WO2018062329A1 - Film and film production method, and packaging material equipped with film - Google Patents

Film and film production method, and packaging material equipped with film Download PDF

Info

Publication number
WO2018062329A1
WO2018062329A1 PCT/JP2017/035076 JP2017035076W WO2018062329A1 WO 2018062329 A1 WO2018062329 A1 WO 2018062329A1 JP 2017035076 W JP2017035076 W JP 2017035076W WO 2018062329 A1 WO2018062329 A1 WO 2018062329A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plasma
vapor deposition
base material
substrate
Prior art date
Application number
PCT/JP2017/035076
Other languages
French (fr)
Japanese (ja)
Inventor
田中 大介
満 武士田
鈴木 梓
和弘 多久島
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2018062329A1 publication Critical patent/WO2018062329A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present invention relates to a base material and a film having a vapor deposition layer provided on the base material and a film manufacturing method.
  • the present invention also relates to a packaging material comprising a film and a thermoplastic resin layer laminated on the film via an adhesive layer.
  • packaging materials have been developed and proposed for filling and packaging various articles such as foods and drinks, pharmaceuticals, chemicals, cosmetics, and others.
  • various physical properties are required as packaging materials, although they vary depending on the packaging purpose, contents to be filled, storage / distribution of packaged products, and others.
  • gas barrier materials that prevent permeation of oxygen and water vapor have been developed and proposed.
  • gas barrier materials such as aluminum foil or nylon film or polyethylene terephthalate film having a polyvinylidene chloride resin coating film, polyvinyl alcohol film, saponified ethylene-vinyl acetate copolymer film, polyacrylonitrile resin film, etc. has been developed and proposed.
  • Patent Document 1 proposes producing a barrier film by forming an inorganic oxide vapor deposition layer on a nylon film.
  • the packaging material is required to have so-called stab resistance that prevents the bag from tearing when a sharp member with a sharp tip contacts the packaging bag.
  • the nylon film described in Patent Document 1 is known as a film having high puncture resistance.
  • nylon is easy to absorb moisture and has poor heat resistance. Therefore, it is difficult to use the nylon film as a film constituting the outer surface of the packaging material.
  • a base film containing a polyester-based resin or the like is laminated on an outer surface side of a nylon film via an adhesive layer.
  • the packaging material includes two plastic films, that is, a nylon film and a base film, the cost of the packaging material is increased.
  • the present invention aims to provide a bag that can effectively solve such problems.
  • the present invention comprises a base material and a vapor deposition layer provided on the base material and containing a metal or an alloy, the base material containing 51% by mass or more of polybutylene terephthalate, and the base material and the vapor deposition In this film, a covalent bond between a metal atom and a carbon atom is formed at the interface with the layer.
  • the base material may contain 60% by mass or more of polybutylene terephthalate.
  • the film according to the present invention may further include a gas barrier coating film provided on the vapor deposition layer.
  • the vapor deposition layer may be a transparent vapor deposition layer.
  • the vapor deposition layer may be composed of an inorganic oxide containing aluminum oxide or a mixture of a plurality of inorganic oxides.
  • the inorganic oxide may be a mixture of aluminum oxide and one or more inorganic oxides selected from silicon oxide, magnesium oxide, tin oxide, and zinc oxide.
  • the thickness of the vapor deposition layer may be 5 nm and 200 nm or less.
  • the present invention comprises a step of preparing a base material, and a vapor deposition step of depositing a metal or an alloy on the base material to form a vapor deposition layer on the base material, wherein the base material is 60% by mass or more. And a covalent bond of a metal atom and a carbon atom is formed at the interface between the base material and the vapor deposition layer.
  • the film manufacturing method according to the present invention may further include a plasma pretreatment step in which a plasma treatment is performed on the substrate to form a plasma treatment surface on the substrate.
  • the said vapor deposition process forms the said vapor deposition layer on the said plasma processing surface of the said base material.
  • the substrate in the plasma pretreatment step, is held between the plasma pretreatment roller and the plasma supply unit in a state where a voltage is applied between the plasma pretreatment roller and the plasma supply unit.
  • the process of forming a plasma processing surface in the said base material may be included.
  • the said vapor deposition process forms the said vapor deposition layer on the said plasma processing surface of the said base material following the said plasma pretreatment process.
  • a roller-type film formation facility in which a pretreatment section for performing plasma treatment on the substrate and a film formation section for forming the vapor deposition layer are continuously arranged.
  • the roller-type film-forming facility is configured such that the surface of the substrate is between the plasma pretreatment roller and the plasma supply unit and the magnetic field formation unit disposed to face the plasma pretreatment roller.
  • the plasma pretreatment step, the surface of the substrate, 100W ⁇ sec / m 2 or more as the plasma intensity per unit area and at 8000W ⁇ sec / m 2 under the following conditions plasma treatment May be.
  • the plasma raw material gas may be argon alone or a mixed gas of one or more of oxygen, nitrogen, and carbon dioxide.
  • the plasma pretreatment step may be performed using a plasma source gas composed of a mixed gas of at least one of oxygen, nitrogen, and carbon dioxide and argon.
  • the vapor deposition step may form the vapor deposition layer on the plasma-treated surface of the substrate by physical vapor deposition.
  • the present invention is a packaging material, comprising: a base material; a film provided on the base material; and a vapor deposition layer containing a metal or an alloy; and a thermoplastic resin layer laminated on the film.
  • the base material is a packaging material in which 60% by mass or more of polybutylene terephthalate is included, and a covalent bond between a metal element and a carbon element is formed at an interface between the base material and the vapor deposition layer.
  • the packaging material according to the present invention may have a puncture strength of 11 N or more.
  • the thermoplastic resin layer may be laminated on the film via an adhesive layer.
  • the laminate strength between the base material and the thermoplastic resin layer at a width of 15 mm is preferably 4N or more.
  • the thermoplastic resin layer may have a light shielding property.
  • the packaging material according to the present invention may be used for a boil packaging bag or a retort sterilization packaging bag.
  • a gas barrier film including a base material and a vapor deposition layer can be provided with puncture resistance and heat resistance.
  • FIG. 1 is a cross-sectional view showing an example of a base film 5 obtained by forming a vapor deposition layer 2 on a base 1
  • FIG. 2 is a cross-sectional view showing an example of the base 1.
  • FIG. 3 is a cross-sectional view showing another example of the base film 5.
  • FIG. 4 is a cross-sectional view showing an example of the packaging material 8 obtained by laminating the thermoplastic resin layer 7 on the base film 5 via the adhesive layer 6.
  • FIG. 8 is a diagram schematically showing the configuration of the film forming facility 10 for forming the vapor deposition layer 2 of the base film 5.
  • the base film 5 includes the gas barrier coating film 4 shown in FIG. 3
  • a gas barrier coating apparatus for forming the gas barrier coating film 4 is continuously arranged in the film forming facility 10.
  • a known roller coating device can be used as the gas barrier coating device.
  • the base film 5 includes at least a base 1 and a vapor deposition layer 2 provided on the base 1.
  • the vapor deposition layer 2 contains a metal or an alloy.
  • the vapor deposition layer 2 containing a metal include aluminum (Al), magnesium (Mg), tin (Sn), sodium (Na), titanium (Ti), lead (Pb), zirconium (Zr), and yttrium (Y). , Gold (Au), chromium (Cr), or the like can be used.
  • Al aluminum
  • Mg magnesium
  • tin (Sn) sodium
  • Ti titanium
  • Pb lead
  • Y zirconium
  • Y yttrium
  • Gold (Au), chromium (Cr) or the like can be used.
  • the vapor deposition layer of the above-mentioned metal oxide can be used.
  • a vapor deposition layer containing an alloy a vapor deposition layer containing an inorganic oxide such as aluminum oxide as a main component can be used.
  • a covalent bond between a metal atom and a carbon atom is formed at the interface between the substrate 1 and the vapor deposition layer 2.
  • the vapor deposition layer 2 contains aluminum oxide
  • a covalent bond between an aluminum atom and a carbon atom is formed at the interface between the substrate 1 and the vapor deposition layer 2.
  • Such a covalent bond can be formed, for example, by depositing the vapor deposition layer 2 on the surface of the substrate 1 that has been subjected to plasma pretreatment using the film deposition facility 10 shown in FIG.
  • Covalent bonds can be detected by X-ray photoelectron spectroscopy (hereinafter abbreviated as “XPS measurement”) measurement.
  • the base film 5 may further include a printing layer 3 provided on the vapor deposition layer 2 as shown in FIG.
  • the printed layer 3 is a layer printed on the base material 1 in order to show product information or impart aesthetics to a packaging bag made up of a packaging material 8 to be described later provided with the base film 5.
  • the print layer 3 expresses characters, numbers, symbols, figures, patterns, and the like.
  • FINAT manufactured by DIC Graphics Corporation can be given.
  • the base film 5 may further include a gas barrier coating film 4 provided on the vapor deposition layer 2.
  • the gas barrier coating film 4 is a film formed by coating a gas barrier composition on the vapor deposition layer 2.
  • the above-described printing layer 3 is provided on the gas barrier coating film 4.
  • the base material 1 used for the base film 5 contains polybutylene terephthalate (hereinafter also referred to as PBT) as a main component.
  • PBT polybutylene terephthalate
  • the base material 1 contains 51 mass% or more of PBT.
  • the advantage that the substrate 1 includes PBT will be described.
  • the retort process is a process of heating the packaging bag in a pressurized state using steam or heated hot water after filling the packaging bag with the contents and sealing the packaging bag.
  • the temperature of retort processing is 120 degreeC or more, for example.
  • the boil process is a process of filling the bag 10 with the contents and sealing the bag 10 and then bathing the bag 10 under atmospheric pressure.
  • the temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
  • PBT has high strength.
  • the packaging bag can be provided with puncture resistance, similarly to the case where the packaging material 8 constituting the packaging bag contains nylon.
  • PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 1 containing PBT is arrange
  • any of the following first configuration or second configuration may be adopted.
  • the content of PBT in the substrate 1 according to the first configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further 70% by mass or more, particularly preferably 75% by mass or more, and most preferably. 80% by mass or more.
  • the first film 40 can have excellent impact strength and pinhole resistance.
  • PBT used as a main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, most preferably 100 mol% or more of terephthalic acid as a dicarboxylic acid component.
  • Mol%. 1,4-butanediol as the glycol component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol during polymerization. It is not included except by-products generated by the ether bond of butanediol.
  • the base material 1 may contain a polyester resin other than PBT.
  • Polyester resins other than PBT include polyester resins such as PET, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), as well as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, and biphenyldicarboxylic acid.
  • PBT resin copolymerized with dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols such as pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, polycarbonate diol Min can be mentioned copolymerized PBT resin.
  • dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid
  • ethylene glycol 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols
  • the amount of the polyester resin other than PBT is preferably 49% by mass or less, and more preferably 40% by mass or less. If the addition amount of the polyester resin other than PBT exceeds 49% by mass, the mechanical properties as PBT may be impaired, and impact strength, pinhole resistance, and drawability may be insufficient.
  • the substrate 1 may contain, as an additive, a polyester-based and polyamide-based elastomer obtained by copolymerizing at least one of a flexible polyether component, a polycarbonate component, and a polyester component. Thereby, the pinhole resistance at the time of bending can be improved.
  • the additive amount of the additive is, for example, 20% by mass. When the addition amount of the additive exceeds 20% by mass, the effect as the additive may be saturated or the transparency of the substrate 1 may be reduced.
  • FIG. 2 is a cross-sectional view showing an example of the layer structure of the substrate 1.
  • the base material 1 is composed of a multilayer structure including a plurality of layers 1a.
  • Each of the plurality of layers 1a includes PBT as a main component.
  • each of the plurality of layers 1a preferably includes 51% by mass or more of PBT, and more preferably includes 60% by mass or more of PBT.
  • the (n + 1) th layer 1a is directly stacked on the nth layer 1a. That is, no adhesive layer or adhesive layer is interposed between the plurality of layers 1a.
  • the reason why the properties of the PBT film are improved by multilayering is estimated as follows.
  • the resins are laminated, even if the resin composition is the same, a layer interface exists, and crystallization is accelerated by the interface.
  • the growth of large crystals beyond the layer thickness is suppressed. For this reason, it is considered that the size of the crystal (spherulite) becomes small.
  • a general multilayering apparatus multilayer feed block, static mixer, multilayer multimanifold, etc.
  • a method of laminating thermoplastic resins sent from different flow paths using two or more extruders in multiple layers using a feed block, a static mixer, a multi-manifold die, or the like can be used.
  • multilayering resin of the same composition it is also possible to introduce the above multilayering apparatus into the melt line from the extruder to the die using only one extruder.
  • the substrate 1 is composed of a multilayer structure including at least 10 layers, preferably 60 layers or more, more preferably 250 layers or more, and still more preferably 1000 layers or more.
  • the size of spherulites in the unstretched raw PBT can be reduced, and the subsequent biaxial stretching can be carried out stably.
  • the yield stress of PBT in the state of a biaxially stretched film can be made small.
  • the diameter of the spherulite in the unstretched raw PBT is 500 nm or less.
  • the stretching temperature (hereinafter also referred to as MD stretching temperature) in the longitudinal stretching direction (hereinafter referred to as MD) when producing a biaxially stretched film by biaxially stretching the unstretched raw material of PBT is preferably 40 ° C. or higher. Yes, more preferably 45 ° C or higher.
  • MD stretching temperature is preferably 40 ° C. or higher.
  • stretching temperature becomes like this.
  • it is 100 degrees C or less, More preferably, it is 95 degrees C or less.
  • the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed by setting the MD stretching temperature to 100 ° C. or lower.
  • the draw ratio in MD (hereinafter also referred to as MD draw ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement
  • the stretching temperature (hereinafter also referred to as TD stretching temperature) in the transverse stretching direction (hereinafter also referred to as TD) is preferably 40 ° C. or higher. By setting the TD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken.
  • the TD stretching temperature is preferably 100 ° C. or lower. By setting the TD stretching temperature to 100 ° C. or lower, the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed.
  • the stretching ratio in TD (hereinafter also referred to as TD stretching ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement
  • MD stretch ratio is 5 times or less, for example.
  • TD relaxation rate is preferably 0.5% or more. Thereby, it can suppress that a fracture
  • the TD relaxation rate is preferably 10% or less. Thereby, sagging etc. arise in a biaxially stretched film of PBT, and it can control that thickness unevenness generate
  • the thickness of the layer 1a of the base material 1 shown in FIG. 2 is preferably 3 nm or more, more preferably 10 nm or more.
  • the thickness of the layer 1a is preferably 200 nm or less, more preferably 100 nm or less.
  • the thickness of the substrate 1 is preferably 9 ⁇ m or more, more preferably 12 ⁇ m or more.
  • the thickness of the base material 1 is preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the base material 1 which concerns on a 2nd structure consists of a single layer film containing polyester which has butylene terephthalate as a main repeating unit.
  • the substrate 1 is mainly composed of 1,4-butanediol as a glycol component or an ester-forming derivative thereof and terephthalic acid as a dibasic acid component or an ester-forming derivative thereof as a main component. Homo- or copolymer-type polyester obtained.
  • the content of PBT in the substrate 1 according to the second configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and further preferably 80% by mass or more, and most preferably. Is 90% by mass or more.
  • the base material 1 which concerns on a 2nd structure is comprised only with the polybutylene terephthalate and the additive.
  • a PBT having a melting point of 200 ° C. or more and 250 ° C. or less and an IV value (intrinsic viscosity) of 1.10 dl / g or more and 1.35 dl / g or less. Is preferred. Furthermore, those having a melting point of 215 ° C. or more and 225 ° C. or less and an IV value of 1.15 dl / g or more and 1.30 dl / g or less are particularly preferable. These IV values may be satisfied by the entire material constituting the substrate 1. The IV value can be calculated based on JIS K 7367-5: 2000.
  • the base material 1 which concerns on a 2nd structure may contain polyester resins other than PBT, such as PET, in 30 mass% or less.
  • PET polyester resins other than PBT
  • the base material 1 contains PET in addition to PBT, PBT crystallization can be suppressed, and the stretchability of the PBT film can be improved.
  • blended with PBT of the base material 1 the polyester which uses ethylene terephthalate as a main repeating unit can be used.
  • the base material 1 is made of a lubricant, an antiblocking agent, an inorganic extender, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, a plasticizer, a colorant, a crystallization inhibitor, and a crystallization accelerator as necessary. Etc. may be contained. Further, the polyester resin pellet used as a raw material of the substrate 1 has a moisture content of 0.05% by weight or less, preferably 0.01% by weight or less before heating and melting in order to avoid a decrease in viscosity due to hydrolysis during heating and melting. It is preferable to use after sufficiently pre-drying so that
  • the crystallization temperature region of the polymer is cooled at a certain rate or more, that is, the raw fabric cooling rate is an important factor.
  • the raw fabric cooling rate is, for example, 200 ° C./second or more, preferably 250 ° C./second or more, particularly preferably 350 ° C./second or more. Since the unstretched original film formed at a high cooling rate maintains a low crystalline state, the stability of the bubbles during stretching is improved. Furthermore, since film formation at high speed is possible, film productivity is also improved.
  • the cooling rate is less than 200 ° C./sec, it is considered that the crystallinity of the obtained unstretched original fabric is increased and the stretchability is lowered. In extreme cases, the stretching bubble may burst and stretching may not continue.
  • the unstretched raw material containing PBT as a main component is conveyed to a space where biaxial stretching is performed while maintaining the atmospheric temperature at 25 ° C. or lower, preferably 20 ° C. or lower. Thereby, even if it is a case where residence time becomes long, the crystallinity of the unstretched original fabric immediately after film-forming can be maintained.
  • the biaxial stretching method for obtaining a stretched film by stretching an unstretched raw fabric is not particularly limited.
  • the longitudinal direction and the lateral direction may be simultaneously stretched by the tubular method or the tenter method, or the longitudinal direction and the lateral direction may be sequentially stretched.
  • the tubular method can obtain a stretched film having a good balance of physical properties in the circumferential direction, and is particularly preferably employed.
  • the unstretched raw material introduced into the stretching space is inserted between a pair of low-speed nip rolls, and then heated by a stretching heater while air is being pressed therein. After stretching, air is blown onto the stretched film by a cooling shoulder air ring.
  • the stretching ratio is preferably 2.7 times or more and 4.5 times or less for MD and TD, respectively, in consideration of stretching stability, strength physical properties of the stretched film, transparency, and thickness uniformity.
  • the stretching temperature is preferably 40 ° C. or higher and 80 ° C. or lower, and particularly preferably 45 ° C. or higher and 65 ° C. or lower. Since the unstretched original fabric produced at the above-described high cooling rate has low crystallinity, the unstretched original fabric can be stably stretched even when the stretching temperature is relatively low. Further, by setting the stretching temperature to 80 ° C. or less, it is possible to suppress stretching bubble shaking and obtain a stretched film with good thickness accuracy. In addition, by setting the stretching temperature to 40 ° C. or higher, it is possible to suppress the occurrence of excessive stretch-oriented crystallization due to low-temperature stretching, thereby preventing whitening of the film.
  • the base material 1 produced as described above is constituted by a single layer containing, for example, polyester having butylene terephthalate as a main repeating unit. According to the above-described production method, since the unstretched raw film is formed at a high cooling rate, even when the unstretched raw fabric is constituted by a single layer, a low crystalline state can be maintained, For this reason, an unstretched original fabric can be extended
  • the base material 1 includes PBT as a main component.
  • the heat resistance of the packaging material 8 including the base film 5 and the base film 5 can be increased.
  • the tensile elastic modulus of the base film 5 and the packaging material 8 can be sufficiently increased.
  • the tensile elastic modulus (hereinafter also referred to as hot tensile elastic modulus) of the base film 5 and the packaging material 8 in a high temperature atmosphere for example, in an atmosphere of 100 ° C., can be sufficiently increased.
  • the surface of the substrate 1 is subjected to plasma treatment using plasma as a pretreatment in order to improve adhesion to the vapor deposition layer 2 and the like. Is preferably performed as a pretreatment.
  • partition walls 35 a to 35 c are formed in the decompression chamber 12.
  • the partition walls 35a to 35c form a base material transfer chamber 12A, a plasma pretreatment chamber 12B, and a film formation chamber 12C.
  • the plasma pretreatment chamber 12B and the film formation chamber are surrounded by the partition walls and the partition walls 35a to 35c. 12C is formed, and an exhaust chamber is further formed inside each chamber as necessary.
  • a part of the plasma pretreatment roller 20 that conveys the base material 1 to be pretreated and enables plasma treatment is provided so as to be exposed to the base material conveyance chamber 12A.
  • the base material 1 is moved from the base material transfer chamber 12A to the plasma pretreatment chamber 12B while being wound up.
  • the plasma pretreatment chamber 12B and the film formation chamber 12C are provided in contact with the base material transfer chamber 12A, and can be moved without exposing the base material 1 to the atmosphere. Further, the plasma pretreatment chamber 12B and the base material transfer chamber 12A are connected by a rectangular hole, and a part of the plasma pretreatment roller 20 protrudes toward the base material transfer chamber 12A through the rectangular hole. A gap is opened between the wall of the transfer chamber and the plasma pretreatment roller 20, and the substrate 1 can be moved from the substrate transfer chamber 12A to the film forming chamber 12C through the gap.
  • the structure between the base material transfer chamber 12A and the film forming chamber 12C is similar, and the base material 1 can be moved without being exposed to the atmosphere.
  • the base material 1 having the vapor deposition layer 2 formed on one side, which has been moved again to the base material transport chamber 12A by the film forming roller 25, is wound in a roll shape.
  • the take-up roller is provided, and the substrate 1 on which the vapor deposition layer 2 is formed can be taken up.
  • the vacuum chamber 12 is provided with a vacuum pump through a pressure adjustment valve. Therefore, the entire base material transfer chamber 12A, plasma pretreatment chamber 12B, and film formation chamber 12C, which are partitioned by the partition walls 35a to 35c, can be decompressed.
  • the base film 5 in the plasma pretreatment chamber 12B, it is preferable to partition the space in which plasma is generated from other regions so that the opposing space can be efficiently evacuated. This facilitates control of the plasma gas concentration and improves productivity.
  • the pressure in the space where the plasma is generated is preferably set and maintained at about 0.1 Pa to 100 Pa.
  • a plasma pretreatment roller 20 is disposed so as to straddle the substrate transport chamber 12A and the plasma pretreatment chamber 12B, and guide rollers 14a and 14b are provided between the unwinding roll 13 and the plasma pretreatment roller 20. Further, a film forming roller 25 is disposed in the film forming chamber 12C, and guide rollers 14c and 14d are provided between the plasma pretreatment roller 20 and the film forming roller 25 and between the film forming roller 25 and the take-up roller. It is provided, and the conveyance path
  • the conveyance speed of the substrate 1 is not particularly limited, but is preferably 200 m / min or more, more preferably 480 m / min or more and 1000 m / min or less from the viewpoint of production efficiency.
  • the plasma pretreatment chamber 12B is provided with a plasma pretreatment roller 20 for plasma pretreatment of the transported substrate 1 and a plasma pretreatment apparatus including plasma pretreatment means for pretreatment of the substrate 1. It has been.
  • the purpose of the plasma pretreatment roller 20 is to prevent shrinkage or breakage of the substrate 1 due to heat during the plasma treatment by the plasma pretreatment means, and to apply the plasma P to the substrate 1 uniformly and over a wide range. It is provided. It is preferable that the plasma pretreatment roller 20 can be adjusted to a constant temperature between ⁇ 20 ° C. and 100 ° C. by adjusting the temperature of the temperature adjustment medium circulating in the plasma pretreatment roller 20. . Electrical insulating portions are provided on both sides of the central portion of the roller body and around the rotation shaft, and the base material 1 is wound around the central portion of the roller body.
  • the plasma pretreatment roller 20 may be installed at an electrical ground level. In this case, it is realizable by using a metal electroconductive material for a roller main body, a rotating shaft, a bearing, and a roller support body.
  • the plasma pretreatment roller 20 may be installed at an electrically floating level, that is, an insulation potential. By setting the potential of the plasma pretreatment roller 20 to the floating level, it is possible to prevent power leakage, to increase the input power of the plasma pretreatment, and to increase the utilization efficiency for the plasma pretreatment.
  • the plasma pretreatment means includes a plasma supply means and a magnetic formation means.
  • the plasma pretreatment means cooperates with the plasma pretreatment roller 20 to confine the plasma P near the surface of the substrate 1.
  • the chemical property of the surface of a base material is changed by changing the shape of the surface of a base material, a chemical bond state, or a functional group. This makes it possible to improve the adhesion between the substrate 1 and the vapor deposition layer 2 during subsequent film formation.
  • the plasma pretreatment means is provided so as to cover a part of the plasma pretreatment roller 20.
  • the plasma pretreatment means includes a plasma supply means and a magnetic formation means.
  • the plasma supply means includes plasma supply nozzles 22a and 22b that serve as electrodes for supplying plasma source gas and generating plasma P.
  • the magnetic forming means has a magnet 21 and the like for promoting the generation of plasma P.
  • the plasma supply unit and the magnetic forming unit are arranged along the surface in the vicinity of the outer periphery of the plasma pretreatment roller 20.
  • the plasma supply means and the magnetism forming means are installed so as to form a gap for containing the plasma between the plasma pretreatment roller 20 and the surface in the vicinity of the outer periphery.
  • the plasma supply nozzles 22a and 22b are opened in the space of the gap to form a plasma formation region, and further, a region having a high plasma density is formed in the vicinity of the surface of the plasma pretreatment roller 20 and the substrate 1, A plasma processing surface is formed on one surface of the substrate 1.
  • the plasma supply means of the plasma pretreatment means includes a raw material gas volatilization supply device 18 connected to a plasma supply nozzle provided outside the decompression chamber 12 and a raw material gas supply nozzle that supplies the raw material gas from the raw material gas volatilization supply device 18. 19a to 19d.
  • a raw material gas volatilization supply device 18 connected to a plasma supply nozzle provided outside the decompression chamber 12 and a raw material gas supply nozzle that supplies the raw material gas from the raw material gas volatilization supply device 18.
  • 19a to 19d As the plasma source gas, an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them is measured from the gas reservoir through a flow controller to measure the gas flow rate. However, it is supplied.
  • These supplied gases are mixed at a predetermined ratio as necessary, formed into a plasma raw material gas alone or a plasma forming mixed gas, and supplied to the plasma supply means.
  • the single or mixed gas is supplied to the plasma supply nozzles 22a and 22b of the plasma supply means, and is supplied to the vicinity of the outer periphery of the plasma pretreatment roller 20 where the supply ports of the plasma supply nozzles 22a and 22b open.
  • the nozzle opening is directed to the base material 1 on the plasma pretreatment roller 20, and the plasma P can be uniformly diffused and supplied to the surface of the base material 1, and the uniform plasma is applied to a large area of the base material 1. Pre-processing is possible.
  • the plasma supply nozzles 22a and 22b function as counter electrodes of the plasma pretreatment roller 20 and have an electrode function.
  • the supplied plasma source gas is excited by the potential difference caused by the high frequency voltage supplied to the plasma pretreatment roller 20, and the plasma P is generated and supplied.
  • a mechanism for generating an arbitrary direct electric field between the plasma pretreatment roller and the plasma pretreatment means to enhance or weaken the plasma P implantation effect on the substrate 1 is installed. Is preferred. In order to enhance the plasma implantation effect, it is preferable to apply a negative potential to the substrate 1, and in order to weaken the plasma implantation effect, it is preferable to apply a positive plus potential to the substrate 1. By adjusting the plasma intensity as described above, it is possible to adjust the plasma implantation effect on the base material 1 to reduce the damage to the base material 1 and, on the contrary, to increase the adhesion rate of the film to the base material 1. It becomes.
  • the plasma supply means of the plasma pretreatment means can be in a state where an arbitrary voltage is applied between the plasma pretreatment roller 20 and the physical properties of the surface of the substrate 1 are physically or A power source 32 is provided that can apply a bias voltage that makes the plasma P that can be chemically modified a positive potential.
  • Such a plasma supply means can supply a desired plasma P at a desired density in the vicinity of the outer periphery of the plasma pretreatment roller 20, and can improve the power efficiency of the plasma pretreatment.
  • the plasma intensity per unit area of the surface of the substrate 1 is preferably not 100W ⁇ sec / m 2 or more and 8000W ⁇ sec / m 2 or less. If it is less than 100 W ⁇ sec / m 2 , the effect of the plasma pretreatment is not observed, and if it exceeds 8000 W ⁇ sec / m 2 , the deterioration of the substrate 1 due to plasma such as consumption, damage coloring, and firing of the substrate 1 is caused. It tends to happen.
  • the plasma pretreatment means has magnetic formation means.
  • magnetic forming means an insulating spacer and a base plate are provided in a magnet case, and a magnet 21 is provided on the base plate.
  • An insulating shield plate is provided on the magnet case, and an electrode is attached to the insulating shield plate. Therefore, the magnet case and the electrode are electrically insulated, and the electrode can be brought to an electrically floating level even if the magnet case is installed and fixed in the decompression chamber 12.
  • the power supply wiring 31 is connected to the electrode, and the power supply wiring 31 is connected to the power source 32. Further, a temperature control medium pipe for cooling the electrode and the magnet 21 is provided inside the electrode.
  • the magnet 21 is provided to concentrate and apply the plasma P from the plasma supply nozzles 22a and 22b, which are electrode and plasma supply means, to the substrate 1.
  • the magnet 21 By providing the magnet 21, the reactivity in the vicinity of the surface of the substrate 1 is increased, and the plasma processing surface can be formed at a high speed.
  • the magnet 21 has a magnetic flux density of 10 gauss or more and 10000 gauss or less at the surface position of the substrate 1. If the magnetic flux density on the substrate surface is 10 gauss or more, the reactivity in the vicinity of the substrate surface can be sufficiently increased, and the pretreatment surface can be formed at high speed.
  • ions and electrons formed during the plasma pretreatment move according to the arrangement structure. For this reason, for example, even when the plasma pretreatment is performed on the substrate 1 having a large area of 1 m 2 or more, electrons, ions, and decomposition products of the substrate are uniformly diffused over the entire electrode surface. Therefore, even when the substrate 1 has a large area, a uniform and stable pretreatment can be performed with a desired plasma intensity.
  • the substrate 1 having a plasma treatment surface formed on one side by the plasma pretreatment roller 20 is moved from the substrate transfer chamber 12A to the film formation chamber 12C by the guide rollers 14a to 14d for guiding to the next film formation chamber 12C.
  • a vapor deposition layer 2 is formed in the film section.
  • the vapor deposition layer 2 is a thin film having a gas barrier performance that blocks or blocks permeation of oxygen gas, water vapor, and the like.
  • the vapor deposition layer 2 is formed by forming an aluminum oxide layer on the substrate 1 using a physical vapor deposition method or the like. Can be formed.
  • the inorganic oxide layer which forms the vapor deposition layer 2 is a layer which contains an aluminum compound as a main component including at least aluminum oxide, aluminum nitride, carbide alone or a mixture thereof, for example.
  • the inorganic oxide layer contains aluminum oxide as a main component.
  • the vapor deposition layer 2 contains an aluminum compound such as the above-described aluminum oxide as a main component, and further includes silicon oxide (silicon oxide), silicon nitride, silicon oxynitride, silicon carbide, magnesium oxide, titanium oxide, and oxidation.
  • a metal oxide such as tin, indium oxide, zinc oxide, zirconium oxide or the like, or a mixture of inorganic oxides containing these metal nitrides, carbides and mixtures thereof, and containing a covalent bond between an aluminum atom and a carbon atom. It may be.
  • the vapor deposition layer 2 indicates the presence of a covalent bond between an aluminum atom and a carbon atom at the peak measured by ion etching in the depth direction using an X-ray photoelectron spectrometer (measurement conditions: X-ray source AlK ⁇ , X-ray output 120 W). In addition, it has transparency and gas barrier properties that prevent permeation of oxygen, water vapor and the like.
  • the abundance ratio of the covalent bond between the aluminum atom and the carbon atom includes all carbon atoms observed when the interface between the substrate 1 and the vapor deposition layer 2 is measured by X-ray photoelectron spectroscopy. It is desirable to be within the range of 0.3% or more and 30% or less of the bonds. Thereby, the adhesiveness of the vapor deposition layer 2 and the base material 1 is strengthened, the transparency is excellent, and a gas barrier vapor deposition film having a well-balanced performance is obtained.
  • the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is less than 0.3%, the adhesion of the vapor deposition layer 2 is not sufficiently improved, and it is difficult to stably maintain the barrier property. Further, when the abundance ratio of the covalent bond between aluminum atoms and carbon atoms exceeds 30%, the surface of the substrate 1 is decomposed by the plasma treatment, the surface is roughened, and the decomposed components are adhered, rather than the adhesion improvement by the plasma pretreatment. The adverse effects of the surface treatment such as a decrease in the adhesive improvement ratio and a decrease in transparency caused by the surface treatment are large, and the effect of the pretreatment is reduced.
  • the AL (aluminum) / O (oxygen) ratio of the vapor deposition layer 2 mainly composed of aluminum oxide is such that the vapor deposition layer 2 on the opposite side of the base material 1 from the interface between the base material 1 and the vapor deposition layer 2. In the range up to 3 nm toward the surface, it is preferably 1.0 or less. If the AL / O ratio exceeds 1.0 within the range from the interface between the vapor deposition layer 2 and the substrate 1 to the surface of the vapor deposition layer 2 on the opposite side of the substrate 1, the plasma treatment surface of the substrate 1 Adhesiveness with the vapor deposition layer 2 becomes inadequate, the ratio of aluminum increases, and the transparency of the vapor deposition layer 2 falls.
  • the thickness of the vapor deposition layer 2 formed with one film forming apparatus is, for example, 5 nm or more and 200 nm or less, preferably 10 nm or more and 100 nm or less.
  • the thickness of the vapor deposition layer 2 is, for example, 5 nm to 60 nm, preferably 10 nm to 45 nm.
  • the thickness of the vapor deposition layer 2 is, for example, not less than 5 nm and not more than 50 nm, preferably not less than 10 nm and not more than 30 nm.
  • a film forming apparatus including a film forming roller 25 and a film forming unit 26 is provided in the film forming chamber 12C.
  • the film forming unit 26 forms the vapor deposition layer 2 on the plasma processing surface of the substrate 1 pretreated by the plasma pretreatment unit.
  • the film forming apparatus is arranged so as to form the vapor deposition layer 2 on the surface of the substrate 1 that has been plasma pretreated.
  • a vapor deposition method for forming the vapor deposition layer 2 various vapor deposition methods can be applied among physical vapor deposition and chemical vapor deposition.
  • the physical vapor deposition method can be selected from the group consisting of vapor deposition method, sputtering method, ion plating method, ion beam assist method, and cluster ion beam method.
  • Chemical vapor deposition methods include plasma CVD method, plasma polymerization method, thermal method. It can be selected from the group consisting of CVD method and catalytic reaction type CVD method.
  • the film forming apparatus is placed in a reduced pressure film forming chamber, and the substrate 1 is wound and transported with the plasma processing surface of the substrate 1 pre-processed by the plasma pre-processing apparatus facing outside.
  • the film forming means 26 includes a vapor deposition film forming apparatus, a sputtering film forming apparatus, an ion plating film forming apparatus, an ion beam assisted film forming apparatus, a cluster ion beam film forming apparatus, a plasma CVD film forming apparatus, a plasma polymerization film forming apparatus, A CVD film forming apparatus, a catalytic reaction type CVD film forming apparatus, or the like.
  • various physical vapor deposition apparatuses can be applied by exchanging the evaporation means of the target of the film forming source, and it is possible to adopt an apparatus configuration capable of performing film formation by the chemical vapor deposition apparatus.
  • the film forming method can be used properly.
  • a physical vapor deposition apparatus such as a resistance heating vacuum film forming apparatus, a sputtering apparatus, an ion plating film forming apparatus, an ion beam assist film forming apparatus, a cluster ion beam film forming apparatus, a plasma CVD film forming apparatus, a plasma, etc. It can be produced by forming an inorganic oxide layer into a film using a chemical vapor deposition apparatus such as a polymerization film forming apparatus, a thermal CVD film forming apparatus, or a catalytic reaction type CVD film forming apparatus.
  • the crucible as an evaporation source is filled with a single or plural types of target metal materials at a ratio of aluminum as a main component, heated to a high temperature, and contains aluminum metal.
  • the metal vapor is oxidized by introducing oxygen gas supplied from the gas supply means into the metal vapor, and a metal oxide containing aluminum oxide is formed on the surface of the substrate 1.
  • a metal wire such as aluminum can be used to form a film on the substrate surface while being oxidized as metal vapor.
  • a sputtering evaporation source, an arc evaporation source, or a plasma CVD film formation mechanism such as a plasma generating electrode or a raw material gas supply means can be employed.
  • the evaporation method of the target metal material may be adjusted based on the composition of the vapor deposition layer 2 to be formed. For example, depending on the easiness of evaporation of aluminum and other metals, the metal material is vaporized separately so that the aluminum oxide is a main component, or the metal material is set to a target ratio. The mixture can be vaporized.
  • one film forming apparatus may be provided as the film forming unit 26 according to the vapor deposition layer 2 to be formed, or two or more of the same or different kinds of film forming apparatuses may be provided.
  • the thin film becomes brittle due to stress, cracks are generated, the gas barrier property is remarkably lowered, and the thin film is peeled off during transportation or winding. Therefore, in order to obtain a thick layer of a gas barrier thin film, it is preferable to provide a plurality of film forming apparatuses and form a thin film of the same substance a plurality of times.
  • a gas barrier coating film 4 is further formed on the laminate of the base material 1 and the vapor deposition layer 2 by a known roller-type coating apparatus (not shown) provided continuously with the film forming facility 10.
  • a known roller-type coating apparatus not shown
  • Thin films of different materials may be formed by a plurality of film forming apparatuses. In that case, a multilayer multifunctional film having not only gas barrier properties but also various functions can be obtained.
  • the set temperature can be set to a constant temperature between ⁇ 20 ° C. and 100 ° C. from the viewpoint of heat resistance restrictions of related mechanical parts and versatility.
  • the film formation pressure in the film formation chamber for continuously forming the vapor deposition layer is sufficient to form a vapor deposition layer having sufficient denseness of the vapor deposition layer and adhesion to the substrate. It is preferable to set and maintain at about 0.1 Pa to 100 Pa.
  • the substrate 1 After reducing the pressure to a predetermined pressure, the substrate 1 is unwound from the original fabric by the unwinding roller 13, and the substrate 1 is wound around the plasma pretreatment roller 20 via the guide roller 14 a, so that the substrate 1 is The material moves from the material transfer chamber 12A to the plasma pretreatment chamber 12B and is guided to the plasma pretreatment apparatus. Then, plasma is introduced in a state where an applied potential is applied between the plasma supply means and the pretreatment roller, and plasma pretreatment is performed. Thereby, a plasma processing surface is formed on one surface of the substrate 1 wound around the plasma preprocessing roller 20 by the plasma preprocessing means.
  • the substrate 1 having a plasma treatment surface formed on one side is moved again from the plasma pretreatment roller 20 around the guide roller 14b to move to the substrate conveyance chamber 12A again. Thereafter, the guide rollers 14b and 14c are used to move the inside of the substrate transport chamber 12A, wind around the film forming roller 25 so that the plasma-treated surface becomes the front, and move to the film forming chamber 12C.
  • the film forming chamber 12 ⁇ / b> C the vapor deposition layer 2 is formed on the pretreatment surface of the substrate 1 by the film forming means 26.
  • the base material 1 on which the vapor deposition layer 2 is formed is moved again from the film formation roller 25 to the base material transfer chamber 12A, and is wound into a roll shape by the take-up roller via the guide roller 14d.
  • the substrate 1 is formed before the vapor deposition layer 2 is formed, and the gap formed by the plasma pretreatment roller 20, the plasma supply unit, and the magnetic forming unit 21 is formed.
  • the plasma P is introduced from the plasma supply nozzles 22a and 22b that also serve as the supply of the plasma source gas in the gap near the outer periphery of the plasma pretreatment roller 20 toward the substrate 1, and the plasma P and the plasma pretreatment are introduced.
  • the atmosphere in the plasma pretreatment means is improved by performing the plasma pretreatment in a state where a positive applied voltage is applied to the roller 20. Therefore, a uniform and high-quality plasma processing surface can be formed on the substrate 1.
  • the film deposition means 26 depositing the vapor deposition layer 2 on the plasma processing surface by the film deposition means 26, it becomes possible to obtain the base film 5 having the uniform vapor deposition layer 2 having excellent adhesion and the like. Moreover, it becomes possible to obtain the base film 5 having the uniform vapor-deposited layer 2 that has adhesiveness and excellent water-resistant adhesiveness even after hydrothermal treatment at 121 ° C. for 60 minutes. Furthermore, it is possible to obtain a base material having a uniform vapor deposition layer 2 that has adhesiveness even in a high-temperature and high-humidity environment that is stored for 500 hours in a 60 ° C. ⁇ 90% RH environment and that has excellent wet heat resistance.
  • the base material transfer chamber 12A is partitioned by a partition wall 35a (zone seal) and has a different pressure from the plasma pretreatment chamber in which electrodes are present.
  • a partition wall 35a zone seal
  • the plasma P in the plasma pretreatment chamber 12B leaks into the substrate transfer chamber 12A due to leakage of the plasma P in the plasma pretreatment chamber. It does not become unstable, damage the member of the base material transfer chamber 12A, or cause electrical damage to the electric circuit for controlling the base material transfer mechanism, thereby causing no control failure. Material conveyance becomes possible.
  • the plasma processing pressure in the added plasma pretreatment chamber 12B is, for example, 0.1 Pa or more and 100 Pa or less. By performing the pretreatment at such a pretreatment pressure, a stable plasma P can be formed.
  • the plasma pretreatment it is possible to prevent an increase in the impedance of the plasma discharge, to easily form the plasma P, and to perform the discharge and the plasma treatment stably for a long time.
  • the discharge impedance of the plasma P does not increase, in the plasma processing, the processing speed is improved, the film stress is reduced, the damage to the base material is reduced (the occurrence of electrical charge-up is suppressed, the base material etching is reduced, It is possible to reduce material coloring.
  • the discharge impedance can be optimized, the ion implantation effect on the substrate 1 can be adjusted, the adhesion of the vapor deposition layer formed on the pretreatment surface can be improved, and Damage can be reduced and a favorable pre-processed surface can be formed.
  • the gas barrier coating film 4 is a transparent coating film that retains gas barrier properties in a high temperature and high humidity environment.
  • the general formula R 1 n M (OR 2 ) m (where R 1 and R 2 are carbon atoms) An organic group having a number of 1 to 8, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M.
  • Gas barrier properties comprising at least one or more metal alkoxides represented and a water-soluble polymer, and further polycondensing by a sol-gel method in the presence of a sol-gel method catalyst, acid, water, and an organic solvent
  • a coating film made of the composition is applied onto the vapor deposition layer 2 and heat-dried at a temperature of 20 ° C. to 180 ° C. and below the melting point of the substrate 1 for 10 seconds to 10 minutes to form a gas barrier coating film 4. be able to.
  • the gas barrier composition is coated on the vapor deposition layer 2 to form two or more layers of coating films, and heated at a temperature of 20 ° C. to 180 ° C. and below the melting point of the substrate 1 for 10 seconds to 10 minutes. You may dry-process and form the gas-barrier coating film 4 which laminated
  • the metal atom represented by M in the general formula R 1 n M (OR 2 ) m include silicon, zirconium, titanium, aluminum, and the like.
  • the above alkoxides may be used in combination of two or more.
  • the toughness and heat resistance of the resulting base film 5 can be improved, and a decrease in the retort resistance of the film during stretching can be avoided.
  • the heat conductivity of the gas barrier coating film obtained will become low, and heat resistance will improve remarkably.
  • a polyvinyl alcohol resin or an ethylene / vinyl alcohol copolymer can be used alone, or a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer can be used. Can be used in combination.
  • a polyvinyl alcohol-based resin and / or an ethylene / vinyl alcohol copolymer By using a polyvinyl alcohol-based resin and / or an ethylene / vinyl alcohol copolymer, physical properties such as gas barrier properties, water resistance, weather resistance, and the like can be remarkably improved.
  • polyvinyl alcohol resin those obtained by saponifying polyvinyl acetate can be generally used.
  • Polyvinyl alcohol resins include partially saponified polyvinyl alcohol resins in which several tens of percent of acetate groups remain, completely saponified polyvinyl alcohols in which no acetate groups remain, and modified polyvinyl alcohol resins in which OH groups have been modified.
  • Well not particularly limited.
  • ethylene / vinyl alcohol copolymer a saponified product of a copolymer of ethylene and vinyl acetate, that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer can be used.
  • a saponification degree that is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more from the viewpoint of gas barrier properties.
  • the content of repeating units derived from ethylene in the ethylene / vinyl alcohol copolymer (hereinafter also referred to as “ethylene content”) is usually 0 to 50 mol%, preferably 20 to 45 mol%. It is preferable.
  • the metal alkoxide, silane coupling agent, water-soluble polymer, sol-gel catalyst, acid, water, organic solvent, etc. are mixed to prepare a gas barrier composition.
  • the gas barrier coating film 4 is applied on the vapor deposition layer 2 on the substrate 1 and dried. By this drying step, polycondensation of the metal alkoxide, the silane coupling agent, the polyvinyl alcohol resin and / or the ethylene / vinyl alcohol copolymer further proceeds, and a coating film is formed.
  • the above coating operation may be further repeated to form a plurality of coating films composed of two or more layers.
  • the laminate of the base material 1 and the vapor deposition layer 2 coated with the gas barrier composition is 20 ° C. to 180 ° C. and a temperature below the melting point of the base material 1, preferably a temperature in the range of 50 ° C. to 160 ° C. And heat treatment for 10 seconds to 10 minutes.
  • the printing layer 3 is provided on the gas barrier coating film 4 as needed. In this way, the base film 5 can be manufactured.
  • the method for applying the gas barrier composition for example, it is applied once or a plurality of times by an application means such as a roll coat such as a gravure roll coater, a spray coat, a spin coat, a dipping, a brush, a barcode or an applicator.
  • a coating film having a dry film thickness of 0.01 ⁇ m or more and 30 ⁇ m or less, preferably 0.1 ⁇ m or more and ⁇ 10 ⁇ m or less can be formed.
  • Condensation is carried out by heating and drying in a normal environment, for example, at a temperature of 50 to 300 ° C., preferably 70 to 200 ° C., for 0.005 to 60 minutes, preferably 0.01 to 10 minutes.
  • the gas barrier coating film 4 can be formed.
  • a covalent bond between a metal atom and a carbon atom is formed at the interface between the substrate 1 and the vapor deposition layer 2.
  • the adhesiveness of the base material 1 and the vapor deposition layer 2 can be improved.
  • it can suppress that peeling of the base material 1 and the vapor deposition layer 2 arises in a hot and humid environment.
  • the gas barrier property of the base film 5 can be enhanced, and the occurrence of cracks, pinholes, and the like can be suppressed.
  • the base film 5 of the present embodiment further includes a gas barrier coating film 4. Thereby, the gas barrier property of the base film 5 can be further enhanced.
  • the following effect can be show
  • PBT is excellent in heat resistance. For this reason, when performing a retort process to the packaging bag comprised from the packaging material 8 containing the base film 5, it can suppress that the base material 1 deform
  • PBT has high strength. For this reason, like the case where the packaging material 8 includes nylon, the packaging bag can have puncture resistance. PBT has a characteristic that it is less likely to absorb moisture than nylon.
  • wrapping material 8 for constituting a packaging bag.
  • the packaging material 8 includes the above-described base film 5 and a thermoplastic resin layer 7 laminated on the base film 5 with an adhesive layer 6 interposed therebetween.
  • a thermoplastic resin layer 7 is laminated on the surface of the base film 5 on the vapor deposition layer 2 side.
  • the thermoplastic resin layer 7 constitutes the inner surface of the packaging material 8 (the inner surface of the packaging bag constituted by the packaging material 8).
  • a printing layer may be provided between the vapor deposition layer 2 and the adhesive layer 6.
  • the thermoplastic resin layer 7 may be any resin layer or film that can be melted by heat and fused to each other.
  • low-density polyethylene medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene.
  • Polypropylene polymethylpentene, polystyrene, ethylene-vinyl acetate copolymer, ⁇ -olefin copolymer, ionomer resin, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer
  • a resin consisting of one or more resins such as a polymer, an ethylene-propylene copolymer, an elastomer or the like, or a film thereof, and among them, since it is a layer in contact with contents such as food, hygiene, Olefies such as polyethylene and polypropylene with excellent heat resistance, chemical resistance, and fragrance retention
  • a type or resin or these films consist more system resin.
  • the thickness is preferably 13 ⁇ m or more and 100 ⁇ m or less, and more preferably 15 ⁇ m or more and 70 ⁇ m or less.
  • the thermoplastic resin layer 7 is preferably made of an unstretched film. “Unstretched” is a concept that includes not only a film that is not stretched at all, but also a film that is slightly stretched due to the tension applied during film formation.
  • the packaging bag composed of the packaging material 8 may be subjected to sterilization treatment such as boil treatment and retort treatment at a high temperature.
  • sterilization treatment such as boil treatment and retort treatment at a high temperature.
  • thermoplastic resin layer 7 one having heat resistance that can withstand these high-temperature treatments is used.
  • the melting point of the material constituting the thermoplastic resin layer 7 is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. By increasing the melting point of the thermoplastic resin layer 7, the packaging bag can be retorted at a high temperature, and therefore the time required for the retorting process can be shortened. Note that the melting point of the material constituting the thermoplastic resin layer 7 is lower than the melting point of the resin constituting the substrate 1.
  • a material mainly composed of propylene can be used as the material constituting the thermoplastic resin layer 7.
  • the material having “propylene as a main component” means a material having a propylene content of 90% by mass or more.
  • Specific examples of the material mainly composed of propylene include propylene / ethylene block copolymer, propylene / ethylene random copolymer, polypropylene such as homopolypropylene, or a mixture of polypropylene and polyethylene.
  • the “propylene / ethylene block copolymer” means a material having a structural formula represented by the following formula (I).
  • the “propylene / ethylene random copolymer” means a material having a structural formula represented by the following formula (II).
  • “Homopolypropylene” means a material having the structural formula shown by the following formula (III).
  • the material may have a sea-island structure.
  • the “sea-island structure” means a structure in which polyethylene is discontinuously dispersed in a region where polypropylene is continuous.
  • examples of the material constituting the thermoplastic resin layer 7 include polyethylene, polypropylene, or a combination thereof.
  • polyethylene include medium density polyethylene, linear low density polyethylene, and combinations thereof.
  • the material constituting the thermoplastic resin layer 7 has a melting point of, for example, 100 ° C. or higher, more preferably 105 ° C. or higher, and still more preferably 110 ° C. or higher.
  • thermoplastic resin layer 7 having a melting point of 100 ° C. or higher examples include TUX-HC manufactured by Mitsui Chemicals Tosero, L6101 manufactured by Toyobo, and LS700C manufactured by Idemitsu Unitech. it can.
  • Specific examples of the heat-sealable film for forming the thermoplastic resin layer 7 having a melting point of 105 ° C. or higher include NB-1 manufactured by Tamapoly.
  • Specific examples of the heat-sealable film for constituting the thermoplastic resin layer 7 having a melting point of 110 ° C. or higher include LS760C manufactured by Idemitsu Unitech, TUX-HZ manufactured by Mitsui Chemicals Tosero, and the like.
  • the thermoplastic resin layer 7 may have a light shielding property.
  • a material having a property of shielding light from the outside can be used as the thermoplastic resin layer 7 imparted with a light shielding property.
  • a material for the light-shielding heat seal layer a metal such as aluminum can be used by forming a deposited film on the heat sealable film by vacuum deposition or sputtering.
  • a white film may be used for a film and the film in which the light-shielding ink layer was formed can also be used.
  • metal vapor deposition films such as aluminum
  • a material for the barrier layer it is common to use a metal such as aluminum by forming a deposited film on a plastic film by vacuum deposition, but in addition, an aluminum foil may be used.
  • a metal for forming such a metal vapor deposition film metals such as aluminum (Al), chromium (Cr), silver (Ag), copper (Cu), tin (Sn) can be used, It is desirable to use aluminum (Al).
  • an aluminum foil having a thickness of 5 ⁇ m or more and 30 ⁇ m or less, and a metal vapor deposition film having a thickness of 50 mm or more and ⁇ 3000 mm or less, preferably 100 mm or more and The thing below 1000cm is desirable.
  • a metal vapor deposition film having a thickness of 50 mm or more and ⁇ 3000 mm or less, preferably 100 mm or more and The thing below 1000cm is desirable.
  • the light-shielding ink layer specifically, an ink containing a light-shielding pigment such as aluminum paste or carbon black can be used.
  • the thickness of the ink layer is preferably 1 ⁇ m or more and 8 ⁇ m or less, and more preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the white film contains a white pigment mainly giving a light shielding property to the polyolefin resin.
  • the white pigment used in the white film include titanium oxide, zinc oxide, extender pigments such as aluminum hydroxide, magnesium carbonate, calcium carbonate, precipitated barium sulfate, silica, and talc.
  • the content of the white pigment is preferably 10% or more and 40% or less.
  • a method for forming a metal deposition film will be described.
  • Examples of such a method include physical vapor deposition methods (Physical Vapor Deposition method, PVD method) such as vacuum deposition, sputtering, and ion plating, plasma enhanced chemical vapor deposition, and thermal chemical vapor deposition.
  • chemical vapor deposition methods such as photochemical vapor deposition (Chemical Vapor Deposition method, CVD method).
  • a method for forming a metal vapor deposition film will be described in detail.
  • a vacuum vapor deposition method in which a metal as described above is used as a raw material, and this is heated and vapor-deposited on a flexible film.
  • a film can be formed.
  • the adhesive layer 6 may be an adhesive layer containing an adhesive or an anchor coat layer. Further, the adhesive layer 6 may be a layer containing an adhesive resin.
  • adhesive resin the same resin as the case of the above-mentioned thermoplastic resin layer 7 can be mentioned.
  • Examples of adhesives include ether-based two-component reactive adhesives and ester-based two-component reactive adhesives.
  • the ether-based two-component reactive adhesive include polyether polyurethane.
  • the polyether polyurethane is a cured product produced by a reaction between a polyether polyol as a main agent and an isocyanate compound as a curing agent.
  • Examples of the isocyanate compound include aliphatic isocyanate compounds such as hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI), and aromatic isocyanate compounds such as tolylene diisocyanate (TDI) and xylylene diisocyanate (XDI).
  • ester-based two-component reactive adhesive examples include polyester polyurethane and polyester.
  • Polyester polyurethane is a cured product produced by a reaction between a polyester polyol as a main agent and an isocyanate compound as a curing agent.
  • the isocyanate compound the above-described isocyanate compounds can be used.
  • an aliphatic compound is used as the isocyanate compound, components that cannot be used for food use do not elute under a high temperature environment such as during heat sterilization (boil treatment or retort treatment), which is suitable for food use.
  • the adhesive strength between the base material 1 and the vapor deposition layer 2 can be raised.
  • the lamination strength between the base material 1 and the thermoplastic resin layer 7 can be increased.
  • the laminate strength between the base material 1 of the packaging material 8 and the thermoplastic resin layer 7 is 4.5 N or more, more preferably 5. It can be 0N or more. A method for measuring the laminate strength will be described in Examples described later.
  • the packaging material 8 includes PBT having high strength.
  • the puncture strength of the packaging material 8 can be, for example, 11N or more, more preferably 13N or more, and further preferably 15N or more. The method for measuring the piercing strength will be described in the examples described later.
  • the packaging material 8 is provided with the vapor deposition layer 2 provided on the base material 1.
  • FIG. For this reason, the oxygen permeability and water vapor permeability of the packaging material 8 can be reduced.
  • the oxygen permeability of the packaging material 8 can be 1 cc / day ⁇ m 2 or less, more preferably 0.6 cc / day ⁇ m 2 or less.
  • the water vapor permeability of the packaging material 8 can be 1 g / day ⁇ m 2 or less, and more preferably 0.6 g / day ⁇ m 2 or less.
  • the packaging material 8 can be used, for example, as a boil packaging bag, a retort sterilization packaging bag, or a dry food packaging bag such as sweets.
  • the packaging material 8 can also be used in the field of daily necessities or cosmetic packaging bags including shampoos, rinses and rinse-in shampoos.
  • the packaging material 8 can also be used as a packaging material for industrial products such as ink cartridges.
  • the packaging material 8 can also be used in the field of liquid soup packaging bags.
  • the packaging material 8 can also be used as a material for constituting a paper cup, a liquid paper container, and a laminate tube.
  • the paper layer 102 is further provided.
  • the paper used as the paper layer 102 has a basis weight of 100 g / m 2 or more and 700 g / m 2 or less, preferably 150 g / m 2 or more and 600 g / m 2 or less, more preferably 200 g / m 2 or more and 500 g / m 2 or less. Is.
  • the paper layer 102 white paperboard is generally used, but ivory paper using natural pulp, milk carton base paper, cup base paper and the like are particularly preferable from the viewpoint of safety.
  • the paper layer 102 may be laminated via the adhesive layer 101.
  • the adhesive layer 101 a layer similar to the adhesive layer 6 described above can be used.
  • the packaging material 8 When the packaging material 8 is used as a material for constituting the liquid paper container, the packaging material 8 has the vapor deposition layer 2 on the side opposite to the first thermoplastic resin layer 7 as shown in FIG.
  • stacked on the paper layer 102 are further provided. As shown in FIG. 6, the paper layer 102 may be laminated via the adhesive layer 101, and the second thermoplastic resin layer 104 may be laminated via the adhesive layer 103.
  • the same layer as the above-mentioned adhesive layer 6 can be used, and as the second thermoplastic resin layer 104, the same layer as the above-mentioned first thermoplastic resin layer 7 is used. Can be used.
  • the packaging material 8 When the packaging material 8 is used as a material for constituting the laminate tube, the packaging material 8 has the vapor deposition layer 2 on the side opposite to the first thermoplastic resin layer 7 as shown in FIG. A second thermoplastic resin layer 104 laminated on the base film 5 is further provided. As shown in FIG. 7, the second thermoplastic resin layer 104 may be laminated via an adhesive layer 103.
  • an AL-C covalent bond is formed at the interface between the base material 1 and the vapor deposition layer 2 which is manufactured using the film forming equipment 10 equipped with the plasma pretreatment apparatus according to the present invention.
  • the base film 5 was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be made within the scope of the technical idea disclosed in the present application, and these are naturally also within the technical scope of the film forming apparatus 10 of the present invention. Belonging to.
  • Example 1 A film-like base material 1 including a plurality of layers 1a described in the first configuration and manufactured by a casting method was prepared.
  • the content of PBT in each layer 1a was 80%, the number of layers 1a was 1024, and the thickness of the substrate 1 was 15 ⁇ m.
  • the following in the pretreatment section Plasma is introduced from a plasma supply nozzle under plasma conditions, and plasma pretreatment is performed at a transfer speed of 480 m / min.
  • an aluminum oxide vapor deposition layer 2 having a thickness of 10 nm was formed by a reactive resistance heating method.
  • Plasma pretreatment conditions High frequency power output: 4 kW
  • Plasma intensity 550 W ⁇ sec / m 2
  • Plasma forming gas Oxygen 300 (sccm), Argon 1000 (sccm)
  • Magnetic forming means 1000 gauss permanent magnet
  • Pretreatment compartment vacuum 1.0 ⁇ 10 -1 Pa
  • Vacuum degree 1.0 ⁇ 10 -2 Pa
  • a mixed solution composed of polyvinyl alcohol, isopropyl alcohol, and ion-exchanged water of composition a prepared according to the composition table shown below ethyl silicate, silane coupling agent, isopropyl alcohol, hydrochloric acid, and A hydrolyzate having a solid content of 4 wt% made of ion-exchanged water was added and stirred to obtain a colorless and transparent barrier coating solution.
  • Composition table a Polyvinyl alcohol 2.30 Isopropyl alcohol 2.70 H2O 51.20 b Ethyl silicate 16.60 Silane coupling agent 0.20 Isopropyl alcohol 3.90 0.5N hydrochloric acid aqueous solution 0.50 H2O 22.60 Total 100.00 (wt%)
  • the gas barrier composition (barrier coating solution) manufactured above is coated on the aluminum oxide vapor deposition surface by using a gravure method, and then heated at 150 ° C. for 60 seconds by a sol-gel method.
  • a gas barrier coating film 4 having a thickness of 0.3 ⁇ m (in a dry operation state) obtained by condensation polymerization was formed.
  • thermoplastic resin layer 7 was laminated on the surface of the base film 5 on the gas barrier coating film 4 side through an adhesive layer 6.
  • a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used.
  • the thickness of the adhesive layer 6 was 3 ⁇ m.
  • RU-40 contains a polyester polyol.
  • H-4 contains an aliphatic isocyanate compound.
  • thermoplastic resin layer 7 an unstretched polypropylene film ZK99S manufactured by Toray Film Processing Co., Ltd. was used.
  • the thickness of the thermoplastic resin layer 7 was 60 ⁇ m.
  • the layer structure of the packaging material 8 of the present embodiment can be expressed as follows in order from the outer surface side to the inner surface side. Note that “/” represents a boundary between layers.
  • Base material multilayer PBT
  • deposition layer / gas barrier coating film / adhesive layer / thermoplastic resin layer
  • the oxygen permeability of the packaging material 8 was measured using the MOCON method in a 23 ° C. ⁇ 90% RH environment in accordance with JIS K7126-1. As a result, the oxygen permeability was 0.5 cc / day ⁇ m 2 . Moreover, the water vapor permeability of the packaging material 8 was measured using the MOCON method in a 40 ° C. ⁇ 90% RH environment in accordance with JISK7129B. As a result, the water vapor permeability was 0.2 g / day ⁇ m 2 .
  • the laminate strength of the packaging material 8 was measured.
  • Tensilon universal material testing machine RTC-1310 manufactured by A & D was used as a measuring instrument. Specifically, first, the packaging material 8 is cut out and, as shown in FIG. 9, the base material 1 side member and the thermoplastic resin layer 7 side member are separated by 15 mm in the long side direction. A test piece was prepared. The width of the test piece (short side length) was 15 mm. Thereafter, as shown in FIG. 10, the already peeled portions of the member on the base material 1 side and the member on the thermoplastic resin layer 7 side were gripped by the gripping tool 71 and the gripping tool 72 of the measuring instrument, respectively.
  • the grippers 71 and 72 are each set at a speed of 50 mm / min in directions opposite to each other in the direction perpendicular to the surface direction of the portion where the member on the substrate 1 side and the member of the vapor deposition layer 2 are still laminated. And the average value of the tensile stress in the stable region (see FIG. 11) was measured.
  • the spacing S between the gripping tools 71 and 72 when starting the tension was 30 mm, and the spacing S between the gripping tools 71 and 72 when finishing the tensioning was 60 mm.
  • FIG. 11 is a diagram illustrating a change in tensile stress with respect to the interval S between the grippers 71 and 72. As shown in FIG. 11, the change in tensile stress with respect to the interval S enters the second region (stable region) having a smaller change rate than the first region through the first region.
  • the average value of tensile stress in the stable region was measured, and the average value was defined as the laminate strength between the base material 1 of the packaging material 8 and the thermoplastic resin layer 7.
  • the environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%.
  • the laminate strength at a width of 15 mm was 5.0 N.
  • the piercing strength of the packaging material 8 was measured according to JIS Z1707 7.4.
  • Tensilon universal material testing machine RTC-1310 manufactured by A & D was used as a measuring instrument. Specifically, a semicircular needle 80 having a diameter of 1.0 mm and a tip shape radius of 0.5 mm is applied to the test piece of the packaging material 8 in a fixed state from the base 1 side at 50 mm / min.
  • the maximum value of the stress until the needle 80 penetrates the packaging material 8 was measured by piercing at a speed of (50 mm per minute). About five or more test pieces, the maximum value of stress was measured, and the average value was defined as the piercing strength of the packaging material 8.
  • the environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the piercing strength was 16N.
  • the two packaging materials 8 are stacked and heated at 190 ° C. for 1 second to heat-seal the thermoplastic resin layers 7 of the packaging material 8 and are filled with 200 g of water as a content to form a rectangular 4 A side-sealed bag was produced.
  • the four-side seal bag had a height of 180 mm and a width of 130 mm.
  • a retort sterilization treatment was performed in which the four-side sealed bag was heated at 121 ° C. for 40 minutes. Thereafter, it was confirmed whether or not the appearance of the four-side seal bag was whitened. As a result, no whitening was observed.
  • Example 2 A packaging material 8 was produced in the same manner as in Example 1 except that a film-like substrate 1 containing PBT and produced by a tubular method was used as the substrate 1.
  • the substrate 1 was a single layer film composed only of PBT and additives, and the thickness of the substrate 1 was 15 ⁇ m.
  • the layer structure of the packaging material 8 of the present embodiment can be expressed as follows in order from the outer surface side to the inner surface side. Note that “/” represents a boundary between layers.
  • the oxygen permeability and water vapor permeability, laminate strength, puncture strength, and retort suitability of the packaging material 8 were evaluated.
  • the oxygen permeability was 0.3 cc / day ⁇ m 2
  • the water vapor permeability was 0.3 g / day ⁇ m 2
  • the laminate strength at 15 mm width was 5.3 N
  • the piercing strength was 15 N. It was.
  • whitening was not seen when the retort sterilization process was performed.
  • Example 3 A base material 1 similar to that in Example 1 was prepared except that the content of PBT in each layer 1a was 70%. Subsequently, a packaging material 8 was produced in the same manner as in Example 1.
  • the oxygen permeability and water vapor permeability, laminate strength, puncture strength, and retort suitability of the packaging material 8 were evaluated.
  • the oxygen permeability was 0.3 cc / day ⁇ m 2
  • the water vapor permeability was 0.3 g / day ⁇ m 2
  • the laminate strength at 15 mm width was 5.3 N
  • the piercing strength was 13 N. It was.
  • whitening was not seen when the retort sterilization process was performed.
  • a packaging material 8 was produced in the same manner as in Example 1 except that a nylon film having a thickness of 15 ⁇ m (Bonil W manufactured by Kojin Holdings Co., Ltd.) was used as the substrate 1.
  • the layer structure of the packaging material 8 of Comparative Example 1 can be expressed as follows in order from the outer surface side to the inner surface side. Note that “/” represents a boundary between layers.
  • Base material nylon
  • deposition layer / gas barrier coating film / adhesive layer / thermoplastic resin layer
  • the oxygen permeability and water vapor permeability, laminate strength, puncture strength, and retort suitability of the packaging material 8 were evaluated.
  • the oxygen permeability was 0.2 cc / day ⁇ m 2
  • the water vapor permeability was 1.3 g / day ⁇ m 2
  • the laminate strength at 15 mm width was 3.8 N
  • the piercing strength was 15 N. It was.
  • whitening was seen when the retort sterilization process was performed.
  • Comparative Example 2 A packaging material 8 was produced in the same manner as in Example 1 except that a PET film having a thickness of 12 ⁇ m (T4102 manufactured by Toyobo Co., Ltd.) was used as the substrate 1.
  • the layer structure of the packaging material 8 of Comparative Example 2 can be expressed as follows in order from the outer surface side to the inner surface side. Note that “/” represents a boundary between layers.
  • the oxygen permeability and water vapor permeability, laminate strength, puncture strength, and retort suitability of the packaging material 8 were evaluated.
  • the oxygen permeability was 0.2 cc / day ⁇ m 2
  • the water vapor permeability was 0.4 g / day ⁇ m 2
  • the laminate strength at 15 mm width was 6.1 N
  • the piercing strength was 10 N. It was.
  • whitening was not seen when the retort sterilization process was performed.
  • Examples 1, 2, and 3 and Comparative Examples 1 and 2 are collectively shown in FIG.
  • the packaging material 8 is provided with PBT instead of nylon, so that the water vapor permeability of the packaging material 8 is reduced, and the packaging material is used.
  • the laminate strength of 8 could be increased. Furthermore, it was possible to suppress the whitening of the packaging material 8 due to the retort sterilization treatment.
  • the piercing strength of the packaging material 8 can be 11 N or more by providing the packaging material 8 with PBT instead of PET. More specifically, it could be 13N or more.

Abstract

The present invention provides a film that exhibits piercing resistance and heat resistance, and has gas-barrier properties. This film is provided with: a substrate; and a deposition layer which is disposed on the substrate and contains a metal or an alloy. The substrate contains at least 51 mass% of polybutylene terephthalate. Formed at the interface between the substrate and the deposition layer is a covalent bond between a metal atom and a carbon atom.

Description

フィルム及びフィルム製造方法、並びにフィルムを備える包装用材料Film, film manufacturing method, and packaging material provided with film
 本発明は、基材及び基材上に設けられた蒸着層を有するフィルム及びフィルム製造方法に関する。また、本発明は、フィルムと、フィルムに接着層を介して積層された熱可塑性樹脂層と、を備える包装用材料に関する。 The present invention relates to a base material and a film having a vapor deposition layer provided on the base material and a film manufacturing method. The present invention also relates to a packaging material comprising a film and a thermoplastic resin layer laminated on the film via an adhesive layer.
 従来、飲食品、医薬品、化学品、化粧品、その他等の種々の物品を充填包装するために、種々の包装用材料が開発され、提案されている。そのような包装用材料においては、包装目的、充填する内容物、包装製品の貯蔵・流通、その他等によって異なるが、包装用材料として、種々の物性が要求される。例えば、それらの物性の一つとして、酸素および水蒸気等の透過を阻止するガスバリア性がある。 Conventionally, various packaging materials have been developed and proposed for filling and packaging various articles such as foods and drinks, pharmaceuticals, chemicals, cosmetics, and others. In such packaging materials, various physical properties are required as packaging materials, although they vary depending on the packaging purpose, contents to be filled, storage / distribution of packaged products, and others. For example, as one of those physical properties, there is a gas barrier property that prevents permeation of oxygen, water vapor, and the like.
 従来から、酸素および水蒸気等の透過を阻止するガスバリア性材料が、種々、開発され、提案されている。例えば、アルミニウム箔、あるいは、ポリ塩化ビニリデン系樹脂のコーティング膜を有するナイロンフィルムあるいはポリエチレンテレフタレートフィルム、ポリビニルアルコールフィルム、エチレン-酢酸ビニル共重合体のケン化物フィルム、ポリアクリロニトリル系樹脂フィルム等のガスバリア性材料が、開発され、提案されている。 Conventionally, various gas barrier materials that prevent permeation of oxygen and water vapor have been developed and proposed. For example, gas barrier materials such as aluminum foil or nylon film or polyethylene terephthalate film having a polyvinylidene chloride resin coating film, polyvinyl alcohol film, saponified ethylene-vinyl acetate copolymer film, polyacrylonitrile resin film, etc. Has been developed and proposed.
 更に、近年、プラスチック製の基材の上に、例えば、酸化ケイ素、酸化アルミニウム等の無機酸化物の蒸着層を設けた構成からなる透明バリア性フィルム、あるいは、アルミニウム等の金属の蒸着層を設けたバリア性フィルム等も提案されている。例えば、特許文献1は、ナイロンフィルム上に無機酸化物の蒸着層を形成することによってバリア性フィルムを作製することを提案している。 Further, in recent years, a transparent barrier film having a structure in which a vapor-deposited layer of an inorganic oxide such as silicon oxide or aluminum oxide is provided on a plastic substrate, or a vapor-deposited layer of a metal such as aluminum is provided. Barrier films and the like have also been proposed. For example, Patent Document 1 proposes producing a barrier film by forming an inorganic oxide vapor deposition layer on a nylon film.
特開2007-303000号公報JP 2007-303000 A
 包装用材料には、先端が尖った鋭利な部材が包装袋に接触した場合にも袋が破けてしまうことを抑制する特性、いわゆる耐突き刺し性が求められる。特許文献1に記載のナイロンフィルムは、高い耐突き刺し性を有するフィルムとして知られている。一方、ナイロンは、水分を吸収し易く、且つ耐熱性に乏しい。従って、ナイロンフィルムを、包装用材料の外面を構成するフィルムとして使用するのは困難である。例えば特許文献1において、ナイロンフィルムの外面側には、ポリエステル系樹脂などを含む基材フィルムが接着剤層を介して積層されている。このように包装用材料がナイロンフィルム及び基材フィルムという2つのプラスチックフィルムを含むので、包装用材料のコストが高くなってしまう。 The packaging material is required to have so-called stab resistance that prevents the bag from tearing when a sharp member with a sharp tip contacts the packaging bag. The nylon film described in Patent Document 1 is known as a film having high puncture resistance. On the other hand, nylon is easy to absorb moisture and has poor heat resistance. Therefore, it is difficult to use the nylon film as a film constituting the outer surface of the packaging material. For example, in Patent Document 1, a base film containing a polyester-based resin or the like is laminated on an outer surface side of a nylon film via an adhesive layer. Thus, since the packaging material includes two plastic films, that is, a nylon film and a base film, the cost of the packaging material is increased.
 本発明は、このような課題を効果的に解決し得る袋を提供することを目的とする。 The present invention aims to provide a bag that can effectively solve such problems.
 本発明は、基材と、前記基材上に設けられ、金属又は合金を含む蒸着層と、を備え、前記基材は、51質量%以上のポリブチレンテレフタレートを含み、前記基材と前記蒸着層との界面に、金属原子と炭素原子の共有結合が形成されている、フィルムである。 The present invention comprises a base material and a vapor deposition layer provided on the base material and containing a metal or an alloy, the base material containing 51% by mass or more of polybutylene terephthalate, and the base material and the vapor deposition In this film, a covalent bond between a metal atom and a carbon atom is formed at the interface with the layer.
 本発明によるフィルムにおいて、前記基材は、60質量%以上のポリブチレンテレフタレートを含んでいてもよい。 In the film according to the present invention, the base material may contain 60% by mass or more of polybutylene terephthalate.
 本発明によるフィルムは、前記蒸着層上に設けられたガスバリア性塗布膜を更に備えていてもよい。 The film according to the present invention may further include a gas barrier coating film provided on the vapor deposition layer.
 本発明によるフィルムにおいて、前記蒸着層が透明蒸着層であってもよい。 In the film according to the present invention, the vapor deposition layer may be a transparent vapor deposition layer.
 本発明によるフィルムにおいて、前記蒸着層が、酸化アルミニウムを含む無機酸化物、あるいは複数の無機酸化物の混合物からなっていてもよい。 In the film according to the present invention, the vapor deposition layer may be composed of an inorganic oxide containing aluminum oxide or a mixture of a plurality of inorganic oxides.
 本発明によるフィルムにおいて、前記無機酸化物が、酸化アルミニウムと、酸化珪素、酸化マグネシウム、酸化錫、酸化亜鉛から選択された1種又は1種以上混合した無機酸化物の混合物であってもよい。 In the film according to the present invention, the inorganic oxide may be a mixture of aluminum oxide and one or more inorganic oxides selected from silicon oxide, magnesium oxide, tin oxide, and zinc oxide.
 本発明によるフィルムにおいて、前記蒸着層の厚さが、5nm且つ200nm以下であってもよい。 In the film according to the present invention, the thickness of the vapor deposition layer may be 5 nm and 200 nm or less.
 本発明は、基材を準備する工程と、前記基材上に金属又は合金を蒸着させて前記基材上に蒸着層を形成する蒸着工程と、を備え、前記基材は、60質量%以上のポリブチレンテレフタレートを含み、前記基材と前記蒸着層との界面に、金属原子と炭素原子の共有結合が形成されている、フィルム製造方法である。 The present invention comprises a step of preparing a base material, and a vapor deposition step of depositing a metal or an alloy on the base material to form a vapor deposition layer on the base material, wherein the base material is 60% by mass or more. And a covalent bond of a metal atom and a carbon atom is formed at the interface between the base material and the vapor deposition layer.
 本発明によるフィルム製造方法は、前記基材にプラズマ処理を施して前記基材にプラズマ処理面を形成するプラズマ前処理工程を更に備えていてもよい。この場合、前記蒸着工程は、前記基材の前記プラズマ処理面上に前記蒸着層を形成する。 The film manufacturing method according to the present invention may further include a plasma pretreatment step in which a plasma treatment is performed on the substrate to form a plasma treatment surface on the substrate. In this case, the said vapor deposition process forms the said vapor deposition layer on the said plasma processing surface of the said base material.
 本発明によるフィルム製造方法において、前記プラズマ前処理工程は、プラズマ前処理ローラーとプラズマ供給手段の間に電圧を印加した状態で前記プラズマ前処理ローラーと前記プラズマ供給手段の間に前記基材を保持して前記基材にプラズマ処理面を形成する工程を含んでいてもよい。この場合、前記蒸着工程は、前記プラズマ前処理工程に連続して前記基材の前記プラズマ処理面上に前記蒸着層を形成する。 In the film manufacturing method according to the present invention, in the plasma pretreatment step, the substrate is held between the plasma pretreatment roller and the plasma supply unit in a state where a voltage is applied between the plasma pretreatment roller and the plasma supply unit. And the process of forming a plasma processing surface in the said base material may be included. In this case, the said vapor deposition process forms the said vapor deposition layer on the said plasma processing surface of the said base material following the said plasma pretreatment process.
 本発明によるフィルム製造方法において、前記プラズマ前処理工程が、前記基材にプラズマ処理を施す前処理区画と前記蒸着層を形成する成膜区画とが連続して配置されたローラー式の成膜設備によって実施されてもよい。この場合、好ましくは、前記ローラー式の成膜設備は、前記プラズマ前処理ローラーと前記プラズマ前処理ローラーに対向して配置された前記プラズマ供給手段及び磁場形成手段との間で前記基材の表面にプラズマ原料ガスをプラズマとして導入した際に、前記プラズマを封じ込める空隙を形成するよう構成されている。 In the film manufacturing method according to the present invention, in the plasma pretreatment step, a roller-type film formation facility in which a pretreatment section for performing plasma treatment on the substrate and a film formation section for forming the vapor deposition layer are continuously arranged. May be implemented. In this case, preferably, the roller-type film-forming facility is configured such that the surface of the substrate is between the plasma pretreatment roller and the plasma supply unit and the magnetic field formation unit disposed to face the plasma pretreatment roller. When the plasma source gas is introduced as plasma, a gap for containing the plasma is formed.
 本発明によるフィルム製造方法において、前記プラズマ前処理工程は、前記基材の表面を、単位面積あたりのプラズマ強度として100W・sec/m2以上且つ8000W・sec/m2以下の条件下でプラズマ処理してもよい。 In the film production method according to the present invention, the plasma pretreatment step, the surface of the substrate, 100W · sec / m 2 or more as the plasma intensity per unit area and at 8000W · sec / m 2 under the following conditions plasma treatment May be.
 本発明によるフィルム製造方法において、プラズマ原料ガスは、アルゴン単独、及び又は酸素、窒素、炭酸ガスのうちの1種類以上との混合ガスであってもよい。 In the film manufacturing method according to the present invention, the plasma raw material gas may be argon alone or a mixed gas of one or more of oxygen, nitrogen, and carbon dioxide.
 本発明によるフィルム製造方法において、前記プラズマ前処理工程は、酸素、窒素、炭酸ガスの1種以上とアルゴンの混合ガスからなるプラズマ原料ガスを用いてプラズマ処理を実施してもよい。 In the film manufacturing method according to the present invention, the plasma pretreatment step may be performed using a plasma source gas composed of a mixed gas of at least one of oxygen, nitrogen, and carbon dioxide and argon.
 本発明によるフィルム製造方法において、前記蒸着工程は、物理蒸着によって前記蒸着層を前記基材の前記プラズマ処理面上に形成してもよい。 In the film manufacturing method according to the present invention, the vapor deposition step may form the vapor deposition layer on the plasma-treated surface of the substrate by physical vapor deposition.
 本発明は、包装用材料であって、基材と、前記基材上に設けられ、金属又は合金を含む蒸着層と、を有するフィルムと、前記フィルムに積層された熱可塑性樹脂層と、を備え、前記基材は、60質量%以上のポリブチレンテレフタレートを含み、前記基材と前記蒸着層との界面に、金属元素と炭素元素の共有結合が形成されている、包装用材料である。 The present invention is a packaging material, comprising: a base material; a film provided on the base material; and a vapor deposition layer containing a metal or an alloy; and a thermoplastic resin layer laminated on the film. The base material is a packaging material in which 60% by mass or more of polybutylene terephthalate is included, and a covalent bond between a metal element and a carbon element is formed at an interface between the base material and the vapor deposition layer.
 本発明による包装用材料は、11N以上の突き刺し強度を有していてもよい。 The packaging material according to the present invention may have a puncture strength of 11 N or more.
 本発明による包装用材料において、前記熱可塑性樹脂層は、前記フィルムに接着剤層を介して積層されていてもよい。この場合、15mm幅における前記基材と前記熱可塑性樹脂層との間のラミネート強度は、好ましくは4N以上である。 In the packaging material according to the present invention, the thermoplastic resin layer may be laminated on the film via an adhesive layer. In this case, the laminate strength between the base material and the thermoplastic resin layer at a width of 15 mm is preferably 4N or more.
 本発明による包装用材料において、前記熱可塑性樹脂層は、遮光性を有していてもよい。 In the packaging material according to the present invention, the thermoplastic resin layer may have a light shielding property.
 本発明による包装用材料は、ボイル用包装袋又はレトルト殺菌用包装袋に用いられてもよい。 The packaging material according to the present invention may be used for a boil packaging bag or a retort sterilization packaging bag.
 本発明によれば、基材及び蒸着層を備えるガスバリア性のフィルムに、耐突き刺し性及び耐熱性を持たせることができる。 According to the present invention, a gas barrier film including a base material and a vapor deposition layer can be provided with puncture resistance and heat resistance.
本発明の実施の形態における基材フィルムの一例を示す断面図である。It is sectional drawing which shows an example of the base film in embodiment of this invention. 基材フィルムの基材の一例を示す断面図である。It is sectional drawing which shows an example of the base material of a base film. 本発明の実施の形態における基材フィルムの別の例を示す断面図である。It is sectional drawing which shows another example of the base film in embodiment of this invention. 基材フィルムを備える包装用材料の一例を示す断面図である。It is sectional drawing which shows an example of the packaging material provided with a base film. 包装用材料の一変形例を示す断面図である。It is sectional drawing which shows one modification of the packaging material. 包装用材料の一変形例を示す断面図である。It is sectional drawing which shows one modification of the packaging material. 包装用材料の一変形例を示す断面図である。It is sectional drawing which shows one modification of the packaging material. 基材上に蒸着層を形成する成膜設備を示す図である。It is a figure which shows the film-forming equipment which forms a vapor deposition layer on a base material. 密着強度の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of adhesion strength. 密着強度の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of adhesion strength. 密着強度を測定するために包装用材料の一部を引っ張る一対のつかみ具の間の間隔に対する引張応力の変化を示す図である。It is a figure which shows the change of the tensile stress with respect to the space | interval between a pair of grips which pulls a part of packaging material in order to measure adhesion strength. 突き刺し強度の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of piercing strength. 実施例1,2,3及び比較例1,2の評価結果を示す図である。It is a figure which shows the evaluation result of Example 1,2,3 and Comparative Example 1,2.
 以下、図面を参照しながら本発明の実施の形態に係る基材フィルム及び基材フィルムの蒸着層を成膜する成膜設備について詳しく説明する。なお、この実施例は、単なる例示にすぎず、本発明を何ら限定するものではない。 Hereinafter, a film forming facility for forming a base film and a vapor deposition layer of the base film according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this Example is only a mere illustration and does not limit this invention at all.
 図1は、基材1上に蒸着層2を成膜することにより得られる基材フィルム5の一例を示す断面図であり、図2は、基材1の一例を示す断面図である。図3は、基材フィルム5のその他の例を示す断面図である。図4は、基材フィルム5上に接着層6を介して熱可塑性樹脂層7を積層させることにより得られる包装用材料8の一例を示す断面図である。図8は、基材フィルム5の蒸着層2を成膜する成膜設備10の構成を模式的に示す図である。なお、基材フィルム5が図3に示すガスバリア性塗布膜4を備える場合、ガスバリア性塗布膜4を形成するためのガスバリア性塗布装置が成膜設備10に連続して配置される。図示はしないが、ガスバリア性塗布装置としては、公知のローラー塗布装置を用いることができる。 FIG. 1 is a cross-sectional view showing an example of a base film 5 obtained by forming a vapor deposition layer 2 on a base 1, and FIG. 2 is a cross-sectional view showing an example of the base 1. FIG. 3 is a cross-sectional view showing another example of the base film 5. FIG. 4 is a cross-sectional view showing an example of the packaging material 8 obtained by laminating the thermoplastic resin layer 7 on the base film 5 via the adhesive layer 6. FIG. 8 is a diagram schematically showing the configuration of the film forming facility 10 for forming the vapor deposition layer 2 of the base film 5. When the base film 5 includes the gas barrier coating film 4 shown in FIG. 3, a gas barrier coating apparatus for forming the gas barrier coating film 4 is continuously arranged in the film forming facility 10. Although not shown, a known roller coating device can be used as the gas barrier coating device.
 基材フィルム
 まず、図1乃至図3を参照して、基材フィルム5について説明する。基材フィルム5は、図1に示すように、基材1と、基材1上に設けられた蒸着層2と、を少なくとも備える。蒸着層2は、金属又は合金を含む。金属を含む蒸着層2としては、例えば、アルミニウム(Al)、マグネシウム(Mg)、スズ(Sn)、ナトリウム(Na)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)、金(Au)、クロム(Cr)等の蒸着層を使用することができる。特に、包装袋用としては、アルミニウムの蒸着層を備えることが好ましい。合金を含む蒸着層としては、上述の金属の酸化物の蒸着層を使用することができる。例えば、合金を含む蒸着層2として、酸化アルミニウムなどの無機酸化物を主成分として含む蒸着層を用いることができる。
Base Film First, the base film 5 will be described with reference to FIGS. As shown in FIG. 1, the base film 5 includes at least a base 1 and a vapor deposition layer 2 provided on the base 1. The vapor deposition layer 2 contains a metal or an alloy. Examples of the vapor deposition layer 2 containing a metal include aluminum (Al), magnesium (Mg), tin (Sn), sodium (Na), titanium (Ti), lead (Pb), zirconium (Zr), and yttrium (Y). , Gold (Au), chromium (Cr), or the like can be used. In particular, for packaging bags, it is preferable to provide an aluminum vapor deposition layer. As a vapor deposition layer containing an alloy, the vapor deposition layer of the above-mentioned metal oxide can be used. For example, as the vapor deposition layer 2 containing an alloy, a vapor deposition layer containing an inorganic oxide such as aluminum oxide as a main component can be used.
 基材1と蒸着層2との界面には、金属原子と炭素原子の共有結合が形成されている。例えば、蒸着層2が酸化アルミニウムを含む場合、基材1と蒸着層2との界面には、アルミニウム原子と炭素原子の共有結合が形成されている。このような共有結合は、例えば、図8に示す成膜設備10を用いてプラズマ前処理を施した基材1の表面上に蒸着層2を成膜することにより、形成され得る。共有結合は、X線光電子分光法(以下、略して「XPS測定」という)測定によって検出され得る。 A covalent bond between a metal atom and a carbon atom is formed at the interface between the substrate 1 and the vapor deposition layer 2. For example, when the vapor deposition layer 2 contains aluminum oxide, a covalent bond between an aluminum atom and a carbon atom is formed at the interface between the substrate 1 and the vapor deposition layer 2. Such a covalent bond can be formed, for example, by depositing the vapor deposition layer 2 on the surface of the substrate 1 that has been subjected to plasma pretreatment using the film deposition facility 10 shown in FIG. Covalent bonds can be detected by X-ray photoelectron spectroscopy (hereinafter abbreviated as “XPS measurement”) measurement.
 基材フィルム5は、図1に示すように、蒸着層2上に設けられた印刷層3を更に備えていてもよい。印刷層3は、基材フィルム5を備える後述する包装用材料8から構成される包装袋に製品情報を示したり美感を付与したりするために基材1に印刷された層である。印刷層3は、文字、数字、記号、図形、絵柄などを表現する。印刷層3を構成する材料としては、グラビア印刷用のインキやフレキソ印刷用のインキを用いることができる。グラビア印刷用のインキの具体例としては、DICグラフィックス株式会社製のフィナートを挙げることができる。 The base film 5 may further include a printing layer 3 provided on the vapor deposition layer 2 as shown in FIG. The printed layer 3 is a layer printed on the base material 1 in order to show product information or impart aesthetics to a packaging bag made up of a packaging material 8 to be described later provided with the base film 5. The print layer 3 expresses characters, numbers, symbols, figures, patterns, and the like. As a material constituting the printing layer 3, gravure printing ink or flexographic printing ink can be used. As a specific example of the ink for gravure printing, FINAT manufactured by DIC Graphics Corporation can be given.
 図3に示すように、基材フィルム5は、蒸着層2上に設けられたガスバリア性塗布膜4を更に備えていてもよい。ガスバリア性塗布膜4は、ガスバリア性組成物を蒸着層2上に塗布することによって形成される膜である。図3に示す例において、上述の印刷層3は、ガスバリア性塗布膜4上に設けられる。 As shown in FIG. 3, the base film 5 may further include a gas barrier coating film 4 provided on the vapor deposition layer 2. The gas barrier coating film 4 is a film formed by coating a gas barrier composition on the vapor deposition layer 2. In the example shown in FIG. 3, the above-described printing layer 3 is provided on the gas barrier coating film 4.
 以下、基材フィルム5に使用する材料、基材フィルム5の製造方法及びそのための装置について説明する。 Hereinafter, the material used for the base film 5, the manufacturing method of the base film 5, and an apparatus therefor will be described.
 (基材)
 基材フィルム5に用いる基材1は、主成分としてポリブチレンテレフタレート(以下、PBTとも記す)を含む。例えば、基材1は、51質量%以上のPBTを含む。以下、基材1がPBTを含むことの利点について説明する。
(Base material)
The base material 1 used for the base film 5 contains polybutylene terephthalate (hereinafter also referred to as PBT) as a main component. For example, the base material 1 contains 51 mass% or more of PBT. Hereinafter, the advantage that the substrate 1 includes PBT will be described.
 PBTは、耐熱性に優れる。このため、食品などの内容物を収容する包装袋にボイル処理やレトルト処理を施す際に基材1が変形したり基材1の強度が低下したりすることを抑制することができる。レトルト処理とは、内容物を包装袋に充填して包装袋を密封した後、蒸気又は加熱温水を利用して包装袋を加圧状態で加熱する処理である。レトルト処理の温度は、例えば120℃以上である。ボイル処理とは、内容物を袋10に充填して袋10を密封した後、袋10を大気圧下で湯煎する処理である。ボイル処理の温度は、例えば90℃以上且つ100℃以下である。 PBT has excellent heat resistance. For this reason, it can suppress that the base material 1 deform | transforms or the intensity | strength of the base material 1 falls when performing a boil process and a retort process to the packaging bag which accommodates contents, such as foodstuffs. The retort process is a process of heating the packaging bag in a pressurized state using steam or heated hot water after filling the packaging bag with the contents and sealing the packaging bag. The temperature of retort processing is 120 degreeC or more, for example. The boil process is a process of filling the bag 10 with the contents and sealing the bag 10 and then bathing the bag 10 under atmospheric pressure. The temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
 また、PBTは、高い強度を有する。このため、包装袋を構成する包装用材料8がナイロンを含む場合と同様に、包装袋に耐突き刺し性を持たせることができる。 Also, PBT has high strength. For this reason, the packaging bag can be provided with puncture resistance, similarly to the case where the packaging material 8 constituting the packaging bag contains nylon.
 また、PBTは、ナイロンに比べて水分を吸収しにくいという特性を有する。このため、PBTを含む基材1を包装用材料8の外面に配置した場合であっても、基材1が水分を吸収して包装用材料8のラミネート強度が低下してしまうことを抑制することができる。 Also, PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 1 containing PBT is arrange | positioned on the outer surface of the packaging material 8, it suppresses that the base material 1 absorbs a water | moisture content and the laminate strength of the packaging material 8 falls. be able to.
 以下、PBTを含む基材1の構成について詳細に説明する。本実施の形態における、PBTを含む基材1の構成としては、下記の第1の構成又は第2の構成のいずれを採用してもよい。 Hereinafter, the configuration of the base material 1 including PBT will be described in detail. As the configuration of the substrate 1 containing PBT in the present embodiment, any of the following first configuration or second configuration may be adopted.
 〔基材の第1の構成〕
 第1の構成に係る基材1におけるPBTの含有率は、51質量%以上が好ましく、60質量%以上がより好ましく、さらには70質量%以上、特には75質量%以上が好ましく、最も好ましくは80質量%以上である。PBTの含有率を51質量%以上にすることにより、第1フィルム40に優れたインパクト強度および耐ピンホール性を持たせることができる。
[First Configuration of Substrate]
The content of PBT in the substrate 1 according to the first configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further 70% by mass or more, particularly preferably 75% by mass or more, and most preferably. 80% by mass or more. By setting the content of PBT to 51% by mass or more, the first film 40 can have excellent impact strength and pinhole resistance.
 主たる構成成分として用いるPBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり、最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは、重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。 PBT used as a main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, most preferably 100 mol% or more of terephthalic acid as a dicarboxylic acid component. Mol%. 1,4-butanediol as the glycol component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol during polymerization. It is not included except by-products generated by the ether bond of butanediol.
 基材1は、PBT以外のポリエステル樹脂を含んでいてもよい。これにより、例えばフィルム状の基材1を二軸延伸させる場合の成膜性や基材1の力学特性を調整することができる。
 PBT以外のポリエステル樹脂としては、PET、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂や、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等のジオール成分が共重合されたPBT樹脂を挙げることができる。
The base material 1 may contain a polyester resin other than PBT. Thereby, for example, the film formability when the film-like substrate 1 is biaxially stretched and the mechanical properties of the substrate 1 can be adjusted.
Polyester resins other than PBT include polyester resins such as PET, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), as well as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, and biphenyldicarboxylic acid. , PBT resin copolymerized with dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols such as pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, polycarbonate diol Min can be mentioned copolymerized PBT resin.
 これらPBT以外のポリエステル樹脂の添加量は、49質量%以下が好ましく、40質量%以下がより好ましい。PBT以外のポリエステル樹脂の添加量が49質量%を超えると、PBTとしての力学特性が損なわれ、インパクト強度や耐ピンホール性、絞り成形性が不十分となることが考えられる。 The amount of the polyester resin other than PBT is preferably 49% by mass or less, and more preferably 40% by mass or less. If the addition amount of the polyester resin other than PBT exceeds 49% by mass, the mechanical properties as PBT may be impaired, and impact strength, pinhole resistance, and drawability may be insufficient.
 基材1は、添加剤として、柔軟なポリエーテル成分、ポリカーボネート成分、ポリエステル成分の少なくともいずれかを共重合したポリエステル系およびポリアミド系エラストマーを含んでいてもよい。これにより、屈曲時の耐ピンホール性を改善することができる。添加剤の添加量は、例えば20質量%である。添加剤の添加量が20質量%を超えると、添加剤としての効果が飽和することや、基材1の透明性が低下することなどが起こり得る。 The substrate 1 may contain, as an additive, a polyester-based and polyamide-based elastomer obtained by copolymerizing at least one of a flexible polyether component, a polycarbonate component, and a polyester component. Thereby, the pinhole resistance at the time of bending can be improved. The additive amount of the additive is, for example, 20% by mass. When the addition amount of the additive exceeds 20% by mass, the effect as the additive may be saturated or the transparency of the substrate 1 may be reduced.
 第1の構成に係るフィルム状の基材1を作製する方法の一例について説明する。ここでは、キャスト法によってフィルム状の基材1を作製する方法について説明する。より具体的には、キャスト時に同一の組成の樹脂を多層化してキャストする方法について説明する。 An example of a method for producing the film-like substrate 1 according to the first configuration will be described. Here, a method for producing the film-like substrate 1 by a casting method will be described. More specifically, a method of casting a resin having the same composition in multiple layers during casting will be described.
 PBTは結晶化速度が速いため、キャスト時にも結晶化が進行する。このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、結晶が大きなサイズに成長してしまい、得られた未延伸原反の降伏応力が高くなる。このため、未延伸原反を二軸延伸する際に破断しやすくなる。また、得られた二軸延伸フィルムの降伏応力が高くなり、二軸延伸フィルムの成形性が不十分になってしまうことが考えられる。
 これに対して、キャスト時に同一の樹脂を多層化すれば、未延伸シートの延伸応力を低減することができる。このため、安定した二軸延伸が可能となり、また、得られた二軸延伸フィルムの降伏応力が低くなる。このことにより、柔軟かつ破断強度の高いフィルムを得ることができる。
Since PBT has a high crystallization speed, crystallization proceeds even during casting. At this time, when cast as a single layer without being multi-layered, there is no barrier that can suppress the growth of the crystal, so the crystal grows to a large size, and the resulting unstretched original fabric is obtained. The yield stress of becomes higher. For this reason, it becomes easy to fracture when the unstretched original fabric is biaxially stretched. Moreover, it is possible that the yield stress of the obtained biaxially stretched film becomes high and the moldability of the biaxially stretched film becomes insufficient.
On the other hand, if the same resin is multilayered at the time of casting, the stretching stress of the unstretched sheet can be reduced. For this reason, stable biaxial stretching is possible, and the yield stress of the obtained biaxially stretched film is reduced. Thereby, a flexible and high breaking strength film can be obtained.
 図2は、基材1の層構成の一例を示す断面図である。樹脂を多層化してキャストすることによって基材1が作製される場合、図2に示すように、基材1は、複数の層1aを含む多層構造部からなる。複数の層1aはそれぞれ、主成分としてPBTを含む。例えば、複数の層1aはそれぞれ、好ましくは51質量%以上のPBTを含み、より好ましくは60質量%以上のPBTを含む。なお、複数の層1aにおいては、n番目の層1aの上にn+1番目の層1aが直接積層されている。すなわち、複数の層1aの間には、接着剤層や接着層が介在されていない。 FIG. 2 is a cross-sectional view showing an example of the layer structure of the substrate 1. When the base material 1 is produced by casting the resin in multiple layers, as shown in FIG. 2, the base material 1 is composed of a multilayer structure including a plurality of layers 1a. Each of the plurality of layers 1a includes PBT as a main component. For example, each of the plurality of layers 1a preferably includes 51% by mass or more of PBT, and more preferably includes 60% by mass or more of PBT. In the plurality of layers 1a, the (n + 1) th layer 1a is directly stacked on the nth layer 1a. That is, no adhesive layer or adhesive layer is interposed between the plurality of layers 1a.
 多層化によりPBTフィルムの特性が改善される原因については、下記のように推測する。樹脂を積層する場合、樹脂の組成が同一の場合であっても層の界面が存在し、その界面により結晶化が加速される。一方、層の厚みを越えた大きな結晶の成長は抑制される。このため、結晶(球晶)のサイズが小さくなるものと考えられる。 The reason why the properties of the PBT film are improved by multilayering is estimated as follows. When the resins are laminated, even if the resin composition is the same, a layer interface exists, and crystallization is accelerated by the interface. On the other hand, the growth of large crystals beyond the layer thickness is suppressed. For this reason, it is considered that the size of the crystal (spherulite) becomes small.
 多層化により球晶のサイズを小さくするための具体的な方法としては、一般的な多層化装置(多層フィードブロック、スタティックミキサー、多層マルチマニホールドなど)を用いることができる。例えば、二台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂を、フィードブロックやスタティックミキサー、マルチマニホールドダイ等を用いて多層に積層する方法等を使用することができる。なお、同一の組成の樹脂を多層化する場合、一台の押出機のみを用いて、押出機からダイまでのメルトラインに上述の多層化装置を導入することも可能である。 As a specific method for reducing the size of spherulites by multilayering, a general multilayering apparatus (multilayer feed block, static mixer, multilayer multimanifold, etc.) can be used. For example, a method of laminating thermoplastic resins sent from different flow paths using two or more extruders in multiple layers using a feed block, a static mixer, a multi-manifold die, or the like can be used. In addition, when multilayering resin of the same composition, it is also possible to introduce the above multilayering apparatus into the melt line from the extruder to the die using only one extruder.
 基材1は、少なくとも10層以上、好ましくは60層以上、より好ましくは250層以上、更に好ましくは1000層以上の層1aを含む多層構造部からなる。層数を多くすることにより、未延伸原反の状態のPBTにおける球晶のサイズを小さくすることができ、その後の二軸延伸を安定に実施することができる。また、二軸延伸フィルムの状態のPBTの降伏応力を小さくすることができる。好ましくは、未延伸原反のPBTにおける球晶の直径は、500nm以下である。 The substrate 1 is composed of a multilayer structure including at least 10 layers, preferably 60 layers or more, more preferably 250 layers or more, and still more preferably 1000 layers or more. By increasing the number of layers, the size of spherulites in the unstretched raw PBT can be reduced, and the subsequent biaxial stretching can be carried out stably. Moreover, the yield stress of PBT in the state of a biaxially stretched film can be made small. Preferably, the diameter of the spherulite in the unstretched raw PBT is 500 nm or less.
 PBTの未延伸原反を二軸延伸して二軸延伸フィルムを作製する際の、縦延伸方向(以下、MD)における延伸温度(以下、MD延伸温度とも記す)は、好ましくは40℃以上であり、より好ましくは45℃以上である。MD延伸温度を40℃以上にすることにより、フィルムの破断が生じることを抑制することができる。また、MD延伸温度は、好ましくは100℃以下であり、より好ましくは95℃以下である。MD延伸温度を100℃以下にすることにより、二軸延伸フィルムの配向が生じないという現象を抑制することができる。 The stretching temperature (hereinafter also referred to as MD stretching temperature) in the longitudinal stretching direction (hereinafter referred to as MD) when producing a biaxially stretched film by biaxially stretching the unstretched raw material of PBT is preferably 40 ° C. or higher. Yes, more preferably 45 ° C or higher. By setting the MD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken. Moreover, MD extending | stretching temperature becomes like this. Preferably it is 100 degrees C or less, More preferably, it is 95 degrees C or less. The phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed by setting the MD stretching temperature to 100 ° C. or lower.
 MDにおける延伸倍率(以下、MD延伸倍率とも記す)は、好ましくは2.5倍以上である。これにより、二軸延伸フィルムを配向させ、良好な力学特性や均一な厚みを実現することができる。MD延伸倍率は、例えば5倍以下である。 The draw ratio in MD (hereinafter also referred to as MD draw ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement | achieved. MD stretch ratio is 5 times or less, for example.
 横延伸方向(以下、TDとも記す)における延伸温度(以下、TD延伸温度とも記す)は、好ましくは40℃以上である。TD延伸温度を40℃以上にすることにより、フィルムの破断が生じることを抑制することができる。また、TD延伸温度は、好ましくは100℃以下である。TD延伸温度を100℃以下にすることにより、二軸延伸フィルムの配向が生じないという現象を抑制することができる。 The stretching temperature (hereinafter also referred to as TD stretching temperature) in the transverse stretching direction (hereinafter also referred to as TD) is preferably 40 ° C. or higher. By setting the TD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken. The TD stretching temperature is preferably 100 ° C. or lower. By setting the TD stretching temperature to 100 ° C. or lower, the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed.
 TDにおける延伸倍率(以下、TD延伸倍率とも記す)は、好ましくは2.5倍以上である。これにより、二軸延伸フィルムを配向させ、良好な力学特性や均一な厚みを実現することができる。MD延伸倍率は、例えば5倍以下である。 The stretching ratio in TD (hereinafter also referred to as TD stretching ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement | achieved. MD stretch ratio is 5 times or less, for example.
 TDリラックス率は、好ましくは0.5%以上である。これにより、PBTの二軸延伸フィルムの熱固定時に破断が生じることを抑制することができる。また、TDリラックス率は、好ましくは10%以下である。これにより、PBTの二軸延伸フィルムにたるみなどが生じて厚みムラが発生することを抑制することができる。 TD relaxation rate is preferably 0.5% or more. Thereby, it can suppress that a fracture | rupture arises at the time of heat setting of the biaxially stretched film of PBT. The TD relaxation rate is preferably 10% or less. Thereby, sagging etc. arise in a biaxially stretched film of PBT, and it can control that thickness unevenness generate | occur | produces.
 図2に示す基材1の層1aの厚みは、好ましくは3nm以上であり、より好ましくは10nm以上である。また、層1aの厚みは、好ましくは200nm以下であり、より好ましくは100nm以下である。
 また、基材1の厚みは、好ましくは9μm以上であり、より好ましくは12μm以上である。また、基材1の厚みは、好ましくは25μm以下であり、より好ましくは20μm以下である。基材1の厚みを9μm以上にすることにより、基材1が十分な強度を有するようになる。また、基材1の厚みを25μm以下にすることにより、基材1が優れた成形性を示すようになる。このため、基材1を含む包装用材料8を加工して包装袋を製造する工程を効率的に実施することができる。
The thickness of the layer 1a of the base material 1 shown in FIG. 2 is preferably 3 nm or more, more preferably 10 nm or more. The thickness of the layer 1a is preferably 200 nm or less, more preferably 100 nm or less.
Further, the thickness of the substrate 1 is preferably 9 μm or more, more preferably 12 μm or more. Moreover, the thickness of the base material 1 is preferably 25 μm or less, and more preferably 20 μm or less. By setting the thickness of the substrate 1 to 9 μm or more, the substrate 1 has sufficient strength. Moreover, the base material 1 comes to show the moldability which was excellent by making the thickness of the base material 1 into 25 micrometers or less. For this reason, the process which processes the packaging material 8 containing the base material 1 and manufactures a packaging bag can be implemented efficiently.
 〔基材の第2の構成〕
 第2の構成に係る基材1は、ブチレンテレフタレートを主たる繰返し単位とするポリエステルを含む単層フィルムからなる。例えば、基材1は、グリコール成分としての1,4-ブタンジオール、又はそのエステル形成性誘導体と、二塩基酸成分としてのテレフタル酸、又はそのエステル形成性誘導体を主成分とし、それらを縮合して得られるホモ、またはコポリマータイプのポリエステルを含む。第2の構成に係る基材1におけるPBTの含有率は、51質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、さらには80質量%以上が好ましく、最も好ましくは90質量%以上である。また、第2の構成に係る基材1は、ポリブチレンテレフタレートと添加剤のみで構成されていることが好ましい。
[Second Configuration of Base Material]
The base material 1 which concerns on a 2nd structure consists of a single layer film containing polyester which has butylene terephthalate as a main repeating unit. For example, the substrate 1 is mainly composed of 1,4-butanediol as a glycol component or an ester-forming derivative thereof and terephthalic acid as a dibasic acid component or an ester-forming derivative thereof as a main component. Homo- or copolymer-type polyester obtained. The content of PBT in the substrate 1 according to the second configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and further preferably 80% by mass or more, and most preferably. Is 90% by mass or more. Moreover, it is preferable that the base material 1 which concerns on a 2nd structure is comprised only with the polybutylene terephthalate and the additive.
 基材1に機械的強度を付与するためには、PBTのうち、融点が200℃以上且つ250℃以下、IV値(固有粘度)が1.10dl/g以上且つ1.35dl/g以下のものが好ましい。さらには、融点が215℃以上且つ225℃以下、IV値が1.15dl/g以上且つ1.30dl/g以下のものが特に好ましい。これらのIV値は、基材1を構成する材料全体によって満たされていてもよい。IV値は、JIS K 7367-5:2000に基づいて算出され得る。 In order to impart mechanical strength to the substrate 1, a PBT having a melting point of 200 ° C. or more and 250 ° C. or less and an IV value (intrinsic viscosity) of 1.10 dl / g or more and 1.35 dl / g or less. Is preferred. Furthermore, those having a melting point of 215 ° C. or more and 225 ° C. or less and an IV value of 1.15 dl / g or more and 1.30 dl / g or less are particularly preferable. These IV values may be satisfied by the entire material constituting the substrate 1. The IV value can be calculated based on JIS K 7367-5: 2000.
 第2の構成に係る基材1は、PETなどPBT以外のポリエステル樹脂を30質量%以下の範囲で含んでいてもよい。基材1がPBTに加えてPETを含むことにより、PBT結晶化を抑制することができ、PBTフィルムの延伸加工性を向上させることができる。基材1のPBTに配合するPETとしては、エチレンテレフタレートを主たる繰返し単位とするポリエステルを用いることができる。例えば、グリコール成分としてのエチレングリコール、二塩基酸成分としてのテレフタル酸を主成分としたホモタイプを好ましく用いることができる。良好な機械的強度特性を付与するためには、PETのうち、融点が240℃以上且つ265℃以下、IV値が0.55dl/g以上且つ0.90dl/g以下のものが好ましい。さらには、融点が245℃以上且つ260℃以下、IV値が0.60dl/g以上且つ0.80dl/g以下のものが特に好ましい。
 PETの配合量を30質量%以下にすることにより、未延伸原反及び延伸フィルムの剛性が高くなり過ぎることを抑制することができる。これにより、延伸フィルムがもろくなり、延伸フィルムの耐圧強度、衝撃強度、突刺し強度などが低下してしまうことを抑制することができる。また、未延伸原反を延伸する際の延伸不調が発生することを抑制することができる。
The base material 1 which concerns on a 2nd structure may contain polyester resins other than PBT, such as PET, in 30 mass% or less. When the base material 1 contains PET in addition to PBT, PBT crystallization can be suppressed, and the stretchability of the PBT film can be improved. As PET mix | blended with PBT of the base material 1, the polyester which uses ethylene terephthalate as a main repeating unit can be used. For example, a homotype mainly composed of ethylene glycol as a glycol component and terephthalic acid as a dibasic acid component can be preferably used. In order to impart good mechanical strength characteristics, among PET, those having a melting point of 240 ° C. or more and 265 ° C. or less and an IV value of 0.55 dl / g or more and 0.90 dl / g or less are preferable. Furthermore, those having a melting point of 245 ° C. or more and 260 ° C. or less and an IV value of 0.60 dl / g or more and 0.80 dl / g or less are particularly preferable.
By setting the blending amount of PET to 30% by mass or less, it is possible to suppress the unstretched raw fabric and the stretched film from becoming too rigid. Thereby, a stretched film becomes brittle and it can suppress that the pressure resistance strength, impact strength, puncture strength, etc. of a stretched film fall. Moreover, it is possible to suppress the occurrence of stretching failure when the unstretched raw fabric is stretched.
 基材1は、必要に応じて、滑剤、アンチブロッキング剤、無機増量剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、着色剤、結晶化抑制剤、結晶化促進剤等の添加剤を含んでいてもよい。また、基材1の原料として用いるポリエステル系樹脂ペレットは、加熱溶融時の加水分解による粘度低下を避けるため、加熱溶融前に水分率が0.05重量%以下、好ましくは0.01重量%以下になるように十分予備乾燥を行った上で使用するのが好ましい。 The base material 1 is made of a lubricant, an antiblocking agent, an inorganic extender, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, a plasticizer, a colorant, a crystallization inhibitor, and a crystallization accelerator as necessary. Etc. may be contained. Further, the polyester resin pellet used as a raw material of the substrate 1 has a moisture content of 0.05% by weight or less, preferably 0.01% by weight or less before heating and melting in order to avoid a decrease in viscosity due to hydrolysis during heating and melting. It is preferable to use after sufficiently pre-drying so that
 第2の構成に係るフィルム状の基材1を作製する方法の一例について説明する。 An example of a method for producing the film-like substrate 1 according to the second configuration will be described.
 上述の構成の基材1のフィルムを安定的に作製するためには、未延伸原反の状態における結晶の成長を抑制することが重要になる。具体的には、押出されたPBT系溶融体を冷却して成膜する際、該ポリマーの結晶化温度領域をある速度以上で冷却する、すなわち原反冷却速度が重要な因子となる。原反冷却速度は、例えば200℃/秒以上、好ましくは250℃/秒以上、特に好ましくは350℃/秒以上である。高い冷却速度で成膜された未延伸原反は、低い結晶状態を保っているため、延伸時のバブルの安定性が向上する。さらには高速での成膜も可能になるので、フィルムの生産性も向上する。冷却速度が200℃/秒未満である場合、得られた未延伸原反の結晶性が高くなり延伸性が低下することが考えられる。また、極端な場合には、延伸バブルが破裂し、延伸が継続しないことも考えられる。 In order to stably produce the film of the base material 1 having the above-described configuration, it is important to suppress the crystal growth in the unstretched raw fabric state. Specifically, when forming the film by cooling the extruded PBT melt, the crystallization temperature region of the polymer is cooled at a certain rate or more, that is, the raw fabric cooling rate is an important factor. The raw fabric cooling rate is, for example, 200 ° C./second or more, preferably 250 ° C./second or more, particularly preferably 350 ° C./second or more. Since the unstretched original film formed at a high cooling rate maintains a low crystalline state, the stability of the bubbles during stretching is improved. Furthermore, since film formation at high speed is possible, film productivity is also improved. When the cooling rate is less than 200 ° C./sec, it is considered that the crystallinity of the obtained unstretched original fabric is increased and the stretchability is lowered. In extreme cases, the stretching bubble may burst and stretching may not continue.
 PBTを主成分として含む未延伸原反は、雰囲気温度を25℃以下、好ましくは20℃以下に保ちながら、二軸延伸を行う空間まで搬送されることが好ましい。これにより、滞留時間が長くなった場合であっても、成膜直後の未延伸原反の結晶性を維持することができる。 It is preferable that the unstretched raw material containing PBT as a main component is conveyed to a space where biaxial stretching is performed while maintaining the atmospheric temperature at 25 ° C. or lower, preferably 20 ° C. or lower. Thereby, even if it is a case where residence time becomes long, the crystallinity of the unstretched original fabric immediately after film-forming can be maintained.
 未延伸原反を延伸させて延伸フィルムを得るための二軸延伸法は、特には限定されない。例えば、チューブラー法又はテンター法により、縦方向及び横方向を同時に延伸してもよく、若しくは、縦方向及び横方向を逐次延伸してもよい。このうち、チューブラー法は、周方向の物性バランスが良好な延伸フィルムを得ることができ、特に好ましく採用される。 The biaxial stretching method for obtaining a stretched film by stretching an unstretched raw fabric is not particularly limited. For example, the longitudinal direction and the lateral direction may be simultaneously stretched by the tubular method or the tenter method, or the longitudinal direction and the lateral direction may be sequentially stretched. Among these, the tubular method can obtain a stretched film having a good balance of physical properties in the circumferential direction, and is particularly preferably employed.
 チューブラー法において、延伸空間に導かれた未延伸原反は、一対の低速ニップロール間に挿通された後、中に空気を圧入しながら延伸用ヒーターで加熱される。延伸終了後、延伸フィルムには、冷却ショルダーエアーリングによりエアーが吹き付けられる。延伸倍率は、延伸安定性や延伸フィルムの強度物性、透明性、および厚み均一性を考慮すると、MD、およびTDそれぞれ2.7倍以上且つ4.5倍以下であることが好ましい。延伸倍率を2.7倍以上にすることにより、延伸フィルムの引張弾性率や衝撃強度を十分に確保することができる。また、延伸倍率を4.5倍以下にすることにより、延伸により過度な分子鎖のひずみが発生することを抑制し、延伸加工時に破断やパンクが発生することを抑制できるので、延伸フィルムを安定に作製することができる。 In the tubular method, the unstretched raw material introduced into the stretching space is inserted between a pair of low-speed nip rolls, and then heated by a stretching heater while air is being pressed therein. After stretching, air is blown onto the stretched film by a cooling shoulder air ring. The stretching ratio is preferably 2.7 times or more and 4.5 times or less for MD and TD, respectively, in consideration of stretching stability, strength physical properties of the stretched film, transparency, and thickness uniformity. By setting the draw ratio to 2.7 times or more, it is possible to sufficiently ensure the tensile elastic modulus and impact strength of the stretched film. In addition, by setting the draw ratio to 4.5 times or less, it is possible to suppress the occurrence of excessive molecular chain distortion due to stretching, and to suppress the occurrence of breakage and puncture during the stretching process, so that the stretched film can be stabilized. Can be produced.
 延伸温度は、40℃以上且つ80℃以下が好ましく、特に好ましくは45℃以上且つ65℃以下である。上述の高い冷却速度で製造した未延伸原反は、結晶性が低いため、延伸温度が比較的に低温の場合であっても、安定して未延伸原反を延伸することができる。また、延伸温度を80℃以下にすることにより、延伸バブルの揺れを抑制し、厚み精度の良好な延伸フィルムを得ることができる。また、延伸温度を40℃以上にすることにより、低温延伸による過度な延伸配向結晶化が発生することを抑制して、フィルムの白化等を防ぐことができる。 The stretching temperature is preferably 40 ° C. or higher and 80 ° C. or lower, and particularly preferably 45 ° C. or higher and 65 ° C. or lower. Since the unstretched original fabric produced at the above-described high cooling rate has low crystallinity, the unstretched original fabric can be stably stretched even when the stretching temperature is relatively low. Further, by setting the stretching temperature to 80 ° C. or less, it is possible to suppress stretching bubble shaking and obtain a stretched film with good thickness accuracy. In addition, by setting the stretching temperature to 40 ° C. or higher, it is possible to suppress the occurrence of excessive stretch-oriented crystallization due to low-temperature stretching, thereby preventing whitening of the film.
 上述のようにして作製される基材1は、例えば、ブチレンテレフタレートを主たる繰返し単位とするポリエステルを含む単一の層によって構成されている。上述の作製方法によれば、高い冷却速度で未延伸原反を成膜するので、未延伸原反が単一の層によって構成される場合であっても、低い結晶状態を保つことができ、このため、安定して未延伸原反を延伸することができる。 The base material 1 produced as described above is constituted by a single layer containing, for example, polyester having butylene terephthalate as a main repeating unit. According to the above-described production method, since the unstretched raw film is formed at a high cooling rate, even when the unstretched raw fabric is constituted by a single layer, a low crystalline state can be maintained, For this reason, an unstretched original fabric can be extended | stretched stably.
 上述の第1の構成及び第2の構成のいずれにおいても、基材1は、PBTを主成分として含む。このため、基材フィルム5及び基材フィルム5を含む包装用材料8の耐熱性を高くすることができる。例えば、基材フィルム5及び包装用材料8の引張弾性率を十分に高くすることができる。特に、高温の雰囲気下、例えば100℃の雰囲気下における基材フィルム5及び包装用材料8の引張弾性率(以下、熱間引張弾性率とも記す)を十分に高くすることができる。 In both the first configuration and the second configuration described above, the base material 1 includes PBT as a main component. For this reason, the heat resistance of the packaging material 8 including the base film 5 and the base film 5 can be increased. For example, the tensile elastic modulus of the base film 5 and the packaging material 8 can be sufficiently increased. In particular, the tensile elastic modulus (hereinafter also referred to as hot tensile elastic modulus) of the base film 5 and the packaging material 8 in a high temperature atmosphere, for example, in an atmosphere of 100 ° C., can be sufficiently increased.
 (蒸着層)
 次に、蒸着層2について説明する。
(Deposition layer)
Next, the vapor deposition layer 2 will be described.
 本実施の形態において、基材1上に蒸着層2を成膜するに際し、基材1の表面は、蒸着層2との密着性等を向上させるために、前処理としてプラズマを用いたプラズマ処理を前処理として行うことが好ましい。 In the present embodiment, when the vapor deposition layer 2 is formed on the substrate 1, the surface of the substrate 1 is subjected to plasma treatment using plasma as a pretreatment in order to improve adhesion to the vapor deposition layer 2 and the like. Is preferably performed as a pretreatment.
 図8に示すローラー式の成膜設備10においては、減圧チャンバ12内に隔壁35a~35cが形成されている。該隔壁35a~35cにより、基材搬送室12A、プラズマ前処理室12B、成膜室12Cが形成され、特に、隔壁と隔壁35a~35cで囲まれた空間としてプラズマ前処理室12B及び成膜室12Cが形成され、各室は、必要に応じて、さらに内部に排気室が形成される。 8, partition walls 35 a to 35 c are formed in the decompression chamber 12. The partition walls 35a to 35c form a base material transfer chamber 12A, a plasma pretreatment chamber 12B, and a film formation chamber 12C. In particular, the plasma pretreatment chamber 12B and the film formation chamber are surrounded by the partition walls and the partition walls 35a to 35c. 12C is formed, and an exhaust chamber is further formed inside each chamber as necessary.
 プラズマ前処理室12B内には、前処理が行われる基材1を搬送し、かつプラズマ処理を可能にするプラズマ前処理ローラー20の一部が基材搬送室12Aに露出するように設けられており、基材1は巻き取られながら基材搬送室12Aからプラズマ前処理室12Bに移動するようになっている。 In the plasma pretreatment chamber 12B, a part of the plasma pretreatment roller 20 that conveys the base material 1 to be pretreated and enables plasma treatment is provided so as to be exposed to the base material conveyance chamber 12A. The base material 1 is moved from the base material transfer chamber 12A to the plasma pretreatment chamber 12B while being wound up.
 プラズマ前処理室12B及び成膜室12Cは、基材搬送室12Aと接して設けられており、基材1を大気に触れさせずに移動可能である。また、プラズマ前処理室12Bと基材搬送室12Aの間は、矩形の穴により接続されており、その矩形の穴を通じてプラズマ前処理ローラー20の一部が基材搬送室12A側に飛び出しており、該搬送室の壁とプラズマ前処理ローラー20の間に隙間が開いており、その隙間を通じて基材1が基材搬送室12Aから成膜室12Cへ移動可能である。基材搬送室12Aと成膜室12Cとの間も同様の構造となっており、基材1を大気に触れさせずに移動可能である。 The plasma pretreatment chamber 12B and the film formation chamber 12C are provided in contact with the base material transfer chamber 12A, and can be moved without exposing the base material 1 to the atmosphere. Further, the plasma pretreatment chamber 12B and the base material transfer chamber 12A are connected by a rectangular hole, and a part of the plasma pretreatment roller 20 protrudes toward the base material transfer chamber 12A through the rectangular hole. A gap is opened between the wall of the transfer chamber and the plasma pretreatment roller 20, and the substrate 1 can be moved from the substrate transfer chamber 12A to the film forming chamber 12C through the gap. The structure between the base material transfer chamber 12A and the film forming chamber 12C is similar, and the base material 1 can be moved without being exposed to the atmosphere.
 基材搬送室12Aには、成膜ローラー25により再び基材搬送室12Aに移動させられた、片面に蒸着層2が成膜された基材1をロール状に巻き取るため、巻取り手段としての巻き取りローラーが設けられており、蒸着層2が成膜された基材1を巻き取ることができる。 In the base material transport chamber 12A, the base material 1 having the vapor deposition layer 2 formed on one side, which has been moved again to the base material transport chamber 12A by the film forming roller 25, is wound in a roll shape. The take-up roller is provided, and the substrate 1 on which the vapor deposition layer 2 is formed can be taken up.
 減圧チャンバ12には、圧力調整バルブを介して真空ポンプが設けられている。このため、隔壁35a~35cにより区画された、基材搬送室12A、プラズマ前処理室12B、成膜室12C全体が減圧可能となっている。 The vacuum chamber 12 is provided with a vacuum pump through a pressure adjustment valve. Therefore, the entire base material transfer chamber 12A, plasma pretreatment chamber 12B, and film formation chamber 12C, which are partitioned by the partition walls 35a to 35c, can be decompressed.
 基材フィルム5を製造する際、プラズマ前処理室12Bにおいては、プラズマが生成する空間を他の領域と区分し、対向空間を効率よく真空排気できるようにすることが好ましい。これにより、プラズマガス濃度の制御が容易となり、生産性が向上する。プラズマが生成する空間の圧力は、0.1Pa~100Pa程度に設定、維持されることが好ましい。 When manufacturing the base film 5, in the plasma pretreatment chamber 12B, it is preferable to partition the space in which plasma is generated from other regions so that the opposing space can be efficiently evacuated. This facilitates control of the plasma gas concentration and improves productivity. The pressure in the space where the plasma is generated is preferably set and maintained at about 0.1 Pa to 100 Pa.
 基材搬送室12Aとプラズマ前処理室12Bとに跨るようにプラズマ前処理ローラー20が配置され、巻き出しロール13とプラズマ前処理ローラー20との間にガイドローラー14a、14bが設けられる。
 また、成膜室12C内には、成膜ローラー25が配置され、プラズマ前処理ローラー20と成膜ローラー25との間及び成膜ローラー25と巻き取りローラーとの間にガイドローラー14c、14dが設けられ、これらのガイドローラー群により基材1の搬送経路を形成する。
A plasma pretreatment roller 20 is disposed so as to straddle the substrate transport chamber 12A and the plasma pretreatment chamber 12B, and guide rollers 14a and 14b are provided between the unwinding roll 13 and the plasma pretreatment roller 20.
Further, a film forming roller 25 is disposed in the film forming chamber 12C, and guide rollers 14c and 14d are provided between the plasma pretreatment roller 20 and the film forming roller 25 and between the film forming roller 25 and the take-up roller. It is provided, and the conveyance path | route of the base material 1 is formed with these guide roller groups.
 基材1の搬送速度は、特に限定されないが、生産効率の観点からは、好ましくは、200m/min以上であり、より好ましくは480m/min以上且つ1000m/min以下である。 The conveyance speed of the substrate 1 is not particularly limited, but is preferably 200 m / min or more, more preferably 480 m / min or more and 1000 m / min or less from the viewpoint of production efficiency.
 プラズマ前処理室12Bには、搬送された基材1をプラズマ前処理するためのプラズマ前処理ローラー20と、基材1を前処理するためのプラズマ前処理手段を含むプラズマ前処理装置とが設けられている。 The plasma pretreatment chamber 12B is provided with a plasma pretreatment roller 20 for plasma pretreatment of the transported substrate 1 and a plasma pretreatment apparatus including plasma pretreatment means for pretreatment of the substrate 1. It has been.
 プラズマ前処理ローラー20は、プラズマ前処理手段によるプラズマ処理時の熱による基材1の収縮や破損を防ぐこと、プラズマPを基材1に対して均一にかつ広範囲に適用することを目的して設けられたものである。
 プラズマ前処理ローラー20は、プラズマ前処理ローラー20内を循環する温度調節媒体の温度を調整することにより、-20℃から100℃の間で、一定温度に調節することが可能であることが好ましい。ローラー本体の中央部の両側、及び回転軸周囲には電気的な絶縁部が設けられ、基材1はローラー本体の中央部に巻かれる。
The purpose of the plasma pretreatment roller 20 is to prevent shrinkage or breakage of the substrate 1 due to heat during the plasma treatment by the plasma pretreatment means, and to apply the plasma P to the substrate 1 uniformly and over a wide range. It is provided.
It is preferable that the plasma pretreatment roller 20 can be adjusted to a constant temperature between −20 ° C. and 100 ° C. by adjusting the temperature of the temperature adjustment medium circulating in the plasma pretreatment roller 20. . Electrical insulating portions are provided on both sides of the central portion of the roller body and around the rotation shaft, and the base material 1 is wound around the central portion of the roller body.
 プラズマ前処理ローラー20は、電気的にアースレベルに設置してもよい。この場合、ローラー本体や回転軸、ベアリング、ローラー支持体に金属製の導電性材料を用いることで実現できる。 The plasma pretreatment roller 20 may be installed at an electrical ground level. In this case, it is realizable by using a metal electroconductive material for a roller main body, a rotating shaft, a bearing, and a roller support body.
 また、プラズマ前処理ローラー20は、電気的にフローティングレベル、すなわち絶縁電位に設置してもよい。プラズマ前処理ローラー20の電位をフローティングレベルとすることで電力の漏れを防ぐことができ、プラズマ前処理の投入電力を高くすることができ、且つ、プラズマ前処理への利用効率も高くなる。 Further, the plasma pretreatment roller 20 may be installed at an electrically floating level, that is, an insulation potential. By setting the potential of the plasma pretreatment roller 20 to the floating level, it is possible to prevent power leakage, to increase the input power of the plasma pretreatment, and to increase the utilization efficiency for the plasma pretreatment.
 プラズマ前処理手段は、プラズマ供給手段及び磁気形成手段を含む。プラズマ前処理手段はプラズマ前処理ローラー20と協働し、基材1の表面近傍にプラズマPを閉じ込める。これにより、基材の表面の形状や、化学的な結合状態や官能基を変化させることにより、基材の表面の化学的性状を変化させる。このことにより、その後の成膜時に基材1と蒸着層2との密着性を向上させることが可能となる。 The plasma pretreatment means includes a plasma supply means and a magnetic formation means. The plasma pretreatment means cooperates with the plasma pretreatment roller 20 to confine the plasma P near the surface of the substrate 1. Thereby, the chemical property of the surface of a base material is changed by changing the shape of the surface of a base material, a chemical bond state, or a functional group. This makes it possible to improve the adhesion between the substrate 1 and the vapor deposition layer 2 during subsequent film formation.
 プラズマ前処理手段は、プラズマ前処理ローラー20の一部を覆うように設けられている。例えば、プラズマ前処理手段は、プラズマ供給手段及び磁気形成手段を含む。プラズマ供給手段は、プラズマ原料ガスを供給するとともにプラズマPを発生させる電極ともなるプラズマ供給ノズル22a、22b等を有する。磁気形成手段は、プラズマPの発生を促進するためマグネット21等を有する。プラズマ供給手段及び磁気形成手段は、プラズマ前処理ローラー20の外周近傍の表面に沿って配置される。プラズマ供給手段及び磁気形成手段は、プラズマ前処理ローラー20の外周近傍の表面との間にプラズマを封じ込める空隙を形成するように設置される。
 それにより、該空隙の空間にプラズマ供給ノズル22a、22bを開口させてプラズマ形成領域とし、さらに、プラズマ前処理ローラー20と基材1の表面近傍にプラズマ密度の高い領域が形成されることで、基材1の片面にプラズマ処理面が形成される。
The plasma pretreatment means is provided so as to cover a part of the plasma pretreatment roller 20. For example, the plasma pretreatment means includes a plasma supply means and a magnetic formation means. The plasma supply means includes plasma supply nozzles 22a and 22b that serve as electrodes for supplying plasma source gas and generating plasma P. The magnetic forming means has a magnet 21 and the like for promoting the generation of plasma P. The plasma supply unit and the magnetic forming unit are arranged along the surface in the vicinity of the outer periphery of the plasma pretreatment roller 20. The plasma supply means and the magnetism forming means are installed so as to form a gap for containing the plasma between the plasma pretreatment roller 20 and the surface in the vicinity of the outer periphery.
Thereby, the plasma supply nozzles 22a and 22b are opened in the space of the gap to form a plasma formation region, and further, a region having a high plasma density is formed in the vicinity of the surface of the plasma pretreatment roller 20 and the substrate 1, A plasma processing surface is formed on one surface of the substrate 1.
 プラズマ前処理手段のプラズマ供給手段は、減圧チャンバ12の外部に設けたプラズマ供給ノズルに接続された原料ガス揮発供給装置18と、原料ガス揮発供給装置18からの原料ガスを供給する原料ガス供給ノズル19a~19dと、を含む。プラズマ原料ガスとしては、アルゴン等の不活性ガス単独又は酸素、窒素、炭酸ガス及びそれらの1種以上のガスとの混合ガスが、ガス貯留部から流量制御器を介することでガスの流量を計測しつつ供給される。 The plasma supply means of the plasma pretreatment means includes a raw material gas volatilization supply device 18 connected to a plasma supply nozzle provided outside the decompression chamber 12 and a raw material gas supply nozzle that supplies the raw material gas from the raw material gas volatilization supply device 18. 19a to 19d. As the plasma source gas, an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them is measured from the gas reservoir through a flow controller to measure the gas flow rate. However, it is supplied.
 これら供給されるガスは、必要に応じて所定の比率で混合されて、プラズマ原料ガス単独又はプラズマ形成用混合ガスに形成され、プラズマ供給手段に供給される。その単独又は混合ガスは、プラズマ供給手段のプラズマ供給ノズル22a、22bに供給され、プラズマ供給ノズル22a、22bの供給口が開口するプラズマ前処理ローラー20の外周近傍に供給される。
 そのノズル開口はプラズマ前処理ローラー20上の基材1に向けられ、基材1の表面に均一にプラズマPを拡散、供給させることが可能となり、基材1の大面積の部分に均一なプラズマ前処理が可能となる。
These supplied gases are mixed at a predetermined ratio as necessary, formed into a plasma raw material gas alone or a plasma forming mixed gas, and supplied to the plasma supply means. The single or mixed gas is supplied to the plasma supply nozzles 22a and 22b of the plasma supply means, and is supplied to the vicinity of the outer periphery of the plasma pretreatment roller 20 where the supply ports of the plasma supply nozzles 22a and 22b open.
The nozzle opening is directed to the base material 1 on the plasma pretreatment roller 20, and the plasma P can be uniformly diffused and supplied to the surface of the base material 1, and the uniform plasma is applied to a large area of the base material 1. Pre-processing is possible.
 プラズマ供給ノズル22a、22bは、プラズマ前処理ローラー20の対向電極として機能するもので、電極機能を有するようにできている。プラズマ前処理ローラー20との間に供給される高周波電圧等による電位差によって、供給されたプラズマ原料ガスが励起状態になり、プラズマPが発生し、供給される。 The plasma supply nozzles 22a and 22b function as counter electrodes of the plasma pretreatment roller 20 and have an electrode function. The supplied plasma source gas is excited by the potential difference caused by the high frequency voltage supplied to the plasma pretreatment roller 20, and the plasma P is generated and supplied.
 プラズマ前処理装置においては、プラズマ前処理ローラーとプラズマ前処理手段との間に任意の直流電界を発生させ、基材1へのプラズマPの打ち込み効果を強めたり、弱めたりする機構を設置することが好ましい。プラズマ打ち込み効果を高めるためには、基材1にマイナス電位を与え、プラズマ打ち込み効果を弱めるためには、基材1にプラスのプラス電位を与えることが好ましい。
 このようなプラズマ強度の調整により、基材1へのプラズマ打ち込み効果を調整し、基材1へのダメージを低減したり、反対に基材1への膜の密着率を強めたりすることが可能となる。
In the plasma pretreatment apparatus, a mechanism for generating an arbitrary direct electric field between the plasma pretreatment roller and the plasma pretreatment means to enhance or weaken the plasma P implantation effect on the substrate 1 is installed. Is preferred. In order to enhance the plasma implantation effect, it is preferable to apply a negative potential to the substrate 1, and in order to weaken the plasma implantation effect, it is preferable to apply a positive plus potential to the substrate 1.
By adjusting the plasma intensity as described above, it is possible to adjust the plasma implantation effect on the base material 1 to reduce the damage to the base material 1 and, on the contrary, to increase the adhesion rate of the film to the base material 1. It becomes.
 具体的には、プラズマ前処理手段のプラズマ供給手段は、プラズマ前処理ローラー20との間に任意の電圧を印加した状態にすることができるものであり、基材1の表面物性を物理的ないしは化学的に改質する処理ができるプラズマPを正電位にするバイアス電圧を印加できる電源32を備えている。
 このようなプラズマ供給手段は、プラズマ前処理ローラー20の外周近傍に所望のプラズマPを所望の密度で供給可能であり、プラズマ前処理の電力効率を向上することができる。
Specifically, the plasma supply means of the plasma pretreatment means can be in a state where an arbitrary voltage is applied between the plasma pretreatment roller 20 and the physical properties of the surface of the substrate 1 are physically or A power source 32 is provided that can apply a bias voltage that makes the plasma P that can be chemically modified a positive potential.
Such a plasma supply means can supply a desired plasma P at a desired density in the vicinity of the outer periphery of the plasma pretreatment roller 20, and can improve the power efficiency of the plasma pretreatment.
 本実施の形態で採用する、基材1の表面における単位面積あたりのプラズマ強度は、好ましくは100W・sec/m2以上且つ8000W・sec/m2以下である。100W・sec/m2未満では、プラズマ前処理の効果がみられず、また、8000W・sec/m2を超えると、基材1の消耗、破損着色、焼成などプラズマによる基材1の劣化が起きる傾向にある。 Employed in the present embodiment, the plasma intensity per unit area of the surface of the substrate 1 is preferably not 100W · sec / m 2 or more and 8000W · sec / m 2 or less. If it is less than 100 W · sec / m 2 , the effect of the plasma pretreatment is not observed, and if it exceeds 8000 W · sec / m 2 , the deterioration of the substrate 1 due to plasma such as consumption, damage coloring, and firing of the substrate 1 is caused. It tends to happen.
 プラズマ前処理手段は、磁気形成手段を有している。磁気形成手段として、マグネットケース内に絶縁性スペーサ、ベースプレートが設けられ、このベースプレートにマグネット21が設けられる。マグネットケースに絶縁性シールド板が設けられ、この絶縁性シールド板に電極が取り付けられる。
 したがって、マグネットケースと電極は電気的に絶縁されており、マグネットケースを減圧チャンバ12内に設置、固定しても電極は電気的にフローティングレベルとすることが可能である。
The plasma pretreatment means has magnetic formation means. As magnetic forming means, an insulating spacer and a base plate are provided in a magnet case, and a magnet 21 is provided on the base plate. An insulating shield plate is provided on the magnet case, and an electrode is attached to the insulating shield plate.
Therefore, the magnet case and the electrode are electrically insulated, and the electrode can be brought to an electrically floating level even if the magnet case is installed and fixed in the decompression chamber 12.
 電極には電力供給配線31が接続され、電力供給配線31は電源32に接続されている。また、電極内部には、電極及びマグネット21の冷却のための温度調節媒体配管が設けられる。 The power supply wiring 31 is connected to the electrode, and the power supply wiring 31 is connected to the power source 32. Further, a temperature control medium pipe for cooling the electrode and the magnet 21 is provided inside the electrode.
 マグネット21は、電極兼プラズマ供給手段であるプラズマ供給ノズル22a、22bからのプラズマPを基材1に集中して適用するために設けられる。マグネット21を設けることにより、基材1の表面近傍での反応性が高くなり、プラズマ処理面を高速で形成することが可能となる。 The magnet 21 is provided to concentrate and apply the plasma P from the plasma supply nozzles 22a and 22b, which are electrode and plasma supply means, to the substrate 1. By providing the magnet 21, the reactivity in the vicinity of the surface of the substrate 1 is increased, and the plasma processing surface can be formed at a high speed.
 マグネット21は、基材1の表面位置での磁束密度が10ガウス以上且つ10000ガウス以下である。基材表面での磁束密度が10ガウス以上であれば、基材表面近傍での反応性を十分高めることが可能となり、前処理面を高速で形成することができる。 The magnet 21 has a magnetic flux density of 10 gauss or more and 10000 gauss or less at the surface position of the substrate 1. If the magnetic flux density on the substrate surface is 10 gauss or more, the reactivity in the vicinity of the substrate surface can be sufficiently increased, and the pretreatment surface can be formed at high speed.
 電極のマグネット21の配置構造により、プラズマ前処理時に形成されるイオン、電子が、その配置構造に従って運動する。このため、例えば、1m2以上の大面積の基材1に対してプラズマ前処理をする場合においても、電極表面全体にわたり電子やイオン、基材の分解物が均一に拡散される。従って、基材1が大面積の場合にも、所望のプラズマ強度で、均一かつ安定した前処理が可能となる。 Due to the arrangement structure of the electrode magnet 21, ions and electrons formed during the plasma pretreatment move according to the arrangement structure. For this reason, for example, even when the plasma pretreatment is performed on the substrate 1 having a large area of 1 m 2 or more, electrons, ions, and decomposition products of the substrate are uniformly diffused over the entire electrode surface. Therefore, even when the substrate 1 has a large area, a uniform and stable pretreatment can be performed with a desired plasma intensity.
 プラズマ前処理ローラー20により片面にプラズマ処理面を形成した基材1は、次の成膜室12Cに導くためのガイドローラー14a~14dにより基材搬送室12Aから成膜室12Cに移動し、成膜区画で蒸着層2が形成される。 The substrate 1 having a plasma treatment surface formed on one side by the plasma pretreatment roller 20 is moved from the substrate transfer chamber 12A to the film formation chamber 12C by the guide rollers 14a to 14d for guiding to the next film formation chamber 12C. A vapor deposition layer 2 is formed in the film section.
 蒸着層2は、酸素ガス、水蒸気等の透過を阻止、遮断するガスバリア性能を有する薄膜であり、例えば、物理気相成長法等を用いて基材1上に酸化アルミニウム層を成膜する方法によって形成され得る。 The vapor deposition layer 2 is a thin film having a gas barrier performance that blocks or blocks permeation of oxygen gas, water vapor, and the like. For example, the vapor deposition layer 2 is formed by forming an aluminum oxide layer on the substrate 1 using a physical vapor deposition method or the like. Can be formed.
 蒸着層2を形成する無機酸化物層は、例えば、少なくとも酸化アルミニウム又はアルミニウムの窒化物、炭化物の単独又はその混合物を含む、アルミニウム化合物を主成分として含む層である。例えば、無機酸化物層は、酸化アルミニウムを主成分として含む。
 さらに、蒸着層2は、上述の酸化アルミニウムなどのアルミニウム化合物を主成分として含み、更に、ケイ素酸化物(酸化珪素)、ケイ素窒化物、ケイ素酸化窒化物、ケイ素炭化物、酸化マグネシウム、酸化チタン、酸化錫、酸化インジウム、酸化亜鉛、酸化ジルコニウム等の金属酸化物、またはこれらの金属窒化物、炭化物及びその混合物などを含み、且つアルミニウム原子と炭素原子の共有結合を含む無機酸化物の混合物からなる層であってもよい。
The inorganic oxide layer which forms the vapor deposition layer 2 is a layer which contains an aluminum compound as a main component including at least aluminum oxide, aluminum nitride, carbide alone or a mixture thereof, for example. For example, the inorganic oxide layer contains aluminum oxide as a main component.
Furthermore, the vapor deposition layer 2 contains an aluminum compound such as the above-described aluminum oxide as a main component, and further includes silicon oxide (silicon oxide), silicon nitride, silicon oxynitride, silicon carbide, magnesium oxide, titanium oxide, and oxidation. A layer comprising a metal oxide such as tin, indium oxide, zinc oxide, zirconium oxide or the like, or a mixture of inorganic oxides containing these metal nitrides, carbides and mixtures thereof, and containing a covalent bond between an aluminum atom and a carbon atom. It may be.
 蒸着層2は、X線光電子分光装置(測定条件:X線源AlKα、X線出力120W)を用い、深さ方向にイオンエッチングにより測定したピークにアルミニウム原子と炭素原子の共有結合の存在を示し、また、透明性を有しかつ酸素、水蒸気等の透過を妨げるガスバリア性を有する。 The vapor deposition layer 2 indicates the presence of a covalent bond between an aluminum atom and a carbon atom at the peak measured by ion etching in the depth direction using an X-ray photoelectron spectrometer (measurement conditions: X-ray source AlKα, X-ray output 120 W). In addition, it has transparency and gas barrier properties that prevent permeation of oxygen, water vapor and the like.
 また、蒸着層2においては、アルミニウム原子と炭素原子の共有結合の存在比率が、X線光電子分光法により基材1と蒸着層2との界面を測定した場合に観察される炭素原子を含む全結合のうちの0.3%以上且つ30%以下の範囲内であることが望ましい。これにより、蒸着層2と基材1との密着性が強化され、透明性も優れ、ガスバリア性の蒸着フィルムとしてバランスのよい性能のものが得られる。 Further, in the vapor deposition layer 2, the abundance ratio of the covalent bond between the aluminum atom and the carbon atom includes all carbon atoms observed when the interface between the substrate 1 and the vapor deposition layer 2 is measured by X-ray photoelectron spectroscopy. It is desirable to be within the range of 0.3% or more and 30% or less of the bonds. Thereby, the adhesiveness of the vapor deposition layer 2 and the base material 1 is strengthened, the transparency is excellent, and a gas barrier vapor deposition film having a well-balanced performance is obtained.
 アルミニウム原子と炭素原子の共有結合の存在比率が0.3%未満であると、蒸着層2の密着性の改善が不十分であり、バリア性を安定して維持することが困難になる。また、アルミニウム原子と炭素原子の共有結合の存在比率が30%を超えると、プラズマ前処理による密着性の改善よりもプラズマ処理による基材1の表面の分解、表面荒れ、分解成分の付着等に起因する密着性の改善割合の低下、透明性の低下など表面処理による弊害が大きく、前処理の効果が減殺する。 When the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is less than 0.3%, the adhesion of the vapor deposition layer 2 is not sufficiently improved, and it is difficult to stably maintain the barrier property. Further, when the abundance ratio of the covalent bond between aluminum atoms and carbon atoms exceeds 30%, the surface of the substrate 1 is decomposed by the plasma treatment, the surface is roughened, and the decomposed components are adhered, rather than the adhesion improvement by the plasma pretreatment. The adverse effects of the surface treatment such as a decrease in the adhesive improvement ratio and a decrease in transparency caused by the surface treatment are large, and the effect of the pretreatment is reduced.
 さらに、酸化アルミニウムを主成分とする蒸着層2の、AL(アルミニウム)/O(酸素)比が、基材1と蒸着層2との界面から、基材1とは反対側の蒸着層2の表面に向かって3nmまでの範囲内において、1.0以下であることが好ましい。
 蒸着層2と基材1との界面から基材1とは反対側の蒸着層2の表面に向かう範囲内においてAL/Oの比が1.0を超えると、基材1のプラズマ処理面と蒸着層2との密着性が不十分となり、かつアルミニウムの割合が高まり、蒸着層2の透明性が低下する。
Furthermore, the AL (aluminum) / O (oxygen) ratio of the vapor deposition layer 2 mainly composed of aluminum oxide is such that the vapor deposition layer 2 on the opposite side of the base material 1 from the interface between the base material 1 and the vapor deposition layer 2. In the range up to 3 nm toward the surface, it is preferably 1.0 or less.
If the AL / O ratio exceeds 1.0 within the range from the interface between the vapor deposition layer 2 and the substrate 1 to the surface of the vapor deposition layer 2 on the opposite side of the substrate 1, the plasma treatment surface of the substrate 1 Adhesiveness with the vapor deposition layer 2 becomes inadequate, the ratio of aluminum increases, and the transparency of the vapor deposition layer 2 falls.
 1つの成膜装置で形成する蒸着層2の厚さは、例えば5nm以上且つ200nm以下であり、好ましくは10nm以上且つ100nm以下である。アルミニウムの蒸着層2の場合には、蒸着層2の厚さは、例えば5nm以上且つ60nm以下、好ましくは10nm以上45nm以下である。酸化アルミニウムあるいは酸化ケイ素の蒸着層2の場合には、蒸着層2の厚さは、例えば5nm以上且つ50nm以下、好ましくは、10nm以上且つ30nm以下である。 The thickness of the vapor deposition layer 2 formed with one film forming apparatus is, for example, 5 nm or more and 200 nm or less, preferably 10 nm or more and 100 nm or less. In the case of the aluminum vapor deposition layer 2, the thickness of the vapor deposition layer 2 is, for example, 5 nm to 60 nm, preferably 10 nm to 45 nm. In the case of the vapor deposition layer 2 of aluminum oxide or silicon oxide, the thickness of the vapor deposition layer 2 is, for example, not less than 5 nm and not more than 50 nm, preferably not less than 10 nm and not more than 30 nm.
 成膜室12Cには、成膜ローラー25及び成膜手段26を含む成膜装置が設けられている。成膜手段26は、プラズマ前処理手段で前処理した基材1のプラズマ処理面に蒸着層2を成膜する。 A film forming apparatus including a film forming roller 25 and a film forming unit 26 is provided in the film forming chamber 12C. The film forming unit 26 forms the vapor deposition layer 2 on the plasma processing surface of the substrate 1 pretreated by the plasma pretreatment unit.
 成膜装置は、プラズマ前処理された基材1の表面に蒸着層2を成膜するように配置されている。蒸着層2を成膜する蒸着法としては、物理蒸着法、化学蒸着の中から種々の蒸着法が適用できる。
 物理蒸着法としては、蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法、クラスターイオンビーム法からなる群から選ぶことができ、化学蒸着法としては、プラズマCVD法、プラズマ重合法、熱CVD法、触媒反応型CVD法からなる群から選ぶことができる。
The film forming apparatus is arranged so as to form the vapor deposition layer 2 on the surface of the substrate 1 that has been plasma pretreated. As a vapor deposition method for forming the vapor deposition layer 2, various vapor deposition methods can be applied among physical vapor deposition and chemical vapor deposition.
The physical vapor deposition method can be selected from the group consisting of vapor deposition method, sputtering method, ion plating method, ion beam assist method, and cluster ion beam method. Chemical vapor deposition methods include plasma CVD method, plasma polymerization method, thermal method. It can be selected from the group consisting of CVD method and catalytic reaction type CVD method.
 成膜装置は、減圧された成膜室内に配置され、プラズマ前処理装置で前処理された基材1のプラズマ処理面を外側にして基材1を巻きかけて搬送し、成膜処理する成膜ローラー25と、成膜ローラー25に対向して配置された成膜源のターゲットを蒸発させて基材表面に蒸着層を成膜する成膜手段26と、を含む。成膜手段26は、蒸着成膜装置、スパッタリング成膜装置、イオンプレーティング成膜装置、イオンビームアシスト成膜装置、クラスターイオンビーム成膜装置、プラズマCVD成膜装置、プラズマ重合成膜装置、熱CVD成膜装置、触媒反応型CVD成膜装置などである。 The film forming apparatus is placed in a reduced pressure film forming chamber, and the substrate 1 is wound and transported with the plasma processing surface of the substrate 1 pre-processed by the plasma pre-processing apparatus facing outside. A film roller 25 and a film forming unit 26 that evaporates a target of a film forming source disposed to face the film forming roller 25 to form a vapor deposition layer on the surface of the substrate. The film forming means 26 includes a vapor deposition film forming apparatus, a sputtering film forming apparatus, an ion plating film forming apparatus, an ion beam assisted film forming apparatus, a cluster ion beam film forming apparatus, a plasma CVD film forming apparatus, a plasma polymerization film forming apparatus, A CVD film forming apparatus, a catalytic reaction type CVD film forming apparatus, or the like.
 成膜装置においては、成膜源のターゲットの蒸発手段を交換することで各種の物理蒸着装置が適用でき、また、化学蒸着装置による成膜を実施可能な装置構成とすることもでき、種々の成膜法を使い分けることができる。 In the film forming apparatus, various physical vapor deposition apparatuses can be applied by exchanging the evaporation means of the target of the film forming source, and it is possible to adopt an apparatus configuration capable of performing film formation by the chemical vapor deposition apparatus. The film forming method can be used properly.
 成膜手段26としては、抵抗加熱真空成膜装置、スパッタリング装置、イオンプレーティング成膜装置、イオンビームアシスト成膜装置、クラスターイオンビーム成膜装置などの物理蒸着装置やプラズマCVD成膜装置、プラズマ重合成膜装置、熱CVD成膜装置、触媒反応型CVD成膜装置などの化学蒸着装置を用いて無機酸化物層を成膜化することにより製造することができる。 As the film forming means 26, a physical vapor deposition apparatus such as a resistance heating vacuum film forming apparatus, a sputtering apparatus, an ion plating film forming apparatus, an ion beam assist film forming apparatus, a cluster ion beam film forming apparatus, a plasma CVD film forming apparatus, a plasma, etc. It can be produced by forming an inorganic oxide layer into a film using a chemical vapor deposition apparatus such as a polymerization film forming apparatus, a thermal CVD film forming apparatus, or a catalytic reaction type CVD film forming apparatus.
 成膜手段26として、真空成膜装置を採用した場合、蒸発源として坩堝にアルミニウムが主成分となる割合でターゲットの金属材料を、単独又は複数種類充填し、高温に加熱し、アルミ金属を含む金属蒸気とし、その金属蒸気に対し、ガス供給手段から供給される酸素ガスを導入することで金属蒸気を酸化し、基材1の表面にアルミニウム酸化物を含む金属酸化物を成膜する。 When a vacuum film forming apparatus is employed as the film forming means 26, the crucible as an evaporation source is filled with a single or plural types of target metal materials at a ratio of aluminum as a main component, heated to a high temperature, and contains aluminum metal. The metal vapor is oxidized by introducing oxygen gas supplied from the gas supply means into the metal vapor, and a metal oxide containing aluminum oxide is formed on the surface of the substrate 1.
 抵抗加熱による場合には、アルミ等の金属線材を用い、金属蒸気とし酸化しつつ基材表面に成膜させることができる。成膜の蒸発源として、スパッタ蒸発源、アーク蒸発源、あるいはプラズマ発生電極や原料ガス供給手段などのプラズマCVD成膜機構を採用することもできる。 In the case of resistance heating, a metal wire such as aluminum can be used to form a film on the substrate surface while being oxidized as metal vapor. As the evaporation source for film formation, a sputtering evaporation source, an arc evaporation source, or a plasma CVD film formation mechanism such as a plasma generating electrode or a raw material gas supply means can be employed.
 成膜の際、成膜する蒸着層2の組成に基づいて、ターゲットの金属材料の蒸発のさせ方を調整してもよい。例えば、アルミニウム及び他の金属の、蒸発のし易さに応じて、アルミニウム酸化物が主成分となるように、金属材料を別々に蒸気化したり、あるいは、金属材料を目的の割合となるように混合したものを蒸気化したりすることができる。
 成膜室には、成膜する蒸着層2に応じ、成膜手段26として、1つの成膜装置を設けてもよいし、2以上の同種または異種の成膜装置を設けてもよい。
At the time of film formation, the evaporation method of the target metal material may be adjusted based on the composition of the vapor deposition layer 2 to be formed. For example, depending on the easiness of evaporation of aluminum and other metals, the metal material is vaporized separately so that the aluminum oxide is a main component, or the metal material is set to a target ratio. The mixture can be vaporized.
In the film formation chamber, one film forming apparatus may be provided as the film forming unit 26 according to the vapor deposition layer 2 to be formed, or two or more of the same or different kinds of film forming apparatuses may be provided.
 1つの成膜装置で厚く薄膜を形成すると、その薄膜は応力のために脆くなり、クラックが発生してガスバリア性が著しく低下することや、搬送時または巻取り時に薄膜が剥離することが生じる。そのため、ガスバリア性薄膜の厚い層を得るには、複数の成膜装置を設け、同じ物質の薄膜を複数回形成することが好ましい。 When a thin film is formed thick with one film forming apparatus, the thin film becomes brittle due to stress, cracks are generated, the gas barrier property is remarkably lowered, and the thin film is peeled off during transportation or winding. Therefore, in order to obtain a thick layer of a gas barrier thin film, it is preferable to provide a plurality of film forming apparatuses and form a thin film of the same substance a plurality of times.
 さらに、本実施の形態においては、基材1及び蒸着層2の積層体に、さらにガスバリア性塗布膜4を、成膜設備10に連設して設けた図示しない公知のローラー式塗布装置により形成する。複数の成膜装置により、異なる材料の薄膜を形成してもよく、その場合には、ガスバリア性だけでなく、さまざまな機能を付与された多層多機能膜が得られる。 Further, in the present embodiment, a gas barrier coating film 4 is further formed on the laminate of the base material 1 and the vapor deposition layer 2 by a known roller-type coating apparatus (not shown) provided continuously with the film forming facility 10. To do. Thin films of different materials may be formed by a plurality of film forming apparatuses. In that case, a multilayer multifunctional film having not only gas barrier properties but also various functions can be obtained.
 特に、成膜装置では、関連する機械部品の耐熱性の制約や汎用性の面から設定温度は-20℃から100℃の間で一定温度に設定できることが好ましい。
 種々の成膜法において、連続的に蒸着層の成膜を行う成膜室の成膜圧力は、十分な蒸着層の緻密性と、基材への密着性を有する蒸着層を形成するため、0.1Pa~100Pa程度に設定、維持することが好ましい。
In particular, in the film forming apparatus, it is preferable that the set temperature can be set to a constant temperature between −20 ° C. and 100 ° C. from the viewpoint of heat resistance restrictions of related mechanical parts and versatility.
In various film formation methods, the film formation pressure in the film formation chamber for continuously forming the vapor deposition layer is sufficient to form a vapor deposition layer having sufficient denseness of the vapor deposition layer and adhesion to the substrate. It is preferable to set and maintain at about 0.1 Pa to 100 Pa.
 (蒸着層の成膜方法)
 次に、プラズマ前処理装置を配置した前処理区画と成膜区画を隔離した成膜設備10を採用することによる、蒸着層2の成膜方法について説明する。
 まず、ロール状の原反を、基材搬送室12A内の巻き出しローラー13に設置し、基材搬送室12A内とプラズマ前処理室12B及び成膜室12C内を真空ポンプにより減圧する。
(Deposition layer deposition method)
Next, a method for forming the vapor deposition layer 2 by employing the film forming facility 10 in which the pretreatment section where the plasma pretreatment apparatus is disposed and the film formation section are separated will be described.
First, the roll-shaped raw material is installed on the unwinding roller 13 in the base material transport chamber 12A, and the pressure in the base material transport chamber 12A, the plasma pretreatment chamber 12B, and the film formation chamber 12C is reduced by a vacuum pump.
 所定の圧力にまで減圧した後、巻き出しローラー13により、原反から基材1を巻き出し、ガイドローラー14aを介して基材1をプラズマ前処理ローラー20に巻き付けることにより、基材1を基材搬送室12Aからプラズマ前処理室12Bに移動し、プラズマ前処理装置に導く。
 そして、プラズマ供給手段と前処理ローラーとの間に印加電位を与えた状態でプラズマを導入し、プラズマ前処理を行う。これにより、プラズマ前処理ローラー20に巻き付けられた基材1の片面に、プラズマ前処理手段によりプラズマ処理面が形成される。
After reducing the pressure to a predetermined pressure, the substrate 1 is unwound from the original fabric by the unwinding roller 13, and the substrate 1 is wound around the plasma pretreatment roller 20 via the guide roller 14 a, so that the substrate 1 is The material moves from the material transfer chamber 12A to the plasma pretreatment chamber 12B and is guided to the plasma pretreatment apparatus.
Then, plasma is introduced in a state where an applied potential is applied between the plasma supply means and the pretreatment roller, and plasma pretreatment is performed. Thereby, a plasma processing surface is formed on one surface of the substrate 1 wound around the plasma preprocessing roller 20 by the plasma preprocessing means.
 片面にプラズマ処理面が形成された基材1を、プラズマ前処理ローラー20からガイドローラー14bに巻き回しすることにより、再び基材搬送室12Aに移動する。
 その後、ガイドローラー14b、14cにより基材搬送室12A内を移動し、プラズマ処理した面が表になるように成膜ローラー25に巻き付け、成膜室12Cに移動する。成膜室12C内では、基材1の前処理面に成膜手段26により蒸着層2を成膜する。
The substrate 1 having a plasma treatment surface formed on one side is moved again from the plasma pretreatment roller 20 around the guide roller 14b to move to the substrate conveyance chamber 12A again.
Thereafter, the guide rollers 14b and 14c are used to move the inside of the substrate transport chamber 12A, wind around the film forming roller 25 so that the plasma-treated surface becomes the front, and move to the film forming chamber 12C. In the film forming chamber 12 </ b> C, the vapor deposition layer 2 is formed on the pretreatment surface of the substrate 1 by the film forming means 26.
 こうして、蒸着層2を成膜された基材1を、成膜ローラー25から再び基材搬送室12Aに移動し、ガイドローラー14dを介して巻取りローラーによりロール状に巻き取る。 Thus, the base material 1 on which the vapor deposition layer 2 is formed is moved again from the film formation roller 25 to the base material transfer chamber 12A, and is wound into a roll shape by the take-up roller via the guide roller 14d.
 本実施の形態に係るローラー式の成膜設備10によれば、蒸着層2の成膜前に基材1を、プラズマ前処理ローラー20とプラズマ供給手段と磁気形成手段21により形成された空隙を通過させ、その際、基材1に向けてプラズマ前処理ローラー20の外周近傍の空隙においてプラズマ原料ガスの供給を兼ねるプラズマ供給ノズル22a、22bからプラズマPを導入し、かつプラズマPとプラズマ前処理ローラー20との間に正印加電圧を印加した状態で、プラズマ前処理することにより、プラズマ前処理手段内の雰囲気が改善される。
 そのため、基材1に均質かつ高品質なプラズマ処理面を形成することができる。その後、成膜手段26によりプラズマ処理面上に蒸着層2を成膜することにより、密着性等に優れた均一な蒸着層2を有する基材フィルム5を得ることが可能となる。
 また、121℃、60minの熱水処理後でも密着性を有する、耐水密着性に優れた、均一な蒸着層2を有する基材フィルム5を得ることが可能になる。
 さらに、60℃×90%RH環境下で500時間保管の高温多湿環境下でも密着性を有する、耐湿熱密着性に優れた、均一な蒸着層2を有する基材を得ることが可能になる。
According to the roller-type film forming facility 10 according to the present embodiment, the substrate 1 is formed before the vapor deposition layer 2 is formed, and the gap formed by the plasma pretreatment roller 20, the plasma supply unit, and the magnetic forming unit 21 is formed. At that time, the plasma P is introduced from the plasma supply nozzles 22a and 22b that also serve as the supply of the plasma source gas in the gap near the outer periphery of the plasma pretreatment roller 20 toward the substrate 1, and the plasma P and the plasma pretreatment are introduced. The atmosphere in the plasma pretreatment means is improved by performing the plasma pretreatment in a state where a positive applied voltage is applied to the roller 20.
Therefore, a uniform and high-quality plasma processing surface can be formed on the substrate 1. Thereafter, by depositing the vapor deposition layer 2 on the plasma processing surface by the film deposition means 26, it becomes possible to obtain the base film 5 having the uniform vapor deposition layer 2 having excellent adhesion and the like.
Moreover, it becomes possible to obtain the base film 5 having the uniform vapor-deposited layer 2 that has adhesiveness and excellent water-resistant adhesiveness even after hydrothermal treatment at 121 ° C. for 60 minutes.
Furthermore, it is possible to obtain a base material having a uniform vapor deposition layer 2 that has adhesiveness even in a high-temperature and high-humidity environment that is stored for 500 hours in a 60 ° C. × 90% RH environment and that has excellent wet heat resistance.
 基材搬送室12Aは、電極の存在するプラズマ前処理室とは隔壁35a(ゾーンシール)により仕切られ圧力が異なる。基材搬送室12Aとプラズマ前処理室12Bとを圧力的に異なる空間とすることで、プラズマ前処理室のプラズマPが基材搬送室12Aに漏れることによってプラズマ前処理室12Bのプラズマ放電状態が不安定になったり、基材搬送室12Aの部材を傷めたり、基材搬送機構の制御のための電気回路に電気的ダメージを与えて、制御不良を引き起こすことがなくなり、安定した成膜及び基材搬送が可能となる。 The base material transfer chamber 12A is partitioned by a partition wall 35a (zone seal) and has a different pressure from the plasma pretreatment chamber in which electrodes are present. By making the substrate transfer chamber 12A and the plasma pretreatment chamber 12B different spaces in terms of pressure, the plasma P in the plasma pretreatment chamber 12B leaks into the substrate transfer chamber 12A due to leakage of the plasma P in the plasma pretreatment chamber. It does not become unstable, damage the member of the base material transfer chamber 12A, or cause electrical damage to the electric circuit for controlling the base material transfer mechanism, thereby causing no control failure. Material conveyance becomes possible.
 付加されるプラズマ前処理室12Bのプラズマ処理圧力は、例えば、0.1Pa以上且つ100Pa以下である。このような前処理圧力で前処理を行うことにより、安定したプラズマPを形成することができる。 The plasma processing pressure in the added plasma pretreatment chamber 12B is, for example, 0.1 Pa or more and 100 Pa or less. By performing the pretreatment at such a pretreatment pressure, a stable plasma P can be formed.
 プラズマ前処理によれば、プラズマ放電のインピーダンス上昇を防ぐことができ、容易にプラズマPの形成が可能となり、かつ長時間安定して放電及びプラズマ処理を行うことが可能となる。 According to the plasma pretreatment, it is possible to prevent an increase in the impedance of the plasma discharge, to easily form the plasma P, and to perform the discharge and the plasma treatment stably for a long time.
 また、プラズマPの放電インピーダンスが上昇しないことから、プラズマ処理においてはその処理速度の向上、膜応力の低減、基材へのダメージ低減(電気的なチャージアップの発生抑制、基材エッチング低減、基材着色低減)を図ることが可能となる。
 このように、放電インピーダンスを最適とすることが可能であり、基材1へのイオン打ち込み効果を調整し、前処理面に形成する蒸着層の密着性を高めることができ、かつ基材へのダメージを低減し、良好な前処理面の形成が可能となる。
Further, since the discharge impedance of the plasma P does not increase, in the plasma processing, the processing speed is improved, the film stress is reduced, the damage to the base material is reduced (the occurrence of electrical charge-up is suppressed, the base material etching is reduced, It is possible to reduce material coloring.
Thus, the discharge impedance can be optimized, the ion implantation effect on the substrate 1 can be adjusted, the adhesion of the vapor deposition layer formed on the pretreatment surface can be improved, and Damage can be reduced and a favorable pre-processed surface can be formed.
(ガスバリア性塗布膜)
 次に、ガスバリア性塗布膜4について説明する。ガスバリア性塗布膜4は、高温多湿環境下でのガスバリア性を保持する透明な塗膜であり、一般式R1 nM(OR2m(ただし、式中、R1、R2は、炭素数1~8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上の金属アルコキシドと、水溶性高分子とを含有し、更に、ゾルゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合してなるガスバリア性組成物からなる塗布膜である。
 ガスバリア性組成物を蒸着層2の上に塗工し、20℃~180℃、かつ基材1の融点以下の温度で10秒~10分間加熱乾燥処理して、ガスバリア性塗布膜4を形成することができる。
(Gas barrier coating film)
Next, the gas barrier coating film 4 will be described. The gas barrier coating film 4 is a transparent coating film that retains gas barrier properties in a high temperature and high humidity environment. The general formula R 1 n M (OR 2 ) m (where R 1 and R 2 are carbon atoms) An organic group having a number of 1 to 8, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M. Gas barrier properties comprising at least one or more metal alkoxides represented and a water-soluble polymer, and further polycondensing by a sol-gel method in the presence of a sol-gel method catalyst, acid, water, and an organic solvent A coating film made of the composition.
A gas barrier composition is applied onto the vapor deposition layer 2 and heat-dried at a temperature of 20 ° C. to 180 ° C. and below the melting point of the substrate 1 for 10 seconds to 10 minutes to form a gas barrier coating film 4. be able to.
 また、上記ガスバリア性組成物を蒸着層2の上に塗工して塗布膜を2層以上重層し、20℃~180℃、かつ、基材1の融点以下の温度で10秒~10分間加熱乾燥処理し、塗膜を2層以上重層したガスバリア性塗布膜4を形成してもよい。
 上記金属アルコキシドは、上記一般式R1 nM(OR2m中、Mで表される金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、その他等を例示することができる。
In addition, the gas barrier composition is coated on the vapor deposition layer 2 to form two or more layers of coating films, and heated at a temperature of 20 ° C. to 180 ° C. and below the melting point of the substrate 1 for 10 seconds to 10 minutes. You may dry-process and form the gas-barrier coating film 4 which laminated | stacked the coating film 2 or more layers.
In the metal alkoxide, examples of the metal atom represented by M in the general formula R 1 n M (OR 2 ) m include silicon, zirconium, titanium, aluminum, and the like.
 上記アルコキシドは、2種以上を併用してもよい。例えばアルコキシシランとジルコニウムアルコキシドを混合して用いると、得られる基材フィルム5の靭性、耐熱性等を向上させることができ、また、延伸時のフィルムの耐レトルト性などの低下が回避される。また、アルコキシシランとチタニウムアルコキシドを混合して用いると、得られるガスバリア性塗膜の熱伝導率が低くなり、耐熱性が著しく向上する。 The above alkoxides may be used in combination of two or more. For example, when alkoxysilane and zirconium alkoxide are mixed and used, the toughness and heat resistance of the resulting base film 5 can be improved, and a decrease in the retort resistance of the film during stretching can be avoided. Moreover, when alkoxysilane and titanium alkoxide are mixed and used, the heat conductivity of the gas barrier coating film obtained will become low, and heat resistance will improve remarkably.
 ガスバリア性塗布膜4の水溶性高分子は、ポリビニルアルコール系樹脂、またはエチレン・ビニルアルコール共重合体を単独で各々使用することができ、あるいは、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体を組み合わせて使用することができる。ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体を使用することにより、ガスバリア性、耐水性、耐候性、その他等の物性を著しく向上させることができる。 As the water-soluble polymer of the gas barrier coating film 4, a polyvinyl alcohol resin or an ethylene / vinyl alcohol copolymer can be used alone, or a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer can be used. Can be used in combination. By using a polyvinyl alcohol-based resin and / or an ethylene / vinyl alcohol copolymer, physical properties such as gas barrier properties, water resistance, weather resistance, and the like can be remarkably improved.
 ポリビニルアルコ一ル系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。ポリビニルアルコール系樹脂としては、酢酸基が数十%残存している部分ケン化ポリビニルアルコール系樹脂でも、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、OH基が変性された変性ポリビニルアルコール系樹脂でもよく、特に限定されるものではない。 As the polyvinyl alcohol resin, those obtained by saponifying polyvinyl acetate can be generally used. Polyvinyl alcohol resins include partially saponified polyvinyl alcohol resins in which several tens of percent of acetate groups remain, completely saponified polyvinyl alcohols in which no acetate groups remain, and modified polyvinyl alcohol resins in which OH groups have been modified. Well, not particularly limited.
 エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン-酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。
 例えば、酢酸基が数十モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないかまたは酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではない。ただし、ガスバリア性の観点から好ましいケン化度は、80モル%以上、より好ましくは、90モル%以上、さらに好ましくは、95モル%以上であるものを使用することが好ましい。
 なお、上記エチレン・ビニルアルコール共重合体中のエチレンに由来する繰り返し単位の含量(以下「エチレン含量」ともいう)は、通常、0~50モル%、好ましくは、20~45モル%であるものことが好ましい。
As the ethylene / vinyl alcohol copolymer, a saponified product of a copolymer of ethylene and vinyl acetate, that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer can be used.
For example, it is not particularly limited, and includes a partially saponified product in which several tens mol% of acetic acid groups remain to a complete saponified product in which only several mol% of acetic acid groups remain or no acetic acid groups remain. However, it is preferable to use a saponification degree that is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more from the viewpoint of gas barrier properties.
The content of repeating units derived from ethylene in the ethylene / vinyl alcohol copolymer (hereinafter also referred to as “ethylene content”) is usually 0 to 50 mol%, preferably 20 to 45 mol%. It is preferable.
 (ガスバリア性塗布膜の形成方法)
 以下、ガスバリア性塗布膜4の形成方法の一例について説明する。
(Method for forming gas barrier coating film)
Hereinafter, an example of a method for forming the gas barrier coating film 4 will be described.
 まず、上記金属アルコキシド、シランカップリング剤、水溶性高分子、ゾルゲル法触媒、酸、水、有機溶媒等を混合し、ガスバリア性組成物を調製する。次いで、基材1上の蒸着層2の上にガスバリア性塗布膜4を塗布し、および乾燥する。この乾燥工程によって、上記金属アルコキシド、シランカップリング剤およびポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体等の重縮合が更に進行し、塗布膜が形成される。第一の塗布膜の上に、更に上記塗布操作を繰り返して、2層以上からなる複数の塗膜を形成してもよい。 First, the metal alkoxide, silane coupling agent, water-soluble polymer, sol-gel catalyst, acid, water, organic solvent, etc. are mixed to prepare a gas barrier composition. Next, the gas barrier coating film 4 is applied on the vapor deposition layer 2 on the substrate 1 and dried. By this drying step, polycondensation of the metal alkoxide, the silane coupling agent, the polyvinyl alcohol resin and / or the ethylene / vinyl alcohol copolymer further proceeds, and a coating film is formed. On the first coating film, the above coating operation may be further repeated to form a plurality of coating films composed of two or more layers.
 次いで、上記ガスバリア性組成物を塗布した基材1及び蒸着層2の積層体を、20℃~180℃、かつ基材1の融点以下の温度、好ましくは、50℃~160℃の範囲の温度で、10秒~10分間加熱処理する。また、必要に応じて、ガスバリア性塗布膜4上に印刷層3を設ける。このようにして、基材フィルム5を製造することができる。 Next, the laminate of the base material 1 and the vapor deposition layer 2 coated with the gas barrier composition is 20 ° C. to 180 ° C. and a temperature below the melting point of the base material 1, preferably a temperature in the range of 50 ° C. to 160 ° C. And heat treatment for 10 seconds to 10 minutes. Moreover, the printing layer 3 is provided on the gas barrier coating film 4 as needed. In this way, the base film 5 can be manufactured.
 上記ガスバリア性組成物を塗布する方法としては、例えば、グラビアロールコーターなどのロールコート、スプレーコート、スピンコート、ディッピング、刷毛、バーコード、アプリケータ等の塗布手段により、1回あるいは複数回の塗布で、乾燥膜厚が、0.01μm以上且つ30μm以下、好ましくは、0.1μm以上且つ~10μm以下の塗布膜を形成することができる。通常の環境下、例えば50~300℃、好ましくは、70~200℃の温度で、0.005~60分間、好ましくは、0.01~10分間、加熱・乾操することにより、縮合が行われ、ガスバリア性塗布膜4を形成することができる。 As the method for applying the gas barrier composition, for example, it is applied once or a plurality of times by an application means such as a roll coat such as a gravure roll coater, a spray coat, a spin coat, a dipping, a brush, a barcode or an applicator. Thus, a coating film having a dry film thickness of 0.01 μm or more and 30 μm or less, preferably 0.1 μm or more and ˜10 μm or less can be formed. Condensation is carried out by heating and drying in a normal environment, for example, at a temperature of 50 to 300 ° C., preferably 70 to 200 ° C., for 0.005 to 60 minutes, preferably 0.01 to 10 minutes. In other words, the gas barrier coating film 4 can be formed.
 (基材フィルムの効果) (Effect of base film)
 本実施の形態の基材フィルム5においては、基材1と蒸着層2との界面に、金属原子と炭素原子の共有結合が形成されている。このため、基材1と蒸着層2の密着性を高めることができる。このため、高温多湿環境下等において基材1と蒸着層2の剥離が生じることを抑制することができる。このことにより、基材フィルム5のガスバリア性を高めたり、クラックやピンホールなどの発生を抑制したりすることができる。 In the substrate film 5 of the present embodiment, a covalent bond between a metal atom and a carbon atom is formed at the interface between the substrate 1 and the vapor deposition layer 2. For this reason, the adhesiveness of the base material 1 and the vapor deposition layer 2 can be improved. For this reason, it can suppress that peeling of the base material 1 and the vapor deposition layer 2 arises in a hot and humid environment. Thereby, the gas barrier property of the base film 5 can be enhanced, and the occurrence of cracks, pinholes, and the like can be suppressed.
 また、本実施の形態の基材フィルム5は、ガスバリア性塗布膜4を更に備える。これによって、基材フィルム5のガスバリア性を更に高めることができる。 The base film 5 of the present embodiment further includes a gas barrier coating film 4. Thereby, the gas barrier property of the base film 5 can be further enhanced.
 また、本実施の形態の基材フィルム5によれば、基材フィルム5がPBTを主成分とする基材1を含むことにより、下記の効果を奏することができる。
 PBTは、耐熱性に優れる。このため、基材フィルム5を含む包装用材料8から構成された包装袋にレトルト処理を施す際に基材1が変形したり基材1の強度が低下したりすることを抑制することができる。
 また、PBTは、高い強度を有する。このため、包装用材料8がナイロンを含む場合と同様に、包装袋に耐突き刺し性を持たせることができる。
 また、PBTは、ナイロンに比べて水分を吸収しにくいという特性を有する。このため、PBTを含む基材1を包装用材料8の外面に配置した場合であっても、基材1が水分を吸収して包装用材料8のラミネート強度が低下してしまうことを抑制することができる。
Moreover, according to the base film 5 of this Embodiment, the following effect can be show | played when the base film 5 contains the base material 1 which has PBT as a main component.
PBT is excellent in heat resistance. For this reason, when performing a retort process to the packaging bag comprised from the packaging material 8 containing the base film 5, it can suppress that the base material 1 deform | transforms or the intensity | strength of the base material 1 falls. .
PBT has high strength. For this reason, like the case where the packaging material 8 includes nylon, the packaging bag can have puncture resistance.
PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 1 containing PBT is arrange | positioned on the outer surface of the packaging material 8, it suppresses that the base material 1 absorbs a water | moisture content and the laminate strength of the packaging material 8 falls. be able to.
 包装用材料
 次に、図4を参照して、包装袋を構成するための包装用材料8について説明する。包装用材料8は、上述の基材フィルム5と、基材フィルム5に接着層6を介して積層された熱可塑性樹脂層7と、を備える。図4に示す例においては、基材フィルム5の蒸着層2側の面に熱可塑性樹脂層7が積層されている。熱可塑性樹脂層7が、包装用材料8の内面(包装用材料8によって構成される包装袋の内面)を構成する。図示はしないが、蒸着層2と接着層6との間に印刷層を設けてもよい。
Wrapping material next with reference to FIG. 4, will be described wrapping material 8 for constituting a packaging bag. The packaging material 8 includes the above-described base film 5 and a thermoplastic resin layer 7 laminated on the base film 5 with an adhesive layer 6 interposed therebetween. In the example shown in FIG. 4, a thermoplastic resin layer 7 is laminated on the surface of the base film 5 on the vapor deposition layer 2 side. The thermoplastic resin layer 7 constitutes the inner surface of the packaging material 8 (the inner surface of the packaging bag constituted by the packaging material 8). Although not shown, a printing layer may be provided between the vapor deposition layer 2 and the adhesive layer 6.
(熱可塑性樹脂層)
 熱可塑性樹脂層7は、熱によって溶融し相互に融着し得る樹脂層やフィルムであれば良く、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリスチレン、エチレン-酢酸ビニル共重合体、α-オレフィン共重合体、アイオノマー樹脂、エチレン-アクリル酸共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-プロピレン共重合体、エラストマー等の樹脂の一種ないしそれ以上からなる樹脂ないしはこれらのフィルムを使用することが好ましく、中でも、食品等の内容物に接する層であるため、衛生性、耐熱性、耐薬品性、保香性に優れたポリエチレン、ポリプロピレン等のオレフィン系樹脂の一種ないしそれ以上からなる樹脂ないしはこれらのフィルムを使用することがより好ましい。
 また、その厚さとしては13μm以上且つ100μm以下が好ましく、15μm以上且つ70μm以下がより好ましい。
 熱可塑性樹脂層7は、好ましくは未延伸のフィルムからなる。なお「未延伸」とは、全く延伸されていないフィルムだけでなく、製膜の際に加えられる張力に起因してわずかに延伸されているフィルムも含む概念である。
(Thermoplastic resin layer)
The thermoplastic resin layer 7 may be any resin layer or film that can be melted by heat and fused to each other. For example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene. , Polypropylene, polymethylpentene, polystyrene, ethylene-vinyl acetate copolymer, α-olefin copolymer, ionomer resin, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer It is preferable to use a resin consisting of one or more resins such as a polymer, an ethylene-propylene copolymer, an elastomer or the like, or a film thereof, and among them, since it is a layer in contact with contents such as food, hygiene, Olefies such as polyethylene and polypropylene with excellent heat resistance, chemical resistance, and fragrance retention It is more preferable to use a type or resin or these films consist more system resin.
Further, the thickness is preferably 13 μm or more and 100 μm or less, and more preferably 15 μm or more and 70 μm or less.
The thermoplastic resin layer 7 is preferably made of an unstretched film. “Unstretched” is a concept that includes not only a film that is not stretched at all, but also a film that is slightly stretched due to the tension applied during film formation.
 包装用材料8から構成された包装袋には、ボイル処理やレトルト処理などの殺菌処理が高温で施されることがある。好ましくは、熱可塑性樹脂層7として、これらの高温での処理に耐える耐熱性を有するものが用いられる。 The packaging bag composed of the packaging material 8 may be subjected to sterilization treatment such as boil treatment and retort treatment at a high temperature. Preferably, as the thermoplastic resin layer 7, one having heat resistance that can withstand these high-temperature treatments is used.
 熱可塑性樹脂層7を構成する材料の融点は、150℃以上であることが好ましく、160℃以上であることがより好ましい。熱可塑性樹脂層7の融点を高くすることにより、包装袋のレトルト処理を高温で実施することが可能になり、このため、レトルト処理に要する時間を短くすることができる。なお、熱可塑性樹脂層7を構成する材料の融点は、基材1を構成する樹脂の融点より低い。 The melting point of the material constituting the thermoplastic resin layer 7 is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. By increasing the melting point of the thermoplastic resin layer 7, the packaging bag can be retorted at a high temperature, and therefore the time required for the retorting process can be shortened. Note that the melting point of the material constituting the thermoplastic resin layer 7 is lower than the melting point of the resin constituting the substrate 1.
 レトルト処理の観点で考える場合、熱可塑性樹脂層7を構成する材料として、プロピレンを主成分とする材料を用いることができる。ここで、プロピレンを「主成分とする」材料とは、プロピレンの含有率が90質量%以上である材料を意味する。プロピレンを主成分とする材料としては、具体的には、プロピレン・エチレンブロック共重合体、プロピレン・エチレンランダム共重合体、ホモポリプロピレンなどのポリプロピレン、又はポリプロピレンとポリエチレンとを混合したものなどを挙げることができる。ここで、「プロピレン・エチレンブロック共重合体」とは、下記の式(I)に示される構造式を有する材料を意味する。また、「プロピレン・エチレンランダム共重合体」とは、下記の式(II)に示される構造式を有する材料を意味する。また、「ホモポリプロピレン」とは、下記の式(III)に示される構造式を有する材料を意味する。 When considering from the viewpoint of retort treatment, a material mainly composed of propylene can be used as the material constituting the thermoplastic resin layer 7. Here, the material having “propylene as a main component” means a material having a propylene content of 90% by mass or more. Specific examples of the material mainly composed of propylene include propylene / ethylene block copolymer, propylene / ethylene random copolymer, polypropylene such as homopolypropylene, or a mixture of polypropylene and polyethylene. Can do. Here, the “propylene / ethylene block copolymer” means a material having a structural formula represented by the following formula (I). The “propylene / ethylene random copolymer” means a material having a structural formula represented by the following formula (II). “Homopolypropylene” means a material having the structural formula shown by the following formula (III).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 プロピレンを主成分とする材料として、ポリプロピレンとポリエチレンとを混合したものを用いる場合には、材料は、海島構造を有していてもよい。ここで、「海島構造」とは、ポリプロピレンが連続する領域の内に、ポリエチレンが不連続に分散している構造をいう。 In the case of using a mixture of polypropylene and polyethylene as a material mainly composed of propylene, the material may have a sea-island structure. Here, the “sea-island structure” means a structure in which polyethylene is discontinuously dispersed in a region where polypropylene is continuous.
 ボイル処理の観点で考える場合、熱可塑性樹脂層7を構成する材料の例として、ポリエチレン、ポリプロピレン又はこれらの組み合わせなどを挙げることができる。ポリエチレンとしては、中密度ポリエチレン、直鎖状低密度ポリエチレン又はこれらの組み合わせなどを挙げることができる。例えば、上述のレトルト処理の観点から熱可塑性樹脂層7を構成する材料として挙げた材料を用いることも可能である。熱可塑性樹脂層7を構成する材料は、例えば100℃以上、より好ましくは105℃以上、更に好ましくは110℃以上の融点を有する。熱可塑性樹脂層7を構成する材料としてポリエチレンを用いる場合、100℃以上の融点は、例えば、ポリエチレンの密度が0.920g/cm以上である場合に実現され得る。また、100℃以上の融点を有する熱可塑性樹脂層7を構成するためのヒートシール性フィルムの具体例としては、三井化学東セロ製TUX-HC、東洋紡製L6101、出光ユニテック製LS700C等を挙げることができる。105℃以上の融点を有する熱可塑性樹脂層7を構成するためのヒートシール性フィルムの具体例としては、タマポリ製NB-1等を挙げることができる。110℃以上の融点を有する熱可塑性樹脂層7を構成するためのヒートシール性フィルムの具体例としては、出光ユニテック製LS760C、三井化学東セロ製TUX-HZ等を挙げることができる。 When considered from the viewpoint of the boil treatment, examples of the material constituting the thermoplastic resin layer 7 include polyethylene, polypropylene, or a combination thereof. Examples of polyethylene include medium density polyethylene, linear low density polyethylene, and combinations thereof. For example, it is also possible to use the materials mentioned as the material constituting the thermoplastic resin layer 7 from the viewpoint of the above retort processing. The material constituting the thermoplastic resin layer 7 has a melting point of, for example, 100 ° C. or higher, more preferably 105 ° C. or higher, and still more preferably 110 ° C. or higher. When polyethylene is used as a material constituting the thermoplastic resin layer 7, a melting point of 100 ° C. or higher can be realized, for example, when the density of polyethylene is 0.920 g / cm 3 or higher. Specific examples of the heat-sealable film for forming the thermoplastic resin layer 7 having a melting point of 100 ° C. or higher include TUX-HC manufactured by Mitsui Chemicals Tosero, L6101 manufactured by Toyobo, and LS700C manufactured by Idemitsu Unitech. it can. Specific examples of the heat-sealable film for forming the thermoplastic resin layer 7 having a melting point of 105 ° C. or higher include NB-1 manufactured by Tamapoly. Specific examples of the heat-sealable film for constituting the thermoplastic resin layer 7 having a melting point of 110 ° C. or higher include LS760C manufactured by Idemitsu Unitech, TUX-HZ manufactured by Mitsui Chemicals Tosero, and the like.
 さらに、熱可塑性樹脂層7は、遮光性を有するものであってもよい。本実施の形態において、遮光性を付与した熱可塑性樹脂層7としては、外部からの光を遮光する性質を有する材料を使用することができる。
 具体的には、この遮光性ヒートシール層の材料としては、アルミニウム等の金属をヒートシール性フィルムに真空蒸着又はスパッタリング等によって蒸着膜を形成して使用することができる。
 また、遮光性を付与するために、フィルムに白色フィルムを使用してもよく、遮光性インキ層を形成したフィルムを使用することもできる。
 中でも、アルミニウム等の金属蒸着膜を形成するものが、包装用材料8の状態で遮光性、バリア性を付与することができ、好ましい。
 具体的には、このバリア層の材料としては、アルミニウム等の金属をプラスチックフィルムに真空蒸着によって蒸着膜を形成して使用するのが一般的であるが、その他にアルミニウム箔を使用する場合もある。
 このような金属の蒸着膜を形成する金属としては、アルミニウム(Al)、クロム(Cr)、銀(Ag)、銅(Cu)、スズ(Sn)等の金属を使用することができ、中でも、アルミニウム(Al)を使用することが、望ましい。
 更に、上記において、アルミニウム箔としては、5μm以上且つ30μm以下の厚さのもの、また、金属の蒸着膜としては、厚さ50Å以上且つ~3000Å以下のものを使用することが好ましく、100Å以上且つ1000Å以下のものが望ましい。
 遮光性インキ層としては、具体的には、アルミペーストやカーボンブラック等の遮光性を有する顔料を含むインキを使用することができる。
上記において、インキ層の膜厚としては、1μm以上且つ8μm以下が好ましく、2μm以上且つ5μm以下がより好ましい。
 白色フィルムとしては、ポリオレフィン樹脂を主として遮光性を与える白色顔料を含む。
 白色フィルムに使用される白色顔料としては、具体的に酸化チタン、酸化亜鉛、体質顔料である水酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、沈降性硫酸バリウム、シリカ、タルク等がある。
 上記において、白色顔料の含有量としては、10%以上且つ40%以下が好ましい。
Furthermore, the thermoplastic resin layer 7 may have a light shielding property. In the present embodiment, as the thermoplastic resin layer 7 imparted with a light shielding property, a material having a property of shielding light from the outside can be used.
Specifically, as a material for the light-shielding heat seal layer, a metal such as aluminum can be used by forming a deposited film on the heat sealable film by vacuum deposition or sputtering.
Moreover, in order to provide light-shielding property, a white film may be used for a film and the film in which the light-shielding ink layer was formed can also be used.
Especially, what forms metal vapor deposition films, such as aluminum, can provide light-shielding property and barrier property in the state of the packaging material 8, and is preferable.
Specifically, as a material for the barrier layer, it is common to use a metal such as aluminum by forming a deposited film on a plastic film by vacuum deposition, but in addition, an aluminum foil may be used. .
As a metal for forming such a metal vapor deposition film, metals such as aluminum (Al), chromium (Cr), silver (Ag), copper (Cu), tin (Sn) can be used, It is desirable to use aluminum (Al).
Further, in the above, it is preferable to use an aluminum foil having a thickness of 5 μm or more and 30 μm or less, and a metal vapor deposition film having a thickness of 50 mm or more and ˜3000 mm or less, preferably 100 mm or more and The thing below 1000cm is desirable.
As the light-shielding ink layer, specifically, an ink containing a light-shielding pigment such as aluminum paste or carbon black can be used.
In the above, the thickness of the ink layer is preferably 1 μm or more and 8 μm or less, and more preferably 2 μm or more and 5 μm or less.
The white film contains a white pigment mainly giving a light shielding property to the polyolefin resin.
Specific examples of the white pigment used in the white film include titanium oxide, zinc oxide, extender pigments such as aluminum hydroxide, magnesium carbonate, calcium carbonate, precipitated barium sulfate, silica, and talc.
In the above, the content of the white pigment is preferably 10% or more and 40% or less.
 次に、金属の蒸着膜を形成する方法について説明する。かかる方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理気相成長法(Physical  Vapor  Deposition法、PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical  Vapor  Deposition法、CVD法)等を挙げることができる。
 本実施の形態において、金属の蒸着膜の形成法について具体的に説明すると、上記のような金属を原料とし、これを加熱して可撓性フィルムの上に蒸着する真空蒸着法、または原料に金属を使用し、酸素ガス等を導入して酸化させて可撓性フィルムの上に蒸着する酸化反応蒸着法、更に酸化反応をプラズマで助成するプラズマ助成式の酸化反応蒸着法等を用いて蒸着膜を形成することができる。
Next, a method for forming a metal deposition film will be described. Examples of such a method include physical vapor deposition methods (Physical Vapor Deposition method, PVD method) such as vacuum deposition, sputtering, and ion plating, plasma enhanced chemical vapor deposition, and thermal chemical vapor deposition. And chemical vapor deposition methods such as photochemical vapor deposition (Chemical Vapor Deposition method, CVD method).
In this embodiment, a method for forming a metal vapor deposition film will be described in detail. A vacuum vapor deposition method in which a metal as described above is used as a raw material, and this is heated and vapor-deposited on a flexible film. Vapor deposition using oxidation reaction vapor deposition method that uses metal, introduces oxygen gas, etc., oxidizes and deposits on flexible film, and plasma-assisted oxidation reaction vapor deposition method that promotes oxidation reaction with plasma. A film can be formed.
(接着層)
 接着層6は、接着剤を含む接着剤層であってもよく、アンカーコート層であってもよい。また、接着層6は、接着性樹脂を含む層であってもよい。接着性樹脂の例としては、上述の熱可塑性樹脂層7の場合と同様の樹脂を挙げることができる。
(Adhesive layer)
The adhesive layer 6 may be an adhesive layer containing an adhesive or an anchor coat layer. Further, the adhesive layer 6 may be a layer containing an adhesive resin. As an example of adhesive resin, the same resin as the case of the above-mentioned thermoplastic resin layer 7 can be mentioned.
 接着剤の例としては、エーテル系の二液反応型接着剤又はエステル系の二液反応型接着剤を挙げることができる。エーテル系の二液反応型接着剤としては、ポリエーテルポリウレタンなどを挙げることができる。ポリエーテルポリウレタンは、主剤としてのポリエーテルポリオールと、硬化剤としてのイソシアネート化合物とが反応することにより生成される硬化物である。イソシアネート化合物としては、ヘキサメチレンジイソシアネート(HDI)やイソホロンジイソシアネート(IPDI)などの脂肪族系イソシアネート化合物や、トリレンジイソシアネート(TDI)やキシリレンジイソシアネート(XDI)などの芳香族イソシアネート化合物などが挙げられる。エステル系の二液反応型接着剤としては、例えば、ポリエステルポリウレタンやポリエステルなどを挙げることができる。ポリエステルポリウレタンは、主剤としてのポリエステルポリオールと、硬化剤としてのイソシアネート化合物とが反応することにより生成される硬化物である。イソシアネート化合物としては、上述のイソシアネート化合物を用いることができる。イソシアネート化合物として、脂肪族系化合物を用いた場合、加熱殺菌(ボイル処理又はレトルト処理)時などの高温環境下において、食品用途に使用できない成分が溶出しないため、食品用途に好適である。 Examples of adhesives include ether-based two-component reactive adhesives and ester-based two-component reactive adhesives. Examples of the ether-based two-component reactive adhesive include polyether polyurethane. The polyether polyurethane is a cured product produced by a reaction between a polyether polyol as a main agent and an isocyanate compound as a curing agent. Examples of the isocyanate compound include aliphatic isocyanate compounds such as hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI), and aromatic isocyanate compounds such as tolylene diisocyanate (TDI) and xylylene diisocyanate (XDI). Examples of the ester-based two-component reactive adhesive include polyester polyurethane and polyester. Polyester polyurethane is a cured product produced by a reaction between a polyester polyol as a main agent and an isocyanate compound as a curing agent. As the isocyanate compound, the above-described isocyanate compounds can be used. When an aliphatic compound is used as the isocyanate compound, components that cannot be used for food use do not elute under a high temperature environment such as during heat sterilization (boil treatment or retort treatment), which is suitable for food use.
 ここで本実施の形態においては、上述のとおり、基材1と蒸着層2との界面に、金属原子と炭素原子の共有結合が形成されている。このため、基材1と蒸着層2との間の密着強度を高めることができる。このため、基材1と熱可塑性樹脂層7との間のラミネート強度を高めることができる。接着層6として接着剤を含む接着剤層を用いる場合、例えば、包装用材料8の基材1と熱可塑性樹脂層7との間のラミネート強度を、4.5N以上に、より好ましくは5.0N以上にすることができる。ラミネート強度の測定方法については、後述する実施例において説明する。 Here, in the present embodiment, as described above, a covalent bond between a metal atom and a carbon atom is formed at the interface between the substrate 1 and the vapor deposition layer 2. For this reason, the adhesive strength between the base material 1 and the vapor deposition layer 2 can be raised. For this reason, the lamination strength between the base material 1 and the thermoplastic resin layer 7 can be increased. When an adhesive layer containing an adhesive is used as the adhesive layer 6, for example, the laminate strength between the base material 1 of the packaging material 8 and the thermoplastic resin layer 7 is 4.5 N or more, more preferably 5. It can be 0N or more. A method for measuring the laminate strength will be described in Examples described later.
 また、本実施の形態において、包装用材料8は、高い強度を有するPBTを備える。このため、包装用材料8の突き刺し強度を、例えば11N以上に、より好ましくは13N以上に、さらに好ましくは15N以上にすることができる。突き刺し強度の測定方法については、後述する実施例において説明する。 In this embodiment, the packaging material 8 includes PBT having high strength. For this reason, the puncture strength of the packaging material 8 can be, for example, 11N or more, more preferably 13N or more, and further preferably 15N or more. The method for measuring the piercing strength will be described in the examples described later.
 また、本実施の形態において、包装用材料8は、基材1上に設けられた蒸着層2を備える。このため、包装用材料8の酸素透過度及び水蒸気透過度を小さくすることができる。例えば、包装用材料8の酸素透過度を1cc/day・m以下にすることができ、より好ましくは0.6cc/day・m以下にすることができる。また、包装用材料8の水蒸気透過度を1g/day・m以下にすることができ、より好ましくは0.6g/day・m以下にすることができる。 Moreover, in this Embodiment, the packaging material 8 is provided with the vapor deposition layer 2 provided on the base material 1. FIG. For this reason, the oxygen permeability and water vapor permeability of the packaging material 8 can be reduced. For example, the oxygen permeability of the packaging material 8 can be 1 cc / day · m 2 or less, more preferably 0.6 cc / day · m 2 or less. Further, the water vapor permeability of the packaging material 8 can be 1 g / day · m 2 or less, and more preferably 0.6 g / day · m 2 or less.
 包装用材料8は、例えば、ボイル用包装袋又はレトルト殺菌用包装袋や、お菓子など乾燥食品の包装袋に用いられ得る。また、包装用材料8は、シャンプー、リンス及びリンスインシャンプーを含む日用品又は化粧品の包装袋の分野において用いられ得る。また、包装用材料8は、インキカートリッジなどの工業製品の包装材としても用いられ得る。また、包装用材料8は、液体スープの包装袋の分野においても用いられ得る。また、包装用材料8は、紙カップ、液体紙容器、ラミネートチューブを構成するための材料としても用いられ得る。 The packaging material 8 can be used, for example, as a boil packaging bag, a retort sterilization packaging bag, or a dry food packaging bag such as sweets. The packaging material 8 can also be used in the field of daily necessities or cosmetic packaging bags including shampoos, rinses and rinse-in shampoos. The packaging material 8 can also be used as a packaging material for industrial products such as ink cartridges. The packaging material 8 can also be used in the field of liquid soup packaging bags. The packaging material 8 can also be used as a material for constituting a paper cup, a liquid paper container, and a laminate tube.
 紙カップを構成するための材料として包装用材料8を用いる場合、包装用材料8は、図5に示すように、熱可塑性樹脂層7とは反対側で蒸着層2を有する基材フィルム5に積層された紙層102を更に備える。紙層102として用いる紙は、100g/m以上700g/m以下、好ましくは150g/m以上600g/m以下、より好ましくは200g/m以上500g/m以下の坪量を有するものである。紙層102としては、白板紙全般を対象とするが、特に安全性の観点から天然パルプを用いたアイボリー紙、ミルクカートン原紙、カップ原紙等の使用が好ましい。図5に示すように、紙層102は、接着層101を介して積層されていてもよい。接着層101としては、上述の接着層6と同様の層を用いることができる。 When the packaging material 8 is used as a material for constituting the paper cup, the packaging material 8 is laminated on the base film 5 having the vapor deposition layer 2 on the side opposite to the thermoplastic resin layer 7 as shown in FIG. The paper layer 102 is further provided. The paper used as the paper layer 102 has a basis weight of 100 g / m 2 or more and 700 g / m 2 or less, preferably 150 g / m 2 or more and 600 g / m 2 or less, more preferably 200 g / m 2 or more and 500 g / m 2 or less. Is. As the paper layer 102, white paperboard is generally used, but ivory paper using natural pulp, milk carton base paper, cup base paper and the like are particularly preferable from the viewpoint of safety. As shown in FIG. 5, the paper layer 102 may be laminated via the adhesive layer 101. As the adhesive layer 101, a layer similar to the adhesive layer 6 described above can be used.
 また、液体紙容器を構成するための材料として包装用材料8を用いる場合、包装用材料8は、図6に示すように、第1の熱可塑性樹脂層7とは反対側で蒸着層2を有する基材フィルム5に積層された紙層102と、紙層102に積層された第2の熱可塑性樹脂層104と、を更に備える。図6に示すように、紙層102は、接着層101を介して積層されていてもよいし、第2の熱可塑性樹脂層104は、接着層103を介して積層されていてもよい。接着層101及び接着層103としては、上述の接着層6と同様の層を用いることができ、第2の熱可塑性樹脂層104としては、上述の第1の熱可塑性樹脂層7と同様の層を用いることができる。 When the packaging material 8 is used as a material for constituting the liquid paper container, the packaging material 8 has the vapor deposition layer 2 on the side opposite to the first thermoplastic resin layer 7 as shown in FIG. The paper layer 102 laminated | stacked on the base film 5 which has, and the 2nd thermoplastic resin layer 104 laminated | stacked on the paper layer 102 are further provided. As shown in FIG. 6, the paper layer 102 may be laminated via the adhesive layer 101, and the second thermoplastic resin layer 104 may be laminated via the adhesive layer 103. As the adhesive layer 101 and the adhesive layer 103, the same layer as the above-mentioned adhesive layer 6 can be used, and as the second thermoplastic resin layer 104, the same layer as the above-mentioned first thermoplastic resin layer 7 is used. Can be used.
 また、ラミネートチューブを構成するための材料として包装用材料8を用いる場合、包装用材料8は、図7に示すように、第1の熱可塑性樹脂層7とは反対側で蒸着層2を有する基材フィルム5に積層された第2の熱可塑性樹脂層104を更に備える。図7に示すように、第2の熱可塑性樹脂層104は、接着層103を介して積層されていてもよい。 When the packaging material 8 is used as a material for constituting the laminate tube, the packaging material 8 has the vapor deposition layer 2 on the side opposite to the first thermoplastic resin layer 7 as shown in FIG. A second thermoplastic resin layer 104 laminated on the base film 5 is further provided. As shown in FIG. 7, the second thermoplastic resin layer 104 may be laminated via an adhesive layer 103.
 以上、添付図面を参照しながら、本発明に係るプラズマ前処理装置を備えた成膜設備10を用いて作製される、基材1と蒸着層2との界面にAL-Cの共有結合を有する基材フィルム5の好適な実施形態について説明したが、本発明はかかる例に限定されない。
 当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例を加えられることは明らかであり、それらについても当然に本発明の成膜設備10の技術的範囲に属する。
As described above, with reference to the attached drawings, an AL-C covalent bond is formed at the interface between the base material 1 and the vapor deposition layer 2 which is manufactured using the film forming equipment 10 equipped with the plasma pretreatment apparatus according to the present invention. Although preferred embodiment of the base film 5 was described, this invention is not limited to this example.
It is obvious for those skilled in the art that various changes or modifications can be made within the scope of the technical idea disclosed in the present application, and these are naturally also within the technical scope of the film forming apparatus 10 of the present invention. Belonging to.
 次に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of the following examples unless it exceeds the gist.
 (実施例1)
 上述の第1の構成で説明した、複数の層1aを含み、キャスト法で作製されたフィルム状の基材1を準備した。各層1aにおけるPBTの含有率は80%であり、層1aの層数は1024であり、基材1の厚みは15μmであった。
(Example 1)
A film-like base material 1 including a plurality of layers 1a described in the first configuration and manufactured by a casting method was prepared. The content of PBT in each layer 1a was 80%, the number of layers 1a was 1024, and the thickness of the substrate 1 was 15 μm.
 続いて、基材1の蒸着層2を設ける面に、本発明のプラズマ前処理装置を配置した前処理区画と成膜区画を隔離した連続蒸着膜成膜装置を用いて、前処理区画において下記プラズマ条件下でプラズマ供給ノズルからプラズマを導入し、搬送速度480m/minでプラズマ前処理を施し、その後、連続搬送した成膜区画内で、プラズマ処理面上に下記条件において真空蒸着法の加熱手段として反応性抵抗加熱方式により、厚さ10nmの酸化アルミニウムの蒸着層2を形成した。
(プラズマ前処理条件)
 高周波電源出力:4 kW
 プラズマ強度:550 W・sec/m2
 プラズマ形成ガス:酸素300 (sccm)、アルゴン1000 (sccm)
 磁気形成手段:1000ガウスの永久磁石
 前処理賦ドラム-プラズマ供給ノズル間印加電圧:420 V
 前処理区画の真空度:1.0×10-1 Pa
(酸化アルミニウム蒸着層の成膜条件) 
 真空度:1.0×10-2 Pa 
Subsequently, on the surface on which the vapor deposition layer 2 of the substrate 1 is provided, using the continuous vapor deposition film forming apparatus in which the pretreatment section in which the plasma pretreatment apparatus of the present invention is disposed and the film formation section are separated, the following in the pretreatment section: Plasma is introduced from a plasma supply nozzle under plasma conditions, and plasma pretreatment is performed at a transfer speed of 480 m / min. As a result, an aluminum oxide vapor deposition layer 2 having a thickness of 10 nm was formed by a reactive resistance heating method.
(Plasma pretreatment conditions)
High frequency power output: 4 kW
Plasma intensity: 550 W · sec / m 2
Plasma forming gas: Oxygen 300 (sccm), Argon 1000 (sccm)
Magnetic forming means: 1000 gauss permanent magnet Applied voltage between pretreatment drum and plasma supply nozzle: 420 V
Pretreatment compartment vacuum: 1.0 × 10 -1 Pa
(Conditions for deposition of aluminum oxide deposition layer)
Vacuum degree: 1.0 × 10 -2 Pa
 PHI社製X線光電子分光装置(Quantum2000)を用いてX線源としてAlKα(1486.6eV)を使用し、出力120Wで、蒸着層2と、PBTを含む基材1との界面の結合状態の分析を実施した。結果、炭素元素とアルミニウム原子との共有結合(AL-Cの共有結合)に由来する283.5±0.5eV(CISの結合エネルギー)の結合の存在が確認できた。 Using an X-ray photoelectron spectrometer (Quantum 2000) manufactured by PHI, using AlKα (1486.6 eV) as an X-ray source, with an output of 120 W, the bonding state of the interface between the vapor deposition layer 2 and the substrate 1 containing PBT Analysis was performed. As a result, the presence of a bond of 283.5 ± 0.5 eV (CIS binding energy) derived from the covalent bond between the carbon element and the aluminum atom (AL-C covalent bond) was confirmed.
 次に、下記に示す組成表に従って調製した、組成aの、ポリビニルアルコール、イソプロピルアルコール、およびイオン交換水からなる混合液に、組成bの、エチルシリケート、シランカップリング剤、イソプロピルアルコール、塩酸、およびイオン交換水からなる固形分4wt%の加水分解液を加えて攪拌し、無色透明のバリア塗工液を得た。 
 組成表
   a 
       ポリビニルアルコール           2.30
       イソプロピルアルコール          2.70
       H2O                 51.20
   b
       エチルシリケート            16.60
       シランカップリング剤           0.20
       イソプロピルアルコール          3.90
       0.5N塩酸水溶液            0.50
       H2O                 22.60     
       合 計                100.00(wt%)
Next, to a mixed solution composed of polyvinyl alcohol, isopropyl alcohol, and ion-exchanged water of composition a prepared according to the composition table shown below, ethyl silicate, silane coupling agent, isopropyl alcohol, hydrochloric acid, and A hydrolyzate having a solid content of 4 wt% made of ion-exchanged water was added and stirred to obtain a colorless and transparent barrier coating solution.
Composition table a
Polyvinyl alcohol 2.30
Isopropyl alcohol 2.70
H2O 51.20
b
Ethyl silicate 16.60
Silane coupling agent 0.20
Isopropyl alcohol 3.90
0.5N hydrochloric acid aqueous solution 0.50
H2O 22.60
Total 100.00 (wt%)
 次に、酸化アルミニウム蒸着面に、グラビア法を用いて、上記で製造したガスバリア性組成物(バリア塗工液)をコーティングし、次いで、ゾルゲル法によって、150℃で60秒間加熱し、ガスバリア組成物が縮重合して得られる厚さ0.3μm(乾操状態)のガスバリア性塗布膜4を形成した。 Next, the gas barrier composition (barrier coating solution) manufactured above is coated on the aluminum oxide vapor deposition surface by using a gravure method, and then heated at 150 ° C. for 60 seconds by a sol-gel method. A gas barrier coating film 4 having a thickness of 0.3 μm (in a dry operation state) obtained by condensation polymerization was formed.
 続いて、基材フィルム5のガスバリア性塗布膜4側の面上に、接着層6を介して熱可塑性樹脂層7を積層した。接着層6としては、ロックペイント株式会社製の2液型ポリウレタン系接着剤(主剤:RU-40、硬化剤:H-4)を用いた。接着層6の厚みは、3μmであった。RU-40は、ポリエステルポリオールを含む。また、H-4は脂肪族系イソシアネート化合物を含む。熱可塑性樹脂層7としては、東レフィルム加工株式会社製の無延伸ポリプロピレンフィルム ZK99Sを用いた。熱可塑性樹脂層7の厚みは、60μmであった。 Subsequently, a thermoplastic resin layer 7 was laminated on the surface of the base film 5 on the gas barrier coating film 4 side through an adhesive layer 6. As the adhesive layer 6, a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used. The thickness of the adhesive layer 6 was 3 μm. RU-40 contains a polyester polyol. H-4 contains an aliphatic isocyanate compound. As the thermoplastic resin layer 7, an unstretched polypropylene film ZK99S manufactured by Toray Film Processing Co., Ltd. was used. The thickness of the thermoplastic resin layer 7 was 60 μm.
 本実施例の包装用材料8の層構成は、外面側から内面側へ順に以下のように表現され得る。なお、「/」は層と層の境界を表している。
 基材(多層PBT)/蒸着層/ガスバリア性塗布膜/接着剤層/熱可塑性樹脂層
The layer structure of the packaging material 8 of the present embodiment can be expressed as follows in order from the outer surface side to the inner surface side. Note that “/” represents a boundary between layers.
Base material (multilayer PBT) / deposition layer / gas barrier coating film / adhesive layer / thermoplastic resin layer
 〔酸素透過度及び水蒸気透過度の評価〕
 包装用材料8の酸素透過度を、JISK7126-1に準拠した23℃×90%RH環境下でMOCON法を用いて測定した。結果、酸素透過度は0.5cc/day・mであった。また、包装用材料8の水蒸気透過度を、JISK7129Bに準拠した40℃×90%RH環境下でMOCON法を用いて測定した。結果、水蒸気透過度は0.2g/day・mであった。
[Evaluation of oxygen permeability and water vapor permeability]
The oxygen permeability of the packaging material 8 was measured using the MOCON method in a 23 ° C. × 90% RH environment in accordance with JIS K7126-1. As a result, the oxygen permeability was 0.5 cc / day · m 2 . Moreover, the water vapor permeability of the packaging material 8 was measured using the MOCON method in a 40 ° C. × 90% RH environment in accordance with JISK7129B. As a result, the water vapor permeability was 0.2 g / day · m 2 .
 〔ラミネート強度の評価〕
 続いて、包装用材料8のラミネート強度を測定した。測定器としては、A&D製のテンシロン万能材料試験機RTC-1310を用いた。具体的には、まず、包装用材料8を切り出して、図9に示すように、基材1側の部材と熱可塑性樹脂層7側の部材とを長辺方向において15mm剥離させた矩形状の試験片を準備した。試験片の幅(短辺の長さ)は15mmとした。その後、図10に示すように、基材1側の部材及び熱可塑性樹脂層7側の部材のうち既に剥離されている部分をそれぞれ、測定器のつかみ具71及びつかみ具72で把持した。また、つかみ具71,72をそれぞれ、基材1側の部材と蒸着層2の部材とがまだ積層されている部分の面方向に対して直交する方向において互いに逆向きに、50mm/分の速度で引っ張り、安定領域(図11参照)における引張応力の平均値を測定した。引っ張りを開始する際の、つかみ具71,72間の間隔Sは30mmとし、引っ張りを終了する際の、つかみ具71,72間の間隔Sは60mmとした。図11は、つかみ具71,72間の間隔Sに対する引張応力の変化を示す図である。図11に示すように、間隔Sに対する引張応力の変化は、第1領域を経て、第1領域よりも変化率の小さい第2領域(安定領域)に入る。
[Evaluation of laminate strength]
Subsequently, the laminate strength of the packaging material 8 was measured. As a measuring instrument, Tensilon universal material testing machine RTC-1310 manufactured by A & D was used. Specifically, first, the packaging material 8 is cut out and, as shown in FIG. 9, the base material 1 side member and the thermoplastic resin layer 7 side member are separated by 15 mm in the long side direction. A test piece was prepared. The width of the test piece (short side length) was 15 mm. Thereafter, as shown in FIG. 10, the already peeled portions of the member on the base material 1 side and the member on the thermoplastic resin layer 7 side were gripped by the gripping tool 71 and the gripping tool 72 of the measuring instrument, respectively. Further, the grippers 71 and 72 are each set at a speed of 50 mm / min in directions opposite to each other in the direction perpendicular to the surface direction of the portion where the member on the substrate 1 side and the member of the vapor deposition layer 2 are still laminated. And the average value of the tensile stress in the stable region (see FIG. 11) was measured. The spacing S between the gripping tools 71 and 72 when starting the tension was 30 mm, and the spacing S between the gripping tools 71 and 72 when finishing the tensioning was 60 mm. FIG. 11 is a diagram illustrating a change in tensile stress with respect to the interval S between the grippers 71 and 72. As shown in FIG. 11, the change in tensile stress with respect to the interval S enters the second region (stable region) having a smaller change rate than the first region through the first region.
 5個の試験片について、安定領域における引張応力の平均値を測定し、その平均値を包装用材料8の基材1と熱可塑性樹脂層7との間のラミネート強度とした。測定時の環境は、温度23℃、相対湿度50%とした。結果、15mm幅におけるラミネート強度は5.0Nであった。 For the five test pieces, the average value of tensile stress in the stable region was measured, and the average value was defined as the laminate strength between the base material 1 of the packaging material 8 and the thermoplastic resin layer 7. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the laminate strength at a width of 15 mm was 5.0 N.
 〔突き刺し強度の評価〕
 続いて、包装用材料8の突き刺し強度を、JIS Z1707 7.4に準拠して測定した。測定器としては、A&D製のテンシロン万能材料試験機RTC-1310を用いた。具体的には、固定されている状態の包装用材料8の試験片に対して、基材1側から、直径1.0mm、先端形状半径0.5mmの半円形の針80を、50mm/分(1分あたり50mm)の速度で突き刺し、針80が包装用材料8を貫通するまでの応力の最大値を測定した。5個以上の試験片について、応力の最大値を測定し、その平均値を包装用材料8の突き刺し強度とした。測定時の環境は、温度23℃、相対湿度50%とした。結果、突き刺し強度は16Nであった。
[Evaluation of puncture strength]
Subsequently, the piercing strength of the packaging material 8 was measured according to JIS Z1707 7.4. As a measuring instrument, Tensilon universal material testing machine RTC-1310 manufactured by A & D was used. Specifically, a semicircular needle 80 having a diameter of 1.0 mm and a tip shape radius of 0.5 mm is applied to the test piece of the packaging material 8 in a fixed state from the base 1 side at 50 mm / min. The maximum value of the stress until the needle 80 penetrates the packaging material 8 was measured by piercing at a speed of (50 mm per minute). About five or more test pieces, the maximum value of stress was measured, and the average value was defined as the piercing strength of the packaging material 8. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the piercing strength was 16N.
 〔レトルト適性の評価〕
 2枚の包装用材料8を重ねて190℃で1秒間にわたって加熱し、包装用材料8の熱可塑性樹脂層7同士をヒートシールするとともに、内容物として200gの水を充填して矩形状の4方シール袋を作製した。4方シール袋の高さは180mmとし、幅は130mmとした。続いて、4方シール袋を121℃で40分加熱するレトルト殺菌処理を施した。その後、4方シール袋の外観に白化が見られるかどうかを確認した。結果、白化は見られなかった。
[Evaluation of retort suitability]
The two packaging materials 8 are stacked and heated at 190 ° C. for 1 second to heat-seal the thermoplastic resin layers 7 of the packaging material 8 and are filled with 200 g of water as a content to form a rectangular 4 A side-sealed bag was produced. The four-side seal bag had a height of 180 mm and a width of 130 mm. Subsequently, a retort sterilization treatment was performed in which the four-side sealed bag was heated at 121 ° C. for 40 minutes. Thereafter, it was confirmed whether or not the appearance of the four-side seal bag was whitened. As a result, no whitening was observed.
 (実施例2)
 基材1として、PBTを含み、チューブラー法で作製されたフィルム状の基材1を用いたこと以外は、実施例1の場合と同様にして、包装用材料8を作製した。基材1はPBT及び添加剤のみで構成される単層のフィルムであり、基材1の厚みは15μmであった。本実施例の包装用材料8の層構成は、外面側から内面側へ順に以下のように表現され得る。なお、「/」は層と層の境界を表している。
 基材(単層PBT)/蒸着層/ガスバリア性塗布膜/接着剤層/熱可塑性樹脂層
(Example 2)
A packaging material 8 was produced in the same manner as in Example 1 except that a film-like substrate 1 containing PBT and produced by a tubular method was used as the substrate 1. The substrate 1 was a single layer film composed only of PBT and additives, and the thickness of the substrate 1 was 15 μm. The layer structure of the packaging material 8 of the present embodiment can be expressed as follows in order from the outer surface side to the inner surface side. Note that “/” represents a boundary between layers.
Base material (single layer PBT) / deposition layer / gas barrier coating film / adhesive layer / thermoplastic resin layer
 また、実施例1の場合と同様にして、包装用材料8の酸素透過度及び水蒸気透過度、ラミネート強度、突き刺し強度並びにレトルト適性を評価した。結果、酸素透過度は0.3cc/day・mであり、水蒸気透過度は0.3g/day・mであり、15mm幅におけるラミネート強度は5.3Nであり、突き刺し強度は15Nであった。また、レトルト殺菌処理を施したときに白化は見られなかった。 Further, in the same manner as in Example 1, the oxygen permeability and water vapor permeability, laminate strength, puncture strength, and retort suitability of the packaging material 8 were evaluated. As a result, the oxygen permeability was 0.3 cc / day · m 2 , the water vapor permeability was 0.3 g / day · m 2 , the laminate strength at 15 mm width was 5.3 N, and the piercing strength was 15 N. It was. Moreover, whitening was not seen when the retort sterilization process was performed.
 (実施例3)
 各層1aにおけるPBTの含有率が70%であること以外は、実施例1の場合と同様の基材1を準備した。続いて、実施例1の場合と同様にして、包装用材料8を作製した。
(Example 3)
A base material 1 similar to that in Example 1 was prepared except that the content of PBT in each layer 1a was 70%. Subsequently, a packaging material 8 was produced in the same manner as in Example 1.
 また、実施例1の場合と同様にして、包装用材料8の酸素透過度及び水蒸気透過度、ラミネート強度、突き刺し強度並びにレトルト適性を評価した。結果、酸素透過度は0.3cc/day・mであり、水蒸気透過度は0.3g/day・mであり、15mm幅におけるラミネート強度は5.3Nであり、突き刺し強度は13Nであった。また、レトルト殺菌処理を施したときに白化は見られなかった。 Further, in the same manner as in Example 1, the oxygen permeability and water vapor permeability, laminate strength, puncture strength, and retort suitability of the packaging material 8 were evaluated. As a result, the oxygen permeability was 0.3 cc / day · m 2 , the water vapor permeability was 0.3 g / day · m 2 , the laminate strength at 15 mm width was 5.3 N, and the piercing strength was 13 N. It was. Moreover, whitening was not seen when the retort sterilization process was performed.
 (比較例1)
 基材1として、厚み15μmのナイロンフィルム(興人ホールディングス株式会社製 ボニールW)を用いたこと以外は、実施例1の場合と同様にして、包装用材料8を作製した。比較例1の包装用材料8の層構成は、外面側から内面側へ順に以下のように表現され得る。なお、「/」は層と層の境界を表している。
 基材(ナイロン)/蒸着層/ガスバリア性塗布膜/接着剤層/熱可塑性樹脂層
(Comparative Example 1)
A packaging material 8 was produced in the same manner as in Example 1 except that a nylon film having a thickness of 15 μm (Bonil W manufactured by Kojin Holdings Co., Ltd.) was used as the substrate 1. The layer structure of the packaging material 8 of Comparative Example 1 can be expressed as follows in order from the outer surface side to the inner surface side. Note that “/” represents a boundary between layers.
Base material (nylon) / deposition layer / gas barrier coating film / adhesive layer / thermoplastic resin layer
 また、実施例1の場合と同様にして、包装用材料8の酸素透過度及び水蒸気透過度、ラミネート強度、突き刺し強度並びにレトルト適性を評価した。結果、酸素透過度は0.2cc/day・mであり、水蒸気透過度は1.3g/day・mであり、15mm幅におけるラミネート強度は3.8Nであり、突き刺し強度は15Nであった。また、レトルト殺菌処理を施したときに白化が見られた。 Further, in the same manner as in Example 1, the oxygen permeability and water vapor permeability, laminate strength, puncture strength, and retort suitability of the packaging material 8 were evaluated. As a result, the oxygen permeability was 0.2 cc / day · m 2 , the water vapor permeability was 1.3 g / day · m 2 , the laminate strength at 15 mm width was 3.8 N, and the piercing strength was 15 N. It was. Moreover, whitening was seen when the retort sterilization process was performed.
 (比較例2)
 基材1として、厚み12μmのPETフィルム(東洋紡株式会社製 T4102)を用いたこと以外は、実施例1の場合と同様にして、包装用材料8を作製した。比較例2の包装用材料8の層構成は、外面側から内面側へ順に以下のように表現され得る。なお、「/」は層と層の境界を表している。
 基材(PET)/蒸着層/ガスバリア性塗布膜/接着剤層/熱可塑性樹脂層
(Comparative Example 2)
A packaging material 8 was produced in the same manner as in Example 1 except that a PET film having a thickness of 12 μm (T4102 manufactured by Toyobo Co., Ltd.) was used as the substrate 1. The layer structure of the packaging material 8 of Comparative Example 2 can be expressed as follows in order from the outer surface side to the inner surface side. Note that “/” represents a boundary between layers.
Base material (PET) / deposition layer / gas barrier coating film / adhesive layer / thermoplastic resin layer
 また、実施例1の場合と同様にして、包装用材料8の酸素透過度及び水蒸気透過度、ラミネート強度、突き刺し強度並びにレトルト適性を評価した。結果、酸素透過度は0.2cc/day・mであり、水蒸気透過度は0.4g/day・mであり、15mm幅におけるラミネート強度は6.1Nであり、突き刺し強度は10Nであった。また、レトルト殺菌処理を施したときに白化は見られなかった。 Further, in the same manner as in Example 1, the oxygen permeability and water vapor permeability, laminate strength, puncture strength, and retort suitability of the packaging material 8 were evaluated. As a result, the oxygen permeability was 0.2 cc / day · m 2 , the water vapor permeability was 0.4 g / day · m 2 , the laminate strength at 15 mm width was 6.1 N, and the piercing strength was 10 N. It was. Moreover, whitening was not seen when the retort sterilization process was performed.
 実施例1,2,3及び比較例1,2の評価結果を、図13にまとめて示す。実施例1、2、3と比較例1の比較から分かるように、包装用材料8がナイロンに代えてPBTを備えることにより、包装用材料8の水蒸気透過度を小さくし、また、包装用材料8のラミネート強度を高めることができた。さらに、包装用材料8がレトルト殺菌処理によって白化してしまうことを抑制することができた。 The evaluation results of Examples 1, 2, and 3 and Comparative Examples 1 and 2 are collectively shown in FIG. As can be seen from the comparison between Examples 1, 2, 3 and Comparative Example 1, the packaging material 8 is provided with PBT instead of nylon, so that the water vapor permeability of the packaging material 8 is reduced, and the packaging material is used. The laminate strength of 8 could be increased. Furthermore, it was possible to suppress the whitening of the packaging material 8 due to the retort sterilization treatment.
 また、実施例1、2,3と比較例2の比較から分かるように、包装用材料8がPETに代えてPBTを備えることにより、包装用材料8の突き刺し強度を11N以上にすることができ、より具体的には13N以上にすることができた。 Further, as can be seen from the comparison between Examples 1, 2, and 3 and Comparative Example 2, the piercing strength of the packaging material 8 can be 11 N or more by providing the packaging material 8 with PBT instead of PET. More specifically, it could be 13N or more.
1 基材
2 蒸着層
3 印刷層
4 ガスバリア性塗布膜
5 基材フィルム
6 接着層
7 熱可塑性樹脂層
8 包装用材料
P プラズマ
10 成膜設備
12 減圧チャンバ
12A 基材搬送室
12B プラズマ前処理室
12C 成膜室
13 巻き出しローラー
14 ガイドローラー
15 巻き取りローラー
18 原料ガス揮発供給装置
19 原料ガス供給ノズル
20 プラズマ前処理ローラー
21 マグネット
22 プラズマ供給ノズル
25 成膜ローラー
26 成膜手段
30 真空ポンプ
31 電力供給配線
32 電源
35a~35c 隔壁
DESCRIPTION OF SYMBOLS 1 Substrate 2 Deposition layer 3 Print layer 4 Gas barrier coating film 5 Base film 6 Adhesive layer 7 Thermoplastic resin layer 8 Packaging material P Plasma 10 Deposition equipment 12 Decompression chamber 12A Substrate transport chamber 12B Plasma pretreatment chamber 12C Deposition chamber 13 Unwind roller 14 Guide roller 15 Take-up roller 18 Raw material gas volatilization supply device 19 Raw material gas supply nozzle 20 Plasma pretreatment roller 21 Magnet 22 Plasma supply nozzle 25 Deposition roller 26 Deposition means 30 Vacuum pump 31 Power supply Wiring 32 Power supply 35a-35c Bulkhead

Claims (20)

  1.  基材と、
     前記基材上に設けられ、金属又は合金を含む蒸着層と、を備え、
     前記基材は、51質量%以上のポリブチレンテレフタレートを含み、
     前記基材と前記蒸着層との界面に、金属原子と炭素原子の共有結合が形成されている、フィルム。
    A substrate;
    A vapor deposition layer provided on the base material and containing a metal or an alloy;
    The base material contains 51% by mass or more of polybutylene terephthalate,
    The film in which the covalent bond of a metal atom and a carbon atom is formed in the interface of the said base material and the said vapor deposition layer.
  2.  前記基材は、60質量%以上のポリブチレンテレフタレートを含む、請求項1に記載のフィルム。 The film according to claim 1, wherein the base material contains 60% by mass or more of polybutylene terephthalate.
  3.  前記蒸着層上に設けられたガスバリア性塗布膜を更に備える、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, further comprising a gas barrier coating film provided on the vapor deposition layer.
  4.  前記蒸着層が透明蒸着層である、請求項1乃至3のいずれか一項に記載のフィルム。 The film according to any one of claims 1 to 3, wherein the vapor deposition layer is a transparent vapor deposition layer.
  5.  前記蒸着層が、酸化アルミニウムを含む無機酸化物、あるいは複数の無機酸化物の混合物からなる、請求項1乃至4のいずれか一項に記載のフィルム。 The film according to any one of claims 1 to 4, wherein the vapor deposition layer is made of an inorganic oxide containing aluminum oxide or a mixture of a plurality of inorganic oxides.
  6.  前記無機酸化物が、酸化アルミニウムと、酸化珪素、酸化マグネシウム、酸化錫、酸化亜鉛から選択された1種又は1種以上混合した無機酸化物の混合物である、請求項5に記載のフィルム。 The film according to claim 5, wherein the inorganic oxide is a mixture of aluminum oxide and one or more inorganic oxides selected from silicon oxide, magnesium oxide, tin oxide, and zinc oxide.
  7.  前記蒸着層の厚さが、5nm且つ200nm以下である、請求項1乃至6のいずれか一項に記載のフィルム。 The film according to any one of claims 1 to 6, wherein a thickness of the vapor deposition layer is 5 nm and 200 nm or less.
  8.  基材を準備する工程と、
     前記基材上に金属又は合金を蒸着させて前記基材上に蒸着層を形成する蒸着工程と、を備え、
     前記基材は、51質量%以上のポリブチレンテレフタレートを含み、
     前記基材と前記蒸着層との界面に、金属原子と炭素原子の共有結合が形成されている、フィルム製造方法。
    Preparing a substrate;
    A vapor deposition step of depositing a metal or an alloy on the base material to form a vapor deposition layer on the base material,
    The base material contains 51% by mass or more of polybutylene terephthalate,
    The film manufacturing method in which the covalent bond of a metal atom and a carbon atom is formed in the interface of the said base material and the said vapor deposition layer.
  9.  前記基材にプラズマ処理を施して前記基材にプラズマ処理面を形成するプラズマ前処理工程を更に備え、
     前記蒸着工程は、前記基材の前記プラズマ処理面上に前記蒸着層を形成する、請求項8に記載のフィルム製造方法。
    A plasma pretreatment step of performing plasma treatment on the substrate to form a plasma treatment surface on the substrate;
    The said vapor deposition process is a film manufacturing method of Claim 8 which forms the said vapor deposition layer on the said plasma processing surface of the said base material.
  10.  前記プラズマ前処理工程は、プラズマ前処理ローラーとプラズマ供給手段の間に電圧を印加した状態で前記プラズマ前処理ローラーと前記プラズマ供給手段の間に前記基材を保持して前記基材にプラズマ処理面を形成する工程を含み、
     前記蒸着工程は、前記プラズマ前処理工程に連続して前記基材の前記プラズマ処理面上に前記蒸着層を形成する、請求項9に記載のフィルム製造方法。
    In the plasma pretreatment step, the substrate is held between the plasma pretreatment roller and the plasma supply unit in a state where a voltage is applied between the plasma pretreatment roller and the plasma supply unit, and the substrate is subjected to plasma treatment. Forming a surface,
    The film production method according to claim 9, wherein the vapor deposition step forms the vapor deposition layer on the plasma treatment surface of the base material in succession to the plasma pretreatment step.
  11.  前記プラズマ前処理工程が、前記基材にプラズマ処理を施す前処理区画と前記蒸着層を形成する成膜区画とが連続して配置されたローラー式の成膜設備によって実施され、
     前記ローラー式の成膜設備は、前記プラズマ前処理ローラーと前記プラズマ前処理ローラーに対向して配置された前記プラズマ供給手段及び磁場形成手段との間で前記基材の表面にプラズマ原料ガスをプラズマとして導入した際に、前記プラズマを封じ込める空隙を形成するよう構成されている、請求項10に記載のフィルム製造方法。
    The plasma pretreatment step is performed by a roller-type film forming facility in which a pretreatment section for performing a plasma treatment on the substrate and a film forming section for forming the vapor deposition layer are continuously arranged.
    The roller-type film-forming facility is configured to plasma a plasma source gas on the surface of the substrate between the plasma pretreatment roller and the plasma supply unit and the magnetic field formation unit arranged to face the plasma pretreatment roller. The film manufacturing method according to claim 10, wherein the film manufacturing method is configured to form a void for containing the plasma when introduced as.
  12.  前記プラズマ前処理工程は、前記基材の表面を、単位面積あたりのプラズマ強度として100W・sec/m2以上且つ8000W・sec/m2以下の条件下でプラズマ処理する、請求項10又は11に記載のフィルム製造方法。 The plasma pretreatment step, the surface of the substrate, a plasma treatment with 100W · sec / m 2 or more and 8000W · sec / m 2 under the following conditions as the plasma intensity per unit area, in claim 10 or 11 The film manufacturing method of description.
  13.  プラズマ原料ガスは、アルゴン単独、及び又は酸素、窒素、炭酸ガスのうちの1種類以上との混合ガスである、請求項9乃至12のいずれか一項に記載のフィルム製造方法。 The film manufacturing method according to any one of claims 9 to 12, wherein the plasma source gas is a mixed gas of argon alone and / or one or more of oxygen, nitrogen, and carbon dioxide.
  14.  前記プラズマ前処理工程は、酸素、窒素、炭酸ガスの1種以上とアルゴンの混合ガスからなるプラズマ原料ガスを用いてプラズマ処理を実施する、請求項13に記載のフィルム製造方法。 14. The film manufacturing method according to claim 13, wherein the plasma pretreatment step performs plasma treatment using a plasma source gas composed of a mixed gas of at least one of oxygen, nitrogen and carbon dioxide and argon.
  15.  前記蒸着工程は、物理蒸着によって前記蒸着層を前記基材の前記プラズマ処理面上に形成する、請求項9乃至14のいずれか一項に記載のフィルム製造方法。 The film deposition method according to any one of claims 9 to 14, wherein the vapor deposition step forms the vapor deposition layer on the plasma-treated surface of the substrate by physical vapor deposition.
  16.  包装用材料であって、
     基材と、前記基材上に設けられ、金属又は合金を含む蒸着層と、を有するフィルムと、
     前記フィルムに積層された熱可塑性樹脂層と、を備え、
     前記基材は、51質量%以上のポリブチレンテレフタレートを含み、
     前記基材と前記蒸着層との界面に、金属元素と炭素元素の共有結合が形成されている、包装用材料。
    Packaging material,
    A film having a base material and a vapor deposition layer provided on the base material and containing a metal or an alloy;
    A thermoplastic resin layer laminated on the film,
    The base material contains 51% by mass or more of polybutylene terephthalate,
    A packaging material in which a covalent bond of a metal element and a carbon element is formed at an interface between the base material and the vapor deposition layer.
  17.  11N以上の突き刺し強度を有する、請求項16に記載の包装用材料。 The packaging material according to claim 16, which has a puncture strength of 11N or more.
  18.  前記熱可塑性樹脂層は、前記フィルムに接着剤層を介して積層されており、
     15mm幅における前記基材と前記熱可塑性樹脂層との間のラミネート強度が4N以上である、請求項16又は17に記載の包装用材料。
    The thermoplastic resin layer is laminated to the film via an adhesive layer,
    The packaging material according to claim 16 or 17, wherein a laminate strength between the base material and the thermoplastic resin layer in a width of 15 mm is 4 N or more.
  19.  前記熱可塑性樹脂層は、遮光性を有する、請求項16乃至18のいずれか一項に記載の包装用材料。 The packaging material according to any one of claims 16 to 18, wherein the thermoplastic resin layer has a light shielding property.
  20.  ボイル用包装袋又はレトルト殺菌用包装袋に用いられる、請求項16乃至19のいずれか一項に記載の包装用材料。 The packaging material according to any one of claims 16 to 19, which is used for a boil packaging bag or a retort sterilization packaging bag.
PCT/JP2017/035076 2016-09-30 2017-09-27 Film and film production method, and packaging material equipped with film WO2018062329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194997 2016-09-30
JP2016194997 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062329A1 true WO2018062329A1 (en) 2018-04-05

Family

ID=61760287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035076 WO2018062329A1 (en) 2016-09-30 2017-09-27 Film and film production method, and packaging material equipped with film

Country Status (2)

Country Link
JP (1) JP7098900B2 (en)
WO (1) WO2018062329A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123212A (en) * 2018-01-19 2019-07-25 凸版印刷株式会社 Gas barrier laminate
JP2020059875A (en) * 2018-10-09 2020-04-16 大日本印刷株式会社 Film deposition apparatus and film deposition method
CN113906153A (en) * 2019-06-12 2022-01-07 大日本印刷株式会社 Barrier film, laminate and packaging product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192781B2 (en) * 2017-10-30 2022-12-20 大日本印刷株式会社 LAMINATED FILM, BARRIER LAMINATED FILM, GAS BARRIER PACKAGING MATERIAL AND GAS BARRIER PACKAGE USING THE BARRIER LAMINATED FILM
JP7192239B2 (en) * 2018-04-27 2022-12-20 大日本印刷株式会社 Polyethylene laminate for packaging material and packaging material comprising said laminate
JP2022088456A (en) * 2018-04-27 2022-06-14 大日本印刷株式会社 Polyethylene laminate for packaging material and packaging material including the laminate
JP7425984B2 (en) 2018-09-28 2024-02-01 大日本印刷株式会社 Packaging materials for paper containers and liquid paper containers
TW202031754A (en) * 2019-02-26 2020-09-01 日商東洋紡股份有限公司 Biaxially oriented polyester film and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227203A (en) * 2007-03-14 2008-09-25 Toppan Printing Co Ltd Rear face protection sheet for solar cell module and solar cell module using the same
JP2013208915A (en) * 2013-06-20 2013-10-10 Dainippon Printing Co Ltd Transparent gas barrier laminated film, method for manufacturing the same, and packaging material using the same
WO2014050951A1 (en) * 2012-09-28 2014-04-03 大日本印刷株式会社 Transparent vapor-deposited film
JP2015147309A (en) * 2014-02-05 2015-08-20 東レ株式会社 biaxially oriented polyester film
WO2015152069A1 (en) * 2014-03-31 2015-10-08 大日本印刷株式会社 Gas barrier film and method for producing same
WO2015178390A1 (en) * 2014-05-21 2015-11-26 東洋紡株式会社 Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956115B2 (en) 2011-04-01 2016-07-20 興人フィルム&ケミカルズ株式会社 Retort packaging material containing biaxially stretched polybutylene terephthalate film
MY172893A (en) 2012-05-14 2019-12-13 Toyo Boseki Polyester film and method for producing same
JP2014015233A (en) 2012-07-09 2014-01-30 Kohjin Holdings Co Ltd Packaging material for filling liquid including biaxially stretched polybutylene terephthalate film
JP6294036B2 (en) 2012-09-07 2018-03-14 ファナック アメリカ コーポレイション System that monitors / analyzes robot-related information and displays it on smart devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227203A (en) * 2007-03-14 2008-09-25 Toppan Printing Co Ltd Rear face protection sheet for solar cell module and solar cell module using the same
WO2014050951A1 (en) * 2012-09-28 2014-04-03 大日本印刷株式会社 Transparent vapor-deposited film
JP2013208915A (en) * 2013-06-20 2013-10-10 Dainippon Printing Co Ltd Transparent gas barrier laminated film, method for manufacturing the same, and packaging material using the same
JP2015147309A (en) * 2014-02-05 2015-08-20 東レ株式会社 biaxially oriented polyester film
WO2015152069A1 (en) * 2014-03-31 2015-10-08 大日本印刷株式会社 Gas barrier film and method for producing same
WO2015178390A1 (en) * 2014-05-21 2015-11-26 東洋紡株式会社 Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123212A (en) * 2018-01-19 2019-07-25 凸版印刷株式会社 Gas barrier laminate
JP7040038B2 (en) 2018-01-19 2022-03-23 凸版印刷株式会社 Manufacturing method of gas barrier laminate
JP2020059875A (en) * 2018-10-09 2020-04-16 大日本印刷株式会社 Film deposition apparatus and film deposition method
JP2022132500A (en) * 2018-10-09 2022-09-08 大日本印刷株式会社 Film deposition apparatus and film deposition method
JP7256980B2 (en) 2018-10-09 2023-04-13 大日本印刷株式会社 Film forming apparatus and film forming method
JP7426003B2 (en) 2018-10-09 2024-02-01 大日本印刷株式会社 Film forming equipment and film forming method
CN113906153A (en) * 2019-06-12 2022-01-07 大日本印刷株式会社 Barrier film, laminate and packaging product
EP3984738A4 (en) * 2019-06-12 2023-06-21 Dai Nippon Printing Co., Ltd. Barrier film, laminate, and packaging product

Also Published As

Publication number Publication date
JP2018058355A (en) 2018-04-12
JP7098900B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2018062329A1 (en) Film and film production method, and packaging material equipped with film
JP6760416B2 (en) Transparent thin film
WO2019087960A1 (en) Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film
US20200407136A1 (en) Barrier laminate film, and packaging material which uses barrier laminate film
JP4321722B2 (en) Barrier film and method for producing the same
JP5381159B2 (en) Gas barrier laminate film and method for producing the same
JP2011042147A (en) Laminate material for packaging food and method for manufacturing the same
JP5381158B2 (en) Gas barrier laminate film and method for producing the same
JP2000127286A (en) Barrier film and laminate employing the same
JP2000117879A (en) Barrier film and laminated material using the same
JP2000052475A (en) Barrier film and laminate material in which the same is used
JP5084983B2 (en) Barrier film and laminated material using the same
JP6863425B2 (en) Barrier film, laminate using the barrier film, packaging product using the laminate
JP5135738B2 (en) Seed wrapping material and seed bag
JP2007021895A (en) Barrier film and laminated material using the same
JP2000025150A (en) Laminated material
JP4354356B2 (en) Tube container
JP4774577B2 (en) Barrier film and laminated material using the same
JP2006056529A (en) Tube container
JP2002144465A (en) Barrier film
JP4043799B2 (en) Soft packaging bag
JP4354364B2 (en) Tube container
JP2008265853A (en) Paper container for retort processing, and packaging body for retort processing using same
JP2021049780A (en) Barrier film, laminate using the barrier film, and packaging product using the laminate
JP2000117877A (en) Barrier film and laminated material using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856278

Country of ref document: EP

Kind code of ref document: A1