WO2018062508A1 - Object holding device, exposure device, flat-panel display manufacturing method, device manufacturing method, and object holding method - Google Patents

Object holding device, exposure device, flat-panel display manufacturing method, device manufacturing method, and object holding method Download PDF

Info

Publication number
WO2018062508A1
WO2018062508A1 PCT/JP2017/035547 JP2017035547W WO2018062508A1 WO 2018062508 A1 WO2018062508 A1 WO 2018062508A1 JP 2017035547 W JP2017035547 W JP 2017035547W WO 2018062508 A1 WO2018062508 A1 WO 2018062508A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding
chuck
substrate
movement stage
holding surface
Prior art date
Application number
PCT/JP2017/035547
Other languages
French (fr)
Japanese (ja)
Inventor
青木 保夫
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020197010633A priority Critical patent/KR102306204B1/en
Priority to CN201780060669.1A priority patent/CN109791369B/en
Priority to JP2018542946A priority patent/JPWO2018062508A1/en
Priority to KR1020217030227A priority patent/KR20210118252A/en
Publication of WO2018062508A1 publication Critical patent/WO2018062508A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • G03F7/70708Chucks, e.g. chucking or un-chucking operations or structural details being electrostatic; Electrostatically deformable vacuum chucks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention relates to an object holding apparatus, an exposure apparatus, a flat panel display manufacturing method, a device manufacturing method, and an object holding method, and more particularly, an object holding apparatus and method for holding an object, and the object holding apparatus. And a manufacturing method of a flat panel display or a device using the exposure apparatus.
  • a lithography process for manufacturing an electronic device such as a liquid crystal display element, a semiconductor element (integrated circuit, etc.), a pattern formed on a mask or reticle (hereinafter collectively referred to as “mask”) is used as an energy beam.
  • An exposure apparatus is used for transferring to a glass plate or a wafer (hereinafter collectively referred to as “substrate”) using the above.
  • the substrate holding device is required to hold the substrate with high flatness.
  • the present invention is an object holding device for holding an object, the first holding surface for holding the object, and the first holding surface.
  • a plurality of first members each having a first portion and a second portion provided at different positions on the back surface side, and a second holding surface for holding the first member, the first portion and the The second part of the second part is provided between the second member fixed to the second holding surface, the base part, the base part and the second member, and the second member is And a conduit portion having a conduit that allows gas to pass through and communicates with the first portion of the first member, and the first member uses the gas that passes through the first portion.
  • an exposure apparatus comprising: the object holding device of the present invention; and a pattern forming device that forms a predetermined pattern on the object held by the object holding device using an energy beam, Is provided.
  • a flat panel display manufacturing method including exposing the substrate using the exposure apparatus of the present invention and developing the exposed substrate.
  • a device manufacturing method including exposing the object using the exposure apparatus of the present invention and developing the exposed object.
  • an object holding method for holding an object, the first holding surface for holding the object, the first portion provided at different positions on the back side of the first holding surface, and Holding the object using a plurality of first members each having a second part, and comprising a second holding surface for holding the first member, wherein the first part and the second part
  • the second part is provided between the base member and the second member by holding the first member using a second member fixed to the second holding surface; Passing the gas using a conduit portion having a conduit that allows the gas to pass through the member and communicates with the first portion of the first member, and uses the plurality of first members. Holding the object using the gas passing through the first portion It comprises holding the body, to release the fixation with respect to the second holding surface of the second portion, wherein the removing the first member from the second member, the object holding method comprising, are provided.
  • FIG. 3 is an exploded view of the fine movement stage of FIG. 2. It is a top view of the fine movement stage of FIG. 5 is a cross-sectional view taken along line AA in FIG. 4. FIG. 5 is a cross-sectional view taken along line BB in FIG. 4. It is the top view which removed a part of member from the fine movement stage. It is a figure for demonstrating the assembly procedure of a fine movement stage.
  • FIG. (1) for demonstrating the replacement
  • FIG. (2) for demonstrating the replacement
  • FIG. (3) for demonstrating the replacement
  • FIG. (4) for demonstrating the replacement
  • FIG. (4) shows the replacement
  • FIG. (4) for demonstrating the replacement
  • FIG. 1 schematically shows a configuration of an exposure apparatus (here, a liquid crystal exposure apparatus 10) according to an embodiment.
  • the liquid crystal exposure apparatus 10 is a so-called scanner, a step-and-scan projection exposure apparatus that uses an object (here, the glass substrate P) as an exposure target.
  • a glass substrate P (hereinafter simply referred to as “substrate P”) is formed in a rectangular shape (planar shape) in plan view, and is used for a liquid crystal display device (flat panel display) or the like.
  • the liquid crystal exposure apparatus 10 includes an illumination system 12, a projection optical system 14, a substrate stage apparatus 20 that holds a substrate P on which a resist (sensitive agent) is applied on the surface (the surface facing the + Z side in FIG. 1), and these It has a control system.
  • a first direction here, the X-axis direction
  • the direction orthogonal to the X-axis in the horizontal plane is the second direction.
  • the Y-axis direction the direction orthogonal to the X-axis and the Y-axis is the Z-axis direction (the direction parallel to the optical axis direction of the projection optical system 14), and the rotational directions around the X-axis, Y-axis, and Z-axis Are described as ⁇ x, ⁇ y, and ⁇ z directions, respectively. Further, description will be made assuming that the positions in the X-axis, Y-axis, and Z-axis directions are the X position, the Y position, and the Z position, respectively.
  • the illumination system 12 is configured in the same manner as the illumination system disclosed in US Pat. No. 5,729,331 and the like, and irradiates the mask M with exposure illumination light (illumination light) IL.
  • illumination light IL light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), and h-line (wavelength 405 nm) (or combined light of the i-line, g-line, and h-line) is used.
  • a transmissive photomask is used as the mask M.
  • a predetermined circuit pattern is formed on the lower surface of the mask M (the surface facing the -Z side in FIG. 1).
  • the mask M is driven with a predetermined long stroke in the scanning direction (X-axis direction) by a mask stage device (not shown).
  • the projection optical system 14 is disposed below the mask M.
  • the projection optical system 14 is a so-called multi-lens projection optical system having the same configuration as the projection optical system disclosed in US Pat. No. 6,552,775 and the like. Are provided with a plurality of lens modules.
  • the illumination area on the mask M when the illumination area on the mask M is illuminated by the illumination light IL from the illumination system 12, the illumination area IL passes through (transmits) the mask M via the projection optical system 14.
  • a projection image (partial upright image) of the circuit pattern of the mask M is formed in an irradiation area (exposure area) of illumination light conjugate to the illumination area on the substrate P. Then, the mask M moves relative to the illumination area (illumination light IL) in the scanning direction, and the substrate P moves relative to the exposure area (illumination light IL) in the scanning direction. Scanning exposure of one shot area is performed, and the pattern formed on the mask M is transferred to the shot area.
  • the substrate stage apparatus 20 is an apparatus for controlling the position of the substrate P with respect to the projection optical system 14 (illumination light IL) with high accuracy, and the substrate P is aligned along the horizontal plane (X-axis direction and Y-axis direction). While driving with a predetermined long stroke, it is slightly driven in the direction of 6 degrees of freedom.
  • the configuration of the substrate stage apparatus (excluding the fine movement stage 22) used in the liquid crystal exposure apparatus 10 is not particularly limited, but in this embodiment, it is disclosed in, for example, US Patent Application Publication No. 2012/0057140.
  • a so-called coarse / fine movement substrate stage apparatus 20 including a gantry type two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage is used.
  • the substrate stage device 20 includes a fine movement stage 22, a Y coarse movement stage 24, an X coarse movement stage 26, a self-weight support device 28, and the like.
  • the fine movement stage 22 is formed in a plate shape (or box shape) having a rectangular shape in plan view (see FIG. 2), and the substrate P is placed on the upper surface (substrate placement surface).
  • the dimensions of the upper surface of fine movement stage 22 in the X-axis and Y-axis directions are set to be approximately the same as substrate P (actually somewhat shorter).
  • the substrate P is vacuum-sucked and held on the fine movement stage 22 in a state of being placed on the upper surface of the fine movement stage 22, so that almost the entire surface (the entire surface) is flattened along the upper surface of the fine movement stage 22. Therefore, it can be said that the fine movement stage 22 of this embodiment is a member having the same function as the substrate holder provided in the conventional substrate stage apparatus.
  • the detailed configuration of fine movement stage 22 will be described later.
  • the Y coarse movement stage 24 is arranged below fine movement stage 22 ( ⁇ Z side).
  • the Y coarse movement stage 24 has a pair of X beams 30a.
  • the X beam 30a is made of a member having a rectangular YZ section extending in the X-axis direction.
  • the pair of X beams 30a are arranged in parallel at a predetermined interval in the Y-axis direction.
  • the Y coarse movement stage 24 including a pair of X beams 30a is driven with a predetermined long stroke in the Y-axis direction by a Y actuator (not shown).
  • the X coarse movement stage 26 is disposed above (+ Z side) the Y coarse movement stage 24 and below the fine movement stage 22 (between the fine movement stage 22 and the Y coarse movement stage 24).
  • the X coarse movement stage 26 is a plate-like member having a rectangular shape in plan view, and is placed on the pair of X beams 30a via a plurality of mechanical linear guide devices 30b.
  • the X coarse movement stage 26 is movable with respect to the Y coarse movement stage 24 in the X-axis direction, whereas the X coarse movement stage 26 moves integrally with the Y coarse movement stage 24 in the Y-axis direction.
  • the X coarse movement stage 26 is driven with a predetermined long stroke in the X-axis direction by a plurality of X actuators 30c with respect to the Y coarse movement stage 24.
  • a linear motor is illustrated as the X actuator 30c, but the type of the X actuator is not particularly limited.
  • the type of Y actuator for driving the Y coarse movement stage 24 is not particularly limited.
  • a Y stator 32 a is attached to the upper surface of the X coarse movement stage 26.
  • the Y stator 32a together with the Y mover 32b attached to the side surface of the fine movement stage 22, is a Y linear motor for applying thrust in the Y-axis direction to the fine movement stage 22 (in this embodiment, a voice coil motor).
  • a Y linear motor for applying thrust in the Y-axis direction to the fine movement stage 22 (in this embodiment, a voice coil motor).
  • a plurality of Y linear motors are arranged apart from each other in the X-axis direction.
  • the substrate stage device 20 also has a plurality of X linear motors for applying thrust in the X-axis direction to the fine movement stage 22.
  • the configuration of the X linear motor is the same as that of the Y linear motor except for the arrangement. That is, an X stator is attached to the upper surface of the X coarse movement stage 26, and an X mover is attached to the side surface of the fine movement stage 22
  • the main controller (not shown) is configured so that the relative position between the fine movement stage 22 and the X coarse movement stage 26 falls within a predetermined range when the X coarse movement stage 26 moves in the X axis and / or Y axis direction.
  • the plurality of X and Y linear motors thrust in the three-degree-of-freedom direction (X axis, Y axis, and ⁇ z directions) in the horizontal plane is applied to the fine movement stage 22 and the plurality of X and Y linear motors are used. Then, the fine movement stage 22 is slightly driven with respect to the X coarse movement stage 26 in the direction of three degrees of freedom in the horizontal plane.
  • the position information of the fine movement stage 22 in the three-degree-of-freedom direction in the horizontal plane is obtained by a laser interferometer (not shown) using a bar mirror 34b fixed to the fine movement stage 22 via a mirror base 34a.
  • a laser interferometer (not shown) using a bar mirror 34b fixed to the fine movement stage 22 via a mirror base 34a.
  • the Y bar mirror is fixed to the ⁇ Y side side surface of fine movement stage 22, and on the ⁇ X side side surface of fine movement stage 22.
  • An X bar mirror extending in the Y-axis direction is fixed.
  • a measurement system using a laser interferometer is disclosed in, for example, US Patent Application Publication No. 2010/0018950, and the like, and will not be described.
  • the positional information of the fine movement stage 22 in the direction of three degrees of freedom in the horizontal plane may be obtained using an encoder system having a head and a scale instead of an interferometer.
  • a Z stator 36 a is attached to the upper surface of the X coarse movement stage 26.
  • the Z stator 36a is a Z linear motor (in this embodiment, a voice coil motor) for applying thrust in the Z-axis direction to the fine movement stage 22 together with the Z movable element 36b attached to the lower surface of the fine movement stage 22.
  • the Z linear motors are arranged at least at three locations that are not on the same straight line.
  • a main controller uses a plurality of Z linear motors to slightly drive the fine movement stage 22 in the Z tilt direction (Z-axis, ⁇ x, and ⁇ y directions) with respect to the X coarse movement stage 26.
  • the position information of the fine movement stage 22 in the Z tilt direction is obtained by the Z sensor 38a attached to the lower surface of the fine movement stage 22 using the target 38b attached to the self-weight support device 28.
  • the Z sensors 38 a (and corresponding targets 38 b) are arranged at least at three locations that are not on the same straight line.
  • a measurement system using a plurality of Z sensors 38a is disclosed in, for example, US Patent Application Publication No. 2010/0018950 and the like, and will not be described.
  • the own weight support device 28 includes a weight cancellation device 40a that supports the weight of the fine movement stage 22 from below, and a Y step guide 42a that supports the weight cancellation device 40a from below.
  • the weight cancellation device 40a is inserted into an opening formed in the X coarse movement stage 26.
  • the weight canceling device 40a is mechanically connected to the X coarse movement stage 26 via a plurality of coupling members 40b, and moves in the X axis and / or Y axis direction integrally with the X coarse movement stage 26. To do.
  • the weight canceling device 40a supports the self-weight of the fine movement stage 22 through the leveling device 44 from below without contact. As a result, the relative movement of the fine movement stage 22 in the X-axis, Y-axis, and ⁇ z directions with respect to the weight cancellation device 40a and the swinging relative to the horizontal plane (relative movement in the ⁇ x and ⁇ y directions) are allowed.
  • the configuration and function of the weight cancellation device 40a are disclosed in, for example, US Patent Application Publication No. 2010/0018950 and the like, and will not be described.
  • the Y step guide 42a is composed of a member extending in parallel with the X axis, and is disposed between the pair of X beams 30a.
  • the weight canceling device 40a is placed on the Y step guide 42a via an air bearing 40c.
  • the Y step guide 42a is placed on the gantry 16 via a mechanical linear guide device 42b.
  • the Y step guide 42a is movable in the Y axis direction with respect to the gantry 16, whereas the Y step guide 42a is relatively moved in the X axis direction. Limited.
  • the gantry 16 is a part of a member that supports the projection optical system 14 and the like, and is separated from the Y coarse movement stage 24 and the X coarse movement stage 26 in a vibrational manner.
  • the Y step guide 42a is mechanically connected to the pair of X beams 30a via a plurality of connecting members 42c.
  • the Y step guide 42 a is pulled by the Y coarse movement stage 24 to move integrally with the Y coarse movement stage 24 in the Y axis direction.
  • the fine movement stage 22 includes a surface plate part 50, a pipe line part 60, a base part 72, and a chuck part 74.
  • the surface plate portion 50 is formed in a rectangular box shape in plan view, and the duct portion 60 and the holder portion 70 are each formed in a plate shape in rectangular shape in plan view.
  • the fine movement stage 22 has a pipe section 60 disposed (stacked) on the surface plate section 50, a base section 72 disposed (stacked) on the pipe section 60, and a chuck section 74 disposed on the base section 72 ( 4 layer structure as a whole.
  • a surface plate The dimension of the portion 50 in the thickness direction (Z-axis direction) is set larger (thicker) than the pipe line portion 60, the base portion 72, and the chuck portion 74.
  • the dimension in the thickness direction (Z-axis direction) of the surface plate unit 50, the pipe line unit 60, and the base unit 72 is set larger (thicker) than the chuck unit 74.
  • the combined weight of the surface plate part 50, the pipe line part 60, and the base part 72 is heavier than the chuck part 74, for example, about 2.5 times the weight.
  • the surface plate part 50 which is the lowest layer is a part which becomes the base of the fine movement stage 22.
  • the surface plate portion 50 includes a lower surface portion 52, an upper surface portion 54, an outer wall portion 56, and a honeycomb structure 58.
  • Each of the lower surface portion 52 and the upper surface portion 54 is a plate member having a rectangular shape in plan view and formed of CFRP (carbon-fiber-reinforced plastic).
  • the outer wall portion 56 is a frame member having a rectangular shape in plan view, and is formed of an aluminum alloy or CFRP.
  • a honeycomb structure 58 is filled in the outer wall portion 56.
  • the honeycomb structure 58 is made of an aluminum alloy. In FIG. 3, only a part of the honeycomb structure is illustrated from the viewpoint of avoiding the confusion of the drawings, but actually, the honeycomb structure 58 is disposed inside the outer wall portion 56 with almost no gap. (See FIG. 5 and FIG. 6).
  • the upper surface portion 54 is bonded to the upper surface
  • the lower surface portion 52 is bonded to the lower surface.
  • the surface plate part 50 is made into what is called a sandwich structure, is lightweight and highly rigid (especially highly rigid in the thickness direction), and is easy to produce.
  • the material which forms each element which comprises the surface plate part 50 is not restricted to what was demonstrated above, It can change suitably.
  • the fastening structure of the lower surface portion 52, the upper surface portion 54, and the outer wall portion 56 is not limited to adhesion.
  • An opening 52 a is formed at the center of the lower surface portion 52.
  • a recess (depression) is formed in a portion corresponding to the opening 52a (see FIGS. 5 and 6), and the above-described leveling device 44 is fitted in the recess.
  • the configuration of the leveling device 44 is not particularly limited as long as the leveling device 44 has a function of swinging the fine movement stage 22 with respect to a horizontal plane (in the ⁇ x and ⁇ y directions). Therefore, although the spherical bearing device is shown in FIG. 1, the leveling device 44 is not limited to this, and may be an elastic hinge device as shown in FIGS. A pseudo-spherical bearing device as disclosed in the specification of Japanese Patent Publication No. 2010/0018950 may be used.
  • the pipe line section 60 includes a plurality of pipes 62 extending in the Y-axis direction, and the plurality of pipes 62 are arranged side by side in the X-axis direction.
  • the dimension of the pipe 62 in the longitudinal direction (Y-axis direction) is set to be approximately the same as the dimension of the surface plate portion 50 in the Y-axis direction.
  • the number of pipes 62 is not particularly limited, and can be appropriately changed according to desired performance required for fine movement stage 22. In FIG. 6 and the like, the number of pipes 62 is smaller than the actual number in order to facilitate understanding of the configuration and functions of the fine movement stage 22. Further, the cross-sectional shape of the XZ cross section of the pipe 62 is not particularly limited. In FIG.
  • a so-called square pipe having a rectangular XZ section is used as the pipe 62, but the present invention is not limited to this, and a so-called round pipe as shown in FIG. 12 may be used.
  • a round pipe it is good to process so that the upper surface and lower surface of the outer peripheral surface of this round pipe may become mutually parallel (the cross section orthogonal to a longitudinal direction becomes a barrel shape).
  • the pipe 62 is formed of CFRP, but the material of the pipe 62 is not particularly limited, and can be changed as appropriate. When CFRP is not used as the material of the pipe 62, it is preferable to use a member having a different expansion coefficient from that of CFRP.
  • the plurality of pipes 62 extend in the Y-axis direction and are arranged side by side in the X-axis direction.
  • the present invention is not limited thereto, and the pipes 62 extend in the X-axis direction and are arranged in line in the Y-axis direction. Also good.
  • the base portion 72 is a thin plate-like member having a rectangular shape in plan view, and is formed of stone or ceramics.
  • the material of the base portion 72 is not particularly limited, but a material that is excellent in hardness and easy to process with high precision is preferable.
  • a plurality of base portions 72 are placed on a plurality of pipes 62 constituting the conduit portion 60.
  • Each base part 72 is spread on the pipe line part 60 in a state of being in close contact with each other (a gap is negligible), and is fixed to the plurality of pipes 62 with an adhesive.
  • Each base portion 72 is processed (lapping or the like) so that the flatness of the surface (the surface opposite to the bonding surface with respect to the pipe 62) is very high.
  • the surface height positions of the plurality of base portions 72 are adjusted so that the steps between the base portions 72 are substantially negligible while being laid on the pipeline portion 60. Yes. If a plane having an area equivalent to that of the substrate P (see FIG. 1) can be formed above the pipe line portion 60, the size (area) of each base portion 72 is as shown in FIG.
  • the base portions 72 having different sizes may be mixed as shown in FIG. 7. Further, the total number of the base portions 72 is not particularly limited, and may be configured by a single base portion 72.
  • the base part 72 was processed so that flatness might become very high, it is not restricted to this.
  • One or a part of the base part 72 may be lower than the other base parts 72, or a part of the base part 72 may be missing or a dent may be present.
  • it is sufficient that the flatness is obtained when the chuck portion 74 is placed on the base portion 72, and a chip or a dent smaller than the size of the chuck portion 74 may be present in the base portion 72.
  • the above-described surface height position adjustment between the base portions 72 may be performed by lapping or the like.
  • the lapping process is performed in consideration of the bending so that a desired accuracy can be obtained with various attachments (bar mirror 34b, movers 32b and 36b, and a plurality of chuck portions 74) attached to fine movement stage 22. desirable.
  • the vicinity of the end portion on the upper surface of the base portion 72 is chamfered, and a plurality of base portions 72 are spread between the adjacent base portions 72.
  • a groove is formed.
  • the V-shaped groove is filled with a joint material 72a, and it is possible to prevent moisture and the like from entering between adjacent base portions 72 from entering.
  • the chuck portion 74 is a portion on which the substrate P (see FIG. 1) is placed.
  • the chuck portion 74 holds the substrate P by suction in cooperation with the pipe line portion 60 and the base portion 72.
  • the chuck portion 74 is a thin plate member having a rectangular shape in plan view, and is formed of ceramics or the like. The formation of static electricity from the substrate P can be suppressed by forming the chuck portion 74 from ceramics.
  • the material of the chuck portion 74 is not particularly limited, but a material that is lightweight and easy to process with high precision is preferable. By using a lightweight material as the material of the base portion 72, deformation of the base portion and / or the pipeline portion 60 can be prevented.
  • the thickness of the chuck portion 74 (for example, 8 mm) is set thinner than the thickness of the base portion (for example, 12 mm).
  • a plurality of chuck portions 74 are spread on a plane formed by spreading a plurality of base portions 72 (partially omitted in FIGS. 2 and 3).
  • the chuck part 74 is sucked and held by the corresponding base part 72 (below the chuck part 74).
  • a structure for adsorbing and holding the chuck portion 74 on the base portion 72 (adsorption holding structure of the chuck portion 74) will be described later.
  • the area of one (one) chuck part 74 is set smaller than that of one (one) base part 72.
  • the number of sheets 74 is not particularly limited.
  • the area of one chuck portion 74 is not limited to the above, and may have the same area as one base portion 72 or may have an area larger than one base portion 72. .
  • one chuck portion 74 may be mounted on one base portion 72, or one chuck portion if the area of the chuck portion 74 is larger. 74 may be supported by a plurality of base portions 72.
  • the base part 72 and the chuck part 74 may be collectively referred to as a holder part 70.
  • the holder part 70 has a two-layer structure of a base part 72 (lower layer) and a chuck part 74 (upper layer).
  • the fine movement stage 22 has a four-layer structure of the surface plate part 50, the pipe line part 60, the base part 72, and the chuck part 74, but the surface plate part 50, the pipe line part 60, and the holder part. It can also be said that it has a three-layer structure consisting of 70.
  • a substrate placement surface is formed by a plurality of chuck portions 74 placed (laid) on a plurality of base portions 72.
  • Each chuck portion 74 is processed with high accuracy so that the thickness is substantially the same. Therefore, the substrate placement surface of fine movement stage 22 formed by the plurality of chuck portions 74 is formed with high flatness following the plane formed by the plurality of base portions 72.
  • the chuck part 74 is placed on the base part 72 so as to be replaceable and separable.
  • the chuck portion 74 is placed so as to be replaceable and separable with respect to the surface plate portion 50 and / or the pipe line portion 60.
  • the fine movement stage 22 is a so-called pin chuck type holder, and a plurality of pins 74a and a peripheral wall portion 74b are formed on the upper surface of each chuck portion 74 as shown in FIG.
  • the plurality of pins 74a are arranged at almost equal intervals. Since the diameter of the pin 74a in the pin chuck type holder is very small (for example, about 1 mm in diameter) and the width of the peripheral wall portion 74b is thin, the possibility of sandwiching and supporting dust and foreign matter on the back surface of the substrate P can be reduced. The possibility of deformation of the substrate P due to the inclusion of the foreign matter can also be reduced.
  • the number and arrangement of the pins 74a are not particularly limited and can be changed as appropriate.
  • the peripheral wall portion 74 b is formed so as to surround the outer periphery of the upper surface of the chuck portion 74.
  • the plurality of pins 74a and the peripheral wall portion 74b are set to have the same tip height position (Z position). Further, in order to suppress the reflection of the illumination light IL (see FIG. 1), the surface of the chuck portion 74 is subjected to various surface processing such as coating treatment and ceramic spraying so that the surface becomes black.
  • a vacuum suction force is supplied to the space surrounded by the peripheral wall portion 74b in a state where the substrate P (see FIG. 1 respectively) is placed on the plurality of pins 74a and the peripheral wall portion 74b (space).
  • the substrate P is sucked and held on the chuck portion 74 by the vacuum of the air inside.
  • the substrate P is flattened following the plurality of pins 74a and the distal end portions of the peripheral wall portion 74b.
  • a structure for adsorbing and holding the substrate P on the chuck portion 74 (adsorption holding structure of the substrate P) will be described later.
  • the fine movement stage 22 is configured such that the substrate P (see FIG. 1) is placed on the plurality of pins 74a and the peripheral wall 74b, and a pressurized gas (compressed air or the like) is formed in a space surrounded by the peripheral wall 74b. , The adsorption of the substrate P on the substrate mounting surface can be released.
  • a structure for floating the substrate P on the substrate placement surface floating support structure of the substrate P
  • a plurality of pins 74 c and 74 d and a peripheral wall portion 74 e are also formed on the lower surface of the chuck portion 74. That is, the lower surface of the chuck portion 74 also has a pin chuck structure.
  • the plurality of pins 74 c and 74 d and the distal end portions of the peripheral wall portion 74 e are in contact with the upper surface of the base portion 72.
  • the plurality of pins 74c and 74d are arranged at almost equal intervals.
  • the pin 74d is set such that the radial dimension is larger (thicker) than the pin 74c, and the contact area with the base portion 72 (see FIG. 10) is wider than the pin 74c.
  • Through holes 74f and 74g are provided at substantially the center of the pin 74d, respectively. These through holes 74f and 74g are configured to penetrate the chuck portion 74, and communicate with the through hole 72b communicating with the suction pipe 62b provided in the base portion 72 and the through hole of the exhaust pipe 62c.
  • the base portion 72 communicates with the through hole.
  • the through-hole 74f is a hole for sucking air, and the space (air) formed by the pin chuck formed on the upper surface of the chuck portion 74 and the substrate P is vacuum-sucked through the through-hole 74f to obtain the substrate P.
  • the through hole 74g is a compressed air exhaust hole for exhausting (blowing out) air, and has a smaller diameter (opening diameter) than the through hole 74f.
  • the through hole 74g adsorbs the substrate P adsorbed on the upper surface of the chuck portion 74. When canceling, air having a force sufficient to float the substrate P is blown to the substrate P through the through hole 74g.
  • the number and arrangement of the pins 74c and 74d are not particularly limited, and can be appropriately changed.
  • the positions in the XY direction of the plurality of pins 74a and the plurality of pins 74c and 74d may be the same or may be arranged at different positions.
  • the peripheral wall portion 74e is formed so as to surround the outer periphery of the lower surface of the chuck portion 74.
  • the plurality of pins 74c, 74d and the peripheral wall portion 74e are set to have the same tip height position (Z position).
  • the chuck portion 74 is sucked and held by the base portion 72 by supplying a vacuum suction force to the space surrounded by the peripheral wall portion 74 e in a state where the chuck portion 74 is placed on the base portion 72.
  • the That is, on the lower surface (rear surface) side of the base portion 72 chuck portion 74, a space (vacuum sucked space) surrounded by the base portion 72 and the peripheral wall portion 74e, the pin 74c, and the pin 74d of the chuck portion 74 is provided.
  • the chuck part 74 is fixed to the base part 72.
  • the through holes 74f and 74g on the lower surface of the chuck portion 74 are arranged so as to communicate with the through holes of the base portion 72, and thus are not fixed to the base portion 72. .
  • the chuck portion 74 is fixed to the base portion 72 while the suction force is acting on a part of the lower surface of the chuck portion 74 (the space) as in the vacuum suction described above. This is to maintain a state where the base part 72 is not peeled off (no positional deviation in the Z direction occurs) and a relative positional deviation relative to the base part 72 (a positional deviation in the X and Y directions) does not occur. Further, if the suction force is not applied to the chuck portion 74 after the vacuum suction is released, the chuck portion 74 can be detached (removed) from the base portion 72.
  • zipper part 74 was mounted according to the plane formed by the some base part 72, it does not need to be a plane. As long as the shape formed by the plurality of base portions 72 and the bottom surface of the chuck portion 74 are substantially the same, the plurality of base portions 72 may be curved surfaces instead of flat surfaces.
  • the fine movement stage 22 has various mechanisms for preventing the plurality of chuck portions 74 from floating from the base portion 72.
  • a flat convex portion 76 is formed at the + Y side end of the chuck portion 74, and a concave portion (convex portion corresponding to the convex portion 76 is formed at the ⁇ Y side end. (Not shown) because it overlaps 76.
  • Adjacent chuck portions 74 are mechanically fastened by fitting the convex portions 76 to the corresponding concave portions.
  • the chuck portion 74 disposed along the outer periphery of the fine movement stage 22 is mechanically fastened to the base portion 72 by a fastening member 78.
  • zipper part 74 may be fastened to the surface plate part 50 or the pipe line part 60 (refer FIG. 12).
  • the fastening member 78 is provided at, for example, the + X side and + Y side corners of the base part 72, the surface plate part 50, or the pipe line part 60, and the chuck part from the ⁇ X side and the ⁇ Y side using different members. 74 may be pressed against the fastening member 78 and fastened.
  • a recess 176 is formed in each of the + Y side and ⁇ Y side ends of the chuck portion 74, and a band-shaped member 178 ( A band 178) is inserted.
  • the band 178 is fastened to the surface plate part 50 (the base part 72 or the pipe line part 60 may be used), and thereby the lift of the chuck part 74 from the base part 72 is prevented.
  • the fastening structure of the chuck part 74 and the lifting prevention structure can be changed as appropriate.
  • the convex portion 76 and the concave portion corresponding to the convex portion 76 are provided at the Y side end portion of the chuck portion 74, they may be provided at the X side end portion, or between the Y side and the X side. It may be provided at both ends.
  • recesses 276 are formed at both ends of the chuck portion 74 and the Y-axis direction, and the recesses 276 are prepared as separate parts from the main body portion of the chuck portion 74. 278 is assembled by an adhesive or the like.
  • the main body portion of the chuck portion 74 does not protrude on the surface at the time of molding, so that it can be processed with a desired external dimension with high accuracy.
  • the hozo 278 is not made of a brittle material, it is resistant to chipping.
  • a magnet 374 is embedded on the lower surface side of the chuck portion 74.
  • the chuck portion 74 can be prevented from being lifted, dropped off, or the like. In this case, the chuck portions 74 may not be connected. In order to more reliably prevent the chuck portion 74 from being lifted or dropped, the chuck portions 74 may be connected. Further, the magnet 374 of the chuck portion 74 may be temporarily fixed to the base portion 72, and the chuck portion 74 may be attracted and held to the base portion 72.
  • each chuck portion 74 is fastened to the surface plate portion 50 by a belt-like band 178.
  • a wire rope 476 is used instead of the band 178.
  • Each chuck portion 74 may be fastened.
  • FIG. 18 instead of the band 178 (see FIG. 13) and the wire rope 476 (see FIG. 17), a single bar 576 is inserted between adjacent chuck portions 74. May be.
  • the concave portion 578 formed at the end portion in the Y-axis direction of the chuck portion 74 is preferably formed to have a triangular shape in cross section so that one bar 576 straddles the pair of chuck portions 74.
  • the pipe section 60 of the fine movement stage 22 is constituted by the plurality of pipes 62.
  • the plurality of pipes 62 include a suction pipe 62 a for supplying a vacuum suction force for sucking the chuck portion 74 and a suction pipe for supplying a vacuum suction force for sucking the substrate P. 62b, an exhaust pipe 62c for supplying pressurized gas for floating the substrate P, and a pipe 62d disposed in a gap between the pipes 62a to 62c.
  • the pipe 62d is not supplied with a vacuum suction force or pressurized gas, and functions exclusively as a member for supporting the plurality of base portions 72 together with the pipes 62a to 62c.
  • FIG. 7 an example in which the chuck portion 74 is placed via a base portion 72 on a set of five pipes 62 (two pipes 62 a, one pipe 62 b and two pipes 62 c) ( Although an example in which a set of five pipes 62 is arranged corresponding to one chuck portion 74 is shown, the number, combination, arrangement, etc. of each of the pipes 62a to 62c are not limited to this, It can be changed.
  • a dual-purpose pipe 62e that also functions as the respective functions may be provided.
  • a plug 64 is fitted into one end in the longitudinal direction of the substrate suction pipe 62b (in this embodiment, the end on the -Y side).
  • a plug 66 with a joint (hereinafter simply referred to as “joint 66”) is fitted into the other end of the pipe 62b in the longitudinal direction.
  • a vacuum suction force (see the black arrow in FIG. 10) is supplied to the joint 66 from the outside of the fine movement stage 22 via a pipe member (tube or the like) (not shown) (the inside of the pipe 62b is in a vacuum state).
  • the dual-purpose pipe 62e is provided, the vacuum suction force and the pressurized gas can be switched and supplied.
  • a plurality of through holes 68 are formed on the upper surface of the pipe 62b. Further, a through hole 72b is formed in the base part 72 of the holder part 70 at a position where the position in the XY plane is substantially the same as the through hole 68 when placed on the pipe 62b. Further, in the chuck portion 74 of the holder portion 70, a through hole 74f is formed at a position where the position in the XY plane is substantially the same as that of the through holes 68 and 72b when placed on the base portion 72. .
  • the through holes 68, 72b, and 74f communicate with each other, and when a vacuum suction force is supplied into the pipe 62b, the peripheral wall portion 74b (see FIG.
  • the strength of the vacuum suction force supplied to the through holes 68, 72b, and 74f may be changed according to the position in the fine movement stage.
  • an air pocket generated in the central portion of the substrate P can be eliminated.
  • the strength of the vacuum suction force may be reduced.
  • the vacuum suction force supplied to the through holes 68, 72b, 74f arranged in the center of the fine movement stage 22 is earlier than the through holes 68, 72b, 74f arranged in the peripheral part of the fine movement stage 22, that is, a time difference. You may make it supply with.
  • the through hole 74 f is formed so as to penetrate the pin 74 d (thick pin), and the vacuum suction force from the pipe 62 b is supplied to the lower surface side of the chuck portion 74. There is nothing.
  • FIG. 9 shows an example in which two through holes 74f are formed in the chuck portion 74.
  • the number and arrangement of the through holes 74f (the same applies to the corresponding through holes 68 and 72b) are shown in FIG. It is not limited and can be changed as appropriate.
  • the diameters of the through holes 68, 72b, and 74f may be different from each other.
  • the diameter of the through hole located below is increased, that is, the diameter of the through hole 68 is made larger than the diameter of the through hole 74f, and conversely, the diameter of the through hole located above is increased.
  • the diameter of the through hole 74 f may be larger than the diameter of the through hole 68.
  • the diameters of the through holes 68, 72b, 74f may be made larger as the through holes 68, 72b, 74f located near the center of the fine movement stage.
  • the diameters of the through holes 68, 72b, and 74f may be made larger as they are closer to the plug 64 in the Y-axis direction.
  • the suction holding structure of the chuck portion 74 is configured substantially the same as the suction holding structure of the substrate P. That is, the plug 64 and the joint 66 are fitted into both ends of the chuck part suction pipe 62a, respectively, and a vacuum suction force is supplied into the pipe 62a from the outside of the fine movement stage 22 through the joint 66.
  • a through hole is formed in the upper surface of the pipe 62a (see FIG. 7), and the peripheral wall portion 74e of the lower surface of the chuck portion 74 is inserted through the through hole and the through hole formed in the base portion 72 (see FIG. 7).
  • a vacuum suction force is supplied to the space surrounded by (see FIG. 11). 11 indicates a region corresponding to the through hole formed in the base portion 72, and it can be seen that the vacuum suction force is supplied to a position that does not overlap the pins 74c and 74d.
  • the method (configuration) for vacuum suction is described as the method (configuration) for fixing the chuck portion 74 to the base portion 72.
  • the method for fixing the chuck portion 74 is not limited to suction.
  • the chuck portion 42 may be fixed to the base portion 72 by bonding a part of the back surface of the chuck portion 74 to the base portion 72 with an adhesive.
  • the performance required for the adhesive that bonds the chuck portion 74 and the base portion 72 is that both are easy to peel off and difficult to shift.
  • the adhesive is hardened, it becomes very hard and expands, and it is required that the adhesive does not lift the chuck portion 74 from the base portion 72, that is, does not cause a step.
  • the flatness of the upper surface of the chuck portion 42 is determined, so that the adhesive enters the groove portion on the back surface of the chuck portion 42 in a paste state before being cured, but is elastic after the curing. It is preferably a certain rubber-like material, for example, a moisture-curing peelable deformable silicone sealant is preferably used.
  • the above-described vacuum suction method and adhesion method may be used in combination.
  • a magnet is built in the chuck portion 74, and the base portion 72 (see FIG. 2 and the like) is formed of a magnetic material, and the chuck portion 474 is fixed to the base portion 72 by the magnetic force of the magnet. May be.
  • the chuck portion 74 is formed of a magnetic material and the base portion 72 is provided with a magnet.
  • the magnetic material is, for example, a metal.
  • static electricity is likely to be generated on the surface of the chuck portion 74, so that countermeasures against static electricity (use of a static eliminator) are required. It is also necessary to take measures against heat, such as irradiation heat from exposure light and heat transmitted from the stage, and temperature management (use of cooling gas).
  • the chuck part 74 when the chuck part 74 cannot be held by suction (vacuum suction) such as when the apparatus is transported or assembled, the chuck part 74 is not displaced from the base part 72 by using the above-mentioned adhesive or magnet. You may make it (it does not come off).
  • the floating support structure of the substrate P is also substantially the same as the suction holding structure of the substrate P. That is, when pressurized gas is supplied to the substrate levitation pipe 62c, the through hole formed in the vibrator 62c, the through hole of the base portion 72 communicating with the through hole, and the through hole of the chuck portion 74, respectively.
  • the pressurized gas is supplied into the peripheral wall portion 74b through 74g (see FIG. 9).
  • fine movement stage 22 can float substrate P (refer to Drawing 1) laid on chuck part 74 from the lower part.
  • the substrate P is sucked and held by the pipe line portion 60, the base portion 72, and the chuck portion 74, and the plane is corrected along the substrate placement surface.
  • the three-layer structure of the pipe line part 60, the base part 72, and the chuck part 74 has the function of a substrate holder.
  • the fine movement stage 22 may have a floating pin for floating the substrate P from the chuck portion 74 using a mechanical member.
  • the flying pin has a surface that comes into contact with the substrate P, and is configured by a member on a rod that supports the surface.
  • a substrate mounting surface is formed by the surface of the floating pin and the upper surface of the chuck portion 74.
  • the floating pin functions as a structure for preventing the chuck portion 74 from being lifted by being disposed between each chuck portion 74. Note that the number and arrangement of the floating pins are not particularly limited.
  • the pipe line part 60 was demonstrated as a structure provided with the some pipe 62, a groove
  • a flow path through which pressurized gas (compressed air or the like) flows may be formed, or a flow path to which a vacuum suction force is supplied (air in the space is vacuumed) may be formed.
  • the substrate P is loaded onto the fine movement stage 22 by a plate loader (not shown) under the control of a main controller (not shown).
  • a main controller not shown
  • alignment measurement is performed using an alignment detection system (not shown), and after completion of the alignment measurement, a step-and-scan exposure operation is sequentially performed on a plurality of shot areas set on the substrate P. Since this exposure operation is the same as a conventional step-and-scan exposure operation, a detailed description thereof will be omitted.
  • the fine movement stage 22 holds the substrate P by suction during the alignment measurement and the scanning exposure. Further, the fine movement stage 22 is placed on the lower surface of the substrate P during a pre-alignment operation before the substrate P to be exposed is placed on the substrate placement surface or when the exposed substrate P is carried out to an external device. The pressurized gas is jetted to release the adsorption of the substrate P from the substrate placement surface.
  • a plurality of chuck portions 74 are laid out in a tile shape on a plane formed by a plurality of base portions 72, thereby placing a substrate mounting surface (substrate holding). Therefore, the flatness of the substrate mounting surface can be easily ensured only by processing the thickness of each chuck portion 74 with high accuracy. Further, since the chuck portion 74 is smaller than the size of the substrate P, it is easy to process with high accuracy and good flatness. Further, as the chuck portion 74, it is easy to use a ceramic material that is lightweight and highly rigid but difficult to increase in size.
  • the fine movement stage 22 can be replaced with high efficiency because it is not necessary to replace the entire substrate mounting portion and only the desired chuck portion 74 can be replaced.
  • each chuck portion 74 is fixed to the base portion 72 by vacuum suction, the chucking force can be evenly applied to the chuck portion 74. Therefore, deformation of the chuck portion 74 can be suppressed.
  • the substrate P can be held with good flatness with a light weight and high rigidity.
  • the fine line stage 60 has the pipe line part 60 disposed (inserted) between the surface plate part 50 and the base part 72, the base part 72 is compared with the case where the pipe line member is separately connected to the holder 70 part. , And the arrangement (including replacement) of the chuck portion 74, and the assembly of the fine movement stage 22 is easy.
  • the fine movement stage 22 has been described as a four-layer structure of the surface plate part 50, the pipe line part 60, the base part 72, and the chuck part 74, but the upper surface of the pipe line part 60 has the same flatness as the upper surface of the base part 72. Can be formed, the base portion 72 may not be stacked on the pipe line portion 60. In this case, it can be said that the fine movement stage 22 has a three-layer structure of the surface plate part 50, the pipe line part 60, and the chuck part 74.
  • fine movement stage 22 is assembled by placing holder portion 70 on conduit portion 60 after conduit portion 60 is placed on surface plate portion 50.
  • the holder portion 70 is formed by laying a plurality of base portions 72 to form a plane with high flatness, and laying a plurality of chuck portions 74 on the plane.
  • each of the plurality of chuck portions 74 is processed with high precision so that the thickness is uniform, but since the number of chuck portions 74 is large, the thickness of all the chuck portions 74 should be strictly uniform. May be difficult.
  • a surface (substrate mounting surface) formed by the plurality of chuck portions 74 is disposed.
  • the substrate mounting surface is processed into a plane with high accuracy (flatness) by lapping.
  • the lapping is performed by handler lapping that manually moves the lapping tool 98 relative to the processing object.
  • the fine movement stage 22 having the substrate placement surface with a very high flatness can be manufactured without strictly managing the individual thicknesses of the plurality of chuck portions 74.
  • FIG. 19 shows a case where lapping is performed in a state where each chuck portion 74 is vacuum-sucked and held with respect to the base portion 72, but the suction-holding is not necessarily performed.
  • the replacement chuck portion 174 is formed thinner than the existing chuck portion 74.
  • An adhesive is applied to the lower surface of the chuck portion 174 along the outer periphery (the tip of the peripheral wall portion 74e). The adhesive is applied so as to surround the gas supply and vacuum suction holes formed in the chuck portion 174.
  • a groove is formed around the tip of the peripheral wall 74e and the hole formed in the pin 74d, and an adhesive is applied to the groove.
  • the adhesive is preferably one that cures when exposed to air and is easy to peel off after curing.
  • the groove for applying the adhesive may be formed in the base portion 72.
  • a step is formed between the chuck portion 174 and the chuck portion 74. Therefore, a plate 98 made of ceramics is bridged between a pair of chuck portions 74 adjacent to the replacement chuck portion 174.
  • the plate 98 may be made of a material other than ceramics as long as it is a substantially rigid body. Since the chuck portion 174 is thinner than the chuck portion 74, a gap is formed between the upper surface of the chuck portion 174 and the lower surface of the plate 98.
  • compressed air is supplied from a base portion 72 disposed below the chuck portion 174.
  • a plurality of the flow paths are formed in the base portion 72 along the longitudinal direction of the pipe 62 (here, the Y-axis direction), and a part of the flow path is formed thin on the upper surface side.
  • a lower surface of the replacement chuck portion 174 is formed with a seating surface 74h protruding downward like the pin 74c, and the compressed air is applied to the tip of the seating surface 74h. On the other hand it is erupted. Accordingly, as shown in FIG.
  • the chuck portion 174 floats on the base portion 72 due to the static pressure of the compressed air, and comes into close contact with the lower surface of the plate 98. In this state, when a predetermined time elapses, the adhesive is cured.
  • the adhesive functions as a part of the peripheral wall portion 74e, a gas supply conduit, and a gas suction conduit after curing.
  • the height position of the surface of the chuck portion 174 is substantially the same as the height position of the surfaces of the other chuck portions 74. It will be in a consistent state. Thereby, the overall flatness of the substrate mounting surface formed by the plurality of chuck portions 74 and the replacement chuck portion 174 is ensured. According to the replacement direction of the chuck portion 74 described above, only the desired chuck portion 74 (a part of the substrate placement surface) can be easily replaced without removing the fine movement stage 22 from the substrate stage device 20.
  • the positioning and fixing procedure of the replacement chuck portion 174 is not limited to this.
  • a plug 94 that can be easily removed from above is attached to a through-hole 74f (see FIG. 9) for vacuum suction formed in the chuck portion 174.
  • a pipe line for ejecting pressurized gas to float and support the substrate P is formed inside a pin 74i that is somewhat thicker than the other pins 74a.
  • a hole 74g for gas ejection is opened.
  • a vacuum suction joint 98 a is connected to the plate 98, and the replacement chuck portion 174 is vacuum-sucked from the upper surface side, whereby another chuck portion 74 is provided.
  • the height of the top surface are aligned.
  • the plug 94 is removed after the adhesive is cured. According to this example, unlike the above-described example (see FIG. 24 and the like), it is not necessary to perform processing for airflow on the back surface of the base portion 72 and the chuck portion 174.
  • the replacement chuck portion 174 has a plurality of screw holes penetrating in the thickness direction, and set screws 74j are screwed into the screws. . Further, a tool hole 98b having a diameter larger than the screw diameter of the set screw 74j is formed in the plate 98 at a position coinciding with the screw hole. In this example, when the tool 98c is inserted from the tool hole 98b and the set screw 74j is turned, the tip end portion of the set screw 74j comes into contact with the base portion 72, and then the chuck portion 174 is lifted from the base portion 72 and closely contacts the plate 98. .
  • the adhesive that bonds the chuck portion 174 and the base portion 72 is It is not limited to a curable material, and an elastic material such as a caulking agent may be used.
  • the configuration of the fine movement stage 22 and the like according to the embodiment described above is an example, and can be changed as appropriate.
  • the entire chuck portion 474 may be formed of a porous material.
  • the substrate P may be adsorbed and held by supplying a vacuum suction force to the porous material.
  • a magnet is built in the chuck portion 474, the base portion 72 (see FIG. 2 and the like) is formed of a magnetic material, and the chuck portion 474 is fixed (fixed) to the base portion 72 by a magnetic force.
  • the above-described method using an adhesive may be used as a method of fixing the chuck portion 474 formed of a porous material to the base portion 72.
  • an area that can be vacuum-adsorbed for example, a hole is formed in a part of the lower surface of the chuck portion 474 of the porous material, and a member (rubber that prevents air leakage so that the hole does not leak air). Etc.
  • substrate P can also be obtained by forming the chuck
  • a plurality of minute holes communicating with the pipe line portion 60 are formed on the upper surface (substrate mounting surface) of the chuck portion 474 made of a porous material.
  • the non-contact holder 32 causes the substrate P to float when pressurized gas (for example, compressed air) supplied from the pipe line portion 60 is ejected to the lower surface of the substrate P through (a part of) the hole.
  • the non-contact holder sucks air between the lower surface of the substrate P and the substrate support surface by a vacuum suction force in combination with the ejection of the pressurized gas.
  • a load preload
  • the substrate P is flattened along the upper surface of the non-contact holder. That is, the substrate P can be floated and supported (non-contact support) on the chuck portion 474 while the substrate P is flattened (flattened).
  • a buffer member 676 may be inserted between the adjacent chuck portions 74 in order to prevent the adjacent chuck portions 74 from colliding with each other.
  • the buffer member 676 is preferably formed of a viscoelastic body.
  • fine movement stage 22 can selectively perform non-contact support of substrate P (a jet of pressurized gas to the lower surface of substrate P) and adsorption holding of substrate P (vacuum suction of substrate P).
  • substrate P a jet of pressurized gas to the lower surface of substrate P
  • adsorption holding of substrate P vacuum suction of substrate P
  • the present invention is not limited to this, and a mode in which only one of these functions is performed may be used.
  • each chuck portion 74 is configured to be fixed to the base portion 72 by a vacuum suction force (fixed in a state that is not mechanically constrained). You may fix to the base part 72 with an adhesive agent etc.
  • the adhesive may be an adhesive that can be easily peeled off with little deformation during curing, for example, an epoxy resin-based adhesive. It is preferable to use an adhesive.
  • a fluorine release agent having a thin coating film (for example, about 0.1 to 1.0 ⁇ m) and low surface tension may be used.
  • the fine movement stage 22 of the present embodiment is movable with a long stroke in two axial directions in a horizontal plane, but is not limited thereto, and is configured to be movable with a long stroke only in one axial direction in the horizontal plane.
  • the position in the horizontal plane may be fixed.
  • the fine movement stage 22 is configured to be slightly movable in the direction of six degrees of freedom in the horizontal plane, the configuration of the above embodiment may be applied to a substrate holding member (substrate holder) having a configuration that does not move slightly.
  • the illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm).
  • the single wavelength laser beam of the infrared region or visible region oscillated from the DFB semiconductor laser or fiber laser is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium), You may use the harmonic which wavelength-converted into ultraviolet light using the nonlinear optical crystal.
  • a solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
  • the projection optical system 14 is a multi-lens projection optical system including a plurality of optical systems has been described, but the number of projection optical systems is not limited to this, and one or more projection optical systems may be used.
  • the projection optical system is not limited to a multi-lens projection optical system, and may be a projection optical system using an Offner type large mirror. Further, the projection optical system 14 may be an enlargement system or a reduction system.
  • the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern to the square glass plate, but is used for the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel, for semiconductor manufacturing.
  • the present invention can be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like.
  • microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • the object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank.
  • the thickness of the substrate is not particularly limited, and includes a film-like (flexible sheet-like member).
  • the exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
  • the step of designing the function and performance of the device the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer)
  • the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the object holding device of the present invention is suitable for holding an object.
  • the exposure apparatus of the present invention is suitable for forming a predetermined pattern on an object.
  • the manufacturing method of the flat panel display of this invention is suitable for manufacture of a flat panel display.
  • the device manufacturing method of the present invention is suitable for manufacturing micro devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A substrate holder (70) holding a substrate (P) comprises: multiple chucks (74) each provided with a holding surface for holding a substrate (P) and a suction part and non-suction part disposed on the back side of the holding surface; base units (72) to which the suction parts of the chucks (74) are suctioned; a surface plate (50); and a pipeline unit (62) which is provided between the surface plate (50) and the base units (72) and which comprises pipelines for circulating a gas through the non-suction parts of the chucks (74). The chucks (74) use the gas passing through the non-suction parts to hold the substrate (P), and a first member is removed from a base member when suctioning of the base unit (72) by the suction parts is released.

Description

物体保持装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び物体保持方法Object holding apparatus, exposure apparatus, flat panel display manufacturing method, device manufacturing method, and object holding method
 本発明は、物体保持装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び物体保持方法に係り、に係り、更に詳しくは、物体を保持する物体保持装置及び方法、前記物体保持装置を備える露光装置、並びに前記露光装置を用いてフラットパネルディスプレイ又はデバイスの製造方法に関する。 The present invention relates to an object holding apparatus, an exposure apparatus, a flat panel display manufacturing method, a device manufacturing method, and an object holding method, and more particularly, an object holding apparatus and method for holding an object, and the object holding apparatus. And a manufacturing method of a flat panel display or a device using the exposure apparatus.
 従来、液晶表示素子、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、マスク又はレチクル(以下、「マスク」と総称する)に形成されたパターンを、エネルギビームを用いてガラスプレート又はウエハ(以下、「基板」と総称する)に転写する露光装置が用いられている。 Conventionally, in a lithography process for manufacturing an electronic device (microdevice) such as a liquid crystal display element, a semiconductor element (integrated circuit, etc.), a pattern formed on a mask or reticle (hereinafter collectively referred to as “mask”) is used as an energy beam. An exposure apparatus is used for transferring to a glass plate or a wafer (hereinafter collectively referred to as “substrate”) using the above.
 この種の露光装置では、基板ステージ装置が有する基板ホルダが、基板を、例えば真空吸着して保持する基板保持装置が知られている(例えば、特許文献1参照)。 In this type of exposure apparatus, there is known a substrate holding apparatus in which a substrate holder included in a substrate stage apparatus holds a substrate by, for example, vacuum suction (see, for example, Patent Document 1).
 基板保持装置は、基板を高い平面度で保持することが要求される。 The substrate holding device is required to hold the substrate with high flatness.
米国特許出願公開第2010/0266961号明細書US Patent Application Publication No. 2010/0266961
 本発明は、上述の事情の下でなされたもので、第1の態様によれば、物体を保持する物体保持装置であって、前記物体を保持する第1保持面と、前記第1保持面の裏面側の互いに異なる位置に設けられた第1部分および第2部分と、をそれぞれ備える複数の第1部材と、前記第1部材を保持する第2保持面を備え、前記第1部分と前記第2部分とのうちの前記第2部分が前記第2保持面に固着される第2部材と、ベース部と、前記ベース部と前記第2部材との間に設けられ、前記第2部材を介して前記第1部材の前記第1部分と連通し気体を通過させる管路を有する管路部と、を有し、前記第1部材は、前記第1部分を通過する前記気体を用いて前記物体を保持するとともに、前記第2部分の前記第2保持面に対する固着を解除すると、前記第2部材から取り外される物体保持装置、が提供される。 The present invention has been made under the above circumstances. According to the first aspect, the present invention is an object holding device for holding an object, the first holding surface for holding the object, and the first holding surface. A plurality of first members each having a first portion and a second portion provided at different positions on the back surface side, and a second holding surface for holding the first member, the first portion and the The second part of the second part is provided between the second member fixed to the second holding surface, the base part, the base part and the second member, and the second member is And a conduit portion having a conduit that allows gas to pass through and communicates with the first portion of the first member, and the first member uses the gas that passes through the first portion. When holding the object and releasing the fixation of the second part to the second holding surface, Object-holding device is removed from the second member, it is provided.
 第2の態様によれば、本発明の物体保持装置と、前記物体保持装置に保持された前記物体に対してエネルギビームを用いて所定のパターンを形成するパターン形成装置と、を備える露光装置、が提供される。 According to a second aspect, an exposure apparatus comprising: the object holding device of the present invention; and a pattern forming device that forms a predetermined pattern on the object held by the object holding device using an energy beam, Is provided.
 第3の態様によれば、本発明の露光装置を用いて前記基板を露光することと、露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法、が提供される。 According to a third aspect, there is provided a flat panel display manufacturing method including exposing the substrate using the exposure apparatus of the present invention and developing the exposed substrate.
 第4の態様によれば、本発明の露光装置を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むデバイス製造方法、が提供される。 According to a fourth aspect, there is provided a device manufacturing method including exposing the object using the exposure apparatus of the present invention and developing the exposed object.
 第5の態様によれば、物体を保持する物体保持方法であって、前記物体を保持する第1保持面と、前記第1保持面の裏面側の互いに異なる位置に設けられた第1部分および第2部分と、をそれぞれ備える複数の第1部材を用いて前記物体を保持することと、前記第1部材を保持する第2保持面を備え、前記第1部分と前記第2部分とのうちの前記第2部分が前記第2保持面に固着される第2部材とを用いて、前記第1部材を保持することと、ベース部と前記第2部材との間に設けられ、前記第2部材を介して前記第1部材の前記第1部分と連通し気体を通過させる管路を有する管路部を用いて、前記気体を通過させることと、を含み、前記複数の第1部材を用いて前記物体を保持することは、前記第1部分を通過する前記気体を用いて前記物体を保持することを含み、前記第2部分の前記第2保持面に対する固着を解除して、前記第2部材から前記第1部材を取り外すことと、を含む物体保持方法、が提供される。 According to the fifth aspect, there is provided an object holding method for holding an object, the first holding surface for holding the object, the first portion provided at different positions on the back side of the first holding surface, and Holding the object using a plurality of first members each having a second part, and comprising a second holding surface for holding the first member, wherein the first part and the second part The second part is provided between the base member and the second member by holding the first member using a second member fixed to the second holding surface; Passing the gas using a conduit portion having a conduit that allows the gas to pass through the member and communicates with the first portion of the first member, and uses the plurality of first members. Holding the object using the gas passing through the first portion It comprises holding the body, to release the fixation with respect to the second holding surface of the second portion, wherein the removing the first member from the second member, the object holding method comprising, are provided.
一実施形態に係る液晶露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the liquid-crystal exposure apparatus which concerns on one Embodiment. 図1の液晶露光装置が備える微動ステージを示す(上面の一部省略)図である。It is a figure which shows the fine movement stage with which the liquid crystal exposure apparatus of FIG. 1 is provided (a part of upper surface is abbreviate | omitted). 図2の微動ステージの分解図である。FIG. 3 is an exploded view of the fine movement stage of FIG. 2. 図2の微動ステージの平面図である。It is a top view of the fine movement stage of FIG. 図4のA-A矢視断面図である。FIG. 5 is a cross-sectional view taken along line AA in FIG. 4. 図4のB-B矢視断面図である。FIG. 5 is a cross-sectional view taken along line BB in FIG. 4. 微動ステージから一部の部材を取り除いた平面図である。It is the top view which removed a part of member from the fine movement stage. 微動ステージの組み立て手順を説明するための図である。It is a figure for demonstrating the assembly procedure of a fine movement stage. 微動ステージが備えるチャック部の平面図である。It is a top view of the chuck | zipper part with which a fine movement stage is provided. 微動ステージが備える管路部及びホルダ部の断面図である。It is sectional drawing of the pipe line part and holder part with which a fine movement stage is provided. チャック部の裏面側から見た平面図である。It is the top view seen from the back surface side of the chuck | zipper part. 微動ステージの変形例の一例を示す図である。It is a figure which shows an example of the modification of a fine movement stage. 図12の微動ステージの平面図である。It is a top view of the fine movement stage of FIG. 図12の微動ステージの断面図である。It is sectional drawing of the fine movement stage of FIG. チャック部の締結構造の一例を示す図である。It is a figure which shows an example of the fastening structure of a chuck | zipper part. チャック部の締結構造の他の例を示す図である。It is a figure which shows the other example of the fastening structure of a chuck | zipper part. チャック部の浮き上がり防止構造の一例を示す図である。It is a figure which shows an example of the raising prevention structure of a chuck | zipper part. チャック部の浮き上がり防止構造の他の例を示す図である。It is a figure which shows the other example of the raising prevention structure of a chuck | zipper part. 微動ステージに対するラッピング加工を示す図である。It is a figure which shows the lapping process with respect to a fine movement stage. チャック部の交換手順を説明するための図(その1)である。It is FIG. (1) for demonstrating the replacement | exchange procedure of a chuck | zipper part. チャック部の交換手順を説明するための図(その2)である。It is FIG. (2) for demonstrating the replacement | exchange procedure of a chuck | zipper part. チャック部の交換手順を説明するための図(その3)である。It is FIG. (3) for demonstrating the replacement | exchange procedure of a chuck | zipper part. チャック部の交換手順を説明するための図(その4)である。It is FIG. (4) for demonstrating the replacement | exchange procedure of a chuck | zipper part. 交換用チャック部の裏面を示す図である。It is a figure which shows the back surface of the chuck | zipper part for replacement | exchange. チャック部の交換手順の他の例(その1)を説明するための図である。It is a figure for demonstrating the other example (the 1) of the replacement procedure of a chuck | zipper part. 図25に係る交換手順で用いられるチャック部の平面図である。It is a top view of the chuck | zipper part used in the exchange procedure which concerns on FIG. チャック部の交換手順の他の例(その2)を説明するための図である。It is a figure for demonstrating the other example (the 2) of the replacement procedure of a chuck | zipper part. 図27に係る交換手順で用いられるチャック部の裏面を示す図である。It is a figure which shows the back surface of the chuck | zipper part used in the exchange procedure which concerns on FIG. チャック部の変形例を示す図である。It is a figure which shows the modification of a chuck | zipper part. 隣接するチャック部同士の衝突防止構造を説明するための図である。It is a figure for demonstrating the collision prevention structure of adjacent chuck | zipper parts.
 以下、一実施形態について、図1~図30を用いて説明する。 Hereinafter, an embodiment will be described with reference to FIGS.
 図1には、一実施形態に係る露光装置(ここでは液晶露光装置10)の構成が概略的に示されている。液晶露光装置10は、物体(ここではガラス基板P)を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。ガラス基板P(以下、単に「基板P」と称する)は、平面視矩形(角型)に形成され、液晶表示装置(フラットパネルディスプレイ)などに用いられる。 FIG. 1 schematically shows a configuration of an exposure apparatus (here, a liquid crystal exposure apparatus 10) according to an embodiment. The liquid crystal exposure apparatus 10 is a so-called scanner, a step-and-scan projection exposure apparatus that uses an object (here, the glass substrate P) as an exposure target. A glass substrate P (hereinafter simply referred to as “substrate P”) is formed in a rectangular shape (planar shape) in plan view, and is used for a liquid crystal display device (flat panel display) or the like.
 液晶露光装置10は、照明系12、投影光学系14、表面(図1で+Z側を向いた面)にレジスト(感応剤)が塗布された基板Pを保持する基板ステージ装置20、及びこれらの制御系等を有している。以下、露光時にマスクMと基板Pとが投影光学系14に対してそれぞれ相対走査される方向を第1方向(ここではX軸方向)とし、水平面内でX軸に直交する方向を第2方向(ここではY軸方向)、X軸及びY軸に直交する方向をZ軸方向(投影光学系14の光軸方向と平行な方向)とし、X軸、Y軸、及びZ軸回りの回転方向をそれぞれθx、θy、及びθz方向として説明を行う。また、X軸、Y軸、及びZ軸方向に関する位置をそれぞれX位置、Y位置、及びZ位置として説明を行う。 The liquid crystal exposure apparatus 10 includes an illumination system 12, a projection optical system 14, a substrate stage apparatus 20 that holds a substrate P on which a resist (sensitive agent) is applied on the surface (the surface facing the + Z side in FIG. 1), and these It has a control system. Hereinafter, the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system 14 at the time of exposure is referred to as a first direction (here, the X-axis direction), and the direction orthogonal to the X-axis in the horizontal plane is the second direction. (Here, the Y-axis direction), the direction orthogonal to the X-axis and the Y-axis is the Z-axis direction (the direction parallel to the optical axis direction of the projection optical system 14), and the rotational directions around the X-axis, Y-axis, and Z-axis Are described as θx, θy, and θz directions, respectively. Further, description will be made assuming that the positions in the X-axis, Y-axis, and Z-axis directions are the X position, the Y position, and the Z position, respectively.
 照明系12は、米国特許第5,729,331号明細書などに開示される照明系と同様に構成されており、露光用照明光(照明光)ILをマスクMに照射する。照明光ILとしては、i線(波長365nm)、g線(波長436nm)、h線(波長405nm)などの光(あるいは、上記i線、g線、h線の合成光)が用いられる。 The illumination system 12 is configured in the same manner as the illumination system disclosed in US Pat. No. 5,729,331 and the like, and irradiates the mask M with exposure illumination light (illumination light) IL. As the illumination light IL, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), and h-line (wavelength 405 nm) (or combined light of the i-line, g-line, and h-line) is used.
 マスクMとしては、透過型のフォトマスクが用いられている。マスクMの下面(図1では-Z側を向いた面)には、所定の回路パターンが形成されている。マスクMは、不図示のマスクステージ装置によって走査方向(X軸方向)に所定の長ストロークで駆動される。 As the mask M, a transmissive photomask is used. A predetermined circuit pattern is formed on the lower surface of the mask M (the surface facing the -Z side in FIG. 1). The mask M is driven with a predetermined long stroke in the scanning direction (X-axis direction) by a mask stage device (not shown).
 投影光学系14は、マスクMの下方に配置されている。投影光学系14は、米国特許第6,552,775号明細書などに開示される投影光学系と同様な構成の、いわゆるマルチレンズ投影光学系であり、両側テレセントリックな等倍系で正立正像を形成する複数のレンズモジュールを備えている。 The projection optical system 14 is disposed below the mask M. The projection optical system 14 is a so-called multi-lens projection optical system having the same configuration as the projection optical system disclosed in US Pat. No. 6,552,775 and the like. Are provided with a plurality of lens modules.
 液晶露光装置10では、照明系12からの照明光ILによってマスクM上の照明領域が照明されると、マスクMを通過(透過)した照明光ILにより、投影光学系14を介してその照明領域内のマスクMの回路パターンの投影像(部分正立像)が、基板P上の照明領域に共役な照明光の照射領域(露光領域)に形成される。そして、照明領域(照明光IL)に対してマスクMが走査方向に相対移動するとともに、露光領域(照明光IL)に対して基板Pが走査方向に相対移動することで、基板P上の1つのショット領域の走査露光が行われ、そのショット領域にマスクMに形成されたパターンが転写される。 In the liquid crystal exposure apparatus 10, when the illumination area on the mask M is illuminated by the illumination light IL from the illumination system 12, the illumination area IL passes through (transmits) the mask M via the projection optical system 14. A projection image (partial upright image) of the circuit pattern of the mask M is formed in an irradiation area (exposure area) of illumination light conjugate to the illumination area on the substrate P. Then, the mask M moves relative to the illumination area (illumination light IL) in the scanning direction, and the substrate P moves relative to the exposure area (illumination light IL) in the scanning direction. Scanning exposure of one shot area is performed, and the pattern formed on the mask M is transferred to the shot area.
 基板ステージ装置20は、基板Pを投影光学系14(照明光IL)に対して高精度で位置制御するための装置であり、基板Pを水平面(X軸方向、及びY軸方向)に沿って所定の長ストロークで駆動するとともに、6自由度方向に微少駆動する。液晶露光装置10で用いられる基板ステージ装置(微動ステージ22を除く)の構成は、特に限定されないが、本実施形態では、一例として米国特許出願公開第2012/0057140号明細書などに開示されるような、ガントリタイプの2次元粗動ステージと、該2次元粗動ステージに対して微少駆動される微動ステージとを含む、いわゆる粗微動構成の基板ステージ装置20が用いられている。 The substrate stage apparatus 20 is an apparatus for controlling the position of the substrate P with respect to the projection optical system 14 (illumination light IL) with high accuracy, and the substrate P is aligned along the horizontal plane (X-axis direction and Y-axis direction). While driving with a predetermined long stroke, it is slightly driven in the direction of 6 degrees of freedom. The configuration of the substrate stage apparatus (excluding the fine movement stage 22) used in the liquid crystal exposure apparatus 10 is not particularly limited, but in this embodiment, it is disclosed in, for example, US Patent Application Publication No. 2012/0057140. A so-called coarse / fine movement substrate stage apparatus 20 including a gantry type two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage is used.
 基板ステージ装置20は、微動ステージ22、Y粗動ステージ24、X粗動ステージ26、自重支持装置28などを備えている。 The substrate stage device 20 includes a fine movement stage 22, a Y coarse movement stage 24, an X coarse movement stage 26, a self-weight support device 28, and the like.
 微動ステージ22は、全体的に平面視矩形(図2参照)の板状(あるいは箱形)に形成され、その上面(基板載置面)に基板Pが載置される。微動ステージ22の上面のX軸及びY軸方向の寸法は、基板Pと同程度に(実際には幾分短く)設定されている。基板Pは、微動ステージ22の上面に載置された状態で微動ステージ22に真空吸着保持されることによって、ほぼ全体(全面)が微動ステージ22の上面に沿って平面矯正される。従って、本実施形態の微動ステージ22は、従来の基板ステージ装置が備える基板ホルダと同機能の部材であると言うこともできる。微動ステージ22の詳細な構成については、後述する The fine movement stage 22 is formed in a plate shape (or box shape) having a rectangular shape in plan view (see FIG. 2), and the substrate P is placed on the upper surface (substrate placement surface). The dimensions of the upper surface of fine movement stage 22 in the X-axis and Y-axis directions are set to be approximately the same as substrate P (actually somewhat shorter). The substrate P is vacuum-sucked and held on the fine movement stage 22 in a state of being placed on the upper surface of the fine movement stage 22, so that almost the entire surface (the entire surface) is flattened along the upper surface of the fine movement stage 22. Therefore, it can be said that the fine movement stage 22 of this embodiment is a member having the same function as the substrate holder provided in the conventional substrate stage apparatus. The detailed configuration of fine movement stage 22 will be described later.
 Y粗動ステージ24は、微動ステージ22の下方(-Z側)に配置されている。Y粗動ステージ24は、一対のXビーム30aを有している。Xビーム30aは、X軸方向に延びるYZ断面矩形の部材から成る。一対のXビーム30aは、Y軸方向に所定間隔で平行に配置されている。一対のXビーム30aを含み、Y粗動ステージ24は、不図示のYアクチュエータによってY軸方向へ所定の長ストロークで駆動される。 Y coarse movement stage 24 is arranged below fine movement stage 22 (−Z side). The Y coarse movement stage 24 has a pair of X beams 30a. The X beam 30a is made of a member having a rectangular YZ section extending in the X-axis direction. The pair of X beams 30a are arranged in parallel at a predetermined interval in the Y-axis direction. The Y coarse movement stage 24 including a pair of X beams 30a is driven with a predetermined long stroke in the Y-axis direction by a Y actuator (not shown).
 X粗動ステージ26は、Y粗動ステージ24の上方(+Z側)であって、微動ステージ22の下方に(微動ステージ22とY粗動ステージ24との間に)配置されている。X粗動ステージ26は、平面視矩形の板状の部材であって、一対のXビーム30a上に複数の機械的なリニアガイド装置30bを介して載置されている。X粗動ステージ26は、Y粗動ステージ24に対してX軸方向に関して移動自在であるのに対し、Y軸方向に関しては、Y粗動ステージ24と一体的に移動する。X粗動ステージ26は、Y粗動ステージ24に対して、複数のXアクチュエータ30cによってX軸方向へ所定の長ストロークで駆動される。なお、図1では、Xアクチュエータ30cとして、リニアモータが図示されているが、Xアクチュエータの種類は、特に限定されない。Y粗動ステージ24を駆動するためのYアクチュエータの種類も、同様に特に限定されない。 The X coarse movement stage 26 is disposed above (+ Z side) the Y coarse movement stage 24 and below the fine movement stage 22 (between the fine movement stage 22 and the Y coarse movement stage 24). The X coarse movement stage 26 is a plate-like member having a rectangular shape in plan view, and is placed on the pair of X beams 30a via a plurality of mechanical linear guide devices 30b. The X coarse movement stage 26 is movable with respect to the Y coarse movement stage 24 in the X-axis direction, whereas the X coarse movement stage 26 moves integrally with the Y coarse movement stage 24 in the Y-axis direction. The X coarse movement stage 26 is driven with a predetermined long stroke in the X-axis direction by a plurality of X actuators 30c with respect to the Y coarse movement stage 24. In FIG. 1, a linear motor is illustrated as the X actuator 30c, but the type of the X actuator is not particularly limited. Similarly, the type of Y actuator for driving the Y coarse movement stage 24 is not particularly limited.
 X粗動ステージ26の上面には、Y固定子32aが取り付けられている。Y固定子32aは、微動ステージ22の側面に取り付けられたY可動子32bとともに、微動ステージ22に対してY軸方向の推力を付与するためのYリニアモータ(本実施形態では、ボイスコイルモータ)を構成する。基板ステージ装置20において、Yリニアモータは、X軸方向に離間して複数配置されている。不図示であるが、基板ステージ装置20は、微動ステージ22に対してX軸方向の推力を付与するためのXリニアモータも複数有している。Xリニアモータの構成は、配置が異なる以外はYリニアモータと同じである。すなわち、X粗動ステージ26の上面にはX固定子、微動ステージ22の側面にはX可動子がそれぞれ取り付けられている。 A Y stator 32 a is attached to the upper surface of the X coarse movement stage 26. The Y stator 32a, together with the Y mover 32b attached to the side surface of the fine movement stage 22, is a Y linear motor for applying thrust in the Y-axis direction to the fine movement stage 22 (in this embodiment, a voice coil motor). Configure. In the substrate stage device 20, a plurality of Y linear motors are arranged apart from each other in the X-axis direction. Although not shown, the substrate stage device 20 also has a plurality of X linear motors for applying thrust in the X-axis direction to the fine movement stage 22. The configuration of the X linear motor is the same as that of the Y linear motor except for the arrangement. That is, an X stator is attached to the upper surface of the X coarse movement stage 26, and an X mover is attached to the side surface of the fine movement stage 22.
 不図示の主制御装置は、X粗動ステージ26がX軸及び/又はY軸方向に移動する際に、微動ステージ22とX粗動ステージ26との相対位置が所定範囲内に収まるように、上記複数のX、Yリニアモータを用いて微動ステージ22に水平面内3自由度方向(X軸、Y軸、θzの各方向)の推力を付与するとともに、上記複数のX、Yリニアモータを用いて微動ステージ22をX粗動ステージ26に対して水平面内3自由度方向に微少駆動する。微動ステージ22の水平面内3自由度方向の位置情報は、微動ステージ22にミラーベース34aを介して固定されたバーミラー34bを用いて、不図示のレーザ干渉計によって求められる。なお、図1ではX軸方向に延びるYバーミラーのみが図示されているが、実際には、微動ステージ22の-Y側の側面にYバーミラーが固定され、微動ステージ22の-X側の側面にY軸方向に延びるXバーミラーが固定されている。レーザ干渉計を用いた計測システムに関しては、一例として米国特許出願公開第2010/0018950号明細書などに開示されているので、説明を省略する。なお、微動ステージ22の水平面内3自由度方向の位置情報は、干渉計ではなくヘッドとスケールとを有するエンコーダーシステムを用いて求めても良い。 The main controller (not shown) is configured so that the relative position between the fine movement stage 22 and the X coarse movement stage 26 falls within a predetermined range when the X coarse movement stage 26 moves in the X axis and / or Y axis direction. Using the plurality of X and Y linear motors, thrust in the three-degree-of-freedom direction (X axis, Y axis, and θz directions) in the horizontal plane is applied to the fine movement stage 22 and the plurality of X and Y linear motors are used. Then, the fine movement stage 22 is slightly driven with respect to the X coarse movement stage 26 in the direction of three degrees of freedom in the horizontal plane. The position information of the fine movement stage 22 in the three-degree-of-freedom direction in the horizontal plane is obtained by a laser interferometer (not shown) using a bar mirror 34b fixed to the fine movement stage 22 via a mirror base 34a. Although only the Y bar mirror extending in the X-axis direction is shown in FIG. 1, in practice, the Y bar mirror is fixed to the −Y side side surface of fine movement stage 22, and on the −X side side surface of fine movement stage 22. An X bar mirror extending in the Y-axis direction is fixed. A measurement system using a laser interferometer is disclosed in, for example, US Patent Application Publication No. 2010/0018950, and the like, and will not be described. Note that the positional information of the fine movement stage 22 in the direction of three degrees of freedom in the horizontal plane may be obtained using an encoder system having a head and a scale instead of an interferometer.
 X粗動ステージ26の上面には、Z固定子36aが取り付けられている。Z固定子36aは、微動ステージ22の下面に取り付けられたZ可動子36bとともに、微動ステージ22に対してZ軸方向の推力を付与するためのZリニアモータ(本実施形態では、ボイスコイルモータ)を構成する。基板ステージ装置20において、Zリニアモータは、少なくとも同一直線上にない3箇所に配置されている。不図示の主制御装置は、複数のZリニアモータを用いて微動ステージ22をX粗動ステージ26に対してZチルト方向(Z軸、θx、θyの各方向)に微少駆動する。微動ステージ22のZチルト方向の位置情報は、微動ステージ22の下面に取り付けられたZセンサ38aによって、自重支持装置28に取り付けられたターゲット38bを用いて求められる。基板ステージ装置20において、Zセンサ38a(及び対応するターゲット38b)は、少なくとも同一直線上にない3箇所に配置されている。複数のZセンサ38aを用いた計測システムに関しては、一例として米国特許出願公開第2010/0018950号明細書などに開示されているので、説明を省略する。 A Z stator 36 a is attached to the upper surface of the X coarse movement stage 26. The Z stator 36a is a Z linear motor (in this embodiment, a voice coil motor) for applying thrust in the Z-axis direction to the fine movement stage 22 together with the Z movable element 36b attached to the lower surface of the fine movement stage 22. Configure. In the substrate stage device 20, the Z linear motors are arranged at least at three locations that are not on the same straight line. A main controller (not shown) uses a plurality of Z linear motors to slightly drive the fine movement stage 22 in the Z tilt direction (Z-axis, θx, and θy directions) with respect to the X coarse movement stage 26. The position information of the fine movement stage 22 in the Z tilt direction is obtained by the Z sensor 38a attached to the lower surface of the fine movement stage 22 using the target 38b attached to the self-weight support device 28. In the substrate stage apparatus 20, the Z sensors 38 a (and corresponding targets 38 b) are arranged at least at three locations that are not on the same straight line. A measurement system using a plurality of Z sensors 38a is disclosed in, for example, US Patent Application Publication No. 2010/0018950 and the like, and will not be described.
 自重支持装置28は、微動ステージ22の自重を下方から支持する重量キャンセル装置40aと、該重量キャンセル装置40aを下方から支持するYステップガイド42aとを備えている。 The own weight support device 28 includes a weight cancellation device 40a that supports the weight of the fine movement stage 22 from below, and a Y step guide 42a that supports the weight cancellation device 40a from below.
 重量キャンセル装置40aは、X粗動ステージ26に形成された開口部に挿入されている。重量キャンセル装置40aは、X粗動ステージ26に対して複数の連結部材40bを介して機械的に接続されており、X粗動ステージ26と一体的にX軸、及び/又はY軸方向に移動する。重量キャンセル装置40aは、レベリング装置44を介して微動ステージ22の自重を下方から非接触で支持している。これにより、微動ステージ22の重量キャンセル装置40aに対するX軸、Y軸、及びθz方向への相対移動、及び水平面に対する揺動(θx、θy方向への相対移動)が許容される。重量キャンセル装置40aの構成及び機能に関しては、一例として米国特許出願公開第2010/0018950号明細書などに開示されているので、説明を省略する。 The weight cancellation device 40a is inserted into an opening formed in the X coarse movement stage 26. The weight canceling device 40a is mechanically connected to the X coarse movement stage 26 via a plurality of coupling members 40b, and moves in the X axis and / or Y axis direction integrally with the X coarse movement stage 26. To do. The weight canceling device 40a supports the self-weight of the fine movement stage 22 through the leveling device 44 from below without contact. As a result, the relative movement of the fine movement stage 22 in the X-axis, Y-axis, and θz directions with respect to the weight cancellation device 40a and the swinging relative to the horizontal plane (relative movement in the θx and θy directions) are allowed. The configuration and function of the weight cancellation device 40a are disclosed in, for example, US Patent Application Publication No. 2010/0018950 and the like, and will not be described.
 Yステップガイド42aは、X軸に平行に延びる部材から成り、一対のXビーム30a間に配置されている。重量キャンセル装置40aは、Yステップガイド42a上にエアベアリング40cを介して載置されている。Yステップガイド42aは、架台16上に機械的なリニアガイド装置42bを介して載置されており、架台16に対してY軸方向に移動自在であるのに対し、X軸方向に関する相対移動が制限されている。架台16は、上記投影光学系14などを支持する部材の一部であって、Y粗動ステージ24、X粗動ステージ26とは、振動的に分離されている。Yステップガイド42aは、一対のXビーム30aに対して複数の連結部材42cを介して機械的に接続されている。Yステップガイド42aは、Y粗動ステージ24に牽引されることによって、Y粗動ステージ24と一体的にY軸方向に移動する。 The Y step guide 42a is composed of a member extending in parallel with the X axis, and is disposed between the pair of X beams 30a. The weight canceling device 40a is placed on the Y step guide 42a via an air bearing 40c. The Y step guide 42a is placed on the gantry 16 via a mechanical linear guide device 42b. The Y step guide 42a is movable in the Y axis direction with respect to the gantry 16, whereas the Y step guide 42a is relatively moved in the X axis direction. Limited. The gantry 16 is a part of a member that supports the projection optical system 14 and the like, and is separated from the Y coarse movement stage 24 and the X coarse movement stage 26 in a vibrational manner. The Y step guide 42a is mechanically connected to the pair of X beams 30a via a plurality of connecting members 42c. The Y step guide 42 a is pulled by the Y coarse movement stage 24 to move integrally with the Y coarse movement stage 24 in the Y axis direction.
 次に、微動ステージ22の構成について説明する。図2に示されるように、微動ステージ22は、定盤部50、管路部60、ベース部72、及びチャック部74を備えている。定盤部50は、平面視矩形の箱状に形成され、管路部60、及びホルダ部70は、それぞれ平面視矩形の板状に形成されている。微動ステージ22は、定盤部50上に管路部60が配置(積層)され、管路部60上にベース部72が配置(積層)され、さらにベース部72上にチャック部74が配置(積層)されることにより、全体的に4層構造となっている。 Next, the configuration of fine movement stage 22 will be described. As shown in FIG. 2, the fine movement stage 22 includes a surface plate part 50, a pipe line part 60, a base part 72, and a chuck part 74. The surface plate portion 50 is formed in a rectangular box shape in plan view, and the duct portion 60 and the holder portion 70 are each formed in a plate shape in rectangular shape in plan view. The fine movement stage 22 has a pipe section 60 disposed (stacked) on the surface plate section 50, a base section 72 disposed (stacked) on the pipe section 60, and a chuck section 74 disposed on the base section 72 ( 4 layer structure as a whole.
 定盤部50、管路部60、ベース部72、及びチャック部74それぞれの長さ及び幅方向(X軸及びY軸方向)の寸法は、ほぼ同じに設定されているのに対し、定盤部50の厚さ方向(Z軸方向)の寸法は、管路部60、ベース部72、及びチャック部74に比べて大きく(厚く)設定されている。定盤部50、管路部60、及びベース部72をあわせた厚さ方向(Z軸方向)の寸法は、チャック部74に比べて大きく(厚く)設定されている。また、定盤部50、管路部60、及びベース部72をあわせた重さは、チャック部74に比べて重く、たとえば2.5倍程度の重さを有している。 While the length of the surface plate part 50, the pipe line part 60, the base part 72, and the chuck | zipper part 74 and the dimension of the width direction (X-axis and Y-axis direction) are set substantially the same, a surface plate The dimension of the portion 50 in the thickness direction (Z-axis direction) is set larger (thicker) than the pipe line portion 60, the base portion 72, and the chuck portion 74. The dimension in the thickness direction (Z-axis direction) of the surface plate unit 50, the pipe line unit 60, and the base unit 72 is set larger (thicker) than the chuck unit 74. Further, the combined weight of the surface plate part 50, the pipe line part 60, and the base part 72 is heavier than the chuck part 74, for example, about 2.5 times the weight.
 最下層である定盤部50は、微動ステージ22のベースとなる部分である。定盤部50は、図3に示されるように、下面部52、上面部54、外壁部56、及びハニカム構造体58を備えている。下面部52、及び上面部54は、それぞれCFRP(carbon-fiber-reinforced plastic)により形成された平面視矩形の板状部材である。外壁部56は、平面視矩形の枠状部材であって、アルミニウム合金、あるいはCFRPによって形成されている。外壁部56の内部には、ハニカム構造体58が充填されている。ハニカム構造体58は、アルミニウム合金によって形成されている。なお、図3では、図面の錯綜を避ける観点から、ハニカム構造体は、一部のみが図示されているが、実際には、ハニカム構造体58は、外壁部56の内部にほぼ隙間なく配置されている(図5及び図6参照)。 The surface plate part 50 which is the lowest layer is a part which becomes the base of the fine movement stage 22. As shown in FIG. 3, the surface plate portion 50 includes a lower surface portion 52, an upper surface portion 54, an outer wall portion 56, and a honeycomb structure 58. Each of the lower surface portion 52 and the upper surface portion 54 is a plate member having a rectangular shape in plan view and formed of CFRP (carbon-fiber-reinforced plastic). The outer wall portion 56 is a frame member having a rectangular shape in plan view, and is formed of an aluminum alloy or CFRP. A honeycomb structure 58 is filled in the outer wall portion 56. The honeycomb structure 58 is made of an aluminum alloy. In FIG. 3, only a part of the honeycomb structure is illustrated from the viewpoint of avoiding the confusion of the drawings, but actually, the honeycomb structure 58 is disposed inside the outer wall portion 56 with almost no gap. (See FIG. 5 and FIG. 6).
 ハニカム構造体58が内部に充填された外壁部56は、上面に上面部54が接着されるとともに、下面に下面部52が接着されている。これにより、定盤部50は、いわゆるサンドウィッチ構造とされており、軽量、且つ高剛性(特に厚さ方向に高剛性)であり、作成も容易である。なお、定盤部50を構成する各要素を形成する材料は、上記説明したものに限られず、適宜変更が可能である。また、下面部52、上面部54、及び外壁部56の締結構造も、接着に限られない。 In the outer wall portion 56 filled with the honeycomb structure 58, the upper surface portion 54 is bonded to the upper surface, and the lower surface portion 52 is bonded to the lower surface. Thereby, the surface plate part 50 is made into what is called a sandwich structure, is lightweight and highly rigid (especially highly rigid in the thickness direction), and is easy to produce. In addition, the material which forms each element which comprises the surface plate part 50 is not restricted to what was demonstrated above, It can change suitably. Further, the fastening structure of the lower surface portion 52, the upper surface portion 54, and the outer wall portion 56 is not limited to adhesion.
 下面部52の中央部には、開口52aが形成されている。ハニカム構造体58において、開口52aに対応する部分には、凹部(窪み)が形成されており(図5及び図6参照)、該凹部には、上述したレベリング装置44が嵌め込まれている。ここで、レベリング装置44は、微動ステージ22を水平面に対して(θx及びθy方向に)揺動自在に支持する機能を有していれば、その構成は、特に限定されない。従って、図1では、球面軸受け装置が図示されているが、レベリング装置44としては、これに限られず、図5及び図6に示されるような弾性ヒンジ装置であっても良いし、米国特許出願公開第2010/0018950号明細書などに開示されるような疑似球面軸受け装置であっても良い。 An opening 52 a is formed at the center of the lower surface portion 52. In the honeycomb structure 58, a recess (depression) is formed in a portion corresponding to the opening 52a (see FIGS. 5 and 6), and the above-described leveling device 44 is fitted in the recess. Here, the configuration of the leveling device 44 is not particularly limited as long as the leveling device 44 has a function of swinging the fine movement stage 22 with respect to a horizontal plane (in the θx and θy directions). Therefore, although the spherical bearing device is shown in FIG. 1, the leveling device 44 is not limited to this, and may be an elastic hinge device as shown in FIGS. A pseudo-spherical bearing device as disclosed in the specification of Japanese Patent Publication No. 2010/0018950 may be used.
 管路部60は、Y軸方向に延びる複数のパイプ62を備え、X軸方向に複数のパイプ62が並んで配置されている。パイプ62の長手方向(Y軸方向)の寸法は、定盤部50のY軸方向の寸法と概ね同じに設定されている。なお、パイプ62の本数は、特に限定されず、微動ステージ22に要求される所望の性能に応じて適宜変更が可能である。図6などでは、微動ステージ22の構成、及び機能の理解を容易にするため、パイプ62の本数が実際よりも少なく図示されている。また、パイプ62のXZ断面の断面形状も特に限定されない。図6などでは、パイプ62としてXZ断面が矩形の、いわゆる角パイプが用いられているが、これに限られず、図12に示されるような、いわゆる丸パイプを用いても良い。丸パイプを用いる場合、該丸パイプの外周面の上面と下面とが互いに平行となるように(長手方向に直交する断面が樽型となるように)加工すると良い。本実施形態において、パイプ62は、CFRPによって形成されているが、パイプ62の素材も特に限定されず、適宜変更が可能である。パイプ62の素材としてCFRPを使わない場合、CFRPとは膨張係数が異なる部材を用いることが好ましい。また、複数のパイプ62はY軸方向に延びX軸方向に並んで配置されていると説明したが、これに限定されず、X軸方向に延びY軸方向に並んで配置されるようにしても良い。 The pipe line section 60 includes a plurality of pipes 62 extending in the Y-axis direction, and the plurality of pipes 62 are arranged side by side in the X-axis direction. The dimension of the pipe 62 in the longitudinal direction (Y-axis direction) is set to be approximately the same as the dimension of the surface plate portion 50 in the Y-axis direction. The number of pipes 62 is not particularly limited, and can be appropriately changed according to desired performance required for fine movement stage 22. In FIG. 6 and the like, the number of pipes 62 is smaller than the actual number in order to facilitate understanding of the configuration and functions of the fine movement stage 22. Further, the cross-sectional shape of the XZ cross section of the pipe 62 is not particularly limited. In FIG. 6 or the like, a so-called square pipe having a rectangular XZ section is used as the pipe 62, but the present invention is not limited to this, and a so-called round pipe as shown in FIG. 12 may be used. When using a round pipe, it is good to process so that the upper surface and lower surface of the outer peripheral surface of this round pipe may become mutually parallel (the cross section orthogonal to a longitudinal direction becomes a barrel shape). In this embodiment, the pipe 62 is formed of CFRP, but the material of the pipe 62 is not particularly limited, and can be changed as appropriate. When CFRP is not used as the material of the pipe 62, it is preferable to use a member having a different expansion coefficient from that of CFRP. In addition, it has been described that the plurality of pipes 62 extend in the Y-axis direction and are arranged side by side in the X-axis direction. However, the present invention is not limited thereto, and the pipes 62 extend in the X-axis direction and are arranged in line in the Y-axis direction. Also good.
 ベース部72は、図3に示されるように、平面視矩形の薄板状部材であって、石材、あるいはセラミックスなどによって形成されている。なお、ベース部72の素材は、特に限定されないが、硬度に優れ且つ高精度加工が容易な材料が好ましい。微動ステージ22では、複数枚のベース部72が、管路部60を構成する複数のパイプ62上に載置されている。各ベース部72は、互いに密着(隙間が無視できる程度に接触)した状態で、管路部60に敷き詰められており、複数のパイプ62に対して接着剤により固定されている。 As shown in FIG. 3, the base portion 72 is a thin plate-like member having a rectangular shape in plan view, and is formed of stone or ceramics. The material of the base portion 72 is not particularly limited, but a material that is excellent in hardness and easy to process with high precision is preferable. In the fine movement stage 22, a plurality of base portions 72 are placed on a plurality of pipes 62 constituting the conduit portion 60. Each base part 72 is spread on the pipe line part 60 in a state of being in close contact with each other (a gap is negligible), and is fixed to the plurality of pipes 62 with an adhesive.
 各ベース部72それぞれは、表面(パイプ62に対する接着面とは反対側の面)の平面度が非常に高くなるように加工(ラップ加工など)されている。また、複数のベース部72は、管路部60上に敷き詰められた状態で、各ベース部72間の段差が実質的に無視できる程度となるように、それぞれの表面高さ位置が調整されている。なお、管路部60の上方に、基板P(図1参照)と同等の面積を有する平面を形成することができれば、各ベース部72の大きさ(面積)は、図3に示されるように、共通の大きさを有していても良いし、図7に示されるように、サイズの異なるベース部72が混在していても良い。また、ベース部72の総枚数も、特に限定されず、1枚のベース部72により構成されていても良い。なお、ベース部72は、平面度が非常に高くなるように加工されていると説明したがこれに限られない。1つもしくは一部のベース部72が他のベース部72よりも低い場合や、ベース部72の一部欠けていたり、くぼみがあったりしても良い。後述するが、チャック部74がベース部72上に載置されたときに平面度が出れば良く、チャック部74の大きさよりも小さな欠けやくぼみがベース部72にあっても良い。 Each base portion 72 is processed (lapping or the like) so that the flatness of the surface (the surface opposite to the bonding surface with respect to the pipe 62) is very high. In addition, the surface height positions of the plurality of base portions 72 are adjusted so that the steps between the base portions 72 are substantially negligible while being laid on the pipeline portion 60. Yes. If a plane having an area equivalent to that of the substrate P (see FIG. 1) can be formed above the pipe line portion 60, the size (area) of each base portion 72 is as shown in FIG. The base portions 72 having different sizes may be mixed as shown in FIG. 7. Further, the total number of the base portions 72 is not particularly limited, and may be configured by a single base portion 72. In addition, although demonstrated that the base part 72 was processed so that flatness might become very high, it is not restricted to this. One or a part of the base part 72 may be lower than the other base parts 72, or a part of the base part 72 may be missing or a dent may be present. As will be described later, it is sufficient that the flatness is obtained when the chuck portion 74 is placed on the base portion 72, and a chip or a dent smaller than the size of the chuck portion 74 may be present in the base portion 72.
 上述した各ベース部72間の表面高さ位置調整は、ラップ加工などによって行うと良い。この場合、ラップ加工は、微動ステージ22に各種付属物(バーミラー34b、可動子32b、36b、複数のチャック部74)が取り付いた状態で所望の精度になるように撓みを考慮して行うことが望ましい。また、図10に示されるように、ベース部72の上面における端部近傍は、面取り加工が施されており、複数のベース部72を敷き詰めた状態で、隣接するベース部72間には、V字溝が形成される。該V字溝には、目地材72aが充填されており、隣接するベース部72間に、ラップ加工時の水分などが侵入することを防止することができる。 The above-described surface height position adjustment between the base portions 72 may be performed by lapping or the like. In this case, the lapping process is performed in consideration of the bending so that a desired accuracy can be obtained with various attachments (bar mirror 34b, movers 32b and 36b, and a plurality of chuck portions 74) attached to fine movement stage 22. desirable. In addition, as shown in FIG. 10, the vicinity of the end portion on the upper surface of the base portion 72 is chamfered, and a plurality of base portions 72 are spread between the adjacent base portions 72. A groove is formed. The V-shaped groove is filled with a joint material 72a, and it is possible to prevent moisture and the like from entering between adjacent base portions 72 from entering.
 図3に戻り、チャック部74は、基板P(図1参照)が載置される部分である。チャック部74は、管路部60とベース部72と協働して基板Pを吸着保持する。チャック部74は、平面視矩形の薄板状部材であって、セラミックスなどによって形成されている。チャック部74をセラミックスにより形成することで、基板Pからの静電気の発生を抑制することができる。なお、チャック部74の素材は、特に限定されないが、軽量且つ高精度加工が容易な材料が好ましい。ベース部72の素材として、軽量な素材を用いることで、ベース部および/または管路部60の変形を防止することができる。チャック部74の厚み(たとえば8mm)は、ベース部の厚み(たとえば12mm)に対して薄く設定されている。微動ステージ22では、複数のベース部72が敷き詰めされることによって形成された平面上に、複数枚のチャック部74が敷き詰められている(図2及び図3では一部図示省略)。チャック部74は、対応する(該チャック部74の下方の)ベース部72に吸着保持される。ベース部72にチャック部74を吸着保持させるための構造(チャック部74の吸着保持構造)に関しては、後に説明する。 3, the chuck portion 74 is a portion on which the substrate P (see FIG. 1) is placed. The chuck portion 74 holds the substrate P by suction in cooperation with the pipe line portion 60 and the base portion 72. The chuck portion 74 is a thin plate member having a rectangular shape in plan view, and is formed of ceramics or the like. The formation of static electricity from the substrate P can be suppressed by forming the chuck portion 74 from ceramics. The material of the chuck portion 74 is not particularly limited, but a material that is lightweight and easy to process with high precision is preferable. By using a lightweight material as the material of the base portion 72, deformation of the base portion and / or the pipeline portion 60 can be prevented. The thickness of the chuck portion 74 (for example, 8 mm) is set thinner than the thickness of the base portion (for example, 12 mm). In fine movement stage 22, a plurality of chuck portions 74 are spread on a plane formed by spreading a plurality of base portions 72 (partially omitted in FIGS. 2 and 3). The chuck part 74 is sucked and held by the corresponding base part 72 (below the chuck part 74). A structure for adsorbing and holding the chuck portion 74 on the base portion 72 (adsorption holding structure of the chuck portion 74) will be described later.
 1つ(1枚)のチャック部74は、1つ(1枚)のベース部72よりも面積が小さく設定されている。図3に示される例では、1枚のベース部72上に、2枚のチャック部74が載置される場合が示されているが、1枚のベース部72上に載置されるチャック部74の枚数は特に限定されない。また1枚のチャック部74の面積も上記のものに限られず、1枚のベース部72と同じ面積を持っていても良いし、1枚のベース部72よりも大きい面積を持っていても良い。そして同じ面積の場合は、1枚のベース部72に1枚のチャック部74を載置するように構成しても良いし、チャック部74の方の面積が大きい場合には1枚のチャック部74を複数枚のベース部72で支持するようにしても良い。なお、ベース部72とチャック部74とを合わせてホルダ部70と称しても良い。この場合は、ホルダ部70は、ベース部72(下層)とチャック部74(上層)との2層構造となる。上述したように、微動ステージ22は、定盤部50、管路部60、ベース部72、チャック部74の4層構造となっているが、定盤部50、管路部60、及びホルダ部70から成る3層構造であると言うこともできる。 The area of one (one) chuck part 74 is set smaller than that of one (one) base part 72. In the example shown in FIG. 3, the case where two chuck portions 74 are placed on one base portion 72 is shown, but the chuck portion placed on one base portion 72. The number of sheets 74 is not particularly limited. The area of one chuck portion 74 is not limited to the above, and may have the same area as one base portion 72 or may have an area larger than one base portion 72. . In the case of the same area, one chuck portion 74 may be mounted on one base portion 72, or one chuck portion if the area of the chuck portion 74 is larger. 74 may be supported by a plurality of base portions 72. The base part 72 and the chuck part 74 may be collectively referred to as a holder part 70. In this case, the holder part 70 has a two-layer structure of a base part 72 (lower layer) and a chuck part 74 (upper layer). As described above, the fine movement stage 22 has a four-layer structure of the surface plate part 50, the pipe line part 60, the base part 72, and the chuck part 74, but the surface plate part 50, the pipe line part 60, and the holder part. It can also be said that it has a three-layer structure consisting of 70.
 微動ステージ22では、複数枚のベース部72上に載置された(敷き詰められた)複数枚のチャック部74によって基板載置面が形成される。各チャック部74は、厚みが実質的に同じとなるように高精度加工されている。従って、複数枚のチャック部74によって形成される微動ステージ22の基板載置面は、複数のベース部72によって形成される平面に倣って、平面度が高く形成される。チャック部74は、ベース部72上に交換・分離可能に載置されている。またチャック部74は、定盤部50および/または管路部60に対して交換・分離可能に載置されている。 In fine movement stage 22, a substrate placement surface is formed by a plurality of chuck portions 74 placed (laid) on a plurality of base portions 72. Each chuck portion 74 is processed with high accuracy so that the thickness is substantially the same. Therefore, the substrate placement surface of fine movement stage 22 formed by the plurality of chuck portions 74 is formed with high flatness following the plane formed by the plurality of base portions 72. The chuck part 74 is placed on the base part 72 so as to be replaceable and separable. The chuck portion 74 is placed so as to be replaceable and separable with respect to the surface plate portion 50 and / or the pipe line portion 60.
 次にチャック部74の構成について説明する。微動ステージ22は、いわゆるピンチャック型のホルダであって、各チャック部74の上面には、図9に示されるように、複数のピン74a、及び、周壁部74bが形成されている。複数のピン74aは、ほぼ均等な間隔で配置されている。ピンチャック型ホルダにおけるピン74aの径は非常に小さい(例えば直径1mm程度)く、また周壁部74bの幅も細いので、基板Pの裏面にゴミや異物を挟み込んで支持する可能性を低減でき、その異物の挟み込みによる基板Pの変形の可能性も低減できる。なお、ピン74aの本数及び配置は、特に限定されず、適宜変更が可能である。周壁部74bは、チャック部74の上面の外周を囲むように形成されている。複数のピン74aと周壁部74bとは、先端の高さ位置(Z位置)が同じに設定されている。また、チャック部74の上面には、照明光IL(図1参照)の反射を抑制するために、表面が黒色となるように皮膜処理、セラミック溶射などの各種表面加工が施されている。 Next, the configuration of the chuck portion 74 will be described. The fine movement stage 22 is a so-called pin chuck type holder, and a plurality of pins 74a and a peripheral wall portion 74b are formed on the upper surface of each chuck portion 74 as shown in FIG. The plurality of pins 74a are arranged at almost equal intervals. Since the diameter of the pin 74a in the pin chuck type holder is very small (for example, about 1 mm in diameter) and the width of the peripheral wall portion 74b is thin, the possibility of sandwiching and supporting dust and foreign matter on the back surface of the substrate P can be reduced. The possibility of deformation of the substrate P due to the inclusion of the foreign matter can also be reduced. The number and arrangement of the pins 74a are not particularly limited and can be changed as appropriate. The peripheral wall portion 74 b is formed so as to surround the outer periphery of the upper surface of the chuck portion 74. The plurality of pins 74a and the peripheral wall portion 74b are set to have the same tip height position (Z position). Further, in order to suppress the reflection of the illumination light IL (see FIG. 1), the surface of the chuck portion 74 is subjected to various surface processing such as coating treatment and ceramic spraying so that the surface becomes black.
 微動ステージ22では、基板P(それぞれ図1参照)が複数のピン74a、及び周壁部74b上に載置された状態で、周壁部74bに囲まれた空間に真空吸引力が供給される(空間内の空気が真空吸引される)ことによって、基板Pがチャック部74に吸着保持される。基板Pは、複数のピン74a、及び周壁部74bの先端部に倣って平面矯正される。チャック部74に基板Pを吸着保持させるための構造(基板Pの吸着保持構造)に関しては、後に説明する。 In the fine movement stage 22, a vacuum suction force is supplied to the space surrounded by the peripheral wall portion 74b in a state where the substrate P (see FIG. 1 respectively) is placed on the plurality of pins 74a and the peripheral wall portion 74b (space). The substrate P is sucked and held on the chuck portion 74 by the vacuum of the air inside. The substrate P is flattened following the plurality of pins 74a and the distal end portions of the peripheral wall portion 74b. A structure for adsorbing and holding the substrate P on the chuck portion 74 (adsorption holding structure of the substrate P) will be described later.
 また、微動ステージ22は、基板P(図1参照)が複数のピン74a、及び周壁部74b上に載置された状態で、周壁部74bに囲まれた空間に加圧気体(圧縮空気など)を供給することによって、基板載置面上の該基板Pの吸着を解除することができる。基板載置面上の基板Pの吸着を解除させるため、換言すると基板載置面上の基板Pを浮上させるための構造(基板Pの浮上支持構造)に関しては、後に説明する。 Further, the fine movement stage 22 is configured such that the substrate P (see FIG. 1) is placed on the plurality of pins 74a and the peripheral wall 74b, and a pressurized gas (compressed air or the like) is formed in a space surrounded by the peripheral wall 74b. , The adsorption of the substrate P on the substrate mounting surface can be released. In order to release the adsorption of the substrate P on the substrate placement surface, in other words, a structure for floating the substrate P on the substrate placement surface (floating support structure of the substrate P) will be described later.
 また、チャック部74の下面にも、図11に示されるように、複数のピン74c、74d、及び周壁部74eが形成されている。すなわちチャック部74の下面もピンチャック構造となっている。チャック部74は、ベース部72上に載置された状態で、複数のピン74c、74d、及び周壁部74eの先端部が、ベース部72の上面に接触する。複数のピン74c、74dは、ほぼ均等な間隔で配置されている。ピン74dは、ピン74cよりも径方向寸法が大きく(太く)設定されており、ベース部72(図10参照)に対する接触面積が、ピン74cよりも広い。ピン74dのほぼ中央にはそれぞれ貫通孔74f、74gが設けられてる。これら貫通孔74f,74gはそれぞれチャック部74を貫通するように構成されており、且つベース部72に設けられている吸引用パイプ62bに連通する貫通孔72b、排気用パイプ62cの貫通孔に連通するベース部72の貫通孔に連通している。貫通孔74fは空気を吸引するための孔であり、チャック部74の上面に形成されたピンチャックと基板Pとによって形成された空間(空気)を貫通孔74fを介して真空吸引して基板Pを吸着保持する。貫通孔74gは空気を排気する(吹き出す)ための圧空排気孔であり、貫通孔74fよりも径(開口径)が小さく構成されており、チャック部74の上面に吸着された基板Pの吸着を解除する際に、貫通孔74gを介して基板Pに対して基板Pを浮上させるだけの勢いを持つエアーを吹きつける。 Further, as shown in FIG. 11, a plurality of pins 74 c and 74 d and a peripheral wall portion 74 e are also formed on the lower surface of the chuck portion 74. That is, the lower surface of the chuck portion 74 also has a pin chuck structure. In the state where the chuck portion 74 is placed on the base portion 72, the plurality of pins 74 c and 74 d and the distal end portions of the peripheral wall portion 74 e are in contact with the upper surface of the base portion 72. The plurality of pins 74c and 74d are arranged at almost equal intervals. The pin 74d is set such that the radial dimension is larger (thicker) than the pin 74c, and the contact area with the base portion 72 (see FIG. 10) is wider than the pin 74c. Through holes 74f and 74g are provided at substantially the center of the pin 74d, respectively. These through holes 74f and 74g are configured to penetrate the chuck portion 74, and communicate with the through hole 72b communicating with the suction pipe 62b provided in the base portion 72 and the through hole of the exhaust pipe 62c. The base portion 72 communicates with the through hole. The through-hole 74f is a hole for sucking air, and the space (air) formed by the pin chuck formed on the upper surface of the chuck portion 74 and the substrate P is vacuum-sucked through the through-hole 74f to obtain the substrate P. Adsorb and hold. The through hole 74g is a compressed air exhaust hole for exhausting (blowing out) air, and has a smaller diameter (opening diameter) than the through hole 74f. The through hole 74g adsorbs the substrate P adsorbed on the upper surface of the chuck portion 74. When canceling, air having a force sufficient to float the substrate P is blown to the substrate P through the through hole 74g.
 なお、ピン74c、74dの本数及び配置は、特に限定されず、適宜変更が可能である。複数のピン74aと複数のピン74c、74dのXY方向の位置は同じでも良いし、異なる位置に配置されても良い。周壁部74eは、チャック部74の下面の外周を囲むように形成されている。複数のピン74c、74dと周壁部74eとは、先端の高さ位置(Z位置)が同じに設定されている。微動ステージ22では、チャック部74がベース部72上に載置された状態で、周壁部74eに囲まれた空間に真空吸引力が供給されることによってチャック部74がベース部72に吸着保持される。すなわちベース部72チャック部74の下面(裏面)側において、ベース部72と、チャック部74の周壁部74e、ピン74c、およびピン74dとによって囲まれた空間(真空吸引される空間)を介して、チャック部74はベース部72に固着される。その一方で、上述したように、チャック部74の下面の貫通孔74f、74gは、ベース部72の貫通孔に連通しているように配置されているためベース部72に固着されることは無い。 In addition, the number and arrangement of the pins 74c and 74d are not particularly limited, and can be appropriately changed. The positions in the XY direction of the plurality of pins 74a and the plurality of pins 74c and 74d may be the same or may be arranged at different positions. The peripheral wall portion 74e is formed so as to surround the outer periphery of the lower surface of the chuck portion 74. The plurality of pins 74c, 74d and the peripheral wall portion 74e are set to have the same tip height position (Z position). In the fine movement stage 22, the chuck portion 74 is sucked and held by the base portion 72 by supplying a vacuum suction force to the space surrounded by the peripheral wall portion 74 e in a state where the chuck portion 74 is placed on the base portion 72. The That is, on the lower surface (rear surface) side of the base portion 72 chuck portion 74, a space (vacuum sucked space) surrounded by the base portion 72 and the peripheral wall portion 74e, the pin 74c, and the pin 74d of the chuck portion 74 is provided. The chuck part 74 is fixed to the base part 72. On the other hand, as described above, the through holes 74f and 74g on the lower surface of the chuck portion 74 are arranged so as to communicate with the through holes of the base portion 72, and thus are not fixed to the base portion 72. .
 ここで本実施形態におけるチャック部74のベース部72に対する固着とは、上述の真空吸着のように、チャック部74の下面の一部(上記空間)に対して吸着力が作用している間は、ベース部72から剥がれず(Z方向の位置ずれを生じず)、且つベース部72に対する相対的な位置ずれ(X,Y方向の位置ずれ)を生じない状態を維持することである。更に、この真空吸着を解除してチャック部74に対する上述の吸着力の作用がなくなれば、ベース部72からチャック部74を離脱(取り外し)できるようになることでもある。なお、複数のベース部72によって形成される平面に倣ってチャック部74を載置すると説明したが、平面でなくても良い。複数のベース部72によって形成される面とチャック部74の下面との形状が実質的に同じであれば、複数のベース部72が平面でなく曲面であっても良い。 Here, in the present embodiment, the chuck portion 74 is fixed to the base portion 72 while the suction force is acting on a part of the lower surface of the chuck portion 74 (the space) as in the vacuum suction described above. This is to maintain a state where the base part 72 is not peeled off (no positional deviation in the Z direction occurs) and a relative positional deviation relative to the base part 72 (a positional deviation in the X and Y directions) does not occur. Further, if the suction force is not applied to the chuck portion 74 after the vacuum suction is released, the chuck portion 74 can be detached (removed) from the base portion 72. In addition, although it demonstrated that the chuck | zipper part 74 was mounted according to the plane formed by the some base part 72, it does not need to be a plane. As long as the shape formed by the plurality of base portions 72 and the bottom surface of the chuck portion 74 are substantially the same, the plurality of base portions 72 may be curved surfaces instead of flat surfaces.
 ここで、微動ステージ22は、複数のチャック部74のベース部72からの浮き上がりを防止するための各種機構を有している。図4~図6に示される例では、チャック部74の+Y側の端部に平板状の凸部76が形成されるともに、-Y側の端部に凸部76に対応する凹部(凸部76と重なっているため不図示)が形成されている。隣接するチャック部74は、凸部76と対応する凹部とを嵌合させることによって機械的に締結される。また、微動ステージ22の外周に沿って配置されたチャック部74は、締結部材78によってベース部72に機械的に締結されている。なお、各チャック部74は、定盤部50、あるいは管路部60に締結されても良い(図12参照)。締結部材78は、ベース部72、定盤部50、あるいは管路部60のたとえば+X側かつ+Y側の角に設けるようにし、別の部材を使って、-X側と-Y側からチャック部74を締結部材78に対して押圧して、締結させるようにしても良い。 Here, the fine movement stage 22 has various mechanisms for preventing the plurality of chuck portions 74 from floating from the base portion 72. In the example shown in FIGS. 4 to 6, a flat convex portion 76 is formed at the + Y side end of the chuck portion 74, and a concave portion (convex portion corresponding to the convex portion 76 is formed at the −Y side end. (Not shown) because it overlaps 76. Adjacent chuck portions 74 are mechanically fastened by fitting the convex portions 76 to the corresponding concave portions. The chuck portion 74 disposed along the outer periphery of the fine movement stage 22 is mechanically fastened to the base portion 72 by a fastening member 78. In addition, each chuck | zipper part 74 may be fastened to the surface plate part 50 or the pipe line part 60 (refer FIG. 12). The fastening member 78 is provided at, for example, the + X side and + Y side corners of the base part 72, the surface plate part 50, or the pipe line part 60, and the chuck part from the −X side and the −Y side using different members. 74 may be pressed against the fastening member 78 and fastened.
 また、図12~図14に示される締結構造の例では、チャック部74の+Y側及び-Y側の端部それぞれに凹部176が形成され、対向する一対の凹部176内に帯状の部材178(バンド178)が挿入されている。バンド178は、定盤部50(ベース部72、あるいは管路部60でも良い)に締結されており、これによって、チャック部74のベース部72からの浮き上がりが防止される。 In the example of the fastening structure shown in FIGS. 12 to 14, a recess 176 is formed in each of the + Y side and −Y side ends of the chuck portion 74, and a band-shaped member 178 ( A band 178) is inserted. The band 178 is fastened to the surface plate part 50 (the base part 72 or the pipe line part 60 may be used), and thereby the lift of the chuck part 74 from the base part 72 is prevented.
 なお、チャック部74の締結構造、及び浮き上がり防止構造は、適宜変更が可能である。凸部76と該凸部76に対応する凹部が、チャック部74のY側端部に設けられていたが、X側端部に設けられるようにしても良いし、Y側とX側との両端部に設けられるようにしても良い。図15に示される例では、チャック部74及びY軸方向に関する両端部に凹部276(ホゾ穴)が形成され、該凹部276には、チャック部74の本体部分とは別部品として用意されたホゾ278が接着剤などにより組み付けられる。この例では、チャック部74の本体部分に成型時に表面に出っ張りがないので、所望の外形寸法で高精度に加工できる。また、ホゾ278を脆性材料にしなければ欠けにも強い。 In addition, the fastening structure of the chuck part 74 and the lifting prevention structure can be changed as appropriate. Although the convex portion 76 and the concave portion corresponding to the convex portion 76 are provided at the Y side end portion of the chuck portion 74, they may be provided at the X side end portion, or between the Y side and the X side. It may be provided at both ends. In the example shown in FIG. 15, recesses 276 (recess holes) are formed at both ends of the chuck portion 74 and the Y-axis direction, and the recesses 276 are prepared as separate parts from the main body portion of the chuck portion 74. 278 is assembled by an adhesive or the like. In this example, the main body portion of the chuck portion 74 does not protrude on the surface at the time of molding, so that it can be processed with a desired external dimension with high accuracy. In addition, if the hozo 278 is not made of a brittle material, it is resistant to chipping.
 また、図16に示される例では、チャック部74の下面側にマグネット374が埋め込まれている。この場合、ベース部72を磁性材料によって形成することにより、チャック部74の浮き上がり、脱落等を防止できる。この場合、各チャック部74を連結させなくても良い。チャック部74の浮き上がり、脱落等を防止をより確実なものとするために、各チャック部74を連結させるようにしても良い。また、チャック部74のマグネット374により、ベース部72への仮止めを行い、さらにチャック部74をベース部72へ吸着保持するようにしても良い。 Further, in the example shown in FIG. 16, a magnet 374 is embedded on the lower surface side of the chuck portion 74. In this case, by forming the base portion 72 from a magnetic material, the chuck portion 74 can be prevented from being lifted, dropped off, or the like. In this case, the chuck portions 74 may not be connected. In order to more reliably prevent the chuck portion 74 from being lifted or dropped, the chuck portions 74 may be connected. Further, the magnet 374 of the chuck portion 74 may be temporarily fixed to the base portion 72, and the chuck portion 74 may be attracted and held to the base portion 72.
 また、図12~図14に示される例では、帯状のバンド178によって各チャック部74が定盤部50に締結されたが、図17に示されるように、バンド178に換えてワイヤロープ476によって各チャック部74が締結しても良い。また、図18に示されるように、上記バンド178(図13参照)、ワイヤロープ476(図17参照)に換えて、1本の棒材576を隣接するチャック部74間に挿入する構造であっても良い。この場合、チャック部74のY軸方向の端部に形成される凹部578は、1本の棒材576が一対のチャック部74に跨るように断面で三角形状となるように形成すると良い。 In the example shown in FIGS. 12 to 14, each chuck portion 74 is fastened to the surface plate portion 50 by a belt-like band 178. However, as shown in FIG. 17, a wire rope 476 is used instead of the band 178. Each chuck portion 74 may be fastened. Further, as shown in FIG. 18, instead of the band 178 (see FIG. 13) and the wire rope 476 (see FIG. 17), a single bar 576 is inserted between adjacent chuck portions 74. May be. In this case, the concave portion 578 formed at the end portion in the Y-axis direction of the chuck portion 74 is preferably formed to have a triangular shape in cross section so that one bar 576 straddles the pair of chuck portions 74.
 次に、上述した微動ステージ22における、チャック部74の吸着保持構造、基板Pの吸着保持構造、及び基板Pの浮上支持構造について、それぞれ図7などを用いて説明する。上述したように微動ステージ22の管路部60は、複数のパイプ62によって構成されている。図7に示されるように、複数のパイプ62には、チャック部74を吸着する真空吸引力を供給するための吸引用パイプ62a、基板Pを吸着する真空吸引力を供給するための吸引用パイプ62b、基板Pを浮上させる加圧気体を供給するための排気用パイプ62c、及び上記パイプ62a~62c間の隙間に配置されたパイプ62dが含まれる。パイプ62dには、真空吸引力、又は加圧気体が供給されず、専ら各パイプ62a~62cとともに複数のベース部72を支持するための部材として機能する。なお、図7では、5本1組のパイプ62(パイプ62aが2本、パイプ62bが1本、パイプ62cが2本)上にベース部72を介してチャック部74が載置される例(1枚のチャック部74に対応して5本1組のパイプ62が配置される例)が示されているが、各パイプ62a~62cの本数、組み合わせ、配置などは、これに限られず、適宜変更が可能である。また、吸引用パイプ62bと排気用パイプ62cとをそれぞれ設けるのではなく、それぞれの機能を兼用する兼用パイプ62eを設けるようにしても良い。 Next, the suction holding structure of the chuck portion 74, the suction holding structure of the substrate P, and the floating support structure of the substrate P in the fine movement stage 22 described above will be described with reference to FIG. As described above, the pipe section 60 of the fine movement stage 22 is constituted by the plurality of pipes 62. As shown in FIG. 7, the plurality of pipes 62 include a suction pipe 62 a for supplying a vacuum suction force for sucking the chuck portion 74 and a suction pipe for supplying a vacuum suction force for sucking the substrate P. 62b, an exhaust pipe 62c for supplying pressurized gas for floating the substrate P, and a pipe 62d disposed in a gap between the pipes 62a to 62c. The pipe 62d is not supplied with a vacuum suction force or pressurized gas, and functions exclusively as a member for supporting the plurality of base portions 72 together with the pipes 62a to 62c. In FIG. 7, an example in which the chuck portion 74 is placed via a base portion 72 on a set of five pipes 62 (two pipes 62 a, one pipe 62 b and two pipes 62 c) ( Although an example in which a set of five pipes 62 is arranged corresponding to one chuck portion 74 is shown, the number, combination, arrangement, etc. of each of the pipes 62a to 62c are not limited to this, It can be changed. In addition, instead of providing the suction pipe 62b and the exhaust pipe 62c, a dual-purpose pipe 62e that also functions as the respective functions may be provided.
 図10に示されるように、基板吸引用のパイプ62bの長手方向の一端(本実施形態では-Y側の端部)には、プラグ64が嵌め込まれている。また、パイプ62bの長手方向の他端には、継手付きのプラグ66(以下、単に「継手66」と称する)が嵌め込まれている。継手66には、不図示の管路部材(チューブなど)を介して微動ステージ22の外部から真空吸引力(図10の黒矢印参照)が供給(パイプ62b内部が真空状態と)される。兼用パイプ62eが設けられる場合、真空吸引力と加圧気体とを切り替え可能供給される。 As shown in FIG. 10, a plug 64 is fitted into one end in the longitudinal direction of the substrate suction pipe 62b (in this embodiment, the end on the -Y side). A plug 66 with a joint (hereinafter simply referred to as “joint 66”) is fitted into the other end of the pipe 62b in the longitudinal direction. A vacuum suction force (see the black arrow in FIG. 10) is supplied to the joint 66 from the outside of the fine movement stage 22 via a pipe member (tube or the like) (not shown) (the inside of the pipe 62b is in a vacuum state). When the dual-purpose pipe 62e is provided, the vacuum suction force and the pressurized gas can be switched and supplied.
 パイプ62bの上面には、複数の貫通孔68が形成されている。また、ホルダ部70のベース部72には、パイプ62b上に載置された状態で貫通孔68とXY平面内の位置がほぼ同じとなる位置に貫通孔72bが形成されている。さらに、ホルダ部70のチャック部74には、ベース部72上に載置された状態で、貫通孔68、72bとXY平面内の位置がほぼ同じとなる位置に貫通孔74fが形成されている。貫通孔68、72b、74fは、連通しており、パイプ62b内に真空吸引力が供給されると、上記貫通孔68、72b、74fを介してチャック部74上面のうち、周壁部74b(図9参照)に囲まれた空間に真空吸引力が供給される。これにより、微動ステージ22は、チャック部74上に載置された基板P(図1参照)を吸着保持する。 A plurality of through holes 68 are formed on the upper surface of the pipe 62b. Further, a through hole 72b is formed in the base part 72 of the holder part 70 at a position where the position in the XY plane is substantially the same as the through hole 68 when placed on the pipe 62b. Further, in the chuck portion 74 of the holder portion 70, a through hole 74f is formed at a position where the position in the XY plane is substantially the same as that of the through holes 68 and 72b when placed on the base portion 72. . The through holes 68, 72b, and 74f communicate with each other, and when a vacuum suction force is supplied into the pipe 62b, the peripheral wall portion 74b (see FIG. 5) of the upper surface of the chuck portion 74 through the through holes 68, 72b, and 74f. 9)), a vacuum suction force is supplied to the space surrounded by. Thereby, the fine movement stage 22 sucks and holds the substrate P (see FIG. 1) placed on the chuck portion 74.
 なお、貫通孔68、72b、74fに供給される真空吸引力の強さを、微動ステージ内の位置に応じて変更しても良い。微動ステージ22の中央部に配置された貫通孔68、72b、74fに供給される真空吸引力の強さを強くすることで、基板Pの中央部に生じる空気溜まりを無くすことができる。また、空気溜まりがなくなった際に、真空吸引力の強さを弱めるようにしても良い。また、微動ステージ22の中央部に配置された貫通孔68、72b、74fに供給される真空吸引力を微動ステージ22の周辺部に配置された貫通孔68、72b、74fよりも早く、つまり時間差をつけて、供給するようにしても良い。ここで、図11に示されるように、貫通孔74fは、ピン74d(太いピン)を貫通するように形成されており、パイプ62bからの真空吸引力がチャック部74の下面側に供給されることがない。 Note that the strength of the vacuum suction force supplied to the through holes 68, 72b, and 74f may be changed according to the position in the fine movement stage. By increasing the strength of the vacuum suction force supplied to the through holes 68, 72b, and 74f disposed in the central portion of the fine movement stage 22, an air pocket generated in the central portion of the substrate P can be eliminated. Further, when the air pool disappears, the strength of the vacuum suction force may be reduced. Further, the vacuum suction force supplied to the through holes 68, 72b, 74f arranged in the center of the fine movement stage 22 is earlier than the through holes 68, 72b, 74f arranged in the peripheral part of the fine movement stage 22, that is, a time difference. You may make it supply with. Here, as shown in FIG. 11, the through hole 74 f is formed so as to penetrate the pin 74 d (thick pin), and the vacuum suction force from the pipe 62 b is supplied to the lower surface side of the chuck portion 74. There is nothing.
 なお、図9では、チャック部74に貫通孔74fが2つ形成された例が示されているが、貫通孔74f(対応する貫通孔68、72bも同様)の数、及び配置は、これに限られず、適宜変更が可能である。なお、貫通孔68、72b、74fの直径はそれぞれ異なっていても良い。より下方に位置する貫通孔の直径を大きくしたり、つまり貫通孔68の直径を貫通孔74fの直径よりも大きくしたり、これとは逆に、より上方に位置する貫通孔の直径を大きくしたり、つまり貫通孔74fの直径を貫通孔68の直径よりも大きくするようにしても良い。これにより、チャック部74、ベース部72、パイプ62bとを積層(載置)する際の位置合わせが容易となる。また、貫通孔68、72b、74fの直径は、微動ステージの中央付近に位置する貫通孔68、72b、74fほど大きくするようにしても良い。また、貫通孔68、72b、74fの直径は、Y軸方向に関して、プラグ64に近いほど大きくするようにしても良い。 FIG. 9 shows an example in which two through holes 74f are formed in the chuck portion 74. However, the number and arrangement of the through holes 74f (the same applies to the corresponding through holes 68 and 72b) are shown in FIG. It is not limited and can be changed as appropriate. The diameters of the through holes 68, 72b, and 74f may be different from each other. The diameter of the through hole located below is increased, that is, the diameter of the through hole 68 is made larger than the diameter of the through hole 74f, and conversely, the diameter of the through hole located above is increased. In other words, the diameter of the through hole 74 f may be larger than the diameter of the through hole 68. This facilitates alignment when the chuck portion 74, the base portion 72, and the pipe 62b are stacked (placed). Further, the diameters of the through holes 68, 72b, 74f may be made larger as the through holes 68, 72b, 74f located near the center of the fine movement stage. In addition, the diameters of the through holes 68, 72b, and 74f may be made larger as they are closer to the plug 64 in the Y-axis direction.
 チャック部74の吸着保持構造は、上記基板Pの吸着保持構造と概ね同じに構成されている。すなわち、チャック部吸引用のパイプ62aの両端部には、プラグ64と継手66とがそれぞれ嵌め込まれ、継手66を介して微動ステージ22の外部からパイプ62a内に真空吸引力が供給される。パイプ62aの上面には、貫通孔が形成され(図7参照)、該貫通孔とベース部72に形成された貫通孔(図7参照)を介して、チャック部74下面のうち、周壁部74e(図11参照)に囲まれた空間に真空吸引力が供給される。図11における符号Dは、ベース部72に形成された貫通孔に対応する領域を示しており、真空吸引力がピン74c、74dと重ならない位置に供給されることが分かる。 The suction holding structure of the chuck portion 74 is configured substantially the same as the suction holding structure of the substrate P. That is, the plug 64 and the joint 66 are fitted into both ends of the chuck part suction pipe 62a, respectively, and a vacuum suction force is supplied into the pipe 62a from the outside of the fine movement stage 22 through the joint 66. A through hole is formed in the upper surface of the pipe 62a (see FIG. 7), and the peripheral wall portion 74e of the lower surface of the chuck portion 74 is inserted through the through hole and the through hole formed in the base portion 72 (see FIG. 7). A vacuum suction force is supplied to the space surrounded by (see FIG. 11). 11 indicates a region corresponding to the through hole formed in the base portion 72, and it can be seen that the vacuum suction force is supplied to a position that does not overlap the pins 74c and 74d.
 上記実施形態では、チャック部74のベース部72に対して固着する方法(構成)として、真空吸着する方法(構成)について説明したが、チャック部74を固着する方法としては吸着に限られるものでは無い。たとえば、チャック部74の裏面の一部をベース部72に接着材で接着することで、チャック部42をベース部72に固着するようにしても良い。この場合、チャック部74とベース部72とを接着する接着剤に求められる性能は、両者が剥がしやすく、ずれにくいことである。接着剤が硬化した際に非常に硬くなって膨張し、接着剤がチャック部74をベース部72から持ち上げてしまわないこと、つまり段差を生じさせないことが求められる。チャック部74裏面とベース部72とが密着することによってチャック部42上面の平面度は決まるため、接着剤は硬化前はペースト状でチャック部42裏面の溝部に入り込むが、硬化後は弾力性のあるゴム状のものであることが好ましく、たとえば、湿気硬化型の剥離可能な変形シリコーン系シーリング材などが用いられることが好ましい。 In the above embodiment, the method (configuration) for vacuum suction is described as the method (configuration) for fixing the chuck portion 74 to the base portion 72. However, the method for fixing the chuck portion 74 is not limited to suction. No. For example, the chuck portion 42 may be fixed to the base portion 72 by bonding a part of the back surface of the chuck portion 74 to the base portion 72 with an adhesive. In this case, the performance required for the adhesive that bonds the chuck portion 74 and the base portion 72 is that both are easy to peel off and difficult to shift. When the adhesive is hardened, it becomes very hard and expands, and it is required that the adhesive does not lift the chuck portion 74 from the base portion 72, that is, does not cause a step. Since the back surface of the chuck portion 74 and the base portion 72 are in close contact with each other, the flatness of the upper surface of the chuck portion 42 is determined, so that the adhesive enters the groove portion on the back surface of the chuck portion 42 in a paste state before being cured, but is elastic after the curing. It is preferably a certain rubber-like material, for example, a moisture-curing peelable deformable silicone sealant is preferably used.
 またチャック部74をベース部72に固着する方法として、上述の真空吸着による方法と接着による方法とを兼用しても良い。 Further, as a method of fixing the chuck portion 74 to the base portion 72, the above-described vacuum suction method and adhesion method may be used in combination.
 なおチャック部74に接着材を塗布した場所からは、空気の出し入れが出来なくなるので、チャック部74の裏面における接着剤の塗布する場合には、基板Pを吸着保持するための空気の流路および吸引孔を塞がないような位置に塗布する。 Since the air cannot be taken in and out from the place where the adhesive is applied to the chuck portion 74, when applying the adhesive on the back surface of the chuck portion 74, an air flow path for adsorbing and holding the substrate P and Apply to a position that does not block the suction hole.
 また、チャック部74の内部にマグネットを内蔵するとともに、ベース部72(図2など参照)を磁性材料によって形成しておき、このマグネットの磁気力によってチャック部474をベース部72に固着するようにしても良い。 In addition, a magnet is built in the chuck portion 74, and the base portion 72 (see FIG. 2 and the like) is formed of a magnetic material, and the chuck portion 474 is fixed to the base portion 72 by the magnetic force of the magnet. May be.
 またマグネットと磁性材料の関係を逆転させて、チャック部74を磁性材料で形成し、ベース部72にマグネットを設けるように構成することも考えられるが、この場合には、磁性材料が例えば金属である場合には、チャック部74の表面で静電気が生じ易くなるため、静電気対策(除電装置の利用)が必要になる。また露光光による照射熱やステージから伝わる熱などの熱対策、温度管理(冷却用気体の利用)も行う必要がある。 It is also conceivable to reverse the relationship between the magnet and the magnetic material so that the chuck portion 74 is formed of a magnetic material and the base portion 72 is provided with a magnet. In this case, however, the magnetic material is, for example, a metal. In some cases, static electricity is likely to be generated on the surface of the chuck portion 74, so that countermeasures against static electricity (use of a static eliminator) are required. It is also necessary to take measures against heat, such as irradiation heat from exposure light and heat transmitted from the stage, and temperature management (use of cooling gas).
 なお、装置の運搬時や組み立て時など、チャック部74をベース部72に吸着保持(真空吸着)できない場合には、上記接着剤やマグネット等を用いて、チャック部74がベース部72からずれない(外れない)ようにしても良い。 In addition, when the chuck part 74 cannot be held by suction (vacuum suction) such as when the apparatus is transported or assembled, the chuck part 74 is not displaced from the base part 72 by using the above-mentioned adhesive or magnet. You may make it (it does not come off).
 基板Pの浮上支持構造も、上記基板Pの吸着保持構造と概ね同じに構成されている。すなわち、基板浮上用のパイプ62cに加圧気体が供給されると、該バイブ62cに形成がされた貫通孔、該貫通孔にそれぞれ連通するベース部72の貫通孔、及びチャック部74の貫通孔74g(図9参照)を介して、周壁部74b内に加圧気体が供給される。これにより、微動ステージ22は、チャック部74上に載置された基板P(図1参照)を下方から浮上させることができる。以上のように、管路部60、ベース部72、チャック部74によって、基板Pが吸着保持され基板載置面に沿って平面矯正される。つまり、管路部60、ベース部72、チャック部74の3層構造によって、基板ホルダの機能を有しているとも言える。 The floating support structure of the substrate P is also substantially the same as the suction holding structure of the substrate P. That is, when pressurized gas is supplied to the substrate levitation pipe 62c, the through hole formed in the vibrator 62c, the through hole of the base portion 72 communicating with the through hole, and the through hole of the chuck portion 74, respectively. The pressurized gas is supplied into the peripheral wall portion 74b through 74g (see FIG. 9). Thereby, fine movement stage 22 can float substrate P (refer to Drawing 1) laid on chuck part 74 from the lower part. As described above, the substrate P is sucked and held by the pipe line portion 60, the base portion 72, and the chuck portion 74, and the plane is corrected along the substrate placement surface. In other words, it can be said that the three-layer structure of the pipe line part 60, the base part 72, and the chuck part 74 has the function of a substrate holder.
 なお、微動ステージ22は、基板Pをチャック部74からメカ部材を使って浮上させる浮上ピンを有していても良い。浮上ピンは基板Pに当接する面を有しており、該面を支持する棒上の部材によって構成される。浮上ピンの面とチャック部74の上面とで、基板載置面を形成する。また、浮上ピンは、各チャック部74との間に配置されることでチャック部74の浮き上がり防止構造としても機能する。なお、浮上ピンの数や配置は特に限定されない。 The fine movement stage 22 may have a floating pin for floating the substrate P from the chuck portion 74 using a mechanical member. The flying pin has a surface that comes into contact with the substrate P, and is configured by a member on a rod that supports the surface. A substrate mounting surface is formed by the surface of the floating pin and the upper surface of the chuck portion 74. Further, the floating pin functions as a structure for preventing the chuck portion 74 from being lifted by being disposed between each chuck portion 74. Note that the number and arrangement of the floating pins are not particularly limited.
 なお、管路部60は、複数のパイプ62を備える構成として説明をしたが、一枚もしくは複数の板状の部材に溝を設け、定盤部50および/またはベース部72により該溝を覆うことで、加圧気体(圧縮空気など)が流れる流路を形成したり、真空吸引力が供給される(空間内の空気が真空吸引される)流路を形成したりするようにしても良い。 In addition, although the pipe line part 60 was demonstrated as a structure provided with the some pipe 62, a groove | channel is provided in one or several plate-shaped members, and this groove | channel is covered with the surface plate part 50 and / or the base part 72. Thus, a flow path through which pressurized gas (compressed air or the like) flows may be formed, or a flow path to which a vacuum suction force is supplied (air in the space is vacuumed) may be formed. .
 以上のようにして構成された液晶露光装置10(図1参照)では、不図示の主制御装置の管理の下、不図示のプレートローダによって、微動ステージ22上への基板Pのロードが行われるとともに、不図示のアライメント検出系を用いてアライメント計測が実行され、そのアライメント計測の終了後、基板P上に設定された複数のショット領域に逐次ステップ・アンド・スキャン方式の露光動作が行なわれる。この露光動作は従来から行われているステップ・アンド・スキャン方式の露光動作と同様であるので、その詳細な説明は省略するものとする。 In the liquid crystal exposure apparatus 10 (see FIG. 1) configured as described above, the substrate P is loaded onto the fine movement stage 22 by a plate loader (not shown) under the control of a main controller (not shown). At the same time, alignment measurement is performed using an alignment detection system (not shown), and after completion of the alignment measurement, a step-and-scan exposure operation is sequentially performed on a plurality of shot areas set on the substrate P. Since this exposure operation is the same as a conventional step-and-scan exposure operation, a detailed description thereof will be omitted.
 上記アライメント計測時、及び走査露光時において、微動ステージ22は、基板Pを吸着保持する。また、露光対象の基板Pが基板載置面上に載置される前のプリアライメント動作時、あるいは露光済みの基板Pを外部装置に搬出する際など、微動ステージ22は、基板Pの下面に加圧気体を噴出して、基板載置面上から基板Pの吸着を解除する。 The fine movement stage 22 holds the substrate P by suction during the alignment measurement and the scanning exposure. Further, the fine movement stage 22 is placed on the lower surface of the substrate P during a pre-alignment operation before the substrate P to be exposed is placed on the substrate placement surface or when the exposed substrate P is carried out to an external device. The pressurized gas is jetted to release the adsorption of the substrate P from the substrate placement surface.
 以上説明した本実施形態に係る微動ステージ22(基板ホルダ)によれば、複数のベース部72によって形成された平面上に複数のチャック部74をタイル状に敷き詰めることによって基板載置面(基板保持面)を形成するので、各チャック部74の厚さを精度良く加工するのみで、基板載置面の平面度を容易に確保することが可能となる。また、チャック部74は、基板Pのサイズに比べて小さいので、高精度で平面度良く加工することが容易である。また、チャック部74として、軽量且つ高剛性であるが、大型化が困難であるセラミックス材料を使用することが容易となる。 According to fine movement stage 22 (substrate holder) according to the present embodiment described above, a plurality of chuck portions 74 are laid out in a tile shape on a plane formed by a plurality of base portions 72, thereby placing a substrate mounting surface (substrate holding). Therefore, the flatness of the substrate mounting surface can be easily ensured only by processing the thickness of each chuck portion 74 with high accuracy. Further, since the chuck portion 74 is smaller than the size of the substrate P, it is easy to process with high accuracy and good flatness. Further, as the chuck portion 74, it is easy to use a ceramic material that is lightweight and highly rigid but difficult to increase in size.
 また、基板ステージ装置20において、微動ステージ22の交換は、基板載置部全体を交換する必要がなく、所望のチャック部74のみを交換することが可能であるので、効率が良い。 Also, in the substrate stage apparatus 20, the fine movement stage 22 can be replaced with high efficiency because it is not necessary to replace the entire substrate mounting portion and only the desired chuck portion 74 can be replaced.
 また、各チャック部74を真空吸着によってベース部72に固定するので、チャック部74に均等に吸着力を作用させることができる。従って、チャック部74の変形を抑制できる。 Further, since each chuck portion 74 is fixed to the base portion 72 by vacuum suction, the chucking force can be evenly applied to the chuck portion 74. Therefore, deformation of the chuck portion 74 can be suppressed.
 また、微動ステージ22は、最下層である定盤部50がハニカム構造体によって形成されているので、軽量で剛性が高く、基板Pを平面度良く保持することが可能となる。 Further, in the fine movement stage 22, since the bottom platen 50, which is the lowermost layer, is formed of a honeycomb structure, the substrate P can be held with good flatness with a light weight and high rigidity.
 また、微動ステージ22は、定盤部50とベース部72との間に管路部60が配置(挿入)されるため、管路部材を別途ホルダ70部に接続する場合に比べ、ベース部72、及びチャック部74の配置(交換も含む)を含み、微動ステージ22の組み立てが容易である。 Further, since the fine line stage 60 has the pipe line part 60 disposed (inserted) between the surface plate part 50 and the base part 72, the base part 72 is compared with the case where the pipe line member is separately connected to the holder 70 part. , And the arrangement (including replacement) of the chuck portion 74, and the assembly of the fine movement stage 22 is easy.
 なお、微動ステージ22は、定盤部50、管路部60、ベース部72、チャック部74の4層構造として説明したが、管路部60の上面がベース部72の上面と同等の平面度を形成できる場合、ベース部72を管路部60の上に積層しなくても良い。この場合は、微動ステージ22は、定盤部50、管路部60、チャック部74の3層構造であると言える。 The fine movement stage 22 has been described as a four-layer structure of the surface plate part 50, the pipe line part 60, the base part 72, and the chuck part 74, but the upper surface of the pipe line part 60 has the same flatness as the upper surface of the base part 72. Can be formed, the base portion 72 may not be stacked on the pipe line portion 60. In this case, it can be said that the fine movement stage 22 has a three-layer structure of the surface plate part 50, the pipe line part 60, and the chuck part 74.
 次に、微動ステージ22の組み立て手順、及びチャック部74の交換方法について説明する。微動ステージ22は、一例として、定盤部50上に管路部60が載置された後に管路部60上にホルダ部70が載置されることによって組み立てられる。上述したように、ホルダ部70は、複数のベース部72が敷き詰められることよって平面度が高い平面が形成され、該平面上に複数のチャック部74が敷き詰められることによって形成される。 Next, the assembly procedure of the fine movement stage 22 and the replacement method of the chuck portion 74 will be described. As an example, fine movement stage 22 is assembled by placing holder portion 70 on conduit portion 60 after conduit portion 60 is placed on surface plate portion 50. As described above, the holder portion 70 is formed by laying a plurality of base portions 72 to form a plane with high flatness, and laying a plurality of chuck portions 74 on the plane.
 ここで、複数のチャック部74それぞれは、厚みが均一となるように高精度加工されているが、チャック部74の枚数が多いことから、全てのチャック部74の厚みを厳密に均一とすることが困難となる可能性がある。 Here, each of the plurality of chuck portions 74 is processed with high precision so that the thickness is uniform, but since the number of chuck portions 74 is large, the thickness of all the chuck portions 74 should be strictly uniform. May be difficult.
 そこで、図19に示されるように、複数のベース部72によって形成された平面上に複数のチャック部74を敷き詰めた後、該複数のチャック部74によって形成される面(基板載置面)に対してラップ加工を施すことにより、基板載置面を高い精度(平面度)の平面に加工する。なお、本実施形態では、加工対象物が大型の微動ステージ22であることから、ラップ加工は、ラッピングツール98を手動で加工対象物に対して動かすハンドラッピングにより行われる。これにより、複数のチャック部74の個々の厚みを厳密に管理することなく、平面度の非常に高い基板載置面を有する微動ステージ22を製造することができる。なお、ハンドラッピング時において使用する水分が、チャック部74よりも下方に浸透しないように、隣接するベース部72間の継ぎ目を、上述したように目地材(図10参照)などを用いて防水加工することが好ましい。また、図19では、各チャック部74がベース部72に対して真空吸着保持された状態でラップ加工が行われる場合が示されているが、該吸着保持は、必ずしも行わなくても良い。 Therefore, as shown in FIG. 19, after a plurality of chuck portions 74 are spread on a plane formed by a plurality of base portions 72, a surface (substrate mounting surface) formed by the plurality of chuck portions 74 is disposed. On the other hand, the substrate mounting surface is processed into a plane with high accuracy (flatness) by lapping. In the present embodiment, since the processing object is the large fine movement stage 22, the lapping is performed by handler lapping that manually moves the lapping tool 98 relative to the processing object. As a result, the fine movement stage 22 having the substrate placement surface with a very high flatness can be manufactured without strictly managing the individual thicknesses of the plurality of chuck portions 74. It should be noted that the seam between the adjacent base portions 72 is waterproofed using a joint material (see FIG. 10) as described above so that moisture used at the time of handling does not penetrate below the chuck portion 74. It is preferable to do. FIG. 19 shows a case where lapping is performed in a state where each chuck portion 74 is vacuum-sucked and held with respect to the base portion 72, but the suction-holding is not necessarily performed.
 また、チャック部74には、基板Pと接触する複数の小径のピン74aが形成されているため、該ピン74aの破損、あるいは表面加工(皮膜など)の欠損などが生じる可能性がある。上述したように、本実施形態では、当該欠損の生じたチャック部74のみをピンポイント交換することができるので、効率が良いが、交換後に装着されたチャック部74とその他(既設)のチャック部74との間に微少な段差が発生する可能性がある。 Further, since a plurality of small-diameter pins 74a that are in contact with the substrate P are formed in the chuck portion 74, there is a possibility that the pins 74a are damaged or the surface processing (film or the like) is lost. As described above, in the present embodiment, only the chuck part 74 in which the defect has occurred can be exchanged pinpoints, which is efficient. However, the chuck part 74 mounted after the exchange and the other (existing) chuck parts are efficient. There is a possibility that a slight level difference may occur between
 図20に示される例では、交換用のチャック部174は、既設のチャック部74よりも薄く形成されている。チャック部174の下面には、外周(周壁部74eの先端)に沿って接着剤が塗布されている。また、接着剤は、チャック部174に形成された気体供給用、及び真空吸引用の孔部を囲むように塗布されている。図24に示されるように、周壁部74eの先端、及びピン74dに形成された孔部の周囲には、溝が形成されており、該溝に接着剤が塗布される。接着剤は、空気に触れると硬化し、且つ硬化後に剥がしやすいものが好ましい。なお、接着剤塗布用の溝は、ベース部72に形成しても良い。 In the example shown in FIG. 20, the replacement chuck portion 174 is formed thinner than the existing chuck portion 74. An adhesive is applied to the lower surface of the chuck portion 174 along the outer periphery (the tip of the peripheral wall portion 74e). The adhesive is applied so as to surround the gas supply and vacuum suction holes formed in the chuck portion 174. As shown in FIG. 24, a groove is formed around the tip of the peripheral wall 74e and the hole formed in the pin 74d, and an adhesive is applied to the groove. The adhesive is preferably one that cures when exposed to air and is easy to peel off after curing. The groove for applying the adhesive may be formed in the base portion 72.
 図21に示されるように、チャック部174は、他のチャック部74に比べて薄いので、チャック部174とチャック部74との間には、段差が形成される。そこで、交換用のチャック部174に隣接する一対のチャック部74間に、セラミックスによって形成された板98を架け渡す。この板98は、実質的な剛体であれば、セラミックス以外の材料でも良い。チャック部174は、チャック部74よりも薄いので、チャック部174の上面と板98の下面との間には、隙間が形成される。 21, since the chuck portion 174 is thinner than the other chuck portions 74, a step is formed between the chuck portion 174 and the chuck portion 74. Therefore, a plate 98 made of ceramics is bridged between a pair of chuck portions 74 adjacent to the replacement chuck portion 174. The plate 98 may be made of a material other than ceramics as long as it is a substantially rigid body. Since the chuck portion 174 is thinner than the chuck portion 74, a gap is formed between the upper surface of the chuck portion 174 and the lower surface of the plate 98.
 次いで、図22に示されるように、チャック部174の下方に配置されたベース部72から圧縮空気を供給する。該流路は、ベース部72において、パイプ62の長手方向(ここではY軸方向)に沿って複数形成され、その一部は、上面側が細く形成されている。そして、図24に示されるように、交換用のチャック部174の下面には、ピン74cと同様に下方に突出した座面74hが形成されており、上記圧縮空気は、座面74hの先端に対して噴出される。これにより、図22に示されるように、チャック部174は、圧縮空気の静圧によって、ベース部72上に浮上し、板98の下面に密着する。この状態で、所定の時間が経過すると、接着剤が硬化する。接着剤は、硬化後に周壁部74eの一部、及び気体供給用、及び気体吸引用の管路として機能する。 Next, as shown in FIG. 22, compressed air is supplied from a base portion 72 disposed below the chuck portion 174. A plurality of the flow paths are formed in the base portion 72 along the longitudinal direction of the pipe 62 (here, the Y-axis direction), and a part of the flow path is formed thin on the upper surface side. Then, as shown in FIG. 24, a lower surface of the replacement chuck portion 174 is formed with a seating surface 74h protruding downward like the pin 74c, and the compressed air is applied to the tip of the seating surface 74h. On the other hand it is erupted. Accordingly, as shown in FIG. 22, the chuck portion 174 floats on the base portion 72 due to the static pressure of the compressed air, and comes into close contact with the lower surface of the plate 98. In this state, when a predetermined time elapses, the adhesive is cured. The adhesive functions as a part of the peripheral wall portion 74e, a gas supply conduit, and a gas suction conduit after curing.
 そして、図23に示されるように、一対のチャック部74間に架設された板98を取り除くと、チャック部174表面の高さ位置が、他のチャック部74表面の高さ位置と実質的に一致した状態となる。これにより、複数のチャック部74と交換用チャック部174とによって形成される基板載置面の全体的な平面度が確保される。以上説明したチャック部74の交換方向によれば、基板ステージ装置20から微動ステージ22を外すことなく所望のチャック部74(基板載置面の一部)のみを容易に交換することができる。 Then, as shown in FIG. 23, when the plate 98 laid between the pair of chuck portions 74 is removed, the height position of the surface of the chuck portion 174 is substantially the same as the height position of the surfaces of the other chuck portions 74. It will be in a consistent state. Thereby, the overall flatness of the substrate mounting surface formed by the plurality of chuck portions 74 and the replacement chuck portion 174 is ensured. According to the replacement direction of the chuck portion 74 described above, only the desired chuck portion 74 (a part of the substrate placement surface) can be easily replaced without removing the fine movement stage 22 from the substrate stage device 20.
 なお、交換用チャック部174の位置決め、及び固定手順は、これに限られない。図26に示される例では、チャック部174に形成された真空吸引用の貫通孔74f(図9参照)に、上方から容易に取り外しが可能なプラグ94が取り付けられている。また、基板Pを浮上支持するために加圧気体を噴出するための管路は、他のピン74aよりも幾分太いピン74iの内部に形成され、該ピン74iの先端部には、加圧気体噴出用の孔部74gが開口している。この場合、図25に示されるように、板98には、真空吸着用の継手98aが接続されており、交換用チャック部174は、上面側から真空吸引されることによって、他のチャック部74と上面の高さ位置が揃えられる。プラグ94は、上記接着剤の硬化後に取り外される。本例によれば、上述の例(図24など参照)と異なり、ベース部72、及びチャック部174の裏面にエアフロー用の加工を施す必要がない。 In addition, the positioning and fixing procedure of the replacement chuck portion 174 is not limited to this. In the example shown in FIG. 26, a plug 94 that can be easily removed from above is attached to a through-hole 74f (see FIG. 9) for vacuum suction formed in the chuck portion 174. Further, a pipe line for ejecting pressurized gas to float and support the substrate P is formed inside a pin 74i that is somewhat thicker than the other pins 74a. A hole 74g for gas ejection is opened. In this case, as shown in FIG. 25, a vacuum suction joint 98 a is connected to the plate 98, and the replacement chuck portion 174 is vacuum-sucked from the upper surface side, whereby another chuck portion 74 is provided. And the height of the top surface are aligned. The plug 94 is removed after the adhesive is cured. According to this example, unlike the above-described example (see FIG. 24 and the like), it is not necessary to perform processing for airflow on the back surface of the base portion 72 and the chuck portion 174.
 また、図27及び図28に示される例では、交換用チャック部174には、厚さ方向に貫通するねじ穴が複数形成されており、該ねじには、セットねじ74jが螺合している。また、板98には、上記ねじ穴と一致する位置に、セットねじ74jのねじ径よりも大径の工具穴98bが厚さ方向に貫通して形成されている。この例では、工具穴98bから工具98cを挿入し、セットねじ74jを回すと、セットねじ74jの先端部がベース部72に突き当たり、その後チャック部174がベース部72から持ち上がって板98に密着する。この例では、交換用のチャック部174の上面の面位置と既設のチャック部74の上面の面位置を揃えるのに、空気(高圧、真空圧)を必要としないので、チャック部74の交換作業が容易である。なお、図27及び図28に示される例では、セットねじ74jによってチャック部174の上面の高さ位置が機械的に規定されるので、チャック部174とベース部72とを接着する接着剤は、硬化性のものに限られず、コーキング剤のような弾力性のあるものを用いても良い。 In the example shown in FIGS. 27 and 28, the replacement chuck portion 174 has a plurality of screw holes penetrating in the thickness direction, and set screws 74j are screwed into the screws. . Further, a tool hole 98b having a diameter larger than the screw diameter of the set screw 74j is formed in the plate 98 at a position coinciding with the screw hole. In this example, when the tool 98c is inserted from the tool hole 98b and the set screw 74j is turned, the tip end portion of the set screw 74j comes into contact with the base portion 72, and then the chuck portion 174 is lifted from the base portion 72 and closely contacts the plate 98. . In this example, air (high pressure, vacuum pressure) is not required to align the surface position of the upper surface of the chuck portion 174 for replacement with the surface position of the upper surface of the existing chuck portion 74. Is easy. In the example shown in FIGS. 27 and 28, the height position of the upper surface of the chuck portion 174 is mechanically defined by the set screw 74j. Therefore, the adhesive that bonds the chuck portion 174 and the base portion 72 is It is not limited to a curable material, and an elastic material such as a caulking agent may be used.
 なお、以上説明した実施形態に係る微動ステージ22などの構成は、一例であって、適宜変更が可能である。図29に示される変形例に係るチャック部474のように、チャック部474の全体を多孔質材で形成するようにしても良い。該多孔質材に真空吸引力を供給することによって、基板Pを吸着保持するようにしても良い。この場合、チャック部474の内部にマグネットを内蔵するとともに、ベース部72(図2など参照)を磁性材料によって形成し、磁気力によってチャック部474をベース部72に固着(固定)すると良い。 Note that the configuration of the fine movement stage 22 and the like according to the embodiment described above is an example, and can be changed as appropriate. Like the chuck portion 474 according to the modification shown in FIG. 29, the entire chuck portion 474 may be formed of a porous material. The substrate P may be adsorbed and held by supplying a vacuum suction force to the porous material. In this case, a magnet is built in the chuck portion 474, the base portion 72 (see FIG. 2 and the like) is formed of a magnetic material, and the chuck portion 474 is fixed (fixed) to the base portion 72 by a magnetic force.
 また、多孔質材で形成されたチャック部474をベース部72に固着する方法としては上述の接着剤による方法を用いても良い。また、多孔質材のチャック部474の下面の一部に、真空吸着可能な領域(例えば、一部にくり抜きを形成し、そのくり抜き部に空気漏れが無いように空気漏れを防止する部材(ゴム等)をコーティングして真空吸引できる空間等)を形成している場合には真空吸引により固着するようにしても良い。また、上述のようにチャック部474を多孔質材で形成し、該多孔質材に加圧気体を供給するように構成することによって、基板Pを浮上支持する非接触ホルダを得ることもできる。多孔質材で形成されたチャック部474の上面(基板載置面)には、管路部60と連通する微小な孔部が複数形成されている。非接触ホルダ32は、管路部60から供給される加圧気体(例えば圧縮空気)が上記孔部(の一部)を介して基板Pの下面に噴出することにより基板Pを浮上させる。また、非接触ホルダは、上記加圧気体の噴出と併用して、真空吸引力により、基板Pの下面と基板支持面との間の空気を吸引する。これにより、基板Pに荷重(プリロード)が作用し、非接触ホルダの上面に沿って基板Pが平面矯正される。つまり基板Pを平面矯正しながら(平坦にしながら)該基板Pをチャック部474上で浮上支持(非接触支持)することができる。 Further, as a method of fixing the chuck portion 474 formed of a porous material to the base portion 72, the above-described method using an adhesive may be used. Further, an area that can be vacuum-adsorbed (for example, a hole is formed in a part of the lower surface of the chuck portion 474 of the porous material, and a member (rubber that prevents air leakage so that the hole does not leak air). Etc.) may be fixed by vacuum suction. Moreover, the non-contact holder which floats and supports the board | substrate P can also be obtained by forming the chuck | zipper part 474 with a porous material as mentioned above, and supplying a pressurized gas to this porous material. A plurality of minute holes communicating with the pipe line portion 60 are formed on the upper surface (substrate mounting surface) of the chuck portion 474 made of a porous material. The non-contact holder 32 causes the substrate P to float when pressurized gas (for example, compressed air) supplied from the pipe line portion 60 is ejected to the lower surface of the substrate P through (a part of) the hole. The non-contact holder sucks air between the lower surface of the substrate P and the substrate support surface by a vacuum suction force in combination with the ejection of the pressurized gas. Thereby, a load (preload) acts on the substrate P, and the substrate P is flattened along the upper surface of the non-contact holder. That is, the substrate P can be floated and supported (non-contact support) on the chuck portion 474 while the substrate P is flattened (flattened).
 また、図30に示される変形例のように、隣接するチャック部74同士の衝突を防止するため、隣接するチャック部74間に、緩衝部材676を挿入しても良い。緩衝部材676は、粘弾性体によって形成すると良い。 Further, as in the modification shown in FIG. 30, a buffer member 676 may be inserted between the adjacent chuck portions 74 in order to prevent the adjacent chuck portions 74 from colliding with each other. The buffer member 676 is preferably formed of a viscoelastic body.
 なお、以上説明した実施形態の構成は、適宜変更が可能である。上記実施形態において、微動ステージ22は、基板Pの非接触支持(基板P下面に対する加圧気体の噴出)と、基板Pの吸着保持(基板Pの真空吸引)とを選択的に行うことが可能な構成であったが、これに限られず、これらの機能の一方のみを行う形態であっても良い。 The configuration of the embodiment described above can be changed as appropriate. In the above embodiment, fine movement stage 22 can selectively perform non-contact support of substrate P (a jet of pressurized gas to the lower surface of substrate P) and adsorption holding of substrate P (vacuum suction of substrate P). However, the present invention is not limited to this, and a mode in which only one of these functions is performed may be used.
 また、上記実施形態において、各チャック部74は、ベース部72に真空吸引力によって固定(機械的に拘束しない状態で固定)される構成であったが、これに限られず、各チャック部74をベース部72に対して接着剤等によって固定しても良い。この場合、チャック部74の安定性、及び交換容易性をそれぞれ確保するため、上記接着剤としては、硬化時の変形が少なく、且つ容易に剥離することができる接着剤、たとえば、エポキシ樹脂系の接着剤を用いることが好ましい。また、この場合、ベース部72からの剥離を容易にするために、ベース部72、あるいはチャック部74に剥離剤、離型剤を予め塗布しておくと良い。剥離剤、離型剤として、塗膜が薄く(たとえば0.1~1.0μm程度)且つ、表面張力が低いフッ素系離型剤などを用いると良い。 Further, in the above-described embodiment, each chuck portion 74 is configured to be fixed to the base portion 72 by a vacuum suction force (fixed in a state that is not mechanically constrained). You may fix to the base part 72 with an adhesive agent etc. In this case, in order to ensure the stability of the chuck portion 74 and the ease of replacement, the adhesive may be an adhesive that can be easily peeled off with little deformation during curing, for example, an epoxy resin-based adhesive. It is preferable to use an adhesive. In this case, in order to facilitate peeling from the base portion 72, it is preferable to apply a release agent and a release agent to the base portion 72 or the chuck portion 74 in advance. As the release agent and release agent, a fluorine release agent having a thin coating film (for example, about 0.1 to 1.0 μm) and low surface tension may be used.
 また、本実施形態の微動ステージ22は、水平面内2軸方向に長ストロークで移動可能であったが、これに限られず、水平面内の1軸方向のみに長ストロークで移動可能な構成であっても良いし、水平面内の位置が固定であっても良い。また、微動ステージ22は、水平面内6自由度方向に微少移動可能な構成であったが、微少移動しない構成の基板保持部材(基板ホルダ)に上記実施形態の構成を適用しても良い。 Further, the fine movement stage 22 of the present embodiment is movable with a long stroke in two axial directions in a horizontal plane, but is not limited thereto, and is configured to be movable with a long stroke only in one axial direction in the horizontal plane. Alternatively, the position in the horizontal plane may be fixed. Further, although the fine movement stage 22 is configured to be slightly movable in the direction of six degrees of freedom in the horizontal plane, the configuration of the above embodiment may be applied to a substrate holding member (substrate holder) having a configuration that does not move slightly.
 また、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、エルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。 The illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). Moreover, as illumination light, the single wavelength laser beam of the infrared region or visible region oscillated from the DFB semiconductor laser or fiber laser is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium), You may use the harmonic which wavelength-converted into ultraviolet light using the nonlinear optical crystal. A solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
 また、投影光学系14が複数本の光学系を備えたマルチレンズ方式の投影光学系である場合について説明したが、投影光学系の本数はこれに限らず、1本以上あれば良い。また、マルチレンズ方式の投影光学系に限らず、オフナー型の大型ミラーを用いた投影光学系などであっても良い。また、投影光学系14としては、拡大系、又は縮小系であっても良い。 Further, the case where the projection optical system 14 is a multi-lens projection optical system including a plurality of optical systems has been described, but the number of projection optical systems is not limited to this, and one or more projection optical systems may be used. The projection optical system is not limited to a multi-lens projection optical system, and may be a projection optical system using an Offner type large mirror. Further, the projection optical system 14 may be an enlargement system or a reduction system.
 また、露光装置の用途としては角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、有機EL(Electro-Luminescence)パネル製造用の露光装置、半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも適用できる。 Further, the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern to the square glass plate, but is used for the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel, for semiconductor manufacturing. The present invention can be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like. Moreover, in order to manufacture not only microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
 また、露光対象となる物体はガラスプレートに限られず、ウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、フィルム状(可撓性を有するシート状の部材)のものも含まれる。なお、本実施形態の露光装置は、一辺の長さ、又は対角長が500mm以上の基板が露光対象物である場合に特に有効である。 The object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank. When the exposure object is a substrate for a flat panel display, the thickness of the substrate is not particularly limited, and includes a film-like (flexible sheet-like member). The exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
 液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。 For electronic devices such as liquid crystal display elements (or semiconductor elements), the step of designing the function and performance of the device, the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer) A lithography step for transferring a mask (reticle) pattern to a glass substrate by the exposure apparatus and the exposure method of each embodiment described above, a development step for developing the exposed glass substrate, and a portion where the resist remains. It is manufactured through an etching step for removing the exposed member of the portion by etching, a resist removing step for removing a resist that has become unnecessary after etching, a device assembly step, an inspection step, and the like. In this case, in the lithography step, the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
 以上説明したように、本発明の物体保持装置は、物体を保持するのに適している。また、本発明の露光装置は、物体に所定のパターンを形成するのに適している。また、本発明のフラットパネルディスプレイの製造方法は、フラットパネルディスプレイの製造に適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適している。 As described above, the object holding device of the present invention is suitable for holding an object. The exposure apparatus of the present invention is suitable for forming a predetermined pattern on an object. Moreover, the manufacturing method of the flat panel display of this invention is suitable for manufacture of a flat panel display. The device manufacturing method of the present invention is suitable for manufacturing micro devices.
 10…液晶露光装置、20…基板ステージ装置、22…微動ステージ、50…定盤部、60…管路部、70…ホルダ部、72…ベース部、74…チャック部、P…基板。 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal exposure apparatus, 20 ... Substrate stage apparatus, 22 ... Fine movement stage, 50 ... Surface plate part, 60 ... Pipe line part, 70 ... Holder part, 72 ... Base part, 74 ... Chuck part, P ... Substrate.

Claims (17)

  1.  物体を保持する物体保持装置であって、
     前記物体を保持する第1保持面と、前記第1保持面の裏面側の互いに異なる位置に設けられた第1部分および第2部分と、をそれぞれ備える複数の第1部材と、
     前記第1部材を保持する第2保持面を備え、前記第1部分と前記第2部分とのうちの前記第2部分が前記第2保持面に固着される第2部材と、
     ベース部と、
     前記ベース部と前記第2部材との間に設けられ、前記第2部材を介して前記第1部材の前記第1部分と連通し気体を通過させる管路を有する管路部と、を有し、
     前記第1部材は、前記第1部分を通過する前記気体を用いて前記物体を保持するとともに、前記第2部分の前記第2保持面に対する固着を解除すると、前記第2部材から取り外される物体保持装置。
    An object holding device for holding an object,
    A plurality of first members each including a first holding surface for holding the object, and a first portion and a second portion provided at different positions on the back side of the first holding surface;
    A second holding surface for holding the first member, wherein the second part of the first part and the second part is fixed to the second holding surface;
    A base part;
    A conduit portion provided between the base portion and the second member, and having a conduit that allows gas to pass through the second member and communicate with the first portion of the first member. ,
    The first member holds the object using the gas passing through the first portion, and holds the object removed from the second member when the second portion is released from being fixed to the second holding surface. apparatus.
  2.  前記第2部分は、前記第2保持面に対して吸着される請求項1に記載の物体保持装置。 The object holding device according to claim 1, wherein the second portion is adsorbed to the second holding surface.
  3.  前記第2部分は、真空吸引される構造を備える請求項2に記載の物体保持装置。 The object holding device according to claim 2, wherein the second part has a structure that is vacuum-sucked.
  4.  前記第2部分は、前記物体の下面を複数点で保持可能な複数のピン部と、前記複数のピン部を囲む壁部と、前記壁部の内側に形成された孔部と、を有し、前記孔部を介して前記壁部内の気体が吸引されることによって前記物体を吸着保持する請求項2又は3に記載の物体保持装置。 The second portion includes a plurality of pin portions capable of holding the lower surface of the object at a plurality of points, a wall portion surrounding the plurality of pin portions, and a hole portion formed inside the wall portion. The object holding device according to claim 2, wherein the object is sucked and held by sucking the gas in the wall through the hole.
  5.  前記管路部は、
     前記物体を保持する気体を通過させる第1管路と、
     前記第2部分を前記第2保持面に吸着させる気体を通過させる第2管路と、を備える請求項2~4の何れか一項に記載の物体保持装置。
    The pipeline section is
    A first conduit for passing a gas holding the object;
    The object holding device according to any one of claims 2 to 4, further comprising: a second pipe that allows a gas that adsorbs the second portion to the second holding surface to pass therethrough.
  6.  前記第2部分の少なくとも一部は、前記第2保持面に対して接着剤により接着される請求項1~5の何れか一項に記載の物体保持装置。 6. The object holding device according to claim 1, wherein at least a part of the second part is adhered to the second holding surface with an adhesive.
  7.  前記第1部材は多孔質材で形成される請求項1~3の何れか一項に記載の物体保持装置。 The object holding device according to any one of claims 1 to 3, wherein the first member is formed of a porous material.
  8.  前記第2部分と前記第2保持面とのうちの一方は磁石を備え、他方は磁性材料を備える請求項2又は7に記載の物体保持装置。 The object holding device according to claim 2 or 7, wherein one of the second portion and the second holding surface includes a magnet, and the other includes a magnetic material.
  9.  前記第2部材は複数に部分部材に分割可能であり、
     前記第1部材の面積は、前記部分部材の面積よりも小さい請求項1~8の何れか一項に記載の物体保持装置。
    The second member can be divided into a plurality of partial members,
    The object holding device according to any one of claims 1 to 8, wherein an area of the first member is smaller than an area of the partial member.
  10.  前記第1部材は、前記第1保持面から気体を吸引して、前記第1保持面上で前記物体を吸引保持する請求項1~9の何れか一項に記載の物体保持装置。 10. The object holding device according to claim 1, wherein the first member sucks gas from the first holding surface and sucks and holds the object on the first holding surface.
  11.  前記第1部材は、前記第1保持面から気体を噴出して、前記第1保持面上で前記物体を浮上支持する請求項1~9の何れか一項に記載の物体保持装置。 The object holding device according to any one of claims 1 to 9, wherein the first member jets gas from the first holding surface and levitates and supports the object on the first holding surface.
  12.  請求項1~11の何れか一項に記載の物体保持装置と、
     前記物体保持装置に保持された前記物体に対してエネルギビームを用いて所定のパターンを形成するパターン形成装置と、を備える露光装置。
    The object holding device according to any one of claims 1 to 11,
    An exposure apparatus comprising: a pattern forming apparatus that forms a predetermined pattern on the object held by the object holding apparatus using an energy beam.
  13.  前記物体は、フラットパネルディスプレイに用いられる基板である請求項12に記載の露光装置。 The exposure apparatus according to claim 12, wherein the object is a substrate used for a flat panel display.
  14.  前記基板は、少なくとも一辺の長さ又は対角長が500mm以上である請求項13に記載の露光装置。 The exposure apparatus according to claim 13, wherein the substrate has a length of at least one side or a diagonal length of 500 mm or more.
  15.  請求項12又は13に記載の露光装置を用いて前記基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing the substrate using the exposure apparatus according to claim 12 or 13,
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  16.  請求項14に記載の露光装置を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むデバイス製造方法。
    Exposing the object using the exposure apparatus of claim 14;
    Developing the exposed object.
  17.  物体を保持する物体保持方法であって、
     前記物体を保持する第1保持面と、前記第1保持面の裏面側の互いに異なる位置に設けられた第1部分および第2部分と、をそれぞれ備える複数の第1部材を用いて前記物体を保持することと、
     前記第1部材を保持する第2保持面を備え、前記第1部分と前記第2部分とのうちの前記第2部分が前記第2保持面に固着される第2部材とを用いて、前記第1部材を保持することと、
     ベース部と前記第2部材との間に設けられ、前記第2部材を介して前記第1部材の前記第1部分と連通し気体を通過させる管路を有する管路部を用いて、前記気体を通過させることと、を含み、
     前記複数の第1部材を用いて前記物体を保持することは、前記第1部分を通過する前記気体を用いて前記物体を保持することを含み、
     前記第2部分の前記第2保持面に対する固着を解除して、前記第2部材から前記第1部材を取り外すことと、を含む物体保持方法。
    An object holding method for holding an object,
    The first holding surface for holding the object, and a plurality of first members each including a first portion and a second portion provided at different positions on the back side of the first holding surface. Holding,
    A second holding surface for holding the first member, wherein the second part of the first part and the second part is fixed to the second holding surface; Holding the first member;
    A gas pipe is provided between a base part and the second member, and has a pipe line that communicates with the first part of the first member through the second member and allows gas to pass therethrough. Passing, and
    Holding the object using the plurality of first members includes holding the object using the gas passing through the first portion;
    Removing the first member from the second member by releasing the fixing of the second part to the second holding surface.
PCT/JP2017/035547 2016-09-30 2017-09-29 Object holding device, exposure device, flat-panel display manufacturing method, device manufacturing method, and object holding method WO2018062508A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197010633A KR102306204B1 (en) 2016-09-30 2017-09-29 An object holding apparatus, an exposure apparatus, a manufacturing method of a flat panel display, a device manufacturing method, and an object holding method
CN201780060669.1A CN109791369B (en) 2016-09-30 2017-09-29 Object holding apparatus, exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and object holding method
JP2018542946A JPWO2018062508A1 (en) 2016-09-30 2017-09-29 Object holding apparatus, exposure apparatus, method of manufacturing flat panel display, device manufacturing method, and object holding method
KR1020217030227A KR20210118252A (en) 2016-09-30 2017-09-29 Object holding device, exposure device, flat-panel display manufacturing method, device manufacturing method, and object holding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-195104 2016-09-30
JP2016195104 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062508A1 true WO2018062508A1 (en) 2018-04-05

Family

ID=61759899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035547 WO2018062508A1 (en) 2016-09-30 2017-09-29 Object holding device, exposure device, flat-panel display manufacturing method, device manufacturing method, and object holding method

Country Status (5)

Country Link
JP (3) JPWO2018062508A1 (en)
KR (2) KR20210118252A (en)
CN (1) CN109791369B (en)
TW (1) TWI760371B (en)
WO (1) WO2018062508A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102406293B1 (en) * 2020-08-11 2022-06-10 에스씨플랫 주식회사 Polishing Apparatus For Substrate Of Display Device
KR20230135889A (en) * 2022-03-17 2023-09-26 삼성전자주식회사 Display appartus having display module and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103799A (en) * 2002-09-09 2004-04-02 Canon Inc Substrate holding unit, apparatus and method for manufacturing device
JP2004165582A (en) * 2002-09-17 2004-06-10 Nikon Corp Method for manufacturing substrate holder, substrate tray, stage equipment and substrate holder
JP2005012009A (en) * 2003-06-19 2005-01-13 Nikon Corp Substrate holder, stage apparatus, and exposure apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807905B2 (en) * 1989-09-14 1998-10-08 日立電子エンジニアリング株式会社 Substrate chuck mechanism
JP2000012663A (en) * 1998-06-17 2000-01-14 Nikon Corp Substrate retaining method and device and exposure device with substrate retaining device
KR20120127755A (en) * 2002-12-10 2012-11-23 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
US7665981B2 (en) * 2005-08-25 2010-02-23 Molecular Imprints, Inc. System to transfer a template transfer body between a motion stage and a docking plate
JP2008251754A (en) * 2007-03-29 2008-10-16 Nikon Corp Substrate transfer method and apparatus, and exposure method and device
TW201100975A (en) 2009-04-21 2011-01-01 Nikon Corp Moving-object apparatus, exposure apparatus, exposure method, and device manufacturing method
KR101862234B1 (en) * 2009-08-20 2018-05-29 가부시키가이샤 니콘 Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
JP5524577B2 (en) * 2009-11-11 2014-06-18 キヤノン株式会社 Exposure apparatus and device manufacturing method
SG191479A1 (en) 2011-12-27 2013-07-31 Apic Yamada Corp Method for resin molding and resin molding apparatus
JP6135099B2 (en) * 2012-11-13 2017-05-31 株式会社ニコン Mobile device, exposure apparatus, flat panel display manufacturing method, and device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103799A (en) * 2002-09-09 2004-04-02 Canon Inc Substrate holding unit, apparatus and method for manufacturing device
JP2004165582A (en) * 2002-09-17 2004-06-10 Nikon Corp Method for manufacturing substrate holder, substrate tray, stage equipment and substrate holder
JP2005012009A (en) * 2003-06-19 2005-01-13 Nikon Corp Substrate holder, stage apparatus, and exposure apparatus

Also Published As

Publication number Publication date
KR102306204B1 (en) 2021-09-28
CN109791369B (en) 2022-01-14
JP7414102B2 (en) 2024-01-16
TWI760371B (en) 2022-04-11
KR20210118252A (en) 2021-09-29
CN109791369A (en) 2019-05-21
JP2022176233A (en) 2022-11-25
TW201816924A (en) 2018-05-01
JPWO2018062508A1 (en) 2019-07-04
KR20190050828A (en) 2019-05-13
JP2021081740A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP7243797B2 (en) Transport system, exposure apparatus, and transport method
JP7414102B2 (en) Object holding device and exposure device
JP6708222B2 (en) Exposure apparatus, flat panel display manufacturing method, and device manufacturing method
KR102625921B1 (en) Object holding apparatus, exposure apparatus, manufacturing method of flat panel display, and device manufacturing method
JP2011233776A (en) Object conveying device, object supporting device, object conveying system, exposure device, device manufacturing method, manufacturing method of flat panel display and object conveying method
WO2016159176A1 (en) Exposure apparatus, flat-panel-display production method, device production method, and exposure method
JP7192841B2 (en) Object holding device, processing device, flat panel display manufacturing method, and device manufacturing method
JP6035670B2 (en) Exposure method, flat panel display manufacturing method, device manufacturing method, and exposure apparatus
JP6874314B2 (en) Object holding device, exposure device, flat panel display manufacturing method, and device manufacturing method
JP2012076876A (en) Cleaning system of object holding apparatus, cleaning apparatus of the object holding apparatus, and cleaning method of the object holding apparatus
JP2013050504A (en) Object carrying-out system, exposure device, method for manufacturing flat panel display, method for manufacturing device, and method for carrying out object
JP2012078543A (en) Cleaning system for object holding device and cleaning device for object holding device
WO2012157231A1 (en) Substrate-replacement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542946

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010633

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17856455

Country of ref document: EP

Kind code of ref document: A1