WO2018088316A1 - Curable silicone composition and optical semiconductor device using same - Google Patents

Curable silicone composition and optical semiconductor device using same Download PDF

Info

Publication number
WO2018088316A1
WO2018088316A1 PCT/JP2017/039673 JP2017039673W WO2018088316A1 WO 2018088316 A1 WO2018088316 A1 WO 2018088316A1 JP 2017039673 W JP2017039673 W JP 2017039673W WO 2018088316 A1 WO2018088316 A1 WO 2018088316A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
carbon atoms
curable silicone
silicone composition
Prior art date
Application number
PCT/JP2017/039673
Other languages
French (fr)
Japanese (ja)
Inventor
香須美 竹内
真弓 水上
森田 好次
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Priority to CN201780080034.8A priority Critical patent/CN110088207B/en
Priority to JP2018550171A priority patent/JPWO2018088316A1/en
Priority to KR1020197016211A priority patent/KR102498396B1/en
Publication of WO2018088316A1 publication Critical patent/WO2018088316A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a curable silicone composition, and more specifically, a curable silicone composition that can be suitably used as a sealing material or protective coating material for an optical semiconductor element in an optical semiconductor device such as a light emitting diode (LED), and the like.
  • the present invention relates to an optical semiconductor device using the same.
  • the curable silicone composition is used as a sealing material or protective coating material for an optical semiconductor element in an optical semiconductor device such as a light emitting diode (LED).
  • LED light emitting diode
  • the cured product of the curable silicone composition has high gas permeability, when used in a high-brightness LED with strong light intensity and large heat generation, discoloration of the sealing material due to corrosive gas, LED Decrease in brightness due to corrosion of silver plated on the substrate is a problem. This is because the emission efficiency of the optical semiconductor device is attenuated.
  • Patent Document 1 and Patent Document 2 propose a curable silicone composition
  • a curable silicone composition comprising a branched organopolysiloxane having a methylphenylvinylsiloxane unit, an organohydrogenpolysiloxane, and a catalyst for addition reaction.
  • These compositions are disclosed to give cured products with low gas permeability.
  • these curable silicone compositions have insufficient curability and thermal shock resistance of the resulting cured product, and further improvement has been demanded.
  • An object of the present invention is to provide a curable silicone composition that provides a cured product having high hydrosilylation reactivity, excellent curability and thermal shock resistance, and low gas permeability. Moreover, the objective of this invention is providing the optical semiconductor device etc. which are excellent in thermal shock resistance and by which high luminous efficiency continues by using the said curable silicone composition.
  • the present invention contains an organopolysiloxane containing an alkylphenylvinylsiloxane unit, and 1,3-divinyl-1,3-diphenyl-1,3-dimethyldi
  • the present inventors have found that the above problems can be solved by a curable silicone composition characterized in that the siloxane content range is greater than 0.0 mass% and less than 3.0 mass%, and the present invention has been achieved.
  • 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane remains in the organopolysiloxane during the synthesis of the branched or resinous organopolysiloxane containing alkylphenylvinylsiloxane units.
  • the said subject can be solved by using the curable silicone composition controlled so that this content may exist in said range.
  • the curable silicone composition of the present invention is An alkylphenylalkenylsiloxane unit (R 2 R 3 R 4 SiO 1/2 ; R 2 is an alkyl group having 1 to 12 carbon atoms; R 3 is a phenyl group; R 4 is an alkenyl group having 2 to 12 carbon atoms) Comprising an organopolysiloxane having, and The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is greater than 0.0% by mass and less than 3.0% by mass with respect to the entire composition And
  • the curable silicone composition of the present invention comprises (A) Average unit formula: (R 1 3 SiO 1/2 ) a (R 2 R 3 R 4 SiO 1/2 ) b (R 5 2 SiO 2/2 ) c (R 3 SiO 3/2 ) d (Wherein R 1 is the same or different, an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms, provided that at least one R 1 in one molecule is an alkenyl group having 2 to 12 carbon atoms) R 2 is an alkyl group having 1 to 12 carbon atoms; R 3 is a phenyl group; R 4 is an alkenyl group having 2 to 12 carbon atoms; R 4 is an alkenyl group having 2 to 12 carbon atoms; R 5 is the same or different; , An alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group; a, b,
  • the cured product of the present invention is obtained by curing the above curable silicone composition.
  • the optical semiconductor device of the present invention is characterized in that an optical semiconductor element is sealed with a cured product of the curable silicone composition described above.
  • the curable silicone composition of the present invention is characterized by forming a cured product having high hydrosilylation reactivity, excellent curability and thermal shock resistance, and low gas permeability. Furthermore, the cured product of the present invention is characterized by low gas permeability and excellent thermal shock resistance, and the optical semiconductor device of the present invention provided with the cured product is excellent in reliability and maintains high luminous efficiency. There is a feature.
  • the curable silicone composition of the present invention comprises an alkylphenylalkenylsiloxane unit (R 2 R 3 R 4 SiO 1/2 ;
  • R 2 is an alkyl group having 1 to 12 carbon atoms;
  • R 3 is a phenyl group;
  • R 4 is a carbon number.
  • the organopolysiloxane is characterized by containing an organopolysiloxane having 2 to 12 alkenyl groups), and the organopolysiloxane forms a cured product having excellent hydrosilylation reactivity and low gas permeability. be able to.
  • the organopolysiloxane may contain other siloxane units, and particularly preferably has a branched or resinous molecular structure.
  • Such organopolysiloxane is preferably Average unit formula: (R 1 3 SiO 1/2 ) a (R 2 R 3 R 4 SiO 1/2 ) b (R 5 2 SiO 2/2 ) c (R 3 SiO 3/2 ) d It is represented by
  • R 1 is the same or different and is an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms.
  • alkyl group for R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, and a dodecyl group. It is a methyl group.
  • Examples of the alkenyl group for R 1 include vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, and dodecenyl group. It is a group. However, at least one R 1 in one molecule is an alkenyl group having 2 to 12 carbon atoms. R 2 is an alkyl group having 1 to 12 carbon atoms, and examples thereof are the same alkyl groups as those described above for R 1 , preferably a methyl group. R 3 is a phenyl group.
  • R 4 is an alkenyl group having 2 to 12 carbon atoms, and examples thereof include the same alkenyl groups as those described above for R 1 , preferably a vinyl group.
  • R 5 is the same or different and is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group. Examples of the alkyl group for R 5 include the same alkyl groups as those described above for R 1 . Examples of the alkenyl group for R 5 include the same alkenyl groups as those described above for R 1 .
  • the organopolysiloxane according to the present invention is represented by the above average unit formula, but is a siloxane unit represented by the formula: R 2 2 R 3 SiO 1/2 within the range not impairing the object of the present invention, the formula: Siloxane unit represented by R 2 R 3 2 SiO 1/2 , siloxane unit represented by formula: R 3 3 SiO 1/2 , siloxane unit represented by formula: R 2 SiO 3/2 , formula: R It may have a siloxane unit represented by 4 SiO 3/2 or a siloxane unit represented by the formula: SiO 4/2 .
  • R 2 is an alkyl group having 1 to 12 carbon atoms
  • R 3 is an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms
  • R 4 is an alkyl group having 2 to 12 carbon atoms.
  • the same groups as described above are exemplified.
  • the organopolysiloxane of the present invention may have a silicon atom-bonded alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group, or a silicon atom-bonded hydroxyl group as long as the object of the present invention is not impaired.
  • the method of hydrolyzing and condensing the silane compound represented by these in presence of an acid or an alkali is mentioned.
  • R 3 Six 3 Is a raw material for introducing a siloxane unit represented by the formula: R 3 SiO 3/2 into an organopolysiloxane.
  • R 3 is an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, and examples thereof are the same as those described above, and preferably a phenyl group or a naphthyl group.
  • X represents an alkoxy group, an acyloxy group, a halogen atom, or a hydroxyl group. Examples of the alkoxy group for X include a methoxy group, an ethoxy group, and a propoxy group. An example of the acyloxy group for X is an acetoxy group. Examples of the halogen atom for X include a chlorine atom and a bromine atom.
  • silane compounds include alkoxysilanes such as phenyltrimethoxysilane and phenyltriethoxysilane; acyloxysilanes such as phenyltriacetoxysilane; halosilanes such as phenyltrichlorosilane; hydroxysilanes such as phenyltrihydroxysilane.
  • alkoxysilanes such as phenyltrimethoxysilane and phenyltriethoxysilane
  • acyloxysilanes such as phenyltriacetoxysilane
  • halosilanes such as phenyltrichlorosilane
  • hydroxysilanes such as phenyltrihydroxysilane.
  • R 1 3 SiOS iR 1 3 Is a raw material for introducing a siloxane unit represented by the formula: R 1 3 SiO 1/2 into the organopolysiloxane.
  • R 1 is the same or different and is an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms.
  • Examples of the alkyl group for R 1 include the same groups as described above, and a methyl group is preferable.
  • Examples of the alkenyl group for R 1 include the same groups as described above, and a vinyl group is preferable.
  • Such disiloxanes include 1,1,1,3,3,3-hexamethyldisiloxane, 1,1,1,3,3,3-hexaethyldisiloxane, 1,3-divinyl-1, 1,3,3-tetramethyldisiloxane, 1,3-divinyl-1,1,3,3-tetraethyldisiloxane, 1,1,3,3-tetravinyl-1,3-dimethyldisiloxane, 1,1,3,3,3-hexavinyldisiloxane is exemplified.
  • Two or more such disiloxanes can be used in combination, but at least 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3-divinyl-1,1,3, It is necessary to include 1,3-dialkenyl-1,1,3,3-tetraalkyldisiloxane such as 3-tetraethyldisiloxane.
  • R 1 3 SiX Is also a raw material for introducing a siloxane unit represented by the formula: R 1 3 SiO 1/2 into the organopolysiloxane.
  • R 1 is the same or different and is an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms.
  • Examples of the alkyl group for R 1 include the same groups as described above, and a methyl group is preferable.
  • Examples of the alkenyl group for R 1 include the same groups as described above, and a vinyl group is preferable.
  • X represents an alkoxy group, an acyloxy group, a halogen atom, or a hydroxyl group, and examples thereof include the same groups as described above.
  • silane compounds include alkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, dimethylvinylmethoxysilane, diethylvinylmethoxysilane, dimethylvinylethoxysilane, diethylvinylethoxysilane, divinylmethylmethoxysilane, and trivinylmethoxysilane; Acyloxysilanes such as dimethylvinylacetoxysilane, diethylvinylacetoxysilane, divinylmethylacetoxysilane, and trivinylacetoxysilane; halosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, diethylvinylchlorosilane, divinylmethylchlorosilane, and trivinylchlorosilane; dimethylvinylhydroxy Silane, diethylvinylhydroxysilane, divinylmethylhydroxysilane
  • silane compounds Two or more such silane compounds can be used in combination, but it is necessary to include at least an alkenyldialkylsilane compound such as divinylmethylmethoxysilane, divinylmethylacetoxysilane, divinylmethylchlorosilane, divinylmethylhydroxysilane, and the like.
  • alkenyldialkylsilane compound such as divinylmethylmethoxysilane, divinylmethylacetoxysilane, divinylmethylchlorosilane, divinylmethylhydroxysilane, and the like.
  • R 2 R 3 R 4 SiOSiR 2 R 3 R 4 Is a raw material for introducing a siloxane unit represented by the formula: R 2 R 3 R 4 SiO 1/2 into the organopolysiloxane.
  • R 2 is an alkyl group having 1 to 12 carbon atoms, and examples thereof are the same groups as described above, preferably a methyl group.
  • R 3 is a phenyl group.
  • R 4 is an alkenyl group having 2 to 12 carbon atoms, and examples thereof are the same groups as described above, preferably a vinyl group.
  • Examples of such disiloxane include 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane.
  • R 2 R 3 R 4 SiX Is also a raw material for introducing a siloxane unit represented by the formula: R 2 R 3 R 4 SiO 1/2 into the organopolysiloxane.
  • R 2 is an alkyl group having 1 to 12 carbon atoms, and examples thereof are the same groups as described above, preferably a methyl group.
  • R 3 is a phenyl group.
  • R 4 is an alkenyl group having 2 to 12 carbon atoms, exemplified by the same groups as described above, and preferably a vinyl group.
  • X represents an alkoxy group, an acyloxy group, a halogen atom, or a hydroxyl group, and examples thereof include the same groups as described above.
  • silane compounds include alkoxysilanes such as methylphenylvinylmethoxysilane and methylphenylvinylethoxysilane; acetoxysilanes such as methylphenylvinylacetoxysilane; chlorosilanes such as methylphenylvinylchlorosilane; hydroxy such as methylphenylvinylhydroxysilane.
  • alkoxysilanes such as methylphenylvinylmethoxysilane and methylphenylvinylethoxysilane
  • acetoxysilanes such as methylphenylvinylacetoxysilane
  • chlorosilanes such as methylphenylvinylchlorosilane
  • hydroxy such as methylphenylvinylhydroxysilane.
  • a silane compound or a silane oligomer for introducing the siloxane unit represented by 2 can be reacted.
  • R 5 is the same or different and is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group.
  • Examples of the alkyl group for R 5 include the same alkyl groups as those described above for R 1 .
  • Examples of the alkenyl group for R 5 include the same alkenyl groups as those described above for R 1 .
  • silane compounds include dimethyldimethoxysilane, methylethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane, tetramethoxysilane, dimethyldiethoxysilane, methylethyldiethoxysilane, methylphenyldiethoxysilane, and diphenyldiethoxy.
  • Alkoxysilanes such as silane, tetramethoxysilane, tetraethoxysilane; acetoxysilanes such as dimethyldiacetoxysilane, methylphenyldiacetoxysilane, diphenyldiacetoxysilane, tetraacetoxysilane; dimethyldichlorosilane, methylphenyldichlorosilane, diphenyldichlorosilane , Halosilanes such as tetrachlorosilane; dimethyldihydroxysilane, methylphenyldihydroxysilane, di Hydroxy silanes such as E sulfonyl dihydroxysilane are exemplified.
  • cyclic silicone compounds examples include cyclic dimethylsiloxane oligomers, cyclic phenylmethylsiloxane oligomers, and cyclic diphenylsiloxane oligomers. Furthermore, as a silane oligomer, the partial hydrolyzate of tetramethoxysilane and the partial hydrolyzate of tetraethoxysilane are illustrated.
  • Examples of the acid that can be used include hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid, trifluoromethanesulfonic acid, and ion exchange resin.
  • alkalis examples include inorganic alkalis such as potassium hydroxide and sodium hydroxide; triethylamine, diethylamine, monoethanolamine, diethanolamine, triethanolamine, aqueous ammonia, tetramethylammonium hydroxide, alkoxysilane having an amino group, Examples include organic base compounds such as aminopropyltrimethoxysilane.
  • an organic solvent can be used.
  • the organic solvent that can be used include ethers, ketones, acetates, aromatic or aliphatic hydrocarbons, ⁇ -butyrolactone, and mixtures of two or more thereof.
  • Preferred organic solvents include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ⁇ -butyrolactone, toluene and xylene. Illustrated.
  • Such an organopolysiloxane of the present invention has good hydrosilylation reactivity. Therefore, the organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule as a main component, and for hydrosilylation reaction.
  • a hydrosilylation reaction-curable silicone composition can be prepared by adding a catalyst.
  • the curable silicone composition of the present invention comprises 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane and comprises 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane.
  • the second feature is that the content of siloxane in the composition is greater than 0.0 mass% and less than 3.0 mass%. 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane remains in the organopolysiloxane during the synthesis of the branched or resinous organopolysiloxane containing alkylphenylvinylsiloxane units.
  • the thermal shock resistance is improved by using a curable silicone composition whose content is controlled to be in the above range.
  • the content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the composition is 0.05 mass% to 2.50 mass. % Range is more preferred.
  • the thermal shock resistance is lowered as shown in the comparative example of the present specification.
  • the said content exceeds the said upper limit, it may become a cause of sclerosis
  • the curable silicone composition of the present invention contains the above-mentioned components (A) to (D), and optionally contains the component (E).
  • the organopolysiloxane of component (A) is as described above.
  • the content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the composition is 0.05 mass% to 2.50 mass. % Range is particularly preferred.
  • Component (B) is an optional component for imparting flexibility, extensibility, and flexibility to the cured product, and has at least two alkenyl groups in one molecule and silicon-bonded hydrogen atoms. It is a linear organopolysiloxane that does not.
  • the alkenyl group in the component (B) includes 2 to 12 carbon atoms such as vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group and dodecenyl group.
  • the alkenyl group is exemplified, and a vinyl group is preferable.
  • Propyl, anthracenylethyl, phenanthrylethyl, pyrenylethyl, and their aralkyls An alkyl group such as a methyl group or an ethyl group; an alkoxy group such as a methoxy group or an ethoxy group; an aralkyl group having 7 to 20 carbon atoms such as a group substituted with a halogen atom such as a chlorine atom or a bromine atom; or chloro Examples thereof include a halogenated alkyl group having 1 to 12 carbon atoms such as a methyl group and a 3,3,3-trifluoropropyl group, and examples thereof are the same groups as those described above, preferably a methyl group and a phenyl group.
  • Examples of such a component (B) include a trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer with both molecular chain terminals, a trimethylsiloxy group-capped methylvinylpolysiloxane with both molecular chain terminals, and a trimethylsiloxy group-capped dimethyl group with both molecular chains.
  • the content of the component (B) is in the range of 0 to 70% by weight, preferably in the range of 0 to 50% by weight, particularly preferably, based on the present composition. It is in the range of 0 to 40% by mass.
  • the content of the component (B) is below the upper limit of the above range, the cured product can be given flexibility, extensibility, and flexibility without increasing the gas permeability of the cured product. As a result, it is because the reliability of the optical semiconductor device produced using this composition can be improved.
  • Component is a cross-linking agent of the present composition, and is an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule.
  • Examples of the bonding position of silicon atom-bonded hydrogen atoms in component (C) include molecular chain terminals and / or molecular chain side chains.
  • Other groups bonded to the silicon atom in the component include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, An alkyl group having 1 to 12 carbon atoms such as dodecyl group; a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, and a hydrogen atom of these aryl groups such as a methyl group, an ethyl group, etc.
  • An alkyl group such as a methyl group or an ethyl group; an alkoxy group such as a methoxy group or an ethoxy group; an aralkyl group having 7 to 20 carbon atoms such as a group substituted with a halogen atom such as a chlorine atom or a bromine atom; or a chloromethyl group, Examples thereof include halogenated alkyl groups having 1 to 12 carbon atoms such as
  • component (C) examples include molecular chain both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends trimethylsiloxy group Blocked dimethylsiloxane / methylhydrogensiloxane / methylphenylsiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group blocked dimethylpolysiloxane, molecular chain both ends dimethylhydrogensiloxy group blocked dimethylsiloxane / methylphenylsiloxane copolymer, Methylphenylpolysiloxane blocked with a dimethylhydrogensiloxy group blocked at both ends of the molecular chain, a siloxane unit represented by the general formula: R ′ 3 SiO 1/2 and a siloxy represented by the general formula:
  • R ′ in the formula is an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a halogenated alkyl group having 1 to 12 carbon atoms, Examples are the same as those described above.
  • the content of the component (C) is such that the silicon-bonded hydrogen atoms in this component are 0.1 to 0.1 mol in total for 1 mol of the alkenyl groups in the component (A) and the component (B).
  • the amount is in the range of 5 moles, preferably the amount in the range of 0.5 to 2 moles. This is because if the content of the component (C) is not less than the lower limit of the above range, the composition is sufficiently cured. On the other hand, if it is not more than the upper limit of the above range, the heat resistance of the cured product is improved. As a result, the reliability of the optical semiconductor device manufactured using this composition is improved.
  • the component (D) is a hydrosilylation catalyst for accelerating the curing of the composition, and examples thereof include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts.
  • the component (D) is preferably a platinum-based catalyst because the curing of the composition can be remarkably accelerated.
  • the platinum-based catalyst include platinum fine powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex, preferably a platinum-alkenylsiloxane complex. is there.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferred because the platinum-alkenylsiloxane complex has good stability.
  • stimulates hydrosilylation reaction you may use non-platinum type metal catalysts, such as iron, ruthenium, and iron / cobalt.
  • the content of the component (D) is an effective amount for accelerating the curing of the present composition.
  • the catalyst metal in the component (D) is 0.01 by mass unit with respect to the composition.
  • the amount is preferably in the range of ⁇ 500 ppm, more preferably in the range of 0.01 to 100 ppm, and particularly in the range of 0.01 to 50 ppm. It is preferable.
  • the composition may contain (E) an adhesion-imparting agent in order to improve the adhesion of the cured product to the substrate that is in contact with the curing process.
  • the component (E) is preferably an organosilicon compound having at least one alkoxy group bonded to a silicon atom in one molecule. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group is particularly preferable.
  • the group other than the alkoxy group bonded to the silicon atom of the organosilicon compound includes a substituted or unsubstituted monovalent hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group; 3 Glycidoxyalkyl groups such as glycidoxypropyl group and 4-glycidoxybutyl group; epoxies such as 2- (3,4-epoxycyclohexyl) ethyl group and 3- (3,4-epoxycyclohexyl) propyl group Cyclohexyl alkyl group; epoxy group-containing monovalent organic group such as oxiranylalkyl group such as 4-oxiranylbutyl group, 8-oxiranyloctyl group; acrylic group-containing monovalent organic group such as 3-methacryloxypropyl group Group; a hydrogen atom is exemplified.
  • This organosilicon compound preferably has a silicon atom-bonded alkenyl group or a silicon atom-bonded hydrogen atom. Moreover, since it can provide favorable adhesiveness to various types of substrates, the organosilicon compound preferably has at least one epoxy group-containing monovalent organic group in one molecule.
  • organosilicon compounds include organosilane compounds, organosiloxane oligomers, and alkyl silicates. Examples of the molecular structure of the organosiloxane oligomer or alkyl silicate include linear, partially branched linear, branched, cyclic, and network, particularly linear, branched, and network. Preferably there is.
  • organosilicon compounds examples include silane compounds such as 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane; A siloxane compound having at least one silicon atom-bonded alkenyl group or silicon atom-bonded hydrogen atom and silicon atom-bonded alkoxy group, and a silane compound or siloxane compound having at least one silicon atom-bonded alkoxy group and silicon in one molecule.
  • silane compounds such as 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane
  • a siloxane compound having at least one silicon atom-bonded alkenyl group or silicon atom-bonded hydrogen atom and silicon atom-bonded alkoxy group and
  • Examples thereof include a mixture of a siloxane compound having at least one atom-bonded hydroxy group and at least one silicon atom-bonded alkenyl group, methyl polysilicate, ethyl polysilicate, and epoxy group-containing ethyl polysilicate.
  • the content of the component (E) is not limited, but it adheres favorably to the base material that is in contact with the curing process, so that a total of 100 masses of the components (A) to (D) is included.
  • the content is preferably in the range of 0.01 to 10 parts by mass with respect to parts.
  • the present composition includes 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl-3-butyne-2- Alkyne alcohols such as all; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1,3 , 5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane, and a reaction inhibitor such as benzotriazole.
  • the content of the reaction inhibitor is not limited, but is within the range of 0.0001 to 5 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). preferable.
  • the present composition can contain a fluorescent material as other optional components.
  • the phosphor include oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, and oxysulfide phosphors that are widely used in light emitting diodes (LEDs). Examples thereof include yellow, red, green, and blue light emitting phosphors.
  • oxide phosphors include yttrium, aluminum, and garnet-based YAG green-yellow light-emitting phosphors containing cerium ions, terbium, aluminum, garnet-based TAG yellow light-emitting phosphors containing cerium ions, and Examples include silicate green to yellow light emitting phosphors containing cerium and europium ions.
  • oxynitride phosphors include silicon, aluminum, oxygen, and nitrogen-based sialon-based red to green light-emitting phosphors containing europium ions.
  • nitride-based phosphors include calcium, strontium, aluminum, silicon, and nitrogen-based casoon-based red light-emitting phosphors containing europium ions.
  • sulfide type include ZnS type green coloring phosphors including copper ions and aluminum ions.
  • oxysulfide phosphors include Y 2 O 2 S red light-emitting phosphors containing europium ions.
  • These fluorescent materials may be used singly or as a mixture of two or more.
  • the content of the fluorescent material is not particularly limited, but in the present composition is in the range of 0.1 to 70% by mass, and further in the range of 1 to 20% by mass. preferable.
  • inorganic fillers such as silica, glass, alumina and zinc oxide; fine organic resin powders such as polymethacrylate resin; You may contain dye, a pigment, a flame-retarding agent, a solvent, etc.
  • the curable silicone composition of the present invention cures at room temperature or by heating, but is preferably heated to cure quickly.
  • the heating temperature is preferably in the range of 50 to 200 ° C.
  • the curable silicone composition of the present invention is suitable for a sealant for an optical semiconductor device, and can provide an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable silicone composition.
  • the cured product of the present invention is obtained by curing the above curable silicone composition.
  • the shape of the cured product is not particularly limited, and examples thereof include a sheet shape and a film shape.
  • the cured product can be handled alone, but can also be handled in a state where the optical semiconductor element or the like is covered or sealed.
  • the optical semiconductor device of the present invention is characterized in that an optical semiconductor element is sealed with a cured product of the above curable silicone composition.
  • an optical semiconductor device of the present invention include a light emitting diode (LED), a photocoupler, and a CCD.
  • the optical semiconductor element include a light emitting diode (LED) chip and a solid-state imaging element.
  • the use of the curable silicone composition of the present invention is not limited to these.
  • FIG. 1 shows a cross-sectional view of a single surface-mounted LED that is an example of the optical semiconductor device of the present invention.
  • an LED chip 1 is die-bonded on a lead frame 2, and the LED chip 1 and the lead frame 3 are wire-bonded by a bonding wire 4.
  • a frame member 5 is provided around the LED chip 1, and the LED chip 1 inside the frame member 5 is sealed with a cured product 6 of the curable silicone composition of the present invention.
  • the LED chip 1 is die-bonded to the lead frame 2, the LED chip 1 and the lead frame 3 are wire-bonded by a gold bonding wire 4, and then
  • An example is a method in which the inside of the frame member 5 provided around the LED chip 1 is filled with the curable silicone composition of the present invention and then cured by heating at 50 to 200 ° C.
  • the curable silicone composition of the present invention the cured product thereof, and the optical semiconductor device will be described in detail with reference to examples.
  • the viscosity is a value at 25 ° C.
  • Me, Vi, Ph, and Ep represent a methyl group, a vinyl group, a phenyl group, and a 3-glycidoxypropyl group, respectively.
  • Methylglycidoxypropyldimethoxysilane (314 g), water (130 g), and potassium hydroxide (0.50 g) were added to the toluene solution layer washed with water, and the mixture was heated to reflux for 1 hour. Subsequently, methanol was distilled off and excess water was removed by azeotropic dehydration. After heating at reflux for 4 hours, the toluene solution was cooled, neutralized with 0.55 g of acetic acid, and then washed with water three times.
  • silicone resins A to C containing methylphenylvinylsiloxane units having different contents of 1,3-divinyl-1,3-diphenyldimethyldisiloxane were obtained.
  • Synthesis Example 2 Silicone Resin B
  • Example 1 6.83 parts by mass of silicone resin B prepared in Synthesis Example 2, 0.82 parts by mass of methylphenylpolysiloxane blocked with dimethylvinylsiloxy group-blocked dimethylvinylsiloxy group having a viscosity of 3,000 mPa ⁇ s, formula: H (CH 3) 2 SiO (C 6 H 5 ) Organotrisiloxane represented by 2SiOSi (CH3) 2H 2.10 parts by mass (the silicon atom-bonded hydrogen atom in this component is contained in 1 mol of the total vinyl group in the silicone resin and methylphenylpolysiloxane) 1), 0.25 parts by mass of the adhesion-imparting agent of Reference Example 1, 0.02 parts by mass of 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, And 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane solution
  • a silicone composition was prepared. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 73 was obtained. The surface of the cured product was smooth with no tack. The characteristics are shown in Table 1. The amount of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 0.10% by mass.
  • Example 2 A curable silicone composition having a viscosity of 6,200 mPa ⁇ s was prepared in the same manner as in Example 1 except that the amount of 1,3-divinyl-1,3-diphenyldimethyldisiloxane added was 0.10 parts by mass. Prepared. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 69 was obtained. The surface of the cured product was smooth with no tack. The characteristics are shown in Table 1. The amount of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 0.99% by mass.
  • Example 3 In the same manner as in Example 1, except that the amount of 1,3-divinyl-1,3-diphenyldimethyldisiloxane added was 0.20 parts by mass, a curable silicone composition having a viscosity of 5,000 mPa ⁇ s was prepared. Prepared. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 64 was obtained. The surface of the cured product was smooth with no tack. The characteristics are shown in Table 1. The 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 1.96% by mass.
  • a curable silicone composition having a viscosity of 2300 mPa ⁇ s was prepared in the same manner as in Example 1, except that the amount of 1,3-divinyl-1,3-diphenyldimethyldisiloxane added was 0.50 parts by mass. .
  • this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 44 was obtained. The surface of the cured product was smooth with no tack.
  • the characteristics are shown in Table 1.
  • the 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 4.75% by mass.
  • a curable silicone composition having a viscosity of 1100 mPa ⁇ s was prepared in the same manner as in Example 1, except that the amount of 1,3-divinyl-1,3-diphenyldimethyldisiloxane added was 0.91 part by mass. .
  • This composition was cured at 150 ° C. for 1 hour, but the surface of the cured product was sticky and Shore-D measurement was not possible. The characteristics are shown in Table 1.
  • the 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 8.33% by mass.
  • Example 4 The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is 0.47% by mass, 5.95 parts by mass of a silicone resin containing a vinylmethylphenylsiloxy group, a viscosity of 3, 000 mPa ⁇ s molecular chain both ends dimethylvinylsiloxy group-blocked methylphenylpolysiloxane 1.80 parts by mass, organotrisiloxane represented by the formula: H (CH 3) 2 SiO (C 6 H 5) 2 SiOS i (CH 3) 2 H 1.98 parts by mass (The amount of silicon atom-bonded hydrogen atoms in this component is 1 with respect to a total of 1 mol of vinyl groups in the silicone resin and methylphenylpolysiloxane), 0.25 part by mass of the adhesion-imparting agent of Reference Example 1 0.02, part by weight of 1,3,5,7-tetramethyl-1,3,5,7-t
  • a curable silicone composition containing a silicone resin containing a methylphenylvinylsiloxane unit, comprising 1,3-divinyl-1,3-diphenyldimethyldisiloxane When the content is 0.10% by mass, 0.99% by mass, or 1.96% by mass, the number of defects is 2 or less even at 401 cycles, and excellent thermal shock resistance is exhibited.
  • Comparative Examples 1 to 3 the same curable silicone composition having a 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane content of 0
  • the number of defects becomes 8 or more even at 401 cycles, and the thermal shock resistance is clearly inferior.
  • the content is 8.33% by mass, the curability is clearly inferior.
  • an optical semiconductor device using the curable silicone composition of Example 4 (content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is 0.28% by mass) Compared to Comparative Example 4 (the same content of 3.51% by mass), the light emission efficiency after 566 hours and 997 hours is excellent.
  • the curable silicone composition of the present invention can be used as an electric / electronic adhesive, potting agent, protective agent, coating agent, and underfill agent, and has particularly high reactivity and gas permeability. Since it can form a cured product that is low and has high thermal shock resistance, it is suitable as a sealing material or protective coating material for optical semiconductor elements in optical semiconductor devices such as light emitting diodes (LEDs), and light that maintains high luminous efficiency.
  • a semiconductor device or the like can be provided.

Abstract

[Problem] To provide a curable silicone composition which has excellent curability, and provides a cured product which has high thermal shock resistance and low gas permeability. In addition, by applying the curable silicone composition to an optical semiconductor device, to provide an optical semiconductor device having advantages, namely excellent thermal shock resistance and sustained high light-emission efficiency. [Solution] The curable silicone composition and the optical semiconductor device using the same according to the present invention are characterized by containing an organopolysiloxane having an alkyl phenyl vinyl siloxane unit (R2R3R4SiO0.5; wherein R2 represents an alkyl group such as a methyl group, R3 represents a phenyl group, and R4 represents an alkenyl group such as a vinyl group), wherein the contained amount of 1,3-divinyl-1,3-diphenyl-1,3-dimethyl di-siloxane is more than 0.0 mass% but less than 3.0 mass% with respect to the entire composition.

Description

硬化性シリコーン組成物およびそれを用いた光半導体装置Curable silicone composition and optical semiconductor device using the same
 本発明は、硬化性シリコーン組成物に関し、詳しくは、発光ダイオード(LED)等の光半導体装置における光半導体素子の封止材あるいは保護コーティング材として好適に使用することができる硬化性シリコーン組成物およびそれを用いた光半導体装置に関する。 The present invention relates to a curable silicone composition, and more specifically, a curable silicone composition that can be suitably used as a sealing material or protective coating material for an optical semiconductor element in an optical semiconductor device such as a light emitting diode (LED), and the like. The present invention relates to an optical semiconductor device using the same.
 硬化性シリコーン組成物は、発光ダイオード(LED)等の光半導体装置における光半導体素子の封止材あるいは保護コーティング材に使用されている。しかし、硬化性シリコーン組成物の硬化物はガス透過性が高いため、光の強度が強く、発熱が大きい高輝度LEDに用いた場合には、腐食性ガスによる、封止材の変色や、LEDの基板にメッキされた銀の腐食による輝度の低下が問題となっている。これらは光半導体装置の発光効率の減衰の原因となるためである。 The curable silicone composition is used as a sealing material or protective coating material for an optical semiconductor element in an optical semiconductor device such as a light emitting diode (LED). However, since the cured product of the curable silicone composition has high gas permeability, when used in a high-brightness LED with strong light intensity and large heat generation, discoloration of the sealing material due to corrosive gas, LED Decrease in brightness due to corrosion of silver plated on the substrate is a problem. This is because the emission efficiency of the optical semiconductor device is attenuated.
 一方、特許文献1および特許文献2には、メチルフェニルビニルシロキサン単位を有する分岐鎖状のオルガノポリシロキサン、オルガノハイドロジェンポリシロキサン、および付加反応用触媒からなる硬化性シリコーン組成物が提案されており、これらの組成物がガス透過性が低い硬化物を与えることが開示されている。しかしながら、これらの硬化性シリコーン組成物は、硬化性および得られる硬化物の耐熱衝撃性が不十分であり、更なる改善が求められていた。 On the other hand, Patent Document 1 and Patent Document 2 propose a curable silicone composition comprising a branched organopolysiloxane having a methylphenylvinylsiloxane unit, an organohydrogenpolysiloxane, and a catalyst for addition reaction. These compositions are disclosed to give cured products with low gas permeability. However, these curable silicone compositions have insufficient curability and thermal shock resistance of the resulting cured product, and further improvement has been demanded.
特開2012-052045号公報JP 2012-052045 A 特開2014-084417号公報JP 2014-084417 A
 本発明の目的は、高いヒドロシリル化反応性を有し、硬化性および耐熱衝撃性に優れ、かつ、ガス透過性が低い硬化物を与える硬化性シリコーン組成物を提供することである。また、本発明の目的は、当該硬化性シリコーン組成物を用いることにより、耐熱衝撃性に優れ、高い発光効率が持続する光半導体装置等を提供することにある。 An object of the present invention is to provide a curable silicone composition that provides a cured product having high hydrosilylation reactivity, excellent curability and thermal shock resistance, and low gas permeability. Moreover, the objective of this invention is providing the optical semiconductor device etc. which are excellent in thermal shock resistance and by which high luminous efficiency continues by using the said curable silicone composition.
 本発明らは上記課題を解決すべく鋭意検討した結果、アルキルフェニルビニルシロキサン単位を含有するオルガノポリシロキサンを含有し、かつ、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量の範囲が、0.0質量%よりも大きく、3.0質量%未満であることを特徴とする硬化性シリコーン組成物により上記課題を解決できることを見出し、本発明に到達した。1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンは、アルキルフェニルビニルシロキサン単位を含有する分岐鎖状または樹脂状のオルガノポリシロキサンの合成時に当該オルガノポリシロキサン中に残存する成分であるが、この含有量が上記の範囲にあるように制御された硬化性シリコーン組成物を用いることにより、上記課題を解決可能である。 As a result of intensive studies to solve the above-mentioned problems, the present invention contains an organopolysiloxane containing an alkylphenylvinylsiloxane unit, and 1,3-divinyl-1,3-diphenyl-1,3-dimethyldi The present inventors have found that the above problems can be solved by a curable silicone composition characterized in that the siloxane content range is greater than 0.0 mass% and less than 3.0 mass%, and the present invention has been achieved. 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane remains in the organopolysiloxane during the synthesis of the branched or resinous organopolysiloxane containing alkylphenylvinylsiloxane units. Although it is a component, the said subject can be solved by using the curable silicone composition controlled so that this content may exist in said range.
 本発明の硬化性シリコーン組成物は、
アルキルフェニルアルケニルシロキサン単位(RSiO1/2;Rは炭素数1~12のアルキル基;Rはフェニル基;Rは炭素数2~12のアルケニル基である)を有するオルガノポリシロキサンを含有してなり、かつ、
組成物全体に対して1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が、0.0質量%よりも大きく、3.0質量%未満であることを特徴とする。
The curable silicone composition of the present invention is
An alkylphenylalkenylsiloxane unit (R 2 R 3 R 4 SiO 1/2 ; R 2 is an alkyl group having 1 to 12 carbon atoms; R 3 is a phenyl group; R 4 is an alkenyl group having 2 to 12 carbon atoms) Comprising an organopolysiloxane having, and
The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is greater than 0.0% by mass and less than 3.0% by mass with respect to the entire composition And
好適には、本発明の硬化性シリコーン組成物は、
(A)平均単位式:
(R SiO1/2)(RSiO1/2)(R SiO2/2)(RSiO3/2)
(式中、Rは同じかまたは異なる、炭素数1~12のアルキル基もしくは炭素数2~12のアルケニル基、但し、一分子中の少なくとも一つのRは炭素数2~12のアルケニル基;Rは炭素数1~12のアルキル基;Rはフェニル基;Rは炭素数2~12のアルケニル基;Rは炭素数2~12のアルケニル基;Rは同じかまたは異なる、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、もしくはフェニル基;a、b、c、およびdは、それぞれ、0.00≦a≦0.45、0.01≦b≦0.45、0≦c≦0.7、0.1≦d<0.9、かつa+b+c+d=1を満たす数である。)
で表されるオルガノポリシロキサン、
(B)一分子中に少なくとも2個のアルケニル基を有し、ケイ素原子結合水素原子を有さない直鎖状オルガノポリシロキサン(本組成物に対して、0~70質量%)、
(C)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン{(A)成分と(B)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.1~5モルとなる量}、
(D)有効量のヒドロシリル化反応用触媒、および
任意で、(E)接着付与剤{上記(A)成分~(D)成分の合計100質量部に対して、0.01~10質量部}
を含有してなり、かつ、
組成物全体に対して1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が、0.05質量%~2.50質量%の範囲であることを特徴とする。
Preferably, the curable silicone composition of the present invention comprises
(A) Average unit formula:
(R 1 3 SiO 1/2 ) a (R 2 R 3 R 4 SiO 1/2 ) b (R 5 2 SiO 2/2 ) c (R 3 SiO 3/2 ) d
(Wherein R 1 is the same or different, an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms, provided that at least one R 1 in one molecule is an alkenyl group having 2 to 12 carbon atoms) R 2 is an alkyl group having 1 to 12 carbon atoms; R 3 is a phenyl group; R 4 is an alkenyl group having 2 to 12 carbon atoms; R 4 is an alkenyl group having 2 to 12 carbon atoms; R 5 is the same or different; , An alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group; a, b, c, and d are 0.00 ≦ a ≦ 0.45 and 0.01 ≦ b, respectively. ≦ 0.45, 0 ≦ c ≦ 0.7, 0.1 ≦ d <0.9, and a + b + c + d = 1.)
An organopolysiloxane represented by
(B) a linear organopolysiloxane having at least two alkenyl groups in one molecule and having no silicon-bonded hydrogen atoms (0 to 70% by mass based on the present composition),
(C) Organopolysiloxane having at least two silicon atom-bonded hydrogen atoms in one molecule {the silicon atom bond in this component with respect to a total of 1 mol of the alkenyl groups in component (A) and component (B) The amount of hydrogen atoms from 0.1 to 5 mol},
(D) An effective amount of a catalyst for hydrosilylation reaction, and, optionally, (E) an adhesion-imparting agent {0.01 to 10 parts by mass with respect to a total of 100 parts by mass of components (A) to (D) above}
And containing
The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is in the range of 0.05% by mass to 2.50% by mass with respect to the entire composition. .
 本発明の硬化物は、上記の硬化性シリコーン組成物を硬化してなることを特徴とする。 The cured product of the present invention is obtained by curing the above curable silicone composition.
 本発明の光半導体装置は、上記の硬化性シリコーン組成物の硬化物により光半導体素子を封止してなることを特徴とする。 The optical semiconductor device of the present invention is characterized in that an optical semiconductor element is sealed with a cured product of the curable silicone composition described above.
本発明の硬化性シリコーン組成物は、高いヒドロシリル化反応性を有し、硬化性および耐熱衝撃性に優れ、かつ、ガス透過性が低い硬化物を形成するという特徴がある。さらに、本発明の硬化物は、ガス透過性が低く、耐熱衝撃性に優れるという特徴があり、当該硬化物を備えた本発明の光半導体装置は、信頼性に優れ、高い発光効率が持続するという特徴がある。 The curable silicone composition of the present invention is characterized by forming a cured product having high hydrosilylation reactivity, excellent curability and thermal shock resistance, and low gas permeability. Furthermore, the cured product of the present invention is characterized by low gas permeability and excellent thermal shock resistance, and the optical semiconductor device of the present invention provided with the cured product is excellent in reliability and maintains high luminous efficiency. There is a feature.
本発明の光半導体装置の一例であるLEDの断面図である。It is sectional drawing of LED which is an example of the optical semiconductor device of this invention.
 はじめに、本発明の硬化性シリコーン組成物について詳細に説明する。
 本発明の硬化性シリコーン組成物は、アルキルフェニルアルケニルシロキサン単位(RSiO1/2;Rは炭素数1~12のアルキル基;Rはフェニル基;Rは炭素数2~12のアルケニル基である)を有するオルガノポリシロキサンを含有することを第一の特徴とする、当該オルガノポリシロキサンはヒドロシリル化反応性に優れ、かつ、ガス透過性が低い硬化物を形成することができる。当該オルガノポリシロキサンは他のシロキサン単位を含むものであってもよく、特に、分岐鎖状または樹脂状の分子構造を有することが好ましい。このようなオルガノポリシロキサンは、好適には、
平均単位式:
(R SiO1/2)(RSiO1/2)(R SiO2/2)(RSiO3/2)
で表される。
First, the curable silicone composition of the present invention will be described in detail.
The curable silicone composition of the present invention comprises an alkylphenylalkenylsiloxane unit (R 2 R 3 R 4 SiO 1/2 ; R 2 is an alkyl group having 1 to 12 carbon atoms; R 3 is a phenyl group; R 4 is a carbon number. The organopolysiloxane is characterized by containing an organopolysiloxane having 2 to 12 alkenyl groups), and the organopolysiloxane forms a cured product having excellent hydrosilylation reactivity and low gas permeability. be able to. The organopolysiloxane may contain other siloxane units, and particularly preferably has a branched or resinous molecular structure. Such organopolysiloxane is preferably
Average unit formula:
(R 1 3 SiO 1/2 ) a (R 2 R 3 R 4 SiO 1/2 ) b (R 5 2 SiO 2/2 ) c (R 3 SiO 3/2 ) d
It is represented by
式中、Rは同じかまたは異なる、炭素数1~12のアルキル基もしくは炭素数2~12のアルケニル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が例示され、好ましくは、メチル基である。また、Rのアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基が例示され、好ましくは、ビニル基である。但し、一分子中の少なくとも一つのRは炭素数2~12のアルケニル基である。また、Rは炭素数1~12のアルキル基であり、前記Rと同様のアルキル基が例示され、好ましくは、メチル基である。また、Rはフェニル基である。Rは炭素数2~12のアルケニル基であり、前記Rと同様のアルケニル基が例示され、好ましくは、ビニル基である。また、Rは同じかまたは異なる、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、もしくはフェニル基である。Rのアルキル基としては、前記Rと同様のアルキル基が例示される。Rのアルケニル基としては、前記Rと同様のアルケニル基が例示される。 In the formula, R 1 is the same or different and is an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms. Examples of the alkyl group for R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, and a dodecyl group. It is a methyl group. Examples of the alkenyl group for R 1 include vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, and dodecenyl group. It is a group. However, at least one R 1 in one molecule is an alkenyl group having 2 to 12 carbon atoms. R 2 is an alkyl group having 1 to 12 carbon atoms, and examples thereof are the same alkyl groups as those described above for R 1 , preferably a methyl group. R 3 is a phenyl group. R 4 is an alkenyl group having 2 to 12 carbon atoms, and examples thereof include the same alkenyl groups as those described above for R 1 , preferably a vinyl group. R 5 is the same or different and is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group. Examples of the alkyl group for R 5 include the same alkyl groups as those described above for R 1 . Examples of the alkenyl group for R 5 include the same alkenyl groups as those described above for R 1 .
 また、式中、a、b、c、およびdは、それぞれ、0.00≦a≦0.45、0.01≦b≦0.45、0≦c≦0.7、0.1≦d<0.9、かつa+b+c+d=1を満たす数であり、好ましくは、0.00≦a≦0.45、0.05≦b≦0.45、0≦c≦0.5、0.4≦d<0.85、かつa+b+c+d=1を満たす数であり、更に好ましくは、0.00≦a≦0.4、0.05≦b≦0.4、0≦c≦0.4、0.45≦d<0.8、かつ、a+b+c+d=1を満たす数である。これは、aが上記範囲の上限以下であると、硬化物の低いガス透過性が実現できるためである。また、bが上記範囲の下限以上であると、硬化物の低いガス透過性が実現できるためであり、一方、上記範囲の上限以下であると、硬化物にべたつきが生じ難くなるからである。また、cが上記範囲の上限以下であると、硬化物の硬度が良好となり、信頼性が向上するからである。また、dが上記範囲の下限以上であると、硬化物の屈折率が良好となるからであり、一方、上記範囲の上限以下であると、硬化物の機械的特性が向上するからである。 In the formula, a, b, c and d are respectively 0.00 ≦ a ≦ 0.45, 0.01 ≦ b ≦ 0.45, 0 ≦ c ≦ 0.7, 0.1 ≦ d. <0.9 and a + b + c + d = 1, and preferably 0.00 ≦ a ≦ 0.45, 0.05 ≦ b ≦ 0.45, 0 ≦ c ≦ 0.5, 0.4 ≦ d <0.85 and a number satisfying a + b + c + d = 1, and more preferably 0.00 ≦ a ≦ 0.4, 0.05 ≦ b ≦ 0.4, 0 ≦ c ≦ 0.4, 0.4. It is a number satisfying 45 ≦ d <0.8 and a + b + c + d = 1. This is because the low gas permeability of hardened | cured material can be implement | achieved as a is below the upper limit of the said range. Moreover, it is because low gas permeability of hardened | cured material can be implement | achieved as b is more than the minimum of the said range, and it is because stickiness does not arise easily in hardened | cured material when it is below the upper limit of the said range. Moreover, it is because the hardness of hardened | cured material becomes favorable and reliability improves that c is below the upper limit of the said range. Moreover, it is because the refractive index of hardened | cured material will become favorable when d is more than the minimum of the said range, and it is because the mechanical characteristics of hardened | cured material will improve that it is below the upper limit of the said range.
 本発明に係るオルガノポリシロキサンは、上記の平均単位式で表されるが、本発明の目的を損なわない範囲で、式:R SiO1/2で表されるシロキサン単位、式:R SiO1/2で表されるシロキサン単位、式:R SiO1/2で表されるシロキサン単位、式:RSiO3/2で表されるシロキサン単位、式:RSiO3/2で表されるシロキサン単位、または式:SiO4/2で表されるシロキサン単位を有してもよい。なお、式中、Rは炭素数1~12のアルキル基であり、Rは炭素数6~20のアリール基または炭素数7~20のアラルキル基であり、Rは炭素数2~12のアルケニル基であり、それぞれ前記と同様の基が例示される。また、本発明のオルガノポリシロキサンには、本発明の目的を損なわない範囲で、メトキシ基、エトキシ基、プロポキシ基等のケイ素原子結合アルコキシ基、あるいはケイ素原子結合水酸基を有していてもよい。 The organopolysiloxane according to the present invention is represented by the above average unit formula, but is a siloxane unit represented by the formula: R 2 2 R 3 SiO 1/2 within the range not impairing the object of the present invention, the formula: Siloxane unit represented by R 2 R 3 2 SiO 1/2 , siloxane unit represented by formula: R 3 3 SiO 1/2 , siloxane unit represented by formula: R 2 SiO 3/2 , formula: R It may have a siloxane unit represented by 4 SiO 3/2 or a siloxane unit represented by the formula: SiO 4/2 . In the formula, R 2 is an alkyl group having 1 to 12 carbon atoms, R 3 is an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, and R 4 is an alkyl group having 2 to 12 carbon atoms. And the same groups as described above are exemplified. Moreover, the organopolysiloxane of the present invention may have a silicon atom-bonded alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group, or a silicon atom-bonded hydroxyl group as long as the object of the present invention is not impaired.
 このようなオルガノポリシロキサンを調製する方法としては、例えば、一般式(I):
SiX
で表されるシラン化合物、一般式(II-1):
SiOSiR
で表されるジシロキサンおよび/または一般式(II-2):
SiX
で表されるシラン化合物、および一般式(III-1):
SiOSiR
で表されるジシロキサンおよび/または一般式(III-2):
SiX
で表されるシラン化合物を、酸もしくはアルカリの存在下、加水分解・縮合反応させる方法が挙げられる。
As a method for preparing such an organopolysiloxane, for example, the general formula (I):
R 3 Six 3
A silane compound represented by the general formula (II-1):
R 1 3 SiOS iR 1 3
And / or general formula (II-2):
R 1 3 SiX
A silane compound represented by formula (III-1):
R 2 R 3 R 4 SiOSiR 2 R 3 R 4
And / or general formula (III-2):
R 2 R 3 R 4 SiX
The method of hydrolyzing and condensing the silane compound represented by these in presence of an acid or an alkali is mentioned.
 一般式(I):
SiX
で表されるシラン化合物は、オルガノポリシロキサンに、式:RSiO3/2で表されるシロキサン単位を導入するための原料である。式中、Rは炭素数6~20のアリール基または炭素数7~20のアラルキル基であり、前記と同様の基が例示され、好ましくは、フェニル基またはナフチル基である。また、式中、Xはアルコキシ基、アシロキシ基、ハロゲン原子、または水酸基である。Xのアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基が例示される。また、Xのアシロキシ基としては、アセトキシ基が例示される。また、Xのハロゲン原子としては、塩素原子、臭素原子が例示される。
Formula (I):
R 3 Six 3
Is a raw material for introducing a siloxane unit represented by the formula: R 3 SiO 3/2 into an organopolysiloxane. In the formula, R 3 is an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, and examples thereof are the same as those described above, and preferably a phenyl group or a naphthyl group. In the formula, X represents an alkoxy group, an acyloxy group, a halogen atom, or a hydroxyl group. Examples of the alkoxy group for X include a methoxy group, an ethoxy group, and a propoxy group. An example of the acyloxy group for X is an acetoxy group. Examples of the halogen atom for X include a chlorine atom and a bromine atom.
 このようなシラン化合物としては、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のアルコキシシラン;フェニルトリアセトキシシラン等のアシロキシシラン;フェニルトリクロロシラン等のハロシラン;フェニルトリヒドロキシシラン等のヒドロキシシランが例示される。 Examples of such silane compounds include alkoxysilanes such as phenyltrimethoxysilane and phenyltriethoxysilane; acyloxysilanes such as phenyltriacetoxysilane; halosilanes such as phenyltrichlorosilane; hydroxysilanes such as phenyltrihydroxysilane. The
 また、一般式(II-1):
SiOSiR
で表されるジシロキサンは、オルガノポリシロキサンに、式:R SiO1/2で表されるシロキサン単位を導入するための原料である。式中、Rは同じかまたは異なる、炭素数1~12のアルキル基もしくは炭素数2~12のアルケニル基である。Rのアルキル基としては、前記と同様の基が例示され、好ましくは、メチル基である。また、Rのアルケニル基としては、前記と同様の基が例示され、好ましくは、ビニル基である。
In addition, general formula (II-1):
R 1 3 SiOS iR 1 3
Is a raw material for introducing a siloxane unit represented by the formula: R 1 3 SiO 1/2 into the organopolysiloxane. In the formula, R 1 is the same or different and is an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms. Examples of the alkyl group for R 1 include the same groups as described above, and a methyl group is preferable. Examples of the alkenyl group for R 1 include the same groups as described above, and a vinyl group is preferable.
 このようなジシロキサンとしては、1,1,1,3,3,3-ヘキサメチルジシロキサン、1,1,1,3,3,3-ヘキサエチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラエチルジシロキサン、1,1,3,3-テトラビニル-1,3-ジメチルジシロキサン、1,1,1,3,3,3-ヘキサビニルジシロキサンが例示される。このようなジシロキサンを2種以上組合せて使用することもできるが、少なくとも1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラエチルジシロキサン等の1,3-ジアルケニル-1,1,3,3-テトラアルキルジシロキサンを含むことが必要である。 Such disiloxanes include 1,1,1,3,3,3-hexamethyldisiloxane, 1,1,1,3,3,3-hexaethyldisiloxane, 1,3-divinyl-1, 1,3,3-tetramethyldisiloxane, 1,3-divinyl-1,1,3,3-tetraethyldisiloxane, 1,1,3,3-tetravinyl-1,3-dimethyldisiloxane, 1,1,3,3,3-hexavinyldisiloxane is exemplified. Two or more such disiloxanes can be used in combination, but at least 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3-divinyl-1,1,3, It is necessary to include 1,3-dialkenyl-1,1,3,3-tetraalkyldisiloxane such as 3-tetraethyldisiloxane.
 また、一般式(II-2):
SiX
で表されるシラン化合物も、オルガノポリシロキサンに、式:R SiO1/2で表されるシロキサン単位を導入するための原料である。式中、Rは同じかまたは異なる、炭素数1~12のアルキル基もしくは炭素数2~12のアルケニル基である。Rのアルキル基としては、前記と同様の基が例示され、好ましくは、メチル基である。また、Rのアルケニル基としては、前記と同様の基が例示され、好ましくは、ビニル基である。また、式中、Xはアルコキシ基、アシロキシ基、ハロゲン原子、または水酸基であり、前記と同様の基が例示される。
In addition, general formula (II-2):
R 1 3 SiX
Is also a raw material for introducing a siloxane unit represented by the formula: R 1 3 SiO 1/2 into the organopolysiloxane. In the formula, R 1 is the same or different and is an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms. Examples of the alkyl group for R 1 include the same groups as described above, and a methyl group is preferable. Examples of the alkenyl group for R 1 include the same groups as described above, and a vinyl group is preferable. In the formula, X represents an alkoxy group, an acyloxy group, a halogen atom, or a hydroxyl group, and examples thereof include the same groups as described above.
 このようなシラン化合物としては、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルビニルメトキシシラン、ジエチルビニルメトキシシラン、ジメチルビニルエトキシシラン、ジエチルビニルエトキシシラン、ジビニルメチルメトキシシラン、トリビニルメトキシシラン等のアルコキシシラン;ジメチルビニルアセトキシシラン、ジエチルビニルアセトキシシラン、ジビニルメチルアセトキシシラン、トリビニルアセトキシシラン等のアシロキシシラン;トリメチルクロロシラン、ジメチルビニルクロロシラン、ジエチルビニルクロロシラン、ジビニルメチルクロロシラン、トリビニルクロロシラン等のハロシラン;ジメチルビニルヒドロキシシラン、ジエチルビニルヒドロキシシラン、ジビニルメチルヒドロキシシラン、トリビニルヒドロキシシラン等のヒドロキシシランが例示される。このようなシラン化合物を2種以上組合せて使用することもできるが、少なくともジビニルメチルメトキシシラン、ジビニルメチルアセトキシシラン、ジビニルメチルクロロシラン、ジビニルメチルヒドロキシシラン等のアルケニルジアルキルシラン化合物を含むことが必要である。 Examples of such silane compounds include alkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, dimethylvinylmethoxysilane, diethylvinylmethoxysilane, dimethylvinylethoxysilane, diethylvinylethoxysilane, divinylmethylmethoxysilane, and trivinylmethoxysilane; Acyloxysilanes such as dimethylvinylacetoxysilane, diethylvinylacetoxysilane, divinylmethylacetoxysilane, and trivinylacetoxysilane; halosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, diethylvinylchlorosilane, divinylmethylchlorosilane, and trivinylchlorosilane; dimethylvinylhydroxy Silane, diethylvinylhydroxysilane, divinylmethylhydroxysilane Hydroxy silanes such as trivinyl hydroxy silane are exemplified. Two or more such silane compounds can be used in combination, but it is necessary to include at least an alkenyldialkylsilane compound such as divinylmethylmethoxysilane, divinylmethylacetoxysilane, divinylmethylchlorosilane, divinylmethylhydroxysilane, and the like. .
 一般式(III-1):
SiOSiR
で表されるジシロキサンは、オルガノポリシロキサンに、式:RSiO1/2で表されるシロキサン単位を導入するための原料である。式中、Rは炭素数1~12のアルキル基であり、前記と同様の基が例示され、好ましくは、メチル基である。式中、Rはフェニル基である。また、式中、Rは炭素数2~12のアルケニル基であり、前記と同様の基が例示され、好ましくは、ビニル基である。
Formula (III-1):
R 2 R 3 R 4 SiOSiR 2 R 3 R 4
Is a raw material for introducing a siloxane unit represented by the formula: R 2 R 3 R 4 SiO 1/2 into the organopolysiloxane. In the formula, R 2 is an alkyl group having 1 to 12 carbon atoms, and examples thereof are the same groups as described above, preferably a methyl group. In the formula, R 3 is a phenyl group. In the formula, R 4 is an alkenyl group having 2 to 12 carbon atoms, and examples thereof are the same groups as described above, preferably a vinyl group.
 このようなジシロキサンとしては、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンが挙げられる。 Examples of such disiloxane include 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane.
 一般式(III-2):
SiX
で表されるシラン化合物も、オルガノポリシロキサンに、式:RSiO1/2で表されるシロキサン単位を導入するための原料である。式中、Rは炭素数1~12のアルキル基であり、前記と同様の基が例示され、好ましくは、メチル基である。式中、Rはフェニル基である。式中、Rは炭素数2~12のアルケニル基であり、前記と同様の基が例示され、好ましくは、ビニル基である。また、式中、Xはアルコキシ基、アシロキシ基、ハロゲン原子、または水酸基であり、前記と同様の基が例示される。
Formula (III-2):
R 2 R 3 R 4 SiX
Is also a raw material for introducing a siloxane unit represented by the formula: R 2 R 3 R 4 SiO 1/2 into the organopolysiloxane. In the formula, R 2 is an alkyl group having 1 to 12 carbon atoms, and examples thereof are the same groups as described above, preferably a methyl group. In the formula, R 3 is a phenyl group. In the formula, R 4 is an alkenyl group having 2 to 12 carbon atoms, exemplified by the same groups as described above, and preferably a vinyl group. In the formula, X represents an alkoxy group, an acyloxy group, a halogen atom, or a hydroxyl group, and examples thereof include the same groups as described above.
 このようなシラン化合物としては、メチルフェニルビニルメトキシシラン、メチルフェニルビニルエトキシシラン等のアルコキシシラン;メチルフェニルビニルアセトキシシラン等のアセトキシシラン;メチルフェニルビニルクロロシラン等のクロロシラン;メチルフェニルビニルヒドロキシシラン等のヒドロキシシランが例示される。 Examples of such silane compounds include alkoxysilanes such as methylphenylvinylmethoxysilane and methylphenylvinylethoxysilane; acetoxysilanes such as methylphenylvinylacetoxysilane; chlorosilanes such as methylphenylvinylchlorosilane; hydroxy such as methylphenylvinylhydroxysilane. Silane is exemplified.
 上記の調製方法では、必要に応じて、オルガノポリシロキサンに、式:R SiO2/2で表されるシロキサン単位を導入するためのシラン化合物もしくは環状シリコーン化合物、または、式:SiO4/2で表されるシロキサン単位を導入するためのシラン化合物もしくはシランオリゴマーを反応させることができる。式中、Rは同じかまたは異なる、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、もしくはフェニル基である。Rのアルキル基としては、前記Rと同様のアルキル基が例示される。Rのアルケニル基としては、前記Rと同様のアルケニル基が例示される。 In the above preparation method, if necessary, a silane compound or a cyclic silicone compound for introducing a siloxane unit represented by the formula: R 5 2 SiO 2/2 into the organopolysiloxane, or a formula: SiO 4 / A silane compound or a silane oligomer for introducing the siloxane unit represented by 2 can be reacted. In the formula, R 5 is the same or different and is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group. Examples of the alkyl group for R 5 include the same alkyl groups as those described above for R 1 . Examples of the alkenyl group for R 5 include the same alkenyl groups as those described above for R 1 .
 このようなシラン化合物としては、ジメチルジメトキシシラン、メチルエチルジメトキシシラン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン、テトラメトキシシラン、ジメチルジエトキシシラン、メチルエチルジエトキシシラン、メチルフェニルジエトキシシラン、ジフェニルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン等のアルコキシシラン;ジメチルジアセトキシシラン、メチルフェニルジアセトキシシラン、ジフェニルジアセトキシシラン、テトラアセトキシシラン等のアセトキシシラン;ジメチルジクロロシラン、メチルフェニルジクロロシラン、ジフェニルジクロロシラン、テトラクロロシラン等のハロシラン;ジメチルジヒドロキシシラン、メチルフェニルジヒドロキシシラン、ジフェニルジヒドロキシシラン等のヒドロキシシランが例示される。また、このような環状シリコーン化合物としては、環状ジメチルシロキサンオリゴマー、環状フェニルメチルシロキサンオリゴマー、環状ジフェニルシロキサンオリゴマーが例示される。さらに、シランオリゴマーとしては、テトラメトキシシランの部分加水分解物、テトラエトキシシランの部分加水分解物が例示される。 Examples of such silane compounds include dimethyldimethoxysilane, methylethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane, tetramethoxysilane, dimethyldiethoxysilane, methylethyldiethoxysilane, methylphenyldiethoxysilane, and diphenyldiethoxy. Alkoxysilanes such as silane, tetramethoxysilane, tetraethoxysilane; acetoxysilanes such as dimethyldiacetoxysilane, methylphenyldiacetoxysilane, diphenyldiacetoxysilane, tetraacetoxysilane; dimethyldichlorosilane, methylphenyldichlorosilane, diphenyldichlorosilane , Halosilanes such as tetrachlorosilane; dimethyldihydroxysilane, methylphenyldihydroxysilane, di Hydroxy silanes such as E sulfonyl dihydroxysilane are exemplified. Examples of such cyclic silicone compounds include cyclic dimethylsiloxane oligomers, cyclic phenylmethylsiloxane oligomers, and cyclic diphenylsiloxane oligomers. Furthermore, as a silane oligomer, the partial hydrolyzate of tetramethoxysilane and the partial hydrolyzate of tetraethoxysilane are illustrated.
 上記の調製方法では、シラン化合物(I)、ジシロキサン(II-1)および/またはシラン化合物(II-2)、およびジシロキサン(III-1)および/またはシラン化合物(III-2)、さらに必要に応じて、その他のシラン化合物、環状シリコーン化合物、あるいはシランオリゴマーを、酸もしくはアルカリの存在下、加水分解・縮合反応させることを特徴とする。 In the above preparation method, silane compound (I), disiloxane (II-1) and / or silane compound (II-2), disiloxane (III-1) and / or silane compound (III-2), It is characterized by subjecting other silane compounds, cyclic silicone compounds, or silane oligomers to a hydrolysis / condensation reaction in the presence of acid or alkali as necessary.
 使用できる酸としては、塩酸、酢酸、蟻酸、硝酸、シュウ酸、硫酸、リン酸、ポリリン酸、多価カルボン酸、トリフルオロメタンスルホン酸、イオン交換樹脂が例示される。また、使用できるアルカリとしては、水酸化カリウム、水酸化ナトリウム等の無機アルカリ;トリエチルアミン、ジエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、アンモニア水、テトラメチルアンモニウムハイドロオキサイド、アミノ基を有するアルコキシラン、アミノプロピルトリメトキシシラン等の有機塩基化合物が例示される。 Examples of the acid that can be used include hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid, trifluoromethanesulfonic acid, and ion exchange resin. Examples of alkalis that can be used include inorganic alkalis such as potassium hydroxide and sodium hydroxide; triethylamine, diethylamine, monoethanolamine, diethanolamine, triethanolamine, aqueous ammonia, tetramethylammonium hydroxide, alkoxysilane having an amino group, Examples include organic base compounds such as aminopropyltrimethoxysilane.
 また、上記の調製方法において、有機溶剤を使用することができる。使用できる有機溶剤としては、エーテル類、ケトン類、アセテート類、芳香族あるいは脂肪族炭化水素、γ-ブチロラクトン、およびこれらの2種以上の混合物が例示される。好ましい有機溶剤としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、γ-ブチロラクトン、トルエン、キシレンが例示される。 In the above preparation method, an organic solvent can be used. Examples of the organic solvent that can be used include ethers, ketones, acetates, aromatic or aliphatic hydrocarbons, γ-butyrolactone, and mixtures of two or more thereof. Preferred organic solvents include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, γ-butyrolactone, toluene and xylene. Illustrated.
 上記の調製方法では、上記各成分の加水分解・縮合反応を促進するため、水、あるいは水とアルコールの混合液を添加することが好ましい。このアルコールとしては、メタノール、エタノールが好ましい。この反応は、加熱により促進され、有機溶媒を使用する場合には、その還流温度で反応を行うことが好ましい。 In the above preparation method, it is preferable to add water or a mixture of water and alcohol in order to accelerate the hydrolysis / condensation reaction of the above components. As this alcohol, methanol and ethanol are preferable. This reaction is accelerated by heating, and when an organic solvent is used, the reaction is preferably performed at the reflux temperature.
 このような本発明のオルガノポリシロキサンは、ヒドロシリル化反応性が良好であるので、これを主剤とし、一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン、およびヒドロシリル化反応用触媒を添加することによりヒドロシリル化反応硬化性シリコーン組成物を調製することができる。 Such an organopolysiloxane of the present invention has good hydrosilylation reactivity. Therefore, the organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule as a main component, and for hydrosilylation reaction. A hydrosilylation reaction-curable silicone composition can be prepared by adding a catalyst.
 本発明の硬化性シリコーン組成物は、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンを含み、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの組成物中での含有率が、0.0質量%より大きく、3.0質量%未満であることを第二の特徴とする。1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンは、アルキルフェニルビニルシロキサン単位を含有する分岐鎖状または樹脂状のオルガノポリシロキサンの合成時に当該オルガノポリシロキサン中に残存する成分であるが、この含有量が上記の範囲にあるように制御された硬化性シリコーン組成物を用いることにより、耐熱衝撃性が改善される。特に、耐熱衝撃性の改善の見地から、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの組成物中での含有率が、0.05質量%~2.50質量%の範囲がより好ましい。当該含有量が前記下限未満であったり、当該含有量が前記上限を超えたりすると、本明細書の比較例に示す通り、耐熱衝撃性が低下する。また、当該含有量が前記上限を超えると、硬化性の悪化や表面タック等の原因となる場合がある。すなわち、当該含有量は本発明の範囲にあることが必要であり、公知のアルキルフェニルビニルシロキサン単位を含有する分岐鎖状または樹脂状のオルガノポリシロキサンを含有する硬化性シリコーン組成物においては、このような条件を充足するものは知られていない。一方、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンを完全除去(0質量%)してしまうと、本明細書の比較例に示す通り、耐熱衝撃性が低下するため、本発明の技術的効果の点から、一定の含有量を維持することが必要である。 The curable silicone composition of the present invention comprises 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane and comprises 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane. The second feature is that the content of siloxane in the composition is greater than 0.0 mass% and less than 3.0 mass%. 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane remains in the organopolysiloxane during the synthesis of the branched or resinous organopolysiloxane containing alkylphenylvinylsiloxane units. Although it is a component, the thermal shock resistance is improved by using a curable silicone composition whose content is controlled to be in the above range. In particular, from the viewpoint of improving thermal shock resistance, the content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the composition is 0.05 mass% to 2.50 mass. % Range is more preferred. When the content is less than the lower limit or the content exceeds the upper limit, the thermal shock resistance is lowered as shown in the comparative example of the present specification. Moreover, when the said content exceeds the said upper limit, it may become a cause of sclerosis | hardenability deterioration, surface tack, etc. That is, the content needs to be within the scope of the present invention. In a curable silicone composition containing a branched or resinous organopolysiloxane containing a known alkylphenylvinylsiloxane unit, Nothing is known that satisfies these conditions. On the other hand, if 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is completely removed (0% by mass), the thermal shock resistance decreases as shown in the comparative example of the present specification. Therefore, it is necessary to maintain a certain content from the viewpoint of the technical effect of the present invention.
 好適には、本発明の硬化性シリコーン組成物は、上記(A)成分~(D)成分を含有し、任意で(E)成分を含むことが好ましい。ここで、(A)成分のオルガノポリシロキサンは上記の通りである。また、耐熱衝撃性の改善の見地から、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの組成物中での含有率が、0.05質量%~2.50質量%の範囲であることが特に好ましい。 Preferably, the curable silicone composition of the present invention contains the above-mentioned components (A) to (D), and optionally contains the component (E). Here, the organopolysiloxane of component (A) is as described above. From the viewpoint of improving thermal shock resistance, the content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the composition is 0.05 mass% to 2.50 mass. % Range is particularly preferred.
 (B)成分は、硬化物に柔軟性、伸張性、可撓性を付与するための任意の成分であり、一分子中に少なくとも2個のアルケニル基を有し、ケイ素原子結合水素原子を有さない直鎖状のオルガノポリシロキサンである。(B)成分中のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等の炭素数2~12のアルケニル基が例示され、好ましくは、ビニル基である。(B)成分中のアルケニル基以外のケイ素原子に結合する基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数1~12のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基等の炭素数6~20のアリール基;ベンジル基、フェネチル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、ピレニルエチル基、およびこれらのアラルキル基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基等の炭素数7~20のアラルキル基;またはクロロメチル基、3,3,3-トリフルオロプロピル基等の炭素数1~12のハロゲン化アルキル基が例示され、それぞれ前記と同様の基が例示され、好ましくは、メチル基、フェニル基である。 Component (B) is an optional component for imparting flexibility, extensibility, and flexibility to the cured product, and has at least two alkenyl groups in one molecule and silicon-bonded hydrogen atoms. It is a linear organopolysiloxane that does not. The alkenyl group in the component (B) includes 2 to 12 carbon atoms such as vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group and dodecenyl group. The alkenyl group is exemplified, and a vinyl group is preferable. (B) As a group couple | bonded with silicon atoms other than the alkenyl group in a component, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl Group, alkyl group having 1 to 12 carbon atoms such as dodecyl group; phenyl group, tolyl group, xylyl group, naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, and hydrogen atoms of these aryl groups as methyl group, ethyl group Alkyl groups such as methoxy groups, ethoxy groups, etc .; aryl groups having 6 to 20 carbon atoms such as groups substituted by halogen atoms such as chlorine atoms and bromine atoms; benzyl groups, phenethyl groups, naphthylethyl groups, naphthyl groups, etc. Propyl, anthracenylethyl, phenanthrylethyl, pyrenylethyl, and their aralkyls An alkyl group such as a methyl group or an ethyl group; an alkoxy group such as a methoxy group or an ethoxy group; an aralkyl group having 7 to 20 carbon atoms such as a group substituted with a halogen atom such as a chlorine atom or a bromine atom; or chloro Examples thereof include a halogenated alkyl group having 1 to 12 carbon atoms such as a methyl group and a 3,3,3-trifluoropropyl group, and examples thereof are the same groups as those described above, preferably a methyl group and a phenyl group.
 このような(B)成分としては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、およびこれらのオルガノポリシロキサンの二種以上の混合物が例示される。 Examples of such a component (B) include a trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer with both molecular chain terminals, a trimethylsiloxy group-capped methylvinylpolysiloxane with both molecular chain terminals, and a trimethylsiloxy group-capped dimethyl group with both molecular chains. Siloxane / methylvinylsiloxane / methylphenylsiloxane copolymer, dimethylpolysiloxane blocked with dimethylvinylsiloxy group at both ends of molecular chain, dimethylvinylsiloxy group-blocked methylvinylpolysiloxane with molecular chain at both ends, dimethylvinylsiloxy group-blocked dimethyl with molecular chain at both ends Siloxane / methylvinylsiloxane copolymer, dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer with both ends of the molecular chain, and their organopoly Mixtures of two or more Rokisan are exemplified.
 本組成物において、(B)成分の含有量は、本組成物に対して、0~70質量%の範囲内であり、好ましくは、0~50質量%の範囲内であり、特に好ましくは、0~40質量%の範囲内である。これは、(B)成分の含有量が上記範囲の上限以下であると、硬化物のガス透過性を高めることなく、硬化物に柔軟性、伸張性、可撓性を付与することができ、ひいては、本組成物を用いて作製した光半導体装置の信頼性を向上できるからである。 In the present composition, the content of the component (B) is in the range of 0 to 70% by weight, preferably in the range of 0 to 50% by weight, particularly preferably, based on the present composition. It is in the range of 0 to 40% by mass. When the content of the component (B) is below the upper limit of the above range, the cured product can be given flexibility, extensibility, and flexibility without increasing the gas permeability of the cured product. As a result, it is because the reliability of the optical semiconductor device produced using this composition can be improved.
 (C)成分は、本組成物の架橋剤であり、一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサンである。(C)成分中のケイ素原子結合水素原子の結合位置としては、分子鎖末端および/または分子鎖側鎖が例示される。(C)成分中のケイ素原子に結合するその他の基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数1~12のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基、およびこれらのアリール基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基等の炭素数6~20のアリール基;ベンジル基、フェネチル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、ピレニルエチル基、およびこれらのアラルキル基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基等の炭素数7~20のアラルキル基;またはクロロメチル基、3,3,3-トリフルオロプロピル基等の炭素数1~12のハロゲン化アルキル基が例示され、それぞれ前記と同様の基が例示され、好ましくは、メチル基、フェニル基である。このような(C)成分の分子構造としては、直鎖状、分岐状、環状、網状、一部分岐を有する直鎖状が例示される。 (C) Component is a cross-linking agent of the present composition, and is an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule. Examples of the bonding position of silicon atom-bonded hydrogen atoms in component (C) include molecular chain terminals and / or molecular chain side chains. (C) Other groups bonded to the silicon atom in the component include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, An alkyl group having 1 to 12 carbon atoms such as dodecyl group; a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, and a hydrogen atom of these aryl groups such as a methyl group, an ethyl group, etc. Alkyl groups; alkoxy groups such as methoxy groups and ethoxy groups; aryl groups having 6 to 20 carbon atoms such as groups substituted by halogen atoms such as chlorine atoms and bromine atoms; benzyl groups, phenethyl groups, naphthylethyl groups, naphthylpropyl groups , Anthracenylethyl group, phenanthrylethyl group, pyrenylethyl group, and hydrogen sources of these aralkyl groups An alkyl group such as a methyl group or an ethyl group; an alkoxy group such as a methoxy group or an ethoxy group; an aralkyl group having 7 to 20 carbon atoms such as a group substituted with a halogen atom such as a chlorine atom or a bromine atom; or a chloromethyl group, Examples thereof include halogenated alkyl groups having 1 to 12 carbon atoms such as 3,3,3-trifluoropropyl group, and the same groups as those described above are preferable, and a methyl group and a phenyl group are preferable. Examples of the molecular structure of the component (C) include linear, branched, cyclic, network, and partially branched linear structures.
 このような(C)成分としては、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、一般式:R'SiO1/2で表されるシロキサン単位と一般式:R'HSiO1/2で表されるシロキサン単位と式:SiO4/2で表されるシロキサン単位からなるオルガノポリシロキサン共重合体、一般式:R'HSiO1/2で表されるシロキサン単位と式:SiO4/2で表されるシロキサン単位からなるオルガノポリシロキサン共重合体、一般式:R'HSiO2/2で表されるシロキサン単位と一般式:R'SiO3/2で表されるシロキサン単位または式:HSiO3/2で表されるシロキサン単位からなるオルガノポリシロキサン共重合体、およびこれらのオルガノポリシロキサンの二種以上の混合物が例示される。なお、式中のR'は炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または炭素数1~12のハロゲン化アルキル基であり、それぞれ前記と同様の基が例示される。 Examples of such component (C) include molecular chain both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends trimethylsiloxy group Blocked dimethylsiloxane / methylhydrogensiloxane / methylphenylsiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group blocked dimethylpolysiloxane, molecular chain both ends dimethylhydrogensiloxy group blocked dimethylsiloxane / methylphenylsiloxane copolymer, Methylphenylpolysiloxane blocked with a dimethylhydrogensiloxy group blocked at both ends of the molecular chain, a siloxane unit represented by the general formula: R ′ 3 SiO 1/2 and a siloxy represented by the general formula: R ′ 2 HSiO 1/2 Organopolysiloxane copolymer consisting of a siloxane unit represented by a sun unit and a formula: SiO 4/2 , a siloxane unit represented by a general formula: R ′ 2 HSiO 1/2 and a formula: SiO 4/2 An organopolysiloxane copolymer comprising siloxane units, a general formula: siloxane units represented by R′HSiO 2/2 and a siloxane unit represented by general formula: R′SiO 3/2 or a formula: HSiO 3/2 And a mixture of two or more of these organopolysiloxanes. R ′ in the formula is an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a halogenated alkyl group having 1 to 12 carbon atoms, Examples are the same as those described above.
 本組成物において、(C)成分の含有量は、(A)成分中および(B)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.1~5モルの範囲内となる量であり、好ましくは、0.5~2モルの範囲内となる量である。これは、(C)成分の含有量が上記範囲の下限以上であると、組成物が十分に硬化するからであり、一方、上記範囲の上限以下であると、硬化物の耐熱性が向上し、ひいては、本組成物を用いて作製した光半導体装置の信頼性が向上するからである。 In this composition, the content of the component (C) is such that the silicon-bonded hydrogen atoms in this component are 0.1 to 0.1 mol in total for 1 mol of the alkenyl groups in the component (A) and the component (B). The amount is in the range of 5 moles, preferably the amount in the range of 0.5 to 2 moles. This is because if the content of the component (C) is not less than the lower limit of the above range, the composition is sufficiently cured. On the other hand, if it is not more than the upper limit of the above range, the heat resistance of the cured product is improved. As a result, the reliability of the optical semiconductor device manufactured using this composition is improved.
 また、(D)成分は、本組成物の硬化を促進するためのヒドロシリル化反応用触媒であり、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示される。特に、本組成物の硬化を著しく促進できることから、(D)成分は白金系触媒であることが好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示され、好ましくは、白金-アルケニルシロキサン錯体である。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。 The component (D) is a hydrosilylation catalyst for accelerating the curing of the composition, and examples thereof include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. In particular, the component (D) is preferably a platinum-based catalyst because the curing of the composition can be remarkably accelerated. Examples of the platinum-based catalyst include platinum fine powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex, preferably a platinum-alkenylsiloxane complex. is there. In particular, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferred because the platinum-alkenylsiloxane complex has good stability. In addition, as a catalyst which accelerates | stimulates hydrosilylation reaction, you may use non-platinum type metal catalysts, such as iron, ruthenium, and iron / cobalt.
 また、本組成物において、(D)成分の含有量は、本組成物の硬化を促進するために有効な量である。具体的には、(D)成分の含有量は、本組成物の硬化反応を十分に促進できることから、本組成物に対して、質量単位で、(D)成分中の触媒金属が0.01~500ppmの範囲内となる量であることが好ましく、さらには、0.01~100ppmの範囲内となる量であることが好ましく、特には、0.01~50ppmの範囲内となる量であることが好ましい。 In the present composition, the content of the component (D) is an effective amount for accelerating the curing of the present composition. Specifically, since the content of the component (D) can sufficiently accelerate the curing reaction of the composition, the catalyst metal in the component (D) is 0.01 by mass unit with respect to the composition. The amount is preferably in the range of ˜500 ppm, more preferably in the range of 0.01 to 100 ppm, and particularly in the range of 0.01 to 50 ppm. It is preferable.
 本組成物には、硬化途上で接触している基材に対する硬化物の接着性を向上させるため、(E)接着付与剤を含有してもよい。この(E)成分としては、ケイ素原子に結合したアルコキシ基を一分子中に少なくとも1個有する有機ケイ素化合物が好ましい。このアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基が例示され、特に、メトキシ基が好ましい。また、この有機ケイ素化合物のケイ素原子に結合するアルコキシ基以外の基としては、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等の置換もしくは非置換の一価炭化水素基;3-グリシドキシプロピル基、4-グリシドキシブチル基等のグリシドキシアルキル基;2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基等のエポキシシクロヘキシルアルキル基;4-オキシラニルブチル基、8-オキシラニルオクチル基等のオキシラニルアルキル基等のエポキシ基含有一価有機基;3-メタクリロキシプロピル基等のアクリル基含有一価有機基;水素原子が例示される。この有機ケイ素化合物はケイ素原子結合アルケニル基またはケイ素原子結合水素原子を有することが好ましい。また、各種の基材に対して良好な接着性を付与できることから、この有機ケイ素化合物は一分子中に少なくとも1個のエポキシ基含有一価有機基を有するものであることが好ましい。このような有機ケイ素化合物としては、オルガノシラン化合物、オルガノシロキサンオリゴマー、アルキルシリケートが例示される。このオルガノシロキサンオリゴマーあるいはアルキルシリケートの分子構造としては、直鎖状、一部分枝を有する直鎖状、分枝鎖状、環状、網状が例示され、特に、直鎖状、分枝鎖状、網状であることが好ましい。このような有機ケイ素化合物としては、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のシラン化合物;一分子中にケイ素原子結合アルケニル基もしくはケイ素原子結合水素原子、およびケイ素原子結合アルコキシ基をそれぞれ少なくとも1個ずつ有するシロキサン化合物、ケイ素原子結合アルコキシ基を少なくとも1個有するシラン化合物またはシロキサン化合物と一分子中にケイ素原子結合ヒドロキシ基とケイ素原子結合アルケニル基をそれぞれ少なくとも1個ずつ有するシロキサン化合物との混合物、メチルポリシリケート、エチルポリシリケート、エポキシ基含有エチルポリシリケートが例示される。 The composition may contain (E) an adhesion-imparting agent in order to improve the adhesion of the cured product to the substrate that is in contact with the curing process. The component (E) is preferably an organosilicon compound having at least one alkoxy group bonded to a silicon atom in one molecule. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group is particularly preferable. The group other than the alkoxy group bonded to the silicon atom of the organosilicon compound includes a substituted or unsubstituted monovalent hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group; 3 Glycidoxyalkyl groups such as glycidoxypropyl group and 4-glycidoxybutyl group; epoxies such as 2- (3,4-epoxycyclohexyl) ethyl group and 3- (3,4-epoxycyclohexyl) propyl group Cyclohexyl alkyl group; epoxy group-containing monovalent organic group such as oxiranylalkyl group such as 4-oxiranylbutyl group, 8-oxiranyloctyl group; acrylic group-containing monovalent organic group such as 3-methacryloxypropyl group Group; a hydrogen atom is exemplified. This organosilicon compound preferably has a silicon atom-bonded alkenyl group or a silicon atom-bonded hydrogen atom. Moreover, since it can provide favorable adhesiveness to various types of substrates, the organosilicon compound preferably has at least one epoxy group-containing monovalent organic group in one molecule. Examples of such organosilicon compounds include organosilane compounds, organosiloxane oligomers, and alkyl silicates. Examples of the molecular structure of the organosiloxane oligomer or alkyl silicate include linear, partially branched linear, branched, cyclic, and network, particularly linear, branched, and network. Preferably there is. Examples of such organosilicon compounds include silane compounds such as 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane; A siloxane compound having at least one silicon atom-bonded alkenyl group or silicon atom-bonded hydrogen atom and silicon atom-bonded alkoxy group, and a silane compound or siloxane compound having at least one silicon atom-bonded alkoxy group and silicon in one molecule. Examples thereof include a mixture of a siloxane compound having at least one atom-bonded hydroxy group and at least one silicon atom-bonded alkenyl group, methyl polysilicate, ethyl polysilicate, and epoxy group-containing ethyl polysilicate.
 本組成物において、(E)成分の含有量は限定されないが、硬化途上で接触している基材に対して良好に接着することから、上記(A)成分~(D)成分の合計100質量部に対して、0.01~10質量部の範囲内であることが好ましい。 In the present composition, the content of the component (E) is not limited, but it adheres favorably to the base material that is in contact with the curing process, so that a total of 100 masses of the components (A) to (D) is included. The content is preferably in the range of 0.01 to 10 parts by mass with respect to parts.
 また、本組成物には、その他任意の成分として、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾール等の反応抑制剤を含有してもよい。本組成物において、この反応抑制剤の含有量は限定されないが、上記(A)成分~(D)成分の合計100質量部に対して、0.0001~5質量部の範囲内であることが好ましい。 In addition, the present composition includes 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl-3-butyne-2- Alkyne alcohols such as all; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1,3 , 5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane, and a reaction inhibitor such as benzotriazole. In the present composition, the content of the reaction inhibitor is not limited, but is within the range of 0.0001 to 5 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). preferable.
 また、本組成物には、その他任意の成分として、蛍光材を含有することができる。この蛍光体としては、例えば、発光ダイオード(LED)に広く利用されている、酸化物系蛍光体、酸窒化物系蛍光体、窒化物系蛍光体、硫化物系蛍光体、酸硫化物系蛍光体等からなる黄色、赤色、緑色、青色発光蛍光体が挙げられる。酸化物系蛍光体としては、セリウムイオンを包含するイットリウム、アルミニウム、ガーネット系のYAG系緑色~黄色発光蛍光体、セリウムイオンを包含するテルビウム、アルミニウム、ガーネット系のTAG系黄色発光蛍光体、および、セリウムやユーロピウムイオンを包含するシリケート系緑色~黄色発光蛍光体が例示される。酸窒化物蛍光体としては、ユーロピウムイオンを包含するケイ素、アルミニウム、酸素、窒素系のサイアロン系赤色~緑色発光蛍光体が例示される。窒化物系蛍光体としては、ユーロピウムイオンを包含するカルシウム、ストロンチウム、アルミニウム、ケイ素、窒素系のカズン系赤色発光蛍光体が例示される。硫化物系としては、銅イオンやアルミニウムイオンを包含するZnS系緑色発色蛍光体が例示される。酸硫化物系蛍光体としては、ユーロピウムイオンを包含するYS系赤色発光蛍光体が例示される。これらの蛍光材は、1種もしくは2種以上の混合物を用いてもよい。本組成物において、この蛍光材の含有量は特に限定されないが、本組成物中、0.1~70質量%の範囲内であり、さらには、1~20質量%の範囲内であることが好ましい。 In addition, the present composition can contain a fluorescent material as other optional components. Examples of the phosphor include oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, and oxysulfide phosphors that are widely used in light emitting diodes (LEDs). Examples thereof include yellow, red, green, and blue light emitting phosphors. Examples of oxide phosphors include yttrium, aluminum, and garnet-based YAG green-yellow light-emitting phosphors containing cerium ions, terbium, aluminum, garnet-based TAG yellow light-emitting phosphors containing cerium ions, and Examples include silicate green to yellow light emitting phosphors containing cerium and europium ions. Examples of oxynitride phosphors include silicon, aluminum, oxygen, and nitrogen-based sialon-based red to green light-emitting phosphors containing europium ions. Examples of nitride-based phosphors include calcium, strontium, aluminum, silicon, and nitrogen-based casoon-based red light-emitting phosphors containing europium ions. Examples of the sulfide type include ZnS type green coloring phosphors including copper ions and aluminum ions. Examples of oxysulfide phosphors include Y 2 O 2 S red light-emitting phosphors containing europium ions. These fluorescent materials may be used singly or as a mixture of two or more. In the present composition, the content of the fluorescent material is not particularly limited, but in the present composition is in the range of 0.1 to 70% by mass, and further in the range of 1 to 20% by mass. preferable.
 また、本組成物には、本発明の目的を損なわない限り、その他任意の成分として、シリカ、ガラス、アルミナ、酸化亜鉛等の無機質充填剤;ポリメタクリレート樹脂等の有機樹脂微粉末;耐熱剤、染料、顔料、難燃性付与剤、溶剤等を含有してもよい。 Further, in the present composition, as long as the object of the present invention is not impaired, as other optional components, inorganic fillers such as silica, glass, alumina and zinc oxide; fine organic resin powders such as polymethacrylate resin; You may contain dye, a pigment, a flame-retarding agent, a solvent, etc.
 本組成物は室温もしくは加熱により硬化が進行するが、迅速に硬化させるためには加熱することが好ましい。この加熱温度としては、50~200℃の範囲内であることが好ましい。本発明の硬化性シリコーン組成物は光半導体装置の封止剤等に好適であり、硬化性シリコーン組成物の硬化物により光半導体素子を封止してなる光半導体装置を提供することができる。 This composition cures at room temperature or by heating, but is preferably heated to cure quickly. The heating temperature is preferably in the range of 50 to 200 ° C. The curable silicone composition of the present invention is suitable for a sealant for an optical semiconductor device, and can provide an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable silicone composition.
 次に、本発明の硬化物について詳細に説明する。
 本発明の硬化物は、上記の硬化性シリコーン組成物を硬化してなることを特徴とする。硬化物の形状は特に限定されず、例えば、シート状、フィルム状が挙げられる。硬化物は、これを単体で取り扱うこともできるが、光半導体素子等を被覆もしくは封止した状態で取り扱うことも可能である。
Next, the cured product of the present invention will be described in detail.
The cured product of the present invention is obtained by curing the above curable silicone composition. The shape of the cured product is not particularly limited, and examples thereof include a sheet shape and a film shape. The cured product can be handled alone, but can also be handled in a state where the optical semiconductor element or the like is covered or sealed.
 次に、本発明の光半導体装置について詳細に説明する。
 本発明の光半導体装置は、上記の硬化性シリコーン組成物の硬化物により光半導体素子を封止してなることを特徴とする。このような本発明の光半導体装置としては、発光ダイオード(LED)、フォトカプラー、CCDが例示される。また、光半導体素子としては、発光ダイオード(LED)チップ、固体撮像素子が例示される。ただし、本発明の硬化性シリコーン組成物の用途は、これらに限定されるものではない。
Next, the optical semiconductor device of the present invention will be described in detail.
The optical semiconductor device of the present invention is characterized in that an optical semiconductor element is sealed with a cured product of the above curable silicone composition. Examples of such an optical semiconductor device of the present invention include a light emitting diode (LED), a photocoupler, and a CCD. Examples of the optical semiconductor element include a light emitting diode (LED) chip and a solid-state imaging element. However, the use of the curable silicone composition of the present invention is not limited to these.
 本発明の光半導体装置の一例である単体の表面実装型LEDの断面図を図1に示した。図1で示されるLEDは、LEDチップ1がリードフレーム2上にダイボンドされ、このLEDチップ1とリードフレーム3とがボンディングワイヤ4によりワイヤボンディングされている。このLEDチップ1の周囲には枠材5が設けられており、この枠材5の内側のLEDチップ1が、本発明の硬化性シリコーン組成物の硬化物6により封止されている。 FIG. 1 shows a cross-sectional view of a single surface-mounted LED that is an example of the optical semiconductor device of the present invention. In the LED shown in FIG. 1, an LED chip 1 is die-bonded on a lead frame 2, and the LED chip 1 and the lead frame 3 are wire-bonded by a bonding wire 4. A frame member 5 is provided around the LED chip 1, and the LED chip 1 inside the frame member 5 is sealed with a cured product 6 of the curable silicone composition of the present invention.
 図1で示される表面実装型LEDを製造する方法としては、LEDチップ1をリードフレーム2にダイボンドし、このLEDチップ1とリードフレーム3とを金製のボンディングワイヤ4によりワイヤボンドし、次いで、LEDチップ1の周囲に設けられた枠材5の内側に本発明の硬化性シリコーン組成物を充填した後、50~200℃で加熱することにより硬化させる方法が例示される。上記の硬化性シリコーン組成物を用いることにより、耐熱衝撃性に優れ、高い発光効率が持続する光半導体装置等を提供することができる。 As a method of manufacturing the surface mount type LED shown in FIG. 1, the LED chip 1 is die-bonded to the lead frame 2, the LED chip 1 and the lead frame 3 are wire-bonded by a gold bonding wire 4, and then An example is a method in which the inside of the frame member 5 provided around the LED chip 1 is filled with the curable silicone composition of the present invention and then cured by heating at 50 to 200 ° C. By using the above curable silicone composition, it is possible to provide an optical semiconductor device that has excellent thermal shock resistance and maintains high luminous efficiency.
 本発明の硬化性シリコーン組成物、その硬化物、および光半導体装置を実施例により詳細に説明する。粘度は25℃における値である。なお、実施例中、Me、Vi、Ph、Epは、それぞれメチル基、ビニル基、フェニル基、3-グリシドキシプロピル基を示す。 The curable silicone composition of the present invention, the cured product thereof, and the optical semiconductor device will be described in detail with reference to examples. The viscosity is a value at 25 ° C. In the examples, Me, Vi, Ph, and Ep represent a methyl group, a vinyl group, a phenyl group, and a 3-glycidoxypropyl group, respectively.
[参考例:接着付与剤の合成例]
攪拌機、還流冷却管、温度計付きの四口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン 82.2g、水 143g、トリフルオロメタンスルホン酸 0.38g、およびトルエン 500gを投入し、攪拌下、フェニルトリメトキシシラン 524.7gを1時間かけて滴下した。滴下終了後、1時間加熱還流した。その後、冷却し、下層を分離し、トルエン溶液層を3回水洗した。水洗したトルエン溶液層にメチルグリシドキシプロピルジメトキシシラン 314gと水 130gと水酸化カリウム 0.50gとを投入し、1時間加熱還流した。続いて、メタノールを留去し、過剰の水を共沸脱水で除いた。4時間加熱還流した後、トルエン溶液を冷却し、酢酸 0.55gで中和した後、3回水洗した。水を除去した後、トルエンを減圧下に留去して、粘度8,500mPa・sの平均単位式:
(ViMe2SiO1/2)0.18(PhSiO3/2)0.53(EpMeSiO2/2)0.29
で表される接着付与剤を調製した。(式中、Viはビニル基、Phはフェニル基、Epはエポキシ基、Meはメチル基を示す)
[Reference example: Synthesis example of adhesion promoter]
In a four-necked flask equipped with a stirrer, reflux condenser, and thermometer, 82.2 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 143 g of water, 0.38 g of trifluoromethanesulfonic acid, and toluene 500 g was added, and 524.7 g of phenyltrimethoxysilane was added dropwise over 1 hour with stirring. After completion of dropping, the mixture was heated to reflux for 1 hour. Then, it cooled, the lower layer was isolate | separated and the toluene solution layer was washed with water 3 times. Methylglycidoxypropyldimethoxysilane (314 g), water (130 g), and potassium hydroxide (0.50 g) were added to the toluene solution layer washed with water, and the mixture was heated to reflux for 1 hour. Subsequently, methanol was distilled off and excess water was removed by azeotropic dehydration. After heating at reflux for 4 hours, the toluene solution was cooled, neutralized with 0.55 g of acetic acid, and then washed with water three times. After removing water, toluene is distilled off under reduced pressure, and the average unit formula with a viscosity of 8,500 mPa · s:
(ViMe2SiO1 / 2) 0.18 (PhSiO3 / 2) 0.53 (EpMeSiO2 / 2) 0.29
An adhesion-imparting agent represented by (In the formula, Vi represents a vinyl group, Ph represents a phenyl group, Ep represents an epoxy group, and Me represents a methyl group)
以下、合成例1~3により、1,3-ジビニル-1,3-ジフェニルジメチルジシロキサンの含有量が異なる、メチルフェニルビニルシロキサン単位を含有するシリコーンレジンA~Cを得た。 Hereinafter, according to Synthesis Examples 1 to 3, silicone resins A to C containing methylphenylvinylsiloxane units having different contents of 1,3-divinyl-1,3-diphenyldimethyldisiloxane were obtained.
[合成例1:シリコーンレジンA]
反応容器に、フェニルトリメトキシシラン 100g(0.5 mol)および1,3-ジビニル-1,3-ジフェニルジメチルジシロキサン 23.39g(0.075 mol)を投入し、予め混合した後、トリフルオロメタンスルホン酸 0.83 g( 5.5mmol)を投入し、撹拌下、水29.95  g( 1.6mol)を投入し、2時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。次いで、トルエン 22.1 gおよび水酸化ナトリウム0.4 g(10 mmol)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。室温まで冷却し、酢酸 0.95g(15.8 mmol)を投入し、中和反応を行った。生成した塩を濾別した後、透明なレジン溶液を得た。このレジンは、数平均分子量が1,500で、質量平均分子量が1,900であり、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が0.47質量%であった。
[Synthesis Example 1: Silicone Resin A]
Into a reaction vessel, 100 g (0.5 mol) of phenyltrimethoxysilane and 23.39 g (0.075 mol) of 1,3-divinyl-1,3-diphenyldimethyldisiloxane were added, mixed in advance, and then trifluoromethane. 0.83 g (5.5 mmol) of sulfonic acid was added, and 29.95 g (1.6 mol) of water was added with stirring, followed by heating under reflux for 2 hours. Then, heating and normal pressure distillation were performed until it became 85 degreeC. Subsequently, 22.1 g of toluene and 0.4 g (10 mmol) of sodium hydroxide were added, and heating and normal pressure distillation were performed until the reaction temperature reached 120 ° C., and the reaction was performed at this temperature for 6 hours. After cooling to room temperature, 0.95 g (15.8 mmol) of acetic acid was added to carry out a neutralization reaction. After the formed salt was filtered off, a clear resin solution was obtained. This resin has a number average molecular weight of 1,500, a mass average molecular weight of 1,900, and a content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane of 0.47 mass. %Met.
[合成例2:シリコーンレジンB]
合成例1で作成したレジンを、トルエンとメタノールの質量比1:2の混合溶媒により5回洗浄し、実質的に、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンを含有しない(=0.0質量%)レジンを得た。
[Synthesis Example 2: Silicone Resin B]
The resin prepared in Synthesis Example 1 was washed five times with a mixed solvent of toluene and methanol having a mass ratio of 1: 2, and substantially 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane was obtained. (= 0.0% by mass) of the resin was obtained.
[合成例3:シリコーンレジンC]
合成例1で、水酸化ナトリウムの代わりに、水酸化カリウム 0.488g(8.7mmol)を投入した以外は同様にして、透明なレジン溶液を得た。このレジンは、数平均分子量が、1,530で、質量平均分子量が1,830であり、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が5.90質量%であった。
[Synthesis Example 3: Silicone Resin C]
A transparent resin solution was obtained in the same manner as in Synthesis Example 1 except that 0.488 g (8.7 mmol) of potassium hydroxide was added instead of sodium hydroxide. This resin has a number average molecular weight of 1,530, a weight average molecular weight of 1,830, and a content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane of 5.90. It was mass%.
実施例1~4、比較例1~4において、以下に示す方法により、評価または組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量を定量した。その結果を表1および表2に示す。 In Examples 1 to 4 and Comparative Examples 1 to 4, the content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the evaluation or composition was quantified by the following method. . The results are shown in Tables 1 and 2.
[1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの検量方法]
予め質量を測定した試料に規定の質量の内部標準物質を加えてトルエンで希釈し、そのトルエン溶液をガスクロマトグラフィーでの内部標準物質とのピーク面積比から、試料中の質量%を計算した。
[Calibration method of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane]
An internal standard substance with a specified mass was added to a sample whose mass was measured in advance, diluted with toluene, and mass% in the sample was calculated from the peak area ratio of the toluene solution to the internal standard substance by gas chromatography.
[硬化物のShore-D] 
硬化物の硬さは、JIS  K  7215-1986「プラスチックのデュロメータ硬さ試験方法」に規定のタイプDデュロメータにより測定した。

[光半導体装置の耐熱衝撃性]
 硬化性シリコーン組成物を用いて、150℃、2時間加熱して、図1で示される光半導体装置を20個作製した。この光半導体装置を、-40℃を30分間保持後、2分以内に125℃まで昇温して30分間保持の工程を繰り返し、各サイクル数での光半導体装置の不点灯の個数を数えた。

[光半導体装置の発光効率]
 硬化性シリコーン組成物を用いて、100質量部に対して、(G)成分として、蛍光体 GAL530-L(INTEMATIX社製)50質量部とER6535(INTEMATIX社製)3.91質量部をデンタルミキサーで混合して蛍光体含有の硬化性シリコーン組成物を調製し、この硬化性シリコーン組成物を用いて、150℃、2時間加熱して、図1同様の光半導体装置を5個作製した。この光半導体装置に、400mAの電荷をかけ85℃、相対湿度85%の条件下で1000時間点灯し、光半導体装置の試験開始直後の発光効率を100%として、それぞれの発光効率の変化を測定し、その平均値を光半導体装置の発光効率とした。
[Hore Shore D]
The hardness of the cured product was measured with a type D durometer specified in JIS K 7215-1986 “Method for testing the durometer hardness of plastics”.

[Thermal shock resistance of optical semiconductor devices]
Using the curable silicone composition, it was heated at 150 ° C. for 2 hours to produce 20 optical semiconductor devices shown in FIG. This optical semiconductor device was held at −40 ° C. for 30 minutes, and then the temperature was raised to 125 ° C. within 2 minutes and held for 30 minutes. .

[Light emission efficiency of optical semiconductor device]
Using 100% by mass of the curable silicone composition, as a component (G), 50 parts by mass of phosphor GAL530-L (manufactured by INTERMATIX) and 3.91 parts by mass of ER6535 (manufactured by INTERMATIX) are used as a dental mixer. 1 to prepare a phosphor-containing curable silicone composition, and this curable silicone composition was heated at 150 ° C. for 2 hours to produce five optical semiconductor devices similar to FIG. This optical semiconductor device was charged with 400 mA and lit for 1000 hours under the conditions of 85 ° C. and 85% relative humidity, and the change in luminous efficiency was measured with the luminous efficiency immediately after starting the test of the optical semiconductor device as 100%. The average value was taken as the luminous efficiency of the optical semiconductor device.
[実施例1]
合成例2で調製したシリコーンレジンB 6.83質量部、粘度3,000mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖メチルフェニルポリシロキサン 0.82質量部、式:H(CH3)2SiO(C6H5)2SiOSi(CH3)2H で表されるオルガノトリシロキサン 2.10質量部(上記シリコーンレジン中と上記メチルフェニルポリシロキサン中のビニル基の合計1モルに対し、本成分中のケイ素原子結合水素原子が1となる量)、参考例1の接着付与剤0.25質量部、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサンを0.02質量部、および白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン溶液(白金を4.0質量%含有)0.00063質量部、1,3-ジビニル-1,3-ジフェニルジメチルジシロキサン0.01質量部を混合して、粘度7,700mPa・sの硬化性シリコーン組成物を調製した。この組成物を150℃1時間で硬化させたところ、Shore-D 73の硬化物を得た。硬化物の表面はタックがなく平滑であった。その特性を表1に表す。この硬化性シリコーン組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンは0.10質量%であった。
[Example 1]
6.83 parts by mass of silicone resin B prepared in Synthesis Example 2, 0.82 parts by mass of methylphenylpolysiloxane blocked with dimethylvinylsiloxy group-blocked dimethylvinylsiloxy group having a viscosity of 3,000 mPa · s, formula: H (CH 3) 2 SiO (C 6 H 5 ) Organotrisiloxane represented by 2SiOSi (CH3) 2H 2.10 parts by mass (the silicon atom-bonded hydrogen atom in this component is contained in 1 mol of the total vinyl group in the silicone resin and methylphenylpolysiloxane) 1), 0.25 parts by mass of the adhesion-imparting agent of Reference Example 1, 0.02 parts by mass of 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, And 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex Liquid (containing 4.0% by mass of platinum) 0.00063 parts by mass, 0.013 parts by mass of 1,3-divinyl-1,3-diphenyldimethyldisiloxane were mixed, and the viscosity was 7,700 mPa · s. A silicone composition was prepared. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 73 was obtained. The surface of the cured product was smooth with no tack. The characteristics are shown in Table 1. The amount of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 0.10% by mass.
[実施例2]
実施例1において、1,3-ジビニル-1,3-ジフェニルジメチルジシロキサンの添加量を0.10質量部とした他は、同様にして、粘度6,200mPa・sの硬化性シリコーン組成物を調製した。この組成物を150℃1時間で硬化させたところ、Shore-D 69の硬化物を得た。硬化物の表面はタックがなく平滑であった。その特性を表1に表す。この硬化性シリコーン組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンは0.99質量%であった。
[Example 2]
A curable silicone composition having a viscosity of 6,200 mPa · s was prepared in the same manner as in Example 1 except that the amount of 1,3-divinyl-1,3-diphenyldimethyldisiloxane added was 0.10 parts by mass. Prepared. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 69 was obtained. The surface of the cured product was smooth with no tack. The characteristics are shown in Table 1. The amount of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 0.99% by mass.
[実施例3]
実施例1において、1,3-ジビニル-1,3-ジフェニルジメチルジシロキサンの添加量を0.20質量部とした他は、同様にして、粘度5,000mPa・sの硬化性シリコーン組成物を調製した。この組成物を150℃1時間で硬化させたところ、Shore-D 64の硬化物を得た。硬化物の表面はタックがなく平滑であった。その特性を表1に表す。この硬化性シリコーン組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンは1.96質量%であった。
[Example 3]
In the same manner as in Example 1, except that the amount of 1,3-divinyl-1,3-diphenyldimethyldisiloxane added was 0.20 parts by mass, a curable silicone composition having a viscosity of 5,000 mPa · s was prepared. Prepared. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 64 was obtained. The surface of the cured product was smooth with no tack. The characteristics are shown in Table 1. The 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 1.96% by mass.
[比較例1]
実施例1において、1,3-ジビニル-1,3-ジフェニルジメチルジシロキサンを添加しない(=0.0質量部)とした他は、同様にして、粘度7,700mPa・sの硬化性シリコーン組成物を調製した。この組成物を150℃1時間で硬化させたところ、Shore-D 73の硬化物を得た。硬化物の表面はタックがなく平滑であった。その特性を表1に表す。 この硬化性シリコーン組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンは0.0質量%であった。
[Comparative Example 1]
In the same manner as in Example 1, except that 1,3-divinyl-1,3-diphenyldimethyldisiloxane was not added (= 0.0 parts by mass), a curable silicone composition having a viscosity of 7,700 mPa · s was used. A product was prepared. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 73 was obtained. The surface of the cured product was smooth with no tack. The characteristics are shown in Table 1. The 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 0.0% by mass.
[比較例2]
実施例1において、1,3-ジビニル-1,3-ジフェニルジメチルジシロキサンの添加量を0.50質量部とした他は、同様にして、粘度2300mPa・sの硬化性シリコーン組成物を調製した。この組成物を150℃1時間で硬化させたところ、Shore-D 44の硬化物を得た。硬化物の表面はタックがなく平滑であった。その特性を表1に表す。この硬化性シリコーン組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンは4.75質量%であった。
[Comparative Example 2]
A curable silicone composition having a viscosity of 2300 mPa · s was prepared in the same manner as in Example 1, except that the amount of 1,3-divinyl-1,3-diphenyldimethyldisiloxane added was 0.50 parts by mass. . When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 44 was obtained. The surface of the cured product was smooth with no tack. The characteristics are shown in Table 1. The 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 4.75% by mass.
[比較例3]
実施例1において、1,3-ジビニル-1,3-ジフェニルジメチルジシロキサンの添加量を0.91質量部とした他は、同様にして、粘度1100mPa・sの硬化性シリコーン組成物を調製した。この組成物を150℃1時間で硬化させたが、硬化物の表面は粘着性でShore-Dの測定はできなかった。その特性を表1に表す。この硬化性シリコーン組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンは8.33質量%であった。
[Comparative Example 3]
A curable silicone composition having a viscosity of 1100 mPa · s was prepared in the same manner as in Example 1, except that the amount of 1,3-divinyl-1,3-diphenyldimethyldisiloxane added was 0.91 part by mass. . This composition was cured at 150 ° C. for 1 hour, but the surface of the cured product was sticky and Shore-D measurement was not possible. The characteristics are shown in Table 1. The 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 8.33% by mass.
[実施例4]
1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が0.47質量%であり、ビニルメチルフェニルシロキシ基を含有するシリコーンレジン 5.95質量部、粘度3,000mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖メチルフェニルポリシロキサン 1.80質量部、式:H(CH3)2SiO(C6H5)2SiOSi(CH3)2H で表されるオルガノトリシロキサン 1.98質量部(上記シリコーンレジン中と上記メチルフェニルポリシロキサン中のビニル基の合計1モルに対し、本成分中のケイ素原子結合水素原子が1となる量)、参考例1の接着付与剤0.25質量部、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサンを0.02質量部、および白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン溶液(白金を4.0質量%含有)0.00063質量部を混合して、粘度2300mPa・sの硬化性シリコーン組成物を調製した。この組成物を150℃-1時間で硬化させたところ、Shore-D 53の硬化物を得た。硬化物の表面はタックがなく平滑であった。この硬化性シリコーン組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量は0.28質量%であった。前記の方法で当該硬化物を用いた光半導体装置の発光効率を評価したところ、566時間および997時間経過後の発光効率は、各々99.07%、96.13%であった。
[Example 4]
The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is 0.47% by mass, 5.95 parts by mass of a silicone resin containing a vinylmethylphenylsiloxy group, a viscosity of 3, 000 mPa · s molecular chain both ends dimethylvinylsiloxy group-blocked methylphenylpolysiloxane 1.80 parts by mass, organotrisiloxane represented by the formula: H (CH 3) 2 SiO (C 6 H 5) 2 SiOS i (CH 3) 2 H 1.98 parts by mass (The amount of silicon atom-bonded hydrogen atoms in this component is 1 with respect to a total of 1 mol of vinyl groups in the silicone resin and methylphenylpolysiloxane), 0.25 part by mass of the adhesion-imparting agent of Reference Example 1 0.02, part by weight of 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane and platinum-1,3-divinyl-1 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane solution of 1,3,3-tetramethyldisiloxane complex (containing 4.0% by mass of platinum) 00063 parts by mass were mixed to prepare a curable silicone composition having a viscosity of 2300 mPa · s. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 53 was obtained. The surface of the cured product was smooth with no tack. The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in this curable silicone composition was 0.28% by mass. When the luminous efficiency of the optical semiconductor device using the cured product was evaluated by the method described above, the luminous efficiency after 566 hours and 997 hours were 99.07% and 96.13%, respectively.
[比較例4]
1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が5.90質量%であり、ビニルメチルフェニルシロキシ基を含有するシリコーンレジン 5.95質量部、粘度3,000mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖メチルフェニルポリシロキサン 1.80質量部、式:H(CH3)2SiO(C6H5)2SiOSi(CH3)2H で表されるオルガノトリシロキサン 1.98質量部(上記シリコーンレジン中と上記メチルフェニルポリシロキサン中のビニル基の合計1モルに対し、本成分中のケイ素原子結合水素原子が1となる量)、参考例1の接着付与剤0.25質量部、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサンを0.02質量部、および白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン溶液(白金を4.0質量%含有)0.00063質量部を混合して、粘度2200mPa・sの硬化性シリコーン組成物を調製した。この組成物を150℃1時間で硬化させたところ、Shore-D 52の硬化物を得た。硬化物の表面はタックがなく平滑であった。この硬化性シリコーン組成物中の1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量は3.51質量%であった。前記の方法で当該硬化物を用いた光半導体装置の発光効率を評価したところ、566時間および997時間経過後の発光効率は、各々95.47%、91.48%であった。
[Comparative Example 4]
The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is 5.90% by mass, a silicone resin containing a vinylmethylphenylsiloxy group, 5.95 parts by mass, a viscosity of 3, 000 mPa · s molecular chain both ends dimethylvinylsiloxy group-blocked methylphenylpolysiloxane 1.80 parts by mass, organotrisiloxane represented by the formula: H (CH 3) 2 SiO (C 6 H 5) 2 SiOS i (CH 3) 2 H 1.98 parts by mass (The amount of silicon atom-bonded hydrogen atoms in this component is 1 with respect to a total of 1 mol of vinyl groups in the silicone resin and methylphenylpolysiloxane), 0.25 part by mass of the adhesion-imparting agent of Reference Example 1 0.02, part by weight of 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane and platinum-1,3-divinyl-1 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane solution of 1,3,3-tetramethyldisiloxane complex (containing 4.0% by mass of platinum) 00063 parts by mass were mixed to prepare a curable silicone composition having a viscosity of 2200 mPa · s. When this composition was cured at 150 ° C. for 1 hour, a cured product of Shore-D 52 was obtained. The surface of the cured product was smooth with no tack. The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the curable silicone composition was 3.51% by mass. When the luminous efficiency of the optical semiconductor device using the cured product was evaluated by the above-described method, the luminous efficiency after 566 hours and 997 hours was 95.47% and 91.48%, respectively.
[実施例・比較例の総括]
実施例1~3(表1)に示すとおり、メチルフェニルビニルシロキサン単位を含有するシリコーンレジンを含有する硬化性シリコーン組成物であって、1,3-ジビニル-1,3-ジフェニルジメチルジシロキサンの含有量が0.10質量%、0.99質量%、または1.96質量%であるものは、401サイクル時点でも不良個数が2個以下であり、優れた耐熱衝撃性を示す。一方、比較例1~3(表1)に示すとおり、同様の硬化性シリコーン組成物であって、1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が0.0質量%、4.57質量%であるものは401サイクル時点でも不良個数が8個以上となり、耐熱衝撃性が明らかに劣る。また、同含有量が、8.33質量%であるものは、硬化性が明確に劣る。
[Overview of Examples and Comparative Examples]
As shown in Examples 1 to 3 (Table 1), a curable silicone composition containing a silicone resin containing a methylphenylvinylsiloxane unit, comprising 1,3-divinyl-1,3-diphenyldimethyldisiloxane When the content is 0.10% by mass, 0.99% by mass, or 1.96% by mass, the number of defects is 2 or less even at 401 cycles, and excellent thermal shock resistance is exhibited. On the other hand, as shown in Comparative Examples 1 to 3 (Table 1), the same curable silicone composition having a 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane content of 0 In the case of 0.0 mass% and 4.57 mass%, the number of defects becomes 8 or more even at 401 cycles, and the thermal shock resistance is clearly inferior. In addition, when the content is 8.33% by mass, the curability is clearly inferior.
同様に、実施例4の硬化性シリコーン組成物(1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が0.28質量%)を用いた光半導体装置は、比較例4(同含有量3.51質量%)に比較して、566時間および997時間経過後の発光効率に優れるものである。 Similarly, an optical semiconductor device using the curable silicone composition of Example 4 (content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is 0.28% by mass) Compared to Comparative Example 4 (the same content of 3.51% by mass), the light emission efficiency after 566 hours and 997 hours is excellent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 本発明の硬化性シリコーン組成物は、電気・電子用の接着剤、ポッティング剤、保護剤、コーティング剤、アンダーフィル剤として使用することができ、特に、高い反応性を有し、ガス透過性が低く、かつ、耐熱衝撃性の高い硬化物を形成できるので、発光ダイオード(LED)等の光半導体装置における光半導体素子の封止材あるいは保護コーティング材として好適であり、高い発光効率が持続する光半導体装置等を提供することができる。 The curable silicone composition of the present invention can be used as an electric / electronic adhesive, potting agent, protective agent, coating agent, and underfill agent, and has particularly high reactivity and gas permeability. Since it can form a cured product that is low and has high thermal shock resistance, it is suitable as a sealing material or protective coating material for optical semiconductor elements in optical semiconductor devices such as light emitting diodes (LEDs), and light that maintains high luminous efficiency. A semiconductor device or the like can be provided.
 1 光半導体素子
 2 リードフレーム
 3 リードフレーム
 4 ボンディングワイヤ
 5 枠材
 6 硬化性シリコーン組成物の硬化物
DESCRIPTION OF SYMBOLS 1 Optical semiconductor element 2 Lead frame 3 Lead frame 4 Bonding wire 5 Frame material 6 Hardened | cured material of curable silicone composition

Claims (5)

  1. アルキルフェニルアルケニルシロキサン単位(RSiO1/2;Rは炭素数1~12のアルキル基;Rはフェニル基;Rは炭素数2~12のアルケニル基である)を有するオルガノポリシロキサンを含有してなり、かつ、
    組成物全体に対して1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が、0.0質量%よりも大きく、3.0質量%未満である、硬化性シリコーン組成物。
    An alkylphenylalkenylsiloxane unit (R 2 R 3 R 4 SiO 1/2 ; R 2 is an alkyl group having 1 to 12 carbon atoms; R 3 is a phenyl group; R 4 is an alkenyl group having 2 to 12 carbon atoms) Comprising an organopolysiloxane having, and
    Curability in which the content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane is greater than 0.0% by mass and less than 3.0% by mass with respect to the entire composition Silicone composition.
  2. (A)平均単位式:
    (R SiO1/2)(RSiO1/2)(R SiO2/2)(RSiO3/2)
    (式中、Rは同じかまたは異なる、炭素数1~12のアルキル基もしくは炭素数2~12のアルケニル基、但し、一分子中の少なくとも一つのRは炭素数2~12のアルケニル基;Rは炭素数1~12のアルキル基;Rはフェニル基;Rは炭素数2~12のアルケニル基;Rは炭素数2~12のアルケニル基;Rは同じかまたは異なる、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、もしくはフェニル基;a、b、c、およびdは、それぞれ、0.00≦a≦0.45、0.01≦b≦0.45、0≦c≦0.7、0.1≦d<0.9、かつa+b+c+d=1を満たす数である。)
    で表されるオルガノポリシロキサン、
    (B)一分子中に少なくとも2個のアルケニル基を有し、ケイ素原子結合水素原子を有さない直鎖状オルガノポリシロキサン(本組成物に対して、0~70質量%)、
    (C)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン{(A)成分と(B)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.1~5モルとなる量}、および
    (D)有効量のヒドロシリル化反応用触媒
    を含有してなり、かつ、
    組成物全体に対して1,3-ジビニル-1,3-ジフェニル-1,3-ジメチルジシロキサンの含有量が、0.05質量%~2.50質量%の範囲である、請求項1に記載の硬化性シリコーン組成物。
    (A) Average unit formula:
    (R 1 3 SiO 1/2 ) a (R 2 R 3 R 4 SiO 1/2 ) b (R 5 2 SiO 2/2 ) c (R 3 SiO 3/2 ) d
    (Wherein R 1 is the same or different, an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms, provided that at least one R 1 in one molecule is an alkenyl group having 2 to 12 carbon atoms) R 2 is an alkyl group having 1 to 12 carbon atoms; R 3 is a phenyl group; R 4 is an alkenyl group having 2 to 12 carbon atoms; R 4 is an alkenyl group having 2 to 12 carbon atoms; R 5 is the same or different; , An alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group; a, b, c, and d are 0.00 ≦ a ≦ 0.45 and 0.01 ≦ b, respectively. ≦ 0.45, 0 ≦ c ≦ 0.7, 0.1 ≦ d <0.9, and a + b + c + d = 1.)
    An organopolysiloxane represented by
    (B) a linear organopolysiloxane having at least two alkenyl groups in one molecule and having no silicon-bonded hydrogen atoms (0 to 70% by mass based on the present composition),
    (C) Organopolysiloxane having at least two silicon atom-bonded hydrogen atoms in one molecule {the silicon atom bond in this component with respect to a total of 1 mol of the alkenyl groups in component (A) and component (B) An amount of hydrogen atoms from 0.1 to 5 moles}, and (D) an effective amount of a catalyst for hydrosilylation reaction, and
    The content of 1,3-divinyl-1,3-diphenyl-1,3-dimethyldisiloxane in the whole composition is in the range of 0.05% to 2.50% by weight. The curable silicone composition described.
  3. 更に、(E)接着付与剤{上記(A)成分~(D)成分の合計100質量部に対して、0.01~10質量部}を含む、請求項1または2記載の硬化性シリコーン組成物。 3. The curable silicone composition according to claim 1, further comprising (E) an adhesion-imparting agent {0.01 to 10 parts by mass with respect to 100 parts by mass in total of the components (A) to (D)]. object.
  4. 請求項1乃至3のいずれか1項記載の硬化性シリコーン組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the curable silicone composition of any one of Claims 1 thru | or 3.
  5. 請求項1乃至3のいずれか1項記載の硬化性シリコーン組成物の硬化物で光半導体素子が封止された光半導体装置。 An optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable silicone composition according to claim 1.
PCT/JP2017/039673 2016-11-11 2017-11-02 Curable silicone composition and optical semiconductor device using same WO2018088316A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780080034.8A CN110088207B (en) 2016-11-11 2017-11-02 Curable silicone composition and optical semiconductor device using the same
JP2018550171A JPWO2018088316A1 (en) 2016-11-11 2017-11-02 Curable silicone composition and optical semiconductor device using the same
KR1020197016211A KR102498396B1 (en) 2016-11-11 2017-11-02 Curable silicone composition and optical semiconductor device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-220218 2016-11-11
JP2016220218 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018088316A1 true WO2018088316A1 (en) 2018-05-17

Family

ID=62110666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039673 WO2018088316A1 (en) 2016-11-11 2017-11-02 Curable silicone composition and optical semiconductor device using same

Country Status (5)

Country Link
JP (1) JPWO2018088316A1 (en)
KR (1) KR102498396B1 (en)
CN (1) CN110088207B (en)
TW (1) TWI761386B (en)
WO (1) WO2018088316A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534295A (en) * 2018-08-17 2021-12-09 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Crosslinkable organosiloxane composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549098A (en) * 2021-07-09 2021-10-26 陕西德信祥能源科技有限公司 Preparation method of dimethyldivinyldiphenylsiloxane

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299873A (en) * 1988-05-26 1989-12-04 Toray Dow Corning Silicone Co Ltd Organopolysiloxane composition
JPH0967440A (en) * 1995-08-31 1997-03-11 Toray Dow Corning Silicone Co Ltd Fine particulate catalyst for hydrosilylating reaction and thermosetting silicone composition containing the same
JPH111619A (en) * 1997-06-12 1999-01-06 Shin Etsu Chem Co Ltd Addition curing type silicone resin composition
JP2011517707A (en) * 2008-03-04 2011-06-16 ダウ・コーニング・コーポレイション Silicone composition, silicone adhesive, painted substrate and laminated substrate
JP2012052045A (en) * 2010-09-02 2012-03-15 Shin-Etsu Chemical Co Ltd Low-gas permeability silicone resin composition, and optical semiconductor device
JP2012052035A (en) * 2010-09-01 2012-03-15 Shin-Etsu Chemical Co Ltd Addition-curable silicone composition, optical element encapsulating material comprising the composition, and semiconductor device in which optical element is encapsulated with cured product of the optical element encapsulating material
JP2013544949A (en) * 2010-12-08 2013-12-19 ダウ コーニング コーポレーション Siloxane composition comprising titanium dioxide nanoparticles suitable for forming an encapsulant
JP2014505748A (en) * 2010-12-08 2014-03-06 ダウ コーニング コーポレーション Siloxane composition comprising metal oxide nanoparticles suitable for making an encapsulant
JP2014506263A (en) * 2010-12-08 2014-03-13 ダウ コーニング コーポレーション Siloxane composition suitable for making an encapsulant
JP2016079320A (en) * 2014-10-20 2016-05-16 信越化学工業株式会社 Silicone resin composition for encapsulating optical semiconductor element, and optical semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012663B3 (en) * 2009-03-13 2010-09-16 Uhde Gmbh Process and device for the uniform production of steam from the waste heat of an alkane dehydrogenation
JP6084808B2 (en) 2012-10-24 2017-02-22 東レ・ダウコーニング株式会社 Organopolysiloxane, curable silicone composition, cured product thereof, and optical semiconductor device
JP6105966B2 (en) * 2013-02-15 2017-03-29 東レ・ダウコーニング株式会社 Curable silicone composition, cured product thereof, and optical semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299873A (en) * 1988-05-26 1989-12-04 Toray Dow Corning Silicone Co Ltd Organopolysiloxane composition
JPH0967440A (en) * 1995-08-31 1997-03-11 Toray Dow Corning Silicone Co Ltd Fine particulate catalyst for hydrosilylating reaction and thermosetting silicone composition containing the same
JPH111619A (en) * 1997-06-12 1999-01-06 Shin Etsu Chem Co Ltd Addition curing type silicone resin composition
JP2011517707A (en) * 2008-03-04 2011-06-16 ダウ・コーニング・コーポレイション Silicone composition, silicone adhesive, painted substrate and laminated substrate
JP2012052035A (en) * 2010-09-01 2012-03-15 Shin-Etsu Chemical Co Ltd Addition-curable silicone composition, optical element encapsulating material comprising the composition, and semiconductor device in which optical element is encapsulated with cured product of the optical element encapsulating material
JP2012052045A (en) * 2010-09-02 2012-03-15 Shin-Etsu Chemical Co Ltd Low-gas permeability silicone resin composition, and optical semiconductor device
JP2013544949A (en) * 2010-12-08 2013-12-19 ダウ コーニング コーポレーション Siloxane composition comprising titanium dioxide nanoparticles suitable for forming an encapsulant
JP2014505748A (en) * 2010-12-08 2014-03-06 ダウ コーニング コーポレーション Siloxane composition comprising metal oxide nanoparticles suitable for making an encapsulant
JP2014506263A (en) * 2010-12-08 2014-03-13 ダウ コーニング コーポレーション Siloxane composition suitable for making an encapsulant
JP2016079320A (en) * 2014-10-20 2016-05-16 信越化学工業株式会社 Silicone resin composition for encapsulating optical semiconductor element, and optical semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534295A (en) * 2018-08-17 2021-12-09 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Crosslinkable organosiloxane composition
JP7203196B2 (en) 2018-08-17 2023-01-12 ワッカー ケミー アクチエンゲゼルシャフト Crosslinkable organosiloxane composition

Also Published As

Publication number Publication date
KR102498396B1 (en) 2023-02-13
CN110088207A (en) 2019-08-02
JPWO2018088316A1 (en) 2019-10-03
CN110088207B (en) 2022-10-14
KR20190078625A (en) 2019-07-04
TWI761386B (en) 2022-04-21
TW201829629A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6081774B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JP6084808B2 (en) Organopolysiloxane, curable silicone composition, cured product thereof, and optical semiconductor device
JP6460534B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
WO2013005858A1 (en) Curable silicon composition, cured product thereof, and optical semiconductor device
JP6355210B2 (en) Curable silicone composition for semiconductor device and semiconductor element sealing
US9683084B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JPWO2018062009A1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
WO2018088316A1 (en) Curable silicone composition and optical semiconductor device using same
WO2019026754A1 (en) Curable silicone composition and optical semiconductor device
JPWO2019026755A1 (en) Curable silicone composition and optical semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197016211

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17870086

Country of ref document: EP

Kind code of ref document: A1