WO2018061450A1 - 電力系統安定化装置および方法 - Google Patents
電力系統安定化装置および方法 Download PDFInfo
- Publication number
- WO2018061450A1 WO2018061450A1 PCT/JP2017/027363 JP2017027363W WO2018061450A1 WO 2018061450 A1 WO2018061450 A1 WO 2018061450A1 JP 2017027363 W JP2017027363 W JP 2017027363W WO 2018061450 A1 WO2018061450 A1 WO 2018061450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- calculation
- power system
- state
- stability calculation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/001—Methods to deal with contingencies, e.g. abnormalities, faults or failures
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Definitions
- the present invention relates to a power system stabilization apparatus and method.
- Patent Document 1 JP, 2011-166888, A (patent documents 1) is known as background art about a power system stabilization device.
- a detector that detects an accident position of a transmission line arranged in a power system and a bus such as a plurality of substations connected to the transmission line are arranged and supplied to each of the buses.
- a voltage stabilizing device including a control device that controls the shut-off or turning-on of at least one of the generator and the phase adjuster ”.
- Patent Document 1 proposes a power system stabilization device that plans a stabilization measure in the event of a failure from periodic online measurement information.
- Patent Document 1 in online calculation, the system stability is calculated for all combinations of control targets for all possible failure cases, and the control target is determined, so that the calculation time becomes long and all assumptions are made within the calculation cycle. There is a problem that a control target cannot be determined for a failure case.
- an object of the present invention is to provide a power system stabilizing device and a power system stabilizing method capable of reducing the online calculation time.
- the present invention provides an assumed failure scenario creation unit that creates an assumed failure scenario using the system model data and the system configuration pattern data in the power system stabilization device for stabilizing the power system,
- a system stability calculation unit that calculates system stability of the power system using the creation result data, the system model data, and the system configuration pattern data, and uses the system stability calculation result data and control target candidate calculation condition data
- the control target candidate calculation unit for calculating the power system stabilization control target candidate and the calculation result data of the control target candidate are used.
- the control table calculation unit that calculates the control table, and the calculation result data of the control table and the threshold value data for determining whether or not the system stability calculation is necessary, extract the necessary state range and unnecessary state range for the power system stability calculation.
- online calculation time can be shortened.
- FIG. The figure which shows the example of whole structure of the electric power grid stabilization apparatus 10 which concerns on Example 1.
- FIG. The figure which shows the example of whole structure of the electric power system stabilization system at the time of applying the electric power system stabilization apparatus of FIG. 1 to an electric power system.
- the figure which shows the example of the feature state variable data D22 memorize
- the figure which shows the example of the state variable data D24 memorize
- strain structure data D25 memorize
- the figure which shows the example of the assumption failure scenario creation result data D41 memorize
- the figure which shows the example of the tidal current state creation result data D42 memorize
- the figure which shows the example of the control table creation result data D44 memorize
- the figure which shows the example of the system stability calculation necessity state range extraction result data D45 memorize
- FIG. 12 is a detailed flowchart of processing step S400 in FIG. 12 is a detailed flowchart of processing step S1000 in FIG. 12 is a detailed flowchart of processing step S1200 in FIG. 12 according to the first embodiment.
- FIG. The figure which shows the example of the tidal current state creation condition data D26 memorize
- FIG. 12 is a detailed flowchart of processing step S1200 in FIG. 11 according to the second embodiment.
- FIG. 12 shows the example of a screen display of the electric power system stabilization apparatus which concerns on Example 2.
- FIG. 1 is a diagram illustrating an overall configuration of a power system stabilizing device 10 according to the first embodiment.
- FIG. 1 shows the power system stabilizing device 10 from the viewpoint of its functional configuration.
- the power system stabilization device 10 includes a power system stabilization calculation input database DB20, a power system stabilization calculation unit 30, a power system stabilization calculation result database DB40, and a display unit 15.
- the power system stabilization calculation input database DB20 includes a plurality of databases DB21 to DB27.
- the feature state variable database DB22 stores feature state variable data D22 illustrated in FIG.
- the state variable database DB24 stores state variable data D24 illustrated in FIG.
- the system configuration pattern database DB25 stores system configuration pattern data D25 illustrated in FIG.
- the tidal current state creating condition database DB26 stores tidal current state creating condition data D26 illustrated in FIG.
- the control target candidate calculation condition database DB27 stores control target candidate calculation condition data D27 exemplified in FIG. Detailed examples of these stored contents will be described later.
- the power system stabilization calculation unit 30 is a function for performing power system stabilization calculation when an assumed failure occurs.
- the series of processing contents is shown in the flowcharts of FIGS. 11 and 12.
- the processing functions in the power system stabilization calculation unit are the following processing function units 31 to 301.
- the assumed failure scenario creation unit 31 is a function for creating an assumed failure scenario.
- the tidal current state creating unit 32 has a function of creating a tidal current state, and the series of processing contents is shown in the flowchart of FIG.
- the system stability calculation unit 33 is a function that calculates the stability of the power system.
- the control target candidate calculation unit 301 has a function of calculating a power system stabilization control target candidate.
- the control table calculation unit 34 is a function for creating a control table.
- the system stability calculation necessity state range extraction unit 35 has a function of extracting a state range that requires online stability calculation of an electric power system and an unnecessary state range, and this series of processing contents is shown in the flowchart of FIG. ing.
- the system stability calculation necessity determination unit 36 has a function of determining whether or not the online stability calculation of the power system is necessary, and the series of processing contents is shown in the flowchart of FIG.
- the control target determination unit 37 is a function that determines a control target.
- the control command unit 38 is a function for commanding control.
- the power system stabilization calculation result database DB40 includes a plurality of databases DB41 to DB401.
- the plurality of databases DB41 to DB401 are obtained by accumulating and storing the processing results in the processing function units 31 to 301, respectively.
- the assumed failure scenario creation result database DB41 stores the assumed failure scenario creation result data D41 created by the assumed weather scenario creation unit 31.
- the tidal current state creation result database DB 42 stores tidal current state creation result data D 42 created by the tidal current state creating unit 32.
- the system stability calculation result database DB43 stores system stability calculation result data D43 created in the system stability calculation unit 33.
- the control target candidate calculation result database DB 401 stores control target candidate result data D 401 calculated by the control target candidate calculation unit 301.
- the control table creation result database DB 44 stores control table calculation result data D 44 created by the control table calculation unit 34.
- the system stability calculation necessity state range extraction result database DB45 stores the system stability calculation necessity state range extraction result data D45 created by the system stability calculation necessity state range extraction unit 35.
- the system stability calculation necessity determination result database DB46 stores the system stability calculation necessity determination result data D46 created by the system stability calculation necessity determination unit 36.
- the control target determination result database DB47 stores control target determination result data D47 created by the control target determination unit 37. Note that these data stored in the power system stabilization calculation result database DB40 are stored not only as data as calculation results but also as result data at the time of intermediate processing, and can be used in appropriate situations. It is possible.
- the display unit 15 displays various types of data handled by the power system stabilizing device 10 in a format that is appropriately viewable.
- the function of the display unit 15 includes input means such as a mouse and a keyboard, and the input result is appropriately reflected on the display screen.
- the input data of the power system stabilization device 10 is stored and stored in the power system stabilization calculation input database DB20.
- These are the system model data D21, the characteristic state variable data D22, and the system stability.
- the assumed failure scenario creation unit 31 of the power system stabilization apparatus 10 creates an assumed failure scenario using the system model data D21 and the system configuration pattern data D25, and outputs the assumed failure scenario creation result data D41.
- the tidal current state creation unit 32 of the power system stabilizing device 10 assumes the assumed failure scenario creation result data D41, the system model data D21, the state variable data D24, the system configuration pattern data D25, and the tidal current state creation condition data D26. Is used to create a tidal current state and output tidal current state creation result data D42.
- system stability calculation unit 33 of the power system stabilization apparatus 10 calculates the stability of the power system using the power flow state creation result data D42, the system model data D21, and the system configuration pattern data D25, and Stability result data D43 is output.
- control target candidate calculation unit 301 of the power system stabilization device 10 calculates the power system stabilization control target candidate using the system stability calculation result data D43 and the control target candidate calculation condition data D27, and performs control.
- the target candidate calculation result data D401 is output.
- control table calculation unit 34 of the power system stabilizing device 10 calculates a control table using the assumed failure scenario creation result data D41, the power flow state creation result data D42, and the control target candidate calculation result data D401, The control table calculation result data D44 is output.
- system stability calculation necessity state range extraction unit 35 of the power system stabilization apparatus 10 uses the control table calculation result data D44 and the system stability calculation necessity determination threshold data D23 to perform online stability of the power system. A state range that requires calculation and an unnecessary state range are extracted, and system stability calculation necessity state range extraction result data D45 is output.
- system stability calculation necessity determination unit 36 of the power system stabilization apparatus 10 performs online stability calculation of the power system using the system stability calculation necessity state range extraction result data D45 and the state variable data D24. Necessity is determined, and system stability calculation necessity determination result data D46 is output.
- control target determining unit 37 of the power system stabilizing device 10 determines a control target using the system stability calculation necessity determination result data D46, and outputs the control target determination result data D47.
- control command unit 38 of the power system stabilization device 10 issues a control command using the control target determination result data D47.
- the display unit 15 of the power system stabilization device 10 displays information on each calculation result using the power system stabilization calculation result data D40 and the like.
- FIG. 2 is a diagram showing an overall configuration example of the power system stabilization system when the power system stabilization device of FIG. 1 is applied to the power system.
- the configuration of the power system stabilizing device 10 in FIG. 2 is described in terms of a hardware configuration.
- the power system 100 to which the power system stabilizing device 10 is applied means a power transmission system 100A in a narrow sense and is a concept including a power generation system in a broad sense.
- the power system 100 includes a generator 110 (110A, 110B), a bus 120 (nodes: 120A, 120B, 120C, 120D), a transformer 130 (130A, 130B), and a power transmission line 140 (branches: 140A, 140B, 140C). 140D), etc., but any other load or other controllable device (battery, chargeable / dischargeable secondary battery, EV storage battery, flywheel, etc.) or It is configured to include multiple facilities.
- the above-mentioned facilities and equipment constituting the power system are monitored and controlled from the viewpoint of ensuring the stability of the power system. For example, appropriate control and protection are executed by a control signal from the monitoring control device 200.
- measurement signals D13 such as current, voltage, and other state signals at various locations are directly or indirectly monitored via the communication network 300 from various measurement devices 150 installed at various locations in the power system for such monitoring control. It is taken into the control device 200.
- the power system stabilizing device 10 takes in measurement signals from various measuring devices 150.
- the generator 110 includes a distributed power source such as a solar power generator and a wind power generator in addition to a large power source such as a thermal power generator, a hydroelectric power generator, and a nuclear power generator.
- the measurement device 150 is a device that measures any one or more of the node voltage V, branch current I, power factor ⁇ , active power P, reactive power Q (instrument transformer (VT: Voltage Transformer). , PT: Potential Transformer (CT), Current Transformer (CT: Current Transformer), etc., and a function for transmitting data including a data measurement location identification ID and a built-in time stamp of the measurement device (telemeter (TM: Telemeter)) Etc.).
- the apparatus which measures the electric power information (voltage phasor information) with an absolute time using GPS, a phase measurement apparatus (PMU: Phaser Measurement Units), and other measuring devices may be used.
- the measuring device 150 is described as being in the power system 100A in a narrow sense, the measuring device 150 may be installed on a generator 110, the transformer 130, the measuring device 150, and a bus or a line connected to the load.
- the measurement signal D24 is each data (state variable data) measured by the measurement device 150, and is received by the system database DB24 via the communication network 300. However, instead of receiving the system data directly from the measuring device 150, the data may be aggregated in the monitoring control device 200 and then received in the state variable database DB 24 via the communication network 300, or may be monitored with the measuring device 150. You may receive into state variable database DB24 via the communication network 300 from both of the apparatuses 200.
- the state variable data D24 may include a unique number for identifying data and a time stamp. Moreover, although the state variable data D24 is written to be measured data, it may be stored in the system database in advance.
- the power system stabilization apparatus 10 includes a display unit 15, an input unit 13 such as a keyboard and a mouse, a communication unit 14, a computer and a computer server (CPU: Central Processing Unit) 11, a memory 12, and a power system stabilization calculation input database DB20 (System model database DB21, feature state variable database DB22, system stability calculation necessity determination threshold database DB23, state variable database DB24, system configuration pattern database DB25, power flow state creation condition database DB26, control target candidate calculation condition database DB27), power System stabilization calculation result database DB40 (supposed failure scenario creation result database DB41, tidal current state creation result database DB42, system stability calculation result database DB43, control Table calculation result database DB44, system stability calculation necessity state range extraction result database DB45, system stability calculation necessity determination result database DB46, control target determination result database DB47, control target candidate calculation result database DB401), and program database DB50 Are connected to
- the display unit 15 is configured as a display device, for example.
- the display unit 15 may be configured to use a printer device, an audio output device, or the like instead of the display device or together with the display device.
- the input unit 13 can include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device.
- the communication unit 14 includes a circuit and a communication protocol for connecting to the communication network 300.
- the CPU 11 reads and executes a predetermined computer program from the program database DB50.
- the CPU 11 may be configured as one or a plurality of semiconductor chips, or may be configured as a computer device such as a calculation server.
- the memory 12 is configured as, for example, a RAM (Random Access Memory), and stores a computer program read from the program database 50, and stores calculation result data and image data necessary for each process.
- the screen data stored in the memory 12 is sent to the display unit 15 and displayed. An example of the displayed screen will be described later.
- FIG. 3 is a diagram illustrating a configuration example showing the contents of the program data of the power system stabilizing device 10.
- the program database DB50 includes, for example, an assumed failure scenario creation program P51, a tidal current state creation program P52, a system stability calculation program P53, a control target candidate calculation program P501, a control table calculation program P54, and a system stability calculation.
- a necessity state range extraction program P55, a state estimation program P56, a system stability calculation necessity determination program P57, a control target determination program P58, a control command program P59, and a display program P502 are stored.
- the CPU 11 reads out the operation program (the assumed failure scenario creation program P51, the power flow state creation program P52, the system stability calculation program P53, the control target candidate calculation program P501, the control read out from the program database DB50 into the memory 12.
- Necessary scenario range and unnecessary status for creation of contingency failure scenario creation of power flow state, power system stability calculation, power system stabilization control candidate calculation, control table creation, power system online stability calculation Range extraction, power Necessity determination online stability calculation of integration, determination of the control object, control commands, image data to be displayed instructing the retrieval of data in various database performed.
- the memory 12 temporarily stores calculation temporary data such as display image data, system stability calculation necessity determination result data, control target determination result data, and calculation result data.
- the CPU 11 generates necessary image data. Are displayed on the display unit 15 (for example, a display screen).
- the display unit 15 of the power system stabilizing device 10 may be a simple screen only for rewriting each control program and database.
- the power system stabilizing device 10 stores roughly 16 databases DB.
- the power system stabilization calculation input database DB20 system model database DB21, feature state variable database DB22, system stability calculation necessity determination threshold database DB23, state variable database DB24, system configuration pattern database DB25
- Tidal current state creation condition database DB26 control target candidate calculation condition database DB27
- power system stabilization calculation result database DB40 preffermed failure scenario creation result database DB41, tidal current state creation result database DB42, grid stability calculation result database DB43, Control target candidate calculation result database DB 401, control table calculation result database DB 44, system stability calculation necessity state range extraction result database DB 45
- System stability calculation necessity determining result database DB 46, the control object determination result database DB 47 will be described.
- system model data D21 includes system configuration, line impedance (R + jX), ground capacitance (admittance: Y), data necessary for system configuration and state estimation (such as a threshold of bat data), It is stored as generator data and other data necessary for tidal current calculation, state estimation, and time series change calculation.
- data necessary for system configuration and state estimation such as a threshold of bat data
- necessary image data is generated by the CPU 11 and displayed on the display unit 15. At the time of input, it may be semi-manual so that a large amount of data can be set by using a complementary function.
- the feature state variable data D22 has a failure location (D221), a failure aspect (D222), a location in the power system of the state variable (D223), a type ( D224) or the like.
- the failure aspect (D222) is 3 ⁇ 6LG (ABCA'B'C '), which is a three-phase six-wire ground fault and is caused by A phase, B phase, C phase, A' phase, B 'phase and C'. It indicates that the phase has a ground fault.
- the location and type of the characteristic state variable for each assumed failure scenario for example, those having a large correlation with the stability of the power system, the stabilization control target, and the amount are extracted in advance.
- the accuracy of the online stabilization calculation increases.
- the feature state variable depends on the degree of stability of the power system for each assumed failure scenario. It is good to be able to change the number of.
- system stability calculation necessity determination threshold value data D23 is stored as data such as numerical values. As the value increases, the range of power system stability calculation required increases, so the accuracy of online stabilization calculation improves. However, since the amount of online calculation in the control target determination unit 37 increases, It is preferable that the value can be changed according to the desired accuracy.
- the state variable data D24 is stored as data such as a location (D241), a type (D242), and a value (D243) in the power system of the state variable as shown in FIG.
- the types of state variables (D242) include active power P, reactive power Q, voltage V, voltage phase angle ⁇ , current I, power factor ⁇ , and the like.
- Data with time stamp or PMU data may be used. For example, the voltage and voltage phase angle at the nodes 120B and 120C connected to the power system 100, the line flow (P + jQ) of the branches 140B and 140C connected to the nodes 120B and 120C connected to the power system 100, and the power system 100 are connected.
- Active power P, reactive power Q, and power factor ⁇ , voltage V, voltage phase angle ⁇ , and the like are stored.
- the voltage phase angle ⁇ may be measured using another measuring device using PMU or GPS.
- the measuring device is VT, PT, or the like.
- the line power flow (P + jQ) can be calculated from the current I, the voltage V, and the power factor ⁇ measured by VT or PT. Further, the plausible system nodes, branches, generators, loads, control device active power P, reactive power Q, voltage V, voltage phase angle ⁇ , current I, force, which are calculation results of the state estimation calculation program P56. The result of estimating and calculating the rate ⁇ is also stored as system measurement data.
- system configuration pattern data D25 is stored as data such as a location (D251) and a state (D252) in the power system as shown in FIG.
- the location (D251) is a transmission line of the target power system, and the state is on / off of the transmission line.
- the amount of calculations in the tidal current state creation unit 32 and the system stability calculation unit 33 increases.
- a system configuration pattern having a high frequency is extracted in advance based on operation result data or the like.
- system configurations that have a similar effect on the stability of the power system may be classified in advance, and representative system configuration patterns for each classification may be extracted.
- the tidal current state creation condition data D26 is a numerical change target (D261), a change target type (D262), a maximum numerical value (D263), and a minimum numerical value. It is stored as data such as a value (D264) and a numerical change increment (D265).
- D261 numerical change target
- D262 change target type
- D263 maximum numerical value
- D263 maximum numerical value
- D265 a numerical change increment
- control target candidate calculation condition data D27 is stored as data such as the type of stability (D271), the index (D272), and the threshold value (D273) as shown in FIG. .
- the types of stability are transient stability (also called transient stability), voltage stability, overload, steady state stability, etc., and the indicators are the internal operating angle of the generator, stability margin, line flow, power system characteristics Although it is an eigenvalue of a matrix, other indices may be used.
- the assumed failure scenario creation result database DB41 uses an assumed failure scenario creation program P51 using the system model data D21 and the system configuration pattern data D25. Creation result data D41 is stored.
- FIG. 7 shows an example of the result of creating an assumed failure scenario, in which data such as a failure location (D411) and a failure aspect (D412) are stored. A method of creating the assumed failure scenario will be described later.
- FIG. 8 shows an example of a tidal current state creation result, and data such as a target (D421), a type (D422), and a value (D423) are stored.
- the target is the generator and load existing in the power system, and the types are the active power P and voltage V for the generator and the active power P and reactive power Q for the load.
- a method for creating a tidal current state will be described later.
- the grid stability calculation result database DB43 stores grid stability calculation result data D43 calculated by the grid stability calculation program P53 using the tidal current state creation result data D42, grid model data D21, and grid configuration pattern data D25. Is done. The calculation method of system stability will be described later.
- control target candidate calculation result database DB401 In the control target candidate calculation result database DB401, control target candidate calculation result data D401 calculated by the control target candidate calculation program P501 using the system stability calculation result data D43 and the control target candidate calculation condition data D27 is stored. . A method of calculating the control target candidate will be described later.
- FIG. 9 shows an example of a control table creation result, in which data such as each assumed failure scenario (D441), the value of each feature state variable (D441, D442), and the control target candidate (D444) at that time are stored. ing. Although the number of feature state variables is shown in FIG. 9 as an example, there are as many feature state variables as the number of corresponding feature state variables stored in the feature state variable data D22 for each assumed failure scenario. The calculation method of the control table will be described later.
- the system stability calculation necessity state range extraction result database DB45 is extracted by the system stability calculation necessity state range extraction program P55 using the control table calculation result data D44 and the system stability calculation necessity determination threshold data D23.
- the system stability calculation necessity determination result data D46 is stored.
- FIG. 10 shows an example of the system stability calculation necessity state range extraction result.
- Each assumed failure scenario (D451), each state variable range (D452, D453), and the control target candidate in that range (D454) ), Data such as determination result of necessity of system stability calculation (D455) are stored. A method for extracting the status range for necessity of system stability calculation will be described later.
- the system stability calculation necessity determination result database D46 uses the system stability calculation necessity state range extraction result data D46 and the state variable data D24 to determine the system stability determined by the system stability calculation necessity determination program P57. Calculation necessity determination result data D46 is stored. A method for determining whether the system stability calculation is necessary will be described later.
- Control target determination result database D47 stores control target determination result data D47 determined by the control target determination program using system stability calculation necessity determination result data D46. A method for determining the control target will be described later.
- FIGS. 11 and 12 are examples of flowcharts showing the entire processing of the power system stabilizing device 10, FIG. 11 is offline processing, and FIG. 12 is online processing.
- FIG. 11 is offline processing
- FIG. 12 is online processing.
- the flow of offline processing will be described with reference to FIG.
- an assumed failure scenario is created using the system model data D21 and the state variable data D24, and stored in the assumed failure scenario creation result database D41.
- a tidal current state is created using the assumed failure scenario creation result data D41, the system model data D21, the state variable data D24, the system configuration pattern data D25, and the tidal current state creating condition data D26, and the created result is the tidal current state.
- the creation result database DB42 Stored in the creation result database DB42.
- FIG. 13 is an example of a flowchart for explaining processing of the tidal current state creation unit 32 of FIG.
- processing step S201 the generator combination stored in the tidal current state creation condition data D26 is selected.
- processing step S202 a combination of loads stored in the tidal current state creation condition data D26 is selected.
- processing step S203 the effective output and terminal voltage of each generator in the generator combination selected in processing step S201 are set.
- processing step S204 the effective load value and the invalid load value of each load in the combination of loads selected in processing step S202 are set.
- process step S205 the power flow is calculated based on each generator output and each load value set in process step S203 and process step S204.
- the method of tidal current calculation is, for example, Akihiko Yokoyama, Koji Ota, “Power System Stabilization System Engineering”, The Institute of Electrical Engineers of Japan, 2014, pp. 45- 48, in accordance with the calculation method described in 48.
- processing step S206 it is determined whether or not the power flow calculation in processing step S205 has converged. If the power flow calculation has converged, the process proceeds to processing step S207. If the power flow calculation has not converged, the process proceeds to processing step S208.
- processing step S207 the result of the tidal current calculation in processing step S205 is stored in the tidal current state creation result database DB42.
- processing step S208 whether all effective load values and invalid load values of the selected load are the maximum value or the minimum value stored in the tidal current state creation condition data D26 for the load combination selected in processing step S202. Judge whether or not. If it is the maximum value or the minimum value, the process proceeds to processing step S209. If the maximum value or the minimum value is not reached, the process returns to step S204.
- processing step S209 whether or not all outputs and terminal voltages of the selected generator are the maximum value or the minimum value stored in the power flow state creation condition data D26 for the generator combination selected in processing step S201. To determine. If it is the maximum value or the minimum value, the process proceeds to processing step S210. If it is not the maximum value or the minimum value, the process returns to step S203.
- process step S210 it is determined whether or not all combinations of loads have been selected. If already selected, the process proceeds to processing step S211. If it has not been selected, the process returns to step S201.
- process step S211 it is determined whether or not all generator combinations have been selected. If already selected, the process step S200 is terminated. If not selected, the process returns to the processing step S201.
- the power system stability is calculated using the tidal current state creation result data D42, the system model data D21, and the system configuration pattern data D25, and the calculation result is stored in the system stability calculation result data DB 43.
- the calculation is based on the result of numerical simulation performed in accordance with the calculation method described in. Examples of stability include transient stability and voltage stability.
- the calculation index of the transient stability is, for example, the internal operation angle of the synchronous generator.
- the calculation index of voltage stability is, for example, the stability margin of the PV curve described in Akihiko Yokoyama, Koji Ota, “Power System Stabilization System Engineering”, The Institute of Electrical Engineers of Japan, 2014, pp. 42-45.
- the stability margin exceeds the threshold, it is determined that the voltage is unstable.
- the power system stabilization control target candidate is calculated using the system stability calculation result data D43 and the control target candidate calculation condition data D27, and the calculation result is stored in the control target candidate calculation result data DB 401.
- the control target candidate calculation method controls a synchronous generator whose internal operation angle deviation from the reference generator exceeds the threshold value described in the control target candidate calculation condition data D27. Set as a target candidate. Further, it may be performed in accordance with an on-line TSC system loading method described in Akihiko Yokoyama, Koji Ota, “Power System Stabilization System Engineering”, The Institute of Electrical Engineers of Japan, 2014, pp.189-191.
- a synchronous generator whose stability margin exceeds the threshold value described in the control target candidate calculation condition data D27 is set as a control target candidate.
- the calculation method is an example, and other calculation methods may be used.
- process step S700 it is determined whether or not the entire tidal current state created in process step S200 has been selected. If it has been selected, the process proceeds to processing step S800. If not selected, the process returns to the processing step S400.
- processing step S800 it is determined whether or not all the assumed failure scenarios created in processing step S100 have been selected. If it has been selected, the process proceeds to process step S900. If it has not been selected, the process returns to step S300.
- a control table for each assumed failure scenario is calculated using the assumed failure scenario creation result data D41, the power flow state creation result data D42, and the control target candidate calculation result data D401, and the calculation result is stored in the control table creation result database. Save in DB44.
- control table calculation result data D44 and the system stability calculation necessity determination threshold data D23 are used to extract a necessary state range and an unnecessary state range for the power system stability calculation, and to calculate a system stability calculation.
- the necessity state range extraction result database DB45 is stored.
- FIG. 14 is an example of a flowchart for explaining the processing of the system stability calculation necessity state range extraction unit 35 of FIG.
- process step S1001 one of the feature state variables is selected.
- processing step S1002 the plot point in the control table created in processing step S900 is increased by one with respect to the feature state variable selected in processing step S1001.
- process step S1003 it is determined whether or not the control target in the control table has been changed by the process in process step S1002. If changed, the process proceeds to process step S1004. If there is no change, the process returns to step S1002.
- processing step S1004 it is determined whether a system stability calculation necessity flag exists. If it exists, the process proceeds to processing step S1005. If not, the process proceeds to processing step S1007.
- processing step S1005 a value obtained by adding the system stability calculation necessity determination threshold to the value in the control table of the current plot point is set as the system stability calculation necessity upper limit value.
- processing step S1006 the system stability calculation necessity flag is canceled.
- processing step S1007 a value obtained by subtracting the system stability calculation necessity determination threshold from the value in the control table of the current plot point is set as the system stability calculation necessary lower limit value.
- processing step S1008 a system stability calculation necessity flag is set.
- step S1009 it is determined whether the plot points in the control table of the selected state variable can be increased. If it can be increased, the process returns to step S1002. If it cannot be increased, the process proceeds to step S1010.
- processing step S1010 the range from the system stability calculation required lower limit value set in processing step S1007 to the system stability calculation required upper limit value set in processing step S1005 is set as the system stability calculation required range.
- a range other than the system stability calculation required range set in process step S1010 is set as a system stability calculation unnecessary range.
- processing step S1012 it is determined whether or not there is a feature state variable that can increase plot points in the control table. When it exists, it progresses to process step S1013. If it does not exist, the process step S1000 ends.
- processing step S1013 the number of plot points of the feature state variable that can increase plot points other than the selected feature state variable is increased by one.
- processing step S1100 the state variable data D24 is used to estimate a likely state of the power system and is stored in the state variable database DB24.
- processing step S1200 the necessity of power system stability calculation is determined using the system stability necessity state range extraction result data D45 and the state variable data D24, and the determination result is a system stability calculation necessity determination result database. Save in DB46.
- FIG. 12 is an example of a flowchart for explaining the processing of the system stability calculation necessity determination unit 36 of FIG.
- processing step S1201 it is determined whether or not the value of the characteristic state variable in the state variable data D24 exists in the system stability calculation required range. If it exists, the process proceeds to processing step S1202. If not, the process proceeds to processing step S1203.
- processing step S1202 a system stability calculation necessity flag is set.
- a control target candidate in the value of the characteristic state variable in the system stability necessity state range extraction result data D45 is set as a control target.
- processing step S1300 it is determined whether or not a system stability calculation necessity flag exists. If it exists, the process advances to process step S1700. If not, the process proceeds to processing step S1600.
- processing step S1400 the stability of the power system is calculated.
- the calculation method of stability is the same as that of process step S500, for example.
- processing step S1500 the system stability calculation necessity flag is canceled.
- processing step S1600 the stabilization control target of the power system is determined.
- the method for determining the control target is the same as that in the processing step S600, for example.
- process step S1700 a control command is issued to the control target set in process step S1600 or process step S1203.
- FIG. 16 shows an actual failure scenario 161, a feature state variable 163 for the failure scenario, a feature state variable value 166, a system stability calculation necessity determination result 162, a control target determination result 165, and a system stability.
- the state calculation necessity state range extraction result 169 and the characteristic state variable 164 to be displayed in the system stability calculation necessity state range extraction result are displayed.
- the system stability calculation necessity state range extraction result is in a table format in FIG. 9, it may be displayed in a graph as shown in FIG.
- the display of FIG. 16 includes a system diagram 167 and a legend 168, so that the user can easily understand the display format.
- the feature state variable 164 to be displayed in the system stability calculation necessity state range extraction result is selected, and the system stability calculation necessity state range extraction result for the selected feature state variable is selected. Can be confirmed.
- an assumed failure scenario is created using the system model data D21 and the system configuration pattern data D25, the assumed failure scenario creation result data D41, the system model data D21, and the state variable data.
- a power flow state is created using D24, system configuration pattern data D25, and power flow state creation condition data D26, and power system stability is calculated using power flow state creation result data D42, system model data D21, and system configuration pattern data D25.
- the power system stabilization control target candidate is calculated using the system stability calculation result data D43 and the control target candidate calculation condition data D27, and the assumed failure scenario creation result data D41, the power flow state creation result data D42, and the control target candidate are calculated.
- the control table is calculated using the calculation result data D401, and the control table State range that requires online stability calculation and unnecessary state range of the power system are extracted using the calculation result data D44 and the system stability calculation necessity determination threshold data D23, and the system stability calculation necessity state range extraction result
- the necessity of online stability calculation of the power system is determined using the data D45 and the state variable data D24, the control target is determined using the system stability calculation necessity determination result data D46, and the control target determination result data D47 is determined.
- the control command is used to display the command result and each calculation result.
- the power system stabilization system is configured by applying the power system stabilization apparatus 10 to the power system.
- the power system stabilizing device 10 has been described. This device only calculates the necessity of system stability calculation for the state variable data measured at the time of online calculation, and stabilizes when the power flow fluctuates from the time of system stability calculation to the time of control command. Control may fail.
- the system stability calculation necessity determination unit 36 uses the system stability calculation necessity determination range 36 using the system stability calculation necessity state range extraction result data D45, the state variable data D24, and the state variable variation data D28. By determining whether or not calculation is necessary, a power system stabilization device that improves system stabilization performance during tidal current fluctuations is configured.
- FIG. 19 shows an example of a power system stabilizing device according to the second embodiment.
- a system stabilizing device 1000 in FIG. 19 is obtained by additionally installing state variable variation data D28 to the power system stabilizing device 10 in FIG.
- state variable variation data D28 is added.
- the result data of the power system stabilizing device 1000 is the same as that of the power system stabilizing device 10 of FIG.
- the functions of the power system stabilization apparatus 1000 are the same as those of the power system stabilization apparatus 10 of FIG. 1 except for the system stability calculation necessity determination processing unit 36.
- the system stability calculation necessity determination processing unit 36 uses the system stability calculation necessity state range extraction result data D45, the state variable data D24, and the state variable variation data D28 to determine whether or not the power system stability calculation is necessary.
- the system stability calculation necessity / unnecessity determination result database D46 is output.
- the system stability calculation necessity determination result data D46 is stored in the system stability calculation necessity determination result database DB46.
- FIG. 20 is an example of a hardware configuration of the power system stabilizing device 1000 and the overall system configuration diagram of the power system 100 in the second embodiment, and the power system stabilizing device 10 and the power system 100 in the first embodiment shown in FIG.
- the state variable variation database DB28 is connected to the bus line 60 and additionally installed in the overall configuration diagram of FIG.
- the description of the components having the same functions as those already described with reference to FIG. 2 is omitted.
- the electric power system stabilizing device 1000 stores roughly 17 databases. In the following, the description of the database that has already been described will be omitted, and the newly added state variable variation database DB28 will be described.
- state variable variation data D28 is stored as data such as the state variable location (D281), type (D282), variation (D283), as shown in FIG.
- the state variable fluctuation amount D283 is, for example, the maximum fluctuation amount assumed in advance from the time of system stability calculation to the time of control command. Thereby, it is possible to determine whether or not the system stability is necessary according to the tidal current state even when the tidal current fluctuation occurs within the control command time from the system stability calculation time.
- the system stability calculation necessity state range extraction result data D45, the state variable data D24, and the state variable fluctuation amount data D28 are used to determine whether or not the power system stability calculation is possible.
- the result is stored in the rejection determination result database DB46.
- FIG. 22 is an example of a flowchart for explaining the processing of the system stability calculation necessity determination unit 36 of FIG.
- processing step S1204 it is determined whether or not the value of the characteristic state variable in the data obtained by adding the value of the state variable variation data D28 corresponding to the value of the state variable data D24 exists in the system stability calculation required range. If it exists, the process proceeds to processing step S1202. If not, the process proceeds to processing step S1205.
- control target candidates are controlled for a value obtained by adding the value of the feature state variable in the state variable variation data to the value of the feature state variable in the system stability calculation necessity state range extraction result data D45. Set the target.
- Processing step S1202 is the same as the content of the processing step with the same reference numeral in FIG.
- FIG. 23 is basically the same as the display screen (FIG. 16) of the power system stabilizing device 10, but is displayed by newly adding the state variable fluctuation amount 2310.
- the system stability calculation necessity state range extraction result is in a table format in FIG. 9, it may be displayed in a graph as shown in FIG.
- the display of FIG. 23 includes a system diagram 237 and a legend 238, so that the user can easily understand the display format.
- the feature state variable 164 to be displayed in the system stability calculation necessity state range extraction result is selected, and the system stability calculation necessity state range extraction result for the selected feature state variable is selected. Can be confirmed.
- an assumed failure scenario is created using the system model data D21 and the system configuration pattern data D25, the assumed failure scenario creation result data D41, the system model data D21, and the state variable data.
- a power flow state is created using D24, system configuration pattern data D25, and power flow state creation condition data D26, and power system stability is calculated using power flow state creation result data D42, system model data D21, and system configuration pattern data D25.
- the power system stabilization control target candidate is calculated using the system stability calculation result data D43 and the control target candidate calculation condition data D27, and the assumed failure scenario creation result data D41, the power flow state creation result data D42, and the control target candidate are calculated.
- the control table is calculated using the calculation result data D401, and the control table
- the state range where the power system stability calculation is necessary and the unnecessary state range are extracted using the blue calculation result data D44 and the system stability calculation necessity determination threshold data D23, and the system stability calculation necessity state range extraction result data D45, state variable data D24, and state variable variation data D28 are used to determine whether or not the power system stability calculation is necessary, and the control target is determined using system stability calculation necessity determination result data D46.
- a control command is issued using the decision result data D47, and the command result and each calculation result are displayed.
- a power system stabilization system is configured by applying the power system stabilization apparatus 1000 to a power system.
- the second embodiment it is possible to improve the system stabilization performance when the power flow fluctuates in the time from the system stability calculation time to the control command time.
- Power system stabilizing device 11 CPU 12: Memory 13: Input unit 14: Communication unit 15: Display unit 30: Power system stabilization calculation unit 31: Assumed failure scenario creation unit 32: Power flow state creation unit 33: System stability calculation unit 301: Control target candidate calculation unit 34: Control table calculation unit 35: System stability calculation necessity state range extraction unit 36: System stability calculation necessity determination unit 37: Control target determination unit 38: Control command unit 60: Bus line 100: Power systems 110A and 110B : Generator 120A, 120B, 120C, 120D: Node (bus) 130A, 130B: Transformers 140A, 140B, 140C, 140D: Branches (tracks) 150: measuring device 200: monitoring control device 300: communication network 1000: power system stabilization device D20: power system stabilization calculation input data DB20: power system stabilization calculation input database D21: system model data DB21: system model database D22: Feature state variable data DB22: Feature state variable database D23: System stability calculation necessity determination threshold data DB23: System stability calculation necessity determination threshold database D24:
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
従来技術では、全ての想定故障ケース対して全制御対象の組み合わせについて系統安定性を計算して、制御対象を決定するため、計算時間が長くなり、計算周期内に全ての想定故障ケースに対して制御対象を決定することができなくなるという課題がある。本課題を解決する為に本発明は、電力系統を安定化するための電力系統安定化装置において、想定故障シナリオ作成部と、電力系統の潮流状態を作成する潮流状態作成部と、電力系統の系統安定性を計算する系統安定性計算部と、電力系統の安定化制御対象候補を計算する制御対象候補計算部と、制御テーブルを計算する制御テーブル計算部と、電力系統の安定性計算の必要な状態範囲と不要な状態範囲を抽出する系統安定性計算要否状態範囲抽出部と、電力系統の安定性計算の要否を判定する系統安定性計算要否判定部と、を備える。
Description
本発明は、電力系統の安定化装置および方法に関する。
電力系統の安定化装置に関する背景技術として、特開2011-166888号公報(特許文献1)が知られている。特許文献1には、「電力系統に配設された送電線の事故位置を検出する検出器と、送電線に接続される複数の変電所等の母線の夫々に配置され、母線の夫々に供給される無効電力を制御する調相器と、検出器が送電線の事故位置を検出した場合、前記母線を含む前記電力系統の電圧安定性を維持できるよう、送電線に電力を供給する複数の発電機及び調相器のうち少なくとも何れか一つの機器の遮断または投入を制御する制御装置と、を備えることを特徴とする電圧安定化装置」と記載されている。
将来、電力系統に再生可能エネルギー(太陽光発電や風力発電)が大量に導入されると、不確実で急峻な潮流変動が発生する。この課題に対し、特許文献1では、周期的なオンライン計測情報から故障発生時の安定化対策を立案する電力系統安定化装置を提案している。
しかしながら特許文献1では、オンライン計算において、全ての想定故障ケース対して全制御対象の組み合わせについて系統安定性を計算し、制御対象を決定するため、計算時間が長くなり、計算周期内に全ての想定故障ケースに対して制御対象を決定することができなくなるという課題がある。
このことから本発明においては、オンライン計算時間を短縮することが可能な電力系統安定化装置および電力系統安定化方法を提供することを目的とする。
上記課題を解決する為に本発明は、電力系統を安定化するための電力系統安定化装置において、系統モデルデータと系統構成パターンデータを用いて想定故障シナリオを作成する想定故障シナリオ作成部と、前記想定故障シナリオの作成結果データと前記系統モデルデータと状態変数データと潮流状態作成条件データと前記系統構成パターンデータを用いて電力系統の潮流状態を作成する潮流状態作成部と、前記潮流状態の作成結果データと前記系統モデルデータと前記系統構成パターンデータを用いて電力系統の系統安定性を計算する系統安定性計算部と、前記系統安定性の計算結果データと制御対象候補計算条件データを用いて電力系統の安定化制御対象候補を計算する制御対象候補計算部と、前記制御対象候補の計算結果データを用いて制御テーブルを計算する制御テーブル計算部と、前記制御テーブルの計算結果データと系統安定性計算要否判定閾値データを用いて電力系統の安定性計算の必要な状態範囲と不要な状態範囲を抽出する系統安定性計算要否状態範囲抽出部と、前記状態範囲の抽出結果データと前記状態変数データを用いて電力系統の安定性計算の要否を判定する系統安定性計算要否判定部と、を備える。
本発明によれば、オンライン計算時間を短縮することができる。
以下、本発明の実施例について図面を用いて説明する。
図1は、実施例1に係る電力系統安定化装置10の全体構成を示す図である。なお図1は電力系統安定化装置10いついて、その機能構成の観点から表記したものである。
電力系統安定化装置10は、電力系統安定化計算入力データベースDB20と、電力系統安定化計算部30と、電力系統安定化計算結果データベースDB40と、表示部15により構成されている。
電力系統安定化計算入力データベースDB20は、複数のデータベースDB21からDB27により構成されている。
このうち特徴状態変数データベースDB22は、図4に例示される特徴状態変数データD22を記憶している。状態変数データベースDB24は、図5に例示される状態変数データD24を記憶している。系統構成パターンデータベースDB25は、図6に例示される系統構成パターンデータD25を記憶している。潮流状態作成条件データベースDB26は、図17に例示される潮流状態作成条件データD26を記憶している。制御対象候補計算条件データベースDB27は、図18に例示される制御対象候補計算条件データD27を記憶している。これらの記憶内容の詳細事例については後述する。
電力系統安定化計算部30は、想定故障発生時の電力系統の安定化計算を行う機能であり、この一連の処理内容が図11と図12のフローチャートに示されている。また電力系統安定化計算部における処理の機能は、以下の処理機能部31から301である。
このうち、想定故障シナリオ作成部31は、想定故障シナリオを作成する機能である。潮流状態作成部32は、潮流状態を作成する機能であり、この一連の処理内容が図13のフローチャートに示されている。系統安定性計算部33は、電力系統の安定性を計算する機能である。制御対象候補計算部301は、電力系統の安定化制御対象候補を計算する機能である。制御テーブル計算部34は、制御テーブルを作成する機能である。系統安定性計算要否状態範囲抽出部35は、電力系統のオンライン安定性計算が必要な状態範囲と不要な状態範囲を抽出する機能であり、この一連の処理内容が図14のフローチャートに示されている。系統安定性計算要否判定部36は、電力系統のオンライン安定性計算の要否を判定する機能であり、この一連の処理内容が図15のフローチャートに示されている。制御対象決定部37は、制御対象を決定する機能である。制御指令部38は、制御指令する機能である。
電力系統安定化計算結果データベースDB40は、複数のデータベースDB41からDB401により構成されている。これらの複数のデータベースDB41からDB401は、要するに処理機能部31から301における処理結果をそれぞれ蓄積記憶したものである。
このうち想定故障シナリオ作成結果データベースDB41は、想定気象シナリオ作成部31において作成した想定故障シナリオ作成結果データD41を記憶している。潮流状態作成結果データベースDB42は、潮流状態作成部32において作成した潮流状態作成結果データD42を記憶している。系統安定性計算結果データベースDB43は、系統安定性計算部33において作成した系統安定性計算結果データD43を記憶している。制御対象候補計算結果データベースDB401は、制御対象候補計算部301において計算した制御対象候補結果データD401を記憶している。制御テーブル作成結果データベースDB44は、制御テーブル計算部34において作成した制御テーブル計算結果データD44を記憶している。系統安定性計算要否状態範囲抽出結果データベースDB45は、系統安定性計算要否状態範囲抽出部35において作成した系統安定性計算要否状態範囲抽出結果データD45を記憶している。系統安定性計算要否判定結果データベースDB46は、系統安定性計算要否判定部36において作成した系統安定性計算要否判定結果データD46を記憶している。制御対象決定結果データベースDB47は、制御対象決定部37において作成した制御対象決定結果データD47を記憶している。なお電力系統安定化計算結果データベースDB40に記憶されるこれらのデータは、計算結果としてのデータばかりでなはなく、中間処理時点における結果のデータも含めて記憶されており、適宜の場面において流用が可能とされている。
表示部15には、電力系統安定化装置10において取り扱う各種のデータが、適宜見やすい形式に加工されて表示される。また表示部15の機能には、マウスやキーボードなどの入力手段を含み、適宜入力結果が表示画面に反映されている。
以上で述べたように、電力系統安定化装置10の入力データは、電力系統安定化計算入力データベースDB20に保管、記憶されており、これらは系統モデルデータD21、特徴状態変数データD22、系統安定性計算要否判定閾値データD23、状態変数データD24、系統構成パターンデータD25、潮流状態作成条件データD26、制御対象候補計算条件データD27などである。
電力系統安定化装置10の想定故障シナリオ作成部31では、系統モデルデータD21と、系統構成パターンデータD25を用いて、想定故障シナリオを作成し、想定故障シナリオ作成結果データD41を出力する。
また、電力系統安定化装置10の潮流状態作成部32では、想定故障シナリオ作成結果データD41と、系統モデルデータD21と、状態変数データD24と、系統構成パターンデータD25と、潮流状態作成条件データD26を用いて、潮流状態を作成し、潮流状態作成結果データD42を出力する。
また、電力系統安定化装置10の系統安定性計算部33では、潮流状態作成結果データD42と、系統モデルデータD21と、系統構成パターンデータD25を用いて、電力系統の安定性を計算し、系統安定性結果データD43を出力する。
また、電力系統安定化装置10の制御対象候補計算部301では、系統安定性計算結果データD43と、制御対象候補計算条件データD27を用いて、電力系統の安定化制御対象候補を計算し、制御対象候補計算結果データD401を出力する。
また、電力系統安定化装置10の制御テーブル計算部34では、想定故障シナリオ作成結果データD41と、潮流状態作成結果データD42と、制御対象候補計算結果データD401を用いて、制御テーブルを計算し、制御テーブル計算結果データD44を出力する。
また、電力系統安定化装置10の系統安定性計算要否状態範囲抽出部35では、制御テーブル計算結果データD44と、系統安定性計算要否判定閾値データD23を用いて、電力系統のオンライン安定性計算が必要な状態範囲と不要な状態範囲を抽出し、系統安定性計算要否状態範囲抽出結果データD45を出力する。
また、電力系統安定化装置10の系統安定性計算要否判定部36は、系統安定性計算要否状態範囲抽出結果データD45と、状態変数データD24を用いて、電力系統のオンライン安定性計算の要否を判定し、系統安定性計算要否判定結果データD46を出力する。
また、電力系統安定化装置10の制御対象決定部37は、系統安定性計算要否判定結果データD46を用いて、制御対象を決定し、制御対象決定結果データD47を出力する。
また、電力系統安定化装置10の制御指令部38は、制御対象決定結果データD47を用いて、制御指令する。
また、電力系統安定化装置10の表示部15では、電力系統安定化計算結果データD40などを用いて各計算結果の情報を表示する。
図2は、図1の電力系統安定化装置を電力系統に適用した場合の電力系統安定化システムの全体の構成例を示す図である。なお図2における電力系統安定化装置10の構成はハード的な構成の観点で記載している。
図2において、電力系統安定化装置10が適用される電力系統100は、狭義には送電系統100Aを意味しており、広義には発電系統も含む概念である。図示において電力系統100は、発電機110(110A、110B)、母線120(ノード:120A、120B、120C、120D)、変圧器130(130A、130B)、送電線140(ブランチ:140A、140B、140C、140D)などで構成された事例を表記しているが、これ以外にも負荷やその他制御可能な装置(バッテリー、充放電可能な二次電池、EVの蓄電池、フライホイール等)のいずれか又は複数の設備を含んで構成されている。
電力系統を構成する上記の設備や機器は、電力系統の安定性確保の観点から監視、制御されており、例えば監視制御装置200からの制御信号により適宜の制御、保護が実行されている。他方、係る監視制御のために電力系統各所に設置された各種の計測装置150から、各所の電流、電圧、その他状態信号などの計測信号D13が直接、あるいは通信ネットワーク300を介して間接的に監視制御装置200に取り込まれている。また、電力系統安定化装置10にも同様にして、各種の計測装置150から計測信号が取り込まれている。なおここで、発電機110としては、火力発電機や水力発電機や原子力発電機などの大型電源のほかに、太陽光発電や風力発電といった分散型電源を含んでいる。
ここで、計測装置150とは、ノード電圧V、ブランチ電流I、力率Φ、有効電力P、無効電力Q、のいずれか一つまたは複数を計測する装置(計器用変圧器(VT:Voltage Transformer、PT:Potential Transformer)や計器用変流器(CT:Current Transformer))などであり、データ計測箇所識別IDや計測装置の内臓タイムスタンプを含んでデータを送信する機能(テレメータ(TM:Telemeter)などである)を備える。なお、GPSを利用した絶対時刻付きの電力情報(電圧のフェーザ情報)を計測する装置や、位相計測装置(PMU:Phasor Measurement Units)や、他の計測機器であってもよい。また計測装置150は、狭義の電力系統100A内にあるように記述しているが、発電機110と変圧器130と計測装置150と負荷に接続する母線や線路などに設置されてもよい。
また計測信号D24は、計測装置150にて計測された前記の各データ(状態変数データ)であり、通信ネットワーク300を介して系統データベースDB24に受信する。ただし、計測装置150から直接系統データを受信する代わりに、監視制御装置200に一端集約されてから、通信ネットワーク300を介して状態変数データベースDB24に受信してもよいし、計測装置150と監視制御装置200の両方から通信ネットワーク300を介して状態変数データベースDB24に受信してもよい。なお、状態変数データD24は、データを識別するための固有番号と、タイムスタンプとを含んでもよい。また、状態変数データD24は、計測されたデータであるように書いたが、あらかじめ系統データベースに保有していても良い。
図2に示した電力系統安定化装置10のハード構成について説明する。電力系統安定化装置10は、表示部15、キーボードやマウス等の入力部13、通信部14、コンピュータや計算機サーバ(CPU:Central Processing Unit)11、メモリ12、電力系統安定化計算入力データベースDB20(系統モデルデータベースDB21、特徴状態変数データベースDB22、系統安定性計算要否判定閾値データベースDB23、状態変数データベースDB24、系統構成パターンデータベースDB25、潮流状態作成条件データベースDB26、制御対象候補計算条件データベースDB27)、電力系統安定化計算結果データベースDB40(想定故障シナリオ作成結果データベースDB41、潮流状態作成結果データベースDB42、系統安定性計算結果データベースDB43、制御テーブル計算結果データベースDB44、系統安定性計算要否状態範囲抽出結果データベースDB45、系統安定性計算要否判定結果データベースDB46、制御対象決定結果データベースDB47、制御対象候補計算結果データベースDB401)、プログラムデータベースDB50が、バス線60に接続されている。
このうち表示部15は、例えば、ディスプレイ装置として構成される。また表示部15は、例えば、ディスプレイ装置に代えて、またはディスプレイ装置と共に、プリンタ装置または音声出力装置等を用いる構成でもよい。
入力部13は、例えば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置等の少なくともいずれか一つを備えて構成できる。
通信部14は、通信ネットワーク300に接続するための回路及び通信プロトコルを備えている。
CPU11は、プログラムデータベースDB50から、所定のコンピュータプログラムを読み込んで実行する。CPU11は、一つまたは複数の半導体チップとして構成してもよいし、または、計算サーバのようなコンピュータ装置として構成してもよい。
メモリ12は、例えば、RAM(Random Access Memory)として構成され、プログラムデータベース50から読み出されたコンピュータプログラムを記憶したり、各処理に必要な計算結果データ及び画像データ等を記憶したりする。メモリ12に格納された画面データは、表示部15に送られて表示される。表示される画面の例は後述する。
ここで、図3を参照して、プログラムデータベースDB50の記憶内容を説明する。図3は、電力系統安定化装置10のプログラムデータの内容を示す構成例を示す図である。プログラムデータベースDB50には、例えば、想定故障シナリオ作成プログラムP51と、潮流状態作成プログラムP52と、系統安定性計算プログラムP53と、制御対象候補計算プログラムP501と、制御テーブル計算プログラムP54と、系統安定性計算要否状態範囲抽出プログラムP55と、状態推定プログラムP56と、系統安定性計算要否判定プログラムP57と、制御対象決定プログラムP58と、制御指令プログラムP59と、表示プログラムP502が格納されている。
図2に戻り、CPU11は、プログラムデータベースDB50からメモリ12に読み出された演算プログラム(想定故障シナリオ作成プログラムP51、潮流状態作成プログラムP52、系統安定性計算プログラムP53、制御対象候補計算プログラムP501、制御テーブル計算プログラムP54、系統安定性計算要否状態範囲抽出プログラムP55、状態推定プログラムP56、系統安定性計算要否判定プログラムP57、制御対象決定プログラムP58、制御指令プログラムP59、表示プログラムP502)を実行して、想定故障シナリオの作成、潮流状態の作成、電力系統の安定性計算、電力系統の安定化制御対象候補計算、制御テーブル作成、電力系統のオンライン安定性計算の必要な状態範囲と不要な状態範囲の抽出、電力系統のオンライン安定性計算の要否判定、制御対象の決定、制御指令、表示すべき画像データの指示、各種データベース内のデータの検索等を行う。
メモリ12は表示用の画像データ、系統安定性計算要否判定結果データ、制御対象決定結果データ等の計算一時データ及び計算結果データを一旦格納するメモリであり、CPU11によって必要な画像データを生成して表示部15(例えば表示ディスプレイ画面)に表示する。なお、電力系統安定化装置10の表示部15は、各制御プログラムやデータベースの書き換えを行うためだけの簡単な画面だけであってもよい。
電力系統安定化装置10には、大きく分けて16個のデータベースDBが格納されている。以下では、プログラムデータベースDB50を除く、電力系統安定化計算入力データベースDB20(系統モデルデータベースDB21、特徴状態変数データベースDB22、系統安定性計算要否判定閾値データベースDB23、状態変数データベースDB24、系統構成パターンデータベースDB25、潮流状態作成条件データベースDB26、制御対象候補計算条件データベースDB27)と、電力系統安定化計算結果データベースDB40(想定故障シナリオ作成結果データベースDB41、潮流状態作成結果データベースDB42、系統安定性計算結果データベースDB43、制御対象候補計算結果データベースDB401、制御テーブル計算結果データベースDB44、系統安定性計算要否状態範囲抽出結果データベースDB45、系統安定性計算要否判定結果データベースDB46、制御対象決定結果データベースDB47)について説明する。
まず系統モデルデータベースDB21には、系統モデルデータD21が、系統構成、線路インピーダンス(R+jX)、対地静電容量(アドミタンス:Y)、系統構成と状態推定に必要なデータ(バットデータの閾値など)、発電機データ、その他の潮流計算・状態推定・時系列変化計算に必要なデータとして記憶されている。なお、手動で入力する際には、入力部13によって手動で入力し記憶する。なお、入力の際はCPU11によって必要な画像データを生成して表示部15に表示する。入力の際は、補完機能を利用して、大量のデータを設定できるように半手動にしてもよい。
特徴状態変数データベースDB22には、特徴状態変数データD22が図4に示すように、想定故障シナリオにおける故障箇所(D221)、故障様相(D222)、状態変数の電力系統における箇所(D223)、種類(D224)などのデータとして記憶されている。故障様相(D222)としては、3φ6LG(ABCA’B’C’)などであり、これは三相六線地絡事故でA相とB相とC相とA’相とB’相とC’相が地絡したことを表している。各想定故障シナリオに対する特徴状態変数の箇所および種類は、例えば、あらかじめ電力系統の安定性や安定化制御対象および量との相関が大きいものを抽出しておく。特徴状態変数の数が多くなるほどオンライン安定化計算の精度が向上するが、潮流状態作成部32における計算量が多くなるため、各想定故障シナリオに対する電力系統の安定性の程度に応じて特徴状態変数の数を変更できるようにするのがよい。
系統安定性計算要否判定閾値データベースDB23には、系統安定性計算要否判定閾値データD23が、数値などのデータとして記憶されている。値が大きくなるほど電力系統の安定性計算が必要な範囲が増加するので、オンライン安定化計算の精度が向上するが、制御対象決定部37におけるオンライン計算量が大きくなるため、電力系統安定化計算の所望の精度に応じて値を変更できるようにするのがよい。
状態変数データベースDB24には、状態変数データD24が図5に示すように、状態変数の電力系統における箇所(D241)、種類(D242)、値(D243)などのデータとして記憶されている。状態変数の種類(D242)としては、有効電力P、無効電力Q、電圧V、電圧位相角δ、電流I、力率Φなどである。時刻スタンプ付きデータやPMUデータでもよい。例えば、電力系統100に接続するノード120Bや120Cにおける電圧および電圧位相角と、電力系統100に接続するノード120Bや120Cに接続するブランチ140Bや140Cの線路潮流(P+jQ)と、電力系統100に接続するノード120Bや120Cに接続する変圧器130Aや130Bの線路潮流(P+jQ)と、変圧器130Aや130Bに接続するノード120Aや120Dの電圧Vおよび電圧位相角δと、ノード120Aや120Dに接続する発電機110Aや110Bの有効電力Pや無効電力Qや力率Φと、計測装置150や監視制御装置200などから通信ネットワークを介して計測する電力系統100に接続するその他のノードやブランチや発電機や負荷や制御装置などの有効電力Pや無効電力Qや力率Φや電圧Vおよび電圧位相角δなどが記憶されている。なお、電圧位相角δは、PMUやGPSを利用した他の計測機器を利用して計測したものでもよい。なお、計測装置は、VTやPTなどである。VTやPTなどで計測した電流Iと電圧Vと力率Φから線路潮流(P+jQ)を計算することができる。また、状態推定計算プログラムP56の計算結果である、もっともらしい系統の各ノード、ブランチ、発電機、負荷、制御機器の有効電力P、無効電力Q、電圧V、電圧位相角δ、電流I、力率Φ、を推定計算した結果も、系統計測データとして保存しておく。
系統構成パターンデータベースDB25には、系統構成パターンデータD25が図6に示すように、電力系統における箇所(D251)、状態(D252)などのデータとして記憶されている。箇所(D251)は対象とする電力系統の送電線などであり、状態は送電線の入切などである。系統構成パターンの数は、多くなるほど潮流状態作成部32および系統安定性計算部33における計算量が多くなるため、例えば、あらかじめ運用実績データ等を基に頻度の高い系統構成パターンを抽出しておく。また、あらかじめ電力系統の安定性への影響が近い系統構成を分類しておき、各分類の代表の系統構成パターンを抽出しておいても良い。
潮流状態作成条件データベースDB26には、潮流状態作成条件データD26が図17に示すように、数値の変更対象(D261)、変更対象の種類(D262)、数値の最大値(D263)、数値の最小値(D264)、数値の変更刻み(D265)などのデータとして記憶されている。変更対象の種類ごとに最大値と最小値を設定することで、作成する潮流状態の数を制限できる。これにより、潮流状態作成部32における計算量を低減できる。値の変更刻みは、小さくなるほど電力系統安定化計算の精度が向上するが、潮流状態作成部32における演算量が多くなるため、所望の電力系統安定化制御精度に応じて変更刻みの大きさを変更できるようにするのがよい。
制御対象候補計算条件データベースDB27には、制御対象候補計算条件データD27が図18に示すように、安定性の種類(D271)、指標(D272)、閾値(D273)などのデータとして記憶されている。安定性の種類は過渡安定性(過渡安定度とも言う)、電圧安定性、過負荷、定態安定度などであり、指標は発電機の内部操作角、安定余裕、線路潮流、電力系統の特性行列の固有値などであるが、その他の指標を用いても良い。
図1の電力系統安定化計算結果データベースDB40において、想定故障シナリオ作成結果データベースDB41には、系統モデルデータD21と系統構成パターンデータD25を用いて、想定故障シナリオ作成プログラムP51によって作成された想定故障シナリオ作成結果データD41が保存される。図7は、想定故障シナリオの作成結果の例を示しており、故障箇所(D411)と故障様相(D412)などのデータが記憶されている。想定故障シナリオの作成方法は後述する。
潮流状態作成結果データベースDB42には、想定故障シナリオ作成結果データD41と系統モデルデータD21と状態変数データD24と系統構成パターンデータD25を用いて、潮流状態作成プログラムP52によって作成された潮流状態作成結果データD42が保存される。図8は、潮流状態作成結果の例を示しており、対象(D421)と種類(D422)と値(D423)などのデータが記憶されている。対象は、電力系統に存在する発電機と負荷、種類については、発電機は有効電力Pと電圧V、負荷は有効電力Pと無効電力Qなどである。潮流状態の作成方法は後述する。
系統安定性計算結果データベースDB43には、潮流状態作成結果データD42と系統モデルデータD21と系統構成パターンデータD25を用いて、系統安定性計算プログラムP53によって計算された系統安定性計算結果データD43が保存される。系統安定性の計算方法は後述する。
制御対象候補計算結果データベースDB401には、系統安定性計算結果データD43と制御対象候補計算条件データD27を用いて、制御対象候補計算プログラムP501によって計算された制御対象候補計算結果データD401が保存される。制御対象候補の計算方法は後述する。
制御テーブル計算結果データベースDB44には、想定故障シナリオ作成結果データD41と潮流状態作成結果データD42と制御対象候補計算結果データD401を用いて、制御テーブル計算プログラムP54によって計算された制御テーブル計算結果データD44が保存される。図9は、制御テーブル作成結果の例を示しており、各想定故障シナリオ(D441)、各特徴状態変数の値(D441、D442)、そのときの制御対象候補(D444)などのデータが記憶されている。特徴状態変数の数は、図9では例として二つの場合を示しているが、想定故障シナリオごとに特徴状態変数データD22に記憶されている対応する特徴状態変数の数だけ存在する。制御テーブルの計算方法は後述する。
系統安定性計算要否状態範囲抽出結果データベースDB45には、制御テーブル計算結果データD44と系統安定性計算要否判定閾値データD23を用いて、系統安定性計算要否状態範囲抽出プログラムP55によって抽出された系統安定性計算要否判定結果データD46が保存される。図10は、系統安定性計算要否状態範囲抽出結果の例を示しており、各想定故障シナリオ(D451)、各状態変数の範囲(D452、D453)、その範囲のときの制御対象候補(D454)、系統安定性計算の要否判定結果(D455)などのデータが記憶されている。系統安定性計算要否状態範囲の抽出方法は後述する。
系統安定性計算要否判定結果データベースD46には、系統安定性計算要否状態範囲抽出結果データD46と状態変数データD24を用いて、系統安定性計算要否判定プログラムP57によって判定された系統安定性計算要否判定結果データD46が保存される。系統安定性計算要否の判定方法は後述する。
制御対象決定結果データベースD47には、系統安定性計算要否判定結果データD46を用いて、制御対象決定プログラムによって決定された制御対象決定結果データD47が保存される。制御対象の決定方法は後述する。
次に電力系統安定化装置10の演算処理内容の一例について図11と図12を用いて説明する。図11と図12は、電力系統安定化装置10の処理の全体を示すフローチャートの例であり、図11はオフライン処理、図12はオンライン処理である。
まず、図11を用いてオフライン処理の流れを説明する。処理ステップS100では、系統モデルデータD21と状態変数データD24を用いて、想定故障シナリオを作成し、想定故障シナリオ作成結果データベースD41に格納する。
次に電力系統安定化装置10の演算処理内容の一例について図11と図12を用いて説明する。図11と図12は、電力系統安定化装置10の処理の全体を示すフローチャートの例であり、図11はオフライン処理、図12はオンライン処理である。
まず、図11を用いてオフライン処理の流れを説明する。処理ステップS100では、系統モデルデータD21と状態変数データD24を用いて、想定故障シナリオを作成し、想定故障シナリオ作成結果データベースD41に格納する。
処理ステップS200では、想定故障シナリオ作成結果データD41と系統モデルデータD21と状態変数データD24と系統構成パターンデータD25と潮流状態作成条件データD26を用いて、潮流状態を作成し、作成結果を潮流状態作成結果データベースDB42に格納する。
ここで、図13を用いて図11の処理ステップS200による潮流状態作成の流れをさらに詳細に説明する。図13は、図1の潮流状態作成部32の処理を説明するフローチャートの例である。
処理ステップS201では、潮流状態作成条件データD26に記憶されている発電機の組合せを選択する。
処理ステップS202では、潮流状態作成条件データD26に記憶されている負荷の組合せを選択する。
処理ステップS203では、処理ステップS201で選択した発電機の組合せにおける各発電機の有効出力および端子電圧を設定する。
処理ステップS204では、処理ステップS202で選択した負荷の組合せにおける各負荷の有効負荷値および無効負荷値を設定する。
処理ステップS205では、処理ステップS203と処理ステップS204で設定した各発電機出力および各負荷値に基づいて潮流計算する。潮流計算の方法は、例えば、横山明彦、太田宏次、「電力系統安定化システム工学」、電気学会、2014、pp.45-
48、に記載の計算方法などに即して行う。
48、に記載の計算方法などに即して行う。
処理ステップS206では、処理ステップS205の潮流計算が収束したか否かを判定する。潮流計算が収束した場合には、処理ステップS207へ進み、潮流計算が収束しない場合には、処理ステップS208へ進む。
処理ステップS207では、処理ステップS205の潮流計算の結果を潮流状態作成結果データベースDB42に保存する。
処理ステップS208では、処理ステップS202で選択した負荷組合せに対し、選択した負荷の全ての有効負荷値と無効負荷値が潮流状態作成条件データD26に記憶されている最大値または最小値になっているか否か判定する。最大値または最小値になっている場合には、処理ステップS209へ進む。最大値または最小値になっていない場合には、処理ステップS204へ戻る。
処理ステップS209では、処理ステップS201で選択した発電機組合せに対し、選択した発電機の全ての出力と端子電圧が潮流状態作成条件データD26に記憶されている最大値または最小値になっているか否か判定する。最大値または最小値になっている場合には、処理ステップS210へ進む。最大値または最小値になっていない場合には、処理ステップS203へ戻る。
処理ステップS210では、全ての負荷の組合せを選択済みか否か判定する。選択済みの場合には、処理ステップS211へ進む。選択済みでない場合には、処理ステップS201へ戻る。
処理ステップS211では、全ての発電機の組合せを選択済みか否か判定する。選択済みの場合には、処理ステップS200を終了する。選択済みでない場合には、処理ステップS201に戻る。
以上により、運用で想定される様々な潮流状態データを効率的に作成することができる。
図11に戻り、処理ステップS500では、潮流状態作成結果データD42と系統モデルデータD21と系統構成パターンデータD25を用いて、電力系統の安定性を計算し、計算結果を系統安定性計算結果データDB43に保存する。安定性は、例えば、横山明彦、太田宏次、「電力系統安定化システム工学」、電気学会、2014、pp.54-57
、に記載の計算方法などに即して行った数値シミュレーション結果を基に計算する。安定性には、例えば、過渡安定性、電圧安定性などがある。過渡安定性の計算指標は、例えば、同期発電機の内部操作角などであり、基準発電機の内部操作角との偏差が閾値を超過した場合に過渡不安定と判定する。電圧安定性の計算指標は、例えば、横山明彦、太田宏次、「電力系統安定化システム工学」、電気学会、2014、pp.42-45、に記載のP-V曲線の安定余裕などであり、安定余裕が閾値を超過した場合に電圧不安定と判定する。
、に記載の計算方法などに即して行った数値シミュレーション結果を基に計算する。安定性には、例えば、過渡安定性、電圧安定性などがある。過渡安定性の計算指標は、例えば、同期発電機の内部操作角などであり、基準発電機の内部操作角との偏差が閾値を超過した場合に過渡不安定と判定する。電圧安定性の計算指標は、例えば、横山明彦、太田宏次、「電力系統安定化システム工学」、電気学会、2014、pp.42-45、に記載のP-V曲線の安定余裕などであり、安定余裕が閾値を超過した場合に電圧不安定と判定する。
これにより、種々の電力系統の安定性を判定できる。
処理ステップS600では、系統安定性計算結果データD43と制御対象候補計算条件データD27を用いて、電力系統の安定化制御対象候補を計算し、計算結果を制御対象候補計算結果データDB401に保存する。制御対象候補の計算方法は、例えば、過渡安定性に対しては、基準発電機との内部操作角の偏差が制御対象候補計算条件データD27に記載されている閾値を超過した同期発電機を制御対象候補として設定する。また、横山明彦、太田宏次、「電力系統安定化システム工学」、電気学会、2014、pp.189-191に記載のオンラインTSCシステム搭載の方法などに即して行っても良い。電圧安定性に対しては、安定余裕が制御対象候補計算条件データD27に記載されている閾値を超過するような同期発電機を制御対象候補として設定する。なお、前記計算方法は一例であり、その他の計算方法を使用しても良い。
これにより、種々の電力系統の安定性に対して制御対象を計算できる。
処理ステップS700では、処理ステップS200で作成した全潮流状態を選択済みか否か判定する。選択済みの場合には、処理ステップS800に進む。選択済みでない場合には、処理ステップS400に戻る。
処理ステップS700では、処理ステップS200で作成した全潮流状態を選択済みか否か判定する。選択済みの場合には、処理ステップS800に進む。選択済みでない場合には、処理ステップS400に戻る。
処理ステップS800では、処理ステップS100で作成した全想定故障シナリオを選択済みか否か判定する。選択済みの場合には、処理ステップS900に進む。選択済みでない場合には、処理ステップS300に戻る。
処理ステップS900では、想定故障シナリオ作成結果データD41と潮流状態作成結果データD42と制御対象候補計算結果データD401を用いて、各想定故障シナリオに対する制御テーブルを計算し、計算結果を制御テーブル作成結果データベースDB44に保存する。
これにより、想定故障と潮流状態の組合せに対して制御対象候補が定まるため、オンライン処理時に計測した任意の状態変数データに対してオンライン系統安定性計算の要否を判定できる。
処理ステップS1000では、制御テーブル計算結果データD44と系統安定性計算要否判定閾値データD23を用いて、電力系統の安定性計算の必要な状態範囲と不要な状態範囲を抽出し、系統安定性計算要否状態範囲抽出結果データベースDB45に保存する。
ここで、図14を用いて図11の処理ステップS1000による系統安定性計算要否状態範囲抽出の流れをさらに詳細に説明する。図14は、図1の系統安定性計算要否状態範囲抽出部35の処理を説明するフローチャートの例である。
処理ステップS1001では、特徴状態変数のうち一つを選択する。
処理ステップS1002では、処理ステップS1001で選択した特徴状態変数に対し、処理ステップS900で作成した制御テーブル中のプロット点を一つ増加させる。
処理ステップS1003では、処理ステップS1002の処理によって、制御テーブル中の制御対象が変化したか否か判定する。変化した場合には、処理ステップS1004に進む。変化しない場合には、処理ステップS1002に戻る。
処理ステップS1004では、系統安定性計算要フラグが存在するか否か判定する。存在する場合には、処理ステップS1005に進む。存在しない場合には、処理ステップS1007に進む。
処理ステップS1005では、現在のプロット点の制御テーブル中の値から系統安定性計算要否判定閾値を加えた値を系統安定性計算要上限値として設定する。
処理ステップS1006では、系統安定性計算要フラグを解除する。
処理ステップS1007では、現在のプロット点の制御テーブル中の値から系統安定性計算要否判定閾値を差し引いた値を系統安定性計算要下限値として設定する。
処理ステップS1008では、系統安定性計算要フラグを設定する。
処理ステップS1009では、選択した状態変数の制御テーブル中のプロット点を増加可能か否か判定する。増加可能な場合には、処理ステップS1002に戻る。増加可能でない場合には、処理ステップS1010に進む。
処理ステップS1010では、処理ステップS1007で設定した系統安定性計算要下限値から処理ステップS1005で設定した系統安定性計算要上限値までの範囲を系統安定性計算要範囲に設定する。
処理ステップS1011では、処理ステップS1010で設定した系統安定性計算要範囲以外の範囲を系統安定性計算不要範囲に設定する。
処理ステップS1012では、制御テーブル中にプロット点を増加可能な特徴状態変数が存在するか否か判定する。存在する場合、処理ステップS1013に進む。存在しない場合、処理ステップS1000を終了する。
処理ステップS1013では、選択した特徴状態変数以外のプロット点を増加可能な特徴状態変数のプロット点を一つ増加する。
これにより、オンライン処理時に計測した状態変数データから即座にオンライン系統安定性の計算要否を判定できる。
次に、図12を用いてオンライン処理の流れを説明する。処理ステップS1100では、状態変数データD24を用いて、もっともらしい電力系統の状態を推定し、状態変数データベースDB24に保存する。
処理ステップS1200では、系統安定性要否状態範囲抽出結果データD45と状態変数データD24を用いて、電力系統の安定性計算の要否を判定し、判定結果を系統安定性計算要否判定結果データベースDB46に保存する。
ここで、図15を用いて、図12の処理ステップS1200による系統安定性要否状態範囲抽出の流れをさらに詳細に説明する。図12は、図1の系統安定性計算要否判定部36の処理を説明するフローチャートの例である。
処理ステップS1201では、状態変数データD24のうち特徴状態変数の値が系統安定性計算要範囲に存在するか否かを判定する。存在する場合には、処理ステップS1202に進む。存在しない場合には、処理ステップS1203に進む。
処理ステップS1202では、系統安定性計算要フラグを設定する。
処理ステップS1203では、系統安定性計算要否状態範囲抽出結果データD45を用いて、系統安定性要否状態範囲抽出結果データD45中の特徴状態変数の値における制御対象候補を制御対象に設定する。
これにより、処理ステップS1200でオンライン系統安定性計算が不要と判定した場合、制御対象を即座に決定できる。
図12に戻り、処理ステップS1300では、系統安定性計算要フラグが存在するか否か判定する。存在する場合には、処理ステップS1700に進む。存在しない場合には、処理ステップS1600に進む。
処理ステップS1400では、電力系統の安定性を計算する。安定性の計算方法は、例えば、処理ステップS500と同様である。
処理ステップS1500では、系統安定性計算要フラグを解除する。
処理ステップS1600では、電力系統の安定化制御対象を決定する。制御対象の決定方法は、例えば、処理ステップS600と同様である。
処理ステップS1700では、処理ステップS1600または処理ステップS1203で設定した制御対象に制御指令する。
以上により、オンライン計算時間を短縮することができる。このようにして得られた各種計算結果や計算途中でメモリに蓄積されるデータは、監視制御装置200の画面に逐次表示されてもよい。これにより、運用者が電力系統安定化装置10の運用状況を容易に把握できる。
ここで、図16を参照して具体的な表示内容の例について説明する。図16は、実際に発生した故障シナリオ161と、故障シナリオに対する特徴状態変数163と、特徴状態変数の値166と、系統安定性計算要否判定結果162と、制御対象決定結果165と、系統安定性計算要否状態範囲抽出結果169と、系統安定性計算要否状態範囲抽出結果における表示対象の特徴状態変数164を表示したものである。系統安定性計算要否状態範囲抽出結果は図9では表形式になっているが、図16のようにグラフ表示にしてもよい。また、図16の表示には系統図167や凡例168も併せて表示されることにより、利用者が理解しやすい表示形式とされている。
図16のように、電力系統安定化計算結果を電力系統安定化装置10や通信ネットワーク300を介して監視制御装置200の画面に表示することで、電力系統100において、どの発電機を制御したかが一目でわかる効果がある。
また、特徴状態変数が複数存在する場合、系統安定性計算要否状態範囲抽出結果における表示対象の特徴状態変数164を選択し、選択した特徴状態変数に対する系統安定性計算要否状態範囲抽出結果を確認することができる。
以上説明した実施例1の電力系統安定化装置では、系統モデルデータD21と系統構成パターンデータD25を用いて想定故障シナリオを作成し、想定故障シナリオ作成結果データD41と系統モデルデータD21と状態変数データD24と系統構成パターンデータD25と潮流状態作成条件データD26を用いて潮流状態を作成し、潮流状態作成結果データD42と系統モデルデータD21と系統構成パターンデータD25を用いて電力系統の安定性を計算し、系統安定性計算結果データD43と制御対象候補計算条件データD27を用いて電力系統の安定化制御対象候補を計算し、想定故障シナリオ作成結果データD41と潮流状態作成結果データD42と制御対象候補計算結果データD401を用いて制御テーブルを計算し、制御テーブル計算結果データD44と系統安定性計算要否判定閾値データD23を用いて電力系統のオンライン安定性計算が必要な状態範囲と不要な状態範囲を抽出し、系統安定性計算要否状態範囲抽出結果データD45と状態変数データD24を用いて電力系統のオンライン安定性計算の要否を判定し、系統安定性計算要否判定結果データD46を用いて制御対象を決定し、制御対象決定結果データD47を用いて制御指令し、指令結果と各計算結果の表示を行うものである。
また実施例1では、電力系統安定化装置10を電力系統に適用して電力系統安定化システムを構成したものである。
実施例1では、電力系統安定化装置10について説明した。この装置は、オンライン演算時に計測した状態変数データに対して系統安定性計算要否を計算するのみであり、系統安定性計算時から制御指令時までの時間に潮流が変動した場合に、安定化制御が失敗する恐れがある。実施例2では、潮流変動時の系統安定化性能を向上させる電力系統安定化装置について一例を説明する。
具体的には実施例2では、系統安定性計算要否状態範囲抽出結果データD45と状態変数データD24と状態変数変動量データD28を用いて、系統安定性計算要否判定部36で系統安定性計算要否を判定することで、潮流変動時の系統安定化性能を向上させる電力系統安定化装置を構成する。
具体的には実施例2では、系統安定性計算要否状態範囲抽出結果データD45と状態変数データD24と状態変数変動量データD28を用いて、系統安定性計算要否判定部36で系統安定性計算要否を判定することで、潮流変動時の系統安定化性能を向上させる電力系統安定化装置を構成する。
図19は、実施例2に係る電力系統安定化装置の一例を示している。図19の系統安定化装置1000は、図1の電力系統安定化装置10に、状態変数変動量データD28を追加設置したものである。
これにより電力系統安定化装置1000の入力データとしては、系統モデルデータD221、特徴状態変数データD22、系統安定性計算要否判定閾値データD23、状態変数データD24、系統構成パターンデータD25、潮流状態作成条件データD26、制御対象候補計算条件データD27以外に、状態変数変動量データD28が追加されている。
また電力系統安定化装置1000の結果データとしては、図1の電力系統安定化装置10と同じである。
また電力系統安定化装置1000の機能は系統安定性計算要否判定処理部36を除いて図1の電力系統安定化装置10と同じである。系統安定性計算要否判定処理部36では、系統安定性計算要否状態範囲抽出結果データD45と状態変数データD24と状態変数変動量データD28を用いて、電力系統の安定性計算の要否を判定し、系統安定性計算要否判定結果データベースD46を出力する。系統安定性計算要否判定結果データD46は、系統安定性計算要否判定結果データベースDB46に保存される。
図20は、実施例2における電力系統安定化装置1000のハード構成と電力系統100のシステム全体構成図の例であり、図2に示した実施例1における電力系統安定化装置10と電力系統100の全体構成図に、状態変数変動量データベースDB28がバス線60に接続され、追加設置されたものになっている。図20のうち、既に説明した図2に示された同一の符号を付された構成と、同一機能を有する部分については、説明を省略する。
電力系統安定化装置1000には、大きく分けて17個のデータベースが格納される。以下においては、既に説明済みのデータベースの説明を割愛して、新規に追加された状態変数変動量データベースDB28について説明する。
状態変数変動量データベースDB28には、状態変数変動量データD28が図21に示すように、状態変数の箇所(D281)、種類(D282)、変動量(D283)などのデータとして記憶されている。状態変数の変動量D283としては、例えば、あらかじめ求めておいた系統安定性計算時から制御指令時までの時間内の想定する最大の変動量などである。これにより、系統安定性計算時から制御指令時内の潮流変動発生時にも潮流状態に応じた系統安定性要否を判定することができる。
次に、電力系統安定化装置1000の計算処理内容について説明する。電力系統安定化装置1000の処理の全体を示すフローチャートは図11および図12と同じであるが、図12の処理ステップS1200の内容が異なる。このため、処理ステップS1200について説明する。
処理ステップS1200では、系統安定性計算要否状態範囲抽出結果データD45と状態変数データD24と状態変数変動量データD28を用いて、電力系統の安定性計算の可否を判定し、系統安定性計算要否判定結果データベースDB46に保存する。
ここで、図22を用いて図12の処理ステップS1200による系統安定性計算要否判定の流れを説明する。図22は、図19の系統安定性計算要否判定部36の処理を説明するフローチャートの例である。
処理ステップS1204では、状態変数データD24の値に対応する状態変数変動量データD28の値を加えたデータのうち特徴状態変数の値が系統安定性計算要範囲に存在するか否かを判定する。存在する場合には、処理ステップS1202に進む。存在しない場合には、処理ステップS1205に進む。
処理ステップS1205では、系統安定性計算要否状態範囲抽出結果データD45中の特徴状態変数の値に状態変数変動量データ中の特徴状態変数の変動量の値を加えた値に対する制御対象候補を制御対象に設定する。
処理ステップS1202は、図15の同一符号の処理ステップの内容と同じである。
これにより、処理ステップS1200でオンライン系統安定性計算が不要と判定した場合、系統安定性計算時から制御指令時内の潮流変動発生時にも系統安定化可能な制御対象を即座に決定できる。
ここで、図23を参照して具体的な表示内容の例について説明する。図23は、電力系統安定化装置10の表示画面(図16)と基本的には同じであるが、状態変数変動量2310を新たに加えて表示したものである。系統安定性計算要否状態範囲抽出結果は図9では表形式になっているが、図23のようにグラフ表示にしてもよい。また、図23の表示には系統図237や凡例238も併せて表示されることにより、利用者が理解しやすい表示形式とされている。
図23のように、電力系統安定化計算結果を電力系統安定化装置1000や通信ネットワーク300を介して監視制御装置200の画面に表示することで、電力系統100において、どの発電機を制御したかが一目でわかる効果がある。
また、特徴状態変数が複数存在する場合、系統安定性計算要否状態範囲抽出結果における表示対象の特徴状態変数164を選択し、選択した特徴状態変数に対する系統安定性計算要否状態範囲抽出結果を確認することができる。
以上説明した実施例2の電力系統安定化装置では、系統モデルデータD21と系統構成パターンデータD25を用いて想定故障シナリオを作成し、想定故障シナリオ作成結果データD41と系統モデルデータD21と状態変数データD24と系統構成パターンデータD25と潮流状態作成条件データD26を用いて潮流状態を作成し、潮流状態作成結果データD42と系統モデルデータD21と系統構成パターンデータD25を用いて電力系統の安定性を計算し、系統安定性計算結果データD43と制御対象候補計算条件データD27を用いて電力系統の安定化制御対象候補を計算し、想定故障シナリオ作成結果データD41と潮流状態作成結果データD42と制御対象候補計算結果データD401を用いて制御テーブルを計算し、制御テーブル計算結果データD44と系統安定性計算要否判定閾値データD23を用いて電力系統の安定性計算が必要な状態範囲と不要な状態範囲を抽出し、系統安定性計算要否状態範囲抽出結果データD45と状態変数データD24と状態変数変動量データD28を用いて電力系統の安定性計算の要否を判定し、系統安定性計算要否判定結果データD46を用いて制御対象を決定し、制御対象決定結果データD47を用いて制御指令し、指令結果と各計算結果の表示を行うものである。
実施例2では、電力系統安定化装置1000を電力系統に適用して電力系統安定化システムを構成したものである。
実施例2によれば、以上により系統安定性計算時から制御指令時までの時間に潮流が変動した場合の系統安定化性能を向上させることができる。
10:電力系統安定化装置
11:CPU
12:メモリ
13:入力部
14:通信部
15:表示部
30:電力系統安定化計算部
31:想定故障シナリオ作成部
32:潮流状態作成部
33:系統安定性計算部
301:制御対象候補計算部
34:制御テーブル計算部
35:系統安定性計算要否状態範囲抽出部
36:系統安定性計算要否判定部
37:制御対象決定部
38:制御指令部
60:バス線
100:電力系統
110A、110B:発電機
120A、120B、120C、120D:ノード(母線)
130A、130B:変圧器
140A、140B、140C、140D:ブランチ(線路)
150:計測装置
200:監視制御装置
300:通信ネットワーク
1000:電力系統安定化装置
D20:電力系統安定化計算入力データ
DB20:電力系統安定化計算入力データベース
D21:系統モデルデータ
DB21:系統モデルデータベース
D22:特徴状態変数データ
DB22:特徴状態変数データベース
D23:系統安定性計算要否判定閾値データ
DB23:系統安定性計算要否判定閾値データベース
D24:状態変数データ
DB24:状態変数データベース
D25:系統構成パターンデータ
DB25:系統構成パターンデータベース
D26:潮流状態作成条件データ
DB26:潮流状態作成条件データベース
D27:制御対象候補計算条件データ
DB27:制御対象候補計算条件データベース
D40:電力系統安定化計算結果データ
DB40:電力系統安定化計算結果データベース
D41:想定故障シナリオ作成結果データ
DB41:想定故障シナリオ作成結果データベース
D42:潮流状態作成結果データ
DB42:潮流状態作成結果データベース
D43:系統安定性計算結果データ
DB43:系統安定性計算結果データベース
D401:制御対象候補計算結果データ
DB401:制御対象候補計算結果データベース
D44:制御テーブル計算結果データ
DB44:制御テーブル計算結果データベース
D45:系統安定性計算要否状態範囲抽出結果データ
DB45:系統安定性計算要否状態範囲抽出結果データベース
D46:系統安定性計算要否判定結果データ
DB46:系統安定性計算要否判定結果データベース
D47:制御対象決定結果データ
DB47:制御対象決定結果データベース
D50:プログラムデータ
DB50:プログラムデータベース
D28:状態変数変動量データ
DB28:状態変数変動量データベース
11:CPU
12:メモリ
13:入力部
14:通信部
15:表示部
30:電力系統安定化計算部
31:想定故障シナリオ作成部
32:潮流状態作成部
33:系統安定性計算部
301:制御対象候補計算部
34:制御テーブル計算部
35:系統安定性計算要否状態範囲抽出部
36:系統安定性計算要否判定部
37:制御対象決定部
38:制御指令部
60:バス線
100:電力系統
110A、110B:発電機
120A、120B、120C、120D:ノード(母線)
130A、130B:変圧器
140A、140B、140C、140D:ブランチ(線路)
150:計測装置
200:監視制御装置
300:通信ネットワーク
1000:電力系統安定化装置
D20:電力系統安定化計算入力データ
DB20:電力系統安定化計算入力データベース
D21:系統モデルデータ
DB21:系統モデルデータベース
D22:特徴状態変数データ
DB22:特徴状態変数データベース
D23:系統安定性計算要否判定閾値データ
DB23:系統安定性計算要否判定閾値データベース
D24:状態変数データ
DB24:状態変数データベース
D25:系統構成パターンデータ
DB25:系統構成パターンデータベース
D26:潮流状態作成条件データ
DB26:潮流状態作成条件データベース
D27:制御対象候補計算条件データ
DB27:制御対象候補計算条件データベース
D40:電力系統安定化計算結果データ
DB40:電力系統安定化計算結果データベース
D41:想定故障シナリオ作成結果データ
DB41:想定故障シナリオ作成結果データベース
D42:潮流状態作成結果データ
DB42:潮流状態作成結果データベース
D43:系統安定性計算結果データ
DB43:系統安定性計算結果データベース
D401:制御対象候補計算結果データ
DB401:制御対象候補計算結果データベース
D44:制御テーブル計算結果データ
DB44:制御テーブル計算結果データベース
D45:系統安定性計算要否状態範囲抽出結果データ
DB45:系統安定性計算要否状態範囲抽出結果データベース
D46:系統安定性計算要否判定結果データ
DB46:系統安定性計算要否判定結果データベース
D47:制御対象決定結果データ
DB47:制御対象決定結果データベース
D50:プログラムデータ
DB50:プログラムデータベース
D28:状態変数変動量データ
DB28:状態変数変動量データベース
Claims (12)
- 電力系統を安定化するための電力系統安定化装置であって、
系統モデルデータと系統構成パターンデータを用いて想定故障シナリオを作成する想定故障シナリオ作成部と、
前記想定故障シナリオの作成結果データと前記系統モデルデータと状態変数データと潮流状態作成条件データと前記系統構成パターンデータを用いて電力系統の潮流状態を作成する潮流状態作成部と、
前記潮流状態の作成結果データと前記系統モデルデータと前記系統構成パターンデータを用いて電力系統の系統安定性を計算する系統安定性計算部と、
前記系統安定性の計算結果データと制御対象候補計算条件データを用いて電力系統の安定化制御対象候補を計算する制御対象候補計算部と、
前記制御対象候補の計算結果データを用いて制御テーブルを計算する制御テーブル計算部と、
前記制御テーブルの計算結果データと系統安定性計算要否判定閾値データを用いて電力系統の安定性計算の必要な状態範囲と不要な状態範囲を抽出する系統安定性計算要否状態範囲抽出部と、
前記状態範囲の抽出結果データと前記状態変数データを用いて電力系統の安定性計算の要否を判定する系統安定性計算要否判定部と、
を備えることを特徴とする電力系統安定化装置。 - 請求項1に記載の電力系統安定化装置であって、
前記判定の結果データを用いて制御対象を決定する制御対象決定部と、
前記制御対象の決定結果データを用いて制御を指令する制御指令部を備えることを特徴とする電力系統安定化装置。 - 請求項1に記載の電力系統安定化装置であって、
前記潮流状態作成部は、潮流状態作成条件データにおける発電機および負荷の最大値および最小値および変更刻みを用いて発電機および負荷の値を変更し、潮流計算した結果を潮流状態として得ることを特徴とする、電力系統安定化装置。 - 請求項1に記載の電力系統安定化装置であって、
前記系統安定計算要否状態範囲抽出部は、前記制御テーブル内の前記特徴状態変数を増加させたときに制御対象候補が変化する値から系統安定性計算要否判定閾値を差し引いた値から、前記制御テーブル内の前記特徴状態変数を増加させたときに制御対象候補が変化しない値に系統安定性計算要否判定閾値を加えた値までの範囲を系統安定性計算要範囲に設定し、それ以外の範囲を系統安定性計算不要範囲に設定することを特徴とする、電力系統安定化装置。 - 請求項1に記載の電力系統安定化装置であって、
前記系統安定性計算要否判定部は、状態変数データにおける特徴状態変数データの値が前記状態範囲の抽出結果データにおける系統安定計算要範囲内である場合に系統安定性計算が必要と判定し、系統安定性計算不要範囲内である場合には特徴状態変数データの値に対する系統安定性計算要否状態範囲抽出結果データ中の制御対象候補を制御対象として設定することを特徴とする、電力系統安定化装置。 - 請求項1に記載の電力系統安定化装置であって、
前記系統安定性計算要否判定部は、状態変数データの値に対応する状態変数変動量データを加えたデータにおける特徴状態変数データの値が前記状態範囲の抽出結果データにおける系統安定計算要範囲内である場合に系統安定性計算が必要と判定し、系統安定性計算不要範囲内である場合には状態変数データの値に対応する状態変数変動量データを加えたデータの値に対する前記状態範囲の抽出結果データ中の制御対象候補を制御対象として設定することを特徴とする、電力系統安定化装置。 - 電力系統を安定化するための電力系統安定化方法であって、
系統モデルデータと系統構成パターンデータを用いて想定故障シナリオを作成し、前記想定故障シナリオの作成結果データと前記系統モデルデータと状態変数データと潮流状態作成条件データと前記系統構成パターンデータを用いて電力系統の潮流状態を作成し、前記潮流状態の作成結果データと前記系統モデルデータと前記系統構成パターンデータを用いて電力系統の系統安定性を計算し、前記系統安定性の計算結果データと制御対象候補計算条件データを用いて電力系統の安定化制御対象候補を計算し、前記制御対象候補の計算結果データを用いて制御テーブルを計算し、前記制御テーブルの計算結果データと系統安定性計算要否判定閾値データを用いて電力系統の安定性計算の必要な状態範囲と不要な状態範囲を抽出し、前記状態範囲の抽出結果データと前記状態変数データを用いて電力系統の安定性計算の要否を判定することを特徴とする電力系統安定化方法。 - 請求項7に記載の電力系統安定化方法であって、
前記判定の結果データを用いて制御対象を決定し、前記制御対象の決定結果データを用いて制御を指令することを特徴とする電力系統安定化方法。 - 請求項7に記載の電力系統安定化方法であって、
潮流状態作成条件データにおける発電機および負荷の最大値および最小値および変更刻みを用いて発電機および負荷の値を変更し、潮流計算した結果を潮流状態として得ることを特徴とする、電力系統安定化方法。 - 請求項7に記載の電力系統安定化方法であって、
前記制御テーブル内の前記特徴状態変数を増加させたときに制御対象候補が変化する値から系統安定性計算要否判定閾値を差し引いた値から、前記制御テーブル内の前記特徴状態変数を増加させたときに制御対象候補が変化しない値に系統安定性計算要否判定閾値を加えた値までの範囲を系統安定性計算要範囲に設定し、それ以外の範囲を系統安定性計算不要範囲に設定することを特徴とする、電力系統安定化方法。 - 請求項7に記載の電力系統安定化方法であって、
状態変数データにおける特徴状態変数データの値が前記系統安定性計算要否状態範囲抽出結果データにおける系統安定計算要範囲内である場合に系統安定性計算が必要と判定し、系統安定性計算不要範囲内である場合には特徴状態変数データの値に対する系統安定性計算要否状態範囲抽出結果データ中の制御対象候補を制御対象として設定することを特徴とする、電力系統安定化方法。 - 請求項7に記載の電力系統安定化方法であって、
状態変数データの値に対応する状態変数変動量データを加えたデータにおける特徴状態変数データの値が前記状態範囲の抽出結果データにおける系統安定計算要範囲内である場合に系統安定性計算が必要と判定し、系統安定性計算不要範囲内である場合には状態変数データの値に対応する状態変数変動量データを加えたデータの値に対する前記状態範囲の抽出結果データ中の制御対象候補を制御対象として設定することを特徴とする、電力系統安定化方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17855408.5T PL3522325T3 (pl) | 2016-09-28 | 2017-07-28 | Urządzenie i sposób do stabilizowania systemu elektroenergetycznego |
ES17855408T ES2922298T3 (es) | 2016-09-28 | 2017-07-28 | Aparato y método para estabilizar un sistema de energía |
EP17855408.5A EP3522325B1 (en) | 2016-09-28 | 2017-07-28 | Apparatus and method for stabilizing power system |
US16/315,363 US10804701B2 (en) | 2016-09-28 | 2017-07-28 | Apparatus and method for stabilizing power system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016188989A JP6695252B2 (ja) | 2016-09-28 | 2016-09-28 | 電力系統安定化装置および方法 |
JP2016-188989 | 2016-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018061450A1 true WO2018061450A1 (ja) | 2018-04-05 |
Family
ID=61763463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027363 WO2018061450A1 (ja) | 2016-09-28 | 2017-07-28 | 電力系統安定化装置および方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10804701B2 (ja) |
EP (1) | EP3522325B1 (ja) |
JP (1) | JP6695252B2 (ja) |
ES (1) | ES2922298T3 (ja) |
PL (1) | PL3522325T3 (ja) |
WO (1) | WO2018061450A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6933586B2 (ja) * | 2018-01-15 | 2021-09-08 | 株式会社東芝 | 電力系統安定化処理装置および電力系統安定化システム |
JP7163163B2 (ja) * | 2018-12-10 | 2022-10-31 | 株式会社東芝 | 電力系統安定化システム |
EP3751699B1 (de) * | 2019-06-13 | 2021-09-15 | Siemens Aktiengesellschaft | Verfahren und anordnung zur schätzung eines netzzustands eines energieverteilungsnetzes |
JP6852831B1 (ja) | 2020-07-22 | 2021-03-31 | 富士電機株式会社 | 制御装置、制御方法、およびプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05130737A (ja) * | 1991-09-10 | 1993-05-25 | Toshiba Corp | 電力系統監視装置 |
JP2007288878A (ja) * | 2006-04-14 | 2007-11-01 | Hitachi Ltd | 電力系統安定度判定方法及び装置 |
JP2011250638A (ja) * | 2010-05-28 | 2011-12-08 | Toshiba Corp | 系統安定化装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6906434B1 (en) | 1999-01-29 | 2005-06-14 | American Superconductor Corporation | Electric utility system with superconducting magnetic energy storage |
JP5399284B2 (ja) | 2010-02-05 | 2014-01-29 | 中国電力株式会社 | 電圧安定化装置、電圧安定化方法 |
JP5427762B2 (ja) * | 2010-12-16 | 2014-02-26 | 株式会社日立製作所 | 電力変換装置、電力変換装置の制御装置及び電力変換装置の制御方法 |
JP5984601B2 (ja) * | 2012-09-21 | 2016-09-06 | 株式会社日立製作所 | 系統制御装置および系統制御方法 |
JP6223833B2 (ja) * | 2014-01-09 | 2017-11-01 | 株式会社東芝 | 電力系統安定化装置 |
JP6397760B2 (ja) * | 2014-12-26 | 2018-09-26 | 株式会社日立製作所 | 電力系統安定化装置および方法 |
-
2016
- 2016-09-28 JP JP2016188989A patent/JP6695252B2/ja active Active
-
2017
- 2017-07-28 ES ES17855408T patent/ES2922298T3/es active Active
- 2017-07-28 US US16/315,363 patent/US10804701B2/en active Active
- 2017-07-28 PL PL17855408.5T patent/PL3522325T3/pl unknown
- 2017-07-28 WO PCT/JP2017/027363 patent/WO2018061450A1/ja unknown
- 2017-07-28 EP EP17855408.5A patent/EP3522325B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05130737A (ja) * | 1991-09-10 | 1993-05-25 | Toshiba Corp | 電力系統監視装置 |
JP2007288878A (ja) * | 2006-04-14 | 2007-11-01 | Hitachi Ltd | 電力系統安定度判定方法及び装置 |
JP2011250638A (ja) * | 2010-05-28 | 2011-12-08 | Toshiba Corp | 系統安定化装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3522325A4 * |
Also Published As
Publication number | Publication date |
---|---|
ES2922298T3 (es) | 2022-09-13 |
JP6695252B2 (ja) | 2020-05-20 |
US20190260205A1 (en) | 2019-08-22 |
EP3522325A4 (en) | 2020-05-06 |
US10804701B2 (en) | 2020-10-13 |
PL3522325T3 (pl) | 2022-08-16 |
EP3522325B1 (en) | 2022-07-06 |
EP3522325A1 (en) | 2019-08-07 |
JP2018057117A (ja) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018061450A1 (ja) | 電力系統安定化装置および方法 | |
JP6427090B2 (ja) | 発電量予測装置、発電量予測方法、系統安定化装置、並びに系統安定化方法 | |
Smon et al. | Local voltage-stability index using Tellegen's theorem | |
EP3297113B1 (en) | Device for controlling load frequency and method for controlling load frequency | |
Visconti et al. | Measurement-based load modeling using transfer functions for dynamic simulations | |
WO2018186001A1 (ja) | 電力系統安定化装置および電力系統安定化方法 | |
Chandak et al. | Robust power balancing scheme for the grid‐forming microgrid | |
Wiest et al. | Rapid identification of worst‐case conditions: improved planning of active distribution grids | |
Al Jabri et al. | Voltage stability assessment of a microgrid | |
Vaidya et al. | Contingency analysis of power network with STATCOM and SVC | |
Fu et al. | Phasor measurement application for power system voltage stability monitoring | |
Venkataramanan et al. | A two-step restoration scheme with der controllability for resilient distribution systems | |
Li et al. | Robust Optimal Reactive Power Dispatch against Line Parameters Uncertainty | |
Li et al. | An integrated dynamic voltage control strategy in active distribution network based on improved model predictive control | |
Pavlovsky et al. | Grids transfer capacity: calculation methodology and features | |
Ekwue et al. | Voltage stability analysis on the NGC system | |
Baleboina et al. | A survey on voltage stability indices for power system transmission and distribution systems | |
Ramírez-P et al. | Review and Classification of Indices for Voltage Stability Monitoring using PMU Measurements. | |
Pande et al. | Static Voltage Stability Analysis of Large Bus Power System | |
Villegas et al. | Probabilistic contingency severity index for dynamic reactive power planning | |
Tella et al. | Finding and ranking load bus voltage stability severity indexes due to load reactive power changing using user-defined and modified voltage stability indices | |
Li et al. | Power system load ranking for voltage stability analysis | |
Beshir et al. | New comprehensive reliability assessment framework for power systems | |
Stojkovic et al. | Application of software tools in power engineering calculations | |
Makri et al. | Mixed integer nonlinear programming for optimal placement and size of capacitors in RDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17855408 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017855408 Country of ref document: EP Effective date: 20190429 |