WO2018062146A1 - 配管の製造方法及び銅管内面の酸化皮膜形成方法 - Google Patents

配管の製造方法及び銅管内面の酸化皮膜形成方法 Download PDF

Info

Publication number
WO2018062146A1
WO2018062146A1 PCT/JP2017/034682 JP2017034682W WO2018062146A1 WO 2018062146 A1 WO2018062146 A1 WO 2018062146A1 JP 2017034682 W JP2017034682 W JP 2017034682W WO 2018062146 A1 WO2018062146 A1 WO 2018062146A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
copper
oxide film
pipe
chloride ion
Prior art date
Application number
PCT/JP2017/034682
Other languages
English (en)
French (fr)
Inventor
柴田 豊
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201780059613.4A priority Critical patent/CN109790623B/zh
Priority to EP17856096.7A priority patent/EP3508615B1/en
Priority to US16/332,958 priority patent/US11377742B2/en
Publication of WO2018062146A1 publication Critical patent/WO2018062146A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/103Other heavy metals copper or alloys of copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Definitions

  • the present invention relates to a method for manufacturing a pipe and a method for forming an oxide film on the inner surface of a copper pipe.
  • Patent Document 1 discloses that a patina is applied to an article containing copper or a copper alloy and aged to form a patina on its surface in a short time.
  • Patent Document 2 a copper black article is immersed in an aqueous solution containing sodium chloride and sodium hydroxide to form a uniform black oxide surface film on the exposed surface, and an acrylic resin film is electrodeposited thereon.
  • an acrylic resin film is electrodeposited thereon.
  • An object of the present invention is to form a copper oxide film serving as a protective film for inhibiting corrosion by a simple method on the inner surface of a copper pipe constituting a pipe.
  • the present invention includes an oxide film forming step of forming a copper oxide film (12) on the inner surface of a copper pipe (11) by injecting and filling a chloride ion-containing aqueous solution (L2) into the copper pipe (11). It is a manufacturing method of piping (10). According to such a method, the inner surface of the copper pipe (11) is corroded by a simple operation of injecting and filling a chloride ion-containing aqueous solution (L2) into the copper pipe (11) constituting the pipe (10). A copper oxide film (12) serving as a protective film for suppression can be formed.
  • the chloride ion-containing aqueous solution (L2) preferably contains a sodium chloride aqueous solution.
  • a chloride ion-containing aqueous solution (L2) may be continuously circulated through the copper tube (11). In this way, since the chloride ion-containing aqueous solution (L2) in contact with the inner surface of the copper tube (11) is constantly replaced, the copper oxide film (12) having high uniformity and stability on the inner surface of the copper tube (11). Can be formed.
  • the oxide film forming step injection of chloride ion-containing aqueous solution (L2) into copper tube (11), standing of copper tube (11) injected with chloride ion-containing aqueous solution (L2), and copper tube (11)
  • the chloride ion-containing aqueous solution (L2) may be discharged from the water.
  • the shearing that acts on the inner surface of the copper tube (11) by the flow of the chloride ion-containing aqueous solution (L2) The force does not hinder the formation of the copper oxide film (12), and the copper oxide film (12) can be reliably formed on the inner surface of the copper pipe (11).
  • the present invention is a pretreatment for removing surface deposits (30) on the inner surface of the copper pipe (11) by injecting and filling the acidic aqueous solution (L1) into the copper pipe (11) before the oxide film forming step. You may further provide a process. In this way, since the inner surface of the copper pipe (11) before the formation of the copper oxide film (12) is homogenized, the inner surface of the copper pipe (11) is highly uniform and stable in the oxide film forming process. A copper oxide film (12) can be formed.
  • the acidic aqueous solution (L1) preferably contains dilute hydrochloric acid.
  • oxygen may be dissolved in the chloride ion-containing aqueous solution (L2) before being injected into the copper tube (11).
  • the chloride ion-containing aqueous solution (L2) having a high dissolved oxygen concentration is circulated through the copper pipe (11), so that the copper oxide film (12) is securely attached to the inner surface of the copper pipe (11). Can be formed.
  • the present invention provides a copper pipe (11) for forming a copper oxide film (12) on the inner surface of the copper pipe (11) by injecting the copper pipe (11) so as to be filled with a chloride ion-containing aqueous solution (L2).
  • a chloride ion-containing aqueous solution L2
  • the copper oxide film (12) serving as a protective film for inhibiting corrosion can be formed on the inner surface of the copper pipe (11) by a simple operation.
  • FIG. 5 is a first explanatory diagram of a pretreatment process in the first embodiment.
  • FIG. 6 is a second explanatory diagram of the pretreatment process in Embodiment 1. It is a figure which shows the structure of the oxide film formation apparatus used at the oxide film formation process in Embodiment 1.
  • FIG. 2 is a first explanatory diagram of an oxide film forming step in Embodiment 1.
  • FIG. 6 is a second explanatory diagram of an oxide film forming step in Embodiment 1.
  • FIG. It is a figure which shows the structure of the oxide film forming apparatus of the 1st modification of Embodiment 1.
  • FIG. It is a figure which shows the structure of the oxide film forming apparatus of the 2nd modification of Embodiment 1.
  • FIG. It is a figure which shows the structure of the oxide film forming apparatus of the 3rd modification of Embodiment 1.
  • FIG. It is a figure which shows the structure of the oxide film formation apparatus used at the oxide film formation process in Embodiment 2.
  • the method for manufacturing a water pipe (10) according to Embodiment 1 is to form a copper oxide film (12) on the inner surface of a copper pipe (11) constituting the water pipe (10).
  • the copper oxide film (12) is formed on the inner surface of the water pipe (10) to produce the water pipe (10), for example, the copper oxide film (12) is formed on the inner surface of the copper pipe (11) incorporated in the water heat exchanger This includes the case where the water pipe (10) is produced by forming.
  • examples of the copper pipe (11) constituting the water pipe (10) include those described in JIS H3300: 2012.
  • the copper tube (11) may be formed of copper having a purity of 99.9% or more, or may be formed of a copper alloy having a copper content exceeding 50 mass%.
  • the copper alloy used for the copper pipe (11) for the water pipe (10) is typically a phosphorus deoxidized copper of alloy number: C1220, symbol: C1220T, type: O, 1 / 2H, or H Is mentioned.
  • the method for manufacturing a water pipe (10) according to Embodiment 1 includes a pretreatment process and an oxide film forming process.
  • ⁇ Pretreatment process> In the pretreatment step, as shown in FIG. 1A, an acidic aqueous solution (L1) is injected and filled into the copper pipe (11), so that the surface deposit on the inner surface of the copper pipe (11) as shown in FIG. 1B. Remove (30). The inner surface of the copper tube (11) before the formation of the copper oxide film (12) is thus pretreated by removing the surface deposit (30) on the inner surface of the copper tube (11) with the acidic aqueous solution (L1). Therefore, the uniformity and stability of the copper oxide film (12) formed on the inner surface of the copper pipe (11) in the next oxide film forming step can be improved.
  • the acidic aqueous solution (L1) examples include dilute hydrochloric acid and dilute sulfuric acid. From the viewpoint of easy availability and handling, the acidic aqueous solution (L1) preferably contains dilute hydrochloric acid, more preferably contains dilute hydrochloric acid as a main component, and further comprises only dilute hydrochloric acid. preferable.
  • the acidic aqueous solution (L1) dissolves the inner surface of the copper tube (11).
  • the pH of the acidic aqueous solution (L1) is 1. It is preferably 5 or more and 3.0 or less. The pH of the aqueous solution is measured based on JISZ8802: 2011 (hereinafter the same).
  • This pretreatment may be performed by an operation in which the acidic aqueous solution (L1) is continuously circulated from one end of the copper tube (11) to the other end.
  • the acidic aqueous solution (L1) may be circulated through the copper pipe (11), or the acidic aqueous solution (L1) may be circulated through the copper pipe (11) in one pass.
  • This pretreatment includes the injection of the acidic aqueous solution (L1) into the copper tube (11), the holding of the copper tube (11) injected with the acidic aqueous solution (L1), and the acidic aqueous solution (L1) from the copper tube (11).
  • the discharge may be performed in order. In that case, you may repeat operation
  • the copper tube (11) may be allowed to stand still, or movement such as vibration may be applied to the copper tube (11). .
  • the pretreatment time that is, the copper tube of the acidic aqueous solution (L1) ( The contact time to the inner surface of 11) is preferably 0.5 hours or more and 3.0 hours or less.
  • the pretreatment temperature that is, the temperature of the acidic aqueous solution (L1) is preferably normal temperature (for example, 20 ° C. or more and 35 ° C. or less).
  • Examples of the surface deposit (30) to be removed include copper oxide formed by the reaction of the copper tube (11) with oxygen in the air.
  • FIG. 2 shows an oxide film forming apparatus (20) used in the oxide film forming step in the first embodiment.
  • the oxide film forming apparatus (20) includes a processing liquid storage tank (21) opened upward, a processing liquid supply pipe (221) and a processing liquid recovery pipe (222) extending from the bottom of the processing liquid storage tank (21), respectively. And a liquid feed pump (23) interposed in the processing liquid supply pipe (221). First and second on-off valves (241, 242) are provided at the distal ends of the processing liquid supply pipe (221) and the processing liquid recovery pipe (222), respectively.
  • this oxide film forming apparatus (20) is used, and first, the first and second on-off valves (241, 242) of the processing liquid supply pipe (221) and the processing liquid recovery pipe (222) are closed. Then, a chloride ion-containing aqueous solution (L2) is charged into the treatment liquid storage tank (21) as a treatment liquid, and the inner surface deposits in the pretreatment process are attached to the ends of the treatment liquid supply pipe (221) and the treatment liquid recovery pipe (222). One end and the other end of the copper pipe (11) from which (30) has been removed are connected to each other. Then, by opening the first and second on-off valves (241, 242) and operating the liquid feeding pump (23), as shown in FIG.
  • the processing liquid storage tank (21) is passed through the processing liquid supply pipe (221). Inject the chloride ion-containing aqueous solution (L2) into the copper tube (11) and discharge the chloride ion-containing aqueous solution (L2) from the copper tube (11) through the treatment liquid recovery tube (222).
  • a copper oxide film (12) serving as a protective film for inhibiting corrosion is formed on the entire inner surface of the copper pipe (11).
  • the copper oxide film (12) is a copper (I) oxide (Cu 2 O) film.
  • the method of manufacturing the water pipe (10) according to the first embodiment, a simple operation of injecting and filling the chloride ion-containing aqueous solution (L2) into the copper pipe (11) constituting the water pipe (10).
  • the copper oxide film (12) serving as a protective film for inhibiting corrosion can be formed on the inner surface of the copper pipe (11).
  • the copper oxide film (12) formed on the inner surface of the copper tube (11) has a higher uniformity and stability than the naturally formed copper oxide.
  • the chloride ion-containing aqueous solution (L2) that is in contact with the inner surface of the copper tube (11) is always present.
  • the copper oxide film (12) having high uniformity and stability can be formed on the inner surface of the copper tube (11). Furthermore, since the chloride ion-containing aqueous solution (L2) is injected and filled into the copper tube (11), the outer surface of the copper tube (11) can be prevented from being attacked by the chloride ion-containing aqueous solution (L2). .
  • the formation mechanism of this copper oxide film (12) is not clear, but the chloride ions in the chloride ion-containing aqueous solution (L2) elute copper present on the inner surface of the copper tube (11) as copper ions. It reacts with the dissolved oxygen in the aqueous solution containing chloride ions (L2) on or near the inner surface of the copper tube (11) to form copper oxide, which adheres to the inner surface of the copper tube (11). Presumed to be deposited.
  • examples of the chloride ion-containing aqueous solution (L2) include a sodium chloride aqueous solution, a potassium chloride aqueous solution, and a calcium chloride aqueous solution.
  • the chloride ion-containing aqueous solution (L2) is preferably one or a mixture of two or more of these.
  • the chloride ion-containing aqueous solution (L2) preferably contains a sodium chloride aqueous solution of these, more preferably contains a sodium chloride aqueous solution as a main component. More preferably, it is composed only of an aqueous solution.
  • an aqueous solution containing chloride ions containing chloride ions
  • the content of chloride ions in (L2) is preferably 50 mg / L or more and 300 mg / L or less.
  • the pH of the chloride ion-containing aqueous solution (L2) is 5.8 or more and 8.6. The following is preferable.
  • the pH of the chloride ion-containing aqueous solution (L2) can be adjusted by dilution with distilled water or the like.
  • the treatment liquid storage tank (21) is opened upward, and the chloride ion-containing aqueous solution (L2) in the treatment liquid storage tank (21) is opened to the atmosphere.
  • oxygen in the air can be dissolved in the aqueous solution containing chloride ions (L2) before being injected into the copper tube (11), and the aqueous solution containing chloride ions with a high concentration of dissolved oxygen Since (L2) is circulated through the copper pipe (11), the copper oxide film (12) can be reliably formed on the inner surface of the copper pipe (11).
  • the chloride ion-containing aqueous solution (L2) since the chloride ion-containing aqueous solution (L2) is circulated, the chloride ion-containing aqueous solution (L2) is spread throughout the copper tube (11), and the inner surface of the copper tube (11) is more uniform and stable. A copper oxide film (12) can be formed.
  • dissolved oxygen in the chloride ion-containing aqueous solution (L2) is consumed by oxidation of copper, there is a concern that the dissolved oxygen concentration of the circulating chloride ion-containing aqueous solution (L2) may decrease over time. .
  • the treatment liquid storage tank (21) is opened upward and the chloride ion-containing aqueous solution (L2) in the treatment liquid storage tank (21) is open to the atmosphere, dissolved oxygen is consumed. Even if the chloride ion-containing aqueous solution (L2) whose dissolved oxygen concentration has decreased returns to the treatment liquid storage tank (21), oxygen in the air is transferred to the copper pipe (11) at the gas-liquid interface in the treatment liquid storage tank (21). Since it can be dissolved in the chloride ion-containing aqueous solution (L2) before injection, the dissolved oxygen concentration of the chloride ion-containing aqueous solution (L2) is increased to suppress a decrease in the ability to form the copper oxide film (12). be able to.
  • the dissolved oxygen concentration in the chloride ion-containing aqueous solution (L2) injected into the copper tube (11) is 5 mg / L.
  • the above is preferable.
  • the dissolved oxygen concentration in the chloride ion-containing aqueous solution (L2) is measured based on the Winkler method, the Winkler sodium azide modified method, the Miller modified method, or the diaphragm electrode method described in JISK0101: 1998 It is.
  • the chloride ion-containing aqueous solution (L2) is externally affected. It is preferable to promote the dissolution of oxygen.
  • the following first to third modifications can be mentioned.
  • FIG. 4A shows an oxide film forming apparatus (20) of a first modification.
  • an air supply pipe (252) with an intake pump (251) interposed is connected to the bottom of the processing liquid storage tank (21).
  • the liquid feed pump (23) is operated to circulate the chloride ion-containing aqueous solution (L2) and the intake pump (251) is operated,
  • the treatment liquid storage tank (21) air supplied from the air supply pipe (252) is bubbled into the aqueous solution containing chloride ions (L2) before being injected into the copper pipe (11), thereby chlorinating oxygen in the air. It can be efficiently dissolved in the aqueous solution containing ionic ions (L2).
  • FIG. 4B shows an oxide film forming apparatus (20) of the second modification.
  • an oxygen supply pipe (262) having an on-off valve (261) is extended from an oxygen cylinder (263) to the bottom of the treatment liquid storage tank (21). It is connected.
  • the oxide film forming apparatus (20) of the second modification if the liquid feed pump (23) is operated to circulate the chloride ion-containing aqueous solution (L2) and open the on-off valve (261), the treatment liquid In the storage tank (21), oxygen supplied from the oxygen supply pipe (262) is bubbled into the aqueous solution containing chloride ions (L2) before being injected into the copper pipe (11), whereby oxygen is contained in the aqueous solution containing chloride ions ( L2) can be dissolved efficiently.
  • FIG. 4C shows an oxide film forming apparatus (20) of a third modification.
  • a stirrer (27) is attached to the treatment liquid storage tank (21).
  • the liquid feed pump (23) is operated to circulate the chloride ion-containing aqueous solution (L2) and the stirrer (27) is operated,
  • the chloride ion-containing aqueous solution (L2) before being injected into the copper pipe (11) is stirred by the stirring blade (27a) to expand the gas-liquid interface, thereby chlorinating oxygen in the air. It can be efficiently dissolved in the aqueous solution containing ionic ions (L2).
  • the chloride ion-containing aqueous solution (L2) is continuously circulated through the copper pipe (11) by circulating the chloride ion-containing aqueous solution (L2).
  • chloride ion-containing aqueous solution (L2) is preferably 0.5 m / s or less. This flow rate is calculated by dividing the flow rate per unit time of the chloride ion-containing aqueous solution (L2) by the flow path cross-sectional area of the copper pipe (11) (the same applies hereinafter).
  • the time for forming the oxide film, that is, the copper pipe is preferably 1.0 hour or more and 5.0 hours or less.
  • the oxide film forming temperature that is, the temperature of the chloride ion-containing aqueous solution (L2) is preferably normal temperature (for example, 20 ° C. or more and 35 ° C. or less).
  • the completion of the formation of the copper oxide film (12) on the inner surface of the copper tube (11) is monitored by monitoring the dissolved oxygen concentration of the chloride ion-containing aqueous solution (L2) over time. It may be detected by defining that the value is equal to or less than a predetermined value. In this way, if the completion of the formation of the copper oxide film (12) is detected by monitoring the dissolved oxygen concentration, the formation of the oxide film can be confirmed, and in addition, the suitability of the processing work time by omitting the excess treatment Can be achieved.
  • the copper oxide film (12) formed on the inner surface functions as a protective film, so that corrosion can be suppressed.
  • the manufacturing method of the water pipe (10) according to the second embodiment includes a pretreatment process and an oxide film forming process as in the first embodiment.
  • the pretreatment process is the same as that of the first embodiment, the oxide film forming process of the second embodiment will be described below.
  • FIG. 5 shows an oxide film forming apparatus (20) used in the oxide film forming step in the second embodiment.
  • the part of the same name as Embodiment 1 is shown with the same code
  • FIG. 5 shows an oxide film forming apparatus (20) used in the oxide film forming step in the second embodiment.
  • the part of the same name as Embodiment 1 is shown with the same code
  • FIG. 5 shows an oxide film forming apparatus (20) used in the oxide film forming step in the second embodiment.
  • the part of the same name as Embodiment 1 is shown with the same code
  • the oxide film forming apparatus (20) includes a processing liquid storage tank (21) opened upward, a recovery processing liquid storage tank (21) opened below the processing liquid storage tank (21), and a processing liquid storage tank.
  • a processing liquid supply pipe (221) extending from the bottom of (21) and a processing liquid recovery pipe (222) extending to the top of the recovery processing liquid storage tank (21) are provided.
  • a first on-off valve (241) is interposed in the processing liquid supply pipe (221). Since this oxide film forming apparatus (20) does not have the liquid feeding pump (23) used in the first embodiment, the apparatus cost can be kept low.
  • this oxide film forming apparatus (20) is used. First, in a state where the first on-off valve (241) of the process liquid supply pipe (221) is closed, the process liquid storage tank (21). A copper ion solution containing a chloride ion-containing aqueous solution (L2) as a treatment liquid and having the inner surface deposit (30) removed in the pretreatment process at the ends of the treatment liquid supply pipe (221) and the treatment liquid recovery pipe (222). One end and the other end of the pipe (11) are connected to each other. At this time, the copper pipe (11) is positioned below the treatment liquid storage tank (21), and one end of the copper pipe (11) is positioned below the other end.
  • L2 chloride ion-containing aqueous solution
  • the first on-off valve (241) is opened, and the copper pipe (11) from the processing liquid storage tank (21) through the processing liquid supply pipe (221) due to the head difference between the processing liquid storage tank (21) and the copper pipe (11). ) Is filled with a chloride ion-containing aqueous solution (L2), and the first on-off valve (241) is closed. Subsequently, the copper pipe (11) into which the chloride ion-containing aqueous solution (L2) has been injected is left in that state for a predetermined time. At this time, a copper oxide film (12) serving as a protective film for inhibiting corrosion is formed on the entire inner surface of the copper tube (11).
  • the first on-off valve (241) is opened to discharge the chloride ion-containing aqueous solution (L2) from the copper pipe (11) and the treatment liquid via the treatment liquid recovery pipe (222). Collect in the collection tank (28).
  • the method for manufacturing a water pipe (10) according to the second embodiment, a simple operation of injecting and filling a chloride ion-containing aqueous solution (L2) into a copper pipe (11) constituting the water pipe (10).
  • the copper oxide film (12) serving as a protective film for inhibiting corrosion can be formed on the inner surface of the copper pipe (11).
  • the copper oxide film (12) formed on the inner surface of the copper tube (11) has a higher uniformity and stability than the naturally formed copper oxide.
  • the outer surface of the copper tube (11) can be prevented from being attacked by the chloride ion-containing aqueous solution (L2). .
  • this copper tube (11) Injection of chloride ion-containing aqueous solution (L2) into the copper tube (11), injecting chloride ion-containing aqueous solution (L2), and chloride ion-containing aqueous solution (L2) from copper tube (11) It is preferable to repeat the operation of sequentially performing the discharge a plurality of times.
  • the treatment solution storage tank (21) is charged with a chloride ion-containing aqueous solution (L2) for each treatment once per operation, and the chloride ion-containing aqueous solution (L2) is removed from the copper tube (11).
  • the chloride ion-containing aqueous solution (L2) newly charged in the treatment liquid storage tank (21) may be poured into the copper pipe (11).
  • a new chloride ion-containing aqueous solution (L2) Is preferably used.
  • the treatment solution storage tank (21) is charged with the aqueous solution (L2) containing a plurality of treatments, and the chloride ion containing aqueous solution (L2) is discharged from the copper tube (11).
  • the chloride ion-containing aqueous solution (L2) initially charged in the treatment liquid storage tank (21) may be poured into the copper pipe (11). From the viewpoint of reliably forming a defect-free copper oxide film (12) on the inner surface of the copper tube (11) while suppressing dissolution of the inner surface of the copper tube (11) by chloride ions, the number of repetitions of this operation is 3 More than 5 times is preferable.
  • the oxide film formation time that is, The standing time of the copper tube (11) into which the chloride ion-containing aqueous solution (L2) is injected is preferably 1.0 hour or more and 5.0 hours or less.
  • this standing time means total standing time.
  • the method for manufacturing the water pipe (10) according to the third embodiment also includes a pretreatment process and an oxide film forming process, as in the first embodiment.
  • the pretreatment process is the same as that of the first embodiment, and therefore, the oxide film forming process of the third embodiment will be described below.
  • the oxide film formation apparatus (20) used at the oxide film formation process in Embodiment 3 is the same structure as what was used in Embodiment 2, description is given using FIG.
  • the oxide film forming apparatus (20) shown in FIG. 5 is used.
  • the first open / close valve (241) of the process liquid supply pipe (221) is closed, and the treatment liquid storage tank is used.
  • (21) is charged with a chloride ion-containing aqueous solution (L2) as the treatment liquid, and the surface deposit (30) on the inner surface in the pretreatment step is attached to the ends of the treatment liquid supply pipe (221) and the treatment liquid recovery pipe (222).
  • One end and the other end of the removed copper pipe (11) are respectively connected.
  • the copper pipe (11) is positioned below the treatment liquid storage tank (21), and one end of the copper pipe (11) is positioned below the other end.
  • the first on-off valve (241) is opened, and the copper pipe (11) from the processing liquid storage tank (21) through the processing liquid supply pipe (221) due to the head difference between the processing liquid storage tank (21) and the copper pipe (11).
  • Collect in (28) That is, the chloride ion-containing aqueous solution (L2) is continuously circulated in one pass from one end of the copper pipe (11) to the other end.
  • a copper oxide film (12) serving as a protective film for inhibiting corrosion is formed on the entire inner surface of the copper tube (11).
  • the chloride ion-containing aqueous solution (L2) is continuously circulated through the copper pipe (11).
  • the flow rate of the chloride ion-containing aqueous solution (L2) is 0.5 m / s or less. Is preferred.
  • the repair method for the water pipe (10) according to the fourth embodiment is different from that for the water pipe (10) in which the inner surface corrosion is progressing and the water pipe (10) in which the progress of the surrounding corrosion is expected in the first embodiment.
  • the method for forming an oxide film on the inner surface of the copper pipe (11) in the method for producing the water pipe (10) according to (3) to (3) is applied. Specifically, the copper oxide film (12) is formed on the inner surface by injecting the copper pipe (11) constituting the water pipe (10) so as to be filled with the chloride ion-containing aqueous solution (L2).
  • the repair method of the water pipe (10) according to the fourth embodiment, a simple operation of injecting and filling the chloride ion-containing aqueous solution (L2) into the copper pipe (11) constituting the water pipe (10).
  • the copper oxide film (12) serving as a protective film for inhibiting corrosion can be formed on the inner surface of the copper pipe (11).
  • the inner surface of the water pipe (10) is somewhat corroded, so that the inner surface of the copper pipe (11) is uniform and stable.
  • the surface deposit (30) on the inner surface of the copper pipe (11) is removed by injecting and filling the acidic aqueous solution (L1) into the copper pipe (11). It is preferable to perform a pretreatment.
  • the oxide film forming apparatus having a simple configuration excellent in portability as used in the first to third embodiments shown in FIGS. It is preferable to use (20).
  • the method for manufacturing and repairing the water pipe (10) has been described.
  • the present invention is not particularly limited to this, and any pipe may be used as long as it is composed of a copper pipe (11). It can be applied to the manufacturing method and repair method.
  • the pretreatment was performed before the copper oxide film (12) was formed.
  • the present invention is not particularly limited to this, as in the case of using a new copper tube (11).
  • the pretreatment may be omitted.
  • the present invention is useful in the technical fields of pipe manufacturing methods and copper pipe inner surface oxide film forming methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Chemically Coating (AREA)

Abstract

銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填することにより銅管(11)の内面に酸化銅皮膜(12)を形成させて配管(10)を製造する。

Description

配管の製造方法及び銅管内面の酸化皮膜形成方法
 本発明は、配管の製造方法及び銅管内面の酸化皮膜形成方法に関する。
 銅の表面を酸化させる技術が知られている。例えば、特許文献1には、銅又は銅合金を含む物品に緑青溶液を塗布して熟成させることにより、その表面に緑青を短時間で形成させることが開示されている。特許文献2には、銅物品を塩化ナトリウムと水酸化ナトリウムとを含有する水溶液に浸漬することにより、その露出表面に均一な黒色酸化表面膜を形成させ、その上にアクリル樹脂膜を電着塗装して耐腐食性を付与することが開示されている。
特表2007-511668号公報 特開平7-268642号公報
 ところで、ヒートポンプ給湯機等で用いられる銅製の水配管に腐食傾向の高い水が継続的に流れると、水配管に腐食による穴が形成されて水漏れが生じる場合がある。このような腐食の抑制手段として、水配管内を流れる水にインヒビタ(防食剤)を含有させることが考えられる。しかしながら、給湯機の場合、ユーザーに供給される水にインヒビタを含有させることはできず、また、水が一過式でユーザーに供給されて使用されるので、インヒビタを使用すること自体がそもそも困難である。
 本発明の課題は、配管を構成する銅管の内面に単純な方法で腐食抑制のための保護皮膜となる酸化銅皮膜を形成させることである。
 本発明は、銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填することにより銅管(11)の内面に酸化銅皮膜(12)を形成させる酸化皮膜形成工程を備えた配管(10)の製造方法である。このような方法によれば、配管(10)を構成する銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填するという簡単な操作により、銅管(11)の内面に腐食抑制のための保護皮膜となる酸化銅皮膜(12)を形成させることができる。
 ここで、入手及び取り扱いが容易であるという観点からは、塩化物イオン含有水溶液(L2)は塩化ナトリウム水溶液を含むことが好ましい。
 酸化皮膜形成工程では、銅管(11)に塩化物イオン含有水溶液(L2)を連続的に流通させてもよい。このようにすれば、銅管(11)の内面に接触する塩化物イオン含有水溶液(L2)が常時入れ替わるので、銅管(11)の内面に均一性及び安定性の高い酸化銅皮膜(12)を形成させることができる。
 酸化皮膜形成工程では、銅管(11)への塩化物イオン含有水溶液(L2)の注入、塩化物イオン含有水溶液(L2)を注入した銅管(11)の静置、及び銅管(11)からの塩化物イオン含有水溶液(L2)の排出を順に実施してもよい。このようにすれば、酸化銅皮膜(12)の形成時に塩化物イオン含有水溶液(L2)が流動しないので、塩化物イオン含有水溶液(L2)の流動により銅管(11)の内面に作用する剪断力が酸化銅皮膜(12)の形成を阻害することがなく、銅管(11)の内面に確実に酸化銅皮膜(12)を形成させることができる。
 本発明は、酸化皮膜形成工程の前に、銅管(11)に酸性水溶液(L1)を注入して充填することにより銅管(11)の内面の表面付着物(30)を除去する前処理工程を更に備えてもよい。このようにすれば、酸化銅皮膜(12)の形成前の銅管(11)の内面が均質化されるので、酸化皮膜形成工程において銅管(11)の内面に均一性及び安定性の高い酸化銅皮膜(12)を形成させることができる。この場合、入手及び取り扱いが容易であるという観点からは、酸性水溶液(L1)は希塩酸を含むことが好ましい。
 酸化皮膜形成工程では、銅管(11)に注入する前の塩化物イオン含有水溶液(L2)に酸素を溶解させてもよい。このようにすれば、溶存酸素濃度の高い塩化物イオン含有水溶液(L2)を銅管(11)に流通させることになるので、銅管(11)の内面に確実に酸化銅皮膜(12)を形成させることができる。
 本発明は、銅管(11)に塩化物イオン含有水溶液(L2)を充填するように注入することにより前記銅管(11)の内面に酸化銅皮膜(12)を形成させる銅管(11)の内面の酸化皮膜形成方法である。このような方法によれば、簡単な操作により、銅管(11)の内面に腐食抑制のための保護皮膜となる酸化銅皮膜(12)を形成させることができる。
実施形態1における前処理工程の第1の説明図である。 実施形態1における前処理工程の第2の説明図である。 実施形態1における酸化皮膜形成工程で用いる酸化皮膜形成装置の構成を示す図である。 実施形態1における酸化皮膜形成工程の第1の説明図である。 実施形態1における酸化皮膜形成工程の第2の説明図である。 実施形態1の第1の変形例の酸化皮膜形成装置の構成を示す図である。 実施形態1の第2の変形例の酸化皮膜形成装置の構成を示す図である。 実施形態1の第3の変形例の酸化皮膜形成装置の構成を示す図である。 実施形態2における酸化皮膜形成工程で用いる酸化皮膜形成装置の構成を示す図である。
 以下、実施形態について詳細に説明する。
 (実施形態1)
 実施形態1に係る水配管(10)の製造方法は、水配管(10)を構成する銅管(11)の内面に酸化銅皮膜(12)を形成させるものであり、単体の銅管(11)の内面に酸化銅皮膜(12)を形成して水配管(10)を製造する場合の他、例えば水熱交換器に組み込まれた銅管(11)の内面に酸化銅皮膜(12)を形成して水配管(10)を製造する場合をも含む。
 ここで、水配管(10)を構成する銅管(11)としては、JIS H3300:2012に記載されたものが挙げられる。銅管(11)は、純度が99.9%以上の銅で形成されていてもよく、また、銅の含有量が50質量%を超える銅合金で形成されていてもよい。水配管(10)用の銅管(11)に用いられる銅合金としては、典型的には、合金番号:C1220、記号:C1220T、質別:O、1/2H、又はHのりん脱酸銅が挙げられる。
 実施形態1に係る水配管(10)の製造方法は、前処理工程と酸化皮膜形成工程とを備える。
 <前処理工程>
 前処理工程では、図1Aに示すように、銅管(11)に酸性水溶液(L1)を注入して充填することにより、図1Bに示すように、銅管(11)の内面の表面付着物(30)を除去する。このように酸性水溶液(L1)により銅管(11)の内面の表面付着物(30)を除去する前処理を行うことにより、酸化銅皮膜(12)の形成前の銅管(11)の内面が均質化されるので、次の酸化皮膜形成工程において銅管(11)の内面に形成される酸化銅皮膜(12)の均一性及び安定性を高めることができる。
 酸性水溶液(L1)としては、例えば、希塩酸、希硫酸等が挙げられる。入手及び取り扱いが容易であるという観点からは、酸性水溶液(L1)は、これらのうちの希塩酸を含むことが好ましく、希塩酸を主成分として含むことがより好ましく、希塩酸のみで構成されることが更に好ましい。酸性水溶液(L1)は銅管(11)の内面を溶解させるが、その溶解を抑制しつつ効果的に表面付着物(30)を除去する観点からは、酸性水溶液(L1)のpHは1.5以上3.0以下であることが好ましい。水溶液のpHは、JISZ8802:2011に基づいて測定されるものである(以下、同様)。
 この前処理は、銅管(11)の一端から他端に酸性水溶液(L1)を連続的に流通させる操作で行ってもよい。その場合、銅管(11)に酸性水溶液(L1)を循環させてもよく、また、銅管(11)に酸性水溶液(L1)をワンパスで流通させてもよい。
 この前処理は、銅管(11)への酸性水溶液(L1)の注入、酸性水溶液(L1)を注入した銅管(11)の保持、及び銅管(11)からの酸性水溶液(L1)の排出を順に実施してもよい。その場合、注入、保持、及び排出を順に実施する操作を複数回繰り返してもよい。その際、表面付着物(30)の除去効果を高める観点からは、同じ酸性水溶液(L1)を繰り返し用いるよりも、新しい酸性水溶液(L1)を用いることが好ましい。酸性水溶液(L1)を注入した銅管(11)の保持の際には、銅管(11)を静置してもよく、また、銅管(11)に振動等の運動を与えてもよい。
 酸性水溶液(L1)による銅管(11)の内面の溶解を抑制しつつ効果的に表面付着物(30)を除去する観点からは、前処理時間、つまり、酸性水溶液(L1)の銅管(11)の内面への接触時間は0.5時間以上3.0時間以下が好ましい。同様の観点から、前処理温度、つまり、酸性水溶液(L1)の温度は常温(例えば20℃以上35℃以下)であることが好ましい。
 除去対象の表面付着物(30)としては、例えば、銅管(11)が空気中の酸素と反応して形成された酸化銅等が挙げられる。
 この前処理の後には、銅管(11)に水を注入して洗浄することが好ましい。
 <酸化皮膜形成工程>
 図2は、実施形態1における酸化皮膜形成工程で用いる酸化皮膜形成装置(20)を示す。
 この酸化皮膜形成装置(20)は、上方に開口した処理液貯槽(21)と、各々、処理液貯槽(21)の底部から延びた処理液供給管(221)及び処理液回収管(222)と、処理液供給管(221)に介設された送液ポンプ(23)とを有する。処理液供給管(221)及び処理液回収管(222)の先端部にはそれぞれ第1及び第2開閉弁(241,242)が設けられている。
 酸化皮膜形成工程では、この酸化皮膜形成装置(20)を用い、まず、処理液供給管(221)及び処理液回収管(222)の第1及び第2開閉弁(241,242)を閉じた状態で、処理液貯槽(21)に処理液として塩化物イオン含有水溶液(L2)を仕込み、処理液供給管(221)及び処理液回収管(222)の端に、前処理工程で内面の表面付着物(30)を除去した銅管(11)の一端及び他端をそれぞれ接続する。そして、第1及び第2開閉弁(241,242)を開いて送液ポンプ(23)を稼働させることにより、図3Aに示すように、処理液貯槽(21)から処理液供給管(221)を介して銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填すると共に、銅管(11)から塩化物イオン含有水溶液(L2)を排出して処理液回収管(222)を介して処理液貯槽(21)に回収する。つまり、塩化物イオン含有水溶液(L2)を循環させることにより銅管(11)の一端から他端に塩化物イオン含有水溶液(L2)を連続的に流通させる。このとき、図3Bに示すように、銅管(11)の内面の全面に腐食抑制のための保護皮膜となる酸化銅皮膜(12)が形成される。なお、この酸化銅皮膜(12)は酸化銅(I)(CuO)の皮膜である。
 この実施形態1に係る水配管(10)の製造方法によれば、水配管(10)を構成する銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填するという簡単な操作により、銅管(11)の内面に腐食抑制のための保護皮膜となる酸化銅皮膜(12)を形成させることができる。このようにして銅管(11)の内面に形成される酸化銅皮膜(12)は、自然形成される酸化銅と比較して均一性及び安定性の高いものとなる。また、銅管(11)の一端から他端に塩化物イオン含有水溶液(L2)を連続的に流通させることにより、銅管(11)の内面が接触する塩化物イオン含有水溶液(L2)が常時入れ替わるので、銅管(11)の内面により均一性及び安定性の高い酸化銅皮膜(12)を形成させることができる。更に、銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填するので、銅管(11)の外面が塩化物イオン含有水溶液(L2)に侵されるのを防止することができる。なお、この酸化銅皮膜(12)の形成メカニズムについては明確ではないが、塩化物イオン含有水溶液(L2)中の塩化物イオンが銅管(11)の内面に存在する銅を銅イオンとして溶出させ、それが銅管(11)の内面上乃至内面近傍において塩化物イオン含有水溶液(L2)中の溶存酸素と反応して酸化銅を形成し、それが銅管(11)の内面に付着して堆積するものであると推測される。
 ここで、塩化物イオン含有水溶液(L2)としては、例えば、塩化ナトリウム水溶液、塩化カリウム水溶液、塩化カルシウム水溶液等が挙げられる。塩化物イオン含有水溶液(L2)は、これらのうちの1種又は2種以上の混合液が好ましい。入手及び取り扱いが容易であるという観点からは、塩化物イオン含有水溶液(L2)は、これらのうちの塩化ナトリウム水溶液を含むことが好ましく、塩化ナトリウム水溶液を主成分として含むことがより好ましく、塩化ナトリウム水溶液のみで構成されることが更に好ましい。
 塩化物イオンは銅管(11)の内面を溶解させるが、その溶解を抑制しつつ銅管(11)の内面に確実に酸化銅皮膜(12)を形成させる観点からは、塩化物イオン含有水溶液(L2)における塩化物イオンの含有量は50mg/L以上300mg/L以下であることが好ましい。また、酸やアルカリにより阻害されることなく銅管(11)の内面に酸化銅皮膜(12)を形成させる観点からは、塩化物イオン含有水溶液(L2)のpHは5.8以上8.6以下であることが好ましい。なお、塩化物イオン含有水溶液(L2)のpH調整は、蒸留水による希釈等によって行うことができる。
 実施形態1に係る水配管(10)の製造方法では、処理液貯槽(21)が上方に開口して処理液貯槽(21)内の塩化物イオン含有水溶液(L2)が大気開放状態とされており、その気液界面で空気中の酸素を銅管(11)に注入する前の塩化物イオン含有水溶液(L2)に溶解させることができ、そして、その溶存酸素濃度の高い塩化物イオン含有水溶液(L2)を銅管(11)に流通させることになるので、銅管(11)の内面に確実に酸化銅皮膜(12)を形成させることができる。また、塩化物イオン含有水溶液(L2)を循環させるので、銅管(11)の内部全体に塩化物イオン含有水溶液(L2)が行き渡り、銅管(11)の内面により均一性及び安定性の高い酸化銅皮膜(12)を形成させることができる。その一方、塩化物イオン含有水溶液(L2)中の溶存酸素が銅の酸化で消費されるので、循環する塩化物イオン含有水溶液(L2)の溶存酸素濃度が経時的に低下することが懸念される。しかしながら、上記の通り、処理液貯槽(21)が上方に開口して処理液貯槽(21)内の塩化物イオン含有水溶液(L2)が大気開放状態とされているため、溶存酸素が消費されて溶存酸素濃度が低下した塩化物イオン含有水溶液(L2)が処理液貯槽(21)に戻っても、処理液貯槽(21)において、その気液界面で空気中の酸素を銅管(11)に注入する前の塩化物イオン含有水溶液(L2)に溶解させることができるので、塩化物イオン含有水溶液(L2)の溶存酸素濃度が高められて酸化銅皮膜(12)の形成能力の低下を抑制することができる。なお、銅管(11)の内面に確実に酸化銅皮膜(12)を形成させる観点からは、銅管(11)に注入する塩化物イオン含有水溶液(L2)中の溶存酸素濃度は5mg/L以上であることが好ましい。塩化物イオン含有水溶液(L2)中の溶存酸素濃度は、JISK0101:1998に記載されたウインクラー法、ウインクラー・アジ化ナトリウム変法、ミラー変法、又は隔膜電極法に基づいて測定されるものである。
 塩化物イオン含有水溶液(L2)の酸化銅皮膜(12)の形成能力の低下を抑制する観点からは、処理液貯槽(21)内において、外的作用により塩化物イオン含有水溶液(L2)への酸素の溶解を促進させることが好ましい。例えば、次の第1乃至第3の変形例が挙げられる。
 図4Aは、第1の変形例の酸化皮膜形成装置(20)を示す。この第1の変形例の酸化皮膜形成装置(20)では、吸気ポンプ(251)が介設された空気供給管(252)が処理液貯槽(21)の底部に接続されている。第1の変形例の酸化皮膜形成装置(20)によれば、送液ポンプ(23)を稼働させて塩化物イオン含有水溶液(L2)を循環させると共に吸気ポンプ(251)を稼働させれば、処理液貯槽(21)において、空気供給管(252)から供給される空気が銅管(11)に注入する前の塩化物イオン含有水溶液(L2)にバブリングされ、それにより空気中の酸素を塩化物イオン含有水溶液(L2)に効率的に溶解させることができる。
 図4Bは、第2の変形例の酸化皮膜形成装置(20)を示す。この第2の変形例の酸化皮膜形成装置(20)では、開閉弁(261)が介設された酸素供給管(262)が酸素ボンベ(263)から延びて処理液貯槽(21)の底部に接続されている。第2の変形例の酸化皮膜形成装置(20)によれば、送液ポンプ(23)を稼働させて塩化物イオン含有水溶液(L2)を循環させると共に開閉弁(261)を開けば、処理液貯槽(21)において、酸素供給管(262)から供給される酸素が銅管(11)に注入する前の塩化物イオン含有水溶液(L2)にバブリングされ、それにより酸素を塩化物イオン含有水溶液(L2)に効率的に溶解させることができる。
 図4Cは、第3の変形例の酸化皮膜形成装置(20)を示す。この第3の変形例の酸化皮膜形成装置(20)では、処理液貯槽(21)に攪拌機(27)が付設されている。第3の変形例の酸化皮膜形成装置(20)によれば、送液ポンプ(23)を稼働させて塩化物イオン含有水溶液(L2)を循環させると共に攪拌機(27)を稼働させれば、処理液貯槽(21)において、銅管(11)に注入する前の塩化物イオン含有水溶液(L2)が撹拌翼(27a)により撹拌されて気液界面が拡大し、それにより空気中の酸素を塩化物イオン含有水溶液(L2)に効率的に溶解させることができる。
 実施形態1に係る水配管(10)の製造方法では、塩化物イオン含有水溶液(L2)を循環させることにより銅管(11)に塩化物イオン含有水溶液(L2)を連続的に流通させる。このとき、流動する塩化物イオン含有水溶液(L2)により銅管(11)の内面に作用する剪断力が酸化銅皮膜(12)の形成を阻害するのを抑制する観点からは、塩化物イオン含有水溶液(L2)の流速は0.5m/s以下であることが好ましい。なお、この流速は、塩化物イオン含有水溶液(L2)の単位時間当たりの流量を銅管(11)の流路断面積で除すことにより算出される(以下、同様)。
 塩化物イオンによる銅管(11)の内面の溶解を抑制しつつ銅管(11)の内面に酸化銅皮膜(12)を確実に形成させる観点からは、酸化皮膜形成時間、つまり、銅管(11)の内面への塩化物イオン含有水溶液(L2)の接触時間は1.0時間以上5.0時間以下が好ましい。同様の観点から、酸化皮膜形成温度、つまり、塩化物イオン含有水溶液(L2)の温度は常温(例えば20℃以上35℃以下)であることが好ましい。
 銅管(11)の内面の酸化銅皮膜(12)の形成完了は、塩化物イオン含有水溶液(L2)の溶存酸素濃度を経時的にモニタし、その変化が無くなったとき、或いは、その変化が所定値以下となったときと定義して検知してもよい。このように溶存酸素濃度のモニタにより酸化銅皮膜(12)の形成完了を検知すれば、酸化皮膜の形成確認を行うことができるのに加えて、過剰処理を省略することによる処理作業時間の適性化を図ることができる。
 この酸化皮膜形成工程後には、製造された水配管(10)に水を注入して洗浄することが好ましい。
 以上のようにして製造された水配管(10)には、例えば、遊離炭酸イオン濃度、塩化物イオン濃度、硫酸イオン濃度、電気伝導率等が高い水、或いは、pHの低い水といった腐食傾向が高い水が継続的に流れても、内面に形成された酸化銅皮膜(12)が保護皮膜として機能するので、その腐食を抑制することができる。
 (実施形態2)
 実施形態2に係る水配管(10)の製造方法は、実施形態1と同様、前処理工程と酸化皮膜形成工程とを備える。これらのうち前処理工程は実施形態1と同一であるので、以下では実施形態2の酸化皮膜形成工程について説明する。
 図5は、実施形態2における酸化皮膜形成工程で用いる酸化皮膜形成装置(20)を示す。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
 この酸化皮膜形成装置(20)は、上方に開口した処理液貯槽(21)と、処理液貯槽(21)の下方に設けられた上方に開口した回収処理液貯槽(21)と、処理液貯槽(21)の底部から延びた処理液供給管(221)と、回収処理液貯槽(21)の上部に延びた処理液回収管(222)とを有する。処理液供給管(221)には第1開閉弁(241)が介設されている。この酸化皮膜形成装置(20)では、実施形態1で用いたもののような送液ポンプ(23)を有さないので、装置コストを低く抑えることができる。
 実施形態2の酸化皮膜形成工程では、この酸化皮膜形成装置(20)を用い、まず、処理液供給管(221)の第1開閉弁(241)を閉じた状態で、処理液貯槽(21)に処理液として塩化物イオン含有水溶液(L2)を仕込み、処理液供給管(221)及び処理液回収管(222)の端に、前処理工程で内面の表面付着物(30)を除去した銅管(11)の一端及び他端をそれぞれ接続する。このとき、銅管(11)は処理液貯槽(21)の下方に位置付けられ、且つ銅管(11)の一端が他端の下方に位置付けられる。次いで、第1開閉弁(241)を開き、処理液貯槽(21)及び銅管(11)のヘッド差により、処理液貯槽(21)から処理液供給管(221)を介して銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填し、第1開閉弁(241)を閉じる。続いて、塩化物イオン含有水溶液(L2)を注入した銅管(11)をその状態で所定時間静置する。このとき、銅管(11)の内面の全面に腐食抑制のための保護皮膜となる酸化銅皮膜(12)が形成される。そして、所定時間の経過後、第1開閉弁(241)を開くことにより、銅管(11)から塩化物イオン含有水溶液(L2)を排出して処理液回収管(222)を介して処理液回収槽(28)に回収する。
 この実施形態2に係る水配管(10)の製造方法によれば、水配管(10)を構成する銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填するという簡単な操作により、銅管(11)の内面に腐食抑制のための保護皮膜となる酸化銅皮膜(12)を形成させることができる。このようにして銅管(11)の内面に形成される酸化銅皮膜(12)は、自然形成される酸化銅と比較して均一性及び安定性の高いものとなる。また、銅管(11)への塩化物イオン含有水溶液(L2)の注入、塩化物イオン含有水溶液(L2)を注入した銅管(11)の静置、及び銅管(11)からの塩化物イオン含有水溶液(L2)の排出を順に実施し、酸化銅皮膜(12)の形成時に塩化物イオン含有水溶液(L2)が流動しないので、塩化物イオン含有水溶液(L2)の流動による銅管(11)の内面に作用する剪断力が酸化銅皮膜(12)の形成を阻害することがなく、銅管(11)の内面に確実に酸化銅皮膜(12)を形成させることができる。更に、銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填するので、銅管(11)の外面が塩化物イオン含有水溶液(L2)に侵されるのを防止することができる。
 ここで、塩化物イオン含有水溶液(L2)中の溶存酸素濃度の低下を補い、銅管(11)の内面に酸化銅皮膜(12)を確実に形成させる観点からは、この銅管(11)への塩化物イオン含有水溶液(L2)の注入、塩化物イオン含有水溶液(L2)を注入した銅管(11)の静置、及び銅管(11)からの塩化物イオン含有水溶液(L2)の排出を順に実施する操作を複数回繰り返すことが好ましい。その場合、第1の方法として、処理液貯槽(21)に操作毎に1回処理分の塩化物イオン含有水溶液(L2)を仕込み、銅管(11)から塩化物イオン含有水溶液(L2)を一旦排出した後、処理液貯槽(21)に新たに仕込んだ塩化物イオン含有水溶液(L2)を銅管(11)に注入してもよい。その際、銅管(11)の内面に酸化銅皮膜(12)を確実に形成させる観点からは、同じ塩化物イオン含有水溶液(L2)を繰り返し用いるよりも、新しい塩化物イオン含有水溶液(L2)を用いることが好ましい。また、第2の方法として、処理液貯槽(21)に複数回処理分の塩化物イオン含有水溶液(L2)を仕込み、銅管(11)から塩化物イオン含有水溶液(L2)を排出すると同時に、処理液貯槽(21)に最初に仕込んでいた塩化物イオン含有水溶液(L2)を銅管(11)に注入してもよい。塩化物イオンによる銅管(11)の内面の溶解を抑制しつつ銅管(11)の内面に欠陥のない酸化銅皮膜(12)を確実に形成させる観点からは、この操作の繰り返し回数は3回以上5回以下が好ましい。
 塩化物イオンによる銅管(11)の内面の溶解を抑制しつつ銅管(11)の内面に欠陥のない酸化銅皮膜(12)を確実に形成させる観点からは、酸化皮膜形成時間、つまり、塩化物イオン含有水溶液(L2)を注入した銅管(11)の静置時間は1.0時間以上5.0時間以下が好ましい。なお、注入、静置、及び排出を実施する操作を繰り返す場合、この静置時間は総静置時間を意味する。
 その他の構成及び作用効果は実施形態1と同一である。
 (実施形態3)
 実施形態3に係る水配管(10)の製造方法も、実施形態1と同様、前処理工程と酸化皮膜形成工程とを備える。これらのうち前処理工程は実施形態1と同一であるので、以下では実施形態3の酸化皮膜形成工程について説明する。なお、実施形態3における酸化皮膜形成工程で用いる酸化皮膜形成装置(20)は、実施形態2で用いたものと同一構成であるので、説明は図5を用いて行う。
 実施形態3の酸化皮膜形成工程では、図5に示す酸化皮膜形成装置(20)を用い、まず、処理液供給管(221)の第1開閉弁(241)を閉じた状態で、処理液貯槽(21)に処理液として塩化物イオン含有水溶液(L2)を仕込み、処理液供給管(221)及び処理液回収管(222)の端に、前処理工程で内面の表面付着物(30)を除去した銅管(11)の一端及び他端をそれぞれ接続する。このとき、銅管(11)は処理液貯槽(21)の下方に位置付けられ、且つ銅管(11)の一端が他端の下方に位置付けられる。そして、第1開閉弁(241)を開き、処理液貯槽(21)及び銅管(11)のヘッド差により、処理液貯槽(21)から処理液供給管(221)を介して銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填すると共に、銅管(11)から塩化物イオン含有水溶液(L2)を排出して処理液回収管(222)を介して処理液回収槽(28)に回収する。つまり、銅管(11)の一端から他端に塩化物イオン含有水溶液(L2)を連続的にワンパスで流通させる。このとき、銅管(11)の内面の全面に腐食抑制のための保護皮膜となる酸化銅皮膜(12)が形成される。
 実施形態3に係る水配管(10)の製造方法では、銅管(11)に塩化物イオン含有水溶液(L2)を連続的に流通させるが、流動する塩化物イオン含有水溶液(L2)により銅管(11)の内面に作用する剪断力が酸化銅皮膜(12)の形成を阻害するのを抑制する観点からは、塩化物イオン含有水溶液(L2)の流速は0.5m/s以下であることが好ましい。
 その他の構成及び作用効果は実施形態1と同一である。
 (実施形態4)
 実施形態4に係る水配管(10)の補修方法は、内面の腐食が進行している水配管(10)やその周辺の腐食の進行が予想される水配管(10)に対し、実施形態1~3に係る水配管(10)の製造方法における銅管(11)の内面の酸化皮膜形成方法を適用するものである。具体的には、水配管(10)を構成する銅管(11)に塩化物イオン含有水溶液(L2)を充填するように注入することによりその内面に酸化銅皮膜(12)を形成させる。
 この実施形態4に係る水配管(10)の補修方法によれば、水配管(10)を構成する銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填するという簡単な操作により、銅管(11)の内面に腐食抑制のための保護皮膜となる酸化銅皮膜(12)を形成させることができる。
 実施形態4に係る水配管(10)の補修方法では、水配管(10)の内面が多少腐食している場合が多いことが予想されるので、銅管(11)の内面に均一性及び安定性の高い酸化銅皮膜(12)を形成させる観点から、銅管(11)に酸性水溶液(L1)を注入して充填することにより銅管(11)の内面の表面付着物(30)を除去する前処理を行うことが好ましい。また、給湯機等の設置現場における作業となる場合が多いことが予想されるので、図2及び5に示す実施形態1~3で用いたような携帯性が優れる簡易な構成の酸化皮膜形成装置(20)を用いることが好ましい。
 その他の構成及び作用効果は実施形態1~3と同一である。
 (その他の実施形態)
 上記実施形態1~4では、水配管(10)の製造方法及び補修方法を示したが、特にこれに限定されるものではなく、銅管(11)で構成されるものであれば、いかなる配管の製造方法及び補修方法にも適用することができる。
 上記実施形態1~3では、酸化銅皮膜(12)を形成させる前に前処理を行ったが、特にこれに限定されるものではなく、新しい銅管(11)を使用する場合のように、その内面に表面付着物(30)が認められないときには前処理を省略してもよい。
 以上、実施形態について説明したが、請求の範囲に記載された本発明の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。
 本発明は、配管の製造方法及び銅管内面の酸化皮膜形成方法の技術分野について有用である。
L1 酸性水溶液
L2 塩化物イオン含有水溶液
10 水配管
11 銅管
12 酸化銅皮膜
20 酸化皮膜形成装置
21 処理液貯槽
221 処理液供給管
222 処理液回収管
23 送液ポンプ
241 第1開閉弁
242 第2開閉弁
251 吸気ポンプ
252 空気供給管
261 開閉弁
262 酸素供給管
263 酸素ボンベ
27 攪拌機
27a 撹拌翼
28 処理液回収槽
30 表面付着物

Claims (8)

  1.  銅管(11)に塩化物イオン含有水溶液(L2)を注入して充填することにより前記銅管(11)の内面に酸化銅皮膜(12)を形成させる酸化皮膜形成工程を備えた配管の製造方法。
  2.  請求項1に記載された配管の製造方法において、
     前記酸化皮膜形成工程では、前記銅管(11)に前記塩化物イオン含有水溶液(L2)を連続的に流通させる配管の製造方法。
  3.  請求項1に記載された配管の製造方法において、
     前記酸化皮膜形成工程では、前記銅管(11)への前記塩化物イオン含有水溶液(L2)の注入、前記塩化物イオン含有水溶液(L2)を注入した前記銅管(11)の静置、及び前記銅管(11)からの前記塩化物イオン含有水溶液(L2)の排出を順に実施する配管の製造方法。
  4.  請求項1乃至3のいずれかに記載された配管の製造方法において、
     前記酸化皮膜形成工程の前に、前記銅管(11)に酸性水溶液を注入して充填することにより前記銅管(11)の内面の表面付着物(30)を除去する前処理工程を更に備えた配管の製造方法。
  5.  請求項4に記載された配管の製造方法において、
     前記酸性水溶液が希塩酸を含む配管の製造方法。
  6.  請求項1乃至5のいずれかに記載された配管の製造方法において、
     前記酸化皮膜形成工程では、前記銅管(11)に注入する前の前記塩化物イオン含有水溶液(L2)に酸素を溶解させる配管の製造方法。
  7.  請求項1乃至6のいずれかに記載された配管の製造方法において、
     前記塩化物イオン含有水溶液(L2)が塩化ナトリウム水溶液を含む配管の製造方法。
  8.  銅管(11)に塩化物イオン含有水溶液(L2)を充填するように注入することにより前記銅管(11)の内面に酸化銅皮膜(12)を形成させる銅管内面の酸化皮膜形成方法。
PCT/JP2017/034682 2016-09-30 2017-09-26 配管の製造方法及び銅管内面の酸化皮膜形成方法 WO2018062146A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780059613.4A CN109790623B (zh) 2016-09-30 2017-09-26 管道的制造方法及铜管内表面的氧化膜形成方法
EP17856096.7A EP3508615B1 (en) 2016-09-30 2017-09-26 Method for producing piping and method for forming oxide film on inner surface of copper pipe
US16/332,958 US11377742B2 (en) 2016-09-30 2017-09-26 Method for producing piping and method for forming oxide film on inner surface of copper pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016192885A JP6354814B2 (ja) 2016-09-30 2016-09-30 配管の製造方法及び銅管内面の酸化皮膜形成方法
JP2016-192885 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062146A1 true WO2018062146A1 (ja) 2018-04-05

Family

ID=61760403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034682 WO2018062146A1 (ja) 2016-09-30 2017-09-26 配管の製造方法及び銅管内面の酸化皮膜形成方法

Country Status (5)

Country Link
US (1) US11377742B2 (ja)
EP (1) EP3508615B1 (ja)
JP (1) JP6354814B2 (ja)
CN (1) CN109790623B (ja)
WO (1) WO2018062146A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070479A (ja) * 2018-11-01 2020-05-07 日本製鉄株式会社 筒状金属部品用表面処理装置及び筒状金属部品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12084775B1 (en) * 2020-06-11 2024-09-10 The United States Of America, As Represented By The Secretary Of The Navy Passivation of copper-nickel alloy conduits for marine use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118888A (ja) * 1982-12-27 1984-07-09 Kawasaki Steel Corp ピグ塗装の下地処理方法
JPH07268642A (ja) 1994-03-01 1995-10-17 Carrier Corp 銅物品の耐腐食性保護コーティング方法
JP2002256446A (ja) * 2001-03-06 2002-09-11 Hitachi Ltd 機能性銅基材と伝熱管
JP2002371374A (ja) * 2001-06-15 2002-12-26 Kurita Water Ind Ltd 銅製部材の表面処理方法
JP2003239085A (ja) * 2002-02-18 2003-08-27 Kobe Steel Ltd 無機皮膜被覆銅又は銅合金部材、銅又は銅合金部材表面への無機皮膜形成方法、給湯器用熱交換器及びその製造方法
JP2007511668A (ja) 2003-11-17 2007-05-10 カーエム・オイローパ・メタル・アクチエンゲゼルシヤフト 緑青で銅を覆う方法
JP2009270175A (ja) * 2008-05-09 2009-11-19 National Maritime Research Institute 金属部材の防錆方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200973A (ja) * 1984-03-23 1985-10-11 Hitachi Cable Ltd 耐食性表面処理銅管
JPH0293083A (ja) 1988-09-28 1990-04-03 Mitsubishi Heavy Ind Ltd 銅合金管内面の防食方法
JPH06184673A (ja) * 1992-12-22 1994-07-05 Mitsubishi Materials Corp 給水給湯用耐孔食性銅合金配管
JP4264950B2 (ja) * 2004-05-17 2009-05-20 高橋金属株式会社 水系廃液の蒸発濃縮装置及びこれを利用した水系洗浄装置
JP5260109B2 (ja) 2007-03-31 2013-08-14 株式会社コベルコ マテリアル銅管 銅合金部材及び熱交換器
KR101245749B1 (ko) * 2010-12-02 2013-03-25 삼성중공업 주식회사 산화 피막을 형성하기 위한 장치
JP5978711B2 (ja) * 2012-03-29 2016-08-24 三浦工業株式会社 鉄の腐食抑制方法
EP2927347A1 (en) * 2014-04-01 2015-10-07 Sigma Engineering Ab Oxidation of copper in a copper etching solution by the use of oxygen and/or air as an oxidizing agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118888A (ja) * 1982-12-27 1984-07-09 Kawasaki Steel Corp ピグ塗装の下地処理方法
JPH07268642A (ja) 1994-03-01 1995-10-17 Carrier Corp 銅物品の耐腐食性保護コーティング方法
JP2002256446A (ja) * 2001-03-06 2002-09-11 Hitachi Ltd 機能性銅基材と伝熱管
JP2002371374A (ja) * 2001-06-15 2002-12-26 Kurita Water Ind Ltd 銅製部材の表面処理方法
JP2003239085A (ja) * 2002-02-18 2003-08-27 Kobe Steel Ltd 無機皮膜被覆銅又は銅合金部材、銅又は銅合金部材表面への無機皮膜形成方法、給湯器用熱交換器及びその製造方法
JP2007511668A (ja) 2003-11-17 2007-05-10 カーエム・オイローパ・メタル・アクチエンゲゼルシヤフト 緑青で銅を覆う方法
JP2009270175A (ja) * 2008-05-09 2009-11-19 National Maritime Research Institute 金属部材の防錆方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508615A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070479A (ja) * 2018-11-01 2020-05-07 日本製鉄株式会社 筒状金属部品用表面処理装置及び筒状金属部品の製造方法
JP7172453B2 (ja) 2018-11-01 2022-11-16 日本製鉄株式会社 筒状金属部品用表面処理装置及び筒状金属部品の製造方法

Also Published As

Publication number Publication date
US11377742B2 (en) 2022-07-05
CN109790623B (zh) 2021-04-13
JP6354814B2 (ja) 2018-07-11
EP3508615B1 (en) 2023-12-06
US20190249309A1 (en) 2019-08-15
EP3508615A1 (en) 2019-07-10
EP3508615A4 (en) 2020-04-29
CN109790623A (zh) 2019-05-21
JP2018053333A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
CN103757633B (zh) 一种镁合金镍镀层退镀方法
WO2018062146A1 (ja) 配管の製造方法及び銅管内面の酸化皮膜形成方法
CN103525599A (zh) 锅炉积垢去除剂
DK200801617A (en) Downhole equipment removal system
JP5746758B2 (ja) 電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸アルカリ塩の除去方法及びその装置
TW201625816A (zh) 供銅及銅合金微蝕刻之組合物及方法
JP5651252B2 (ja) 電解用電極の被覆層の剥離方法
US9657600B2 (en) Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
JP6427920B2 (ja) 化学洗浄方法
CN103952687B (zh) 印制线路板化学镀镍的防止渗镀方法
JP5072059B2 (ja) 銅管または銅合金管内面の洗浄方法
JP6522969B2 (ja) 放射性物質の除去方法
CN210085047U (zh) 一种脱除淡盐水中游离氯的装置
CN105220154B (zh) 一种铜或镍基材上热浸锡或电镀锡的脱除工艺
CN103233215B (zh) 螺栓表面发黑工艺
JP6015358B2 (ja) 銅合金製熱交換器細管の防食方法
JP5101332B2 (ja) 炭素鋼の表面処理方法及び表面処理された炭素鋼
TWI854383B (zh) 貴金屬之溶解剝離方法及溶解剝離裝置
RU2491369C1 (ru) Способ химического нанесения оловянного покрытия на детали из меди или ее сплавов
JP2005156425A (ja) 水の腐食性評価方法
CN103498157A (zh) 在4j34铁镍钴瓷封合金制备镀银层的方法
CN114517661B (zh) 注水区块除垢措施的确定方法
JP5115936B2 (ja) 不溶性金属電極の回収方法
CN104668256B (zh) 一种蚀刻机除垢方法
JP2024004667A (ja) ステンレス鋼の表面を改質するための電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856096

Country of ref document: EP

Effective date: 20190402