JP2005156425A - 水の腐食性評価方法 - Google Patents

水の腐食性評価方法 Download PDF

Info

Publication number
JP2005156425A
JP2005156425A JP2003397084A JP2003397084A JP2005156425A JP 2005156425 A JP2005156425 A JP 2005156425A JP 2003397084 A JP2003397084 A JP 2003397084A JP 2003397084 A JP2003397084 A JP 2003397084A JP 2005156425 A JP2005156425 A JP 2005156425A
Authority
JP
Japan
Prior art keywords
water
potential
metal
corrosion
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003397084A
Other languages
English (en)
Inventor
Kazuhiro Shigyo
和浩 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003397084A priority Critical patent/JP2005156425A/ja
Publication of JP2005156425A publication Critical patent/JP2005156425A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

【課題】 比較的短期間に金属部材に対する水の腐食性を評価する方法を提供することを目的とする。
【解決手段】 水の腐食性を評価する方法は、(a)試料電極10としての金属、対極12、および参照電極14を、pH調整剤を添加した評価すべき水4に浸漬する工程と、(b)金属10を電位走査法によりアノード分極させ、これにより参照電極14に対する金属10の電位と金属10を流れる電流との関係を示す分極曲線を得る工程と、を含む。
【選択図】図1

Description

本発明は、水の腐食性を評価する方法に関し、特に、配管等、水に接する金属部材の腐食を防止するために金属部材に対する水の腐食性を予め評価する方法に関する。
配管や熱交換器など水に接した状態で使用する金属部材において、腐食が進行して損傷すると、金属部材を組み込んだ機器の使用を停止する必要が生じたり場合によっては事故に到るため、金属部材に対する水の腐食性を予め評価することは安全性などの観点から重要である。
従来、水に接する金属部材が腐食するか否かを事前にテストする方法として、金属部材と同一材質のテストピースを水に一定時間浸漬させた後、テストピースの電位を測定するものが知られている。テストピース表面ではアノード反応とカソード反応が進行している。テストピース表面に微生物やスケールなどが付着すると、アノード反応及びカソード反応を促進し、その結果、アノード反応の分極曲線とカソード反応の分極曲線の交点で示される電位すなわち混成電位が上昇する。この上昇した混成電位を検出することで、金属部材に対する水の腐食性を評価する。
上記方法に比べてより確実に水に接する金属部材が腐食するか否かを予知するための方法が特許文献1に開示されている。この方法では、金属部材と同一材質のテストピースを水に一定時間(通常1〜2週間)浸漬後、リン酸塩含有水に一定時間(1〜120分程度、特に20〜30分程度)浸漬しながらテストピースの電位を測定する。リン酸塩含有水は、アノード反応のみ抑制する作用があるため、混成電位が従来に比べてさらに上昇することになり、従来に比べてより確実に水の腐食性を予知できる。
特開平6−201637号公報
しかしながら、上記特許文献1に記載の方法では、テストピースを比較的長期間水やリン酸塩含有水に浸漬させる必要があるため時間がかかる。
そこで、本発明は、比較的短期間に金属部材(金属)に対する水の腐食性を評価する方法を提供することを目的とする。
上記目的を達成するために、本発明に係る水の腐食性評価方法は、
試料電極としての金属、対極、および参照電極を、pH調整剤を添加した評価すべき水に浸漬する工程と、
金属を電位走査法によりアノード分極させ、これにより参照電極に対する金属の電位と金属を流れる電流との関係を示す分極曲線を得る工程と、
を含むことを特徴とする。
本発明に係る方法では、アノード分極により金属表面には酸化皮膜が形成される。例えば、金属が銅であればアノード反応により生じた銅イオンと水中の水酸化イオンとが反応して水酸化銅の皮膜が形成される。水にはpH調整剤が添加されているので、酸化皮膜の形成に寄与する水酸化イオンが不足することはなく、電位走査しながら酸化皮膜の厚みは大きくなる。このように電位走査法により比較的短期間に酸化皮膜が試料電極である金属に形成されることになる。一方、配管などの金属部材を水に接した場合、例えば金属部材が銅管の場合、この銅管表面ではアノード反応により生じた銅イオンが水中の水酸化イオンと反応して水酸化銅の酸化皮膜が形成される。銅管に微生物などが付着するにつれて銅管の電位が上昇し、その結果、酸化皮膜の厚みは大きくなる。このように、本発明に係る方法は、実際に金属部材を水に接した場合の金属部材に対する水の作用を比較的短期間で調べることができるため、金属部材に対する水の腐食性を評価することができる。
以下、添付図面を参照して本発明に係る実施の形態を説明する。
図1は、本発明に係る水の腐食性評価方法を行うのに用いられる腐食性評価システムの一実施形態を示す。このシステム2は、腐食性を評価すべき水4を収容する容器6と、水4に浸漬するためのセンサ部8とを備える。センサ部8は、銅からなる試料電極10、白金からなる対極12、銀/塩化銀からなる参照電極14をガラス基板上に形成してなるチップである。
センサ部8の各電極10,12,14にはポテンショスタット16が接続されている。ポテンショスタット16は、関数発生器、エレクトロメータ等を含み、参照電極14に対する試料電極10の電位を掃引して(すなわち電位走査法により)試料電極10のアノード分極を行ったり、試料電極10の自然浸漬電位を測定するためのものである。ポテンショスタット16にはコンピュータ18が接続されており、ポテンショスタット16はコンピュータ18からの指示を受けて試料電極10を電位走査法によりアノード分極させるようになっている。コンピュータ18は、制御部(記憶部を含む。)、マウス、キーボード、ディスプレイなどを含む一般的なもので、ポテンショメータ16からの信号に基づいて、参照電極14に対する試料電極10の電位と試料電極10と対極12の間を流れる電流値との関係を示す分極データを得て、該データに基づいて水4が腐食性を有するか否かを判定するようになっている。詳しくは、所定の値の電流が流れたときの試料電極10の電位φcoが、予め決められた閾値電位φth以上であれば水4が腐食性を有さないと判定し、φthより小さければ水4が腐食性を有すると判定する。φco、φthについては後で詳しく述べる。なお、分極データは分極曲線としてディスプレイに表示してもよい。
腐食性を評価すべき水4には、電位走査中の水4のpHを略一定に保つために、pH調整剤としてホウ酸/ホウ砂(ホウ酸とホウ砂の混合物)が添加される。
次に、かかる構成を備えた腐食性評価システム2を用いた水の腐食性の評価方法を説明する。まず、pH調整剤を添加した容器6内の水4にセンサ部8を浸漬させる。次に、ポテンショメータ16により試料電極10を自然浸漬電位から所定の電位掃引速度(例えば5mV/s〜10mV/s)で所定の電位(例えば+1.5V)までアノード分極させる。このときの試料電極10の電位と流れる電流を示す信号が、ポテンショメータ16からコンピュータ18に送出される。コンピュータ18により得られる分極データに対応する分極曲線の概略形状を図2に示す。
試料電極10の電位をアノード方向に走査するにしたがって、試料電極10ではCu→Cu2++2eのアノード反応が進行するとともに銅イオンが水中の水酸化イオンと反応して試料電極10にCu(OH)の酸化皮膜が形成・成長する(なお、対極12では2H+2e→Hのカソード反応が発生している。)。この酸化皮膜の存在により試料電極10の電位を上げても大きな電流は流れない。しかしながら、水4に硫酸イオンや塩素イオンなど(以下、孔食促進イオンという。)が溶け込んでいると、試料電極10の電位が大きくなると硫酸イオン等の作用によって酸化皮膜が溶解したり破壊される(破壊が生じるのは、酸化皮膜形成時に異物である孔食促進イオンが取り込まれ、皮膜が成長すると銅表面上の酸化皮膜の応力が大きくなり、その結果、銅と酸化皮膜の界面にある孔食促進イオンを中心に皮膜の中の応力が解放されるためと考えられる。)。溶解したり破壊されて試料電極10の表面が露出すると、急激に大きな電流が流れる。コンピュータ18は、水4について所定の値の電流が流れる際の電位φco(腐食が発生する電位に対応し、以下、腐食発生電位という。)を計測する。孔食促進イオンが比較的多く含まれる場合には低電位で酸化皮膜の溶解、破壊が起こり易く(腐食発生電位φcoが低い)、孔食促進イオンの含有量が比較的少ない場合には、高電位まで酸化皮膜の溶解、破壊が起こりにくく(腐食発生電位φcoが高い)、したがって高電位になるまで電流が多く流れない。
一方、熱交換器の一部や配管などに用いられる、水に接する銅管の場合、この銅管表面ではCu→Cu2++2eのアノード反応と2H2e→Hのカソード反応が同時に進行し、銅イオンが水中の水酸化イオンと反応して銅管にCu(OH)の酸化皮膜が形成される。銅管に微生物やスケールなどが付着するにつれて銅管の混成電位が経時的に上昇するが、孔食促進イオンが比較的多ければ混成電位が腐食発生電位に達して腐食が発生し、孔食促進イオンが比較的小さければ混成電位が上昇しても、腐食発生電位に達せず腐食は発生しない。
以上のことを考慮すれば、試料電極10を電位走査法によりアノード分極させた場合に得られる腐食発生電位φcoより水4の腐食性を判定できる。
上述のように、試料電極10の電位をアノード方向に走査すると試料電極10にCu(OH)の酸化皮膜が形成されるが、実際には、水中に含まれる水酸化イオンの量が不足して酸化皮膜が十分に成長できない(膜厚が小さい)ことが本発明者らにより確かめられている(以下の実験参照)。この場合、水中に含まれる孔食促進イオンの量の大小にかかわらず試料電極10のアノード分極を開始して直ぐに多量の電流が流れるため、水の腐食性を判定することができない。
そこで、本実施形態では、評価すべき水4にpH調整剤としてホウ酸/ホウ砂を添加し、Cu2+と反応して酸化皮膜を形成するOHを絶えず試料電極10近傍に供給する。この結果、電位走査中に十分な厚みの酸化皮膜が試料電極10表面に形成され、水4に含まれる孔食促進イオンが多い場合の腐食発生電位と孔食促進イオンが少ない場合の腐食発生電位を判別可能な程度に分離できる。
実験
本発明者らは、3年間以上にわたって銅管に使用した水と同一の水源からサンプル水を得て、図1に示すのと同様の腐食性評価システムを用いて分極曲線を求めた(実施例1〜4)。実験の条件は以下の通りである。
(実施例1)
試料電極:リン脱酸銅(粗さ1000番の研磨紙で研磨後、10wt%硝酸で酸洗し、続いてアセトンで脱脂)
対極:白金
参照電極:銀/塩化銀
分極条件:約10分かけて、自然浸漬電位よりアノード方向に5〜10mV/sで(最大で)+1.5Vまで分極させた。
サンプル水:銅管に腐食が発生した水と同一の水源のサンプル水Aを使用した。pH調整剤は添加しなかった。
サンプル水の液温:20〜30℃
腐食発生電位φco:電流密度が10−5A/cmとなった電位と規定した。
(実施例2)
銅管に腐食が発生していない水と同一の水源のサンプル水Bを使用した以外は、実施例1と同一の条件で実験を行った(pH調整剤添加せず)。
(実施例3)
銅管に腐食が発生した水と同一の水源のサンプル水C(複数)を使用し、ホウ酸1.7wt%、ホウ砂1.3wt%を添加し、pHを7.15に維持した以外は、実施例1と同一の条件で実験を行った。
(実施例4)
銅管に腐食が発生していない水と同一の水源のサンプル水D(複数)を使用した以外は、実施例3と同一の条件で実験を行った(pH調整剤添加)。
実験結果を図3〜5に示す。分極曲線は、横軸を試料電極の電位(V)、縦軸を電流密度(A/cm)としている。
実施例1,2に関して、図3に示すように、pH調整剤を添加していないと、アノード分極を開始して直ぐに多量の電流が流れるため、腐食性のあるサンプル水Aと腐食性のないサンプル水Bを、腐食発生電位によって区別することはできなかった。
実施例3,4に関し、図4,5に示すように、腐食性のあるサンプル水Cでは腐食発生電位は約0.6〜1.0Vなのに対し、腐食性のないサンプル水Dでは腐食発生電位は約1.2V以上であった。
腐食発生電位φcoが1.1V程度の閾値電位φthより小さいサンプル水Cは腐食性があり、腐食発生電位φcoが閾値電位φth以上のサンプル水Dは腐食性がないと考えることができる。この閾値電位φthは銅管の混成電位の上限とみなすことができる。したがって、未知の水質の水は、腐食発生電位φcoを測定することでその腐食性を判定できる。すなわち、腐食発生電位φcoが(水質が既知の複数のサンプル水から予め求めた)閾値電位φthより小さければ水が腐食性を有さず、閾値電位φth以上であれば腐食性を有すると判定できる。また、金属からなる試料電極10を電位走査法によりアノード分極させることで従来に比べて短期間で金属部材(金属)に対する水の腐食性の有無を判定できる。
なお、水質が既知の複数のサンプル水に関して各腐食発生電位を求めた場合に、腐食が発生しないサンプル水の腐食発生電位が腐食が発生したサンプル水の腐食発生電位と同程度かそれ以下となり、したがって明確な閾値電位が存在しない可能もある。この場合、統計学的手法を用いて水の腐食性の有無を判別する。例えば、未知の水質の水に関して計測した腐食発生電位と水質が既知の複数のサンプル水に関した予め計測しておいた腐食発生電位データとの間の関係を示す指標として例えばマハノビスの汎距離を求めることで、未知の水質の水の腐食性を判定することができる。
以上の説明は本発明の一実施形態にかかるもので、本発明はこれに限らず、種々改変可能である。例えば、上記実施形態では、試料電極10の材料に銅を用いたが、水中の水酸化イオンと作用して酸化皮膜を形成する金属であればよく、銅の代わりに例えば銅合金(例えば真鍮)や鉄などを用いてもよい。
また、試料電極10と、閾値電位φthを求めるために腐食性を有するか否かが既知のサンプル水に接していた金属部材とは、異なる材質であっても金属部材に対する水の腐食性を判定できる場合がある。例えば、遷移金属に属し2価の金属イオンにより酸化皮膜が形成される鉄と銅の組み合わせである。
本発明に係る腐食性評価方法を利用した腐食性評価システムを示す概略構成図。 図1の腐食性評価システムを用いて得られる分極曲線の概略形状を示すグラフ。 実施例1,2の実験により得られた分極曲線を示すグラフ。 実施例3の実験により得られた分極曲線を示すグラフ。 実施例4の実験により得られた分極曲線を示すグラフ。
符号の説明
2 腐食性評価システム
4 水
10 試料電極
12 対極
14 参照電極

Claims (4)

  1. 水の腐食性を評価する方法において、
    (a) 試料電極としての金属、対極、および参照電極を、pH調整剤を添加した評価すべき水に浸漬する工程と、
    (b) 金属を電位走査法によりアノード分極させ、これにより参照電極に対する金属の電位と金属を流れる電流との関係を示す分極曲線を得る工程と、
    を含む腐食性評価方法。
  2. 分極曲線から所定の電流値での金属の電位φcoと予め決められた閾値電位φthとに基づいて上記水が上記金属に対し腐食性を有するか否かを判定する工程をさらに含む請求項1の腐食性評価方法。
  3. 上記金属と同一材質の金属部材に一定時間接した結果該部材の腐食の発生の有無が既知の複数の水それぞれについて、同一の水源のサンプル水に対し上記工程(a),(b)を行い、続いて分極曲線から上記所定の電流値での上記金属部材の電位φcoを求める工程と、
    上記複数の水それぞれに関する電位φcoと腐食の発生の有無とに基づいて上記閾値電位φthを決定する工程と、
    をさらに含む請求項2に記載の腐食性評価方法。
  4. pH調整剤がホウ酸とホウ砂の混合物であることを特徴とする請求項1〜3のいずれか一つに記載の腐食性評価方法。

JP2003397084A 2003-11-27 2003-11-27 水の腐食性評価方法 Pending JP2005156425A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397084A JP2005156425A (ja) 2003-11-27 2003-11-27 水の腐食性評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397084A JP2005156425A (ja) 2003-11-27 2003-11-27 水の腐食性評価方法

Publications (1)

Publication Number Publication Date
JP2005156425A true JP2005156425A (ja) 2005-06-16

Family

ID=34722341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397084A Pending JP2005156425A (ja) 2003-11-27 2003-11-27 水の腐食性評価方法

Country Status (1)

Country Link
JP (1) JP2005156425A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1727262A2 (en) 2005-05-27 2006-11-29 Minebea Matsushita Motor Co., Ltd. Stepping motor for generating vibration
KR101048235B1 (ko) * 2009-01-29 2011-07-08 고려대학교 산학협력단 부식 측정 장치 및 이를 이용한 부식 측정 방법
CN103460019A (zh) * 2011-04-12 2013-12-18 杰富意钢铁株式会社 评价罐成型体对内容物的耐腐蚀性的方法
JP2018048830A (ja) * 2016-09-20 2018-03-29 株式会社日立パワーソリューションズ 腐食影響度判定装置、プローブ装置、及び腐食影響度判定方法
JP2019184364A (ja) * 2018-04-06 2019-10-24 東邦瓦斯株式会社 水の腐食性判定装置、水の腐食性判定方法
CN114112884A (zh) * 2021-12-07 2022-03-01 江苏容大材料腐蚀检验有限公司 一种模拟海水环境下钢材腐蚀性能的检测方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1727262A2 (en) 2005-05-27 2006-11-29 Minebea Matsushita Motor Co., Ltd. Stepping motor for generating vibration
KR101048235B1 (ko) * 2009-01-29 2011-07-08 고려대학교 산학협력단 부식 측정 장치 및 이를 이용한 부식 측정 방법
CN103460019A (zh) * 2011-04-12 2013-12-18 杰富意钢铁株式会社 评价罐成型体对内容物的耐腐蚀性的方法
CN103460019B (zh) * 2011-04-12 2016-11-16 杰富意钢铁株式会社 评价罐成型体对内容物的耐腐蚀性的方法
JP2018048830A (ja) * 2016-09-20 2018-03-29 株式会社日立パワーソリューションズ 腐食影響度判定装置、プローブ装置、及び腐食影響度判定方法
JP2019184364A (ja) * 2018-04-06 2019-10-24 東邦瓦斯株式会社 水の腐食性判定装置、水の腐食性判定方法
CN114112884A (zh) * 2021-12-07 2022-03-01 江苏容大材料腐蚀检验有限公司 一种模拟海水环境下钢材腐蚀性能的检测方法

Similar Documents

Publication Publication Date Title
Chatterjee et al. Environmental degradation of metals: Corrosion technology series/14
Tyusenkov CHEMICAL RESISTANCE OF STEEL 13CrV (RUS 13XФA).
Williams et al. The influence of chloride ion concentration on passivity breakdown in magnesium
CN108072602B (zh) 一种对不锈钢焊缝区加速腐蚀的电化学方法
Bellezze et al. Electrochemical characterization of three corrosion-resistant alloys after processing for heating-element sheathing
Al-Moubaraki et al. The red sea as a corrosive environment: Corrosion rates and corrosion mechanism of aluminum alloys 7075, 2024, and 6061
Keßler et al. Defects in epoxy‐coated reinforcement and their impact on the service life of a concrete structure: A study of critical chloride content and macro‐cell corrosion
JP2005156425A (ja) 水の腐食性評価方法
JP2008292408A (ja) ステンレス鋼のすきま腐食発生の時間的評価方法
GALVELE Pitting corrosion
US6793738B2 (en) Method for processing acid treatment solution, solution processed thereby, and method for treating articles therewith
JP4089360B2 (ja) 防食剤の評価方法
JP2015206720A (ja) 金属腐食性評価方法
JP4872087B2 (ja) 応力腐食割れ及び孔食等の発生検知方法
Davydov Analysis of pitting corrosion rate
Hodgkiess et al. Acid cleaning of thermal desalination plant: do we need to use corrosion inhibitors?
JP2018091796A (ja) 水の腐食性判定方法、及び水の腐食性判定装置
JP3829189B2 (ja) 旧オーステナイト粒界を組織に持つ鋼の結晶粒界測定法
JP2006010427A (ja) 応力腐食割れ試験体の製作方法及び製作装置
JP2008039598A (ja) 石油類容器用金属材料の局部腐食性評価方法
JP2004239638A (ja) 水の腐食性を判定する方法およびその装置
EP3508615B1 (en) Method for producing piping and method for forming oxide film on inner surface of copper pipe
JP2010281687A (ja) 異種金属接触状態における金属材料の腐食量予測方法
JP2006038840A (ja) 金属表面の粒界腐食方法
Cui et al. Cathodic Behavior of Stainless Steel 316LN Reinforcing Bars In Simulated Concrete Pore Solutions