WO2018061374A1 - Conductive resin particles and use of same - Google Patents

Conductive resin particles and use of same Download PDF

Info

Publication number
WO2018061374A1
WO2018061374A1 PCT/JP2017/024195 JP2017024195W WO2018061374A1 WO 2018061374 A1 WO2018061374 A1 WO 2018061374A1 JP 2017024195 W JP2017024195 W JP 2017024195W WO 2018061374 A1 WO2018061374 A1 WO 2018061374A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive resin
resin particles
particles
conductive
weight
Prior art date
Application number
PCT/JP2017/024195
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 田中
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2018541923A priority Critical patent/JP6722766B2/en
Priority to CN201780060713.9A priority patent/CN109791813B/en
Priority to KR1020197004208A priority patent/KR102248989B1/en
Publication of WO2018061374A1 publication Critical patent/WO2018061374A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/288Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polypropylene-co-ethylene oxide in the alcohol moiety

Definitions

  • the present invention relates to conductive resin particles and uses thereof. More specifically, the present invention relates to conductive resin particles that can be suitably used in applications intended to express conductivity by bringing conductive resin particles into close contact with each other (conductive resin composition, Coating agent, film, and gap material).
  • Patent Document 1 A conductive particle powder made of one or more conductive fillers selected from products or alloys is disclosed.
  • the conductive particle powder has a hard conductive layer made of one or more conductive fillers selected from metals, metal oxides or alloys, the conductive resin particles are compressed.
  • the conductive resin particles are brought into close contact with each other, the adhesion between the conductive resin particles and the close contact between the conductive member (for example, electrode) and the conductive resin particles to be electrically connected by the conductive resin particles. Since the contact area between the conductive resin particles and the contact area between the conductive member and the conductive resin particles is small, the resistance during compression is high and good conductivity cannot be obtained.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to provide conductive resin particles having good conductivity, and a conductive resin composition, a coating agent, a film, and a gap material using the same. It is to provide.
  • the conductive resin particle of the present invention is a conductive resin particle having a core particle made of a polymer and a shell made of a conductive polymer that coats the core particle in order to solve the above problem.
  • the compressive strength at 10% compressive deformation is 0.1 to 30 MPa.
  • the core particles and the shell are both made of a polymer, and the compressive strength at the time of 10% compression deformation is 30 MPa or less. Therefore, the conductive resin particles are flexible and greatly deformed at the time of compression. Therefore, when the conductive resin particles are compressed and the conductive resin particles are brought into close contact with each other, the conductive member (for example, the conductive member intended to be electrically connected with the conductive resin particles or the conductive resin particles) The adhesion between the electrode) and the conductive resin particles is improved, and the contact area between the conductive resin particles and the contact area between the conductive member and the conductive resin particles are increased, so that the resistance during compression can be reduced. Good electrical conductivity can be obtained.
  • the conductive member for example, the conductive member intended to be electrically connected with the conductive resin particles or the conductive resin particles
  • the conductive resin composition of the present invention is characterized by containing the conductive resin particles of the present invention and a matrix resin in order to solve the above-mentioned problems.
  • the conductive resin composition having the above-described configuration includes the conductive resin particles of the present invention having good conductivity, the conductive resin composition having the above-described configuration is excellent in conductivity and antistatic properties. A molded product can be obtained.
  • the coating agent of the present invention is characterized by containing the conductive resin particles of the present invention and a binder resin in order to solve the above-mentioned problems.
  • the coating agent having the above-described configuration includes the conductive resin particles of the present invention having good conductivity, by applying the coating agent having the above-described configuration on a substrate, a conductive product (for example, a conductive film) or A product that can be suitably used as an antistatic product (for example, an antistatic film) can be obtained.
  • a conductive product for example, a conductive film
  • an antistatic product for example, an antistatic film
  • the film of the present invention is characterized by including the conductive resin particles of the present invention in order to solve the above problems.
  • the film having the above structure contains the conductive resin particles of the present invention having good conductivity, it can be suitably used as a conductive film or an antistatic film.
  • the gap material of the present invention is characterized by including the conductive resin particles of the present invention in order to solve the above-mentioned problems.
  • the gap material having the above-described structure includes the conductive resin particles of the present invention having good conductivity, it has conductivity and exhibits an antistatic function.
  • the present invention has the effect of providing conductive resin particles having good conductivity, and a conductive resin composition, coating agent, film, and gap material using the same.
  • the conductive resin particle of the present invention is a conductive resin particle having a core particle made of a polymer and a shell made of a conductive polymer that coats the core particle, and has a compressive strength at 10% compression deformation. 0.1 to 30 MPa.
  • the compressive strength at the time of 10% compression deformation of the conductive resin particles is 0.1 to 30 MPa, but preferably 0.1 to 17 MPa.
  • Conductive resin particles having a compressive strength at 10% compressive deformation of less than 0.1 MPa are inferior in mechanical strength and may be destroyed during use.
  • Conductive resin particles having a compressive strength of 10 MPa or less at 10% compressive deformation are obtained by compressing the conductive resin particles and bringing the conductive resin particles into close contact with each other.
  • compression strength at 10% compression deformation refers to compression strength at 10% compression deformation (hereinafter referred to as “10% compression strength”) obtained by the measurement method described in the section of Examples described later. ).
  • the conductive resin particles preferably have a volume average particle diameter of 1 to 200 ⁇ m.
  • the conductive resin particles have a volume average particle diameter of 1 ⁇ m or more, dispersibility in various solvents when used in a conductive paste or the like is improved, and good handling properties can be obtained.
  • the conductive resin particles have a volume average particle diameter of 200 ⁇ m or less, when the conductive resin particles are in close contact with each other, or when the conductive member and the conductive resin particles are in close contact, these The contact with each other is improved, and more conductive paths can be obtained.
  • “volume average particle diameter” means the volume average particle diameter obtained by the measurement method described in the Examples section described later.
  • the variation coefficient of the volume-based particle diameter of the conductive resin particles is preferably 10% or more, and more preferably in the range of 20% to 50%.
  • Conductive resin particles having a volume-based particle diameter variation coefficient of 10% or more (particularly 20% or more) are compared with conductive resin particles having the same composition and a volume-based particle diameter variation coefficient of 15% or less.
  • When the conductive resin particles are compressed so that the conductive resin particles are brought into close contact with each other in order to contain many conductive resin particles having a fine particle size (a particle size that is significantly smaller than the volume average particle size).
  • the conductive resin particles having many fine particle diameters enter between the other conductive resin particles to improve the filling rate.
  • volume-based variation coefficient of particle diameter means the variation coefficient of volume-based particle diameter obtained by the measurement method described in the section of Examples described later. It shall be.
  • the restoration rate of the conductive resin particles is preferably 15% or more and less than 30%, more preferably 15% or more and 25% or less, and further preferably 15% or more and 20% or less. Since the restoration rate of the conductive resin particles is 15% or more, even when the compressive stress is reduced after the conductive resin particles are compressed, the shape of the conductive resin particles is restored and the conductive resin is restored. The adhesion between particles can be maintained. Therefore, good electrical conductivity can be obtained stably. When the restoration rate of the conductive resin particles is less than 30%, it becomes easy to maintain the shape after the conductive resin particles are compressed, and as a result, good adhesion can be maintained.
  • the conductivity of the conductive resin particles of the present invention is preferably 5.0 ⁇ 10 ⁇ 3 to 5.0 ⁇ 10 ⁇ 1 (S / cm), preferably 9 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 1 ( S / cm) is more preferable, and 1 ⁇ 10 ⁇ 2 to 5 ⁇ 10 ⁇ 2 (S / cm) is even more preferable.
  • the conductivity of the conductive resin particles is not less than the lower limit of the above range, conductive resin particles having good conductivity can be realized.
  • the core particles may be a condensation polymer such as polyurethane or silicone polymer, but are preferably made of a vinyl monomer polymer.
  • the vinyl monomer may be a compound having at least one ethylenically unsaturated group (in a broad sense) and is a monofunctional vinyl monomer having one ethylenically unsaturated group. It may be a polyfunctional vinyl monomer having two or more ethylenically unsaturated groups.
  • Examples of the monofunctional vinyl monomers include monofunctional (meth) acrylic acid ester monomers described in detail later; styrene monomers such as styrene, p-methylstyrene, and ⁇ -methylstyrene; acetic acid And vinyl ester monomers such as vinyl. Of these, monofunctional (meth) acrylic acid ester monomers are preferred as monofunctional vinyl monomers.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid
  • (meth) acrylate” means acrylate and / or methacrylate.
  • polyfunctional vinyl monomer the following general formula (I) (Wherein R 1 is hydrogen or a methyl group, and n is an integer of 1 to 4), a monomer represented by the general formula (II), the following general formula (II) (Wherein R 2 is hydrogen or a methyl group, and m is an integer of 5 to 15), 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol Di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, diethylene glycol di (meth) acrylate phthalate , Caprolactone-modified dipentaerythritol hexa (meth) acrylate, caprolactone-modified hydroxypivalate ester ne
  • Examples thereof include polyfunctional (meth) acrylic acid ester monomers having an unsaturated group; aromatic divinyl monomers such as divinylbenzene, divinylnaphthalene, and derivatives thereof.
  • aromatic divinyl monomers such as divinylbenzene, divinylnaphthalene, and derivatives thereof.
  • the monomer represented by the general formula (I), the monomer represented by the general formula (II), and urethane acrylate are preferable.
  • These vinyl monomers can be used alone or in combination of two or more.
  • the core particles are composed of a monofunctional (meth) acrylic acid ester monomer and the following general formula (I) (Wherein R 1 is hydrogen or a methyl group, and n is an integer of 1 to 4), and a monomer mixture (vinyl monomer) polymer is included. It is preferable that Since this polymer is a polymer having a crosslinked structure, it is possible to impart resilience to the core particles. Therefore, when this polymer is contained in the core particles, conductive resin particles having a good restoration rate can be realized.
  • the monofunctional (meth) acrylate monomer is not particularly limited.
  • Acrylic esters such as ethylhexyl; methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, glycidyl methacrylate, methacryl Tetrahydrofurfuryl acid, diethylaminoethyl methacrylate, trifluoroethyl methacrylate, heptadecafluorodecyl methacrylate, n-butyl methacrylate, t-butyl
  • alkyl acrylates having an alkyl group with 1 to 12 carbon atoms are preferred, and alkyl acrylates with an alkyl group having 1 to 8 carbon atoms are more preferred.
  • the 10% compressive strength of the core particles can be lowered, so that it becomes easy to realize conductive resin particles having a 10% compressive strength that is not more than the upper limit of the above-described range.
  • the content of the monofunctional (meth) acrylate monomer in the monomer mixture is preferably 70 to 99 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • Examples of the monomer represented by the general formula (I) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate. Is mentioned.
  • ethylene glycol di (meth) acrylate is particularly preferable, and when ethylene glycol di (meth) acrylate is used as the monomer represented by the general formula (I), The solvent resistance of the conductive resin particles can be more effectively improved with respect to the addition amount.
  • the content of the monomer represented by the general formula (I) in the monomer mixture is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • the polymer of the monomer mixture contained in the core particle includes the following general formula (II ) (Wherein R 2 is hydrogen or a methyl group, and m is an integer of 5 to 15).
  • Examples of the monomer represented by the general formula (II) include pentaethylene glycol di (meth) acrylate, hexaethylene glycol di (meth) acrylate, heptaethylene glycol di (meth) acrylate, and octaethylene glycol di (meth). ) Acrylate, nonaethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, tetradecaethylene glycol di (meth) acrylate, pentadecaethylene glycol di (meth) acrylate and the like.
  • the content of the monomer represented by the general formula (II) in the monomer mixture is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the monomer mixture. More preferably, it is a part.
  • the monomer mixture may contain a monomer other than the monomers described above.
  • the monomer mixture may contain other monofunctional vinyl monomers copolymerizable with the monofunctional (meth) acrylic acid ester monomer.
  • examples of other monofunctional vinyl monomers copolymerizable with the monofunctional (meth) acrylic acid ester monomer include the aforementioned styrene monomers and the aforementioned vinyl ester monomers. . These other monofunctional vinyl monomers can be used alone or in combination of two or more.
  • the monomer mixture may contain other polyfunctional vinyl monomers other than those represented by the general formula (I) and the general formula (II).
  • other polyfunctional vinyl monomers include the above-mentioned polyfunctional (meth) acrylic acid ester monomers and the above-mentioned aromatic divinyl monomers.
  • the said vinylic monomer contains the monomer which has hydrophilic groups, such as a carboxy group and a hydroxy group, as a part, and contains the (meth) acrylic acid ester which has an alkylene oxide group.
  • the hydrophilic groups such as a carboxy group and a hydroxy group
  • the (meth) acrylic acid ester which has an alkylene oxide group Is more preferable.
  • hydrophilicity can be provided to the core particle surface.
  • the shell is formed by oxidative polymerization of the monomer in the dispersion liquid in which the core particles are dispersed in the aqueous medium, the core particles can be easily dispersed into the primary particles in the aqueous medium.
  • Individual core particles can be coated with a shell.
  • the (meth) acrylic acid ester having an alkylene oxide group include compounds represented by the following general formula.
  • R 3 represents H or CH 3
  • R 4 and R 5 are different and represent an alkylene group selected from C 2 H 4 , C 3 H 6 , C 4 H 8 , and C 5 H 10.
  • P is 0 to 50
  • q is 0 to 50 (provided that p and q are not 0 at the same time)
  • R 6 represents H or CH 3 .
  • a commercially available product can be used as the (meth) acrylic acid ester having an alkylene oxide group.
  • Examples of commercially available products include the Bremer (registered trademark) series manufactured by NOF Corporation. Further, in the Blemmer (registered trademark) series, Blemmer (registered trademark) 50 PEP-300 (R 3 is CH 3 , R 4 is C 2 H 5 , R 5 is C 3 H 6 , p and q are p on average.
  • Blemmer® PP-1000 R 3 is CH 3 , R 4 Is C 2 H 5 , R 5 is C 3 H 6 , p is 0, q is a mixture of 4 to 6 on average, R 6 is H)
  • Blemmer® PME-400 R 3 is CH is 3, R 4 is C 2 H 5, R 5 is C 3 H 6, a mixture of p is on average 9, q is 0, R 6 CH 3 a is), and the like are suitable.
  • the amount of the (meth) acrylic acid ester having an alkylene oxide group is preferably 40% by weight or less, more preferably 1 to 15% by weight, more preferably 2% by weight based on the total amount of the vinyl monomer. More preferred is ⁇ 10% by weight, and especially preferred is 3 to 7% by weight.
  • the polymerization stability may be lowered and the number of coalesced particles may be increased.
  • the vinyl monomer preferably includes a urethane acrylate oligomer as a polyfunctional vinyl monomer together with a monofunctional vinyl monomer such as a (meth) acrylate monomer.
  • a monofunctional vinyl monomer such as a (meth) acrylate monomer.
  • the urethane acrylate oligomer preferably exhibits a glass transition temperature (Tg) (measured from viscoelasticity) of 0 to 30 ° C. when cured alone. When Tg is less than 0 ° C., the core particles may become sticky. When Tg is 30 ° C. or lower, conductive resin particles having high recoverability can be obtained.
  • Tg shown when the urethane acrylate oligomer is cured alone is more preferably 0 to 28 ° C., and further preferably 0 to 25 ° C.
  • the urethane acrylate oligomer preferably exhibits a pencil hardness of H to HB when cured alone.
  • conductive resin particles having a higher restoration rate can be obtained.
  • Examples of commercially available urethane acrylate oligomers include “New Frontier (registered trademark) RST-402” and “New Frontier (registered trademark) RST-” of New Frontier (registered trademark) RST series manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • New Frontier (registered trademark) series urethane acrylate oligomer such as “201”, and UF series “UF-A01P” manufactured by Kyoeisha Chemical Co., Ltd.
  • the core particle of the present invention is made of a polymer of a vinyl monomer, it can be obtained by polymerizing the vinyl monomer.
  • the polymerization method known methods for obtaining resin particles such as emulsion polymerization, dispersion polymerization, suspension polymerization, seed polymerization and the like can be used.
  • the suspension polymerization is a method of polymerizing a vinyl monomer in an aqueous medium.
  • the aqueous medium include water and a mixture of water and a water-soluble organic solvent (for example, a lower alcohol having 5 or less carbon atoms).
  • the above suspension polymerization may be performed in the presence of a polymerization initiator, if necessary.
  • the polymerization initiator include oil-soluble properties such as benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, and t-butyl hydroperoxide.
  • peroxides include oil-soluble azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile). These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is about 0.1 to 1 part by weight with respect to 100 parts by weight of the vinyl monomer.
  • the suspension polymerization may be performed in the presence of a dispersant and / or a surfactant as necessary.
  • a dispersant include poorly water-soluble inorganic salts such as calcium phosphate and magnesium pyrophosphate; water-soluble polymers such as polyvinyl alcohol, methyl cellulose, and polyvinyl pyrrolidone.
  • surfactant examples include anionic surfactants such as sodium oleate, sodium lauryl sulfate, sodium dodecylbenzene sulfonate, alkyl naphthalene sulfonate, and alkyl phosphate ester salt; polyoxyethylene alkyl ether, polyoxy Nonionic surfactants such as ethylene alkylphenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester; amphoteric surfactants such as lauryl dimethylamine oxide, etc. Can be mentioned.
  • anionic surfactants such as sodium oleate, sodium lauryl sulfate, sodium dodecylbenzene sulfonate, alkyl naphthalene sulfonate, and alkyl phosphate ester salt
  • polyoxyethylene alkyl ether polyoxy Noni
  • the above dispersants and surfactants can be used alone or in combination of two or more.
  • a poorly water-soluble phosphate dispersant such as calcium phosphate and magnesium pyrophosphate
  • an anionic surfactant such as alkyl sulfate and alkyl benzene sulfonate.
  • the amount of the dispersant used is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer, and the amount of the surfactant used is 0 with respect to 100 parts by weight of the aqueous medium. It is preferably 0.01 to 0.2 parts by weight.
  • an oil phase containing the vinyl monomer is prepared, and the aqueous phase in which the oil phase is dispersed is heated while the prepared oil phase is dispersed in an aqueous phase containing an aqueous medium.
  • a polymerization initiator is mixed with the said vinylic monomer, and an oil phase is prepared.
  • a dispersing agent and / or surfactant a dispersing agent and / or surfactant are mixed with an aqueous medium, and an aqueous phase is prepared.
  • the volume average particle diameter of the core particles can be appropriately controlled by adjusting the mixing ratio of the oil phase and the aqueous phase, the amount of dispersant, the amount of surfactant used, the stirring conditions, and the dispersion conditions.
  • Examples of the method for dispersing the oil phase in the aqueous phase include a method in which the oil phase is directly added to the aqueous phase and the oil phase is dispersed as droplets in the aqueous phase by stirring force of a propeller blade or the like; A method in which an oil phase is directly added to a phase and the oil phase is dispersed in an aqueous phase using a homomixer that is a disperser using a high shear force composed of a rotor and a stator; There are various methods such as a method of directly adding and dispersing the oil phase in the aqueous phase using an ultrasonic disperser or the like.
  • the oil phase is directly added to the aqueous phase, and using a high-pressure disperser such as a microfluidizer or nanomizer (registered trademark), the droplets of the mixture collide with each other or the mixture collides with the machine wall.
  • a high-pressure disperser such as a microfluidizer or nanomizer (registered trademark)
  • the oil phase is dispersed as a droplet in the aqueous phase using an MPG; the oil phase is pressed into the aqueous phase through an MPG (microporous glass) porous film, etc. This is preferable because the diameters can be more uniform.
  • the polymerization temperature is preferably about 40 to 90 ° C.
  • the time for maintaining this polymerization temperature is preferably about 0.1 to 10 hours.
  • the polymerization reaction may be performed in an inert gas atmosphere that is inert to the reactant (oil phase) in the polymerization reaction system, such as a nitrogen atmosphere. If the boiling point of the vinyl monomer is near or below the polymerization temperature, use a pressure-resistant polymerization facility such as an autoclave so that the vinyl monomer does not volatilize. It is preferable to perform suspension polymerization in
  • the desired core particles can be obtained by decomposing and removing the dispersant with an acid or the like, and performing filtration, water washing, dehydration, drying, pulverization, classification, and the like.
  • seed particles are added to an aqueous emulsion composed of a vinyl monomer and an aqueous medium.
  • the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, a lower alcohol having 5 or less carbon atoms).
  • the aqueous medium preferably contains a surfactant.
  • a surfactant any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a zwitterionic surfactant can be used.
  • anionic surfactant examples include fatty acid soaps such as sodium oleate and castor oil potash soap, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, alkyl Naphthalene sulfonate, alkane sulfonate, dialkylsulfosuccinate such as sodium di (2-ethylhexyl) sulfosuccinate, alkenyl succinate (dipotassium salt), alkyl phosphate ester salt, naphthalene sulfonate formalin condensate, poly Oxyethylene alkyl phenyl ether sulfate, polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene lauryl ether sulfate, polyoxyethylene alkyl sulfate Ether
  • cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • zwitterionic surfactant examples include lauryl dimethylamine oxide and phosphate ester or phosphite ester surfactants. You may use the said surfactant individually or in combination of 2 or more types. Of the above surfactants, anionic surfactants are preferred from the viewpoint of dispersion stability during polymerization.
  • the aqueous emulsion can be prepared by a known method.
  • an aqueous emulsion can be obtained by adding a vinyl monomer to an aqueous medium and dispersing it with a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer.
  • the vinyl monomer may contain a polymerization initiator as necessary.
  • the polymerization initiator may be premixed with the vinyl monomer and then dispersed in an aqueous medium, or a mixture of both separately dispersed in an aqueous medium.
  • the particle diameter of the vinyl monomer droplets in the obtained aqueous emulsion is preferably smaller than the seed particles because the vinyl monomers are efficiently absorbed by the seed particles.
  • the seed particles may be added directly to the aqueous emulsion, or may be added in a form in which the seed particles are dispersed in an aqueous dispersion medium.
  • the vinyl monomers are absorbed into the seed particles. This absorption can usually be carried out by stirring the aqueous emulsion after addition of seed particles at room temperature (about 20 ° C.) for 1 to 12 hours. Further, absorption may be promoted by heating the aqueous emulsion to about 30 to 50 ° C.
  • the seed particles swell by absorbing the vinyl monomer.
  • the mixing ratio of the vinyl monomer to the seed particles is preferably in the range of 5 to 150 parts by weight of the vinyl monomer with respect to 1 part by weight of the seed particles, and in the range of 10 to 120 parts by weight. More preferably.
  • the mixing ratio of the vinyl monomer to the seed particles is small, the increase in particle diameter due to polymerization is small, and thus productivity may be lowered.
  • the mixing ratio of the vinyl monomer to the seed particles increases, the vinyl monomer may not be completely absorbed by the seed particles, and may be suspended and polymerized uniquely in an aqueous medium to generate abnormal particles. The end of absorption can be determined by confirming the enlargement of the particle diameter by observation with an optical microscope.
  • a polymerization initiator can be added to the aqueous emulsion as necessary.
  • the polymerization initiator include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexano , Organic peroxides such as di-t-butyl peroxide, 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2′-azobis (2,4- And azo compounds such as dimethylvaleronitrile).
  • the polymerization initiator is preferably used in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • the core particles are obtained by polymerizing the vinyl monomer absorbed in the seed particles.
  • the polymerization temperature is appropriately selected according to the type of vinyl monomer and polymerization initiator.
  • the polymerization temperature is preferably in the range of 25 to 110 ° C, more preferably in the range of 50 to 100 ° C.
  • the polymerization reaction is preferably performed by raising the temperature after the monomer and the polymerization initiator are completely absorbed by the seed particles.
  • the core particles are centrifuged as necessary to remove the aqueous medium, washed with water and a solvent, and then dried and isolated.
  • a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the core particles.
  • the polymer dispersion stabilizer for example, polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, etc.), polyvinyl pyrrolidone and the like can be used.
  • these polymer dispersion stabilizers and inorganic water-soluble polymer compounds such as sodium tripolyphosphate can be used in combination.
  • polyvinyl alcohol and polyvinyl pyrrolidone are preferable as the polymer dispersion stabilizer.
  • the addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • water-soluble polymerization inhibitors such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, and polyphenols may be used. Good.
  • the shell is made of a conductive polymer.
  • the conductive polymer may be a polyaniline polymer, a polyisothianaphthene polymer, or the like, but it is easy to form a more uniform shell, and conductive resin particles having desired conductivity can be obtained. Therefore, the polymer is preferably a polymer of at least one monomer selected from the group consisting of a nitrogen-containing heteroaromatic compound and a sulfur-containing heteroaromatic compound.
  • nitrogen-containing heteroaromatic compound examples include pyrrole, indole, imidazole, pyridine, pyrimidine, pyrazine, and alkyl-substituted products thereof (for example, alkyl having 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, butyl).
  • alkyl-substituted products thereof for example, alkyl having 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, butyl.
  • a substituted group), a halogen-substituted product for example, a substituted group by a halogen group such as a fluoro group, a chloro group, and a bromo group
  • a derivative such as a nitrile-substituted product.
  • a polymer of pyrrole and a derivative of pyrrole is preferable as the nitrogen-containing heteroaromatic compound because a more uniform shell is easily formed and conductive resin particles having desired conductivity can be obtained.
  • pyrrole derivatives include 3,4-dimethylpyrrole.
  • thiophene and thiophene derivatives are preferable as the nitrogen-containing aromatic compound because conductive resin particles having desired conductivity can be obtained.
  • thiophene derivatives include 3,4-ethylenedioxythiophene, 3-methylthiophene, and 3-octylthiophene. These monomers can be used alone to form a homopolymer, or two or more types can be used in combination to form a copolymer.
  • the thickness of the shell is preferably in the range of 30 to 300 nm, and more preferably in the range of 50 to 200 nm. If the thickness of the shell is within the above range, sufficient conductivity can be obtained.
  • the thickness fluctuation of the shell is preferably 50% or less, and more preferably 40% or less.
  • the conductive polymer constituting the shell is at least one monomer selected from the group consisting of a nitrogen-containing heteroaromatic compound and a sulfur-containing heteroaromatic compound (hereinafter, simply “single”).
  • a polymer called “mer” it can be produced by a method in which the core particle is coated with the monomer polymer.
  • the core particles are coated with the monomer polymer by dispersing the core particles in an aqueous medium containing an oxidizing agent to form a dispersion (emulsion or suspension).
  • a method is preferred in which a monomer is added and stirred, and the surface of the core particles is coated with the monomer polymer by oxidative polymerization.
  • the amount of the monomer added may be set according to the desired conductivity, and is preferably in the range of 1 to 30 parts by weight, preferably 3 to 20 parts by weight, with respect to 100 parts by weight of the core particles. Is more preferable.
  • the addition amount of the monomer is 1 part by weight or more with respect to 100 parts by weight of the core particle, and the entire surface of the core particle is uniformly coated with the polymer of the monomer to obtain desired conductivity. Is possible.
  • the addition amount of the monomer 30 parts by weight or less with respect to 100 parts by weight of the core particles the added monomer is polymerized alone, and other than the intended conductive resin particles can be obtained. Can be prevented.
  • the oxidizing agent includes inorganic acids such as hydrochloric acid, sulfuric acid and chlorosulfonic acid, organic acids such as alkylbenzenesulfonic acid and alkylnaphthalenesulfonic acid, metal halogens such as ferric chloride and aluminum chloride. And halogen acids such as potassium perchlorate, potassium persulfate, ammonium persulfate, sodium persulfate, peroxides such as hydrogen peroxide, and the like. These may be used alone or in combination.
  • an alkali metal salt of an inorganic peracid is preferable. Specific examples of the alkali metal salt of inorganic peracid include potassium persulfate and sodium persulfate.
  • the amount of the oxidizing agent used is preferably 0.5 to 2.0 molar equivalents relative to the total amount of monomers.
  • the amount of the oxidizing agent used 0.5 mole equivalent or more with respect to the total amount of the monomer, the entire surface of the core particle is uniformly coated with the shell containing the monomer polymer, and the desired conductivity is obtained. Can be obtained.
  • the use amount of the oxidizing agent 2.0 mol equivalent or less with respect to the total amount of the monomer the added monomer is polymerized alone, and other than the intended conductive resin particles can be obtained. Can be prevented.
  • the aqueous medium to which the oxidizing agent is added is not particularly limited as long as it can dissolve or disperse the monomer, but water or water and methanol, ethanol, n-propanol, isopropanol, n- Examples include alcohols such as butanol and t-butanol; ethers such as diethyl ether, isopropyl ether, butyl ether, methyl cellosolve, and tetrahydrofuran; and mixed media with ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
  • the aqueous medium to which the oxidizing agent is added preferably has a pH of 3 or more. If the pH is 3 or more, the entire surface of the core particle is uniformly covered with a shell containing a monomer polymer, and desired conductivity can be obtained. For stable coating, it is more preferable to adjust the pH to a range of 3 to 10.
  • Surfactant A surfactant may be added to the aqueous medium.
  • the surfactant any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used.
  • anionic surfactant examples include fatty acid soaps such as sodium oleate and castor oil potash soap, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, alkyl Sulfonates, alkyl naphthalene sulfonates, alkane sulfonates, dialkyl sulfosuccinates, alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl sulfates Etc.
  • fatty acid soaps such as sodium oleate and castor oil potash soap
  • alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, Examples thereof include oxyethylene-oxypropylene block polymers.
  • cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • the zwitterionic surfactant examples include lauryl dimethylamine oxide, phosphate ester-based or phosphite-based surfactant. You may use the said surfactant individually or in combination of 2 or more types.
  • the addition amount of the surfactant is preferably in the range of 0.0001 to 1 part by weight with respect to 100 parts by weight of the aqueous medium.
  • a polymer dispersion stabilizer may be added to the aqueous medium.
  • the polymer dispersion stabilizer include polyacrylic acid, copolymers thereof and neutralized products thereof, and polymethacrylic acid, copolymers thereof and neutralized products thereof, polyvinylpyrrolidone, hydroxypropylcellulose (HPC) and the like. Is mentioned.
  • the polymer dispersion stabilizer may be used in combination with the above-described surfactant.
  • the core particles are dispersed in an aqueous medium containing an oxidizing agent to form a dispersion, and a monomer is added to the dispersion.
  • a monomer is added to the dispersion.
  • conductive resin particles in which the core particles are coated with the polymer of the monomer are obtained.
  • the temperature of oxidative polymerization is preferably in the range of ⁇ 20 to 40 ° C., and the time of oxidative polymerization is preferably in the range of 0.5 to 10 hours.
  • the emulsion in which the conductive resin particles are dispersed is centrifuged as necessary to remove the aqueous medium, washed with water and a solvent, and then dried and isolated.
  • the method for coating the core particle with the polymer the method of oxidative polymerization of the monomer by mixing the monomer in an aqueous medium containing the core particle and the oxidizing agent has been described.
  • the method for coating the polymer is not limited to this method.
  • a method of coating the core particles with a polymer using a dry method may be employed.
  • the dry method include a method using a ball mill, a method using a V-type mixer, a method using a high-speed fluidized dryer, a method using a hybridizer, and a mechano-fusion method.
  • the conductive resin particles of the present invention can be suitably used in applications intended to develop conductivity by bringing conductive resin particles into close contact with each other.
  • the conductive resin particle of the present invention is a conductive paste for electrical connection in an electronic circuit board or the like (in which conductive particles are dispersed in a binder resin).
  • Conductive ink that can form a conductive film for electrical connection (contained with conductive particles dispersed in a solution in which binder resin is dissolved in a solvent), conductivity of conductive rollers used for transfer rollers, etc. It can be used as conductive particles used for elastic layers (those in which conductive particles are dispersed in an elastic body), antiblocking agents, and the like.
  • the conductive resin composition of the present invention contains the conductive resin particles of the present invention and a matrix resin.
  • the conductive resin composition of the present invention can be produced by mixing the conductive resin particles of the present invention with a matrix resin.
  • the matrix resin examples include polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyamide 6, polyamide 66, polyamide 12, ABS resin (acrylonitrile-butadiene-styrene copolymer resin), AS resin (acrylonitrile-styrene copolymer resin), polyethylene, Polypropylene, polyacetal, polyamide imide, polyether sulfone, polyimide, polyphenylene oxide, polyphenylene sulfide, polystyrene, thermoplastic polyurethane elastomer, thermoplastic polyester elastomer, thermoplastic polyamide elastomer, polyvinyl chloride, polyvinylidene fluoride, ethylene tetrafluoroethylene Polymer (ETFE resin), tetrafluoroethylene perfluoroa Kill vinyl ether copolymer (PFA resin), one or more of a mixture of a thermoplastic resin such as polyether ketone may be used.
  • the conductive resin particles are preferably added in an amount of 1 to 200 parts by weight with respect to 100 parts by weight of the matrix resin.
  • Suitable functional fillers may be appropriately added to the conductive resin composition depending on the function required for the target molded product.
  • the functional filler include reinforcing fibers such as glass fibers and carbon fibers, flame retardants, matting agents, heat stabilizers, light stabilizers, colorants, and lubricants.
  • the conductive resin composition of the present invention is formed into a molded product by mixing (kneading) the matrix resin, conductive resin particles, and other functional fillers as appropriate, and molding the mixture into a required shape by hot pressing. be able to.
  • the matrix resin, conductive resin particles, and other functional fillers contained as appropriate are mixed (kneaded) appropriately in a heated state and formed into pellets. It can be used as a molded product by extrusion molding or injection molding. By these, the molded article excellent in electroconductivity and antistatic property can be obtained.
  • the coating agent of the present invention contains the conductive resin particles of the present invention and a binder resin.
  • the binder resin is not particularly limited as long as it is used in the field according to required properties such as transparency, dispersibility of conductive resin particles, light resistance, moisture resistance, and heat resistance. It is not something.
  • the binder resin include (meth) acrylic resins; (meth) acrylic-urethane resins; urethane resins; polyvinyl chloride resins; polyvinylidene chloride resins; melamine resins; styrene resins; Resins; phenolic resins; epoxy resins; polyester resins; silicone resins such as alkylpolysiloxane resins; (meth) acrylic-silicone resins, silicone-alkyd resins, silicone-urethane resins, silicone-polyester resins Modified silicone resins such as fluorinated resins such as polyvinylidene fluoride and fluoroolefin vinyl ether polymers.
  • the binder resin is preferably a curable resin capable of forming a crosslinked structure by a crosslinking reaction from the viewpoint of improving the durability of the coating agent.
  • the curable resin can be cured under various curing conditions.
  • the curable resin is classified into an ionizing radiation curable resin such as an ultraviolet curable resin and an electron beam curable resin, a thermosetting resin, a hot air curable resin, and the like depending on the type of curing.
  • thermosetting resin examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin.
  • the ionizing radiation curable resin synthesized from polyfunctional (meth) acrylate resin such as polyhydric alcohol polyfunctional (meth) acrylate; diisocyanate, polyhydric alcohol, and (meth) acrylic acid ester having a hydroxy group And polyfunctional urethane acrylate resins.
  • the ionizing radiation curable resin is preferably a polyfunctional (meth) acrylate resin, and more preferably a polyhydric alcohol polyfunctional (meth) acrylate having three or more (meth) acryloyl groups in one molecule.
  • polyhydric alcohol polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in one molecule specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetra (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, tripentaerythritol hexaacrylate, etc. That. Two or more kinds of the ionizing radiation curable resins may be used
  • polyether resins having an acrylate functional group polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used.
  • a photopolymerization initiator is added to the ultraviolet curable resin to obtain a binder resin.
  • a photoinitiator it is preferable to use what was suitable for the ultraviolet curable resin to be used.
  • Examples of the photopolymerization initiator include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, ⁇ -hydroxyalkylphenones, ⁇ -aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, peroxides (Described in JP-A No. 2001-139663), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, ⁇ -acyloximes
  • Examples include esters.
  • acetophenones examples include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropio.
  • examples include phenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
  • benzoins examples include benzoin, benzoin benzoate, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzophenones examples include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone, p-chlorobenzophenone, and the like.
  • phosphine oxides examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • Examples of the ketals include benzylmethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • Examples of the ⁇ -hydroxyalkylphenones include 1-hydroxycyclohexyl phenyl ketone.
  • Examples of the ⁇ -aminoalkylphenones include 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1-propanone.
  • radical photopolymerization initiators include trade names “Irgacure (registered trademark) 651” (2,2-dimethoxy-1,2-diphenylethane-1-one) manufactured by BASF Japan Ltd., manufactured by BASF Japan Ltd. Trade name “Irgacure (registered trademark) 184”, and trade name “Irgacure (registered trademark) 907” (2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) manufactured by BASF Japan Ltd. ) -1-propanone) and the like.
  • the amount of the photopolymerization initiator used is usually in the range of 0.5 to 20% by weight, preferably in the range of 1 to 5% by weight with respect to 100% by weight of the binder resin.
  • thermoplastic resin As the binder resin, a thermoplastic resin can be used in addition to the curable resin.
  • the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; homopolymers and copolymers of vinyl acetate, homopolymers and copolymers of vinyl chloride, and vinylidene chloride.
  • Vinyl resins such as homopolymers and copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; homopolymers and copolymers of acrylate esters, homopolymers and copolymers of methacrylate esters, etc.
  • Acrylic resin polystyrene resin; polyamide resin; linear polyester resin; polycarbonate resin.
  • the coating agent may further contain water and / or an organic solvent.
  • the organic solvent is not particularly limited as long as it can be easily applied to the base film by including it in the coating agent. It is not something.
  • the organic solvent include aromatic solvents such as toluene and xylene; alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and propylene glycol monomethyl ether; Ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether, ethylene Glycol ethers such as glycol diethyl ether, diethylene glycol diethyl ether,
  • the film of the present invention contains the conductive resin particles of the present invention.
  • the film of the present invention has, for example, a configuration in which a coating agent containing conductive resin particles and a binder resin is applied onto a base film.
  • the film having this configuration can be suitably used as a conductive film or an antistatic film.
  • the base film is preferably transparent.
  • the transparent base film include polyester polymers such as polyethylene terephthalate (hereinafter abbreviated as “PET”) and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose (TAC), and polycarbonate polymers.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • polycarbonate polymers such as polycarbonate
  • a film made of a polymer such as a polymer or an amide polymer such as nylon or aromatic polyamide is also included.
  • imide polymer sulfone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenyl sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral
  • films made of polymers such as polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers.
  • the substrate film a film having a particularly low birefringence is preferably used.
  • the film which further provided the easily bonding layer in the film which consists of these polymers can also be used as the said base film.
  • the easy-adhesion layer can be formed of a resin such as a (meth) acrylic resin, a copolymerized polyester resin, a polyurethane resin, a styrene-maleic acid graft polyester resin, or an acrylic graft polyester resin.
  • a resin such as a (meth) acrylic resin, a copolymerized polyester resin, a polyurethane resin, a styrene-maleic acid graft polyester resin, or an acrylic graft polyester resin.
  • (meth) acryl means acryl or methacryl.
  • the thickness of the base film can be determined as appropriate, but is generally within the range of 10 to 500 ⁇ m and within the range of 20 to 300 ⁇ m from the viewpoints of workability such as strength and handling, and thin layer properties. Preferably, it is more preferably in the range of 30 to 200 ⁇ m.
  • an additive may be added to the base film.
  • the additive include an ultraviolet absorber, an infrared absorber, an antistatic agent, a refractive index adjuster, and an enhancer.
  • the coating agent can be applied to the base film by bar coating, blade coating, spin coating, reverse coating, die coating, spray coating, roll coating, gravure coating, micro gravure coating, lip coating, air knife coating. And known coating methods such as a dipping method.
  • the binder resin contained in the coating agent is an ionizing radiation curable resin
  • the solvent is dried and further irradiated with active energy rays to cure the ionizing radiation curable resin. You can do it.
  • Examples of the active energy ray include ultraviolet rays emitted from a light source such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and a tungsten lamp; Electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like extracted from electron beam accelerators such as a type, a resonant transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type can be used.
  • a light source such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and a tungsten lamp
  • Electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like extracted from electron beam accelerators such as a type
  • the thickness of the layer in which conductive resin particles are dispersed in the binder resin (antiglare layer) formed by coating (and curing) of the coating agent is not particularly limited, and depends on the particle diameter of the conductive resin particles. Although it is determined appropriately, it is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 3 to 7 ⁇ m.
  • the film of the present invention is not limited to the above-described configuration, and a film-shaped resin composition similar to a coating agent containing conductive resin particles and a binder resin may be formed. Good.
  • the film having this configuration can be suitably used as a conductive film or an antistatic film.
  • the gap material of the present invention includes the conductive resin particles of the present invention.
  • the gap material of the present invention provides a uniform gap between various substrates such as in-plane spacers for liquid crystal display elements, seal spacers for liquid crystal display elements, spacers for EL (electroluminescence) display elements, spacers for touch panels, ceramics and plastics. It is used as a gap distance holding spacer such as a gap holding material that can be held. Since the gap material of the present invention includes the conductive resin particles of the present invention having a good electrical conductivity, the gap material has electrical conductivity and exhibits an antistatic function.
  • the coefficient of variation of the volume-based particle diameter of the conductive resin particles is preferably 20% or less, more preferably less than 10%. preferable.
  • the present invention is not limited to this.
  • the volume average particle diameter of the conductive resin particles, the coefficient of variation of the volume-based particle diameter, the 10% compressive strength, and the method of measuring the conductivity in the following Examples and Comparative Examples will be described.
  • volume average particle diameter of the conductive resin particles and the coefficient of variation (CV value) of the volume-based particle diameter were measured by the Coulter method as follows.
  • the volume average particle diameter of the conductive resin particles is measured with a Coulter Multisizer TM 3 (measurement device manufactured by Beckman Coulter, Inc.). The measurement shall be performed using an aperture calibrated according to the Multisizer TM 3 User's Manual issued by Beckman Coulter, Inc.
  • the aperture used for the measurement is appropriately selected depending on the size of the conductive resin particle to be measured.
  • Current (aperture current) and Gain (gain) are appropriately set according to the size of the selected aperture. For example, when an aperture having a size of 50 ⁇ m is selected, the current (aperture current) is set to ⁇ 800 and the gain (gain) is set to 4.
  • conductive resin particles in 10 ml of a 0.1% by weight nonionic surfactant aqueous solution was touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”) and an ultrasonic cleaner ( Dispersed using “ULTRASONIC CLEANER VS-150” manufactured by VervoCrea Co., Ltd., and used as a dispersion.
  • touch mixer manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”
  • an ultrasonic cleaner Dispersed using “ULTRASONIC CLEANER VS-150” manufactured by VervoCrea Co., Ltd., and used as a dispersion.
  • the beaker is gently stirred to the extent that bubbles do not enter, and the measurement is terminated when 100,000 conductive resin particles are measured.
  • the volume average particle diameter of the conductive resin particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
  • the 10% compressive strength (S10 strength) of the resin particles was measured under the following measurement conditions using a micro compression tester “MCTM-200” manufactured by Shimadzu Corporation.
  • a dispersion liquid in which resin particles are dispersed in ethanol was applied to a mirror-finished steel sample table and dried to prepare a measurement sample.
  • single independent fine resin particles at least 100 ⁇ m in diameter and no other resin particles exist
  • the diameter of the resin particles was measured with a particle size measurement cursor of MCTM-200.
  • the resin particles selected within the range of ⁇ 0.5 ⁇ m from the volume average particle diameter confirmed by the measurement method by the Coulter method described above were selected. Resin particles outside that range are not used for the measurement of compressive strength.
  • the compressive strength was determined by the following formula. Six measurements were performed on each resin particle, and the average value of the four data excluding the maximum value and minimum value data was defined as 10% compressive strength (S10 strength).
  • the conductive resin particles filled in the probe are loaded in increments of 4kN from 0 to 20kN with a hydraulic pump.
  • the conductivity of the conductive resin particles in a state where each load (0, 4 kN, 8 kN, 12 kN, 16 kN, and 20 kN) was applied was measured.
  • the highest numerical value among the electrical conductivity obtained by measuring with each load was defined as the electrical conductivity of the conductive resin particles.
  • the moisture content was measured in advance by Karl Fischer moisture measurement, and it was confirmed that the moisture content was 1.0% by weight or less.
  • Example 1 [Manufacture of core particles] (Preparation of aqueous phase)
  • aqueous medium 200 parts by weight of deionized water as an aqueous medium, 10 parts by weight of magnesium pyrophosphate as a dispersing agent, and 0.04 part by weight of sodium lauryl sulfate as an anionic surfactant are added, and an aqueous phase is added.
  • the target polypyrrole As a conductive polymer by adding 5 parts by weight of pyrrole as a nitrogen-containing aromatic compound to the obtained mixed liquid and polymerizing pyrrole by stirring at 25 ° C. for 5 hours.
  • Conductive resin particles core-shell particles in which the core particles were coated with the shell were obtained.
  • the obtained conductive resin particles had a volume average particle diameter of 14.8 ⁇ m, a volume-based particle diameter variation coefficient of 45%, and a 10% compressive strength of 1.4 MPa.
  • Example 2 (Manufacture of core particles] Instead of 60 parts by weight of n-butyl acrylate, 15 parts by weight of methyl acrylate, and 10 parts by weight of 2-ethylhexyl acrylate, 79 parts by weight of n-butyl acrylate is used and replaced by 10 parts by weight of ethylene glycol dimethacrylate.
  • Example 3 Manufacture of core particles
  • a desired water-containing cake of core particles was obtained.
  • Example 4 [Manufacture of core particles] [Soap-free polymerization] In a beaker, 15 parts by weight of methyl methacrylate as a monofunctional (meth) acrylic acid ester monomer was mixed with 0.2 parts by weight of n-octyl mercaptan as a molecular weight modifier to prepare an oil phase.
  • An aqueous solution obtained by dissolving 0.08 parts by weight of sodium di (2-ethylhexyl) sulfosuccinate as an anionic surfactant in 80 parts by weight of ion-exchanged water as an aqueous medium was mixed with the obtained mixture,
  • An emulsion was obtained by treating with a homomixer (Primix Co., Ltd., desktop type, product name “Homomixer MARK II 2.5 type”) at a stirring speed of 8000 rpm for 10 minutes.
  • a homomixer Principal Co., Ltd., desktop type, product name “Homomixer MARK II 2.5 type
  • the water-containing cake of core particles obtained in the previous step is used in place of the core particles of Example 1, and the amount of deionized water used to obtain a core particle dispersion by dispersing the core particles is 25 wt. Except having changed into the part, it carried out similarly to Example 1, and obtained the target conductive resin particle.
  • the obtained conductive resin particles had a volume average particle diameter of 1.3 ⁇ m, a volume-based particle diameter variation coefficient of 9%, and a 10% compressive strength of 1.4 MPa.
  • Example 5 [Manufacture of core particles] The amount of sodium lauryl sulfate used was changed to 0.005 parts by weight, and the stirring when dispersing the oil phase in the aqueous phase was changed to be performed at a stirring speed of 200 rpm for 10 minutes without using a homomixer. In the same manner as in Example 1, a desired water-containing cake of core particles was obtained.
  • the target conductive resin particles were obtained in the same manner as in Example 1, except that the hydrous cake of core particles obtained in the previous step was used instead of the core particles in Example 1.
  • the obtained conductive resin particles had a volume average particle diameter of 198 ⁇ m, a volume-based particle diameter variation coefficient of 49%, and a 10% compressive strength of 1.7 MPa.
  • Example 6 [Manufacture of core particles] Instead of 60 parts by weight of n-butyl acrylate, 15 parts by weight of methyl acrylate, and 10 parts by weight of 2-ethylhexyl acrylate, 45 parts by weight of n-butyl acrylate is used and replaced by 10 parts by weight of ethylene glycol dimethacrylate.
  • urethane acrylate oligomer product name “New Frontier (registered trademark) RST-402”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • the water-containing cake of core particles obtained in the previous step is used in place of the core particles of Example 1, and the amount of deionized water used to obtain a core particle dispersion by dispersing the core particles is 25 wt. Except having changed into the part, it carried out similarly to Example 1, and obtained the target conductive resin particle.
  • the obtained conductive resin particles had a volume average particle diameter of 16.2 ⁇ m, a volume-based particle diameter variation coefficient of 44%, and a 10% compressive strength of 1.2 MPa.
  • Example 7 Manufacture of core particles
  • a desired water-containing cake of core particles was obtained.
  • the core particles obtained in the previous step were used in place of the core particles of Example 3, and the amount of deionized water used to obtain the core particle dispersion by dispersing the core particles was changed to 50 parts by weight. Except for this, the same conductive resin particles as in Example 3 were obtained.
  • the obtained conductive resin particles had a volume average particle diameter of 16.5 ⁇ m, a volume-based particle diameter variation coefficient of 42%, and a 10% compressive strength of 1.2 MPa.
  • Conductive resin particles were obtained in the same manner as in Example 1 except that 25 parts by weight of isopropyl alcohol was used in place of 50 parts by weight of deionized water as a dispersion medium used when obtaining the core particle dispersion.
  • the 10% compressive strength of the obtained conductive resin particles was 34.3 MPa.
  • Comparative Example 2 Conductive resin particles were obtained in the same manner as in Comparative Example 1, except that 3,4-ethylenedioxythiophene was used instead of pyrrole, and the stirring time during polymerization was changed to 24 hours. The 10% compressive strength of the obtained conductive resin particles was 36.4 MPa. [Conductivity measurement] The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.2 ⁇ 10 ⁇ 3 S / cm.
  • the target conductive resin particles were obtained in the same manner as in Example 4 except that the core particles obtained in the previous step were used instead of the core particles in Example 4.
  • the obtained conductive resin particles had a volume average particle diameter of 1.2 ⁇ m, a volume-based particle diameter variation coefficient of 9%, and a 10% compressive strength of 36.1 MPa.
  • the volume average particle diameter, the coefficient of variation of the volume-based particle diameter, the 10% compressive strength, and the conductivity of the conductive resin particles obtained in Examples 1 to 7 and Comparative Examples 1 to 3 are used for the production of the core particles.
  • Table 1 summarizes the composition of the monomer mixture (composition of the monomer mixture used in seed polymerization in Example 4 and Comparative Example 3) and the type of monomer used to form the shell.
  • n-butyl acrylate is “BA”
  • methyl acrylate is “MA”
  • 2-ethylhexyl acrylate is “2EHA”
  • methyl methacrylate is “MMA”
  • Monomethacrylate “Blemmer (registered trademark) 50 PEP-300”) “50 PEP-300”
  • tetradecaethylene glycol dimethacrylate 14EG
  • urethane acrylate New Frontier (registered trademark)” “RST-402” is abbreviated as “RST-402”.
  • the conductive resin particles of Examples 1 to 7 have a 10% compressive strength of 0.1 to 30 MPa (1.2 to 2.5 MPa), so that the 10% compressive strength exceeds 30 MPa (34 Compared to the conductivity (2.2 to 3.5 ⁇ 10 ⁇ 3 S / cm) of the conductive resin particles of Comparative Examples 1 to 3 which is .3 to 36.4 MPa), the conductivity (1. 5 to 2.9 ⁇ 10 ⁇ 2 S / cm).
  • Example 8 A binder solution in which 10 parts by weight of an acrylic resin as a binder resin (trade name “Dianal (registered trademark) BR-106” manufactured by Mitsubishi Chemical Corporation) was dissolved in 50 parts by weight of toluene as an organic solvent was used. 10 parts by weight of the conductive resin particles obtained in 1 were blended and dispersed uniformly to prepare a coating agent.
  • an acrylic resin as a binder resin trade name “Dianal (registered trademark) BR-106” manufactured by Mitsubishi Chemical Corporation
  • This coating agent was applied on a PET film having a thickness of 100 ⁇ m as a base film using a 30 ⁇ m applicator to form a coating film.
  • the film which has electroconductivity was obtained by leaving still in a 70 degreeC high temperature tank for 2 hours, and drying the coating film on PET film.

Abstract

Provided are conductive resin particles having good electrical conductivity. Each of the conductive resin particles has: a core particle that is formed of a polymer; and a shell that covers the core particle and is formed of a conductive polymer. The conductive resin particles have a compressive strength at 10% compressive deformation of 0.1-30 MPa.

Description

導電性樹脂粒子及びその用途Conductive resin particles and uses thereof
 本発明は、導電性樹脂粒子及びその用途に関する。さらに詳しくは、本発明は、導電性樹脂粒子同士を密着させて導電性を発現することを目的とした用途において好適に使用することができる導電性樹脂粒子及びその用途(導電性樹脂組成物、コーティング剤、フィルム、及びギャップ材)に関する。 The present invention relates to conductive resin particles and uses thereof. More specifically, the present invention relates to conductive resin particles that can be suitably used in applications intended to express conductivity by bringing conductive resin particles into close contact with each other (conductive resin composition, Coating agent, film, and gap material).
 導電性粒子をバインダー樹脂中に分散させた導電性ペーストを電極間に介在させることで電極間の接続信頼性を改善した電子回路基板が知られている。これまで、このような導電性粒子には、金、銀、ニッケルなどの金属からなる導電性粒子が使用されてきた。しかしながら、そのような導電性粒子は、形状が不均一であったりバインダー樹脂に比べて比重が大きいために、導電性ペースト中で沈降したり、導電性ペースト中に均一に一次分散させることが困難であったりするため、信頼性に欠けていた。 There is known an electronic circuit board in which the connection reliability between electrodes is improved by interposing a conductive paste in which conductive particles are dispersed in a binder resin between the electrodes. Heretofore, conductive particles made of metals such as gold, silver, and nickel have been used as such conductive particles. However, such conductive particles have a non-uniform shape and a specific gravity greater than that of the binder resin, so that it is difficult to settle in the conductive paste or to uniformly disperse uniformly in the conductive paste. Because it was, it was not reliable.
 そこで、有機系粒子からなるコア粒子と、該コア粒子の表面に形成された導電層と、更に導電性ポリマーを含有してなる導電性粒子粉末であって、前記導電層が金属、金属の酸化物または合金から選ばれる1種又は2種以上の導電性フィラーからなる導電性粒子粉末が開示されている(特許文献1)。 Therefore, a core particle made of organic particles, a conductive layer formed on the surface of the core particle, and a conductive particle powder further containing a conductive polymer, wherein the conductive layer is a metal or metal oxide A conductive particle powder made of one or more conductive fillers selected from products or alloys is disclosed (Patent Document 1).
特許5630596号公報Japanese Patent No. 5630596
 しかしながら、上記導電性粒子粉末は、金属、金属の酸化物または合金から選ばれる1種又は2種以上の導電性フィラーからなる硬い導電層を有しているために、導電性樹脂粒子を圧縮して導電性樹脂粒子同士を密着させたときに、導電性樹脂粒子同士の密着性や、導電性樹脂粒子により電気的に接続させようとする導電部材(例えば電極)と導電性樹脂粒子との密着性が低く、導電性樹脂粒子同士の接触面積や、導電部材と導電性樹脂粒子との接触面積が小さいので、圧縮時の抵抗が高く、良好な導電率が得られない。 However, since the conductive particle powder has a hard conductive layer made of one or more conductive fillers selected from metals, metal oxides or alloys, the conductive resin particles are compressed. When the conductive resin particles are brought into close contact with each other, the adhesion between the conductive resin particles and the close contact between the conductive member (for example, electrode) and the conductive resin particles to be electrically connected by the conductive resin particles. Since the contact area between the conductive resin particles and the contact area between the conductive member and the conductive resin particles is small, the resistance during compression is high and good conductivity cannot be obtained.
 本発明は、上記従来の課題に鑑みなされたものであり、その目的は、良好な導電率を有する導電性樹脂粒子並びにそれを用いた導電性樹脂組成物、コーティング剤、フィルム、及びギャップ材を提供することにある。 The present invention has been made in view of the above-described conventional problems, and its purpose is to provide conductive resin particles having good conductivity, and a conductive resin composition, a coating agent, a film, and a gap material using the same. It is to provide.
 そこで、上記課題を解決すべく本発明者が鋭意検討した結果、重合体からなるコア粒子と、前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子において、10%圧縮変形時の圧縮強度を0.1~30MPaとすることで、良好な導電率を有する導電性樹脂粒子が得られることを見出し、本発明を完成させるに至った。 Thus, as a result of intensive studies by the present inventors to solve the above-mentioned problems, 10% compression is achieved in conductive resin particles having a core particle made of a polymer and a shell made of a conductive polymer that coats the core particle. It has been found that by setting the compressive strength at the time of deformation to 0.1 to 30 MPa, conductive resin particles having good conductivity can be obtained, and the present invention has been completed.
 すなわち、本発明の導電性樹脂粒子は、前記課題を解決するために、重合体からなるコア粒子と、前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子であって、10%圧縮変形時の圧縮強度が0.1~30MPaであることを特徴としている。 That is, the conductive resin particle of the present invention is a conductive resin particle having a core particle made of a polymer and a shell made of a conductive polymer that coats the core particle in order to solve the above problem. The compressive strength at 10% compressive deformation is 0.1 to 30 MPa.
 本発明の構成によれば、コア粒子及びシェルが何れも重合体からなり、10%圧縮変形時の圧縮強度が30MPa以下であるので、導電性樹脂粒子が、柔軟で、圧縮時に大きく変形する。それゆえ、導電性樹脂粒子を圧縮して導電性樹脂粒子同士を密着させたときに、導電性樹脂粒子同士の密着性や、導電性樹脂粒子により電気的に接続させようとする導電部材(例えば電極)と導電性樹脂粒子との密着性が向上し、導電性樹脂粒子同士の接触面積や、導電部材と導電性樹脂粒子との接触面積が大きくなるので、圧縮時の抵抗を下げることができ、良好な導電率を得ることができる。 According to the configuration of the present invention, the core particles and the shell are both made of a polymer, and the compressive strength at the time of 10% compression deformation is 30 MPa or less. Therefore, the conductive resin particles are flexible and greatly deformed at the time of compression. Therefore, when the conductive resin particles are compressed and the conductive resin particles are brought into close contact with each other, the conductive member (for example, the conductive member intended to be electrically connected with the conductive resin particles or the conductive resin particles) The adhesion between the electrode) and the conductive resin particles is improved, and the contact area between the conductive resin particles and the contact area between the conductive member and the conductive resin particles are increased, so that the resistance during compression can be reduced. Good electrical conductivity can be obtained.
 本発明の導電性樹脂組成物は、前記課題を解決するために、本発明の導電性樹脂粒子と、マトリックス樹脂とを含むことを特徴としている。 The conductive resin composition of the present invention is characterized by containing the conductive resin particles of the present invention and a matrix resin in order to solve the above-mentioned problems.
 上記構成の導電性樹脂組成物は、良好な導電率を有する本発明の導電性樹脂粒子を含むため、上記構成の導電性樹脂組成物を成形することで、導電性及び帯電防止性に優れた成形品を得ることができる。 Since the conductive resin composition having the above-described configuration includes the conductive resin particles of the present invention having good conductivity, the conductive resin composition having the above-described configuration is excellent in conductivity and antistatic properties. A molded product can be obtained.
 本発明のコーティング剤は、前記課題を解決するために、本発明の導電性樹脂粒子とバインダー樹脂とを含むことを特徴としている。 The coating agent of the present invention is characterized by containing the conductive resin particles of the present invention and a binder resin in order to solve the above-mentioned problems.
 上記構成のコーティング剤は、良好な導電率を有する本発明の導電性樹脂粒子を含むため、上記構成のコーティング剤を基材上に塗工することで、導電性製品(例えば導電性フィルム)又は帯電防止製品(例えば帯電防止フィルム)として好適に使用できる製品を得ることができる。 Since the coating agent having the above-described configuration includes the conductive resin particles of the present invention having good conductivity, by applying the coating agent having the above-described configuration on a substrate, a conductive product (for example, a conductive film) or A product that can be suitably used as an antistatic product (for example, an antistatic film) can be obtained.
 本発明のフィルムは、前記課題を解決するために、本発明の導電性樹脂粒子を含むことを特徴としている。 The film of the present invention is characterized by including the conductive resin particles of the present invention in order to solve the above problems.
 上記構成のフィルムは、良好な導電率を有する本発明の導電性樹脂粒子を含むため、導電性フィルム又は帯電防止フィルムとして好適に使用できる。 Since the film having the above structure contains the conductive resin particles of the present invention having good conductivity, it can be suitably used as a conductive film or an antistatic film.
 本発明のギャップ材は、前記課題を解決するために、本発明の導電性樹脂粒子を含むことを特徴としている。 The gap material of the present invention is characterized by including the conductive resin particles of the present invention in order to solve the above-mentioned problems.
 上記構成のギャップ材は、良好な導電率を有する本発明の導電性樹脂粒子を含むため、導電性を有し、帯電防止機能を発揮する。 Since the gap material having the above-described structure includes the conductive resin particles of the present invention having good conductivity, it has conductivity and exhibits an antistatic function.
 本発明は、良好な導電率を有する導電性樹脂粒子並びにそれを用いた導電性樹脂組成物、コーティング剤、フィルム、及びギャップ材を提供できるという効果を奏する。 The present invention has the effect of providing conductive resin particles having good conductivity, and a conductive resin composition, coating agent, film, and gap material using the same.
 以下、本発明について、詳細に説明する。
〔導電性樹脂粒子〕
 本発明の導電性樹脂粒子は、重合体からなるコア粒子と、前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子であって、10%圧縮変形時の圧縮強度が0.1~30MPaである。
Hereinafter, the present invention will be described in detail.
[Conductive resin particles]
The conductive resin particle of the present invention is a conductive resin particle having a core particle made of a polymer and a shell made of a conductive polymer that coats the core particle, and has a compressive strength at 10% compression deformation. 0.1 to 30 MPa.
 上記導電性樹脂粒子の10%圧縮変形時の圧縮強度は、0.1~30MPaであるが、0.1~17MPaであることが好ましい。10%圧縮変形時の圧縮強度が0.1MPaより小さい導電性樹脂粒子は、機械的強度に劣り、使用時に破壊されてしまうおそれがある。10%圧縮変形時の圧縮強度が17MPa以下である導電性樹脂粒子は、導電性樹脂粒子を圧縮して導電性樹脂粒子同士を密着させたときに、導電性樹脂粒子同士の密着性や、導電性樹脂粒子により電気的に接続させようとする導電部材(例えば電極)と導電性樹脂粒子との密着性がさらに向上し、導電性樹脂粒子同士の接触面積や、導電部材と導電性樹脂粒子との接触面積がさらに大きくなるので、圧縮時の抵抗をさらに下げることができ、さらに優れた導電率を得ることができる。なお、本出願書類において、「10%圧縮変形時の圧縮強度」は、後述する実施例の項で説明する測定方法により得られる10%圧縮変形時の圧縮強度(以下、「10%圧縮強度」と称する)を意味するものとする。 The compressive strength at the time of 10% compression deformation of the conductive resin particles is 0.1 to 30 MPa, but preferably 0.1 to 17 MPa. Conductive resin particles having a compressive strength at 10% compressive deformation of less than 0.1 MPa are inferior in mechanical strength and may be destroyed during use. Conductive resin particles having a compressive strength of 10 MPa or less at 10% compressive deformation are obtained by compressing the conductive resin particles and bringing the conductive resin particles into close contact with each other. The adhesion between the conductive member (for example, electrode) and the conductive resin particle to be electrically connected by the conductive resin particle is further improved, the contact area between the conductive resin particles, the conductive member and the conductive resin particle, Since the contact area is further increased, the resistance during compression can be further reduced, and a further excellent electrical conductivity can be obtained. In the present application documents, “compressive strength at 10% compression deformation” refers to compression strength at 10% compression deformation (hereinafter referred to as “10% compression strength”) obtained by the measurement method described in the section of Examples described later. ).
 上記導電性樹脂粒子は、1~200μmの体積平均粒子径を有していることが好ましい。上記導電性樹脂粒子が1μm以上の体積平均粒子径を有していることで、導電ペーストなどに用いる際の各種溶剤への分散性が向上し、良好なハンドリング性を得ることができる。上記導電性樹脂粒子が200μm以下の体積平均粒子径を有していることで、導電性樹脂粒子同士を密着させたときや、導電部材と導電性樹脂粒子とを密着させたときに、これらの互いの接触性が良好になり、より多くの導電パスを得ることができる。なお、本出願書類において、「体積平均粒子径」は、後述する実施例の項で説明する測定方法により得られる体積平均粒子径を意味するものとする。 The conductive resin particles preferably have a volume average particle diameter of 1 to 200 μm. When the conductive resin particles have a volume average particle diameter of 1 μm or more, dispersibility in various solvents when used in a conductive paste or the like is improved, and good handling properties can be obtained. When the conductive resin particles have a volume average particle diameter of 200 μm or less, when the conductive resin particles are in close contact with each other, or when the conductive member and the conductive resin particles are in close contact, these The contact with each other is improved, and more conductive paths can be obtained. In the present application documents, “volume average particle diameter” means the volume average particle diameter obtained by the measurement method described in the Examples section described later.
 上記導電性樹脂粒子の体積基準の粒子径の変動係数は、10%以上であることが好ましく、20%~50%の範囲内にあることがより好ましい。体積基準の粒子径の変動係数が10%以上(特に20%以上)である導電性樹脂粒子は、同組成で体積基準の粒子径の変動係数が15%以下である導電性樹脂粒子と比較して、微小粒子径(体積平均粒子径と比較して顕著に小さい粒子径)の導電性樹脂粒子を多く含むために、導電性樹脂粒子を圧縮して導電性樹脂粒子同士を密着させたときに、多くの微小粒子径の導電性樹脂粒子がそれ以外の導電性樹脂粒子の間に入り込んで充填率が向上する。それゆえ、導電性樹脂粒子同士の密着性や、導電性樹脂粒子により電気的に接続させようとする導電部材(例えば電極)と導電性樹脂粒子との密着性が向上し、導電性樹脂粒子同士の接触面積や、導電部材と導電性樹脂粒子との接触面積が大きくなるので、圧縮時の抵抗を下げることができ、さらに優れた導電率を得ることができる。なお、本出願書類において、なお、本出願書類において、「体積基準の粒子径の変動係数」は、後述する実施例の項で説明する測定方法により得られる体積基準の粒子径の変動係数を意味するものとする。 The variation coefficient of the volume-based particle diameter of the conductive resin particles is preferably 10% or more, and more preferably in the range of 20% to 50%. Conductive resin particles having a volume-based particle diameter variation coefficient of 10% or more (particularly 20% or more) are compared with conductive resin particles having the same composition and a volume-based particle diameter variation coefficient of 15% or less. When the conductive resin particles are compressed so that the conductive resin particles are brought into close contact with each other in order to contain many conductive resin particles having a fine particle size (a particle size that is significantly smaller than the volume average particle size). The conductive resin particles having many fine particle diameters enter between the other conductive resin particles to improve the filling rate. Therefore, the adhesion between the conductive resin particles and the adhesion between the conductive member (eg, electrode) and the conductive resin particles to be electrically connected by the conductive resin particles are improved. The contact area between the conductive member and the conductive resin particles becomes large, so that the resistance during compression can be reduced, and further excellent electrical conductivity can be obtained. In this application document, in this application document, “volume-based variation coefficient of particle diameter” means the variation coefficient of volume-based particle diameter obtained by the measurement method described in the section of Examples described later. It shall be.
 上記導電性樹脂粒子の復元率は、15%以上30%未満であることが好ましく、15%以上25%以下であることがより好ましく、15%以上20%以下であることがさらに好ましい。上記導電性樹脂粒子の復元率が15%以上であることで、導電性樹脂粒子が圧縮された後に圧縮応力が低下した場合であっても、導電性樹脂粒子の形状が復元して導電性樹脂粒子同士の密着性を維持できる。したがって、良好な導電率を安定的に得ることができる。上記導電性樹脂粒子の復元率が30%未満であることで、導電性樹脂粒子を圧縮した後の形状を保ちやすくなり、結果的に良好な密着性を維持することができる。 The restoration rate of the conductive resin particles is preferably 15% or more and less than 30%, more preferably 15% or more and 25% or less, and further preferably 15% or more and 20% or less. Since the restoration rate of the conductive resin particles is 15% or more, even when the compressive stress is reduced after the conductive resin particles are compressed, the shape of the conductive resin particles is restored and the conductive resin is restored. The adhesion between particles can be maintained. Therefore, good electrical conductivity can be obtained stably. When the restoration rate of the conductive resin particles is less than 30%, it becomes easy to maintain the shape after the conductive resin particles are compressed, and as a result, good adhesion can be maintained.
 本発明の導電性樹脂粒子の導電率は、5.0×10-3~5.0×10-1(S/cm)であることが好ましく、9×10-3~1×10-1(S/cm)であることがより好ましく、1×10-2~5×10-2(S/cm)であることがさらに好ましい。上記導電性樹脂粒子の導電率が上記範囲の下限以上であることで、良好な導電率を有する導電性樹脂粒子を実現できる。 The conductivity of the conductive resin particles of the present invention is preferably 5.0 × 10 −3 to 5.0 × 10 −1 (S / cm), preferably 9 × 10 −3 to 1 × 10 −1 ( S / cm) is more preferable, and 1 × 10 −2 to 5 × 10 −2 (S / cm) is even more preferable. When the conductivity of the conductive resin particles is not less than the lower limit of the above range, conductive resin particles having good conductivity can be realized.
〔コア粒子〕
 上記コア粒子は、ポリウレタン、シリコーン系重合体等の縮合重合体であってもよいが、ビニル系単量体の重合体からなることが好ましい。上記ビニル系単量体は、少なくとも1個のエチレン性不飽和基(広義のビニル基)を有する化合物であればよく、1個のエチレン性不飽和基を有する単官能ビニル系単量体であってもよく、2個以上のエチレン性不飽和基を有する多官能ビニル系単量体であってもよい。
[Core particles]
The core particles may be a condensation polymer such as polyurethane or silicone polymer, but are preferably made of a vinyl monomer polymer. The vinyl monomer may be a compound having at least one ethylenically unsaturated group (in a broad sense) and is a monofunctional vinyl monomer having one ethylenically unsaturated group. It may be a polyfunctional vinyl monomer having two or more ethylenically unsaturated groups.
 上記単官能ビニル系単量体としては、例えば、後段で詳述する単官能(メタ)アクリル酸エステル単量体;スチレン、p-メチルスチレン、α-メチルスチレン等のスチレン系単量体;酢酸ビニル等のビニルエステル系単量体等が挙げられる。これらのうち、単官能(メタ)アクリル酸エステル単量体が単官能ビニル系単量体として好ましい。なお、本出願書類において、「(メタ)アクリル酸」はアクリル酸及び/又はメタクリル酸を意味し、「(メタ)アクリレート」はアクリレート及び/又はメタクリレートを意味するものとする。 Examples of the monofunctional vinyl monomers include monofunctional (meth) acrylic acid ester monomers described in detail later; styrene monomers such as styrene, p-methylstyrene, and α-methylstyrene; acetic acid And vinyl ester monomers such as vinyl. Of these, monofunctional (meth) acrylic acid ester monomers are preferred as monofunctional vinyl monomers. In this application document, “(meth) acrylic acid” means acrylic acid and / or methacrylic acid, and “(meth) acrylate” means acrylate and / or methacrylate.
 上記多官能ビニル系単量体としては、下記一般式(I)
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素又はメチル基であり、nは1~4の整数である。)で示される単量体、一般式(II)で示す単量体、下記一般式(II)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素又はメチル基であり、mは5~15の整数である。)で示される単量体、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、フタル酸ジエチレングリコールジ(メタ)アクリレート、カプロラクトン変性ジペンタエリスルトールヘキサ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、ポリエステルアクリレート、ウレタンアクリレートオリゴマー(後段で詳細に説明する)等の2個以上のエチレン性不飽和基を有する多官能(メタ)アクリル酸エステル系単量体;ジビニルベンゼン、ジビニルナフタレン、これらの誘導体等の芳香族ジビニル系単量体等が挙げられる。これらのうち、上記一般式(I)で示す単量体、上記一般式(II)で示す単量体、及びウレタンアクリレートが好ましい。これらビニル系単量体は、それぞれ単独で、又は2種類以上を組み合わせて用いることができる。
As the polyfunctional vinyl monomer, the following general formula (I)
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 is hydrogen or a methyl group, and n is an integer of 1 to 4), a monomer represented by the general formula (II), the following general formula (II)
Figure JPOXMLDOC01-appb-C000004
(Wherein R 2 is hydrogen or a methyl group, and m is an integer of 5 to 15), 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol Di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, diethylene glycol di (meth) acrylate phthalate , Caprolactone-modified dipentaerythritol hexa (meth) acrylate, caprolactone-modified hydroxypivalate ester neopentyl glycol diacrylate, polyester acrylate, urethane acrylate oligomer (described in detail later), etc. Examples thereof include polyfunctional (meth) acrylic acid ester monomers having an unsaturated group; aromatic divinyl monomers such as divinylbenzene, divinylnaphthalene, and derivatives thereof. Among these, the monomer represented by the general formula (I), the monomer represented by the general formula (II), and urethane acrylate are preferable. These vinyl monomers can be used alone or in combination of two or more.
 上記コア粒子は、単官能(メタ)アクリル酸エステル単量体と、下記一般式(I)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素又はメチル基であり、nは1~4の整数である。)で示される単量体とを含む単量体混合物(ビニル系単量体)の重合体を含んでいることが好ましい。この重合体は、架橋構造を有する重合体であるため、コア粒子に復元性を付与できる。したがって、この重合体が上記コア粒子に含まれていることにより、良好な復元率を有する導電性樹脂粒子を実現できる。
The core particles are composed of a monofunctional (meth) acrylic acid ester monomer and the following general formula (I)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 is hydrogen or a methyl group, and n is an integer of 1 to 4), and a monomer mixture (vinyl monomer) polymer is included. It is preferable that Since this polymer is a polymer having a crosslinked structure, it is possible to impart resilience to the core particles. Therefore, when this polymer is contained in the core particles, conductive resin particles having a good restoration rate can be realized.
 上記単官能(メタ)アクリル酸エステル単量体としては、特に限定されず、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸イソボルニル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-メトキシエチル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル、メタクリル酸ジエチルアミノエチル、メタクリル酸トリフルオロエチル、メタクリル酸ヘプタデカフルオロデシル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル等のメタクリル酸エステル、アルキレンオキサイド基を有する(メタ)アクリル酸エステル(後段で詳細に説明する)等をいずれも使用することができる。これら単官能(メタ)アクリル酸エステル単量体は、それぞれ単独で、又は2種類以上を組み合わせて用いることができる。 The monofunctional (meth) acrylate monomer is not particularly limited. For example, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-acrylate acrylate Acrylic esters such as ethylhexyl; methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, glycidyl methacrylate, methacryl Tetrahydrofurfuryl acid, diethylaminoethyl methacrylate, trifluoroethyl methacrylate, heptadecafluorodecyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, 2-methacrylic acid 2- Methacrylic acid esters such as hexyl, having an alkylene oxide group-containing (meth) acrylic acid ester (described later stage in detail), and the like can be used either a. These monofunctional (meth) acrylic acid ester monomers can be used alone or in combination of two or more.
 上記単官能(メタ)アクリル酸エステル単量体のうち、アルキル基の炭素数が1~12であるアクリル酸アルキルが好ましく、アルキル基の炭素数が1~8であるアクリル酸アルキルがより好ましい。このようなアクリル酸アルキルを用いることで、上記コア粒子の10%圧縮強度を低くすることができるので、前述した範囲の上限以下の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなる。 Of the monofunctional (meth) acrylate monomers, alkyl acrylates having an alkyl group with 1 to 12 carbon atoms are preferred, and alkyl acrylates with an alkyl group having 1 to 8 carbon atoms are more preferred. By using such an alkyl acrylate, the 10% compressive strength of the core particles can be lowered, so that it becomes easy to realize conductive resin particles having a 10% compressive strength that is not more than the upper limit of the above-described range.
 また、上記単量体混合物中における単官能(メタ)アクリル酸エステル単量体の含有量は、上記単量体混合物100重量部に対して、70~99重量部であることが好ましい。単官能(メタ)アクリル酸エステル単量体の含有量を上記範囲内とすることによって、前述した範囲の復元率を有する導電性樹脂粒子を実現しやすくなる。 In addition, the content of the monofunctional (meth) acrylate monomer in the monomer mixture is preferably 70 to 99 parts by weight with respect to 100 parts by weight of the monomer mixture. By making content of a monofunctional (meth) acrylic acid ester monomer into the said range, it becomes easy to implement | achieve the conductive resin particle which has the restoration factor of the range mentioned above.
 上記一般式(I)で示される単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等が挙げられる。これら一般式(I)で示される単量体のうち、エチレングリコールジ(メタ)アクリレートが特に好ましく、一般式(I)で示される単量体として、エチレングリコールジ(メタ)アクリレートを使用すると、添加量に対してより効果的に導電性樹脂粒子の耐溶剤性を向上させることができる。 Examples of the monomer represented by the general formula (I) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate. Is mentioned. Among these monomers represented by the general formula (I), ethylene glycol di (meth) acrylate is particularly preferable, and when ethylene glycol di (meth) acrylate is used as the monomer represented by the general formula (I), The solvent resistance of the conductive resin particles can be more effectively improved with respect to the addition amount.
 上記単量体混合物中における一般式(I)で示される単量体の含有量は、上記単量体混合物100重量部に対して、1~30重量部であることが好ましい。一般式(I)で示される単量体の含有量を上記範囲内とすることによって、前述した範囲の復元率を有する導電性樹脂粒子を実現しやすくなる。 The content of the monomer represented by the general formula (I) in the monomer mixture is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the monomer mixture. By making content of the monomer shown by general formula (I) into the said range, it becomes easy to implement | achieve the conductive resin particle which has the restoration factor of the range mentioned above.
 上記コア粒子に含まれる上記単量体混合物の重合体は、上記単官能(メタ)アクリル酸エステル単量体及び上記一般式(I)で示される単量体に加えて、下記一般式(II)
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素又はメチル基であり、mは5~15の整数である。)で示される単量体をさらに含む単量体混合物の重合体であることが好ましい。これにより、上記コア粒子に含まれる重合体に柔軟な架橋構造を導入できるため、導電性樹脂粒子の10%圧縮強度を低くすることができ、また、導電性樹脂粒子の復元率を向上させることができる。したがって、前述した範囲の上限以下の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなり、また、前述した範囲の下限以上の復元率を有する導電性樹脂粒子を実現しやすくなる。
In addition to the monofunctional (meth) acrylic acid ester monomer and the monomer represented by the general formula (I), the polymer of the monomer mixture contained in the core particle includes the following general formula (II )
Figure JPOXMLDOC01-appb-C000006
(Wherein R 2 is hydrogen or a methyl group, and m is an integer of 5 to 15). Thereby, since a flexible cross-linked structure can be introduced into the polymer contained in the core particles, the 10% compressive strength of the conductive resin particles can be lowered, and the restoration rate of the conductive resin particles can be improved. Can do. Therefore, it becomes easy to realize conductive resin particles having 10% compressive strength below the upper limit of the above-mentioned range, and it becomes easy to realize conductive resin particles having a restoration rate equal to or higher than the lower limit of the above-mentioned range.
 上記一般式(II)で示される単量体としては、例えば、ペンタエチレングリコールジ(メタ)アクリレート、ヘキサエチレングリコールジ(メタ)アクリレート、ヘプタエチレングリコールジ(メタ)アクリレート、オクタエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート、ペンタデカエチレングリコールジ(メタ)アクリレート等が挙げられる。これら一般式(II)で示される単量体のうち、一般式(II)中のmがノナエチレングリコールジ(メタ)アクリレート(m=9)とテトラデカエチレングリコールジ(メタ)アクリレート(m=14)との間にある単量体、すなわち、一般式(II)中のmが9~14の範囲内にある単量体を使用すると、前述した範囲の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなり、また、前述した範囲の復元率を有する導電性樹脂粒子を実現しやすくなる。 Examples of the monomer represented by the general formula (II) include pentaethylene glycol di (meth) acrylate, hexaethylene glycol di (meth) acrylate, heptaethylene glycol di (meth) acrylate, and octaethylene glycol di (meth). ) Acrylate, nonaethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, tetradecaethylene glycol di (meth) acrylate, pentadecaethylene glycol di (meth) acrylate and the like. Among these monomers represented by the general formula (II), m in the general formula (II) is nonaethylene glycol di (meth) acrylate (m = 9) and tetradecaethylene glycol di (meth) acrylate (m = 14), that is, a conductive resin having a compressive strength of 10% in the above-mentioned range when a monomer having the general formula (II) in which m is in the range of 9 to 14 is used. It becomes easy to realize particles, and it becomes easy to realize conductive resin particles having a restoration rate in the above-described range.
 上記単量体混合物中における一般式(II)で示される単量体の含有量は、上記単量体混合物100重量部に対して、1~20重量部であることが好ましく、10~20重量部であることがより好ましい。一般式(II)で示される単量体の含有量を上記範囲内とすることによって、前述した範囲の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなり、また、前述した範囲の復元率を有する導電性樹脂粒子を実現しやすくなる。 The content of the monomer represented by the general formula (II) in the monomer mixture is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the monomer mixture. More preferably, it is a part. By setting the content of the monomer represented by the general formula (II) within the above range, it becomes easy to realize conductive resin particles having a compressive strength of 10% within the above-described range. It becomes easy to implement | achieve the conductive resin particle which has a rate.
 なお、上記単量体混合物には、上記した単量体以外の他の単量体が含まれていてもよい。例えば、上記単量体混合物には、単官能(メタ)アクリル酸エステル単量体と共重合可能な他の単官能ビニル系単量体が含まれていてもよい。単官能(メタ)アクリル酸エステル単量体と共重合可能な他の単官能ビニル系単量体としては、例えば、前述したスチレン系単量体、前述したビニルエステル系単量体等が挙げられる。これら他の単官能ビニル系単量体は、単独で、又は2種類以上を組み合わせて用いることができる。 The monomer mixture may contain a monomer other than the monomers described above. For example, the monomer mixture may contain other monofunctional vinyl monomers copolymerizable with the monofunctional (meth) acrylic acid ester monomer. Examples of other monofunctional vinyl monomers copolymerizable with the monofunctional (meth) acrylic acid ester monomer include the aforementioned styrene monomers and the aforementioned vinyl ester monomers. . These other monofunctional vinyl monomers can be used alone or in combination of two or more.
 また、上記単量体混合物には、上記一般式(I)及び一般式(II)で示される以外の他の多官能ビニル系単量体が含まれていてもよい。他の多官能ビニル系単量体としては、例えば、前述した多官能(メタ)アクリル酸エステル系単量体、前述した芳香族ジビニル系単量体等が挙げられる。 The monomer mixture may contain other polyfunctional vinyl monomers other than those represented by the general formula (I) and the general formula (II). Examples of other polyfunctional vinyl monomers include the above-mentioned polyfunctional (meth) acrylic acid ester monomers and the above-mentioned aromatic divinyl monomers.
 また、上記ビニル系単量体は、その一部として、カルボキシ基、ヒドロキシ基等の親水性基を有する単量体を含むことが好ましく、アルキレンオキサイド基を有する(メタ)アクリル酸エステルを含むことがより好ましい。これにより、コア粒子におけるビニル系単量体の他の成分に由来する部分の疎水性が高い場合であっても、コア粒子表面に親水性を付与することができる。その結果、コア粒子を水性媒体中に分散させた分散液中における単量体の酸化重合によってシェルを形成する場合に、コア粒子を水性媒体中に容易に一次粒子に分散させることができ、容易に個々のコア粒子をシェルで被覆できる。そのようなアルキレンオキサイド基を有する(メタ)アクリル酸エステルとしては、例えば、下記の一般式で表される化合物が挙げられる。 Moreover, it is preferable that the said vinylic monomer contains the monomer which has hydrophilic groups, such as a carboxy group and a hydroxy group, as a part, and contains the (meth) acrylic acid ester which has an alkylene oxide group. Is more preferable. Thereby, even if it is a case where the hydrophobicity of the part derived from the other component of the vinyl-type monomer in a core particle is high, hydrophilicity can be provided to the core particle surface. As a result, when the shell is formed by oxidative polymerization of the monomer in the dispersion liquid in which the core particles are dispersed in the aqueous medium, the core particles can be easily dispersed into the primary particles in the aqueous medium. Individual core particles can be coated with a shell. Examples of the (meth) acrylic acid ester having an alkylene oxide group include compounds represented by the following general formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式中、RはH又はCHを示し、R及びRは異なってC、C、C、C10から選択されるアルキレン基を示し、pは0~50、qは0~50(但しpとqは同時に0にならない)であり、RはH又はCHを示している。 In the above general formula, R 3 represents H or CH 3 , and R 4 and R 5 are different and represent an alkylene group selected from C 2 H 4 , C 3 H 6 , C 4 H 8 , and C 5 H 10. , P is 0 to 50, q is 0 to 50 (provided that p and q are not 0 at the same time), and R 6 represents H or CH 3 .
 なお、上記一般式の単量体において、pが50より大きい場合及びqが50より大きい場合、重合安定性が低下し、合着粒子が発生することがある。好ましいp及びqの範囲は0~30であり、より好ましいp及びqの範囲は0~15である。 In addition, in the monomer of the above general formula, when p is larger than 50 and q is larger than 50, the polymerization stability may be lowered and coalescence particles may be generated. A preferable range of p and q is 0 to 30, and a more preferable range of p and q is 0 to 15.
 アルキレンオキサイド基を有する(メタ)アクリル酸エステルとしては、市販品を利用できる。市販品としては、例えば、日油株式会社製のブレンマー(登録商標)シリーズが挙げられる。更にブレンマー(登録商標)シリーズの中で、ブレンマー(登録商標)50PEP-300(RはCH、RはC、RはC、p及びqは平均してp=3.5及びq=2.5の混合物、RはHである)、ブレンマー(登録商標)70PEP-350B(RはCH、RはC、RはC、p及びqは平均してp=3.5及びq=2.5の混合物、RはHである)、ブレンマー(登録商標)PP-1000(RはCHであり、RはC、RはC、pは0、qは平均して4~6の混合物、RはHである)、ブレンマー(登録商標)PME-400(RはCHであり、RはC、RはC、pは平均して9の混合物、qは0、RはCHである)等が適している。 A commercially available product can be used as the (meth) acrylic acid ester having an alkylene oxide group. Examples of commercially available products include the Bremer (registered trademark) series manufactured by NOF Corporation. Further, in the Blemmer (registered trademark) series, Blemmer (registered trademark) 50 PEP-300 (R 3 is CH 3 , R 4 is C 2 H 5 , R 5 is C 3 H 6 , p and q are p on average. = 3.5 and q = 2.5, R 6 is H), BLEMMER® 70PEP-350B (R 3 is CH 3 , R 4 is C 2 H 5 , R 5 is C 3 H 6 , p and q are on average a mixture of p = 3.5 and q = 2.5, R 6 is H), Blemmer® PP-1000 (R 3 is CH 3 , R 4 Is C 2 H 5 , R 5 is C 3 H 6 , p is 0, q is a mixture of 4 to 6 on average, R 6 is H), Blemmer® PME-400 (R 3 is CH is 3, R 4 is C 2 H 5, R 5 is C 3 H 6, a mixture of p is on average 9, q is 0, R 6 CH 3 a is), and the like are suitable.
 上記アルキレンオキサイド基を有する(メタ)アクリル酸エステルの使用量は、ビニル系単量体の全量に対し、40重量%以下であることが好ましく、1~15重量%であることがより好ましく、2~10重量%がさらに好ましく、3~7重量%であることが特に好ましい。上記アルキレンオキサイド基を有する(メタ)アクリル酸エステルの使用量を上記範囲の下限以上とすることで、コア粒子を水性媒体中に一次粒子に分散させることがさらに容易となる。上記アルキレンオキサイド基を有する(メタ)アクリル酸エステルの使用量が重合性ビニル系単量体の全量に対して40重量%を越えると重合安定性が低下し、合着粒子が多くなることがある。 The amount of the (meth) acrylic acid ester having an alkylene oxide group is preferably 40% by weight or less, more preferably 1 to 15% by weight, more preferably 2% by weight based on the total amount of the vinyl monomer. More preferred is ˜10% by weight, and especially preferred is 3 to 7% by weight. By making the usage-amount of the (meth) acrylic acid ester which has the said alkylene oxide group more than the minimum of the said range, it becomes still easier to disperse | distribute a core particle to a primary particle in an aqueous medium. When the amount of the (meth) acrylic acid ester having an alkylene oxide group exceeds 40% by weight based on the total amount of the polymerizable vinyl monomer, the polymerization stability may be lowered and the number of coalesced particles may be increased. .
 また、上記ビニル系単量体は、(メタ)アクリル酸エステル単量体等の単官能ビニル系単量体と共に、多官能ビニル系単量体としてのウレタンアクリレートオリゴマーを含むことも好ましい。これにより、上記コア粒子の10%圧縮強度を低くすることができるので、前述した範囲の上限以下の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなる。上記ウレタンアクリレートオリゴマーは、単独で硬化させた際に、0~30℃のガラス転移温度(Tg)(粘弾性から測定)を示すことが好ましい。Tgが0℃未満の場合、コア粒子に粘着性がでてくることがある。Tgが30℃以下の場合、復元性の高い導電性樹脂粒子を得ることができる。上記ウレタンアクリレートオリゴマーが単独で硬化させた際に示すTgは、0~28℃であることがより好ましく、0~25℃であることがさらに好ましい。 The vinyl monomer preferably includes a urethane acrylate oligomer as a polyfunctional vinyl monomer together with a monofunctional vinyl monomer such as a (meth) acrylate monomer. Thereby, since the 10% compressive strength of the core particles can be lowered, it becomes easy to realize conductive resin particles having a 10% compressive strength below the upper limit of the above-described range. The urethane acrylate oligomer preferably exhibits a glass transition temperature (Tg) (measured from viscoelasticity) of 0 to 30 ° C. when cured alone. When Tg is less than 0 ° C., the core particles may become sticky. When Tg is 30 ° C. or lower, conductive resin particles having high recoverability can be obtained. The Tg shown when the urethane acrylate oligomer is cured alone is more preferably 0 to 28 ° C., and further preferably 0 to 25 ° C.
 上記ウレタンアクリレートオリゴマーは、単独で硬化させた際にH~HBの鉛筆硬度を示すものであることが好ましい。そのようなウレタンアクリレートオリゴマーを使用した場合、より高い復元率を有する導電性樹脂粒子を得ることができる。 The urethane acrylate oligomer preferably exhibits a pencil hardness of H to HB when cured alone. When such a urethane acrylate oligomer is used, conductive resin particles having a higher restoration rate can be obtained.
 上記ウレタンアクリレートオリゴマーの市販品としては、例えば、第一工業製薬株式会社製のニューフロンティア(登録商標)RSTシリーズの「ニューフロンティア(登録商標)RST-402」及び「ニューフロンティア(登録商標)RST-201」等のようなニューフロンティア(登録商標)シリーズのウレタンアクリレートオリゴマー、共栄社化学株式会社製のUFシリーズ「UF-A01P」等を挙げることができる。 Examples of commercially available urethane acrylate oligomers include “New Frontier (registered trademark) RST-402” and “New Frontier (registered trademark) RST-” of New Frontier (registered trademark) RST series manufactured by Daiichi Kogyo Seiyaku Co., Ltd. New Frontier (registered trademark) series urethane acrylate oligomer such as “201”, and UF series “UF-A01P” manufactured by Kyoeisha Chemical Co., Ltd.
〔コア粒子の製造方法〕
 本発明のコア粒子は、ビニル系単量体の重合体からなる場合、ビニル系単量体を重合させることにより得ることができる。重合方法としては、乳化重合、分散重合、懸濁重合、シード重合など、樹脂粒子を得るための公知の方法を用いることができる。
[Method for producing core particles]
When the core particle of the present invention is made of a polymer of a vinyl monomer, it can be obtained by polymerizing the vinyl monomer. As the polymerization method, known methods for obtaining resin particles such as emulsion polymerization, dispersion polymerization, suspension polymerization, seed polymerization and the like can be used.
〔懸濁重合によるコア粒子の製造方法〕
 上記懸濁重合は、水性媒体中でビニル系単量体を重合させる方法である。上記水性媒体としては、水、及び、水と水溶性有機溶媒(例えば、炭素数5以下の低級アルコール)との混合物が挙げられる。
[Method for producing core particles by suspension polymerization]
The suspension polymerization is a method of polymerizing a vinyl monomer in an aqueous medium. Examples of the aqueous medium include water and a mixture of water and a water-soluble organic solvent (for example, a lower alcohol having 5 or less carbon atoms).
 上記懸濁重合は、必要に応じて、重合開始剤の存在下で行われてもよい。重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等の油溶性過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等の油溶性アゾ化合物が挙げられる。これらの重合開始剤は、それぞれ単独で、又は2種類以上組み合わせて用いることができる。なお、重合開始剤の使用量は、ビニル系単量体100重量部に対して、0.1~1重量部程度で十分である。 The above suspension polymerization may be performed in the presence of a polymerization initiator, if necessary. Examples of the polymerization initiator include oil-soluble properties such as benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, and t-butyl hydroperoxide. Examples of peroxides include oil-soluble azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile). These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is about 0.1 to 1 part by weight with respect to 100 parts by weight of the vinyl monomer.
 また、上記懸濁重合は、必要に応じて、分散剤及び/又は界面活性剤の存在下で行われてもよい。分散剤としては、例えば、リン酸カルシウム、及びピロリン酸マグネシウム等の難水溶性無機塩;ポリビニルアルコール、メチルセルロース、及びポリビニルピロリドン等の水溶性高分子等が挙げられる。 The suspension polymerization may be performed in the presence of a dispersant and / or a surfactant as necessary. Examples of the dispersant include poorly water-soluble inorganic salts such as calcium phosphate and magnesium pyrophosphate; water-soluble polymers such as polyvinyl alcohol, methyl cellulose, and polyvinyl pyrrolidone.
 また、界面活性剤としては、例えばオレイン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸塩、アルキルリン酸エステル塩等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル等のノニオン性界面活性剤;ラウリルジメチルアミンオキサイド等の両性界面活性剤等が挙げられる。 Examples of the surfactant include anionic surfactants such as sodium oleate, sodium lauryl sulfate, sodium dodecylbenzene sulfonate, alkyl naphthalene sulfonate, and alkyl phosphate ester salt; polyoxyethylene alkyl ether, polyoxy Nonionic surfactants such as ethylene alkylphenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester; amphoteric surfactants such as lauryl dimethylamine oxide, etc. Can be mentioned.
 上記した分散剤及び界面活性剤は、それぞれ単独で又は2種類以上を組み合わせて用いることができる。中でも、分散安定性の点から、リン酸カルシウム、ピロリン酸マグネシウム等の難水溶性リン酸塩の分散剤と、アルキル硫酸塩、アルキルベンゼンスルホン酸塩等のアニオン性界面活性剤とを組み合わせて用いるのが好ましい。 The above dispersants and surfactants can be used alone or in combination of two or more. Among these, from the viewpoint of dispersion stability, it is preferable to use a combination of a poorly water-soluble phosphate dispersant such as calcium phosphate and magnesium pyrophosphate and an anionic surfactant such as alkyl sulfate and alkyl benzene sulfonate. .
 上記分散剤の使用量は、ビニル系単量体100重量部に対して、0.5~10重量部であることが好ましく、界面活性剤の使用量は、水性媒体100重量部に対して0.01~0.2重量部であることが好ましい。 The amount of the dispersant used is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer, and the amount of the surfactant used is 0 with respect to 100 parts by weight of the aqueous medium. It is preferably 0.01 to 0.2 parts by weight.
 上記懸濁重合は、上記ビニル系単量体を含む油相を調製し、調製した油相を水性媒体を含む水相中に分散させながら、この油相が分散された水相を加熱することにより開始できる。なお、重合開始剤を使用する場合には、上記ビニル系単量体に重合開始剤を混合して油相を調製する。また、分散剤及び/又は界面活性剤を使用する場合には、水性媒体に分散剤及び/又は界面活性剤を混合して水相を調製する。なお、コア粒子の体積平均粒子径は、油相と水相との混合割合や分散剤、界面活性剤の使用量及び攪拌条件、分散条件を調整することにより適宜制御できる。 In the suspension polymerization, an oil phase containing the vinyl monomer is prepared, and the aqueous phase in which the oil phase is dispersed is heated while the prepared oil phase is dispersed in an aqueous phase containing an aqueous medium. Can start. In addition, when using a polymerization initiator, a polymerization initiator is mixed with the said vinylic monomer, and an oil phase is prepared. Moreover, when using a dispersing agent and / or surfactant, a dispersing agent and / or surfactant are mixed with an aqueous medium, and an aqueous phase is prepared. The volume average particle diameter of the core particles can be appropriately controlled by adjusting the mixing ratio of the oil phase and the aqueous phase, the amount of dispersant, the amount of surfactant used, the stirring conditions, and the dispersion conditions.
 水相中に油相を分散させる方法としては、例えば、水相中に油相を直接添加して、プロペラ翼等の攪拌力によりその油相を液滴として水相中に分散させる方法;水相中に油相を直接添加して、ローターとステーターから構成される高せん断力を利用する分散機であるホモミクサーを用いてその油相を水相中に分散させる方法;水相中に油相を直接添加して、超音波分散機等を用いて水相中にその油相を分散させる方法等種々の方法が挙げられる。こられのうち、水相中に油相を直接添加して、マイクロフルイダイザー、ナノマイザー(登録商標)等の高圧型分散機を用いて、混合物の液滴同士の衝突あるいは機壁に対する混合物の衝突を利用して、その油相を液滴として水相中に分散させる方法;MPG(マイクロポーラスガラス)多孔膜を通して油相を水相中に圧入させる方法等によって分散させれば、コア粒子の粒子径をより均一に揃えることができるので好ましい。 Examples of the method for dispersing the oil phase in the aqueous phase include a method in which the oil phase is directly added to the aqueous phase and the oil phase is dispersed as droplets in the aqueous phase by stirring force of a propeller blade or the like; A method in which an oil phase is directly added to a phase and the oil phase is dispersed in an aqueous phase using a homomixer that is a disperser using a high shear force composed of a rotor and a stator; There are various methods such as a method of directly adding and dispersing the oil phase in the aqueous phase using an ultrasonic disperser or the like. Among these, the oil phase is directly added to the aqueous phase, and using a high-pressure disperser such as a microfluidizer or nanomizer (registered trademark), the droplets of the mixture collide with each other or the mixture collides with the machine wall. If the oil phase is dispersed as a droplet in the aqueous phase using an MPG; the oil phase is pressed into the aqueous phase through an MPG (microporous glass) porous film, etc. This is preferable because the diameters can be more uniform.
 また、重合温度は、40~90℃程度が好ましい。そしてこの重合温度を保持する時間としては、0.1~10時間程度が好ましい。なお、重合反応は、窒素雰囲気のような、重合反応系中の反応物(油相)に対して不活性な不活性ガス雰囲気下で行ってもよい。また、ビニル系単量体の沸点が重合温度付近又は重合温度以下である場合には、ビニル系単量体が揮発しないように、オートクレーブ等の耐圧重合設備を使用して、密閉下あるいは加圧下で懸濁重合を行うことが好ましい。 The polymerization temperature is preferably about 40 to 90 ° C. The time for maintaining this polymerization temperature is preferably about 0.1 to 10 hours. The polymerization reaction may be performed in an inert gas atmosphere that is inert to the reactant (oil phase) in the polymerization reaction system, such as a nitrogen atmosphere. If the boiling point of the vinyl monomer is near or below the polymerization temperature, use a pressure-resistant polymerization facility such as an autoclave so that the vinyl monomer does not volatilize. It is preferable to perform suspension polymerization in
 そして、重合反応終了後、所望により分散剤を酸等で分解除去し、ろ過、水洗浄、脱水、乾燥、粉砕、分級等を行うことによって、目的のコア粒子を得ることができる。 Then, after completion of the polymerization reaction, the desired core particles can be obtained by decomposing and removing the dispersant with an acid or the like, and performing filtration, water washing, dehydration, drying, pulverization, classification, and the like.
〔シード重合によるコア粒子の製造方法〕
 シード重合法によるコア粒子の製造方法では、まず、ビニル系単量体と水性媒体とから構成される水性乳化液に種粒子を添加する。水性媒体としては、水、水と水溶性溶媒(例えば、炭素数5以下の低級アルコール)との混合媒体が挙げられる。
[Method of producing core particles by seed polymerization]
In the method for producing core particles by the seed polymerization method, first, seed particles are added to an aqueous emulsion composed of a vinyl monomer and an aqueous medium. Examples of the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, a lower alcohol having 5 or less carbon atoms).
 水性媒体には、界面活性剤が含まれていることが好ましい。界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、及び両性イオン性界面活性剤のいずれをも用いることができる。 The aqueous medium preferably contains a surfactant. As the surfactant, any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a zwitterionic surfactant can be used.
 上記アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ石鹸等の脂肪酸石鹸、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジ(2-エチルヘキシル)スルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。 Examples of the anionic surfactant include fatty acid soaps such as sodium oleate and castor oil potash soap, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, alkyl Naphthalene sulfonate, alkane sulfonate, dialkylsulfosuccinate such as sodium di (2-ethylhexyl) sulfosuccinate, alkenyl succinate (dipotassium salt), alkyl phosphate ester salt, naphthalene sulfonate formalin condensate, poly Oxyethylene alkyl phenyl ether sulfate, polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene lauryl ether sulfate, polyoxyethylene alkyl sulfate Ether salts.
 上記カチオン性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。 Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
 上記両性イオン性界面活性剤としては、ラウリルジメチルアミンオキサイドや、リン酸エステル系又は亜リン酸エステル系界面活性剤が挙げられる。上記界面活性剤は、単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤のうち、重合時の分散安定性の観点から、アニオン性界面活性剤が好ましい。 Examples of the zwitterionic surfactant include lauryl dimethylamine oxide and phosphate ester or phosphite ester surfactants. You may use the said surfactant individually or in combination of 2 or more types. Of the above surfactants, anionic surfactants are preferred from the viewpoint of dispersion stability during polymerization.
 水性乳化液は、公知の方法により作製できる。例えば、ビニル系単量体を、水性媒体に添加し、ホモジナイザー、超音波処理機、ナノマイザー等の微細乳化機により分散させることで、水性乳化液を得ることができる。ビニル系単量体は、必要に応じて重合開始剤を含んでいてもよい。重合開始剤は、ビニル系単量体に予め混合させた後、水性媒体中に分散させてもよいし、両者を別々に水性媒体に分散させたものを混合してもよい。得られた水性乳化液中のビニル系単量体の液滴の粒子径は、種粒子よりも小さい方が、ビニル系単量体が種粒子に効率よく吸収されるので好ましい。 The aqueous emulsion can be prepared by a known method. For example, an aqueous emulsion can be obtained by adding a vinyl monomer to an aqueous medium and dispersing it with a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer. The vinyl monomer may contain a polymerization initiator as necessary. The polymerization initiator may be premixed with the vinyl monomer and then dispersed in an aqueous medium, or a mixture of both separately dispersed in an aqueous medium. The particle diameter of the vinyl monomer droplets in the obtained aqueous emulsion is preferably smaller than the seed particles because the vinyl monomers are efficiently absorbed by the seed particles.
 種粒子は、水性乳化液に直接添加してもよく、種粒子を水性分散媒体に分散させた形態で添加してもよい。種粒子の水性乳化液への添加後、種粒子へビニル系単量体を吸収させる。この吸収は、通常、種粒子添加後の水性乳化液を、室温(約20℃)で1~12時間攪拌することで行うことができる。また、水性乳化液を30~50℃程度に加温することにより吸収を促進してもよい。 The seed particles may be added directly to the aqueous emulsion, or may be added in a form in which the seed particles are dispersed in an aqueous dispersion medium. After the seed particles are added to the aqueous emulsion, the vinyl monomers are absorbed into the seed particles. This absorption can usually be carried out by stirring the aqueous emulsion after addition of seed particles at room temperature (about 20 ° C.) for 1 to 12 hours. Further, absorption may be promoted by heating the aqueous emulsion to about 30 to 50 ° C.
 種粒子は、ビニル系単量体を吸収することにより膨潤する。ビニル系単量体と種粒子との混合比率は、種粒子1重量部に対して、ビニル系単量体が5~150重量部の範囲であることが好ましく、10~120重量部の範囲であることがより好ましい。種粒子に対するビニル系単量体の混合比率が小さくなると、重合による粒子径の増加が小さくなることにより、生産性が低下することがある。種粒子に対するビニル系単量体の混合比率が大きくなると、ビニル系単量体が、完全に種粒子に吸収されず、水性媒体中で独自に懸濁重合し異常粒子を生成することがある。なお、吸収の終了は、光学顕微鏡の観察で粒子径の拡大を確認することにより判定できる。 The seed particles swell by absorbing the vinyl monomer. The mixing ratio of the vinyl monomer to the seed particles is preferably in the range of 5 to 150 parts by weight of the vinyl monomer with respect to 1 part by weight of the seed particles, and in the range of 10 to 120 parts by weight. More preferably. When the mixing ratio of the vinyl monomer to the seed particles is small, the increase in particle diameter due to polymerization is small, and thus productivity may be lowered. When the mixing ratio of the vinyl monomer to the seed particles increases, the vinyl monomer may not be completely absorbed by the seed particles, and may be suspended and polymerized uniquely in an aqueous medium to generate abnormal particles. The end of absorption can be determined by confirming the enlargement of the particle diameter by observation with an optical microscope.
 水性乳化液には、重合開始剤を必要に応じて添加することができる。重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。重合開始剤は、ビニル系単量体100重量部に対して、0.1~3重量部の範囲で使用することが好ましい。 A polymerization initiator can be added to the aqueous emulsion as necessary. Examples of the polymerization initiator include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexano , Organic peroxides such as di-t-butyl peroxide, 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2′-azobis (2,4- And azo compounds such as dimethylvaleronitrile). The polymerization initiator is preferably used in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the vinyl monomer.
 次に、種粒子に吸収させたビニル系単量体を重合させることで、コア粒子が得られる。重合温度は、ビニル系単量体、重合開始剤の種類に応じて、適宜選択する。重合温度は、25~110℃の範囲であることが好ましく、50~100℃の範囲であることがより好ましい。重合反応は、種粒子に単量体、重合開始剤が完全に吸収された後に、昇温して行うのが好ましい。重合完了後、必要に応じてコア粒子を遠心分離して水性媒体を除去し、水及び溶剤で洗浄した後、乾燥、単離する。 Next, the core particles are obtained by polymerizing the vinyl monomer absorbed in the seed particles. The polymerization temperature is appropriately selected according to the type of vinyl monomer and polymerization initiator. The polymerization temperature is preferably in the range of 25 to 110 ° C, more preferably in the range of 50 to 100 ° C. The polymerization reaction is preferably performed by raising the temperature after the monomer and the polymerization initiator are completely absorbed by the seed particles. After completion of the polymerization, the core particles are centrifuged as necessary to remove the aqueous medium, washed with water and a solvent, and then dried and isolated.
 上記重合工程において、コア粒子の分散安定性を向上させるために、高分子分散安定剤を添加してもよい。高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドン等を用いることができる。また、これらの高分子分散安定剤と、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物とを併用することもできる。これらのうち、ポリビニルアルコール、ポリビニルピロリドンが高分子分散安定剤として好ましい。高分子分散安定剤の添加量は、ビニル系単量体100重量部に対して1~10重量部が好ましい。 In the polymerization step, a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the core particles. As the polymer dispersion stabilizer, for example, polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, etc.), polyvinyl pyrrolidone and the like can be used. Moreover, these polymer dispersion stabilizers and inorganic water-soluble polymer compounds such as sodium tripolyphosphate can be used in combination. Of these, polyvinyl alcohol and polyvinyl pyrrolidone are preferable as the polymer dispersion stabilizer. The addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer.
 また、水系での乳化粒子の発生を抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。 In order to suppress the generation of emulsified particles in an aqueous system, water-soluble polymerization inhibitors such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, and polyphenols may be used. Good.
〔シェル〕
 上記シェルは、導電性高分子からなる。上記導電性高分子は、ポリアニリン系重合体やポリイソチアナフテン系重合体等であってもよいが、より均一なシェルが形成されやすいこと、および所望の導電性を有する導電性樹脂粒子が得られることから、含窒素複素芳香族化合物及び含硫黄複素芳香族化合物からなる群より選ばれる少なくとも1種の単量体の重合体であることが好ましい。
〔shell〕
The shell is made of a conductive polymer. The conductive polymer may be a polyaniline polymer, a polyisothianaphthene polymer, or the like, but it is easy to form a more uniform shell, and conductive resin particles having desired conductivity can be obtained. Therefore, the polymer is preferably a polymer of at least one monomer selected from the group consisting of a nitrogen-containing heteroaromatic compound and a sulfur-containing heteroaromatic compound.
 上記含窒素複素芳香族化合物としては、ピロール、インドール、イミダゾール、ピリジン、ピリミジン、ピラジン、及びこれらのアルキル置換体(例えば、メチル基、エチル基、プロピル基、ブチル等の炭素数1~4のアルキル基による置換体)、ハロゲン置換体(例えば、フルオロ基、クロロ基、ブロモ基等のハロゲン基による置換体)、ニトリル置換体といった誘導体が挙げられる。より均一なシェルが形成されやすいこと、および所望の導電性を有する導電性樹脂粒子が得られることから、ピロール及びピロールの誘導体の重合体が含窒素複素芳香族化合物として好ましい。ピロールの誘導体としては、3,4-ジメチルピロールが挙げられる。 Examples of the nitrogen-containing heteroaromatic compound include pyrrole, indole, imidazole, pyridine, pyrimidine, pyrazine, and alkyl-substituted products thereof (for example, alkyl having 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, butyl). A substituted group), a halogen-substituted product (for example, a substituted group by a halogen group such as a fluoro group, a chloro group, and a bromo group), and a derivative such as a nitrile-substituted product. A polymer of pyrrole and a derivative of pyrrole is preferable as the nitrogen-containing heteroaromatic compound because a more uniform shell is easily formed and conductive resin particles having desired conductivity can be obtained. Examples of pyrrole derivatives include 3,4-dimethylpyrrole.
 上記含硫黄芳香族化合物としては、所望の導電性を有する導電性樹脂粒子が得られることから、チオフェン及びチオフェンの誘導体が含窒素芳香族化合物として好ましい。チオフェンの誘導体としては、3,4-エチレンジオキシチオフェン、3-メチルチオフェン、3-オクチルチオフェン等が挙げられる。これらの単量体は、単独で使用して単独重合体とすることができ、あるいは2種類以上を併用して共重合体とすることもできる。 As the sulfur-containing aromatic compound, thiophene and thiophene derivatives are preferable as the nitrogen-containing aromatic compound because conductive resin particles having desired conductivity can be obtained. Examples of thiophene derivatives include 3,4-ethylenedioxythiophene, 3-methylthiophene, and 3-octylthiophene. These monomers can be used alone to form a homopolymer, or two or more types can be used in combination to form a copolymer.
 上記シェルの厚さは、30~300nmの範囲であることが好ましく、50~200nmの範囲であることがより好ましい。上記シェルの厚さが上記範囲内であれば、十分な導電性が得ることが可能となる。上記シェルの厚さの振れは、50%以下であることが好ましく、40%以下であることがより好ましい。 The thickness of the shell is preferably in the range of 30 to 300 nm, and more preferably in the range of 50 to 200 nm. If the thickness of the shell is within the above range, sufficient conductivity can be obtained. The thickness fluctuation of the shell is preferably 50% or less, and more preferably 40% or less.
〔シェルの形成方法〕
 上記導電性樹脂粒子は、そのシェルを構成する導電性高分子が、含窒素複素芳香族化合物及び含硫黄複素芳香族化合物からなる群より選ばれる少なくとも1種の単量体(以下、単に「単量体」と称する)の重合体である場合、上記コア粒子に上記単量体の重合体を被覆する方法により製造できる。上記コア粒子に上記単量体の重合体を被覆する方法としては、酸化剤を含む水性媒体中に上記コア粒子を分散させて分散液(乳化液または懸濁液)とし、該分散液に単量体を添加し攪拌して、酸化重合により上記コア粒子の表面に上記単量体の重合体を被覆させる方法が好ましい。
[Method of forming shell]
In the conductive resin particles, the conductive polymer constituting the shell is at least one monomer selected from the group consisting of a nitrogen-containing heteroaromatic compound and a sulfur-containing heteroaromatic compound (hereinafter, simply “single”). In the case of a polymer called “mer”, it can be produced by a method in which the core particle is coated with the monomer polymer. The core particles are coated with the monomer polymer by dispersing the core particles in an aqueous medium containing an oxidizing agent to form a dispersion (emulsion or suspension). A method is preferred in which a monomer is added and stirred, and the surface of the core particles is coated with the monomer polymer by oxidative polymerization.
 上記単量体の添加量は、所望の導電性に応じて設定すればよく、コア粒子100重量部に対し、1~30重量部の範囲であることが好ましく、3~20重量部であることがより好ましい。上記単量体の添加量をコア粒子100重量部に対して1重量部以上にすること、コア粒子の表面全体が均一に上記単量体の重合体で被覆され、所望の導電性を得ることが可能となる。一方、単量体の添加量をコア粒子100重量部に対して30重量部以下にすることで、添加した単量体が単独で重合し、目的とする導電性樹脂粒子以外のものができてしまうことを防止できる。 The amount of the monomer added may be set according to the desired conductivity, and is preferably in the range of 1 to 30 parts by weight, preferably 3 to 20 parts by weight, with respect to 100 parts by weight of the core particles. Is more preferable. The addition amount of the monomer is 1 part by weight or more with respect to 100 parts by weight of the core particle, and the entire surface of the core particle is uniformly coated with the polymer of the monomer to obtain desired conductivity. Is possible. On the other hand, by making the addition amount of the monomer 30 parts by weight or less with respect to 100 parts by weight of the core particles, the added monomer is polymerized alone, and other than the intended conductive resin particles can be obtained. Can be prevented.
(1)酸化剤
 上記酸化剤としては、塩酸、硫酸、クロロスルホン酸のような無機酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸のような有機酸、塩化第二鉄、塩化アルミニウムのような金属ハロゲン化物、過塩素酸カリウムのようなハロゲン酸、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素のような過酸化物等が挙げられる。これらは単独または混合して使用してもよい。酸化剤としては、無機過酸のアルカリ金属塩が好ましい。無機過酸のアルカリ金属塩としては、具体的には、過硫酸カリウム、過硫酸ナトリウム等が挙げられる。
(1) Oxidizing agent The oxidizing agent includes inorganic acids such as hydrochloric acid, sulfuric acid and chlorosulfonic acid, organic acids such as alkylbenzenesulfonic acid and alkylnaphthalenesulfonic acid, metal halogens such as ferric chloride and aluminum chloride. And halogen acids such as potassium perchlorate, potassium persulfate, ammonium persulfate, sodium persulfate, peroxides such as hydrogen peroxide, and the like. These may be used alone or in combination. As the oxidizing agent, an alkali metal salt of an inorganic peracid is preferable. Specific examples of the alkali metal salt of inorganic peracid include potassium persulfate and sodium persulfate.
 上記酸化剤の使用量は、単量体全量に対して0.5~2.0モル当量であることが好ましい。酸化剤の使用量を単量体全量に対して0.5モル当量以上にすることで、コア粒子の表面全体が均一に単量体の重合体を含むシェルで被覆され、所望の導電性を得ることが可能となる。一方、酸化剤の使用量を単量体全量に対して2.0モル当量以下にすることで、添加した単量体が単独で重合し、目的とする導電性樹脂粒子以外のものができてしまうことを防止できる。 The amount of the oxidizing agent used is preferably 0.5 to 2.0 molar equivalents relative to the total amount of monomers. By making the amount of the oxidizing agent used 0.5 mole equivalent or more with respect to the total amount of the monomer, the entire surface of the core particle is uniformly coated with the shell containing the monomer polymer, and the desired conductivity is obtained. Can be obtained. On the other hand, by making the use amount of the oxidizing agent 2.0 mol equivalent or less with respect to the total amount of the monomer, the added monomer is polymerized alone, and other than the intended conductive resin particles can be obtained. Can be prevented.
 上記酸化剤が添加される水性媒体は、単量体を溶解又は分散できるものであれば特に限定されるものではないが、水又は、水と、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノール等のアルコール類;ジエチルエーテル、イソプロピルエ一テル、ブチルエーテル、メチルセロソルブ、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン等のケトン類との混合媒体が挙げられる。 The aqueous medium to which the oxidizing agent is added is not particularly limited as long as it can dissolve or disperse the monomer, but water or water and methanol, ethanol, n-propanol, isopropanol, n- Examples include alcohols such as butanol and t-butanol; ethers such as diethyl ether, isopropyl ether, butyl ether, methyl cellosolve, and tetrahydrofuran; and mixed media with ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
(2)水性媒体
 上記酸化剤が添加された水性媒体は、3以上のpHを有することが好ましい。pHが3以上であれば、コア粒子の表面全体が均一に単量体の重合体を含むシェルで覆われ、所望の導電性を得ることが可能となる。安定に被覆するには、pHを3~10の範囲に調整することがより好ましい。
(2) Aqueous medium The aqueous medium to which the oxidizing agent is added preferably has a pH of 3 or more. If the pH is 3 or more, the entire surface of the core particle is uniformly covered with a shell containing a monomer polymer, and desired conductivity can be obtained. For stable coating, it is more preferable to adjust the pH to a range of 3 to 10.
(3)界面活性剤
 上記水性媒体には、界面活性剤を添加してもよい。界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤をいずれも使用できる。
(3) Surfactant A surfactant may be added to the aqueous medium. As the surfactant, any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used.
 上記アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ石鹸等の脂肪酸石鹸、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。 Examples of the anionic surfactant include fatty acid soaps such as sodium oleate and castor oil potash soap, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, alkyl Sulfonates, alkyl naphthalene sulfonates, alkane sulfonates, dialkyl sulfosuccinates, alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl sulfates Etc.
 上記ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマー等が挙げられる。 Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, Examples thereof include oxyethylene-oxypropylene block polymers.
 上記カチオン性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。 Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
 上記両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイド、リン酸エステル系又は亜リン酸エステル系界面活性剤等が挙げられる。上記界面活性剤は、単独で又は2種以上を組み合わせて用いてもよい。界面活性剤の添加量は、水性媒体100重量部に対して0.0001~1重量部の範囲であることが好ましい。 Examples of the zwitterionic surfactant include lauryl dimethylamine oxide, phosphate ester-based or phosphite-based surfactant. You may use the said surfactant individually or in combination of 2 or more types. The addition amount of the surfactant is preferably in the range of 0.0001 to 1 part by weight with respect to 100 parts by weight of the aqueous medium.
 また、上記水性媒体には、界面活性剤以外に高分子分散安定剤が添加されてもよい。高分子分散安定剤としては、例えば、ポリアクリル酸、その共重合体及びこれらの中和物ならびにポリメタクリル酸、その共重合体及びこれらの中和物、ポリビニルピロリドン、ヒドロキシプロピルセルロース(HPC)等が挙げられる。高分子分散安定剤は、上述の界面活性剤と併用してもよい。 In addition to the surfactant, a polymer dispersion stabilizer may be added to the aqueous medium. Examples of the polymer dispersion stabilizer include polyacrylic acid, copolymers thereof and neutralized products thereof, and polymethacrylic acid, copolymers thereof and neutralized products thereof, polyvinylpyrrolidone, hydroxypropylcellulose (HPC) and the like. Is mentioned. The polymer dispersion stabilizer may be used in combination with the above-described surfactant.
(4)酸化重合
 上述した酸化重合を用いた導電性樹脂粒子の製造方法では、酸化剤を含む水性媒体中に上記コア粒子を分散させて分散液とし、該分散液に単量体を添加し、攪拌して酸化重合することにより、コア粒子が上記単量体の重合体で被覆された導電性樹脂粒子を得る。酸化重合の温度は-20~40℃の範囲であることが好ましく、酸化重合の時間は、0.5~10時間の範囲であることが好ましい。
(4) Oxidative polymerization In the above-described method for producing conductive resin particles using oxidative polymerization, the core particles are dispersed in an aqueous medium containing an oxidizing agent to form a dispersion, and a monomer is added to the dispersion. By conducting oxidative polymerization with stirring, conductive resin particles in which the core particles are coated with the polymer of the monomer are obtained. The temperature of oxidative polymerization is preferably in the range of −20 to 40 ° C., and the time of oxidative polymerization is preferably in the range of 0.5 to 10 hours.
 なお、導電性樹脂粒子が分散された乳化液は、必要に応じて遠心分離して水性媒体を除去し、水及び溶剤で洗浄した後、乾燥、単離する。 The emulsion in which the conductive resin particles are dispersed is centrifuged as necessary to remove the aqueous medium, washed with water and a solvent, and then dried and isolated.
 以上の説明では、コア粒子に重合体を被覆させる方法として、コア粒子と酸化剤を含む水性媒体中で単量体と混合して単量体を酸化重合させる方法を説明したが、コア粒子に重合体を被覆させる方法はこの方法に限定されない。例えば、重合体を乾式の方法を用いてコア粒子に被覆する方法も採用され得る。上記乾式の方法としては、例えば、ボールミルを用いる方法、V型混合機を用いる方法、高速流動乾燥機を用いる方法、ハイブリダイザーを用いる方法、メカノフュージョン法などを用いることができる。 In the above description, as a method of coating the core particle with the polymer, the method of oxidative polymerization of the monomer by mixing the monomer in an aqueous medium containing the core particle and the oxidizing agent has been described. The method for coating the polymer is not limited to this method. For example, a method of coating the core particles with a polymer using a dry method may be employed. Examples of the dry method include a method using a ball mill, a method using a V-type mixer, a method using a high-speed fluidized dryer, a method using a hybridizer, and a mechano-fusion method.
〔導電性樹脂粒子の用途〕
 本発明の導電性樹脂粒子は、導電性樹脂粒子同士を密着させて導電性を発現することを目的とした用途において好適に使用することができる。本発明の導電性樹脂粒子は、電子回路基板等における電気接続のための導電性ペースト(バインダー樹脂中に導電性粒子が分散されているもの)、塗布及び乾燥されたときに電子回路基板等における電気接続のための導電性膜を形成できる導電性インク(バインダー樹脂を溶剤に溶解させた溶液中に導電性粒子が分散されているもの)、転写ローラ等に利用される導電性ローラの導電性弾性体層(弾性体中に導電性粒子が分散されているもの)、アンチブロッキング剤等に使用される導電性粒子として使用できる。
[Use of conductive resin particles]
The conductive resin particles of the present invention can be suitably used in applications intended to develop conductivity by bringing conductive resin particles into close contact with each other. The conductive resin particle of the present invention is a conductive paste for electrical connection in an electronic circuit board or the like (in which conductive particles are dispersed in a binder resin). Conductive ink that can form a conductive film for electrical connection (contained with conductive particles dispersed in a solution in which binder resin is dissolved in a solvent), conductivity of conductive rollers used for transfer rollers, etc. It can be used as conductive particles used for elastic layers (those in which conductive particles are dispersed in an elastic body), antiblocking agents, and the like.
〔導電性樹脂組成物〕
 本発明の導電性樹脂組成物は、本発明の導電性樹脂粒子とマトリックス樹脂とを含んでいる。本発明の導電性樹脂組成物は、本発明の導電性樹脂粒子をマトリックス樹脂に混合することで製造できる。
[Conductive resin composition]
The conductive resin composition of the present invention contains the conductive resin particles of the present invention and a matrix resin. The conductive resin composition of the present invention can be produced by mixing the conductive resin particles of the present invention with a matrix resin.
 前記マトリックス樹脂としては、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド6、ポリアミド66、ポリアミド12、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合樹脂)、AS樹脂(アクリロニトリル-スチレン共重合樹脂)、ポリエチレン、ポリプロピレン、ポリアセタール、ポリアミドイミド、ポリエーテルスルホン、ポリイミド、ポリフェニレンオキサイド、ポリフェニレンスルサルファイド、ポリスチレン、熱可塑性ポリウレタンエラストマー、熱可塑性ポリエステルエラストマー、熱可塑性ポリアミドエラストマー、ポリ塩化ビニル、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン共重合体(ETFE樹脂)、テトラフルオロエチレンパーフルオロアルキルビニルエーテルコポリマー(PFA樹脂)、ポリエーテルケトンなどの熱可塑性樹脂の1種又は2種以上の混合物を用いることができる。前記マトリックス樹脂として用いる熱可塑性樹脂の種類は、目的とする導電性樹脂組成物の特性(機械強度、耐摩耗性、耐化学薬品性、耐熱性、導電性樹脂組成物を成形して成形品を製造する際の成形性等)に応じて適宜選択される。 Examples of the matrix resin include polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyamide 6, polyamide 66, polyamide 12, ABS resin (acrylonitrile-butadiene-styrene copolymer resin), AS resin (acrylonitrile-styrene copolymer resin), polyethylene, Polypropylene, polyacetal, polyamide imide, polyether sulfone, polyimide, polyphenylene oxide, polyphenylene sulfide, polystyrene, thermoplastic polyurethane elastomer, thermoplastic polyester elastomer, thermoplastic polyamide elastomer, polyvinyl chloride, polyvinylidene fluoride, ethylene tetrafluoroethylene Polymer (ETFE resin), tetrafluoroethylene perfluoroa Kill vinyl ether copolymer (PFA resin), one or more of a mixture of a thermoplastic resin such as polyether ketone may be used. The type of thermoplastic resin used as the matrix resin is the characteristics of the desired conductive resin composition (mechanical strength, abrasion resistance, chemical resistance, heat resistance, and molding the molded product by molding the conductive resin composition. It is appropriately selected according to the moldability during production.
 前記導電性樹脂粒子は、前記マトリックス樹脂100重量部に対し、1~200重量部添加されることが好ましい。 The conductive resin particles are preferably added in an amount of 1 to 200 parts by weight with respect to 100 parts by weight of the matrix resin.
 前記導電性樹脂組成物には、目的とする成形品に求められる機能に応じて、その他機能性フィラーを適宜添加してもよい。前記機能性フィラーとしては、ガラス繊維や炭素繊維などの強化繊維、難燃剤、艶消し剤、熱安定剤、光安定剤、着色剤、滑剤などを挙げることができる。 Other functional fillers may be appropriately added to the conductive resin composition depending on the function required for the target molded product. Examples of the functional filler include reinforcing fibers such as glass fibers and carbon fibers, flame retardants, matting agents, heat stabilizers, light stabilizers, colorants, and lubricants.
 本発明の導電性樹脂組成物は、前記マトリックス樹脂、導電性樹脂粒子、及びその他適宜含まれる機能性フィラーを、混合(混練)してホットプレスにより所要形状に成形することにより、成形品とすることができる。あるいは、本発明の導電性樹脂組成物は、前記マトリックス樹脂、導電性樹脂粒子、及びその他適宜含まれる機能性フィラーを、適宜加熱状態で混合(混練)し、ペレットに成形した後、そのペレットを用いて、押出成形や射出成形等によって成形品とすることができる。これらにより、導電性及び帯電防止性に優れた成形品を得ることができる。 The conductive resin composition of the present invention is formed into a molded product by mixing (kneading) the matrix resin, conductive resin particles, and other functional fillers as appropriate, and molding the mixture into a required shape by hot pressing. be able to. Alternatively, in the conductive resin composition of the present invention, the matrix resin, conductive resin particles, and other functional fillers contained as appropriate are mixed (kneaded) appropriately in a heated state and formed into pellets. It can be used as a molded product by extrusion molding or injection molding. By these, the molded article excellent in electroconductivity and antistatic property can be obtained.
〔コーティング剤〕
 本発明のコーティング剤は、本発明の導電性樹脂粒子とバインダー樹脂とを含んでいる。
〔Coating agent〕
The coating agent of the present invention contains the conductive resin particles of the present invention and a binder resin.
 上記バインダー樹脂としては、透明性、導電性樹脂粒子の分散性、耐光性、耐湿性、及び耐熱性等の要求される特性に応じて、当該分野において使用されるものであれば、特に限定されるものではない。上記バインダー樹脂としては、例えば、(メタ)アクリル系樹脂;(メタ)アクリル-ウレタン系樹脂;ウレタン系樹脂;ポリ塩化ビニル系樹脂;ポリ塩化ビニリデン系樹脂;メラミン系樹脂;スチレン系樹脂;アルキド系樹脂;フェノール系樹脂;エポキシ系樹脂;ポリエステル系樹脂;アルキルポリシロキサン系樹脂等のシリコーン系樹脂;(メタ)アクリル-シリコーン系樹脂、シリコーン-アルキド系樹脂、シリコーン-ウレタン系樹脂、シリコーン-ポリエステル樹脂等の変性シリコーン樹脂;ポリフッ化ビニリデン、フルオロオレフィンビニルエーテルポリマー等のフッ素系樹脂等が挙げられる。 The binder resin is not particularly limited as long as it is used in the field according to required properties such as transparency, dispersibility of conductive resin particles, light resistance, moisture resistance, and heat resistance. It is not something. Examples of the binder resin include (meth) acrylic resins; (meth) acrylic-urethane resins; urethane resins; polyvinyl chloride resins; polyvinylidene chloride resins; melamine resins; styrene resins; Resins; phenolic resins; epoxy resins; polyester resins; silicone resins such as alkylpolysiloxane resins; (meth) acrylic-silicone resins, silicone-alkyd resins, silicone-urethane resins, silicone-polyester resins Modified silicone resins such as fluorinated resins such as polyvinylidene fluoride and fluoroolefin vinyl ether polymers.
 上記バインダー樹脂は、コーティング剤の耐久性を向上させる観点から、架橋反応により架橋構造を形成できる硬化性樹脂であることが好ましい。上記硬化性樹脂は、種々の硬化条件で硬化させることができる。上記硬化性樹脂は、硬化のタイプにより、紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂、熱硬化性樹脂、温気硬化性樹脂等に分類される。 The binder resin is preferably a curable resin capable of forming a crosslinked structure by a crosslinking reaction from the viewpoint of improving the durability of the coating agent. The curable resin can be cured under various curing conditions. The curable resin is classified into an ionizing radiation curable resin such as an ultraviolet curable resin and an electron beam curable resin, a thermosetting resin, a hot air curable resin, and the like depending on the type of curing.
 上記熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化型ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。 Examples of the thermosetting resin include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin.
 上記電離放射線硬化性樹脂としては、多価アルコール多官能(メタ)アクリレート等のような多官能(メタ)アクリレート樹脂;ジイソシアネート、多価アルコール、及びヒドロキシ基を有する(メタ)アクリル酸エステル等から合成されるような多官能ウレタンアクリレート樹脂等が挙げられる。上記電離放射線硬化性樹脂としては、多官能(メタ)アクリレート樹脂が好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレートがより好ましい。1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレートとしては、具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4-シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサアクリレート等が挙げられる。上記電離放射線硬化性樹脂は、二種類以上を併用してもよい。 As the ionizing radiation curable resin, synthesized from polyfunctional (meth) acrylate resin such as polyhydric alcohol polyfunctional (meth) acrylate; diisocyanate, polyhydric alcohol, and (meth) acrylic acid ester having a hydroxy group And polyfunctional urethane acrylate resins. The ionizing radiation curable resin is preferably a polyfunctional (meth) acrylate resin, and more preferably a polyhydric alcohol polyfunctional (meth) acrylate having three or more (meth) acryloyl groups in one molecule. As polyhydric alcohol polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in one molecule, specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetra (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, tripentaerythritol hexaacrylate, etc. That. Two or more kinds of the ionizing radiation curable resins may be used in combination.
 上記電離放射線硬化性樹脂としては、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も使用できる。 As the ionizing radiation curable resin, besides these, polyether resins having an acrylate functional group, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used.
 上記電離放射線硬化性樹脂のうち紫外線硬化性樹脂を用いる場合、紫外線硬化性樹脂に光重合開始剤を加えてバインダー樹脂とする。上記光重合開始剤は、どのようなものを用いてもよいが、用いる紫外線硬化性樹脂にあったものを用いることが好ましい。 When using an ultraviolet curable resin among the above ionizing radiation curable resins, a photopolymerization initiator is added to the ultraviolet curable resin to obtain a binder resin. Although what kind of thing may be used for the said photoinitiator, it is preferable to use what was suitable for the ultraviolet curable resin to be used.
 上記光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、α-ヒドロキシアルキルフェノン類、α-アミノアルキルフェノン、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001-139663号公報等に記載)、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、オニウム塩類、ボレート塩、活性ハロゲン化合物、α-アシルオキシムエステル等が挙げられる。 Examples of the photopolymerization initiator include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, α-hydroxyalkylphenones, α-aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, peroxides (Described in JP-A No. 2001-139663), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, α-acyloximes Examples include esters.
 上記アセトフェノン類としては、例えば、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシジメチルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン等が挙げられる。上記ベンゾイン類としては、例えば、ベンゾイン、ベンゾインベンゾエート、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。上記ベンゾフェノン類としては、例えば、ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4-ジクロロベンゾフェノン、p-クロロベンゾフェノン等が挙げられる。上記ホスフィンオキシド類としては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等が挙げられる。上記ケタール類としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンジルメチルケタール類が挙げられる。上記α-ヒドロキシアルキルフェノン類としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトンが挙げられる。上記α-アミノアルキルフェノン類としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)-1-プロパノンが挙げられる。 Examples of the acetophenones include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropio. Examples include phenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone. Examples of the benzoins include benzoin, benzoin benzoate, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone, p-chlorobenzophenone, and the like. Examples of the phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide. Examples of the ketals include benzylmethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one. Examples of the α-hydroxyalkylphenones include 1-hydroxycyclohexyl phenyl ketone. Examples of the α-aminoalkylphenones include 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1-propanone.
 市販の光ラジカル重合開始剤としては、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)651」(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)184」、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)907」(2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)-1-プロパノン)等が好ましい例として挙げられる。 Commercially available radical photopolymerization initiators include trade names “Irgacure (registered trademark) 651” (2,2-dimethoxy-1,2-diphenylethane-1-one) manufactured by BASF Japan Ltd., manufactured by BASF Japan Ltd. Trade name “Irgacure (registered trademark) 184”, and trade name “Irgacure (registered trademark) 907” (2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) manufactured by BASF Japan Ltd. ) -1-propanone) and the like.
 上記光重合開始剤の使用量は、バインダー樹脂100重量%に対し、通常、0.5~20重量%の範囲内であり、好ましくは1~5重量%の範囲内である。 The amount of the photopolymerization initiator used is usually in the range of 0.5 to 20% by weight, preferably in the range of 1 to 5% by weight with respect to 100% by weight of the binder resin.
 上記バインダー樹脂として、上記硬化性樹脂以外に、熱可塑性樹脂を用いることができる。上記熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニルの単独重合体及び共重合体、塩化ビニルの単独重合体及び共重合体、塩化ビニリデンの単独重合体及び共重合体等のビニル系樹脂;ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂;アクリル酸エステルの単独重合体及び共重合体、メタクリル酸エステルの単独重合体及び共重合体等の(メタ)アクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;ポリカーボネート樹脂等が挙げられる。 As the binder resin, a thermoplastic resin can be used in addition to the curable resin. Examples of the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; homopolymers and copolymers of vinyl acetate, homopolymers and copolymers of vinyl chloride, and vinylidene chloride. Vinyl resins such as homopolymers and copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; homopolymers and copolymers of acrylate esters, homopolymers and copolymers of methacrylate esters, etc. ) Acrylic resin; polystyrene resin; polyamide resin; linear polyester resin; polycarbonate resin.
 上記コーティング剤は、水及び/又は有機溶剤をさらに含んでいてもよい。上記コーティング剤を基材フィルムに塗工する場合、上記有機溶剤は、それをコーティング剤に含有させることによって、基材フィルムへのコーティング剤の塗工が容易になるものであれば、特に限定されるものではない。上記有機溶剤としては、例えば、トルエン、キシレン等の芳香族系溶媒;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル等のグリコールエーテル類;2-メトキシエチルアセタート、酢酸2-エトキシエチルアセタート(セロソルブアセタート)、2-ブトキシエチルアセタート、プロピレングリコールメチルエーテルアセタート等のグリコールエーテルエステル類;クロロホルム、ジクロロメタン、トリクロロメタン、塩化メチレン等の塩素系溶媒;テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、1,3-ジオキソラン等のエーテル系溶媒;N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド等のアミド系溶媒等を用いることができる。これら有機溶剤は、1種を用いてもよく、2種以上を混合して用いてもよい。 The coating agent may further contain water and / or an organic solvent. When the coating agent is applied to the base film, the organic solvent is not particularly limited as long as it can be easily applied to the base film by including it in the coating agent. It is not something. Examples of the organic solvent include aromatic solvents such as toluene and xylene; alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and propylene glycol monomethyl ether; Ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether, ethylene Glycol ethers such as glycol diethyl ether, diethylene glycol dimethyl ether, and propylene glycol methyl ether; 2-methoxyethyl acetate Salts, glycol ether esters such as 2-ethoxyethyl acetate (cellosolve acetate), 2-butoxyethyl acetate, propylene glycol methyl ether acetate; chlorinated solvents such as chloroform, dichloromethane, trichloromethane, and methylene chloride Ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane and 1,3-dioxolane; amide solvents such as N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide and dimethylacetamide can be used. These organic solvents may be used alone or in combination of two or more.
〔フィルム〕
 本発明のフィルムは、本発明の導電性樹脂粒子を含んでいる。本発明のフィルムは、例えば、導電性樹脂粒子とバインダー樹脂とを含むコーティング剤を基材フィルム上に塗工してなる構成である。この構成のフィルムは、導電性フィルム又は帯電防止フィルムとして好適に使用できる。
〔the film〕
The film of the present invention contains the conductive resin particles of the present invention. The film of the present invention has, for example, a configuration in which a coating agent containing conductive resin particles and a binder resin is applied onto a base film. The film having this configuration can be suitably used as a conductive film or an antistatic film.
 上記基材フィルムは、透明であることが好ましい。透明の基材フィルムとしては、例えば、ポリエチレンテレフタレート(以下、「PET」と略記する)、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー等のポリマーからなるフィルムが挙げられる。また、透明の基材フィルムとして、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー等のポリマーからなるフィルムも挙げられる。さらに、透明の基材フィルムとして、イミド系ポリマー、サルホン系ポリマー、ポリエーテルサルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニルスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや上記ポリマーのブレンド物等のポリマーからなるフィルム等も挙げられる。上記基材フィルムとして、特に複屈折率の少ないものが好適に用いられる。また、これらポリマーからなるフィルムにさらに易接着層を設けたフィルムも上記基材フィルムとして用いることができる。上記易接着層は、(メタ)アクリル系樹脂、共重合ポリエステル系樹脂、ポリウレタン系樹脂、スチレン-マレイン酸グラフトポリエステル樹脂、アクリルグラフトポリエステル樹脂等の樹脂で形成することができる。なお、本明細書において、「(メタ)アクリル」は、アクリル又はメタクリルを意味するものとする。 The base film is preferably transparent. Examples of the transparent base film include polyester polymers such as polyethylene terephthalate (hereinafter abbreviated as “PET”) and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose (TAC), and polycarbonate polymers. And a film made of a polymer such as an acrylic polymer such as polymethyl methacrylate. In addition, as transparent base film, polystyrene, styrene polymer such as acrylonitrile / styrene copolymer, polyethylene, polypropylene, polyolefin having cyclic or norbornene structure, olefin polymer such as ethylene / propylene copolymer, vinyl chloride A film made of a polymer such as a polymer or an amide polymer such as nylon or aromatic polyamide is also included. Furthermore, as transparent base film, imide polymer, sulfone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenyl sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral Examples thereof include films made of polymers such as polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers. As the substrate film, a film having a particularly low birefringence is preferably used. Moreover, the film which further provided the easily bonding layer in the film which consists of these polymers can also be used as the said base film. The easy-adhesion layer can be formed of a resin such as a (meth) acrylic resin, a copolymerized polyester resin, a polyurethane resin, a styrene-maleic acid graft polyester resin, or an acrylic graft polyester resin. In the present specification, “(meth) acryl” means acryl or methacryl.
 上記基材フィルムの厚さは、適宜に決定しうるが、一般には、強度や取り扱い等の作業性、薄層性等の点より、10~500μmの範囲内であり、20~300μmの範囲内であることが好ましく、30~200μmの範囲内であることがより好ましい。 The thickness of the base film can be determined as appropriate, but is generally within the range of 10 to 500 μm and within the range of 20 to 300 μm from the viewpoints of workability such as strength and handling, and thin layer properties. Preferably, it is more preferably in the range of 30 to 200 μm.
 また、上記基材フィルムには、添加剤を加えてもよい。上記添加剤としては、例えば、紫外線吸収剤、赤外線吸収剤、帯電防止剤、屈折率調整剤、増強剤等が挙げられる。 Further, an additive may be added to the base film. Examples of the additive include an ultraviolet absorber, an infrared absorber, an antistatic agent, a refractive index adjuster, and an enhancer.
 上記コーティング剤を基材フィルム上に塗工する方法としては、バーコーティング、ブレードコーティング、スピンコーティング、リバースコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、ディッピング法等の公知の塗工方法が挙げられる。 The coating agent can be applied to the base film by bar coating, blade coating, spin coating, reverse coating, die coating, spray coating, roll coating, gravure coating, micro gravure coating, lip coating, air knife coating. And known coating methods such as a dipping method.
 上記コーティング剤に含まれるバインダー樹脂が電離放射線硬化性樹脂である場合、上記コーティング剤の塗工後に、必要に応じ溶剤を乾燥させ、さらに活性エネルギー線を照射することにより電離放射線硬化性樹脂を硬化させればよい。 When the binder resin contained in the coating agent is an ionizing radiation curable resin, after application of the coating agent, if necessary, the solvent is dried and further irradiated with active energy rays to cure the ionizing radiation curable resin. You can do it.
 上記活性エネルギー線としては、例えば、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプ等の光源から発せられる紫外線;通常20~2000KeVのコックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の電子線加速器から取り出される電子線、α線、β線、γ線等を用いることができる。 Examples of the active energy ray include ultraviolet rays emitted from a light source such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and a tungsten lamp; Electron beams, α rays, β rays, γ rays and the like extracted from electron beam accelerators such as a type, a resonant transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type can be used.
 上記コーティング剤の塗工(及び硬化)によって形成される、バインダー樹脂中に導電性樹脂粒子が分散された層(防眩層)の厚みは、特に限定されず、導電性樹脂粒子の粒子径により適宜決定されるが、1~10μmの範囲内であることが好ましく、3~7μmの範囲内であることがより好ましい。 The thickness of the layer in which conductive resin particles are dispersed in the binder resin (antiglare layer) formed by coating (and curing) of the coating agent is not particularly limited, and depends on the particle diameter of the conductive resin particles. Although it is determined appropriately, it is preferably in the range of 1 to 10 μm, more preferably in the range of 3 to 7 μm.
 なお、本発明のフィルムは、上述した構成に限定されるものではなく、導電性樹脂粒子とバインダー樹脂とを含むコーティング剤と同様の成形用樹脂組成物をフィルム形状に成形したものであってもよい。この構成のフィルムは、導電性フィルム又は帯電防止フィルムとして好適に使用できる。 In addition, the film of the present invention is not limited to the above-described configuration, and a film-shaped resin composition similar to a coating agent containing conductive resin particles and a binder resin may be formed. Good. The film having this configuration can be suitably used as a conductive film or an antistatic film.
〔ギャップ材〕
 本発明のギャップ材は、本発明の導電性樹脂粒子を含んでいる。本発明のギャップ材は、液晶表示素子用面内スペーサー、液晶表示素子用シール部スペーサー、EL(エレクトロルミネッセンス)表示素子用スペーサー、タッチパネル用スペーサー、セラミックやプラスチック等の各種基板間の隙間を均一に保持し得る隙間保持材等の隙間距離保持用スペーサーとして用いられる。本発明のギャップ材は、良好な導電率を有する本発明の導電性樹脂粒子を含むため、導電性を有し、帯電防止機能を発揮する。
[Gap material]
The gap material of the present invention includes the conductive resin particles of the present invention. The gap material of the present invention provides a uniform gap between various substrates such as in-plane spacers for liquid crystal display elements, seal spacers for liquid crystal display elements, spacers for EL (electroluminescence) display elements, spacers for touch panels, ceramics and plastics. It is used as a gap distance holding spacer such as a gap holding material that can be held. Since the gap material of the present invention includes the conductive resin particles of the present invention having a good electrical conductivity, the gap material has electrical conductivity and exhibits an antistatic function.
 本発明のギャップ材は、均一なギャップ効果を得る場合には、前記導電性樹脂粒子の体積基準の粒子径の変動係数が、20%以下であることが好ましく、10%未満であることがより好ましい。 When the gap material of the present invention obtains a uniform gap effect, the coefficient of variation of the volume-based particle diameter of the conductive resin particles is preferably 20% or less, more preferably less than 10%. preferable.
 以下、実施例及び比較例により本発明を説明するが、本発明はこれに限定されるものではない。まず、以下の実施例及び比較例における導電性樹脂粒子の体積平均粒子径、体積基準の粒子径の変動係数、10%圧縮強度、及び導電率の測定方法を説明する。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this. First, the volume average particle diameter of the conductive resin particles, the coefficient of variation of the volume-based particle diameter, the 10% compressive strength, and the method of measuring the conductivity in the following Examples and Comparative Examples will be described.
(導電性樹脂粒子の体積平均粒子径及び体積基準の粒子径の変動係数の測定方法)
 導電性樹脂粒子の体積平均粒子径及び体積基準の粒子径の変動係数(CV値)の測定は、以下のようにしてコールター法により行った。
(Measuring method of coefficient of variation of volume average particle diameter and volume-based particle diameter of conductive resin particles)
The volume average particle diameter of the conductive resin particles and the coefficient of variation (CV value) of the volume-based particle diameter were measured by the Coulter method as follows.
 導電性樹脂粒子の体積平均粒子径は、コールターMultisizerTM 3(ベックマン・コールター株式会社製測定装置)により測定する。測定は、ベックマン・コールター株式会社発行のMultisizerTM 3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。 The volume average particle diameter of the conductive resin particles is measured with a Coulter Multisizer 3 (measurement device manufactured by Beckman Coulter, Inc.). The measurement shall be performed using an aperture calibrated according to the Multisizer 3 User's Manual issued by Beckman Coulter, Inc.
 なお、測定に用いるアパチャーは、測定する導電性樹脂粒子の大きさによって、適宜選択する。Current(アパチャー電流)及びGain(ゲイン)は、選択したアパチャーのサイズによって、適宜設定する。例えば、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-800、Gain(ゲイン)は4と設定する。 In addition, the aperture used for the measurement is appropriately selected depending on the size of the conductive resin particle to be measured. Current (aperture current) and Gain (gain) are appropriately set according to the size of the selected aperture. For example, when an aperture having a size of 50 μm is selected, the current (aperture current) is set to −800 and the gain (gain) is set to 4.
 測定用試料としては、導電性樹脂粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10ml中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、導電性樹脂粒子を10万個測定した時点で測定を終了する。導電性樹脂粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均である。 As a measurement sample, 0.1 g of conductive resin particles in 10 ml of a 0.1% by weight nonionic surfactant aqueous solution was touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”) and an ultrasonic cleaner ( Dispersed using “ULTRASONIC CLEANER VS-150” manufactured by VervoCrea Co., Ltd., and used as a dispersion. During the measurement, the beaker is gently stirred to the extent that bubbles do not enter, and the measurement is terminated when 100,000 conductive resin particles are measured. The volume average particle diameter of the conductive resin particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
 導電性樹脂粒子の体積基準の粒子径の変動係数を、以下の数式によって算出する。
 導電性樹脂粒子の体積基準の粒子径の変動係数
  =(導電性樹脂粒子の体積基準の粒度分布の標準偏差
             ÷導電性樹脂粒子の体積平均粒子径)×100
The coefficient of variation of the volume-based particle diameter of the conductive resin particles is calculated by the following formula.
Variation coefficient of volume-based particle diameter of conductive resin particles = (standard deviation of volume-based particle size distribution of conductive resin particles / volume average particle diameter of conductive resin particles) × 100
(導電性樹脂粒子の10%圧縮強度の測定方法)
 樹脂粒子の10%圧縮強度(S10強度)は、株式会社島津製作所製の微小圧縮試験機「MCTM-200」を用いて、下記測定条件にて測定した。
(Method for measuring 10% compressive strength of conductive resin particles)
The 10% compressive strength (S10 strength) of the resin particles was measured under the following measurement conditions using a micro compression tester “MCTM-200” manufactured by Shimadzu Corporation.
 具体的には、エタノール中に樹脂粒子を分散させた分散液を、鏡面仕上げした鋼製試料台に塗布し、乾燥させて、測定用試料を調製した。次いで、室温20℃、相対湿度65%の環境下、MCTM-200の光学顕微鏡で一個の独立した微細な樹脂粒子(少なくとも直径100μmの範囲内に他の樹脂粒子が存在しない状態)を選び出し、選び出した樹脂粒子の直径を、MCTM-200の粒子径測定カーソルで測定した。このとき、樹脂粒子は、前述したコールター法による測定方法で確認した体積平均粒子径から±0.5μmの範囲内にある樹脂粒子を選択した。その範囲外の樹脂粒子は圧縮強度の測定に用いない。次に、選び出した樹脂粒子の頂点に試験用圧子を下記の負荷速度で降下させることにより、最大荷重9.81mNまで、徐々に樹脂粒子に荷重をかけ、先に測定した樹脂粒子の直径が10%変位した時点の荷重から、次式により、圧縮強度を求めた。各樹脂粒子に対して6回の測定を行い、最大値、最小値のデータを除く4データの平均値を、10%圧縮強度(S10強度)とした。 Specifically, a dispersion liquid in which resin particles are dispersed in ethanol was applied to a mirror-finished steel sample table and dried to prepare a measurement sample. Next, under the environment of room temperature 20 ° C. and relative humidity 65%, single independent fine resin particles (at least 100 μm in diameter and no other resin particles exist) are selected and selected with an MCTM-200 optical microscope. The diameter of the resin particles was measured with a particle size measurement cursor of MCTM-200. At this time, the resin particles selected within the range of ± 0.5 μm from the volume average particle diameter confirmed by the measurement method by the Coulter method described above were selected. Resin particles outside that range are not used for the measurement of compressive strength. Next, by dropping the test indenter at the apex of the selected resin particles at the following load speed, the resin particles are gradually loaded up to a maximum load of 9.81 mN, and the diameter of the resin particles measured earlier is 10 From the load at the time of% displacement, the compressive strength was determined by the following formula. Six measurements were performed on each resin particle, and the average value of the four data excluding the maximum value and minimum value data was defined as 10% compressive strength (S10 strength).
 <圧縮強度の算出式>
 圧縮強度(MPa)=2.8×荷重(N)/{π×(粒子径(mm))
 <圧縮強度の測定条件>
 試験温度:常温(20℃)相対湿度65%
 上部加圧圧子:直径50μmの平面圧子(材質:ダイヤモンド)
 下部加圧板:SKS平板
 試験種類:圧縮試験(MODE1)
 試験荷重:9.81mN
 負荷速度:0.732mN/sec
 変位フルスケール;20(μm)
<Calculation formula of compressive strength>
Compressive strength (MPa) = 2.8 × load (N) / {π × (particle diameter (mm)) 2 }
<Measurement conditions of compressive strength>
Test temperature: Normal temperature (20 ° C) Relative humidity 65%
Upper pressure indenter: Flat indenter with a diameter of 50 μm (material: diamond)
Lower pressure plate: SKS flat plate Test type: Compression test (MODE1)
Test load: 9.81 mN
Load speed: 0.732 mN / sec
Displacement full scale: 20 (μm)
(導電性樹脂粒子の導電率の測定方法)
 「粉体抵抗測定システム MCP-PD51型」(株式会社三菱化学アナリテック製)にて、プローブに充填した導電性樹脂粒子に対し、油圧ポンプにて0~20kNまで4kN刻みで荷重をかけていき、それぞれの荷重(0、4kN、8kN、12kN、16kN、及び20kN)をかけた状態の導電性樹脂粒子について、導電率の測定を行った。各荷重で測定して得られた導電率のうちで最も高い数値を、その導電性樹脂粒子の導電率とした。導電性樹脂粒子については、事前に、カールフィッシャー水分測定により含有水分量を測定し、含有水分量が1.0重量%以下であることを確認した。「粉体抵抗測定システム MCP-PD51型」で使用する抵抗率計としては、低抵抗率計「ロレスタ(登録商標)-GX MCP-T700」(株式会社三菱化学アナリテック製)を用いた。
(Measurement method of conductivity of conductive resin particles)
With "Powder Resistance Measurement System MCP-PD51 Type" (Mitsubishi Chemical Analytech Co., Ltd.), the conductive resin particles filled in the probe are loaded in increments of 4kN from 0 to 20kN with a hydraulic pump. The conductivity of the conductive resin particles in a state where each load (0, 4 kN, 8 kN, 12 kN, 16 kN, and 20 kN) was applied was measured. The highest numerical value among the electrical conductivity obtained by measuring with each load was defined as the electrical conductivity of the conductive resin particles. For the conductive resin particles, the moisture content was measured in advance by Karl Fischer moisture measurement, and it was confirmed that the moisture content was 1.0% by weight or less. As a resistivity meter used in the “powder resistance measurement system MCP-PD51 type”, a low resistivity meter “Loresta (registered trademark) -GX MCP-T700” (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used.
(実施例1)
[コア粒子の製造]
 〔水相の調製〕
 ビーカーに、水性媒体としての脱イオン水200重量部と、分散剤としてのピロリン酸マグネシウム10重量部と、アニオン性界面活性剤としてのラウリル硫酸ナトリウム0.04重量部とを投入し、水相を調製した。
Example 1
[Manufacture of core particles]
(Preparation of aqueous phase)
In a beaker, 200 parts by weight of deionized water as an aqueous medium, 10 parts by weight of magnesium pyrophosphate as a dispersing agent, and 0.04 part by weight of sodium lauryl sulfate as an anionic surfactant are added, and an aqueous phase is added. Prepared.
 〔油相の調製〕
 水相の調製に用いたビーカーとは別のビーカーに、単官能(メタ)アクリル酸エステル単量体としてのアクリル酸n-ブチル60重量部、アクリル酸メチル15重量部、アクリル酸2-エチルヘキシル10重量部、及びポリ(エチレングリコール-プロピレングリコール)モノメタクリレート(日油株式会社製の「ブレンマー(登録商標)50PEP-300」)5重量部と、上記一般式(I)で示される単量体としてのエチレングリコールジメタクリレート(共栄社化学株式会社製の「ライトエステルEG」)10重量部と、重合開始剤としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.2重量部及び過酸化ベンゾイル0.15重量部を投入し、十分に攪拌して、油相となる混合物を調製した。
(Preparation of oil phase)
In a beaker other than the beaker used for the preparation of the aqueous phase, 60 parts by weight of n-butyl acrylate as a monofunctional (meth) acrylate monomer, 15 parts by weight of methyl acrylate, 2-ethylhexyl acrylate 10 Parts by weight, 5 parts by weight of poly (ethylene glycol-propylene glycol) monomethacrylate (“Blemmer (registered trademark) 50PEP-300” manufactured by NOF Corporation), and a monomer represented by the above general formula (I) 10 parts by weight of ethylene glycol dimethacrylate (“Eye ester EG” manufactured by Kyoeisha Chemical Co., Ltd.), 0.2 part by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator, and excess 0.15 part by weight of benzoyl oxide was added and sufficiently stirred to prepare a mixture that became an oil phase.
 〔重合反応〕
 調製された油相を先に調製した水相に加え、ホモミクサー(プライミクス株式会社製、、卓上型、製品名「ホモミクサーMARKII 2.5型」)を用い、攪拌速度5000rpmで10分間攪拌して、油相を水相中に分散させ、分散液を得た。この分散液を、攪拌機、加熱装置、及び温度計を備えた重合反応器に投入し、60℃で6時間攪拌することにより、懸濁重合反応させた。次いで、重合反応器内の懸濁液(反応液)を30℃まで冷却させた後、塩酸を加えて、ピロリン酸マグネシウムを分解させた。次いで、懸濁液を吸引ろ過した。ろ過の残渣をイオン交換水により洗浄、脱水して、目的とするビニル系単量体の重合体からなるコア粒子の含水ケーキ体を得た。
(Polymerization reaction)
Add the prepared oil phase to the previously prepared aqueous phase, and use a homomixer (manufactured by PRIMIX Co., Ltd., desktop type, product name “Homomixer MARK II 2.5 type”) and stir at a stirring speed of 5000 rpm for 10 minutes. The oil phase was dispersed in the aqueous phase to obtain a dispersion. This dispersion was put into a polymerization reactor equipped with a stirrer, a heating device, and a thermometer, and stirred at 60 ° C. for 6 hours to cause a suspension polymerization reaction. Next, after the suspension (reaction solution) in the polymerization reactor was cooled to 30 ° C., hydrochloric acid was added to decompose magnesium pyrophosphate. The suspension was then filtered with suction. The filtration residue was washed with ion-exchanged water and dehydrated to obtain a water-containing cake of core particles made of a target vinyl monomer polymer.
[導電性樹脂粒子の製造]
 [重合反応]
 ビーカーに、得られたコア粒子の含水ケーキ体25重量部を脱イオン水50重量部に分散させ、コア粒子分散液を得た。次に、酸化剤としての過硫酸カリウム20重量部を脱イオン水300重量部に溶解させて過硫酸カリウム水溶液を調製した。上記過硫酸カリウム水溶液に、先に調製したコア粒子分散液を混合し、30分間攪拌する。得られた混合液に、含窒素芳香族化合物としてのピロール5重量部を添加し、25℃で5時間攪拌してピロールを重合させることにより、目的とする、導電性高分子としてのポリピロールからなるシェルでコア粒子が被覆された導電性樹脂粒子(コアシェル粒子)を得た。得られた導電性樹脂粒子は、体積平均粒子径が14.8μmであり、体積基準の粒子径の変動係数が45%であり、10%圧縮強度が1.4MPaであった。
[Manufacture of conductive resin particles]
[Polymerization reaction]
In a beaker, 25 parts by weight of the obtained core particle hydrous cake was dispersed in 50 parts by weight of deionized water to obtain a core particle dispersion. Next, 20 parts by weight of potassium persulfate as an oxidizing agent was dissolved in 300 parts by weight of deionized water to prepare a potassium persulfate aqueous solution. The core particle dispersion prepared above is mixed with the aqueous potassium persulfate solution and stirred for 30 minutes. It consists of the target polypyrrole as a conductive polymer by adding 5 parts by weight of pyrrole as a nitrogen-containing aromatic compound to the obtained mixed liquid and polymerizing pyrrole by stirring at 25 ° C. for 5 hours. Conductive resin particles (core-shell particles) in which the core particles were coated with the shell were obtained. The obtained conductive resin particles had a volume average particle diameter of 14.8 μm, a volume-based particle diameter variation coefficient of 45%, and a 10% compressive strength of 1.4 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.4×10-2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.4 × 10 −2 S / cm.
(実施例2)
[コア粒子の製造]
 アクリル酸n-ブチル60重量部、アクリル酸メチル15重量部、及びアクリル酸2-エチルヘキシル10重量部に代えて、アクリル酸n-ブチル79重量部を使用し、エチレングリコールジメタクリレート10重量部に代えて、エチレングリコールジメタクリレート(共栄社化学株式会社製の「ライトエステルEG」)1重量部及び上記一般式(II)で示される単量体としてのテトラデカエチレングリコールジメタクリレート(共栄社化学株式会社製の「ライトエステル14EG」)15重量部を使用し、過酸化ベンゾイルの使用量を0.3重量部に変更し、油相を水相中に分散させる際の撹拌条件を「攪拌速度3500rpmで5分間」に変更したこと以外は、実施例1と同様にして目的のコア粒子の含水ケーキ体を得た。
(Example 2)
[Manufacture of core particles]
Instead of 60 parts by weight of n-butyl acrylate, 15 parts by weight of methyl acrylate, and 10 parts by weight of 2-ethylhexyl acrylate, 79 parts by weight of n-butyl acrylate is used and replaced by 10 parts by weight of ethylene glycol dimethacrylate. 1 part by weight of ethylene glycol dimethacrylate (“Kyoeisha Chemical Co., Ltd.“ Light Ester EG ”) and tetradecaethylene glycol dimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) as a monomer represented by the above general formula (II) “Light Ester 14EG”) was used at 15 parts by weight, the amount of benzoyl peroxide used was changed to 0.3 parts by weight, and the stirring conditions for dispersing the oil phase in the aqueous phase were “stirring speed 3500 rpm for 5 minutes. A water-containing cake body of the target core particles was obtained in the same manner as in Example 1 except that it was changed to "".
[導電性樹脂粒子の製造]
 先の工程で得られたコア粒子の含水ケーキ体を実施例1のコア粒子に代えて使用し、コア粒子分散液を得る際に使用する脱イオン水の量を25重量部に変更したこと以外は、実施例1と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が15.4μmであり、体積基準の粒子径の変動係数が39%であり、10%圧縮強度が2.3MPaであった。
[Manufacture of conductive resin particles]
Except that the hydrous cake of core particles obtained in the previous step was used in place of the core particles of Example 1, and the amount of deionized water used when obtaining the core particle dispersion was changed to 25 parts by weight. Obtained the target conductive resin particles in the same manner as in Example 1. The obtained conductive resin particles had a volume average particle diameter of 15.4 μm, a coefficient of variation of the volume-based particle diameter of 39%, and a 10% compressive strength of 2.3 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.8×10-2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.8 × 10 −2 S / cm.
(実施例3)
[コア粒子の製造]
 実施例1と同様にして、目的のコア粒子の含水ケーキ体を得た。
(Example 3)
[Manufacture of core particles]
In the same manner as in Example 1, a desired water-containing cake of core particles was obtained.
[導電性樹脂粒子の製造]
 ピロールに代えて3,4-エチレンジオキシチオフェンを使用し、重合時の撹拌時間を24時間に変更したこと以外は、実施例1と同様にして、目的とする、導電性高分子としてのポリ(3,4-エチレンジオキシチオフェン)からなるシェルでコア粒子が被覆された導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が16.2μmであり、体積基準の粒子径の変動係数が46%であり、10%圧縮強度は2.5MPaであった。
[Manufacture of conductive resin particles]
In the same manner as in Example 1, except that 3,4-ethylenedioxythiophene was used in place of pyrrole and the stirring time during polymerization was changed to 24 hours, the target polypolymer as a conductive polymer was used. Conductive resin particles having core particles coated with a shell made of (3,4-ethylenedioxythiophene) were obtained. The obtained conductive resin particles had a volume average particle diameter of 16.2 μm, a volume-based particle diameter variation coefficient of 46%, and a 10% compressive strength of 2.5 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、1.8×10-2S/cmであった。
[Conductivity measurement]
When the conductivity of the conductive resin particles obtained in the previous step was measured, it was 1.8 × 10 −2 S / cm.
(実施例4)
[コア粒子の製造]
 〔ソープフリー重合〕
 ビーカー内にて、単官能(メタ)アクリル酸エステル単量体としてのメチルメタクリレート15重量部に、分子量調整剤としてのn-オクチルメルカプタン0.2重量部を混合して油相を作製した。
Example 4
[Manufacture of core particles]
[Soap-free polymerization]
In a beaker, 15 parts by weight of methyl methacrylate as a monofunctional (meth) acrylic acid ester monomer was mixed with 0.2 parts by weight of n-octyl mercaptan as a molecular weight modifier to prepare an oil phase.
 先程とは異なるビーカー内にて、イオン交換水80重量部に重合開始剤としての過硫酸カリウム0.1重量部を溶解させて過硫酸カリウム水溶液を調製し、この過硫酸カリウム水溶液に先程の油相を混合して55℃にて12時間ソープフリー重合を行った。これにより、ポリメチルメタクリレートからなる種粒子を含む分散液を得た。得られた種粒子の体積平均粒子径は0.51μmであった。 In a beaker different from the previous one, 0.1 part by weight of potassium persulfate as a polymerization initiator was dissolved in 80 parts by weight of ion-exchanged water to prepare an aqueous potassium persulfate solution. The phases were mixed and soap free polymerization was performed at 55 ° C. for 12 hours. As a result, a dispersion containing seed particles made of polymethyl methacrylate was obtained. The resulting seed particles had a volume average particle size of 0.51 μm.
 〔シード重合〕
 次に、新たなビーカーに、単官能(メタ)アクリル酸エステル単量体としてのアクリル酸n-ブチル70重量部、アクリル酸メチル5重量部、アクリル酸2-エチルヘキシル5重量部、及びポリ(エチレングリコール-プロピレングリコール)モノメタクリレート(日油株式会社製の「ブレンマー(登録商標)50PEP-300」)5重量部と、上記一般式(I)で示される単量体としてのエチレングリコールジメタクリレート10重量部と、重合開始剤としての2,2’-アゾビス(2-メチルブチロニトリル)0.01重量部とを混合した。得られた混合物に、水性媒体としてのイオン交換水80重量部にアニオン性界面活性剤としてのジ(2-エチルヘキシル)スルホコハク酸ナトリウム0.08重量部を溶解させて得られた水溶液を混合し、ホモミクサー(プライミクス株式会社製、卓上型、製品名「ホモミクサーMARKII 2.5型」)により撹拌速度8000rpmで10分間処理することで、乳化液を得た。
[Seed polymerization]
Next, in a new beaker, 70 parts by weight of n-butyl acrylate as a monofunctional (meth) acrylate monomer, 5 parts by weight of methyl acrylate, 5 parts by weight of 2-ethylhexyl acrylate, and poly (ethylene 5 parts by weight of glycol-propylene glycol) monomethacrylate (“Blemmer (registered trademark) 50PEP-300” manufactured by NOF Corporation) and 10 parts by weight of ethylene glycol dimethacrylate as the monomer represented by the above general formula (I) Part and 0.01 part by weight of 2,2′-azobis (2-methylbutyronitrile) as a polymerization initiator were mixed. An aqueous solution obtained by dissolving 0.08 parts by weight of sodium di (2-ethylhexyl) sulfosuccinate as an anionic surfactant in 80 parts by weight of ion-exchanged water as an aqueous medium was mixed with the obtained mixture, An emulsion was obtained by treating with a homomixer (Primix Co., Ltd., desktop type, product name “Homomixer MARK II 2.5 type”) at a stirring speed of 8000 rpm for 10 minutes.
 この乳化液に、先程のソープフリー重合により得られた種粒子を含む分散液40重量部を攪拌しながら加えた。3時間攪拌した後、高分子分散安定剤としてのポリビニルアルコール0.03重量部を溶解したイオン交換水240重量部を投入し、60℃で6時間攪拌しながら重合させ、得られた重合体エマルジョンを吸引濾過で脱水した後、イオン交換水により残渣を洗浄することで、粒度分布がシャープなコア粒子の含水ケーキ体を得た。得られたコア粒子の体積平均粒子径は1.2μmであった。 To this emulsion, 40 parts by weight of a dispersion containing seed particles obtained by the soap-free polymerization was added with stirring. After stirring for 3 hours, 240 parts by weight of ion-exchanged water in which 0.03 part by weight of polyvinyl alcohol as a polymer dispersion stabilizer was dissolved was added and polymerized while stirring at 60 ° C. for 6 hours. The resulting polymer emulsion After dewatering by suction filtration, the residue was washed with ion-exchanged water to obtain a water-containing cake with core particles having a sharp particle size distribution. The volume average particle diameter of the obtained core particles was 1.2 μm.
[導電性樹脂粒子の製造]
 先の工程で得られたコア粒子の含水ケーキ体を実施例1のコア粒子に代えて使用し、コア粒子を分散させてコア粒子分散液を得る際に使用する脱イオン水の量を25重量部に変更したこと以外は、実施例1と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が1.3μmであり、体積基準の粒子径の変動係数が9%であり、10%圧縮強度が1.4MPaであった。
[Manufacture of conductive resin particles]
The water-containing cake of core particles obtained in the previous step is used in place of the core particles of Example 1, and the amount of deionized water used to obtain a core particle dispersion by dispersing the core particles is 25 wt. Except having changed into the part, it carried out similarly to Example 1, and obtained the target conductive resin particle. The obtained conductive resin particles had a volume average particle diameter of 1.3 μm, a volume-based particle diameter variation coefficient of 9%, and a 10% compressive strength of 1.4 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、1.5×10-2S/cmであった。
[Conductivity measurement]
When the conductivity of the conductive resin particles obtained in the previous step was measured, it was 1.5 × 10 −2 S / cm.
(実施例5)
[コア粒子の製造]
 ラウリル硫酸ナトリウムの使用量を0.005重量部に変更し、油相を水相中に分散させる際の撹拌を、ホモミクサーを用いることなく攪拌速度200rpmで10分間行うように変更したこと以外は、実施例1と同様にして目的のコア粒子の含水ケーキ体を得た。
(Example 5)
[Manufacture of core particles]
The amount of sodium lauryl sulfate used was changed to 0.005 parts by weight, and the stirring when dispersing the oil phase in the aqueous phase was changed to be performed at a stirring speed of 200 rpm for 10 minutes without using a homomixer. In the same manner as in Example 1, a desired water-containing cake of core particles was obtained.
[導電性樹脂粒子の製造]
 先の工程で得られたコア粒子の含水ケーキ体を実施例1のコア粒子に代えて使用したこと以外は、実施例1と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が198μmであり、体積基準の粒子径の変動係数が49%であり、10%圧縮強度が1.7MPaであった。
[Manufacture of conductive resin particles]
The target conductive resin particles were obtained in the same manner as in Example 1, except that the hydrous cake of core particles obtained in the previous step was used instead of the core particles in Example 1. The obtained conductive resin particles had a volume average particle diameter of 198 μm, a volume-based particle diameter variation coefficient of 49%, and a 10% compressive strength of 1.7 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.0×10-2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.0 × 10 −2 S / cm.
(実施例6)
[コア粒子の製造]
 アクリル酸n-ブチル60重量部、アクリル酸メチル15重量部、及びアクリル酸2-エチルヘキシル10重量部に代えて、アクリル酸n-ブチル45重量部を使用し、エチレングリコールジメタクリレート10重量部に代えて、ウレタンアクリレートオリゴマー(製品名「ニューフロンティア(登録商標)RST-402」、第一工業製薬株式会社製)50重量部を使用したこと以外は、実施例1と同様にして目的のコア粒子の含水ケーキ体を得た。
(Example 6)
[Manufacture of core particles]
Instead of 60 parts by weight of n-butyl acrylate, 15 parts by weight of methyl acrylate, and 10 parts by weight of 2-ethylhexyl acrylate, 45 parts by weight of n-butyl acrylate is used and replaced by 10 parts by weight of ethylene glycol dimethacrylate. In the same manner as in Example 1 except that 50 parts by weight of urethane acrylate oligomer (product name “New Frontier (registered trademark) RST-402”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was used, A water-containing cake body was obtained.
[導電性樹脂粒子の製造]
 先の工程で得られたコア粒子の含水ケーキ体を実施例1のコア粒子に代えて使用し、コア粒子を分散させてコア粒子分散液を得る際に使用する脱イオン水の量を25重量部に変更したこと以外は、実施例1と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が16.2μmであり、体積基準の粒子径の変動係数が44%であり、10%圧縮強度が1.2MPaであった。
[Manufacture of conductive resin particles]
The water-containing cake of core particles obtained in the previous step is used in place of the core particles of Example 1, and the amount of deionized water used to obtain a core particle dispersion by dispersing the core particles is 25 wt. Except having changed into the part, it carried out similarly to Example 1, and obtained the target conductive resin particle. The obtained conductive resin particles had a volume average particle diameter of 16.2 μm, a volume-based particle diameter variation coefficient of 44%, and a 10% compressive strength of 1.2 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.6×10-2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.6 × 10 −2 S / cm.
(実施例7)
[コア粒子の製造]
 実施例1と同様にして、目的のコア粒子の含水ケーキ体を得た。
(Example 7)
[Manufacture of core particles]
In the same manner as in Example 1, a desired water-containing cake of core particles was obtained.
[導電性樹脂粒子の製造]
 先の工程で得られたコア粒子を実施例3のコア粒子に代えて使用し、コア粒子を分散させてコア粒子分散液を得る際に使用する脱イオン水の量を50重量部に変更したこと以外は、実施例3と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が16.5μmであり、体積基準の粒子径の変動係数が42%であり、10%圧縮強度が1.2MPaであった。
[Manufacture of conductive resin particles]
The core particles obtained in the previous step were used in place of the core particles of Example 3, and the amount of deionized water used to obtain the core particle dispersion by dispersing the core particles was changed to 50 parts by weight. Except for this, the same conductive resin particles as in Example 3 were obtained. The obtained conductive resin particles had a volume average particle diameter of 16.5 μm, a volume-based particle diameter variation coefficient of 42%, and a 10% compressive strength of 1.2 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.9×10-2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.9 × 10 −2 S / cm.
(比較例1)
[コア粒子の製造]
 単官能(メタ)アクリル酸エステル単量体として、アクリル酸n-ブチル60重量部、アクリル酸メチル15重量部、アクリル酸2-エチルヘキシル10重量部、及びポリ(エチレングリコール-プロピレングリコール)モノメタクリレート5重量部に代えて、メタクリル酸メチル95重量部を使用し、エチレングリコールジメタクリレートの使用量を5重量部に変更したこと以外は、実施例1と同様にしてコア粒子を得た。
(Comparative Example 1)
[Manufacture of core particles]
As monofunctional (meth) acrylate monomers, 60 parts by weight of n-butyl acrylate, 15 parts by weight of methyl acrylate, 10 parts by weight of 2-ethylhexyl acrylate, and poly (ethylene glycol-propylene glycol) monomethacrylate 5 Instead of parts by weight, core particles were obtained in the same manner as in Example 1 except that 95 parts by weight of methyl methacrylate was used and the amount of ethylene glycol dimethacrylate was changed to 5 parts by weight.
[導電性樹脂粒子の製造]
 コア粒子分散液を得る際に使用する分散媒として脱イオン水50重量部に代えてイソプロピルアルコール25重量部を使用したこと以外は、実施例1と同様にして導電性樹脂粒子を得た。得られた導電性樹脂粒子の10%圧縮強度は34.3MPaであった。
[Manufacture of conductive resin particles]
Conductive resin particles were obtained in the same manner as in Example 1 except that 25 parts by weight of isopropyl alcohol was used in place of 50 parts by weight of deionized water as a dispersion medium used when obtaining the core particle dispersion. The 10% compressive strength of the obtained conductive resin particles was 34.3 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.2×10-3S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.2 × 10 −3 S / cm.
(比較例2)
 ピロールに代えて3,4-エチレンジオキシチオフェンを使用し、重合時の撹拌時間を24時間に変更したこと以外は、比較例1と同様にして導電性樹脂粒子を得た。得られた導電性樹脂粒子の10%圧縮強度は36.4MPaであった。
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.2×10-3S/cmであった。
(Comparative Example 2)
Conductive resin particles were obtained in the same manner as in Comparative Example 1, except that 3,4-ethylenedioxythiophene was used instead of pyrrole, and the stirring time during polymerization was changed to 24 hours. The 10% compressive strength of the obtained conductive resin particles was 36.4 MPa.
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.2 × 10 −3 S / cm.
(比較例3)
[コア粒子の製造]
 シード重合において、アクリル酸n-ブチル70重量部、アクリル酸メチル5重量部、アクリル酸2-エチルヘキシル5重量部、及びポリ(エチレングリコール-プロピレングリコール)モノメタクリレート(日油株式会社製の「ブレンマー(登録商標)50PEP-300」)5重量部に代えて、メタクリル酸メチル70重量部を使用し、エチレングリコールジメタクリレートの使用量を30重量部に変更したこと以外は、実施例4と同様にしてコア粒子を得た。得られたコア粒子の体積平均粒子径は1.1μmであった。
(Comparative Example 3)
[Manufacture of core particles]
In the seed polymerization, 70 parts by weight of n-butyl acrylate, 5 parts by weight of methyl acrylate, 5 parts by weight of 2-ethylhexyl acrylate, and poly (ethylene glycol-propylene glycol) monomethacrylate (“Blemmer” manufactured by NOF Corporation) (Registered Trademark) 50PEP-300 ") Instead of 5 parts by weight, 70 parts by weight of methyl methacrylate was used, and the amount of ethylene glycol dimethacrylate was changed to 30 parts by weight. Core particles were obtained. The volume average particle diameter of the obtained core particles was 1.1 μm.
[導電性樹脂粒子の製造]
 先の工程で得られたコア粒子を実施例4のコア粒子に代えて使用したこと以外は、実施例4と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が1.2μmであり、体積基準の粒子径の変動係数が9%であり、10%圧縮強度が36.1MPaであった。
[Manufacture of conductive resin particles]
The target conductive resin particles were obtained in the same manner as in Example 4 except that the core particles obtained in the previous step were used instead of the core particles in Example 4. The obtained conductive resin particles had a volume average particle diameter of 1.2 μm, a volume-based particle diameter variation coefficient of 9%, and a 10% compressive strength of 36.1 MPa.
[導電率測定]
 先の工程で得られた導電性樹脂粒子の導電率を測定したところ、3.5×10-3S/cmであった。
[Conductivity measurement]
When the conductivity of the conductive resin particles obtained in the previous step was measured, it was 3.5 × 10 −3 S / cm.
 実施例1~7及び比較例1~3で得られた導電性樹脂粒子の体積平均粒子径、体積基準の粒子径の変動係数、10%圧縮強度、及び導電率を、コア粒子の製造に使用した単量体混合物の組成(実施例4及び比較例3ではシード重合に使用した単量体混合物の組成)及びシェルの形成に使用した単量体の種類と共に表1にまとめて示す。なお、表1中では、アクリル酸n-ブチルを「BA」、アクリル酸メチルを「MA」、アクリル酸2-エチルヘキシルを「2EHA」、メタクリル酸メチルを「MMA」、ポリ(エチレングリコール-プロピレングリコール)モノメタクリレート「ブレンマー(登録商標)50PEP-300」)を「50PEP-300」、エチレングリコールジメタクリレートを「EGDMA」、テトラデカエチレングリコールジメタクリレートを「14EG」、ウレタンアクリレート「ニューフロンティア(登録商標)RST-402」を「RST-402」とそれぞれ略記する。 The volume average particle diameter, the coefficient of variation of the volume-based particle diameter, the 10% compressive strength, and the conductivity of the conductive resin particles obtained in Examples 1 to 7 and Comparative Examples 1 to 3 are used for the production of the core particles. Table 1 summarizes the composition of the monomer mixture (composition of the monomer mixture used in seed polymerization in Example 4 and Comparative Example 3) and the type of monomer used to form the shell. In Table 1, n-butyl acrylate is “BA”, methyl acrylate is “MA”, 2-ethylhexyl acrylate is “2EHA”, methyl methacrylate is “MMA”, poly (ethylene glycol-propylene glycol) ) Monomethacrylate “Blemmer (registered trademark) 50 PEP-300”) “50 PEP-300”, ethylene glycol dimethacrylate “EGDMA”, tetradecaethylene glycol dimethacrylate “14EG”, urethane acrylate “New Frontier (registered trademark)” “RST-402” is abbreviated as “RST-402”.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上のように、実施例1~7の導電性樹脂粒子は、10%圧縮強度が0.1~30MPa(1.2~2.5MPa)であることで、10%圧縮強度が30MPa超(34.3~36.4MPa)である比較例1~3の導電性樹脂粒子の導電率(2.2~3.5×10-3S/cm)と比較して、優れた導電率(1.5~2.9×10-2S/cm)を有していることが分かった。 As described above, the conductive resin particles of Examples 1 to 7 have a 10% compressive strength of 0.1 to 30 MPa (1.2 to 2.5 MPa), so that the 10% compressive strength exceeds 30 MPa (34 Compared to the conductivity (2.2 to 3.5 × 10 −3 S / cm) of the conductive resin particles of Comparative Examples 1 to 3 which is .3 to 36.4 MPa), the conductivity (1. 5 to 2.9 × 10 −2 S / cm).
(実施例8)
 バインダー樹脂としてのアクリル系樹脂(三菱ケミカル株式会社製、商品名「ダイヤナール(登録商標)BR-106」)10重量部を、有機溶剤としてのトルエン50重量部に溶解したバインダー溶液に、実施例1にて得られた導電性樹脂粒子を10重量部配合して、均一に分散させてコーティング剤を調製した。
(Example 8)
Examples A binder solution in which 10 parts by weight of an acrylic resin as a binder resin (trade name “Dianal (registered trademark) BR-106” manufactured by Mitsubishi Chemical Corporation) was dissolved in 50 parts by weight of toluene as an organic solvent was used. 10 parts by weight of the conductive resin particles obtained in 1 were blended and dispersed uniformly to prepare a coating agent.
 このコーティング剤を30μmのアプリケーターを用いて、基材フィルムとしての厚さ100μmのPETフィルム上に塗布して塗膜を形成した。70℃の高温槽で2時間静置し、PETフィルム上の塗膜を乾燥させることにより、導電性を有するフィルムを得た。 This coating agent was applied on a PET film having a thickness of 100 μm as a base film using a 30 μm applicator to form a coating film. The film which has electroconductivity was obtained by leaving still in a 70 degreeC high temperature tank for 2 hours, and drying the coating film on PET film.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 また、この出願は、2016年9月30日に日本で出願された特願2016-194260に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2016-194260 filed in Japan on September 30, 2016. By this reference, the entire contents thereof are incorporated into the present application.

Claims (10)

  1.  重合体からなるコア粒子と、
     前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子であって、
     10%圧縮変形時の圧縮強度が0.1~30MPaであることを特徴とする導電性樹脂粒子。
    Polymer core particles,
    Conductive resin particles having a shell made of a conductive polymer covering the core particles,
    Conductive resin particles characterized by having a compressive strength at 10% compressive deformation of 0.1 to 30 MPa.
  2.  請求項1に記載の導電性樹脂粒子であって、
     前記重合体が、単官能(メタ)アクリル酸エステル単量体と、
     下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素又はメチル基であり、nは1~4の整数である。)で示される単量体とを含む単量体混合物の重合体を含むことを特徴とする導電性樹脂粒子。
    The conductive resin particle according to claim 1,
    The polymer is a monofunctional (meth) acrylic acid ester monomer;
    The following general formula (I)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 is hydrogen or a methyl group, and n is an integer of 1 to 4). Resin particles.
  3.  請求項2に記載の導電性樹脂粒子であって、
     前記単量体混合物が、下記一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素又はメチル基であり、mは5~15の整数である。)で示される単量体をさらに含むことを特徴とする導電性樹脂粒子。
    The conductive resin particle according to claim 2,
    The monomer mixture is represented by the following general formula (II)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 2 is hydrogen or a methyl group, and m is an integer of 5 to 15).
  4.  請求項1~3のいずれか1項に記載の導電性樹脂粒子であって、
     前記導電性高分子が、含窒素複素芳香族化合物及び含硫黄複素芳香族化合物からなる群より選ばれる少なくとも1種の単量体の重合体であることを特徴とする導電性樹脂粒子。
    The conductive resin particle according to any one of claims 1 to 3,
    Conductive resin particles, wherein the conductive polymer is a polymer of at least one monomer selected from the group consisting of a nitrogen-containing heteroaromatic compound and a sulfur-containing heteroaromatic compound.
  5.  請求項1~4のいずれか1項に記載の導電性樹脂粒子であって、
     1~200μmの体積平均粒子径を有することを特徴とする導電性樹脂粒子。
    The conductive resin particle according to any one of claims 1 to 4, wherein
    Conductive resin particles having a volume average particle diameter of 1 to 200 μm.
  6.  請求項1~5のいずれか1項に記載の導電性樹脂粒子であって、
     体積基準の粒子径の変動係数が10%以上であることを特徴とする導電性樹脂粒子。
    The conductive resin particle according to any one of claims 1 to 5,
    Conductive resin particles having a volume-based particle diameter variation coefficient of 10% or more.
  7.  請求項1~6のいずれか1項に記載の導電性樹脂粒子と、マトリックス樹脂とを含むことを特徴とする導電性樹脂組成物。 A conductive resin composition comprising the conductive resin particles according to any one of claims 1 to 6 and a matrix resin.
  8.  請求項1~6のいずれか1項に記載の導電性樹脂粒子と、バインダー樹脂とを含むことを特徴とするコーティング剤。 A coating agent comprising the conductive resin particles according to any one of claims 1 to 6 and a binder resin.
  9.  請求項1~6のいずれか1項に記載の導電性樹脂粒子を含むことを特徴とするフィルム。 A film comprising the conductive resin particles according to any one of claims 1 to 6.
  10.  請求項1~6のいずれか1項に記載の導電性樹脂粒子を含むことを特徴とするギャップ材。 A gap material comprising the conductive resin particles according to any one of claims 1 to 6.
PCT/JP2017/024195 2016-09-30 2017-06-30 Conductive resin particles and use of same WO2018061374A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018541923A JP6722766B2 (en) 2016-09-30 2017-06-30 Conductive resin particles and uses thereof
CN201780060713.9A CN109791813B (en) 2016-09-30 2017-06-30 Conductive resin particles and use thereof
KR1020197004208A KR102248989B1 (en) 2016-09-30 2017-06-30 Conductive resin particles and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194260 2016-09-30
JP2016-194260 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061374A1 true WO2018061374A1 (en) 2018-04-05

Family

ID=61763201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024195 WO2018061374A1 (en) 2016-09-30 2017-06-30 Conductive resin particles and use of same

Country Status (4)

Country Link
JP (1) JP6722766B2 (en)
KR (1) KR102248989B1 (en)
CN (1) CN109791813B (en)
WO (1) WO2018061374A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064833A (en) * 2018-10-19 2020-04-23 株式会社日本触媒 Base particles for conductive particles and use thereof
JP2021005514A (en) * 2019-06-27 2021-01-14 東洋インキScホールディングス株式会社 Conductive particle, dispersion and method for producing the same
FR3100250A1 (en) * 2019-09-04 2021-03-05 Université de Pau et des Pays de l’Adour Electrically conductive nanocomposite particles having a polyalkylacrylate core and a conductive polymer shell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268634A (en) * 1999-03-15 2000-09-29 Canon Inc Conductive expansion particle and manufacture thereof
JP2002367433A (en) * 2001-06-08 2002-12-20 Fujitsu Ltd Conductive polymer particulate and method of manufacture
JP2004241132A (en) * 2003-02-03 2004-08-26 Aica Kogyo Co Ltd Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member
WO2013046374A1 (en) * 2011-09-28 2013-04-04 積水化成品工業株式会社 Resin particles, method for producing resin particles, and use of resin particles
WO2014017658A1 (en) * 2012-07-24 2014-01-30 株式会社ダイセル Conductive fiber-coated particle, curable composition and cured article derived from curable composition
WO2014050653A1 (en) * 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
WO2014163059A1 (en) * 2013-04-01 2014-10-09 スリーボンドファインケミカル株式会社 Electrically conductive coating material, and adherend using same
JP2015155532A (en) * 2014-01-14 2015-08-27 積水化学工業株式会社 Base particle, conductive particle, conductive material and connection structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433799A (en) 1977-07-29 1979-03-12 Sankyo Denki Co Ltd Device of receiving and discharging article of automatic vending machine
JP4962706B2 (en) * 2006-09-29 2012-06-27 日本化学工業株式会社 Conductive particles and method for producing the same
JP4793456B2 (en) * 2009-02-20 2011-10-12 トヨタ自動車株式会社 Thermally conductive insulating resin molding
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
KR101655944B1 (en) * 2011-03-31 2016-09-08 세키스이가세이힝코교가부시키가이샤 Colored resin particle, method for producing same, and use thereof
WO2014115468A1 (en) * 2013-01-24 2014-07-31 積水化学工業株式会社 Base material particle, conductive particle, conductive material, and connection structure
CN105493201B (en) * 2014-02-24 2018-12-07 积水化学工业株式会社 The manufacturing method of conductive paste, connection structural bodies and connection structural bodies
WO2016043265A1 (en) * 2014-09-18 2016-03-24 積水化学工業株式会社 Electrically conductive paste, joined structure, and method for manufacturing joined structure
JP6514615B2 (en) * 2014-09-18 2019-05-15 積水化学工業株式会社 Method of manufacturing connection structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268634A (en) * 1999-03-15 2000-09-29 Canon Inc Conductive expansion particle and manufacture thereof
JP2002367433A (en) * 2001-06-08 2002-12-20 Fujitsu Ltd Conductive polymer particulate and method of manufacture
JP2004241132A (en) * 2003-02-03 2004-08-26 Aica Kogyo Co Ltd Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member
WO2013046374A1 (en) * 2011-09-28 2013-04-04 積水化成品工業株式会社 Resin particles, method for producing resin particles, and use of resin particles
WO2014017658A1 (en) * 2012-07-24 2014-01-30 株式会社ダイセル Conductive fiber-coated particle, curable composition and cured article derived from curable composition
WO2014050653A1 (en) * 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
WO2014163059A1 (en) * 2013-04-01 2014-10-09 スリーボンドファインケミカル株式会社 Electrically conductive coating material, and adherend using same
JP2015155532A (en) * 2014-01-14 2015-08-27 積水化学工業株式会社 Base particle, conductive particle, conductive material and connection structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064833A (en) * 2018-10-19 2020-04-23 株式会社日本触媒 Base particles for conductive particles and use thereof
JP7220548B2 (en) 2018-10-19 2023-02-10 株式会社日本触媒 Substrate particles for conductive particles and use thereof
JP2021005514A (en) * 2019-06-27 2021-01-14 東洋インキScホールディングス株式会社 Conductive particle, dispersion and method for producing the same
JP7408930B2 (en) 2019-06-27 2024-01-09 東洋インキScホールディングス株式会社 Conductive particles, dispersion and manufacturing method thereof
FR3100250A1 (en) * 2019-09-04 2021-03-05 Université de Pau et des Pays de l’Adour Electrically conductive nanocomposite particles having a polyalkylacrylate core and a conductive polymer shell
WO2021043820A1 (en) * 2019-09-04 2021-03-11 Université De Pau Et Des Pays De L'adour Electrically conductive nanocomposite particles having an alkyl polyacrylate core and a conductive polymer shell

Also Published As

Publication number Publication date
JP6722766B2 (en) 2020-07-15
KR102248989B1 (en) 2021-05-06
CN109791813B (en) 2020-08-14
CN109791813A (en) 2019-05-21
KR20190029656A (en) 2019-03-20
JPWO2018061374A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP5316000B2 (en) Conductive polymer / dopant organic solvent dispersion and composition containing the dispersion
JP6722766B2 (en) Conductive resin particles and uses thereof
JP4947759B2 (en) Carbon nanotube-containing curable composition and composite having the cured coating film
KR20100088155A (en) Method for producing carbon nanotube-containing conductor
US10913806B2 (en) (Meth)acrylic conductive material
US20220056178A1 (en) Hollow fine particle production method and hollow fine particles
KR20180097461A (en) Transparent conductive film, transparent conductive laminate, three-dimensional shape display and resin composition
JP6176431B2 (en) Active energy ray-curable coating composition and coating agent
KR102112598B1 (en) Antistatic photho-curable resin composition, antistactic plastic sheet prepared by using this and manufacturing method for the sames
JP2008056765A (en) Carbon nanotube-containing structure and its manufacturing method
JP2009286939A (en) Nano-material-containing composition, nano-material-containing porous material, method for producing the same, layered product, and method for producing the same
JP2015004007A (en) Resin particle solvent dispersion and application thereof
KR101029734B1 (en) The method of preparing electroconductive polymer composite containing oxyfluorinated grahene
JP2012247681A (en) Laminate for antireflection and manufacturing method thereof, and curable composition
JP2011031591A (en) Nano-material-containing molded article, and method for manufacturing the same
CN109790391B (en) Curable resin composition for forming easily peelable film and method for producing same
JP6188517B2 (en) COMPOSITE PARTICLE, PROCESS FOR PRODUCING THE SAME, AND FILM
KR102033930B1 (en) Antistatic photho-curable resin composition, antistactic plastic sheet and manufacturing method of antistactic plastic sheet
JP5516685B2 (en) Conductive composition, conductive film using the same, and laminate having the conductive film
WO2022210893A1 (en) Resin fine particles, coating softener, matting agent for paint, stress relaxation agent for curable resin, light diffusing agent, light diffusing resin composition, and resin composition
JP7379782B2 (en) Resin fine particles and their manufacturing method
KR101170962B1 (en) Manufacturing Method of Monodispersed Cross-Linked Particle Using 1 Step Process
JP2015193748A (en) Light curable resin film
JP2024044239A (en) Hollow resin particles and method for producing hollow resin particles
WO2022181349A1 (en) Fine resin particles and composition containing fine resin particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197004208

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018541923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855333

Country of ref document: EP

Kind code of ref document: A1