロンチウム、アルミニウム、ケイ素、窒素系のカズン系(CASN及びS-CASN)赤色発光蛍光体が例示される。硫化物系蛍光体は、銅イオンやアルミニウムイオンを包含するZnS系緑色発色蛍光体が例示される。酸硫化物系蛍光体は、ユーロピウムイオンを包含するYS系赤色発光蛍光体が例示される。これらの蛍光体は、1種または2種以上の混合物を用いてもよい。本組成物において、この蛍光体の含有量は特に限定されないが、(A)成分、(B)成分、(C)成分の合計100質量部に対して、1~20質量部の範囲内であることが好ましい。 In the present invention, a phosphor can be contained as another optional component. This phosphor is, for example, yellow made of oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, oxysulfide phosphors and the like widely used in LEDs. , Red, green, and blue light emitting phosphors. Oxide-based phosphors include yttrium, aluminum, garnet-based YAG-based green to yellow light-emitting phosphors containing cerium ions, terbium, aluminum, garnet-based TAG-based yellow light-emitting phosphors including cerium ions, and cerium And silicate green to yellow light emitting phosphors containing europium ions. Examples of the oxynitride-based phosphor include silicon, aluminum, oxygen, and nitrogen-based sialon-based red to green light-emitting phosphors containing europium ions. Examples of nitride-based phosphors include calcium, strontium, aluminum, silicon, and nitrogen-based casoon-based (CASN and S-CASN) red-emitting phosphors containing europium ions. Examples of the sulfide-based phosphors include ZnS-based green coloring phosphors including copper ions and aluminum ions. The oxysulfide phosphor is exemplified by a Y 2 O 2 S red light-emitting phosphor containing europium ions. These phosphors may use one kind or a mixture of two or more kinds. In the present composition, the content of the phosphor is not particularly limited, but is within the range of 1 to 20 parts by mass with respect to 100 parts by mass in total of the components (A), (B), and (C). It is preferable.
 本発明のLED用封止材組成物は上記の成分以外に本発明の目的や効果を損なわない範囲で必要に応じて、添加剤を含有することができる。添加剤としては、例えば、無機フィラー、酸化防止剤、紫外線吸収剤、熱光安定剤、分散剤、帯電防止剤、重合禁止剤、消泡剤、溶剤、無機蛍光体、ラジカル禁止剤、界面活性剤、導電性付与剤、顔料、染料、金属不活性化剤が例示され、各種添加剤は特に制限されない。 The LED encapsulant composition of the present invention can contain additives as necessary within the range not impairing the object and effect of the present invention in addition to the above components. Examples of additives include inorganic fillers, antioxidants, ultraviolet absorbers, thermal light stabilizers, dispersants, antistatic agents, polymerization inhibitors, antifoaming agents, solvents, inorganic phosphors, radical inhibitors, and surface active agents. Agents, conductivity imparting agents, pigments, dyes, metal deactivators are exemplified, and various additives are not particularly limited.
 上記(A)成分のオルガノポリシロキサンと、上記(B)成分のオルガノポリシロキサンと、上記(C)成分のヒドロシリル化反応触媒とは、これらの成分のうち1種又は2種以上含む液を別々に調製しておき、使用直前に複数の液を混合して、本発明に係るLED用封止材組成物を調製してもよい。例えば、(A)成分のオルガノポリシロキサンを含む第1の液と、上記(B)成分のオルガノポリシロキサンを含む第2の液とを別々に調製しておき、使用直前に第1の液と第2の液とを混合して、本発明に係るLED用封止材組成物を調製してもよい。上記第1の液及び上記第2の液の少なくとも一方が、上記(C)成分のヒドロシリル化反応触媒を含む。上記第1の液にヒドロシリル化反応触媒を含むことが好ましい。このように2液にすることによって保存安定性が向上する。 The organopolysiloxane of the component (A), the organopolysiloxane of the component (B), and the hydrosilylation reaction catalyst of the component (C) are separated from liquids containing one or more of these components. The LED encapsulant composition according to the present invention may be prepared by mixing a plurality of liquids immediately before use. For example, the first liquid containing the organopolysiloxane (A) and the second liquid containing the organopolysiloxane (B) are prepared separately, and the first liquid The LED encapsulant composition according to the present invention may be prepared by mixing with the second liquid. At least one of the first liquid and the second liquid contains the hydrosilylation reaction catalyst of the component (C). The first liquid preferably contains a hydrosilylation reaction catalyst. Thus, storage stability improves by using 2 liquids.
 本発明のLED用封止材組成物は、加熱することで硬化することができる。本発明のLED用封止材組成物を硬化させる温度は、おおよそ80℃から200℃の温度で行うことが好ましい。上記加熱処理の方法は特に限定されるものではないが、適切な雰囲気下、即ち大気、窒素等の不活性ガス、真空中等で、ホットプレート又はオーブンを用いて行う方法を例示することができる。 The LED encapsulant composition of the present invention can be cured by heating. The temperature for curing the LED sealing material composition of the present invention is preferably about 80 to 200 ° C. The method for the heat treatment is not particularly limited, and examples thereof include a method of using a hot plate or an oven in an appropriate atmosphere, that is, in the atmosphere, an inert gas such as nitrogen, or in a vacuum.
 本発明のLED用封止材組成物はLED封止用として使用することができる。本発明のLED用封止材組成物を適用できるLED素子は特に制限されない。本発明のLED用封止材組成物をLED素子に適用する方法は特に制限されない。本発明のLED用封止材組成物はLED封止用以外にも例えば、光学レンズとして使用することができる。 The LED encapsulant composition of the present invention can be used for LED encapsulation. The LED element to which the LED encapsulant composition of the present invention can be applied is not particularly limited. The method for applying the LED sealing material composition of the present invention to an LED element is not particularly limited. The LED sealing material composition of the present invention can be used as, for example, an optical lens in addition to LED sealing.
 本発明のLED用封止材組成物から得られた硬化物の特性を次のようにして測定した。 The characteristics of the cured product obtained from the LED encapsulant composition of the present invention were measured as follows.
(硬化物の作製)
 LED用封止材組成物から得られた硬化物の耐熱透明性を評価するために、本発明のLED用封止材組成物を、オーブンで100℃、1時間ベークしたのち、150℃、3時間ベークし、無アルカリガラス基板に厚さ1mmの硬化物を作製した。LED用封止材組成物から得られた硬化物の硫化耐性を評価するために、銀メッキされた電極を備えたLED基板に本発明のLED用封止材組成物を塗布し、オーブンで100℃、1時間ベークしたのち、150℃、3時間ベークし、LED装置を作製した。
(Production of cured product)
In order to evaluate the heat-resistant transparency of the cured product obtained from the LED encapsulant composition, the LED encapsulant composition of the present invention was baked in an oven at 100 ° C for 1 hour, and then at 150 ° C, 3 ° C. After baking for a time, a cured product having a thickness of 1 mm was prepared on an alkali-free glass substrate. In order to evaluate the sulfidation resistance of the cured product obtained from the LED encapsulant composition, the LED encapsulant composition of the present invention was applied to an LED substrate provided with a silver-plated electrode, and 100% in an oven. After baking at 1 degreeC for 1 hour, it baked at 150 degreeC for 3 hours, and produced the LED device.
(耐熱透明性試験)
 得られた硬化物の紫外可視吸収スペクトルを株式会社島津製作所製UV-3100PCを用いて、波長450nmにおける厚さ1mmの透過率を測定した。測定後、150℃に温度設定した対流式オーブン内(空気中)で該硬化物を1000時間加熱した。加熱後の硬化物の透過率を測定し、透過率が90%以上であるとき、硬化物形成時の加熱処理を経ても高い透明性を有すると評価し「○」とした。透過率が90%未満であるもの、及び耐熱透明性試験の評価の過程で割れたものは、耐熱透明性を有してないと評価し「×」と評価した。
(Heat resistance transparency test)
The UV-visible absorption spectrum of the obtained cured product was measured for transmittance of 1 mm thickness at a wavelength of 450 nm using UV-3100PC manufactured by Shimadzu Corporation. After the measurement, the cured product was heated for 1000 hours in a convection oven (in air) set at 150 ° C. The transmittance of the cured product after heating was measured, and when the transmittance was 90% or more, it was evaluated as having high transparency even after the heat treatment at the time of forming the cured product, and was rated as “◯”. Those having a transmittance of less than 90% and those cracked in the course of evaluation in the heat-resistant transparency test were evaluated as having no heat-resistant transparency and evaluated as “x”.
(硫化耐性試験)
 作製したLED装置を、80℃、硫黄雰囲気下のオーブンに入れ、24時間後、銀メッキ電極を顕微鏡で観察した。銀めっき電極に変色が見られない場合を「○」、銀めっき電極が黒色に変色した場合を「×」と判定した。さらに、LED用封止材組成物を硬化させた際、硬化物が未硬化であった場合、硬化物が割れた場合、及び硬化物が白濁した場合は評価不能と判断し「-」と判定した。
(Sulfurization resistance test)
The produced LED device was put in an oven under a sulfur atmosphere at 80 ° C., and after 24 hours, the silver-plated electrode was observed with a microscope. A case where no discoloration was observed in the silver plating electrode was determined as “◯”, and a case where the silver plating electrode was discolored in black was determined as “x”. Furthermore, when the LED encapsulant composition is cured, if the cured product is uncured, if the cured product is cracked, or if the cured product is cloudy, it is determined that the evaluation is impossible and the determination is "-". did.
(密着性試験)
 硫化耐性試験を行ったあとに、作製したLED装置に形成された硬化物を顕微鏡で確認した。該硬化物について、銀メッキ電極との剥離が確認されなかった場合には密着性に優れるものとして「○」と評価し、剥離が確認された場合には密着性に劣るものとして「×」と評価し、LED用封止材組成物を硬化させた際、硬化物が未硬化であった場合、硬化物が割れた場合、及び硬化物が白濁した場合は評価不能と判断し「-」と評価した。
(Adhesion test)
After performing the sulfidation resistance test, the cured product formed on the produced LED device was confirmed with a microscope. When the cured product was not peeled off from the silver-plated electrode, it was evaluated as “◯” as being excellent in adhesion, and when peeling was confirmed as “x” as being inferior in adhesion. When evaluating and curing the LED encapsulant composition, when the cured product is uncured, when the cured product is cracked, and when the cured product is cloudy, it is determined that the evaluation is impossible and "-" evaluated.
 製造例および実施例で使用した試薬は下記のものを使用した。
マグネシウム切削片(関東化学株式会社製)
4-ブロモビフェニル(東京化成工業株式会社製)
テトラヒドロフラン(純正化学株式会社製)
トルエン(純正化学株式会社製)
トリフルオロメタンスルホン酸(東京化成工業株式会社製)
フェニルトリメトキシシラン(東京化成工業株式会社製)
メチルトリメトキシシラン(東京化成工業株式会社製)
1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン(東京化成工業株式会社製)
ジフェニルジメトキシシラン(東京化成工業株式会社製)
ジメチルジメトキシシラン(東京化成工業株式会社製)
1,1,3,3-テトラメチルジシロキサン(東京化成工業株式会社製)
1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(シグマ アルドリッチ社製)
The following reagents were used in the production examples and examples.
Magnesium cutting piece (manufactured by Kanto Chemical Co., Ltd.)
4-Bromobiphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.)
Tetrahydrofuran (Pure Chemical Co., Ltd.)
Toluene (made by Pure Chemical Co., Ltd.)
Trifluoromethanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
Phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.)
Methyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.)
1,3-divinyl-1,1,3,3-tetramethyldisiloxane (manufactured by Tokyo Chemical Industry Co., Ltd.)
Diphenyldimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.)
Dimethyldimethoxysilane (Tokyo Chemical Industry Co., Ltd.)
1,1,3,3-tetramethyldisiloxane (manufactured by Tokyo Chemical Industry Co., Ltd.)
1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (manufactured by Sigma-Aldrich)
 以下、製造例と実施例を挙げて本発明をより詳細に説明する。本発明は、以下の製造例と実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to production examples and examples. The present invention is not limited to the following production examples and examples.
<製造例1>
ビフェニリルフェニルジメトキシシランの合成
 凝縮器を備えた1Lの反応フラスコに、マグネシウム切削片15.47g(0.472mol)を仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、4-ブロモビフェニル100.00g(0.429mol)、及びテトラヒドロフラン382gの混合物を、室温(およそ23℃)下、1時間で滴下し、さらに60分間撹拌することで、グリニャール試薬を調製した。
 2Lの反応フラスコに、フェニルトリメトキシシラン93.57g(0.472mol)、及びテトラヒドロフラン191gを仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、上記グリニャール試薬を、室温下、30分間で滴下し、さらに室温で24時間撹拌した。この反応混合物から、エバポレーターを用いてテトラヒドロフランを減圧留去した。得られた残渣に、ヘキサン500gを加え、室温下60分間撹拌し、可溶物を抽出した後、不溶物をろ別した。この不溶物に、再度ヘキサン500gを加え、同様に不溶物をろ別した。それぞれのろ液を混合し、エバポレーターを用いてヘキサンを減圧留去し、粗生成物を得た。粗生成物を減圧蒸留することで、目的とするビフェニリルフェニルジメトキシシラン67.4g(収率49%)を得た。
<Production Example 1>
Synthesis of biphenylylphenyldimethoxysilane A 1 L reaction flask equipped with a condenser was charged with 15.47 g (0.472 mol) of a magnesium cutting piece, and the air in the flask was replaced with nitrogen using a nitrogen balloon. A Grignard reagent was prepared by adding dropwise a mixture of 100.00 g (0.429 mol) of 4-bromobiphenyl and 382 g of tetrahydrofuran at room temperature (approximately 23 ° C.) over 1 hour and further stirring for 60 minutes. .
In a 2 L reaction flask, 93.57 g (0.472 mol) of phenyltrimethoxysilane and 191 g of tetrahydrofuran were charged, and the air in the flask was replaced with nitrogen using a nitrogen balloon. The Grignard reagent was added dropwise at room temperature over 30 minutes, and the mixture was further stirred at room temperature for 24 hours. From this reaction mixture, tetrahydrofuran was distilled off under reduced pressure using an evaporator. To the obtained residue, 500 g of hexane was added, and the mixture was stirred at room temperature for 60 minutes to extract soluble matters, and then insoluble matters were filtered off. To this insoluble material, 500 g of hexane was added again, and the insoluble material was similarly filtered off. The respective filtrates were mixed, and hexane was distilled off under reduced pressure using an evaporator to obtain a crude product. The crude product was distilled under reduced pressure to obtain 67.4 g (yield 49%) of the target biphenylylphenyldimethoxysilane.
<製造例2>
ビフェニリルメチルジメトキシシランの合成
 凝縮器を備えた1Lの反応フラスコに、マグネシウム切削片15.47g(0.472mol)を仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、4-ブロモビフェニル100.00g(0.429mol)、及びテトラヒドロフラン382gの混合物を、室温(およそ23℃)下、1時間で滴下し、さらに60分間撹拌することで、グリニャール試薬を調製した。
 2Lの反応フラスコに、メチルトリメトキシシラン93.57g(0.472mol)、及びテトラヒドロフラン191gを仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、上記グリニャール試薬を、室温下、30分間で滴下し、さらに室温で24時間撹拌した。この反応混合物から、エバポレーターを用いてテトラヒドロフランを減圧留去した。得られた残渣に、ヘキサン500gを加え、室温下60分間撹拌し、可溶物を抽出した後、不溶物をろ別した。この不溶物に、再度ヘキサン500gを加え、同様に不溶物をろ別した。それぞれのろ液を混合し、エバポレーターを用いてヘキサンを減圧留去し、粗生成物を得た。粗生成物を減圧蒸留することで、目的とするビフェニリルメチルジメトキシシラン82.2g(収率76%)を得た。
<Production Example 2>
Synthesis of biphenylylmethyldimethoxysilane A 1 L reaction flask equipped with a condenser was charged with 15.47 g (0.472 mol) of a magnesium cutting piece, and the air in the flask was replaced with nitrogen using a nitrogen balloon. A Grignard reagent was prepared by adding dropwise a mixture of 100.00 g (0.429 mol) of 4-bromobiphenyl and 382 g of tetrahydrofuran at room temperature (approximately 23 ° C.) over 1 hour and further stirring for 60 minutes. .
Into a 2 L reaction flask, 93.57 g (0.472 mol) of methyltrimethoxysilane and 191 g of tetrahydrofuran were charged, and the air in the flask was replaced with nitrogen using a nitrogen balloon. The Grignard reagent was added dropwise at room temperature over 30 minutes, and the mixture was further stirred at room temperature for 24 hours. From this reaction mixture, tetrahydrofuran was distilled off under reduced pressure using an evaporator. To the obtained residue, 500 g of hexane was added, and the mixture was stirred at room temperature for 60 minutes to extract soluble materials, and then insoluble materials were filtered off. To this insoluble material, 500 g of hexane was added again, and the insoluble material was similarly filtered off. The respective filtrates were mixed, and hexane was distilled off under reduced pressure using an evaporator to obtain a crude product. The crude product was distilled under reduced pressure to obtain 82.2 g (yield 76%) of the target biphenylylmethyldimethoxysilane.
<合成例1>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルメチルジメトキシシラン103.36g(0.40mol)、ジフェニルジメトキシシラン122.19g(0.50mol)及びトルエン244gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-1)199g(収率:98%)を得た。
<Synthesis Example 1>
In a reaction vessel, 18.64 g (0.10 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 103.36 g (0.40 mol) of biphenylylmethyldimethoxysilane, 122.diphenyldimethoxysilane. After 19 g (0.50 mol) and 244 g of toluene were mixed, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed from the obtained transparent solution under reduced pressure by heating to obtain 199 g of organopolysiloxane (P-1) (yield: 98%).
<合成例2>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルメチルジメトキシシラン103.36g(0.40mol)、ジメチルジメトキシシラン60.11g(0.50mol)及びトルエン182gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-2)138g(収率:98%)を得た。
<Synthesis Example 2>
In a reaction vessel, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane 18.64 g (0.10 mol), biphenylylmethyldimethoxysilane 103.36 g (0.40 mol), dimethyldimethoxysilane 60. After 11 g (0.50 mol) and 182 g of toluene were mixed, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed from the obtained transparent solution under reduced pressure by heating to obtain 138 g of organopolysiloxane (P-2) (yield: 98%).
<合成例3>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルフェニルジメトキシシラン128.18g(0.40mol)、ジフェニルジメトキシシラン122.19g(0.50mol)及びトルエン269gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-3)233g(収率:98%)を得た。
<Synthesis Example 3>
In a reaction vessel, 18.64 g (0.10 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 128.18 g (0.40 mol) of biphenylylphenyldimethoxysilane, 122.18 g of diphenyldimethoxysilane. After 19 g (0.50 mol) and 269 g of toluene were mixed, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed by heating under reduced pressure from the transparent solution thus obtained to obtain 233 g of organopolysiloxane (P-3) (yield: 98%).
<合成例4>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルフェニルジメトキシシラン128.18g(0.40mol)、ジメチルジメトキシシラン60.11g(0.50mol)及びトルエン207gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-4)207g(収率:98%)を得た。
<Synthesis Example 4>
In a reaction vessel, 18.64 g (0.10 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 128.18 g (0.40 mol) of biphenylylphenyldimethoxysilane, 60.dimethyldimethoxysilane. After 11 g (0.50 mol) and 207 g of toluene were mixed, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was separated by filtration, low-boiling substances were removed by heating under reduced pressure from the obtained transparent solution to obtain 207 g of organopolysiloxane (P-4) (yield: 98%).
<合成例5>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルメチルジメトキシシラン51.68g(0.20mol)、ビフェニリルフェニルジメトキシシラン64.09g(0.20mol)、ジフェニルジメトキシシラン122.19g(0.50mol)及びトルエン257gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-5)211g(収率:98%)を得た。
<Synthesis Example 5>
In a reaction vessel, 18.64 g (0.10 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 51.68 g (0.20 mol) of biphenylylmethyldimethoxysilane, biphenylylphenyldimethoxysilane After mixing 64.09 g (0.20 mol), diphenyldimethoxysilane 122.19 g (0.50 mol) and toluene 257 g, water 32.44 g (1.80 mol) and trifluoromethanesulfonic acid 0.75 g (5 mmol) were added. The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed from the obtained transparent solution under reduced pressure by heating to obtain 211 g (yield: 98%) of organopolysiloxane (P-5).
<合成例6>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン1.86g(0.01mol)、ビフェニリルメチルジメトキシシラン103.36g(0.40mol)、ジフェニルジメトキシシラン61.09g(0.25mol)、ジメチルジメトキシシラン30.06g(0.25mol)及びトルエン226gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-6)180g(収率:98%)を得た。
<Synthesis Example 6>
In a reaction vessel, 1.86 g (0.01 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 103.36 g (0.40 mol) of biphenylylmethyldimethoxysilane, 61.36 g of diphenyldimethoxysilane. After mixing 09 g (0.25 mol), 30.06 g (0.25 mol) of dimethyldimethoxysilane and 226 g of toluene, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added, The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed from the resulting transparent solution under reduced pressure by heating to obtain 180 g of organopolysiloxane (P-6) (yield: 98%).
<合成例7>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン55.92g(0.30mol)、ビフェニリルメチルジメトキシシラン77.52g(0.30mol)、ジフェニルジメトキシシラン61.09g(0.25mol)、ジメチルジメトキシシラン30.06g(0.25mol)及びトルエン225gを混合した後、水28.83g(1.60mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-7)184g(収率:98%)を得た。
<Synthesis Example 7>
In a reaction vessel, 55.92 g (0.30 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 77.52 g (0.30 mol) of biphenylylmethyldimethoxysilane, 61. After mixing 09 g (0.25 mol), 30.06 g (0.25 mol) of dimethyldimethoxysilane and 225 g of toluene, 28.83 g (1.60 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added, The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed by heating under reduced pressure from the clear solution thus obtained to obtain 184 g of organopolysiloxane (P-7) (yield: 98%).
<合成例8>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルメチルジメトキシシラン25.84g(0.10mol)、ジフェニルジメトキシシラン97.75g(0.40mol)、ジメチルジメトキシシラン48.09g(0.40mol)及びトルエン337gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-8)146g(収率:98%)を得た。
<Synthesis Example 8>
In a reaction vessel, 18.64 g (0.10 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 25.84 g (0.10 mol) of biphenylylmethyldimethoxysilane, 97. After mixing 75 g (0.40 mol), dimethyldimethoxysilane 48.09 g (0.40 mol) and toluene 337 g, water 32.44 g (1.80 mol) and trifluoromethanesulfonic acid 0.75 g (5 mmol) were added, The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed by heating under reduced pressure from the clear solution thus obtained to obtain 146 g of organopolysiloxane (P-8) (yield: 98%).
<合成例9>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルメチルジメトキシシラン180.87g(0.70mol)、ジフェニルジメトキシシラン36.66g(0.15mol)、ジメチルジメトキシシラン18.03g(0.15mol)及びトルエン254gを混合した後、水36.04g(2.00mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-9)204g(収率:98%)を得た。
<Synthesis Example 9>
In a reaction vessel, 18.64 g (0.10 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 180.87 g (0.70 mol) of biphenylylmethyldimethoxysilane, and 36. diphenyldimethoxysilane. 66 g (0.15 mol), dimethyldimethoxysilane 18.03 g (0.15 mol) and toluene 254 g were mixed, and then water 36.04 g (2.00 mol) and trifluoromethanesulfonic acid 0.75 g (5 mmol) were added. The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed by heating under reduced pressure from the clear solution thus obtained to obtain 204 g (yield: 98%) of organopolysiloxane (P-9).
<合成例10>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルフェニルジメトキシシラン32.05g(0.10mol)、ジフェニルジメトキシシラン97.75g(0.40mol)、ジメチルジメトキシシラン48.09g(0.40mol)及びトルエン197gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-10)152g(収率:98%)を得た。
<Synthesis Example 10>
In a reaction vessel, 18.64 g (0.10 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 32.05 g (0.10 mol) of biphenylylphenyldimethoxysilane, 97. After mixing 75 g (0.40 mol), dimethyldimethoxysilane 48.09 g (0.40 mol) and toluene 197 g, water 32.44 g (1.80 mol) and trifluoromethanesulfonic acid 0.75 g (5 mmol) were added, The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution, to obtain 152 g of organopolysiloxane (P-10) (yield: 98%).
<合成例11>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ビフェニリルフェニルジメトキシシラン224.32g(0.70mol)、ジフェニルジメトキシシラン36.66g(0.15mol)、ジメチルジメトキシシラン18.03g(0.15mol)及びトルエン298gを混合した後、水36.04g(2.00mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-11)247g(収率:98%)を得た。
<Synthesis Example 11>
In a reaction vessel, 18.64 g (0.10 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 224.32 g (0.70 mol) of biphenylylphenyldimethoxysilane, and 36. diphenyldimethoxysilane. After mixing 66 g (0.15 mol), dimethyldimethoxysilane 18.03 g (0.15 mol) and toluene 298 g, water 36.04 g (2.00 mol) and trifluoromethanesulfonic acid 0.75 g (5 mmol) were added, The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was separated by filtration, low-boiling substances were removed by heating under reduced pressure from the obtained transparent solution to obtain 247 g of organopolysiloxane (P-11) (yield: 98%).
<合成例12>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン46.60g(0.25mol)、ビフェニリルフェニルジメトキシシラン192.27g(0.60mol)、ジフェニルジメトキシシラン18.33g(0.075mol)、ジメチルジメトキシシラン9.02g(0.075mol)及びトルエン229gを混合した後、水27.03g(1.50mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-12)191g(収率:98%)を得た。
<Synthesis Example 12>
In a reaction vessel, 46.60 g (0.25 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 192.27 g (0.60 mol) of biphenylylphenyldimethoxysilane, 18. 33 g (0.075 mol), 9.02 g (0.075 mol) of dimethyldimethoxysilane and 229 g of toluene were mixed, and then 27.03 g (1.50 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added. The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was separated by filtration, low-boiling substances were removed by heating under reduced pressure from the transparent solution thus obtained to obtain 191 g of organopolysiloxane (P-12) (yield: 98%).
<合成例13>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン9.32g(0.05mol)、ビフェニリルフェニルジメトキシシラン64.09g(0.20mol)、ジフェニルジメトキシシラン18.33g(0.075mol)、ジメチルジメトキシシラン90.17g(0.75mol)及びトルエン151gを混合した後、水34.24g(1.90mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-13)105g(収率:98%)を得た。
<Synthesis Example 13>
In a reaction vessel, 9.32 g (0.05 mol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 64.09 g (0.20 mol) of biphenylylphenyldimethoxysilane, 18. After mixing 33 g (0.075 mol), 90.17 g (0.75 mol) of dimethyldimethoxysilane and 151 g of toluene, 34.24 g (1.90 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added, The mixture was heated to reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed from the obtained transparent solution by heating under reduced pressure to obtain 105 g (yield: 98%) of organopolysiloxane (P-13).
<合成例14>
 反応容器に、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン18.64g(0.10mol)、ジフェニルジメトキシシラン109.97g(0.45mol)、ジメチルジメトキシシラン54.10g(0.45mol)及びトルエン183gを混合した後、水34.24g(1.90mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで水酸化カリウム0.056g(1.0mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸0.30g(0.50mmol)を投入し、中和反応を行った。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-14)138g(収率:98%)を得た。
<Synthesis Example 14>
In a reaction vessel, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane 18.64 g (0.10 mol), diphenyldimethoxysilane 109.97 g (0.45 mol), dimethyldimethoxysilane 54.10 g ( 0.45 mol) and 183 g of toluene were mixed, and then 34.24 g (1.90 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Next, 0.056 g (1.0 mmol) of potassium hydroxide was added, and atmospheric pressure heating was performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.30 g (0.50 mmol) of acetic acid was added to carry out a neutralization reaction. After the produced salt was filtered off, low-boiling substances were removed by heating under reduced pressure from the transparent solution thus obtained to obtain 138 g of organopolysiloxane (P-14) (yield: 98%).
<合成例15>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルメチルジメトキシシラン103.36g(0.40mol)、ジフェニルジメトキシシラン122.19g(0.50mol)及びトルエン239gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-15)194g(収率:98%)を得た。
<Synthesis Example 15>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), biphenylylmethyldimethoxysilane 103.36 g (0.40 mol), diphenyldimethoxysilane 122.19 g (0.50 mol) And 239 g of toluene, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid are added, and heating and normal pressure distillation are performed until the reaction temperature reaches 120 ° C. For 6 hours. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed from the resulting transparent solution by heating under reduced pressure to obtain 194 g of organopolysiloxane (P-15) (yield: 98%).
<合成例16>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルメチルジメトキシシラン103.36g(0.40mol)、ジメチルジメトキシシラン60.11g(0.50mol)及びトルエン177gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-16)133g(収率:98%)を得た。
<Synthesis Example 16>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), biphenylylmethyldimethoxysilane 103.36 g (0.40 mol), dimethyldimethoxysilane 60.11 g (0.50 mol) After mixing 177 g of toluene and 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid, the mixture was heated to reflux for 1 hour. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 133 g (yield: 98%) of organopolysiloxane (P-16).
<合成例17>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルフェニルジメトキシシラン128.18g(0.40mol)、ジフェニルジメトキシシラン122.19g(0.50mol)及びトルエン264gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-17)218g(収率:98%)を得た。
<Synthesis Example 17>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), biphenylylphenyldimethoxysilane 128.18 g (0.40 mol), diphenyldimethoxysilane 122.19 g (0.50 mol) After mixing 264 g of toluene and 264 g of toluene, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added, followed by heating under reflux for 1 hour. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 218 g of organopolysiloxane (P-17) (yield: 98%).
<合成例18>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルフェニルジメトキシシラン128.18g(0.40mol)、ジメチルジメトキシシラン60.11g(0.50mol)及びトルエン202gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-18)157g(収率:98%)を得た。
<Synthesis Example 18>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), biphenylylphenyldimethoxysilane 128.18 g (0.40 mol), dimethyldimethoxysilane 60.11 g (0.50 mol) After mixing 202 g of toluene and 202 g of toluene, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added, followed by heating under reflux for 1 hour. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 157 g (yield: 98%) of organopolysiloxane (P-18).
<合成例19>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルメチルジメトキシシラン51.68g(0.20mol)、ビフェニリルフェニルジメトキシシラン64.09g(0.20mol)、ジフェニルジメトキシシラン122.19g(0.50mol)及びトルエン220gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-19)175g(収率:98%)を得た。
<Synthesis Example 19>
In a reaction vessel, 13.43 g (0.10 mol) of 1,1,3,3-tetramethyldisiloxane, 51.68 g (0.20 mol) of biphenylylmethyldimethoxysilane, 64.09 g of biphenylylphenyldimethoxysilane (0. 20 mol), 122.19 g (0.50 mol) of diphenyldimethoxysilane and 220 g of toluene were mixed, and then 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. Went. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 175 g (yield: 98%) of organopolysiloxane (P-19).
<合成例20>
 反応容器に、1,1,3,3-テトラメチルジシロキサン1.34g(0.010mol)、ビフェニリルメチルジメトキシシラン103.36g(0.40mol)、ジフェニルジメトキシシラン61.09g(0.25mol)、ジメチルジメトキシシラン30.06g(0.25mol)及びトルエン196gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-20)151g(収率:98%)を得た。
<Synthesis Example 20>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 1.34 g (0.010 mol), biphenylylmethyldimethoxysilane 103.36 g (0.40 mol), diphenyldimethoxysilane 61.09 g (0.25 mol) After mixing 30.06 g (0.25 mol) of dimethyldimethoxysilane and 196 g of toluene, 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. It was. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the obtained transparent solution to obtain 151 g (yield: 98%) of organopolysiloxane (P-20).
<合成例21>
 反応容器に、1,1,3,3-テトラメチルジシロキサン40.03g(0.30mol)、ビフェニリルメチルジメトキシシラン77.52g(0.30mol)、ジフェニルジメトキシシラン61.09g(0.25mol)、ジメチルジメトキシシラン30.06g(0.25mol)及びトルエン209gを混合した後、水28.83g(1.60mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-21)169g(収率:98%)を得た。
<Synthesis Example 21>
In a reaction vessel, 40,03 g (0.30 mol) of 1,1,3,3-tetramethyldisiloxane, 77.52 g (0.30 mol) of biphenylylmethyldimethoxysilane, 61.09 g (0.25 mol) of diphenyldimethoxysilane After mixing 30.06 g (0.25 mol) of dimethyldimethoxysilane and 209 g of toluene, 28.83 g (1.60 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. It was. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed from the obtained transparent solution under reduced pressure by heating to obtain 169 g of organopolysiloxane (P-21) (yield: 98%).
<合成例22>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルメチルジメトキシシラン25.84g(0.10mol)、ジフェニルジメトキシシラン97.75g(0.40mol)、ジメチルジメトキシシラン48.09g(0.40mol)及びトルエン185gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-22)141g(収率:98%)を得た。
<Synthesis Example 22>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), biphenylylmethyldimethoxysilane 25.84 g (0.10 mol), diphenyldimethoxysilane 97.75 g (0.40 mol) , 48.09 g (0.40 mol) of dimethyldimethoxysilane and 185 g of toluene were mixed, and then 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. It was. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 141 g (yield: 98%) of organopolysiloxane (P-22).
<合成例23>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルメチルジメトキシシラン180.87g(0.70mol)、ジフェニルジメトキシシラン36.66g(0.15mol)、ジメチルジメトキシシラン18.03g(0.15mol)及びトルエン249gを混合した後、水36.04g(2.00mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-23)199g(収率:98%)を得た。
<Synthesis Example 23>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), biphenylylmethyldimethoxysilane 180.87 g (0.70 mol), diphenyldimethoxysilane 36.66 g (0.15 mol) Then, 18.03 g (0.15 mol) of dimethyldimethoxysilane and 249 g of toluene were mixed, and then 36.04 g (2.00 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. It was. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 199 g of organopolysiloxane (P-23) (yield: 98%).
<合成例24>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルフェニルジメトキシシラン32.05g(0.10mol)、ジフェニルジメトキシシラン97.75g(0.40mol)、ジメチルジメトキシシラン48.09g(0.40mol)及びトルエン191gを混合した後、水32.44g(1.80mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-24)147g(収率:98%)を得た。
<Synthesis Example 24>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), biphenylylphenyldimethoxysilane 32.05 g (0.10 mol), diphenyldimethoxysilane 97.75 g (0.40 mol) , 48.09 g (0.40 mol) of dimethyldimethoxysilane and 191 g of toluene were mixed, and then 32.44 g (1.80 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. It was. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 147 g of organopolysiloxane (P-24) (yield: 98%).
<合成例25>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ビフェニリルフェニルジメトキシシラン224.32g(0.70mol)、ジフェニルジメトキシシラン36.66g(0.15mol)、ジメチルジメトキシシラン18.03g(0.15mol)及びトルエン292gを混合した後、水36.04g(2.00mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-25)241g(収率:98%)を得た。
<Synthesis Example 25>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), biphenylylphenyldimethoxysilane 224.32 g (0.70 mol), diphenyldimethoxysilane 36.66 g (0.15 mol) Then, 18.03 g (0.15 mol) of dimethyldimethoxysilane and 292 g of toluene were mixed, and then 36.04 g (2.00 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. It was. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed from the resulting transparent solution by heating under reduced pressure to obtain 241 g of organopolysiloxane (P-25) (yield: 98%).
<合成例26>
 反応容器に、1,1,3,3-テトラメチルジシロキサン33.58g(0.25mol)、ビフェニリルフェニルジメトキシシラン192.27g(0.60mol)、ジフェニルジメトキシシラン18.33g(0.075mol)、ジメチルジメトキシシラン9.02g(0.075mol)及びトルエン216gを混合した後、水27.03g(1.50mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-26)178g(収率:98%)を得た。
<Synthesis Example 26>
In a reaction vessel, 33.58 g (0.25 mol) of 1,1,3,3-tetramethyldisiloxane, 192.27 g (0.60 mol) of biphenylylphenyldimethoxysilane, 18.33 g (0.075 mol) of diphenyldimethoxysilane Then, 9.02 g (0.075 mol) of dimethyldimethoxysilane and 216 g of toluene were mixed, and then 27.03 g (1.50 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. It was. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed from the resulting transparent solution by heating under reduced pressure to obtain 178 g of organopolysiloxane (P-26) (yield: 98%).
<合成例27>
 反応容器に、1,1,3,3-テトラメチルジシロキサン6.72g(0.05mol)、ビフェニリルフェニルジメトキシシラン64.09g(0.20mol)、ジフェニルジメトキシシラン18.33g(0.075mol)、ジメチルジメトキシシラン90.17g(0.75mol)及びトルエン149gを混合した後、水34.24g(1.90mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-27)103g(収率:98%)を得た。
<Synthesis Example 27>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 6.72 g (0.05 mol), biphenylylphenyldimethoxysilane 64.09 g (0.20 mol), diphenyldimethoxysilane 18.33 g (0.075 mol) After mixing 90.17 g (0.75 mol) of dimethyldimethoxysilane and 149 g of toluene, 34.24 g (1.90 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added and heated under reflux for 1 hour. It was. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 103 g of organopolysiloxane (P-27) (yield: 98%).
<合成例28>
 反応容器に、1,1,3,3-テトラメチルジシロキサン13.43g(0.10mol)、ジフェニルジメトキシシラン109.97g(0.45mol)、ジメチルジメトキシシラン54.10g(0.45mol)及びトルエン177gを混合した後、水34.24g(1.90mol)、トリフルオロメタンスルホン酸0.75g(5mmol)を投入し、1時間加熱還流を行った。反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、水を加え撹拌した。水層を抜き取り、得られた透明な溶液から低沸点物を加熱減圧除去し、オルガノポリシロキサン(P-28)133g(収率:98%)を得た。
<Synthesis Example 28>
In a reaction vessel, 1,1,3,3-tetramethyldisiloxane 13.43 g (0.10 mol), diphenyldimethoxysilane 109.97 g (0.45 mol), dimethyldimethoxysilane 54.10 g (0.45 mol) and toluene After mixing 177 g, 34.24 g (1.90 mol) of water and 0.75 g (5 mmol) of trifluoromethanesulfonic acid were added, followed by heating under reflux for 1 hour. The reaction was carried out at atmospheric pressure for 6 hours until the reaction temperature reached 120 ° C. After cooling to room temperature, water was added and stirred. The aqueous layer was extracted, and low-boiling substances were removed by heating under reduced pressure from the resulting transparent solution to obtain 133 g (yield: 98%) of organopolysiloxane (P-28).
<実施例1>
 (A)成分であるオルガノポリシロキサンP-1(10g)、(B)成分であるオルガノポリシロキサンP-15(10g)と(C)成分である1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(組成物全体に対して白金金属が重量単位で10ppmとなる量)を混合し、LED用封止材組成物を得た。
<Example 1>
Component (A), organopolysiloxane P-1 (10 g), component (B), organopolysiloxane P-15 (10 g), and component (C), 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
<実施例2>
 (A)成分であるオルガノポリシロキサンP-2(10g)、(B)成分であるオルガノポリシロキサンP-16(10g)と(C)成分である1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(組成物全体に対して白金金属が重量単位で10ppmとなる量)を混合し、LED用封止材組成物を得た。
<Example 2>
Component (A) Organopolysiloxane P-2 (10 g), Component (B) Organopolysiloxane P-16 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
<実施例3>
 (A)成分であるオルガノポリシロキサンP-3(10g)、(B)成分であるオルガノポリシロキサンP-17(10g)と(C)成分である1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(組成物全体に対して白金金属が重量単位で10ppmとなる量)を混合し、LED用封止材組成物を得た。
<Example 3>
Component (A) Organopolysiloxane P-3 (10 g), Component (B) Organopolysiloxane P-17 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
<実施例4>
 (A)成分であるオルガノポリシロキサンP-4(10g)、(B)成分であるオルガノポリシロキサンP-18(10g)と(C)成分である1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(組成物全体に対して白金金属が重量単位で10ppmとなる量)を混合し、LED用封止材組成物を得た。
<Example 4>
Component (A) Organopolysiloxane P-4 (10 g), Component (B) Organopolysiloxane P-18 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
<実施例5>
 (A)成分であるオルガノポリシロキサンP-5(10g)、(B)成分であるオルガノポリシロキサンP-19(10g)と(C)成分である1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(組成物全体に対して白金金属が重量単位で10ppmとなる量)を混合し、LED用封止材組成物を得た。
<Example 5>
Component (A) Organopolysiloxane P-5 (10 g), Component (B) Organopolysiloxane P-19 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
<実施例6>
 (A)成分であるオルガノポリシロキサンP-1(10g)、(B)成分であるオルガノポリシロキサンP-28(10g)と(C)成分である1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(組成物全体に対して白金金属が重量単位で10ppmとなる量)を混合し、LED用封止材組成物を得た。
<Example 6>
Component (A) Organopolysiloxane P-1 (10 g), Component (B) Organopolysiloxane P-28 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
<実施例7>
 (A)成分であるオルガノポリシロキサンP-14(10g)、(B)成分であるオルガノポリシロキサンP-15(10g)と(C)成分である1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(組成物全体に対して白金金属が重量単位で10ppmとなる量)を混合し、LED用封止材組成物を得た。
<Example 7>
Component (A) Organopolysiloxane P-14 (10 g), Component (B) Organopolysiloxane P-15 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain an LED encapsulant composition.
<比較例1>
 (A)成分であるオルガノポリシロキサンP-14(10g)、(B)成分であるオルガノポリシロキサンP-28(10g)と(C)成分である1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(組成物全体に対して白金金属が重量単位で10ppmとなる量)を混合し、組成物を得た。
<Comparative Example 1>
Component (A) Organopolysiloxane P-14 (10 g), Component (B) Organopolysiloxane P-28 (10 g) and Component (C) 1,3-divinyl-1,1,3 A 3-tetramethyldisiloxane complex (amount in which platinum metal was 10 ppm by weight with respect to the entire composition) was mixed to obtain a composition.
 結果を表1と表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1から実施例7で調製したLED用封止材組成物から得られた硬化物は、いずれも耐熱透明性があり、硫化耐性が高く銀基板の変色はみられなかった。また、LED基板に対する高い密着性を示した。
 一方、表2に示すように、比較例1で調製した組成物から得られた硬化物は、耐熱透明性、硫化耐性、密着性を全て満足できるものではなかった。
 具体的には、ビフェニリル基を含有しないポリオルガノシロキサンを使用した比較例1では、硫化耐性が不十分であった。よってLED用封止材組成物として使用することができないと判断した。
As shown in Table 1, the cured products obtained from the LED encapsulant compositions prepared in Examples 1 to 7 are all heat-resistant and transparent, have high sulfidation resistance, and discoloration of the silver substrate. I couldn't. Moreover, the high adhesiveness with respect to the LED board was shown.
On the other hand, as shown in Table 2, the cured product obtained from the composition prepared in Comparative Example 1 did not satisfy all of heat-resistant transparency, sulfidation resistance, and adhesion.
Specifically, in Comparative Example 1 using a polyorganosiloxane that does not contain a biphenylyl group, the resistance to sulfuration was insufficient. Therefore, it was judged that it could not be used as a sealing material composition for LED.
 以上の結果より、本発明のLED用封止材組成物は、耐熱透明性があり、硫化耐性が高いためLED基板の銀メッキ電極を腐食させることもなく、LED基板に対する高い密着性を示すことがわかり、LED装置におけるLED素子の封止材として好適であることがわかった。 From the above results, the LED encapsulant composition of the present invention has heat-resistant transparency and high sulfidation resistance, so that it does not corrode the silver-plated electrode of the LED substrate and exhibits high adhesion to the LED substrate. It turned out that it was suitable as a sealing material of the LED element in an LED device.
 本発明のLED用封止材組成物は、耐熱透明性があり、硫化耐性が高いため、LED基板の銀メッキ電極を腐食させることもなく、LED基板に対する高い密着性を示すことから、LED装置におけるLED素子の封止材、あるいは液晶端部の銀電極や基板の銀メッキの保護剤として好適である。 Since the LED encapsulant composition of the present invention has heat-resistant transparency and high resistance to sulfurization, it does not corrode the silver-plated electrode of the LED substrate, and exhibits high adhesion to the LED substrate. It is suitable as a sealing material for LED elements in the above, or as a silver plating protective agent for silver electrodes and substrates at liquid crystal edges.

Claims (6)

  1. (A)下記式(1)で表される3種の構造単位を有し、ケイ素原子と結合したアルケニル基を1分子中に少なくとも2個有する直鎖状のオルガノポリシロキサン、
    (RSiO1/2(RSiO2/2(R SiO2/2 (1)
    (式中、Rは炭素原子数2~12のアルケニル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rは炭素原子数6~20のアリール基又はビフェニリル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、2つのRは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、a、bおよびcは、それぞれ、0.01≦a≦0.5、0.01≦b≦0.7、0.1≦c≦0.9、かつa+b+c=1を満たす数である。)
    (B)下記式(2)で表さる3種の構造単位を有し、ケイ素原子と結合した水素原子を1分子中に少なくとも2個有する直鎖状のオルガノポリシロキサン、
    (RSiO1/2(R1011SiO2/2(R12 SiO2/2f (2)
    (式中、Rは水素原子を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、Rは炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、R10は炭素原子数6~20のアリール基又はビフェニリル基を表し、R11は炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、2つのR12は炭素原子数6~20のアリール基または炭素原子数1~12のアルキル基を表し、d、eおよびfは、それぞれ、0.01≦d≦0.5、0.01≦e≦0.7、0.1≦f≦0.9、かつd+e+f=1を満たす数である。)
    及び
    (C)ヒドロシリル化反応触媒
    を含み、前記式(1)中のRおよび前記式(2)中のR10の少なくとも一方はビフェニリル基を表す、LED用封止材組成物。
    (A) a linear organopolysiloxane having three structural units represented by the following formula (1) and having at least two alkenyl groups bonded to silicon atoms in one molecule;
    (R 1 R 2 R 3 SiO 1/2 ) a (R 4 R 5 SiO 2/2 ) b (R 6 2 SiO 2/2 ) c (1)
    (Wherein R 1 represents an alkenyl group having 2 to 12 carbon atoms, R 2 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and R 3 represents the number of carbon atoms. Represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, R 4 represents an aryl group or biphenylyl group having 6 to 20 carbon atoms, and R 5 represents an aryl group having 6 to 20 carbon atoms or Represents an alkyl group having 1 to 12 carbon atoms, and two R 6 s represent an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and a, b and c are each an O.D. (01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 0.7, 0.1 ≦ c ≦ 0.9, and a + b + c = 1)
    (B) a linear organopolysiloxane having three structural units represented by the following formula (2) and having at least two hydrogen atoms bonded to silicon atoms in one molecule;
    (R 7 R 8 R 9 SiO 1/2 ) d (R 10 R 11 SiO 2/2 ) e (R 12 2 SiO 2/2 ) f (2)
    (Wherein R 7 represents a hydrogen atom, R 8 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and R 9 represents an aryl group having 6 to 20 carbon atoms or Represents an alkyl group having 1 to 12 carbon atoms, R 10 represents an aryl group or biphenylyl group having 6 to 20 carbon atoms, and R 11 represents an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms. Represents an alkyl group, and two R 12 represent an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 12 carbon atoms, and d, e, and f each represents 0.01 ≦ d ≦ 0.5. , 0.01 ≦ e ≦ 0.7, 0.1 ≦ f ≦ 0.9, and d + e + f = 1.)
    And (C) a hydrosilylation reaction catalyst, wherein at least one of R 4 in the formula (1) and R 10 in the formula (2) represents a biphenylyl group.
  2.  前記式(1)中のRはフェニル基またはビフェニリル基を表す、請求項1に記載のLED用封止材組成物。 The LED encapsulant composition according to claim 1, wherein R 4 in the formula (1) represents a phenyl group or a biphenylyl group.
  3.  前記式(2)中のR10はフェニル基またはビフェニリル基を表す、請求項1又は請求項2に記載のLED用封止材組成物。 The encapsulant composition for LED according to claim 1 or 2, wherein R 10 in the formula (2) represents a phenyl group or a biphenylyl group.
  4.  さらに(D)接着付与剤を含む、請求項1乃至請求項3のいずれか一項に記載のLED用封止材組成物。 The LED encapsulant composition according to any one of claims 1 to 3, further comprising (D) an adhesion-imparting agent.
  5.  請求項1乃至請求項4のいずれか一項に記載のLED用封止材組成物から得られる硬化物。 Hardened | cured material obtained from the sealing material composition for LED as described in any one of Claims 1 thru | or 4.
  6.  請求項5に記載の硬化物によりLED素子が封止されたLED装置。 An LED device in which an LED element is sealed with the cured product according to claim 5.
PCT/JP2017/035565 2016-09-30 2017-09-29 Led sealant composition WO2018062513A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780057547.7A CN109716544B (en) 2016-09-30 2017-09-29 Sealing material composition for LED
JP2018542951A JP6764135B2 (en) 2016-09-30 2017-09-29 Encapsulant composition for LED
KR1020197010081A KR102211570B1 (en) 2016-09-30 2017-09-29 LED encapsulant composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194633 2016-09-30
JP2016194633 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062513A1 true WO2018062513A1 (en) 2018-04-05

Family

ID=61760558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035565 WO2018062513A1 (en) 2016-09-30 2017-09-29 Led sealant composition

Country Status (5)

Country Link
JP (1) JP6764135B2 (en)
KR (1) KR102211570B1 (en)
CN (1) CN109716544B (en)
TW (1) TWI717556B (en)
WO (1) WO2018062513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018061754A1 (en) * 2016-09-30 2019-09-05 日産化学株式会社 Crosslinkable organopolysiloxane composition, cured product thereof and LED device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116836392A (en) * 2023-08-01 2023-10-03 深圳市晨日科技股份有限公司 Organosilicon tackifier and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064062A (en) * 2011-09-16 2013-04-11 Sekisui Chem Co Ltd Sealing agent for optical semiconductor device, and optical semiconductor device using the same
JP2014084418A (en) * 2012-10-24 2014-05-12 Dow Corning Toray Co Ltd Curable silicone composition, cured product thereof, and optical semiconductor device
US20150368468A1 (en) * 2012-12-07 2015-12-24 Cheil Industries Inc. Curable polysiloxane composition for optical device, encapsulating material and optical device
WO2016063649A1 (en) * 2014-10-21 2016-04-28 日産化学工業株式会社 Sealing material composition for led

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523098B2 (en) 1998-12-28 2004-04-26 信越化学工業株式会社 Addition-curable silicone composition
FR2800380B1 (en) * 1999-10-29 2002-01-18 Rhodia Chimie Sa POLYMERIZATION AND / OR CROSSLINKAGE PRIMER OF POLYORGANOSILOXANES WITH CROSSLINKABLE FUNCTIONAL GROUPS, CORRESPONDING COMPOSITIONS AND USES THEREOF
JP4687074B2 (en) * 2004-11-02 2011-05-25 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
EP1760111A1 (en) * 2005-08-31 2007-03-07 Borealis Technology Oy Discolour-free silanol condensation catalyst containing polyolefin composition
JP6084808B2 (en) 2012-10-24 2017-02-22 東レ・ダウコーニング株式会社 Organopolysiloxane, curable silicone composition, cured product thereof, and optical semiconductor device
JP6300744B2 (en) * 2015-02-27 2018-03-28 信越化学工業株式会社 Semiconductor sealing resin composition and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064062A (en) * 2011-09-16 2013-04-11 Sekisui Chem Co Ltd Sealing agent for optical semiconductor device, and optical semiconductor device using the same
JP2014084418A (en) * 2012-10-24 2014-05-12 Dow Corning Toray Co Ltd Curable silicone composition, cured product thereof, and optical semiconductor device
US20150368468A1 (en) * 2012-12-07 2015-12-24 Cheil Industries Inc. Curable polysiloxane composition for optical device, encapsulating material and optical device
WO2016063649A1 (en) * 2014-10-21 2016-04-28 日産化学工業株式会社 Sealing material composition for led

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018061754A1 (en) * 2016-09-30 2019-09-05 日産化学株式会社 Crosslinkable organopolysiloxane composition, cured product thereof and LED device
JP7158100B2 (en) 2016-09-30 2022-10-21 日産化学株式会社 Crosslinkable organopolysiloxane composition, cured product thereof, and LED device

Also Published As

Publication number Publication date
TWI717556B (en) 2021-02-01
JPWO2018062513A1 (en) 2019-07-18
CN109716544B (en) 2021-11-09
JP6764135B2 (en) 2020-09-30
TW201829621A (en) 2018-08-16
CN109716544A (en) 2019-05-03
KR102211570B1 (en) 2021-02-03
KR20190060780A (en) 2019-06-03

Similar Documents

Publication Publication Date Title
JP5060654B2 (en) Sealant for optical semiconductor device and optical semiconductor device
JP6081774B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JP4911805B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP6084808B2 (en) Organopolysiloxane, curable silicone composition, cured product thereof, and optical semiconductor device
WO2017010327A1 (en) Curable polyborosiloxane resin composition, cured object obtained tehrefrom, and optical semiconductor device obtained using said composition or including said cured object
JP6157085B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
TW201817821A (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JP2016169358A (en) Curable silicone resin composition and cured product of the same, and optical semiconductor device using them
JP6764135B2 (en) Encapsulant composition for LED
JP2012111836A (en) Sealing agent for optical semiconductor device, and optical semiconductor device using the same
KR20150023496A (en) Coating agent, electrical-electronic equipment, and method for protecting metal parts of electrical-electronic equipment
WO2018088316A1 (en) Curable silicone composition and optical semiconductor device using same
JP5323037B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP2017128707A (en) Curable silicone resin composition and cured product thereof, and optical semiconductor device comprising the same
JP5323038B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
WO2012157330A1 (en) Sealing agent for optical semiconductor device, and optical semiconductor device
WO2017056913A1 (en) Curable silicone resin composition, cured product of same, and optical semiconductor device using said cured product
WO2016013421A1 (en) Curable silicone resin composition, cured object obtained therefrom, and optical semiconductor device formed using same
JP2012197409A (en) Sealant for photosemiconductor device and photosemiconductor device using the same
JP2013053186A (en) Sealant for optical semiconductor device, and optical semiconductor device using the same
JP2013018900A (en) Sealant for optical semiconductor device and optical semiconductor device using the same
WO2017126199A1 (en) Curable silicone resin composition and cured product thereof, and optical semiconductor device using same
JP2017066369A (en) Curable silicone resin composition and cured product thereof, and optical semiconductor device prepared therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010081

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17856460

Country of ref document: EP

Kind code of ref document: A1