JP6722766B2 - Conductive resin particles and uses thereof - Google Patents

Conductive resin particles and uses thereof Download PDF

Info

Publication number
JP6722766B2
JP6722766B2 JP2018541923A JP2018541923A JP6722766B2 JP 6722766 B2 JP6722766 B2 JP 6722766B2 JP 2018541923 A JP2018541923 A JP 2018541923A JP 2018541923 A JP2018541923 A JP 2018541923A JP 6722766 B2 JP6722766 B2 JP 6722766B2
Authority
JP
Japan
Prior art keywords
conductive resin
resin particles
conductive
polymer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018541923A
Other languages
Japanese (ja)
Other versions
JPWO2018061374A1 (en
Inventor
浩平 田中
浩平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Publication of JPWO2018061374A1 publication Critical patent/JPWO2018061374A1/en
Application granted granted Critical
Publication of JP6722766B2 publication Critical patent/JP6722766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/288Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polypropylene-co-ethylene oxide in the alcohol moiety

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)

Description

本発明は、導電性樹脂粒子及びその用途に関する。さらに詳しくは、本発明は、導電性樹脂粒子同士を密着させて導電性を発現することを目的とした用途において好適に使用することができる導電性樹脂粒子及びその用途(導電性樹脂組成物、コーティング剤、フィルム、及びギャップ材)に関する。 The present invention relates to conductive resin particles and uses thereof. More specifically, the present invention is a conductive resin particle and its use (conductive resin composition, which can be preferably used in an application for the purpose of expressing the conductivity by bringing the conductive resin particles into close contact with each other. Coating agent, film, and gap material).

導電性粒子をバインダー樹脂中に分散させた導電性ペーストを電極間に介在させることで電極間の接続信頼性を改善した電子回路基板が知られている。これまで、このような導電性粒子には、金、銀、ニッケルなどの金属からなる導電性粒子が使用されてきた。しかしながら、そのような導電性粒子は、形状が不均一であったりバインダー樹脂に比べて比重が大きいために、導電性ペースト中で沈降したり、導電性ペースト中に均一に一次分散させることが困難であったりするため、信頼性に欠けていた。 There is known an electronic circuit board in which a conductive paste in which conductive particles are dispersed in a binder resin is interposed between electrodes to improve connection reliability between the electrodes. Hitherto, as such conductive particles, conductive particles made of metal such as gold, silver and nickel have been used. However, since such conductive particles have a non-uniform shape or have a larger specific gravity than a binder resin, it is difficult to settle in the conductive paste or to uniformly disperse the conductive particles in the conductive paste uniformly. Therefore, it was not reliable.

そこで、有機系粒子からなるコア粒子と、該コア粒子の表面に形成された導電層と、更に導電性ポリマーを含有してなる導電性粒子粉末であって、前記導電層が金属、金属の酸化物または合金から選ばれる1種又は2種以上の導電性フィラーからなる導電性粒子粉末が開示されている(特許文献1)。 Therefore, a core particle made of organic particles, a conductive layer formed on the surface of the core particle, and a conductive particle powder further containing a conductive polymer, wherein the conductive layer is a metal or metal oxide A conductive particle powder composed of one kind or two or more kinds of conductive fillers selected from materials or alloys is disclosed (Patent Document 1).

特許5630596号公報Japanese Patent No. 5630596

しかしながら、上記導電性粒子粉末は、金属、金属の酸化物または合金から選ばれる1種又は2種以上の導電性フィラーからなる硬い導電層を有しているために、導電性樹脂粒子を圧縮して導電性樹脂粒子同士を密着させたときに、導電性樹脂粒子同士の密着性や、導電性樹脂粒子により電気的に接続させようとする導電部材(例えば電極)と導電性樹脂粒子との密着性が低く、導電性樹脂粒子同士の接触面積や、導電部材と導電性樹脂粒子との接触面積が小さいので、圧縮時の抵抗が高く、良好な導電率が得られない。 However, since the conductive particle powder has a hard conductive layer made of one or more conductive fillers selected from metals, metal oxides or alloys, the conductive resin particles are compressed. When the conductive resin particles are brought into close contact with each other, the adhesiveness between the conductive resin particles and the close contact between the conductive member (for example, the electrode) and the conductive resin particles that are electrically connected by the conductive resin particles Since the property is low and the contact area between the conductive resin particles and the contact area between the conductive member and the conductive resin particles are small, the resistance at the time of compression is high and a good conductivity cannot be obtained.

本発明は、上記従来の課題に鑑みなされたものであり、その目的は、良好な導電率を有する導電性樹脂粒子並びにそれを用いた導電性樹脂組成物、コーティング剤、フィルム、及びギャップ材を提供することにある。 The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a conductive resin particle having a good conductivity and a conductive resin composition using the same, a coating agent, a film, and a gap material. To provide.

そこで、上記課題を解決すべく本発明者が鋭意検討した結果、重合体からなるコア粒子と、前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子において、10%圧縮変形時の圧縮強度を0.1〜30MPaとすることで、良好な導電率を有する導電性樹脂粒子が得られることを見出し、本発明を完成させるに至った。 Therefore, as a result of intensive studies by the present inventors in order to solve the above problems, 10% compression was achieved in a conductive resin particle having a core particle made of a polymer and a shell made of a conductive polymer coating the core particle. It was found that conductive resin particles having good conductivity can be obtained by setting the compressive strength at the time of deformation to 0.1 to 30 MPa, and completed the present invention.

すなわち、本発明の導電性樹脂粒子は、前記課題を解決するために、重合体からなるコア粒子と、前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子であって、10%圧縮変形時の圧縮強度が0.1〜30MPaであることを特徴としている。 That is, the conductive resin particles of the present invention is a conductive resin particle having a core particle made of a polymer and a shell made of a conductive polymer coating the core particle in order to solve the above problems. The compressive strength at 10% compression deformation is 0.1 to 30 MPa.

本発明の構成によれば、コア粒子及びシェルが何れも重合体からなり、10%圧縮変形時の圧縮強度が30MPa以下であるので、導電性樹脂粒子が、柔軟で、圧縮時に大きく変形する。それゆえ、導電性樹脂粒子を圧縮して導電性樹脂粒子同士を密着させたときに、導電性樹脂粒子同士の密着性や、導電性樹脂粒子により電気的に接続させようとする導電部材(例えば電極)と導電性樹脂粒子との密着性が向上し、導電性樹脂粒子同士の接触面積や、導電部材と導電性樹脂粒子との接触面積が大きくなるので、圧縮時の抵抗を下げることができ、良好な導電率を得ることができる。 According to the configuration of the present invention, since the core particles and the shell are both made of a polymer and the compressive strength at 10% compression deformation is 30 MPa or less, the conductive resin particles are soft and largely deformed at the time of compression. Therefore, when the conductive resin particles are compressed to bring the conductive resin particles into close contact with each other, the adhesiveness between the conductive resin particles or the conductive member that is going to be electrically connected by the conductive resin particles (for example, Since the adhesion between the electrode) and the conductive resin particles is improved, and the contact area between the conductive resin particles and the contact area between the conductive member and the conductive resin particles are increased, the resistance during compression can be reduced. Therefore, good conductivity can be obtained.

本発明の導電性樹脂組成物は、前記課題を解決するために、本発明の導電性樹脂粒子と、マトリックス樹脂とを含むことを特徴としている。 The electrically conductive resin composition of the present invention is characterized by containing the electrically conductive resin particles of the present invention and a matrix resin in order to solve the above problems.

上記構成の導電性樹脂組成物は、良好な導電率を有する本発明の導電性樹脂粒子を含むため、上記構成の導電性樹脂組成物を成形することで、導電性及び帯電防止性に優れた成形品を得ることができる。 Since the conductive resin composition having the above structure contains the conductive resin particles of the present invention having good conductivity, by molding the conductive resin composition having the above structure, excellent conductivity and antistatic properties are obtained. A molded product can be obtained.

本発明のコーティング剤は、前記課題を解決するために、本発明の導電性樹脂粒子とバインダー樹脂とを含むことを特徴としている。 The coating agent of the present invention is characterized by containing the conductive resin particles of the present invention and a binder resin in order to solve the above problems.

上記構成のコーティング剤は、良好な導電率を有する本発明の導電性樹脂粒子を含むため、上記構成のコーティング剤を基材上に塗工することで、導電性製品(例えば導電性フィルム)又は帯電防止製品(例えば帯電防止フィルム)として好適に使用できる製品を得ることができる。 Since the coating agent having the above-mentioned configuration contains the conductive resin particles of the present invention having good conductivity, by applying the coating agent having the above-mentioned configuration onto a substrate, a conductive product (for example, a conductive film) or A product that can be suitably used as an antistatic product (for example, an antistatic film) can be obtained.

本発明のフィルムは、前記課題を解決するために、本発明の導電性樹脂粒子を含むことを特徴としている。 The film of the present invention is characterized by containing the conductive resin particles of the present invention in order to solve the above problems.

上記構成のフィルムは、良好な導電率を有する本発明の導電性樹脂粒子を含むため、導電性フィルム又は帯電防止フィルムとして好適に使用できる。 Since the film having the above-mentioned structure contains the conductive resin particles of the present invention having good conductivity, it can be suitably used as a conductive film or an antistatic film.

本発明のギャップ材は、前記課題を解決するために、本発明の導電性樹脂粒子を含むことを特徴としている。 The gap material of the present invention is characterized by containing the conductive resin particles of the present invention in order to solve the above problems.

上記構成のギャップ材は、良好な導電率を有する本発明の導電性樹脂粒子を含むため、導電性を有し、帯電防止機能を発揮する。 Since the gap material having the above structure contains the conductive resin particles of the present invention having good conductivity, it has conductivity and exhibits an antistatic function.

本発明は、良好な導電率を有する導電性樹脂粒子並びにそれを用いた導電性樹脂組成物、コーティング剤、フィルム、及びギャップ材を提供できるという効果を奏する。 INDUSTRIAL APPLICABILITY The present invention has an effect of providing conductive resin particles having good conductivity, and a conductive resin composition, a coating agent, a film, and a gap material using the conductive resin particles.

以下、本発明について、詳細に説明する。
〔導電性樹脂粒子〕
本発明の導電性樹脂粒子は、重合体からなるコア粒子と、前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子であって、10%圧縮変形時の圧縮強度が0.1〜30MPaである。
Hereinafter, the present invention will be described in detail.
[Conductive resin particles]
The conductive resin particle of the present invention is a conductive resin particle having a core particle made of a polymer and a shell made of a conductive polymer coating the core particle, and has a compressive strength at 10% compression deformation. It is 0.1 to 30 MPa.

上記導電性樹脂粒子の10%圧縮変形時の圧縮強度は、0.1〜30MPaであるが、0.1〜17MPaであることが好ましい。10%圧縮変形時の圧縮強度が0.1MPaより小さい導電性樹脂粒子は、機械的強度に劣り、使用時に破壊されてしまうおそれがある。10%圧縮変形時の圧縮強度が17MPa以下である導電性樹脂粒子は、導電性樹脂粒子を圧縮して導電性樹脂粒子同士を密着させたときに、導電性樹脂粒子同士の密着性や、導電性樹脂粒子により電気的に接続させようとする導電部材(例えば電極)と導電性樹脂粒子との密着性がさらに向上し、導電性樹脂粒子同士の接触面積や、導電部材と導電性樹脂粒子との接触面積がさらに大きくなるので、圧縮時の抵抗をさらに下げることができ、さらに優れた導電率を得ることができる。なお、本出願書類において、「10%圧縮変形時の圧縮強度」は、後述する実施例の項で説明する測定方法により得られる10%圧縮変形時の圧縮強度(以下、「10%圧縮強度」と称する)を意味するものとする。 The compressive strength of the conductive resin particles at 10% compression deformation is 0.1 to 30 MPa, and preferably 0.1 to 17 MPa. The conductive resin particles having a compressive strength at 10% compression deformation of less than 0.1 MPa have poor mechanical strength and may be broken during use. The conductive resin particles having a compressive strength of 17 MPa or less when compressed and deformed by 10% have an adhesive property between the conductive resin particles and a conductive property when the conductive resin particles are compressed to bring the conductive resin particles into close contact with each other. Adhesiveness between a conductive member (for example, an electrode) and the conductive resin particles to be electrically connected by the conductive resin particles is further improved, the contact area between the conductive resin particles and the conductive member and the conductive resin particles Since the contact area is further increased, the resistance at the time of compression can be further reduced, and further excellent conductivity can be obtained. In the present application, "compressive strength at 10% compressive deformation" means the compressive strength at 10% compressive deformation (hereinafter referred to as "10% compressive strength") obtained by the measuring method described in the section of Examples below. Referred to as).

上記導電性樹脂粒子は、1〜200μmの体積平均粒子径を有していることが好ましい。上記導電性樹脂粒子が1μm以上の体積平均粒子径を有していることで、導電ペーストなどに用いる際の各種溶剤への分散性が向上し、良好なハンドリング性を得ることができる。上記導電性樹脂粒子が200μm以下の体積平均粒子径を有していることで、導電性樹脂粒子同士を密着させたときや、導電部材と導電性樹脂粒子とを密着させたときに、これらの互いの接触性が良好になり、より多くの導電パスを得ることができる。なお、本出願書類において、「体積平均粒子径」は、後述する実施例の項で説明する測定方法により得られる体積平均粒子径を意味するものとする。 The conductive resin particles preferably have a volume average particle diameter of 1 to 200 μm. When the conductive resin particles have a volume average particle diameter of 1 μm or more, dispersibility in various solvents when used in a conductive paste or the like is improved, and good handleability can be obtained. Since the conductive resin particles have a volume average particle diameter of 200 μm or less, when the conductive resin particles are brought into close contact with each other or when the conductive member and the conductive resin particles are brought into close contact with each other, The mutual contact is improved, and more conductive paths can be obtained. In the present application, the “volume average particle diameter” means the volume average particle diameter obtained by the measuring method described in the section of Examples below.

上記導電性樹脂粒子の体積基準の粒子径の変動係数は、10%以上であることが好ましく、20%〜50%の範囲内にあることがより好ましい。体積基準の粒子径の変動係数が10%以上(特に20%以上)である導電性樹脂粒子は、同組成で体積基準の粒子径の変動係数が15%以下である導電性樹脂粒子と比較して、微小粒子径(体積平均粒子径と比較して顕著に小さい粒子径)の導電性樹脂粒子を多く含むために、導電性樹脂粒子を圧縮して導電性樹脂粒子同士を密着させたときに、多くの微小粒子径の導電性樹脂粒子がそれ以外の導電性樹脂粒子の間に入り込んで充填率が向上する。それゆえ、導電性樹脂粒子同士の密着性や、導電性樹脂粒子により電気的に接続させようとする導電部材(例えば電極)と導電性樹脂粒子との密着性が向上し、導電性樹脂粒子同士の接触面積や、導電部材と導電性樹脂粒子との接触面積が大きくなるので、圧縮時の抵抗を下げることができ、さらに優れた導電率を得ることができる。なお、本出願書類において、なお、本出願書類において、「体積基準の粒子径の変動係数」は、後述する実施例の項で説明する測定方法により得られる体積基準の粒子径の変動係数を意味するものとする。 The variation coefficient of the volume-based particle diameter of the conductive resin particles is preferably 10% or more, and more preferably 20% to 50%. Conductive resin particles having a volume-based particle diameter variation coefficient of 10% or more (particularly 20% or more) are compared with conductive resin particles having the same composition and a volume-based particle diameter variation coefficient of 15% or less. When the conductive resin particles are compressed and brought into close contact with each other, since the conductive resin particles contain many conductive resin particles having a fine particle diameter (a particle diameter significantly smaller than the volume average particle diameter). A large number of conductive resin particles having a small particle size enter between the other conductive resin particles to improve the filling rate. Therefore, the adhesiveness between the conductive resin particles and the adhesiveness between the conductive member (for example, an electrode) and the conductive resin particles that are electrically connected by the conductive resin particles are improved, and the conductive resin particles are electrically connected to each other. Since the contact area between the above and the contact area between the conductive member and the conductive resin particles are increased, the resistance at the time of compression can be reduced, and more excellent conductivity can be obtained. In addition, in the present application documents, “variation coefficient of volume-based particle size” in the present application document means a variation coefficient of volume-based particle size obtained by a measuring method described in the section of Examples described later. It shall be.

上記導電性樹脂粒子の復元率は、15%以上30%未満であることが好ましく、15%以上25%以下であることがより好ましく、15%以上20%以下であることがさらに好ましい。上記導電性樹脂粒子の復元率が15%以上であることで、導電性樹脂粒子が圧縮された後に圧縮応力が低下した場合であっても、導電性樹脂粒子の形状が復元して導電性樹脂粒子同士の密着性を維持できる。したがって、良好な導電率を安定的に得ることができる。上記導電性樹脂粒子の復元率が30%未満であることで、導電性樹脂粒子を圧縮した後の形状を保ちやすくなり、結果的に良好な密着性を維持することができる。 The restoration rate of the conductive resin particles is preferably 15% or more and less than 30%, more preferably 15% or more and 25% or less, and further preferably 15% or more and 20% or less. When the restoration rate of the conductive resin particles is 15% or more, the shape of the conductive resin particles is restored and the conductive resin is restored even when the compressive stress is reduced after the conductive resin particles are compressed. Adhesion between particles can be maintained. Therefore, good conductivity can be stably obtained. When the restoration rate of the conductive resin particles is less than 30%, the shape of the conductive resin particles after being compressed can be easily maintained, and as a result, good adhesion can be maintained.

本発明の導電性樹脂粒子の導電率は、5.0×10−3〜5.0×10−1(S/cm)であることが好ましく、9×10−3〜1×10−1(S/cm)であることがより好ましく、1×10−2〜5×10−2(S/cm)であることがさらに好ましい。上記導電性樹脂粒子の導電率が上記範囲の下限以上であることで、良好な導電率を有する導電性樹脂粒子を実現できる。The conductivity of the conductive resin particles of the present invention is preferably 5.0×10 −3 to 5.0×10 −1 (S/cm), and 9×10 −3 to 1×10 −1 ( S/cm) is more preferable, and 1×10 −2 to 5×10 −2 (S/cm) is further preferable. When the conductivity of the conductive resin particles is at least the lower limit of the above range, conductive resin particles having good conductivity can be realized.

〔コア粒子〕
上記コア粒子は、ポリウレタン、シリコーン系重合体等の縮合重合体であってもよいが、ビニル系単量体の重合体からなることが好ましい。上記ビニル系単量体は、少なくとも1個のエチレン性不飽和基(広義のビニル基)を有する化合物であればよく、1個のエチレン性不飽和基を有する単官能ビニル系単量体であってもよく、2個以上のエチレン性不飽和基を有する多官能ビニル系単量体であってもよい。
[Core particles]
The core particle may be a condensation polymer such as polyurethane or silicone polymer, but is preferably a polymer of vinyl monomer. The vinyl monomer may be a compound having at least one ethylenically unsaturated group (broadly defined vinyl group), and is a monofunctional vinyl monomer having one ethylenically unsaturated group. It may be a polyfunctional vinyl-based monomer having two or more ethylenically unsaturated groups.

上記単官能ビニル系単量体としては、例えば、後段で詳述する単官能(メタ)アクリル酸エステル単量体;スチレン、p−メチルスチレン、α−メチルスチレン等のスチレン系単量体;酢酸ビニル等のビニルエステル系単量体等が挙げられる。これらのうち、単官能(メタ)アクリル酸エステル単量体が単官能ビニル系単量体として好ましい。なお、本出願書類において、「(メタ)アクリル酸」はアクリル酸及び/又はメタクリル酸を意味し、「(メタ)アクリレート」はアクリレート及び/又はメタクリレートを意味するものとする。 Examples of the monofunctional vinyl-based monomer include, for example, monofunctional (meth)acrylic acid ester monomers, which will be described later in detail; styrene-based monomers such as styrene, p-methylstyrene, α-methylstyrene; acetic acid. Examples thereof include vinyl ester monomers such as vinyl. Of these, monofunctional (meth)acrylic acid ester monomers are preferred as monofunctional vinyl-based monomers. In addition, in this application document, "(meth)acrylic acid" means acrylic acid and/or methacrylic acid, and "(meth)acrylate" means acrylate and/or methacrylate.

上記多官能ビニル系単量体としては、下記一般式(I)

Figure 0006722766
(式中、Rは水素又はメチル基であり、nは1〜4の整数である。)で示される単量体、一般式(II)で示す単量体、下記一般式(II)
Figure 0006722766
(式中、Rは水素又はメチル基であり、mは5〜15の整数である。)で示される単量体、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、フタル酸ジエチレングリコールジ(メタ)アクリレート、カプロラクトン変性ジペンタエリスルトールヘキサ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、ポリエステルアクリレート、ウレタンアクリレートオリゴマー(後段で詳細に説明する)等の2個以上のエチレン性不飽和基を有する多官能(メタ)アクリル酸エステル系単量体;ジビニルベンゼン、ジビニルナフタレン、これらの誘導体等の芳香族ジビニル系単量体等が挙げられる。これらのうち、上記一般式(I)で示す単量体、上記一般式(II)で示す単量体、及びウレタンアクリレートが好ましい。これらビニル系単量体は、それぞれ単独で、又は2種類以上を組み合わせて用いることができる。The polyfunctional vinyl-based monomer is represented by the following general formula (I)
Figure 0006722766
(In the formula, R 1 is hydrogen or a methyl group, and n is an integer of 1 to 4.) A monomer represented by the general formula (II), a general formula (II) shown below.
Figure 0006722766
(In the formula, R 2 is hydrogen or a methyl group, and m is an integer of 5 to 15.), 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol. Di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, glycerin di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, diethylene glycol di(meth)acrylate phthalate , Two or more ethylenic unsaturations such as caprolactone-modified dipentaerythritol hexa(meth)acrylate, caprolactone-modified hydroxypivalic acid ester neopentyl glycol diacrylate, polyester acrylate, urethane acrylate oligomer (described in detail later) Examples thereof include polyfunctional (meth)acrylic acid ester-based monomers having a group; aromatic divinyl-based monomers such as divinylbenzene, divinylnaphthalene, and derivatives thereof. Among these, the monomer represented by the general formula (I), the monomer represented by the general formula (II), and urethane acrylate are preferable. These vinyl monomers can be used alone or in combination of two or more kinds.

上記コア粒子は、単官能(メタ)アクリル酸エステル単量体と、下記一般式(I)

Figure 0006722766
(式中、Rは水素又はメチル基であり、nは1〜4の整数である。)で示される単量体とを含む単量体混合物(ビニル系単量体)の重合体を含んでいることが好ましい。この重合体は、架橋構造を有する重合体であるため、コア粒子に復元性を付与できる。したがって、この重合体が上記コア粒子に含まれていることにより、良好な復元率を有する導電性樹脂粒子を実現できる。The core particles are composed of a monofunctional (meth)acrylic acid ester monomer and the following general formula (I).
Figure 0006722766
(In the formula, R 1 is hydrogen or a methyl group, and n is an integer of 1 to 4.) A polymer of a monomer mixture (vinyl-based monomer) is included. Is preferred. Since this polymer is a polymer having a cross-linked structure, it is possible to impart resilience to the core particles. Therefore, by including this polymer in the core particles, it is possible to realize conductive resin particles having a good restoration rate.

上記単官能(メタ)アクリル酸エステル単量体としては、特に限定されず、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸イソボルニル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−メトキシエチル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル、メタクリル酸ジエチルアミノエチル、メタクリル酸トリフルオロエチル、メタクリル酸ヘプタデカフルオロデシル、メタクリル酸n−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル等のメタクリル酸エステル、アルキレンオキサイド基を有する(メタ)アクリル酸エステル(後段で詳細に説明する)等をいずれも使用することができる。これら単官能(メタ)アクリル酸エステル単量体は、それぞれ単独で、又は2種類以上を組み合わせて用いることができる。 The monofunctional (meth)acrylic acid ester monomer is not particularly limited, and examples thereof include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-acrylic acid acrylate. Acrylic esters such as ethylhexyl; methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, glycidyl methacrylate, methacrylic acid. Methacrylic acid esters such as tetrahydrofurfuryl acid, diethylaminoethyl methacrylate, trifluoroethyl methacrylate, heptadecafluorodecyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, and alkylene oxide groups. Any of the (meth)acrylic acid esters (described in detail later) and the like can be used. These monofunctional (meth)acrylic acid ester monomers can be used alone or in combination of two or more kinds.

上記単官能(メタ)アクリル酸エステル単量体のうち、アルキル基の炭素数が1〜12であるアクリル酸アルキルが好ましく、アルキル基の炭素数が1〜8であるアクリル酸アルキルがより好ましい。このようなアクリル酸アルキルを用いることで、上記コア粒子の10%圧縮強度を低くすることができるので、前述した範囲の上限以下の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなる。 Among the above monofunctional (meth)acrylic acid ester monomers, an alkyl acrylate having an alkyl group having 1 to 12 carbon atoms is preferable, and an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms is more preferable. By using such an alkyl acrylate, the 10% compressive strength of the core particles can be lowered, so that it is easy to realize the conductive resin particles having the 10% compressive strength equal to or lower than the upper limit of the above range.

また、上記単量体混合物中における単官能(メタ)アクリル酸エステル単量体の含有量は、上記単量体混合物100重量部に対して、70〜99重量部であることが好ましい。単官能(メタ)アクリル酸エステル単量体の含有量を上記範囲内とすることによって、前述した範囲の復元率を有する導電性樹脂粒子を実現しやすくなる。 In addition, the content of the monofunctional (meth)acrylic acid ester monomer in the monomer mixture is preferably 70 to 99 parts by weight with respect to 100 parts by weight of the monomer mixture. By setting the content of the monofunctional (meth)acrylic acid ester monomer within the above range, it becomes easy to realize the conductive resin particles having the restoration ratio in the above range.

上記一般式(I)で示される単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等が挙げられる。これら一般式(I)で示される単量体のうち、エチレングリコールジ(メタ)アクリレートが特に好ましく、一般式(I)で示される単量体として、エチレングリコールジ(メタ)アクリレートを使用すると、添加量に対してより効果的に導電性樹脂粒子の耐溶剤性を向上させることができる。 Examples of the monomer represented by the general formula (I) include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and tetraethylene glycol di(meth)acrylate. Are listed. Among these monomers represented by the general formula (I), ethylene glycol di(meth)acrylate is particularly preferable, and when ethylene glycol di(meth)acrylate is used as the monomer represented by the general formula (I), The solvent resistance of the conductive resin particles can be improved more effectively with respect to the amount added.

上記単量体混合物中における一般式(I)で示される単量体の含有量は、上記単量体混合物100重量部に対して、1〜30重量部であることが好ましい。一般式(I)で示される単量体の含有量を上記範囲内とすることによって、前述した範囲の復元率を有する導電性樹脂粒子を実現しやすくなる。 The content of the monomer represented by the general formula (I) in the monomer mixture is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the monomer mixture. By setting the content of the monomer represented by the general formula (I) within the above range, it becomes easy to realize the conductive resin particles having the restoration ratio in the above range.

上記コア粒子に含まれる上記単量体混合物の重合体は、上記単官能(メタ)アクリル酸エステル単量体及び上記一般式(I)で示される単量体に加えて、下記一般式(II)

Figure 0006722766
(式中、Rは水素又はメチル基であり、mは5〜15の整数である。)で示される単量体をさらに含む単量体混合物の重合体であることが好ましい。これにより、上記コア粒子に含まれる重合体に柔軟な架橋構造を導入できるため、導電性樹脂粒子の10%圧縮強度を低くすることができ、また、導電性樹脂粒子の復元率を向上させることができる。したがって、前述した範囲の上限以下の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなり、また、前述した範囲の下限以上の復元率を有する導電性樹脂粒子を実現しやすくなる。The polymer of the monomer mixture contained in the core particles has the following general formula (II) in addition to the monofunctional (meth)acrylic acid ester monomer and the monomer represented by the general formula (I). )
Figure 0006722766
(In the formula, R 2 is hydrogen or a methyl group, and m is an integer of 5 to 15.) It is preferably a polymer of a monomer mixture further containing a monomer. As a result, a flexible crosslinked structure can be introduced into the polymer contained in the core particles, so that the 10% compressive strength of the conductive resin particles can be lowered, and the recovery rate of the conductive resin particles can be improved. You can Therefore, it becomes easy to realize the conductive resin particles having a 10% compressive strength equal to or lower than the upper limit of the above range, and also to easily realize the conductive resin particles having a restoration ratio equal to or higher than the lower limit of the above range.

上記一般式(II)で示される単量体としては、例えば、ペンタエチレングリコールジ(メタ)アクリレート、ヘキサエチレングリコールジ(メタ)アクリレート、ヘプタエチレングリコールジ(メタ)アクリレート、オクタエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート、ペンタデカエチレングリコールジ(メタ)アクリレート等が挙げられる。これら一般式(II)で示される単量体のうち、一般式(II)中のmがノナエチレングリコールジ(メタ)アクリレート(m=9)とテトラデカエチレングリコールジ(メタ)アクリレート(m=14)との間にある単量体、すなわち、一般式(II)中のmが9〜14の範囲内にある単量体を使用すると、前述した範囲の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなり、また、前述した範囲の復元率を有する導電性樹脂粒子を実現しやすくなる。 Examples of the monomer represented by the general formula (II) include pentaethylene glycol di(meth)acrylate, hexaethylene glycol di(meth)acrylate, heptaethylene glycol di(meth)acrylate, octaethylene glycol di(meth). ) Acrylate, nonaethylene glycol di(meth)acrylate, decaethylene glycol di(meth)acrylate, tetradecaethylene glycol di(meth)acrylate, pentadecaethylene glycol di(meth)acrylate and the like. Among the monomers represented by the general formula (II), m in the general formula (II) is nonaethylene glycol di(meth)acrylate (m=9) and tetradecaethylene glycol di(meth)acrylate (m= 14), that is, when a monomer having m in the general formula (II) within the range of 9 to 14 is used, a conductive resin having a compressive strength of 10% within the above range. It is easy to realize particles, and it is also easy to realize conductive resin particles having a recovery rate within the above range.

上記単量体混合物中における一般式(II)で示される単量体の含有量は、上記単量体混合物100重量部に対して、1〜20重量部であることが好ましく、10〜20重量部であることがより好ましい。一般式(II)で示される単量体の含有量を上記範囲内とすることによって、前述した範囲の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなり、また、前述した範囲の復元率を有する導電性樹脂粒子を実現しやすくなる。 The content of the monomer represented by the general formula (II) in the monomer mixture is preferably 1 to 20 parts by weight, and 10 to 20 parts by weight with respect to 100 parts by weight of the monomer mixture. More preferably, it is a part. By setting the content of the monomer represented by the general formula (II) within the above range, it becomes easy to realize the conductive resin particles having 10% compressive strength within the above range, and the restoration of the above range is possible. It becomes easy to realize a conductive resin particle having a high rate.

なお、上記単量体混合物には、上記した単量体以外の他の単量体が含まれていてもよい。例えば、上記単量体混合物には、単官能(メタ)アクリル酸エステル単量体と共重合可能な他の単官能ビニル系単量体が含まれていてもよい。単官能(メタ)アクリル酸エステル単量体と共重合可能な他の単官能ビニル系単量体としては、例えば、前述したスチレン系単量体、前述したビニルエステル系単量体等が挙げられる。これら他の単官能ビニル系単量体は、単独で、又は2種類以上を組み合わせて用いることができる。 The monomer mixture may contain a monomer other than the above-mentioned monomers. For example, the above-mentioned monomer mixture may contain another monofunctional vinyl-based monomer copolymerizable with the monofunctional (meth)acrylic acid ester monomer. Examples of the other monofunctional vinyl-based monomer copolymerizable with the monofunctional (meth)acrylic acid ester monomer include the styrene-based monomer described above and the vinyl ester-based monomer described above. .. These other monofunctional vinyl monomers can be used alone or in combination of two or more kinds.

また、上記単量体混合物には、上記一般式(I)及び一般式(II)で示される以外の他の多官能ビニル系単量体が含まれていてもよい。他の多官能ビニル系単量体としては、例えば、前述した多官能(メタ)アクリル酸エステル系単量体、前述した芳香族ジビニル系単量体等が挙げられる。 Further, the above-mentioned monomer mixture may contain a polyfunctional vinyl-based monomer other than those represented by the general formula (I) and the general formula (II). Examples of other polyfunctional vinyl-based monomers include the above-mentioned polyfunctional (meth)acrylic acid ester-based monomers and the above-mentioned aromatic divinyl-based monomers.

また、上記ビニル系単量体は、その一部として、カルボキシ基、ヒドロキシ基等の親水性基を有する単量体を含むことが好ましく、アルキレンオキサイド基を有する(メタ)アクリル酸エステルを含むことがより好ましい。これにより、コア粒子におけるビニル系単量体の他の成分に由来する部分の疎水性が高い場合であっても、コア粒子表面に親水性を付与することができる。その結果、コア粒子を水性媒体中に分散させた分散液中における単量体の酸化重合によってシェルを形成する場合に、コア粒子を水性媒体中に容易に一次粒子に分散させることができ、容易に個々のコア粒子をシェルで被覆できる。そのようなアルキレンオキサイド基を有する(メタ)アクリル酸エステルとしては、例えば、下記の一般式で表される化合物が挙げられる。 Further, the vinyl-based monomer preferably contains, as a part thereof, a monomer having a hydrophilic group such as a carboxy group and a hydroxy group, and contains a (meth)acrylic acid ester having an alkylene oxide group. Is more preferable. This makes it possible to impart hydrophilicity to the surface of the core particle even when the hydrophobicity of the portion of the core particle derived from another component of the vinyl-based monomer is high. As a result, when the shell is formed by the oxidative polymerization of the monomer in the dispersion liquid in which the core particles are dispersed in the aqueous medium, the core particles can be easily dispersed in the aqueous medium to the primary particles, which is easy. In addition, individual core particles can be coated with a shell. Examples of the (meth)acrylic acid ester having such an alkylene oxide group include compounds represented by the following general formula.

Figure 0006722766
Figure 0006722766

上記一般式中、RはH又はCHを示し、R及びRは異なってC、C、C、C10から選択されるアルキレン基を示し、pは0〜50、qは0〜50(但しpとqは同時に0にならない)であり、RはH又はCHを示している。In the above general formula, R 3 represents H or CH 3 , and R 4 and R 5 are different from each other and represent an alkylene group selected from C 2 H 4 , C 3 H 6 , C 4 H 8 , and C 5 H 10. , P is 0 to 50, q is 0 to 50 (however, p and q do not become 0 at the same time), and R 6 represents H or CH 3 .

なお、上記一般式の単量体において、pが50より大きい場合及びqが50より大きい場合、重合安定性が低下し、合着粒子が発生することがある。好ましいp及びqの範囲は0〜30であり、より好ましいp及びqの範囲は0〜15である。 When p is greater than 50 and q is greater than 50 in the monomer of the above general formula, polymerization stability may be deteriorated and coalesced particles may be generated. The preferred range of p and q is 0 to 30, and the more preferred range of p and q is 0 to 15.

アルキレンオキサイド基を有する(メタ)アクリル酸エステルとしては、市販品を利用できる。市販品としては、例えば、日油株式会社製のブレンマー(登録商標)シリーズが挙げられる。更にブレンマー(登録商標)シリーズの中で、ブレンマー(登録商標)50PEP−300(RはCH、RはC、RはC、p及びqは平均してp=3.5及びq=2.5の混合物、RはHである)、ブレンマー(登録商標)70PEP−350B(RはCH、RはC、RはC、p及びqは平均してp=3.5及びq=2.5の混合物、RはHである)、ブレンマー(登録商標)PP−1000(RはCHであり、RはC、RはC、pは0、qは平均して4〜6の混合物、RはHである)、ブレンマー(登録商標)PME−400(RはCHであり、RはC、RはC、pは平均して9の混合物、qは0、RはCHである)等が適している。As the (meth)acrylic acid ester having an alkylene oxide group, commercially available products can be used. Examples of commercially available products include the BLEMMER (registered trademark) series manufactured by NOF CORPORATION. Further, in the Blemmer (registered trademark) series, Blemmer (registered trademark) 50PEP-300 (R 3 is CH 3 , R 4 is C 2 H 5 , R 5 is C 3 H 6 , and p and q are p on average. mixtures = 3.5 and q = 2.5, R 6 is H), Blemmer (TM) 70PEP-350B (R 3 is CH 3, R 4 is C 2 H 5, R 5 is C 3 H 6 , p and q are on average a mixture of p=3.5 and q=2.5, R 6 is H), Bremmer® PP-1000 (R 3 is CH 3 and R 4 Is C 2 H 5 , R 5 is C 3 H 6 , p is 0, q is a mixture of 4 to 6 on average, R 6 is H), and Bremmer (registered trademark) PME-400 (R 3 is CH). is 3, R 4 is C 2 H 5, R 5 is a mixture of C 3 H 6, p is on average 9, q is 0, R 6 is CH 3) and the like are suitable.

上記アルキレンオキサイド基を有する(メタ)アクリル酸エステルの使用量は、ビニル系単量体の全量に対し、40重量%以下であることが好ましく、1〜15重量%であることがより好ましく、2〜10重量%がさらに好ましく、3〜7重量%であることが特に好ましい。上記アルキレンオキサイド基を有する(メタ)アクリル酸エステルの使用量を上記範囲の下限以上とすることで、コア粒子を水性媒体中に一次粒子に分散させることがさらに容易となる。上記アルキレンオキサイド基を有する(メタ)アクリル酸エステルの使用量が重合性ビニル系単量体の全量に対して40重量%を越えると重合安定性が低下し、合着粒子が多くなることがある。 The amount of the (meth)acrylic acid ester having an alkylene oxide group used is preferably 40% by weight or less, more preferably 1 to 15% by weight, based on the total amount of the vinyl-based monomer. -10 wt% is more preferable, and 3-7 wt% is particularly preferable. When the amount of the (meth)acrylic acid ester having an alkylene oxide group used is at least the lower limit of the above range, it becomes easier to disperse the core particles in the aqueous medium into the primary particles. When the amount of the (meth)acrylic acid ester having an alkylene oxide group used exceeds 40% by weight with respect to the total amount of the polymerizable vinyl-based monomer, the polymerization stability may decrease and the number of coalesced particles may increase. ..

また、上記ビニル系単量体は、(メタ)アクリル酸エステル単量体等の単官能ビニル系単量体と共に、多官能ビニル系単量体としてのウレタンアクリレートオリゴマーを含むことも好ましい。これにより、上記コア粒子の10%圧縮強度を低くすることができるので、前述した範囲の上限以下の10%圧縮強度を有する導電性樹脂粒子を実現しやすくなる。上記ウレタンアクリレートオリゴマーは、単独で硬化させた際に、0〜30℃のガラス転移温度(Tg)(粘弾性から測定)を示すことが好ましい。Tgが0℃未満の場合、コア粒子に粘着性がでてくることがある。Tgが30℃以下の場合、復元性の高い導電性樹脂粒子を得ることができる。上記ウレタンアクリレートオリゴマーが単独で硬化させた際に示すTgは、0〜28℃であることがより好ましく、0〜25℃であることがさらに好ましい。 It is also preferable that the vinyl-based monomer contains a urethane acrylate oligomer as a polyfunctional vinyl-based monomer together with a monofunctional vinyl-based monomer such as a (meth)acrylic acid ester monomer. This makes it possible to reduce the 10% compressive strength of the core particles, and thus it is easy to realize the conductive resin particles having the 10% compressive strength equal to or lower than the upper limit of the above range. The urethane acrylate oligomer preferably exhibits a glass transition temperature (Tg) (measured from viscoelasticity) of 0 to 30° C. when cured alone. If the Tg is less than 0°C, the core particles may become tacky. When Tg is 30° C. or lower, conductive resin particles having high resilience can be obtained. The Tg when the urethane acrylate oligomer alone is cured is more preferably 0 to 28°C, further preferably 0 to 25°C.

上記ウレタンアクリレートオリゴマーは、単独で硬化させた際にH〜HBの鉛筆硬度を示すものであることが好ましい。そのようなウレタンアクリレートオリゴマーを使用した場合、より高い復元率を有する導電性樹脂粒子を得ることができる。 The urethane acrylate oligomer preferably has a pencil hardness of H to HB when cured alone. When such a urethane acrylate oligomer is used, conductive resin particles having a higher restoration rate can be obtained.

上記ウレタンアクリレートオリゴマーの市販品としては、例えば、第一工業製薬株式会社製のニューフロンティア(登録商標)RSTシリーズの「ニューフロンティア(登録商標)RST−402」及び「ニューフロンティア(登録商標)RST−201」等のようなニューフロンティア(登録商標)シリーズのウレタンアクリレートオリゴマー、共栄社化学株式会社製のUFシリーズ「UF−A01P」等を挙げることができる。 Examples of commercially available products of the urethane acrylate oligomer include “New Frontier (registered trademark) RST-402” and “New Frontier (registered trademark) RST-” of New Frontier (registered trademark) RST series manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. 201" and other new frontier (registered trademark) series urethane acrylate oligomers, UF series "UF-A01P" manufactured by Kyoeisha Chemical Co., Ltd., and the like.

〔コア粒子の製造方法〕
本発明のコア粒子は、ビニル系単量体の重合体からなる場合、ビニル系単量体を重合させることにより得ることができる。重合方法としては、乳化重合、分散重合、懸濁重合、シード重合など、樹脂粒子を得るための公知の方法を用いることができる。
[Method for producing core particles]
When the core particle of the present invention is made of a vinyl monomer polymer, it can be obtained by polymerizing a vinyl monomer. As the polymerization method, known methods for obtaining resin particles such as emulsion polymerization, dispersion polymerization, suspension polymerization, and seed polymerization can be used.

〔懸濁重合によるコア粒子の製造方法〕
上記懸濁重合は、水性媒体中でビニル系単量体を重合させる方法である。上記水性媒体としては、水、及び、水と水溶性有機溶媒(例えば、炭素数5以下の低級アルコール)との混合物が挙げられる。
[Method for producing core particles by suspension polymerization]
The suspension polymerization is a method of polymerizing vinyl monomers in an aqueous medium. Examples of the aqueous medium include water and a mixture of water and a water-soluble organic solvent (for example, a lower alcohol having 5 or less carbon atoms).

上記懸濁重合は、必要に応じて、重合開始剤の存在下で行われてもよい。重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等の油溶性過酸化物;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等の油溶性アゾ化合物が挙げられる。これらの重合開始剤は、それぞれ単独で、又は2種類以上組み合わせて用いることができる。なお、重合開始剤の使用量は、ビニル系単量体100重量部に対して、0.1〜1重量部程度で十分である。 The suspension polymerization may be carried out in the presence of a polymerization initiator, if necessary. Examples of the polymerization initiator include benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl orthochloroperoxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, and t-butyl hydroperoxide. Peroxide; oil-soluble azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis(2,4-dimethylvaleronitrile) are mentioned. These polymerization initiators can be used alone or in combination of two or more kinds. The amount of the polymerization initiator used is about 0.1 to 1 part by weight per 100 parts by weight of the vinyl monomer.

また、上記懸濁重合は、必要に応じて、分散剤及び/又は界面活性剤の存在下で行われてもよい。分散剤としては、例えば、リン酸カルシウム、及びピロリン酸マグネシウム等の難水溶性無機塩;ポリビニルアルコール、メチルセルロース、及びポリビニルピロリドン等の水溶性高分子等が挙げられる。 Further, the suspension polymerization may be carried out in the presence of a dispersant and/or a surfactant, if necessary. Examples of the dispersant include poorly water-soluble inorganic salts such as calcium phosphate and magnesium pyrophosphate; water-soluble polymers such as polyvinyl alcohol, methyl cellulose, and polyvinylpyrrolidone.

また、界面活性剤としては、例えばオレイン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸塩、アルキルリン酸エステル塩等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル等のノニオン性界面活性剤;ラウリルジメチルアミンオキサイド等の両性界面活性剤等が挙げられる。 Examples of the surfactant include anionic surfactants such as sodium oleate, sodium lauryl sulfate, sodium dodecylbenzene sulfonate, alkylnaphthalene sulfonate, alkyl phosphate ester salt; polyoxyethylene alkyl ether, polyoxy Nonionic surfactants such as ethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester; amphoteric surfactants such as lauryl dimethylamine oxide Can be mentioned.

上記した分散剤及び界面活性剤は、それぞれ単独で又は2種類以上を組み合わせて用いることができる。中でも、分散安定性の点から、リン酸カルシウム、ピロリン酸マグネシウム等の難水溶性リン酸塩の分散剤と、アルキル硫酸塩、アルキルベンゼンスルホン酸塩等のアニオン性界面活性剤とを組み合わせて用いるのが好ましい。 The above dispersants and surfactants can be used alone or in combination of two or more. Among them, from the viewpoint of dispersion stability, it is preferable to use a combination of a sparingly water-soluble phosphate dispersant such as calcium phosphate or magnesium pyrophosphate, and an anionic surfactant such as alkyl sulfate or alkylbenzene sulfonate. ..

上記分散剤の使用量は、ビニル系単量体100重量部に対して、0.5〜10重量部であることが好ましく、界面活性剤の使用量は、水性媒体100重量部に対して0.01〜0.2重量部であることが好ましい。 The amount of the dispersant used is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the vinyl-based monomer, and the amount of the surfactant used is 0 with respect to 100 parts by weight of the aqueous medium. It is preferably 0.01 to 0.2 parts by weight.

上記懸濁重合は、上記ビニル系単量体を含む油相を調製し、調製した油相を水性媒体を含む水相中に分散させながら、この油相が分散された水相を加熱することにより開始できる。なお、重合開始剤を使用する場合には、上記ビニル系単量体に重合開始剤を混合して油相を調製する。また、分散剤及び/又は界面活性剤を使用する場合には、水性媒体に分散剤及び/又は界面活性剤を混合して水相を調製する。なお、コア粒子の体積平均粒子径は、油相と水相との混合割合や分散剤、界面活性剤の使用量及び攪拌条件、分散条件を調整することにより適宜制御できる。 The suspension polymerization is to prepare an oil phase containing the vinyl monomer, and heat the aqueous phase in which the oil phase is dispersed while dispersing the prepared oil phase in the aqueous phase containing the aqueous medium. Can be started by When a polymerization initiator is used, the vinyl phase monomer is mixed with the polymerization initiator to prepare an oil phase. When a dispersant and/or a surfactant is used, the dispersant and/or the surfactant is mixed with an aqueous medium to prepare an aqueous phase. The volume average particle diameter of the core particles can be appropriately controlled by adjusting the mixing ratio of the oil phase and the aqueous phase, the amount of the dispersant and the surfactant used, the stirring conditions, and the dispersion conditions.

水相中に油相を分散させる方法としては、例えば、水相中に油相を直接添加して、プロペラ翼等の攪拌力によりその油相を液滴として水相中に分散させる方法;水相中に油相を直接添加して、ローターとステーターから構成される高せん断力を利用する分散機であるホモミクサーを用いてその油相を水相中に分散させる方法;水相中に油相を直接添加して、超音波分散機等を用いて水相中にその油相を分散させる方法等種々の方法が挙げられる。こられのうち、水相中に油相を直接添加して、マイクロフルイダイザー、ナノマイザー(登録商標)等の高圧型分散機を用いて、混合物の液滴同士の衝突あるいは機壁に対する混合物の衝突を利用して、その油相を液滴として水相中に分散させる方法;MPG(マイクロポーラスガラス)多孔膜を通して油相を水相中に圧入させる方法等によって分散させれば、コア粒子の粒子径をより均一に揃えることができるので好ましい。 As a method for dispersing the oil phase in the water phase, for example, a method in which the oil phase is directly added to the water phase and the oil phase is dispersed as droplets in the water phase by stirring force of a propeller blade or the like; A method of directly adding an oil phase to a water phase and dispersing the oil phase in the water phase using a homomixer, which is a disperser using a high shear force composed of a rotor and a stator; And a method of dispersing the oil phase in the aqueous phase by using an ultrasonic disperser or the like. Of these, the oil phase was directly added to the aqueous phase, and a high-pressure disperser such as Microfluidizer or Nanomizer (registered trademark) was used to collide the droplets of the mixture with each other or the mixture against the machine wall. To disperse the oil phase as droplets in the water phase; by dispersing the oil phase into the water phase through an MPG (microporous glass) porous membrane It is preferable because the diameters can be made more uniform.

また、重合温度は、40〜90℃程度が好ましい。そしてこの重合温度を保持する時間としては、0.1〜10時間程度が好ましい。なお、重合反応は、窒素雰囲気のような、重合反応系中の反応物(油相)に対して不活性な不活性ガス雰囲気下で行ってもよい。また、ビニル系単量体の沸点が重合温度付近又は重合温度以下である場合には、ビニル系単量体が揮発しないように、オートクレーブ等の耐圧重合設備を使用して、密閉下あるいは加圧下で懸濁重合を行うことが好ましい。 The polymerization temperature is preferably about 40 to 90°C. The time for maintaining this polymerization temperature is preferably about 0.1 to 10 hours. The polymerization reaction may be carried out in an inert gas atmosphere such as a nitrogen atmosphere, which is inert to the reaction product (oil phase) in the polymerization reaction system. When the boiling point of the vinyl-based monomer is around the polymerization temperature or lower than the polymerization temperature, pressure-resistant polymerization equipment such as an autoclave is used to prevent the vinyl-based monomer from volatilizing under a closed or pressurized condition. It is preferable to carry out suspension polymerization in.

そして、重合反応終了後、所望により分散剤を酸等で分解除去し、ろ過、水洗浄、脱水、乾燥、粉砕、分級等を行うことによって、目的のコア粒子を得ることができる。 After the completion of the polymerization reaction, the dispersant is decomposed and removed with an acid or the like, if desired, and filtration, washing with water, dehydration, drying, pulverization, classification and the like can be carried out to obtain the target core particles.

〔シード重合によるコア粒子の製造方法〕
シード重合法によるコア粒子の製造方法では、まず、ビニル系単量体と水性媒体とから構成される水性乳化液に種粒子を添加する。水性媒体としては、水、水と水溶性溶媒(例えば、炭素数5以下の低級アルコール)との混合媒体が挙げられる。
[Method for producing core particles by seed polymerization]
In the method for producing core particles by the seed polymerization method, first, seed particles are added to an aqueous emulsion composed of a vinyl monomer and an aqueous medium. Examples of the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, a lower alcohol having 5 or less carbon atoms).

水性媒体には、界面活性剤が含まれていることが好ましい。界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、及び両性イオン性界面活性剤のいずれをも用いることができる。 The aqueous medium preferably contains a surfactant. As the surfactant, any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a zwitterionic surfactant can be used.

上記アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ石鹸等の脂肪酸石鹸、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジ(2−エチルヘキシル)スルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。 Examples of the anionic surfactant include sodium oleate, fatty acid soap such as castor oil potassium soap, sodium lauryl sulfate, alkyl sulfate ester salt such as ammonium lauryl sulfate, alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate, alkyl Naphthalene sulfonate, alkane sulfonate, dialkyl sulfosuccinate such as sodium di(2-ethylhexyl) sulfosuccinate, alkernyl succinate (dipotassium salt), alkyl phosphate ester salt, naphthalene sulfonic acid formalin condensate, poly Examples thereof include polyoxyethylene alkyl phenyl ether sulfate, polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate.

上記カチオン性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。 Examples of the above-mentioned cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.

上記両性イオン性界面活性剤としては、ラウリルジメチルアミンオキサイドや、リン酸エステル系又は亜リン酸エステル系界面活性剤が挙げられる。上記界面活性剤は、単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤のうち、重合時の分散安定性の観点から、アニオン性界面活性剤が好ましい。 Examples of the zwitterionic surfactant include lauryl dimethylamine oxide and phosphoric acid ester-based or phosphorous acid ester-based surfactants. You may use the said surfactant individually or in combination of 2 or more types. Among the above surfactants, anionic surfactants are preferable from the viewpoint of dispersion stability during polymerization.

水性乳化液は、公知の方法により作製できる。例えば、ビニル系単量体を、水性媒体に添加し、ホモジナイザー、超音波処理機、ナノマイザー等の微細乳化機により分散させることで、水性乳化液を得ることができる。ビニル系単量体は、必要に応じて重合開始剤を含んでいてもよい。重合開始剤は、ビニル系単量体に予め混合させた後、水性媒体中に分散させてもよいし、両者を別々に水性媒体に分散させたものを混合してもよい。得られた水性乳化液中のビニル系単量体の液滴の粒子径は、種粒子よりも小さい方が、ビニル系単量体が種粒子に効率よく吸収されるので好ましい。 The aqueous emulsion can be prepared by a known method. For example, an aqueous emulsion can be obtained by adding a vinyl-based monomer to an aqueous medium and dispersing the vinyl-based monomer with a fine emulsifier such as a homogenizer, an ultrasonic treatment machine, and a nanomizer. The vinyl-based monomer may contain a polymerization initiator, if necessary. The polymerization initiator may be previously mixed with the vinyl-based monomer and then dispersed in the aqueous medium, or both may be separately dispersed and mixed in the aqueous medium. The particle diameter of the vinyl monomer droplets in the obtained aqueous emulsion is preferably smaller than that of the seed particles because the vinyl monomer is efficiently absorbed by the seed particles.

種粒子は、水性乳化液に直接添加してもよく、種粒子を水性分散媒体に分散させた形態で添加してもよい。種粒子の水性乳化液への添加後、種粒子へビニル系単量体を吸収させる。この吸収は、通常、種粒子添加後の水性乳化液を、室温(約20℃)で1〜12時間攪拌することで行うことができる。また、水性乳化液を30〜50℃程度に加温することにより吸収を促進してもよい。 The seed particles may be added directly to the aqueous emulsion, or may be added in a form in which the seed particles are dispersed in an aqueous dispersion medium. After adding the seed particles to the aqueous emulsion, the seed particles are allowed to absorb the vinyl-based monomer. This absorption can be usually performed by stirring the aqueous emulsion after the seed particles are added at room temperature (about 20° C.) for 1 to 12 hours. Further, absorption may be promoted by heating the aqueous emulsion to about 30 to 50°C.

種粒子は、ビニル系単量体を吸収することにより膨潤する。ビニル系単量体と種粒子との混合比率は、種粒子1重量部に対して、ビニル系単量体が5〜150重量部の範囲であることが好ましく、10〜120重量部の範囲であることがより好ましい。種粒子に対するビニル系単量体の混合比率が小さくなると、重合による粒子径の増加が小さくなることにより、生産性が低下することがある。種粒子に対するビニル系単量体の混合比率が大きくなると、ビニル系単量体が、完全に種粒子に吸収されず、水性媒体中で独自に懸濁重合し異常粒子を生成することがある。なお、吸収の終了は、光学顕微鏡の観察で粒子径の拡大を確認することにより判定できる。 The seed particles swell by absorbing the vinyl-based monomer. The mixing ratio of the vinyl monomer and the seed particles is preferably in the range of 5 to 150 parts by weight, and in the range of 10 to 120 parts by weight, with respect to 1 part by weight of the seed particles. More preferably. When the mixing ratio of the vinyl-based monomer to the seed particles becomes small, the increase in particle size due to polymerization becomes small, which may reduce the productivity. When the mixing ratio of the vinyl-based monomer to the seed particles becomes large, the vinyl-based monomer may not be completely absorbed by the seed particles and may be independently suspension-polymerized in an aqueous medium to generate abnormal particles. The end of absorption can be determined by observing the expansion of the particle size by observing with an optical microscope.

水性乳化液には、重合開始剤を必要に応じて添加することができる。重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド等の有機過酸化物、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビスシクロヘキサンカルボニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。重合開始剤は、ビニル系単量体100重量部に対して、0.1〜3重量部の範囲で使用することが好ましい。 A polymerization initiator can be added to the aqueous emulsion as needed. Examples of the polymerization initiator include benzoyl peroxide, lauroyl peroxide, orthochloroperoxybenzoyl, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexano. , Organic peroxides such as di-t-butyl peroxide, 2,2'-azobisisobutyronitrile, 1,1'-azobiscyclohexanecarbonitrile, 2,2'-azobis(2,4- Examples thereof include azo compounds such as dimethylvaleronitrile). The polymerization initiator is preferably used in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the vinyl-based monomer.

次に、種粒子に吸収させたビニル系単量体を重合させることで、コア粒子が得られる。重合温度は、ビニル系単量体、重合開始剤の種類に応じて、適宜選択する。重合温度は、25〜110℃の範囲であることが好ましく、50〜100℃の範囲であることがより好ましい。重合反応は、種粒子に単量体、重合開始剤が完全に吸収された後に、昇温して行うのが好ましい。重合完了後、必要に応じてコア粒子を遠心分離して水性媒体を除去し、水及び溶剤で洗浄した後、乾燥、単離する。 Next, the core particles are obtained by polymerizing the vinyl monomer absorbed by the seed particles. The polymerization temperature is appropriately selected according to the type of vinyl monomer and the polymerization initiator. The polymerization temperature is preferably in the range of 25 to 110°C, more preferably 50 to 100°C. The polymerization reaction is preferably carried out at a raised temperature after the seed particles have completely absorbed the monomer and the polymerization initiator. After completion of the polymerization, the core particles are centrifuged to remove the aqueous medium if necessary, washed with water and a solvent, dried and isolated.

上記重合工程において、コア粒子の分散安定性を向上させるために、高分子分散安定剤を添加してもよい。高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドン等を用いることができる。また、これらの高分子分散安定剤と、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物とを併用することもできる。これらのうち、ポリビニルアルコール、ポリビニルピロリドンが高分子分散安定剤として好ましい。高分子分散安定剤の添加量は、ビニル系単量体100重量部に対して1〜10重量部が好ましい。 In the above polymerization step, a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the core particles. As the polymer dispersion stabilizer, for example, polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, etc.), polyvinyl pyrrolidone, etc. can be used. Further, these polymer dispersion stabilizers may be used in combination with an inorganic water-soluble polymer compound such as sodium tripolyphosphate. Of these, polyvinyl alcohol and polyvinyl pyrrolidone are preferable as the polymer dispersion stabilizer. The addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl-based monomer.

また、水系での乳化粒子の発生を抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。 Further, in order to suppress the generation of emulsified particles in an aqueous system, a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid and polyphenols may be used. Good.

〔シェル〕
上記シェルは、導電性高分子からなる。上記導電性高分子は、ポリアニリン系重合体やポリイソチアナフテン系重合体等であってもよいが、より均一なシェルが形成されやすいこと、および所望の導電性を有する導電性樹脂粒子が得られることから、含窒素複素芳香族化合物及び含硫黄複素芳香族化合物からなる群より選ばれる少なくとも1種の単量体の重合体であることが好ましい。
〔shell〕
The shell is made of a conductive polymer. The conductive polymer may be a polyaniline-based polymer, a polyisothianaphthene-based polymer, or the like, but a more uniform shell is easily formed, and conductive resin particles having desired conductivity are obtained. Therefore, it is preferably a polymer of at least one monomer selected from the group consisting of nitrogen-containing heteroaromatic compounds and sulfur-containing heteroaromatic compounds.

上記含窒素複素芳香族化合物としては、ピロール、インドール、イミダゾール、ピリジン、ピリミジン、ピラジン、及びこれらのアルキル置換体(例えば、メチル基、エチル基、プロピル基、ブチル等の炭素数1〜4のアルキル基による置換体)、ハロゲン置換体(例えば、フルオロ基、クロロ基、ブロモ基等のハロゲン基による置換体)、ニトリル置換体といった誘導体が挙げられる。より均一なシェルが形成されやすいこと、および所望の導電性を有する導電性樹脂粒子が得られることから、ピロール及びピロールの誘導体の重合体が含窒素複素芳香族化合物として好ましい。ピロールの誘導体としては、3,4−ジメチルピロールが挙げられる。 Examples of the nitrogen-containing heteroaromatic compound include pyrrole, indole, imidazole, pyridine, pyrimidine, pyrazine, and alkyl-substituted products thereof (for example, alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, and butyl). Examples include derivatives such as a group-substituted product, a halogen-substituted product (for example, a fluoro-, chloro-, bromo-group-containing halogen group-substituted product), and a nitrile-substituted product. Polymers of pyrrole and derivatives of pyrrole are preferable as the nitrogen-containing heteroaromatic compound because a more uniform shell is easily formed and conductive resin particles having desired conductivity are obtained. Examples of the derivative of pyrrole include 3,4-dimethylpyrrole.

上記含硫黄芳香族化合物としては、所望の導電性を有する導電性樹脂粒子が得られることから、チオフェン及びチオフェンの誘導体が含窒素芳香族化合物として好ましい。チオフェンの誘導体としては、3,4−エチレンジオキシチオフェン、3−メチルチオフェン、3−オクチルチオフェン等が挙げられる。これらの単量体は、単独で使用して単独重合体とすることができ、あるいは2種類以上を併用して共重合体とすることもできる。 As the sulfur-containing aromatic compound, thiophene and a derivative of thiophene are preferable as the nitrogen-containing aromatic compound because conductive resin particles having desired conductivity can be obtained. Examples of the thiophene derivative include 3,4-ethylenedioxythiophene, 3-methylthiophene, and 3-octylthiophene. These monomers can be used alone to form a homopolymer, or can be used in combination of two or more kinds to form a copolymer.

上記シェルの厚さは、30〜300nmの範囲であることが好ましく、50〜200nmの範囲であることがより好ましい。上記シェルの厚さが上記範囲内であれば、十分な導電性が得ることが可能となる。上記シェルの厚さの振れは、50%以下であることが好ましく、40%以下であることがより好ましい。 The thickness of the shell is preferably in the range of 30 to 300 nm, more preferably 50 to 200 nm. When the thickness of the shell is within the above range, sufficient conductivity can be obtained. The fluctuation in the thickness of the shell is preferably 50% or less, and more preferably 40% or less.

〔シェルの形成方法〕
上記導電性樹脂粒子は、そのシェルを構成する導電性高分子が、含窒素複素芳香族化合物及び含硫黄複素芳香族化合物からなる群より選ばれる少なくとも1種の単量体(以下、単に「単量体」と称する)の重合体である場合、上記コア粒子に上記単量体の重合体を被覆する方法により製造できる。上記コア粒子に上記単量体の重合体を被覆する方法としては、酸化剤を含む水性媒体中に上記コア粒子を分散させて分散液(乳化液または懸濁液)とし、該分散液に単量体を添加し攪拌して、酸化重合により上記コア粒子の表面に上記単量体の重合体を被覆させる方法が好ましい。
[Method of forming shell]
In the conductive resin particles, the conductive polymer forming the shell has at least one monomer selected from the group consisting of a nitrogen-containing heteroaromatic compound and a sulfur-containing heteroaromatic compound (hereinafter, simply referred to as "monomer"). In the case of a polymer of “monomer”), it can be produced by a method of coating the above-mentioned core particles with a polymer of the above-mentioned monomer. As a method for coating the core particles with the polymer of the monomer, the core particles are dispersed in an aqueous medium containing an oxidizing agent to prepare a dispersion liquid (emulsion or suspension), and the dispersion liquid is simply added. A method is preferred in which the monomer is added and stirred, and the surface of the core particle is coated with the polymer of the monomer by oxidative polymerization.

上記単量体の添加量は、所望の導電性に応じて設定すればよく、コア粒子100重量部に対し、1〜30重量部の範囲であることが好ましく、3〜20重量部であることがより好ましい。上記単量体の添加量をコア粒子100重量部に対して1重量部以上にすること、コア粒子の表面全体が均一に上記単量体の重合体で被覆され、所望の導電性を得ることが可能となる。一方、単量体の添加量をコア粒子100重量部に対して30重量部以下にすることで、添加した単量体が単独で重合し、目的とする導電性樹脂粒子以外のものができてしまうことを防止できる。 The amount of the above-mentioned monomer added may be set according to the desired conductivity, and is preferably in the range of 1 to 30 parts by weight, and preferably 3 to 20 parts by weight, relative to 100 parts by weight of the core particles. Is more preferable. The amount of the above-mentioned monomer added is 1 part by weight or more with respect to 100 parts by weight of the core particle, and the entire surface of the core particle is uniformly coated with a polymer of the above-mentioned monomer to obtain desired conductivity. Is possible. On the other hand, by setting the addition amount of the monomer to 30 parts by weight or less with respect to 100 parts by weight of the core particles, the added monomer is polymerized by itself, so that particles other than the target conductive resin particles can be obtained. It is possible to prevent it.

(1)酸化剤
上記酸化剤としては、塩酸、硫酸、クロロスルホン酸のような無機酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸のような有機酸、塩化第二鉄、塩化アルミニウムのような金属ハロゲン化物、過塩素酸カリウムのようなハロゲン酸、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素のような過酸化物等が挙げられる。これらは単独または混合して使用してもよい。酸化剤としては、無機過酸のアルカリ金属塩が好ましい。無機過酸のアルカリ金属塩としては、具体的には、過硫酸カリウム、過硫酸ナトリウム等が挙げられる。
(1) Oxidizing agent Examples of the oxidizing agent include inorganic acids such as hydrochloric acid, sulfuric acid and chlorosulfonic acid, organic acids such as alkylbenzenesulfonic acid and alkylnaphthalenesulfonic acid, and metal halogens such as ferric chloride and aluminum chloride. Compounds, halogen acids such as potassium perchlorate, potassium persulfate, ammonium persulfate, sodium persulfate, and peroxides such as hydrogen peroxide. You may use these individually or in mixture. The oxidizing agent is preferably an alkali metal salt of inorganic peracid. Specific examples of the alkali metal salt of inorganic peracid include potassium persulfate and sodium persulfate.

上記酸化剤の使用量は、単量体全量に対して0.5〜2.0モル当量であることが好ましい。酸化剤の使用量を単量体全量に対して0.5モル当量以上にすることで、コア粒子の表面全体が均一に単量体の重合体を含むシェルで被覆され、所望の導電性を得ることが可能となる。一方、酸化剤の使用量を単量体全量に対して2.0モル当量以下にすることで、添加した単量体が単独で重合し、目的とする導電性樹脂粒子以外のものができてしまうことを防止できる。 The amount of the oxidizing agent used is preferably 0.5 to 2.0 molar equivalents based on the total amount of the monomers. By setting the amount of the oxidant to be 0.5 molar equivalent or more based on the total amount of the monomer, the entire surface of the core particle is uniformly covered with the shell containing the polymer of the monomer, and the desired conductivity is obtained. It becomes possible to obtain. On the other hand, when the amount of the oxidizing agent used is 2.0 molar equivalents or less based on the total amount of the monomers, the added monomer is polymerized alone, and particles other than the target conductive resin particles can be produced. It is possible to prevent it.

上記酸化剤が添加される水性媒体は、単量体を溶解又は分散できるものであれば特に限定されるものではないが、水又は、水と、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール等のアルコール類;ジエチルエーテル、イソプロピルエ一テル、ブチルエーテル、メチルセロソルブ、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン等のケトン類との混合媒体が挙げられる。 The aqueous medium to which the above-mentioned oxidizing agent is added is not particularly limited as long as it can dissolve or disperse the monomer, but water or water and methanol, ethanol, n-propanol, isopropanol, n- Examples thereof include alcohols such as butanol and t-butanol; ethers such as diethyl ether, isopropyl ether, butyl ether, methyl cellosolve, and tetrahydrofuran; and mixed media with ketones such as acetone, methyl ethyl ketone, and diethyl ketone.

(2)水性媒体
上記酸化剤が添加された水性媒体は、3以上のpHを有することが好ましい。pHが3以上であれば、コア粒子の表面全体が均一に単量体の重合体を含むシェルで覆われ、所望の導電性を得ることが可能となる。安定に被覆するには、pHを3〜10の範囲に調整することがより好ましい。
(2) Aqueous medium The aqueous medium to which the oxidizing agent is added preferably has a pH of 3 or more. When the pH is 3 or more, the entire surface of the core particle is uniformly covered with the shell containing the polymer of the monomer, and the desired conductivity can be obtained. For stable coating, it is more preferable to adjust the pH within the range of 3 to 10.

(3)界面活性剤
上記水性媒体には、界面活性剤を添加してもよい。界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤をいずれも使用できる。
(3) Surfactant A surfactant may be added to the aqueous medium. As the surfactant, any of an anionic surfactant, a cationic surfactant, a zwitterionic surfactant and a nonionic surfactant can be used.

上記アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ石鹸等の脂肪酸石鹸、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。 Examples of the anionic surfactant include sodium oleate, fatty acid soap such as castor oil potassium soap, sodium lauryl sulfate, alkyl sulfate ester salt such as ammonium lauryl sulfate, alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate, alkyl Sulfonate, alkyl naphthalene sulfonate, alkane sulfonate, dialkyl sulfosuccinate, alkyl phosphate ester salt, naphthalene sulfonate formalin condensate, polyoxyethylene alkyl phenyl ether sulfate ester salt, polyoxyethylene alkyl sulfate ester salt Etc.

上記ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン−オキシプロピレンブロックポリマー等が挙げられる。 Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, An oxyethylene-oxypropylene block polymer etc. are mentioned.

上記カチオン性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。 Examples of the above-mentioned cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.

上記両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイド、リン酸エステル系又は亜リン酸エステル系界面活性剤等が挙げられる。上記界面活性剤は、単独で又は2種以上を組み合わせて用いてもよい。界面活性剤の添加量は、水性媒体100重量部に対して0.0001〜1重量部の範囲であることが好ましい。 Examples of the zwitterionic surfactants include lauryl dimethylamine oxide, phosphoric acid ester-based or phosphorous acid ester-based surfactants, and the like. You may use the said surfactant individually or in combination of 2 or more types. The amount of the surfactant added is preferably in the range of 0.0001 to 1 part by weight with respect to 100 parts by weight of the aqueous medium.

また、上記水性媒体には、界面活性剤以外に高分子分散安定剤が添加されてもよい。高分子分散安定剤としては、例えば、ポリアクリル酸、その共重合体及びこれらの中和物ならびにポリメタクリル酸、その共重合体及びこれらの中和物、ポリビニルピロリドン、ヒドロキシプロピルセルロース(HPC)等が挙げられる。高分子分散安定剤は、上述の界面活性剤と併用してもよい。 In addition to the surfactant, a polymer dispersion stabilizer may be added to the aqueous medium. Examples of the polymer dispersion stabilizer include polyacrylic acid, copolymers thereof and neutralized products thereof, and polymethacrylic acid, copolymers thereof and neutralized products thereof, polyvinylpyrrolidone, hydroxypropyl cellulose (HPC) and the like. Are listed. The polymer dispersion stabilizer may be used in combination with the above-mentioned surfactant.

(4)酸化重合
上述した酸化重合を用いた導電性樹脂粒子の製造方法では、酸化剤を含む水性媒体中に上記コア粒子を分散させて分散液とし、該分散液に単量体を添加し、攪拌して酸化重合することにより、コア粒子が上記単量体の重合体で被覆された導電性樹脂粒子を得る。酸化重合の温度は−20〜40℃の範囲であることが好ましく、酸化重合の時間は、0.5〜10時間の範囲であることが好ましい。
(4) Oxidative Polymerization In the method for producing conductive resin particles using oxidative polymerization described above, the core particles are dispersed in an aqueous medium containing an oxidizing agent to prepare a dispersion liquid, and a monomer is added to the dispersion liquid. By conducting oxidative polymerization with stirring, conductive resin particles in which the core particles are coated with a polymer of the above-mentioned monomer are obtained. The temperature of oxidative polymerization is preferably in the range of −20 to 40° C., and the time of oxidative polymerization is preferably in the range of 0.5 to 10 hours.

なお、導電性樹脂粒子が分散された乳化液は、必要に応じて遠心分離して水性媒体を除去し、水及び溶剤で洗浄した後、乾燥、単離する。 The emulsion in which the conductive resin particles are dispersed is optionally centrifuged to remove the aqueous medium, washed with water and a solvent, dried, and isolated.

以上の説明では、コア粒子に重合体を被覆させる方法として、コア粒子と酸化剤を含む水性媒体中で単量体と混合して単量体を酸化重合させる方法を説明したが、コア粒子に重合体を被覆させる方法はこの方法に限定されない。例えば、重合体を乾式の方法を用いてコア粒子に被覆する方法も採用され得る。上記乾式の方法としては、例えば、ボールミルを用いる方法、V型混合機を用いる方法、高速流動乾燥機を用いる方法、ハイブリダイザーを用いる方法、メカノフュージョン法などを用いることができる。 In the above description, as a method of coating the core particle with the polymer, a method of mixing the monomer in an aqueous medium containing the core particle and an oxidizing agent to oxidize and polymerize the monomer has been described. The method of coating the polymer is not limited to this method. For example, a method of coating a core particle with a polymer using a dry method can also be adopted. Examples of the dry method include a method using a ball mill, a method using a V-type mixer, a method using a high-speed fluidized dryer, a method using a hybridizer, and a mechanofusion method.

〔導電性樹脂粒子の用途〕
本発明の導電性樹脂粒子は、導電性樹脂粒子同士を密着させて導電性を発現することを目的とした用途において好適に使用することができる。本発明の導電性樹脂粒子は、電子回路基板等における電気接続のための導電性ペースト(バインダー樹脂中に導電性粒子が分散されているもの)、塗布及び乾燥されたときに電子回路基板等における電気接続のための導電性膜を形成できる導電性インク(バインダー樹脂を溶剤に溶解させた溶液中に導電性粒子が分散されているもの)、転写ローラ等に利用される導電性ローラの導電性弾性体層(弾性体中に導電性粒子が分散されているもの)、アンチブロッキング剤等に使用される導電性粒子として使用できる。
[Uses of conductive resin particles]
The conductive resin particles of the present invention can be preferably used in applications where the conductive resin particles are brought into close contact with each other to develop conductivity. The conductive resin particle of the present invention is a conductive paste for electrical connection in an electronic circuit board or the like (having conductive particles dispersed in a binder resin), or in an electronic circuit board or the like when applied and dried. Conductive ink capable of forming a conductive film for electrical connection (conductive particles are dispersed in a solution of a binder resin dissolved in a solvent), conductivity of a conductive roller used for a transfer roller, etc. It can be used as an electroconductive particle used in an elastic layer (in which electroconductive particles are dispersed in an elastic body), an anti-blocking agent, or the like.

〔導電性樹脂組成物〕
本発明の導電性樹脂組成物は、本発明の導電性樹脂粒子とマトリックス樹脂とを含んでいる。本発明の導電性樹脂組成物は、本発明の導電性樹脂粒子をマトリックス樹脂に混合することで製造できる。
[Conductive resin composition]
The conductive resin composition of the present invention contains the conductive resin particles of the present invention and a matrix resin. The conductive resin composition of the present invention can be produced by mixing the conductive resin particles of the present invention with a matrix resin.

前記マトリックス樹脂としては、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド6、ポリアミド66、ポリアミド12、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合樹脂)、AS樹脂(アクリロニトリル−スチレン共重合樹脂)、ポリエチレン、ポリプロピレン、ポリアセタール、ポリアミドイミド、ポリエーテルスルホン、ポリイミド、ポリフェニレンオキサイド、ポリフェニレンスルサルファイド、ポリスチレン、熱可塑性ポリウレタンエラストマー、熱可塑性ポリエステルエラストマー、熱可塑性ポリアミドエラストマー、ポリ塩化ビニル、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン共重合体(ETFE樹脂)、テトラフルオロエチレンパーフルオロアルキルビニルエーテルコポリマー(PFA樹脂)、ポリエーテルケトンなどの熱可塑性樹脂の1種又は2種以上の混合物を用いることができる。前記マトリックス樹脂として用いる熱可塑性樹脂の種類は、目的とする導電性樹脂組成物の特性(機械強度、耐摩耗性、耐化学薬品性、耐熱性、導電性樹脂組成物を成形して成形品を製造する際の成形性等)に応じて適宜選択される。 Examples of the matrix resin include polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyamide 6, polyamide 66, polyamide 12, ABS resin (acrylonitrile-butadiene-styrene copolymer resin), AS resin (acrylonitrile-styrene copolymer resin), polyethylene, Polypropylene, polyacetal, polyamideimide, polyethersulfone, polyimide, polyphenylene oxide, polyphenylene sulfide, polystyrene, thermoplastic polyurethane elastomer, thermoplastic polyester elastomer, thermoplastic polyamide elastomer, polyvinyl chloride, polyvinylidene fluoride, ethylene tetrafluoroethylene One or a mixture of two or more thermoplastic resins such as a polymer (ETFE resin), a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA resin) and a polyether ketone can be used. The type of thermoplastic resin used as the matrix resin is the characteristics of the target conductive resin composition (mechanical strength, abrasion resistance, chemical resistance, heat resistance, and molding of a conductive resin composition to form a molded article). It is appropriately selected depending on the formability during production).

前記導電性樹脂粒子は、前記マトリックス樹脂100重量部に対し、1〜200重量部添加されることが好ましい。 The conductive resin particles are preferably added in an amount of 1 to 200 parts by weight with respect to 100 parts by weight of the matrix resin.

前記導電性樹脂組成物には、目的とする成形品に求められる機能に応じて、その他機能性フィラーを適宜添加してもよい。前記機能性フィラーとしては、ガラス繊維や炭素繊維などの強化繊維、難燃剤、艶消し剤、熱安定剤、光安定剤、着色剤、滑剤などを挙げることができる。 Other functional fillers may be appropriately added to the conductive resin composition depending on the function required for the intended molded product. Examples of the functional fillers include reinforcing fibers such as glass fibers and carbon fibers, flame retardants, matting agents, heat stabilizers, light stabilizers, colorants, lubricants and the like.

本発明の導電性樹脂組成物は、前記マトリックス樹脂、導電性樹脂粒子、及びその他適宜含まれる機能性フィラーを、混合(混練)してホットプレスにより所要形状に成形することにより、成形品とすることができる。あるいは、本発明の導電性樹脂組成物は、前記マトリックス樹脂、導電性樹脂粒子、及びその他適宜含まれる機能性フィラーを、適宜加熱状態で混合(混練)し、ペレットに成形した後、そのペレットを用いて、押出成形や射出成形等によって成形品とすることができる。これらにより、導電性及び帯電防止性に優れた成形品を得ることができる。 The conductive resin composition of the present invention is formed into a molded product by mixing (kneading) the matrix resin, the conductive resin particles, and other functional fillers appropriately contained therein and molding the mixture into a desired shape by hot pressing. be able to. Alternatively, the conductive resin composition of the present invention, the matrix resin, the conductive resin particles, and the other appropriately contained functional filler is mixed (kneading) in an appropriately heated state, after molding into pellets, the pellets It can be used as a molded product by extrusion molding, injection molding, or the like. As a result, a molded product having excellent conductivity and antistatic properties can be obtained.

〔コーティング剤〕
本発明のコーティング剤は、本発明の導電性樹脂粒子とバインダー樹脂とを含んでいる。
〔Coating agent〕
The coating agent of the present invention contains the conductive resin particles of the present invention and a binder resin.

上記バインダー樹脂としては、透明性、導電性樹脂粒子の分散性、耐光性、耐湿性、及び耐熱性等の要求される特性に応じて、当該分野において使用されるものであれば、特に限定されるものではない。上記バインダー樹脂としては、例えば、(メタ)アクリル系樹脂;(メタ)アクリル−ウレタン系樹脂;ウレタン系樹脂;ポリ塩化ビニル系樹脂;ポリ塩化ビニリデン系樹脂;メラミン系樹脂;スチレン系樹脂;アルキド系樹脂;フェノール系樹脂;エポキシ系樹脂;ポリエステル系樹脂;アルキルポリシロキサン系樹脂等のシリコーン系樹脂;(メタ)アクリル−シリコーン系樹脂、シリコーン−アルキド系樹脂、シリコーン−ウレタン系樹脂、シリコーン−ポリエステル樹脂等の変性シリコーン樹脂;ポリフッ化ビニリデン、フルオロオレフィンビニルエーテルポリマー等のフッ素系樹脂等が挙げられる。 The binder resin is not particularly limited as long as it is used in the relevant field, depending on the required properties such as transparency, dispersibility of conductive resin particles, light resistance, moisture resistance, and heat resistance. Not something. Examples of the binder resin include (meth)acrylic resin; (meth)acrylic-urethane resin; urethane resin; polyvinyl chloride resin; polyvinylidene chloride resin; melamine resin; styrene resin; alkyd resin. Resin; Phenolic resin; Epoxy resin; Polyester resin; Silicone resin such as alkylpolysiloxane resin; (Meth)acrylic-silicone resin, silicone-alkyd resin, silicone-urethane resin, silicone-polyester resin Examples of the modified silicone resin include fluorine-based resins such as polyvinylidene fluoride and fluoroolefin vinyl ether polymer.

上記バインダー樹脂は、コーティング剤の耐久性を向上させる観点から、架橋反応により架橋構造を形成できる硬化性樹脂であることが好ましい。上記硬化性樹脂は、種々の硬化条件で硬化させることができる。上記硬化性樹脂は、硬化のタイプにより、紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂、熱硬化性樹脂、温気硬化性樹脂等に分類される。 From the viewpoint of improving the durability of the coating agent, the binder resin is preferably a curable resin capable of forming a crosslinked structure by a crosslinking reaction. The curable resin can be cured under various curing conditions. The curable resin is classified into an ultraviolet curable resin, an ionizing radiation curable resin such as an electron beam curable resin, a thermosetting resin, and a warm air curable resin depending on the type of curing.

上記熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化型ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。 Examples of the thermosetting resin include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin and the like.

上記電離放射線硬化性樹脂としては、多価アルコール多官能(メタ)アクリレート等のような多官能(メタ)アクリレート樹脂;ジイソシアネート、多価アルコール、及びヒドロキシ基を有する(メタ)アクリル酸エステル等から合成されるような多官能ウレタンアクリレート樹脂等が挙げられる。上記電離放射線硬化性樹脂としては、多官能(メタ)アクリレート樹脂が好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレートがより好ましい。1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレートとしては、具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサアクリレート等が挙げられる。上記電離放射線硬化性樹脂は、二種類以上を併用してもよい。 The ionizing radiation curable resin is synthesized from a polyfunctional alcohol (poly(meth)acrylate resin such as polyhydric alcohol polyfunctional (meth)acrylate); a diisocyanate, a polyhydric alcohol, and a (meth)acrylic acid ester having a hydroxy group. Examples of such polyfunctional urethane acrylate resins include: As the ionizing radiation curable resin, a polyfunctional (meth)acrylate resin is preferable, and a polyhydric alcohol polyfunctional (meth)acrylate having 3 or more (meth)acryloyl groups in one molecule is more preferable. Specific examples of the polyhydric alcohol polyfunctional (meth)acrylate having three or more (meth)acryloyl groups in one molecule include trimethylolpropane tri(meth)acrylate, trimethylolethanetri(meth)acrylate, 1,2,4-Cyclohexane tetra(meth)acrylate, pentaglycerol triacrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetra (Meth)acrylate, dipentaerythritol hexa(meth)acrylate, tripentaerythritol triacrylate, tripentaerythritol hexaacrylate and the like can be mentioned. Two or more types of the above ionizing radiation curable resins may be used in combination.

上記電離放射線硬化性樹脂としては、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も使用できる。 Other than these, as the ionizing radiation curable resin, polyether resins, polyester resins, epoxy resins, alkyd resins, spiro acetal resins, polybutadiene resins, polythiol polyene resins and the like having acrylate-based functional groups can also be used.

上記電離放射線硬化性樹脂のうち紫外線硬化性樹脂を用いる場合、紫外線硬化性樹脂に光重合開始剤を加えてバインダー樹脂とする。上記光重合開始剤は、どのようなものを用いてもよいが、用いる紫外線硬化性樹脂にあったものを用いることが好ましい。 When an ultraviolet curable resin is used among the above ionizing radiation curable resins, a photopolymerization initiator is added to the ultraviolet curable resin to form a binder resin. Any photopolymerization initiator may be used, but it is preferable to use one that is suitable for the ultraviolet curable resin used.

上記光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、α−ヒドロキシアルキルフェノン類、α−アミノアルキルフェノン、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001−139663号公報等に記載)、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、オニウム塩類、ボレート塩、活性ハロゲン化合物、α−アシルオキシムエステル等が挙げられる。 As the photopolymerization initiator, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, α-hydroxyalkylphenones, α-aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, peroxides (Described in JP 2001-139663 A), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, α-acyl oximes. Examples thereof include esters.

上記アセトフェノン類としては、例えば、アセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン等が挙げられる。上記ベンゾイン類としては、例えば、ベンゾイン、ベンゾインベンゾエート、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。上記ベンゾフェノン類としては、例えば、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン、p−クロロベンゾフェノン等が挙げられる。上記ホスフィンオキシド類としては、例えば、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド等が挙げられる。上記ケタール類としては、例えば、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン等のベンジルメチルケタール類が挙げられる。上記α−ヒドロキシアルキルフェノン類としては、例えば、1−ヒドロキシシクロヘキシルフェニルケトンが挙げられる。上記α−アミノアルキルフェノン類としては、例えば、2−メチル−1−[4−(メチルチオ)フェニル]−2−(4−モルホリニル)−1−プロパノンが挙げられる。 Examples of the acetophenones include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenylketone, 1-hydroxycyclohexylphenylketone, 2-methyl-4-methylthio-2-morpholinopropio. Examples include phenone and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone. Examples of the benzoins include benzoin, benzoin benzoate, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and the like. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone, p-chlorobenzophenone and the like. Examples of the phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide. Examples of the ketals include benzylmethyl ketals such as 2,2-dimethoxy-1,2-diphenylethan-1-one. Examples of the α-hydroxyalkylphenones include 1-hydroxycyclohexyl phenyl ketone. Examples of the α-aminoalkylphenones include 2-methyl-1-[4-(methylthio)phenyl]-2-(4-morpholinyl)-1-propanone.

市販の光ラジカル重合開始剤としては、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)651」(2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン)、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)184」、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)907」(2−メチル−1−[4−(メチルチオ)フェニル]−2−(4−モルホリニル)−1−プロパノン)等が好ましい例として挙げられる。 As a commercially available photo-radical polymerization initiator, a trade name "IRGACURE (registered trademark) 651" (2,2-dimethoxy-1,2-diphenylethane-1-one) manufactured by BASF Japan Ltd., manufactured by BASF Japan Ltd. Trade name "IRGACURE (registered trademark) 184", manufactured by BASF Japan Ltd. "IRGACURE (registered trademark) 907" (2-methyl-1-[4-(methylthio)phenyl]-2-(4-morpholinyl )-1-Propanone) etc. are mentioned as a preferable example.

上記光重合開始剤の使用量は、バインダー樹脂100重量%に対し、通常、0.5〜20重量%の範囲内であり、好ましくは1〜5重量%の範囲内である。 The amount of the photopolymerization initiator used is usually within the range of 0.5 to 20% by weight, and preferably within the range of 1 to 5% by weight, based on 100% by weight of the binder resin.

上記バインダー樹脂として、上記硬化性樹脂以外に、熱可塑性樹脂を用いることができる。上記熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニルの単独重合体及び共重合体、塩化ビニルの単独重合体及び共重合体、塩化ビニリデンの単独重合体及び共重合体等のビニル系樹脂;ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂;アクリル酸エステルの単独重合体及び共重合体、メタクリル酸エステルの単独重合体及び共重合体等の(メタ)アクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;ポリカーボネート樹脂等が挙げられる。 As the binder resin, a thermoplastic resin can be used in addition to the curable resin. Examples of the thermoplastic resin include cellulose derivatives such as acetyl cellulose, nitrocellulose, acetyl butyl cellulose, ethyl cellulose, and methyl cellulose; vinyl acetate homopolymers and copolymers, vinyl chloride homopolymers and copolymers, and vinylidene chloride. Vinyl-based resins such as homopolymers and copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; homopolymers and copolymers of acrylic acid esters, homopolymers and copolymers of methacrylic acid esters (meth ) Acrylic resins; polystyrene resins; polyamide resins; linear polyester resins; polycarbonate resins and the like.

上記コーティング剤は、水及び/又は有機溶剤をさらに含んでいてもよい。上記コーティング剤を基材フィルムに塗工する場合、上記有機溶剤は、それをコーティング剤に含有させることによって、基材フィルムへのコーティング剤の塗工が容易になるものであれば、特に限定されるものではない。上記有機溶剤としては、例えば、トルエン、キシレン等の芳香族系溶媒;メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル等のグリコールエーテル類;2−メトキシエチルアセタート、酢酸2−エトキシエチルアセタート(セロソルブアセタート)、2−ブトキシエチルアセタート、プロピレングリコールメチルエーテルアセタート等のグリコールエーテルエステル類;クロロホルム、ジクロロメタン、トリクロロメタン、塩化メチレン等の塩素系溶媒;テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,3−ジオキソラン等のエーテル系溶媒;N−メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド等のアミド系溶媒等を用いることができる。これら有機溶剤は、1種を用いてもよく、2種以上を混合して用いてもよい。 The coating agent may further contain water and/or an organic solvent. When applying the coating agent to the substrate film, the organic solvent is not particularly limited as long as it makes it easy to apply the coating agent to the substrate film by including it in the coating agent. Not something. Examples of the organic solvent include aromatic solvents such as toluene and xylene; alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and propylene glycol monomethyl ether; Ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether, ethylene Glycol ethers such as glycol diethyl ether, diethylene glycol dimethyl ether, and propylene glycol methyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate (cellosolve acetate), 2-butoxyethyl acetate, propylene glycol methyl ether acetate And other glycol ether esters; chlorine-based solvents such as chloroform, dichloromethane, trichloromethane, methylene chloride; ether-based solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, 1,3-dioxolane; N-methylpyrrolidone, dimethyl An amide solvent such as formamide, dimethylsulfoxide, dimethylacetamide or the like can be used. These organic solvents may be used alone or in combination of two or more.

〔フィルム〕
本発明のフィルムは、本発明の導電性樹脂粒子を含んでいる。本発明のフィルムは、例えば、導電性樹脂粒子とバインダー樹脂とを含むコーティング剤を基材フィルム上に塗工してなる構成である。この構成のフィルムは、導電性フィルム又は帯電防止フィルムとして好適に使用できる。
〔the film〕
The film of the present invention contains the conductive resin particles of the present invention. The film of the present invention has, for example, a structure obtained by applying a coating agent containing conductive resin particles and a binder resin onto a base film. The film having this structure can be suitably used as a conductive film or an antistatic film.

上記基材フィルムは、透明であることが好ましい。透明の基材フィルムとしては、例えば、ポリエチレンテレフタレート(以下、「PET」と略記する)、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー等のポリマーからなるフィルムが挙げられる。また、透明の基材フィルムとして、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー等のポリマーからなるフィルムも挙げられる。さらに、透明の基材フィルムとして、イミド系ポリマー、サルホン系ポリマー、ポリエーテルサルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニルスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや上記ポリマーのブレンド物等のポリマーからなるフィルム等も挙げられる。上記基材フィルムとして、特に複屈折率の少ないものが好適に用いられる。また、これらポリマーからなるフィルムにさらに易接着層を設けたフィルムも上記基材フィルムとして用いることができる。上記易接着層は、(メタ)アクリル系樹脂、共重合ポリエステル系樹脂、ポリウレタン系樹脂、スチレン−マレイン酸グラフトポリエステル樹脂、アクリルグラフトポリエステル樹脂等の樹脂で形成することができる。なお、本明細書において、「(メタ)アクリル」は、アクリル又はメタクリルを意味するものとする。 The base film is preferably transparent. Examples of the transparent substrate film include polyester-based polymers such as polyethylene terephthalate (hereinafter abbreviated as “PET”) and polyethylene naphthalate, cellulose-based polymers such as diacetyl cellulose and triacetyl cellulose (TAC), and polycarbonate-based polymers. , A film made of a polymer such as an acrylic polymer such as polymethylmethacrylate. Further, as the transparent substrate film, polystyrene, styrene-based polymers such as acrylonitrile-styrene copolymer, polyethylene, polypropylene, polyolefin having a cyclic or norbornene structure, olefin-based polymer such as ethylene-propylene copolymer, vinyl chloride-based A film made of a polymer or a polymer such as an amide polymer such as nylon or aromatic polyamide can also be used. Further, as a transparent substrate film, an imide polymer, a sulfone polymer, a polyether sulfone polymer, a polyether ether ketone polymer, a polyphenyl sulfide polymer, a vinyl alcohol polymer, a vinylidene chloride polymer, a vinyl butyral polymer. A film made of a polymer, an arylate-based polymer, a polyoxymethylene-based polymer, an epoxy-based polymer, or a polymer such as a blend of the above polymers can also be used. As the above-mentioned substrate film, one having a particularly small birefringence is preferably used. Further, a film obtained by further providing an easy-adhesion layer on a film made of these polymers can also be used as the base film. The easy-adhesion layer can be formed of a resin such as a (meth)acrylic resin, a copolyester resin, a polyurethane resin, a styrene-maleic acid graft polyester resin, or an acrylic graft polyester resin. In addition, in this specification, "(meth)acryl" shall mean acryl or methacryl.

上記基材フィルムの厚さは、適宜に決定しうるが、一般には、強度や取り扱い等の作業性、薄層性等の点より、10〜500μmの範囲内であり、20〜300μmの範囲内であることが好ましく、30〜200μmの範囲内であることがより好ましい。 The thickness of the base film can be appropriately determined, but generally, from the viewpoint of strength, workability such as handling, and thin layer property, it is within a range of 10 to 500 μm and within a range of 20 to 300 μm. Is preferable, and more preferably within the range of 30 to 200 μm.

また、上記基材フィルムには、添加剤を加えてもよい。上記添加剤としては、例えば、紫外線吸収剤、赤外線吸収剤、帯電防止剤、屈折率調整剤、増強剤等が挙げられる。 Moreover, you may add an additive to the said base film. Examples of the additive include an ultraviolet absorber, an infrared absorber, an antistatic agent, a refractive index adjusting agent, and an enhancer.

上記コーティング剤を基材フィルム上に塗工する方法としては、バーコーティング、ブレードコーティング、スピンコーティング、リバースコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、ディッピング法等の公知の塗工方法が挙げられる。 The method for applying the above coating agent on the base film includes bar coating, blade coating, spin coating, reverse coating, die coating, spray coating, roll coating, gravure coating, micro gravure coating, lip coating and air knife coating. A known coating method such as a dipping method may be used.

上記コーティング剤に含まれるバインダー樹脂が電離放射線硬化性樹脂である場合、上記コーティング剤の塗工後に、必要に応じ溶剤を乾燥させ、さらに活性エネルギー線を照射することにより電離放射線硬化性樹脂を硬化させればよい。 When the binder resin contained in the coating agent is an ionizing radiation curable resin, after coating the coating agent, the solvent is dried as necessary, and the ionizing radiation curable resin is cured by irradiating with active energy rays. You can do it.

上記活性エネルギー線としては、例えば、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプ等の光源から発せられる紫外線;通常20〜2000KeVのコックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の電子線加速器から取り出される電子線、α線、β線、γ線等を用いることができる。 Examples of the active energy rays include ultraviolet rays emitted from a light source such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and a tungsten lamp; Type, resonance transformer type, insulating core transformer type, linear type, dynamitron type, high frequency type electron beam accelerators, α rays, β rays, γ rays and the like can be used.

上記コーティング剤の塗工(及び硬化)によって形成される、バインダー樹脂中に導電性樹脂粒子が分散された層(防眩層)の厚みは、特に限定されず、導電性樹脂粒子の粒子径により適宜決定されるが、1〜10μmの範囲内であることが好ましく、3〜7μmの範囲内であることがより好ましい。 The thickness of the layer in which the conductive resin particles are dispersed in the binder resin (antiglare layer) formed by coating (and curing) the above coating agent is not particularly limited, and depends on the particle diameter of the conductive resin particles. Although appropriately determined, it is preferably in the range of 1 to 10 μm, more preferably in the range of 3 to 7 μm.

なお、本発明のフィルムは、上述した構成に限定されるものではなく、導電性樹脂粒子とバインダー樹脂とを含むコーティング剤と同様の成形用樹脂組成物をフィルム形状に成形したものであってもよい。この構成のフィルムは、導電性フィルム又は帯電防止フィルムとして好適に使用できる。 The film of the present invention is not limited to the above-mentioned constitution, and may be a film-shaped product of the same molding resin composition as a coating agent containing conductive resin particles and a binder resin. Good. The film having this structure can be suitably used as a conductive film or an antistatic film.

〔ギャップ材〕
本発明のギャップ材は、本発明の導電性樹脂粒子を含んでいる。本発明のギャップ材は、液晶表示素子用面内スペーサー、液晶表示素子用シール部スペーサー、EL(エレクトロルミネッセンス)表示素子用スペーサー、タッチパネル用スペーサー、セラミックやプラスチック等の各種基板間の隙間を均一に保持し得る隙間保持材等の隙間距離保持用スペーサーとして用いられる。本発明のギャップ材は、良好な導電率を有する本発明の導電性樹脂粒子を含むため、導電性を有し、帯電防止機能を発揮する。
[Gap material]
The gap material of the present invention contains the conductive resin particles of the present invention. The gap material of the present invention can evenly disperse in-plane spacers for liquid crystal display devices, seal spacers for liquid crystal display devices, EL (electroluminescence) display device spacers, touch panel spacers, and gaps between various substrates such as ceramics and plastics. It is used as a spacer for holding a gap distance such as a gap holding material that can be held. Since the gap material of the present invention contains the conductive resin particles of the present invention having good conductivity, it has conductivity and exhibits an antistatic function.

本発明のギャップ材は、均一なギャップ効果を得る場合には、前記導電性樹脂粒子の体積基準の粒子径の変動係数が、20%以下であることが好ましく、10%未満であることがより好ましい。 In the gap material of the present invention, when a uniform gap effect is obtained, the coefficient of variation of the volume-based particle diameter of the conductive resin particles is preferably 20% or less, and more preferably less than 10%. preferable.

以下、実施例及び比較例により本発明を説明するが、本発明はこれに限定されるものではない。まず、以下の実施例及び比較例における導電性樹脂粒子の体積平均粒子径、体積基準の粒子径の変動係数、10%圧縮強度、及び導電率の測定方法を説明する。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. First, a method for measuring the volume average particle diameter, the coefficient of variation of the particle diameter on a volume basis, the 10% compressive strength, and the conductivity of the conductive resin particles in the following Examples and Comparative Examples will be described.

(導電性樹脂粒子の体積平均粒子径及び体積基準の粒子径の変動係数の測定方法)
導電性樹脂粒子の体積平均粒子径及び体積基準の粒子径の変動係数(CV値)の測定は、以下のようにしてコールター法により行った。
(Measuring method of variation coefficient of volume average particle diameter and volume-based particle diameter of conductive resin particles)
The volume average particle diameter of the conductive resin particles and the coefficient of variation (CV value) of the particle diameter on a volume basis were measured by the Coulter method as follows.

導電性樹脂粒子の体積平均粒子径は、コールターMultisizerTM 3(ベックマン・コールター株式会社製測定装置)により測定する。測定は、ベックマン・コールター株式会社発行のMultisizerTM 3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。The volume average particle diameter of the conductive resin particles is measured by Coulter Multisizer 3 (measurement device manufactured by Beckman Coulter, Inc.). The measurement shall be performed using an aperture calibrated according to the Multisizer 3 User's Manual issued by Beckman Coulter, Inc.

なお、測定に用いるアパチャーは、測定する導電性樹脂粒子の大きさによって、適宜選択する。Current(アパチャー電流)及びGain(ゲイン)は、選択したアパチャーのサイズによって、適宜設定する。例えば、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は−800、Gain(ゲイン)は4と設定する。 The aperture used for the measurement is appropriately selected depending on the size of the conductive resin particles to be measured. Current (aperture current) and Gain (gain) are appropriately set according to the size of the selected aperture. For example, when an aperture having a size of 50 μm is selected, Current (aperture current) is set to −800 and Gain (gain) is set to 4.

測定用試料としては、導電性樹脂粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10ml中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT−31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS−150」)を用いて分散させ、分散液としたものを使用する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、導電性樹脂粒子を10万個測定した時点で測定を終了する。導電性樹脂粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均である。 As a sample for measurement, 0.1 g of the conductive resin particles was added to 10 ml of a 0.1 wt% nonionic surfactant aqueous solution, and a touch mixer (“TOUCHMIXER MT-31” manufactured by Yamato Scientific Co., Ltd.) and an ultrasonic cleaner ( "ULTRASONIC CLEANER VS-150" manufactured by Vervoclear Co., Ltd.) is used to make a dispersion liquid. During the measurement, the beaker is gently stirred so that air bubbles do not enter, and the measurement is finished when 100,000 conductive resin particles are measured. The volume average particle diameter of the conductive resin particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.

導電性樹脂粒子の体積基準の粒子径の変動係数を、以下の数式によって算出する。
導電性樹脂粒子の体積基準の粒子径の変動係数
=(導電性樹脂粒子の体積基準の粒度分布の標準偏差
÷導電性樹脂粒子の体積平均粒子径)×100
The coefficient of variation of the volume-based particle diameter of the conductive resin particles is calculated by the following mathematical formula.
Coefficient of variation in volume-based particle size of conductive resin particles = (standard deviation of volume-based particle size distribution of conductive resin particles
÷ Volume average particle diameter of conductive resin particles) × 100

(導電性樹脂粒子の10%圧縮強度の測定方法)
樹脂粒子の10%圧縮強度(S10強度)は、株式会社島津製作所製の微小圧縮試験機「MCTM−200」を用いて、下記測定条件にて測定した。
(Method of measuring 10% compressive strength of conductive resin particles)
The 10% compressive strength (S10 strength) of the resin particles was measured under the following measurement conditions using a micro compression tester “MCTM-200” manufactured by Shimadzu Corporation.

具体的には、エタノール中に樹脂粒子を分散させた分散液を、鏡面仕上げした鋼製試料台に塗布し、乾燥させて、測定用試料を調製した。次いで、室温20℃、相対湿度65%の環境下、MCTM−200の光学顕微鏡で一個の独立した微細な樹脂粒子(少なくとも直径100μmの範囲内に他の樹脂粒子が存在しない状態)を選び出し、選び出した樹脂粒子の直径を、MCTM−200の粒子径測定カーソルで測定した。このとき、樹脂粒子は、前述したコールター法による測定方法で確認した体積平均粒子径から±0.5μmの範囲内にある樹脂粒子を選択した。その範囲外の樹脂粒子は圧縮強度の測定に用いない。次に、選び出した樹脂粒子の頂点に試験用圧子を下記の負荷速度で降下させることにより、最大荷重9.81mNまで、徐々に樹脂粒子に荷重をかけ、先に測定した樹脂粒子の直径が10%変位した時点の荷重から、次式により、圧縮強度を求めた。各樹脂粒子に対して6回の測定を行い、最大値、最小値のデータを除く4データの平均値を、10%圧縮強度(S10強度)とした。 Specifically, a dispersion liquid in which resin particles were dispersed in ethanol was applied to a mirror-finished steel sample stage and dried to prepare a measurement sample. Then, in an environment of room temperature of 20° C. and relative humidity of 65%, one independent fine resin particle (a state in which other resin particles do not exist within a range of at least 100 μm in diameter) is selected and selected by an optical microscope of MCTM-200. The diameter of the resin particles was measured with a particle diameter measuring cursor of MCTM-200. At this time, as the resin particles, resin particles within a range of ±0.5 μm from the volume average particle diameter confirmed by the measuring method by the Coulter method described above were selected. Resin particles outside the range are not used for measuring the compressive strength. Next, the test indenter was dropped at the apex of the selected resin particles at the following load speed to gradually load the resin particles up to a maximum load of 9.81 mN, and the diameter of the resin particles measured previously was 10 The compressive strength was calculated from the load at the time of% displacement by the following formula. The measurement was performed 6 times for each resin particle, and the average value of 4 data excluding the data of the maximum value and the minimum value was taken as the 10% compression strength (S10 strength).

<圧縮強度の算出式>
圧縮強度(MPa)=2.8×荷重(N)/{π×(粒子径(mm))
<圧縮強度の測定条件>
試験温度:常温(20℃)相対湿度65%
上部加圧圧子:直径50μmの平面圧子(材質:ダイヤモンド)
下部加圧板:SKS平板
試験種類:圧縮試験(MODE1)
試験荷重:9.81mN
負荷速度:0.732mN/sec
変位フルスケール;20(μm)
<Calculation formula of compressive strength>
Compressive strength (MPa)=2.8×load (N)/{π×(particle diameter (mm)) 2 }
<Condition strength measurement conditions>
Test temperature: Room temperature (20°C) 65% relative humidity
Upper indenter: Flat indenter with a diameter of 50 μm (material: diamond)
Lower pressure plate: SKS flat plate Test type: Compression test (MODE1)
Test load: 9.81mN
Load speed: 0.732mN/sec
Displacement full scale: 20 (μm)

(導電性樹脂粒子の導電率の測定方法)
「粉体抵抗測定システム MCP−PD51型」(株式会社三菱化学アナリテック製)にて、プローブに充填した導電性樹脂粒子に対し、油圧ポンプにて0〜20kNまで4kN刻みで荷重をかけていき、それぞれの荷重(0、4kN、8kN、12kN、16kN、及び20kN)をかけた状態の導電性樹脂粒子について、導電率の測定を行った。各荷重で測定して得られた導電率のうちで最も高い数値を、その導電性樹脂粒子の導電率とした。導電性樹脂粒子については、事前に、カールフィッシャー水分測定により含有水分量を測定し、含有水分量が1.0重量%以下であることを確認した。「粉体抵抗測定システム MCP−PD51型」で使用する抵抗率計としては、低抵抗率計「ロレスタ(登録商標)−GX MCP−T700」(株式会社三菱化学アナリテック製)を用いた。
(Method for measuring the conductivity of conductive resin particles)
With "Powder resistance measurement system MCP-PD51 type" (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), a load is applied to the conductive resin particles filled in the probe by a hydraulic pump in increments of 4 kN from 0 to 20 kN. The conductivity was measured for the conductive resin particles under the respective loads (0, 4 kN, 8 kN, 12 kN, 16 kN, and 20 kN). The highest numerical value among the electric conductivity obtained by measuring with each load was defined as the electric conductivity of the conductive resin particles. Regarding the conductive resin particles, the water content was measured in advance by Karl Fischer water measurement, and it was confirmed that the water content was 1.0% by weight or less. As the resistivity meter used in the "powder resistance measurement system MCP-PD51 type", a low resistivity meter "Loresta (registered trademark)-GX MCP-T700" (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used.

(実施例1)
[コア粒子の製造]
〔水相の調製〕
ビーカーに、水性媒体としての脱イオン水200重量部と、分散剤としてのピロリン酸マグネシウム10重量部と、アニオン性界面活性剤としてのラウリル硫酸ナトリウム0.04重量部とを投入し、水相を調製した。
(Example 1)
[Production of core particles]
[Preparation of aqueous phase]
To a beaker, 200 parts by weight of deionized water as an aqueous medium, 10 parts by weight of magnesium pyrophosphate as a dispersant, and 0.04 part by weight of sodium lauryl sulfate as an anionic surfactant were added, and the aqueous phase was added. Prepared.

〔油相の調製〕
水相の調製に用いたビーカーとは別のビーカーに、単官能(メタ)アクリル酸エステル単量体としてのアクリル酸n−ブチル60重量部、アクリル酸メチル15重量部、アクリル酸2−エチルヘキシル10重量部、及びポリ(エチレングリコール−プロピレングリコール)モノメタクリレート(日油株式会社製の「ブレンマー(登録商標)50PEP−300」)5重量部と、上記一般式(I)で示される単量体としてのエチレングリコールジメタクリレート(共栄社化学株式会社製の「ライトエステルEG」)10重量部と、重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.2重量部及び過酸化ベンゾイル0.15重量部を投入し、十分に攪拌して、油相となる混合物を調製した。
[Preparation of oil phase]
In a beaker different from the beaker used for the preparation of the aqueous phase, 60 parts by weight of n-butyl acrylate as a monofunctional (meth)acrylic acid ester monomer, 15 parts by weight of methyl acrylate, 2-ethylhexyl acrylate 10 Parts by weight, and 5 parts by weight of poly(ethylene glycol-propylene glycol) monomethacrylate (“Blenmer (registered trademark) 50PEP-300” manufactured by NOF CORPORATION), and as a monomer represented by the general formula (I). Ethylene glycol dimethacrylate (Kyoeisha Chemical Co., Ltd. "light ester EG") 10 parts by weight, 2,2'-azobis(2,4-dimethylvaleronitrile) 0.2 part by weight and a polymerization initiator. 0.15 parts by weight of benzoyl oxide was added and sufficiently stirred to prepare a mixture that became an oil phase.

〔重合反応〕
調製された油相を先に調製した水相に加え、ホモミクサー(プライミクス株式会社製、、卓上型、製品名「ホモミクサーMARKII 2.5型」)を用い、攪拌速度5000rpmで10分間攪拌して、油相を水相中に分散させ、分散液を得た。この分散液を、攪拌機、加熱装置、及び温度計を備えた重合反応器に投入し、60℃で6時間攪拌することにより、懸濁重合反応させた。次いで、重合反応器内の懸濁液(反応液)を30℃まで冷却させた後、塩酸を加えて、ピロリン酸マグネシウムを分解させた。次いで、懸濁液を吸引ろ過した。ろ過の残渣をイオン交換水により洗浄、脱水して、目的とするビニル系単量体の重合体からなるコア粒子の含水ケーキ体を得た。
[Polymerization reaction]
The prepared oil phase was added to the previously prepared aqueous phase, and the mixture was stirred for 10 minutes at a stirring speed of 5000 rpm using a homomixer (manufactured by Primix Co., Ltd., tabletop type, product name "Homomixer MARKII 2.5 type"), The oil phase was dispersed in the aqueous phase to obtain a dispersion liquid. This dispersion was put into a polymerization reactor equipped with a stirrer, a heating device, and a thermometer, and stirred at 60° C. for 6 hours to carry out a suspension polymerization reaction. Next, the suspension (reaction solution) in the polymerization reactor was cooled to 30° C., and then hydrochloric acid was added to decompose magnesium pyrophosphate. The suspension was then suction filtered. The filtration residue was washed with ion-exchanged water and dehydrated to obtain an intended water-containing cake of core particles made of a polymer of a vinyl monomer.

[導電性樹脂粒子の製造]
[重合反応]
ビーカーに、得られたコア粒子の含水ケーキ体25重量部を脱イオン水50重量部に分散させ、コア粒子分散液を得た。次に、酸化剤としての過硫酸カリウム20重量部を脱イオン水300重量部に溶解させて過硫酸カリウム水溶液を調製した。上記過硫酸カリウム水溶液に、先に調製したコア粒子分散液を混合し、30分間攪拌する。得られた混合液に、含窒素芳香族化合物としてのピロール5重量部を添加し、25℃で5時間攪拌してピロールを重合させることにより、目的とする、導電性高分子としてのポリピロールからなるシェルでコア粒子が被覆された導電性樹脂粒子(コアシェル粒子)を得た。得られた導電性樹脂粒子は、体積平均粒子径が14.8μmであり、体積基準の粒子径の変動係数が45%であり、10%圧縮強度が1.4MPaであった。
[Production of conductive resin particles]
[Polymerization reaction]
In a beaker, 25 parts by weight of the obtained water-containing cake of core particles was dispersed in 50 parts by weight of deionized water to obtain a core particle dispersion liquid. Next, 20 parts by weight of potassium persulfate as an oxidizing agent was dissolved in 300 parts by weight of deionized water to prepare an aqueous potassium persulfate solution. The above-prepared core particle dispersion liquid is mixed with the above potassium persulfate aqueous solution and stirred for 30 minutes. To the resulting mixed liquid, 5 parts by weight of pyrrole as a nitrogen-containing aromatic compound was added, and the mixture was stirred at 25° C. for 5 hours to polymerize pyrrole, thereby forming the target polypyrrole as a conductive polymer. Conductive resin particles (core-shell particles) in which core particles were coated with shells were obtained. The obtained conductive resin particles had a volume average particle diameter of 14.8 μm, a coefficient of variation of particle diameter based on volume of 45%, and a 10% compressive strength of 1.4 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.4×10−2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.4×10 −2 S/cm.

(実施例2)
[コア粒子の製造]
アクリル酸n−ブチル60重量部、アクリル酸メチル15重量部、及びアクリル酸2−エチルヘキシル10重量部に代えて、アクリル酸n−ブチル79重量部を使用し、エチレングリコールジメタクリレート10重量部に代えて、エチレングリコールジメタクリレート(共栄社化学株式会社製の「ライトエステルEG」)1重量部及び上記一般式(II)で示される単量体としてのテトラデカエチレングリコールジメタクリレート(共栄社化学株式会社製の「ライトエステル14EG」)15重量部を使用し、過酸化ベンゾイルの使用量を0.3重量部に変更し、油相を水相中に分散させる際の撹拌条件を「攪拌速度3500rpmで5分間」に変更したこと以外は、実施例1と同様にして目的のコア粒子の含水ケーキ体を得た。
(Example 2)
[Production of core particles]
In place of 60 parts by weight of n-butyl acrylate, 15 parts by weight of methyl acrylate, and 10 parts by weight of 2-ethylhexyl acrylate, 79 parts by weight of n-butyl acrylate was used and replaced by 10 parts by weight of ethylene glycol dimethacrylate. And 1 part by weight of ethylene glycol dimethacrylate (“light ester EG” manufactured by Kyoeisha Chemical Co., Ltd.) and tetradecaethylene glycol dimethacrylate as a monomer represented by the general formula (II) (manufactured by Kyoeisha Chemical Co., Ltd. 15 parts by weight of "light ester 14EG" was used, the amount of benzoyl peroxide used was changed to 0.3 parts by weight, and the stirring condition when dispersing the oil phase in the aqueous phase was set to "a stirring speed of 3500 rpm for 5 minutes. Except that the content was changed to "." The target water-containing cake of core particles was obtained in the same manner as in Example 1.

[導電性樹脂粒子の製造]
先の工程で得られたコア粒子の含水ケーキ体を実施例1のコア粒子に代えて使用し、コア粒子分散液を得る際に使用する脱イオン水の量を25重量部に変更したこと以外は、実施例1と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が15.4μmであり、体積基準の粒子径の変動係数が39%であり、10%圧縮強度が2.3MPaであった。
[Production of conductive resin particles]
Except that the hydrous cake of core particles obtained in the previous step was used instead of the core particles of Example 1 and the amount of deionized water used in obtaining the core particle dispersion was changed to 25 parts by weight. In the same manner as in Example 1, the target conductive resin particles were obtained. The obtained conductive resin particles had a volume average particle size of 15.4 μm, a volume-based particle size variation coefficient of 39%, and a 10% compressive strength of 2.3 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.8×10−2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.8×10 −2 S/cm.

(実施例3)
[コア粒子の製造]
実施例1と同様にして、目的のコア粒子の含水ケーキ体を得た。
(Example 3)
[Production of core particles]
In the same manner as in Example 1, a desired water-containing cake of core particles was obtained.

[導電性樹脂粒子の製造]
ピロールに代えて3,4−エチレンジオキシチオフェンを使用し、重合時の撹拌時間を24時間に変更したこと以外は、実施例1と同様にして、目的とする、導電性高分子としてのポリ(3,4−エチレンジオキシチオフェン)からなるシェルでコア粒子が被覆された導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が16.2μmであり、体積基準の粒子径の変動係数が46%であり、10%圧縮強度は2.5MPaであった。
[Production of conductive resin particles]
In the same manner as in Example 1, except that 3,4-ethylenedioxythiophene was used instead of pyrrole and the stirring time during polymerization was changed to 24 hours, the desired polyelectrolyte as a conductive polymer was used. Conductive resin particles in which the core particles were covered with a shell made of (3,4-ethylenedioxythiophene) were obtained. The obtained conductive resin particles had a volume average particle diameter of 16.2 μm, a volume-based particle diameter variation coefficient of 46%, and a 10% compressive strength of 2.5 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、1.8×10−2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 1.8×10 −2 S/cm.

(実施例4)
[コア粒子の製造]
〔ソープフリー重合〕
ビーカー内にて、単官能(メタ)アクリル酸エステル単量体としてのメチルメタクリレート15重量部に、分子量調整剤としてのn−オクチルメルカプタン0.2重量部を混合して油相を作製した。
(Example 4)
[Production of core particles]
[Soap-free polymerization]
In a beaker, 15 parts by weight of methyl methacrylate as a monofunctional (meth)acrylic acid ester monomer was mixed with 0.2 parts by weight of n-octyl mercaptan as a molecular weight modifier to prepare an oil phase.

先程とは異なるビーカー内にて、イオン交換水80重量部に重合開始剤としての過硫酸カリウム0.1重量部を溶解させて過硫酸カリウム水溶液を調製し、この過硫酸カリウム水溶液に先程の油相を混合して55℃にて12時間ソープフリー重合を行った。これにより、ポリメチルメタクリレートからなる種粒子を含む分散液を得た。得られた種粒子の体積平均粒子径は0.51μmであった。 In a beaker different from the one described above, 0.1 parts by weight of potassium persulfate as a polymerization initiator was dissolved in 80 parts by weight of ion-exchanged water to prepare an aqueous potassium persulfate solution, and the potassium persulfate aqueous solution was mixed with the above oil. The phases were mixed and soap-free polymerization was carried out at 55° C. for 12 hours. As a result, a dispersion liquid containing seed particles made of polymethylmethacrylate was obtained. The volume average particle diameter of the obtained seed particles was 0.51 μm.

〔シード重合〕
次に、新たなビーカーに、単官能(メタ)アクリル酸エステル単量体としてのアクリル酸n−ブチル70重量部、アクリル酸メチル5重量部、アクリル酸2−エチルヘキシル5重量部、及びポリ(エチレングリコール−プロピレングリコール)モノメタクリレート(日油株式会社製の「ブレンマー(登録商標)50PEP−300」)5重量部と、上記一般式(I)で示される単量体としてのエチレングリコールジメタクリレート10重量部と、重合開始剤としての2,2’−アゾビス(2−メチルブチロニトリル)0.01重量部とを混合した。得られた混合物に、水性媒体としてのイオン交換水80重量部にアニオン性界面活性剤としてのジ(2−エチルヘキシル)スルホコハク酸ナトリウム0.08重量部を溶解させて得られた水溶液を混合し、ホモミクサー(プライミクス株式会社製、卓上型、製品名「ホモミクサーMARKII 2.5型」)により撹拌速度8000rpmで10分間処理することで、乳化液を得た。
[Seed polymerization]
Next, in a new beaker, 70 parts by weight of n-butyl acrylate as a monofunctional (meth)acrylic acid ester monomer, 5 parts by weight of methyl acrylate, 5 parts by weight of 2-ethylhexyl acrylate, and poly(ethylene 5 parts by weight of glycol-propylene glycol) monomethacrylate (“Blenmer (registered trademark) 50PEP-300” manufactured by NOF CORPORATION) and 10 parts by weight of ethylene glycol dimethacrylate as a monomer represented by the general formula (I). And 0.01 part by weight of 2,2′-azobis(2-methylbutyronitrile) as a polymerization initiator. The obtained mixture was mixed with 80 parts by weight of ion-exchanged water as an aqueous medium and 0.08 part by weight of sodium di(2-ethylhexyl)sulfosuccinate as an anionic surfactant to obtain an aqueous solution, An emulsion was obtained by treating with a homomixer (manufactured by PRIMIX Corporation, tabletop type, product name “Homomixer MARKII 2.5 type”) at a stirring speed of 8000 rpm for 10 minutes.

この乳化液に、先程のソープフリー重合により得られた種粒子を含む分散液40重量部を攪拌しながら加えた。3時間攪拌した後、高分子分散安定剤としてのポリビニルアルコール0.03重量部を溶解したイオン交換水240重量部を投入し、60℃で6時間攪拌しながら重合させ、得られた重合体エマルジョンを吸引濾過で脱水した後、イオン交換水により残渣を洗浄することで、粒度分布がシャープなコア粒子の含水ケーキ体を得た。得られたコア粒子の体積平均粒子径は1.2μmであった。 To this emulsion, 40 parts by weight of a dispersion liquid containing seed particles obtained by the above soap-free polymerization was added with stirring. After stirring for 3 hours, 240 parts by weight of ion-exchanged water in which 0.03 parts by weight of polyvinyl alcohol as a polymer dispersion stabilizer was dissolved was added and polymerized while stirring at 60° C. for 6 hours to obtain a polymer emulsion. Was dehydrated by suction filtration, and the residue was washed with ion-exchanged water to obtain a hydrous cake of core particles having a sharp particle size distribution. The volume average particle diameter of the obtained core particles was 1.2 μm.

[導電性樹脂粒子の製造]
先の工程で得られたコア粒子の含水ケーキ体を実施例1のコア粒子に代えて使用し、コア粒子を分散させてコア粒子分散液を得る際に使用する脱イオン水の量を25重量部に変更したこと以外は、実施例1と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が1.3μmであり、体積基準の粒子径の変動係数が9%であり、10%圧縮強度が1.4MPaであった。
[Production of conductive resin particles]
The water-containing cake of core particles obtained in the previous step was used instead of the core particles of Example 1, and the amount of deionized water used when the core particles were dispersed to obtain a core particle dispersion was 25% by weight. Target conductive resin particles were obtained in the same manner as in Example 1 except that the parts were changed. The obtained conductive resin particles had a volume average particle diameter of 1.3 μm, a volume-based particle diameter variation coefficient of 9%, and a 10% compression strength of 1.4 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、1.5×10−2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 1.5×10 −2 S/cm.

(実施例5)
[コア粒子の製造]
ラウリル硫酸ナトリウムの使用量を0.005重量部に変更し、油相を水相中に分散させる際の撹拌を、ホモミクサーを用いることなく攪拌速度200rpmで10分間行うように変更したこと以外は、実施例1と同様にして目的のコア粒子の含水ケーキ体を得た。
(Example 5)
[Production of core particles]
Except that the amount of sodium lauryl sulfate used was changed to 0.005 parts by weight and the stirring when dispersing the oil phase in the aqueous phase was changed to 10 minutes at a stirring speed of 200 rpm without using a homomixer, In the same manner as in Example 1, a desired water-containing cake of core particles was obtained.

[導電性樹脂粒子の製造]
先の工程で得られたコア粒子の含水ケーキ体を実施例1のコア粒子に代えて使用したこと以外は、実施例1と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が198μmであり、体積基準の粒子径の変動係数が49%であり、10%圧縮強度が1.7MPaであった。
[Production of conductive resin particles]
Target conductive resin particles were obtained in the same manner as in Example 1 except that the water-containing cake of core particles obtained in the previous step was used instead of the core particles in Example 1. The obtained conductive resin particles had a volume average particle size of 198 μm, a volume-based particle size variation coefficient of 49%, and a 10% compressive strength of 1.7 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.0×10−2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.0×10 −2 S/cm.

(実施例6)
[コア粒子の製造]
アクリル酸n−ブチル60重量部、アクリル酸メチル15重量部、及びアクリル酸2−エチルヘキシル10重量部に代えて、アクリル酸n−ブチル45重量部を使用し、エチレングリコールジメタクリレート10重量部に代えて、ウレタンアクリレートオリゴマー(製品名「ニューフロンティア(登録商標)RST−402」、第一工業製薬株式会社製)50重量部を使用したこと以外は、実施例1と同様にして目的のコア粒子の含水ケーキ体を得た。
(Example 6)
[Production of core particles]
60 parts by weight of n-butyl acrylate, 15 parts by weight of methyl acrylate, and 10 parts by weight of 2-ethylhexyl acrylate were replaced with 45 parts by weight of n-butyl acrylate and replaced with 10 parts by weight of ethylene glycol dimethacrylate. Of the target core particles in the same manner as in Example 1 except that 50 parts by weight of a urethane acrylate oligomer (product name “New Frontier (registered trademark) RST-402”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was used. A wet cake was obtained.

[導電性樹脂粒子の製造]
先の工程で得られたコア粒子の含水ケーキ体を実施例1のコア粒子に代えて使用し、コア粒子を分散させてコア粒子分散液を得る際に使用する脱イオン水の量を25重量部に変更したこと以外は、実施例1と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が16.2μmであり、体積基準の粒子径の変動係数が44%であり、10%圧縮強度が1.2MPaであった。
[Production of conductive resin particles]
The water-containing cake of core particles obtained in the previous step was used instead of the core particles of Example 1, and the amount of deionized water used when the core particles were dispersed to obtain a core particle dispersion was 25% by weight. Target conductive resin particles were obtained in the same manner as in Example 1 except that the parts were changed. The obtained conductive resin particles had a volume average particle diameter of 16.2 μm, a volume-based particle diameter variation coefficient of 44%, and a 10% compressive strength of 1.2 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.6×10−2S/cmであった。
[Conductivity measurement]
When the conductivity of the conductive resin particles obtained in the previous step was measured, it was 2.6×10 −2 S/cm.

(実施例7)
[コア粒子の製造]
実施例1と同様にして、目的のコア粒子の含水ケーキ体を得た。
(Example 7)
[Production of core particles]
In the same manner as in Example 1, a desired water-containing cake of core particles was obtained.

[導電性樹脂粒子の製造]
先の工程で得られたコア粒子を実施例3のコア粒子に代えて使用し、コア粒子を分散させてコア粒子分散液を得る際に使用する脱イオン水の量を50重量部に変更したこと以外は、実施例3と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が16.5μmであり、体積基準の粒子径の変動係数が42%であり、10%圧縮強度が1.2MPaであった。
[Production of conductive resin particles]
The core particles obtained in the previous step were used instead of the core particles of Example 3, and the amount of deionized water used when the core particles were dispersed to obtain a core particle dispersion was changed to 50 parts by weight. Except for the above, the target conductive resin particles were obtained in the same manner as in Example 3. The obtained conductive resin particles had a volume average particle diameter of 16.5 μm, a volume-based particle diameter variation coefficient of 42%, and a 10% compressive strength of 1.2 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.9×10−2S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.9×10 −2 S/cm.

(比較例1)
[コア粒子の製造]
単官能(メタ)アクリル酸エステル単量体として、アクリル酸n−ブチル60重量部、アクリル酸メチル15重量部、アクリル酸2−エチルヘキシル10重量部、及びポリ(エチレングリコール−プロピレングリコール)モノメタクリレート5重量部に代えて、メタクリル酸メチル95重量部を使用し、エチレングリコールジメタクリレートの使用量を5重量部に変更したこと以外は、実施例1と同様にしてコア粒子を得た。
(Comparative Example 1)
[Production of core particles]
As a monofunctional (meth)acrylic acid ester monomer, n-butyl acrylate 60 parts by weight, methyl acrylate 15 parts by weight, 2-ethylhexyl acrylate 10 parts by weight, and poly(ethylene glycol-propylene glycol) monomethacrylate 5 Core particles were obtained in the same manner as in Example 1 except that 95 parts by weight of methyl methacrylate was used instead of parts by weight and the amount of ethylene glycol dimethacrylate was changed to 5 parts by weight.

[導電性樹脂粒子の製造]
コア粒子分散液を得る際に使用する分散媒として脱イオン水50重量部に代えてイソプロピルアルコール25重量部を使用したこと以外は、実施例1と同様にして導電性樹脂粒子を得た。得られた導電性樹脂粒子の10%圧縮強度は34.3MPaであった。
[Production of conductive resin particles]
Conductive resin particles were obtained in the same manner as in Example 1 except that 25 parts by weight of isopropyl alcohol was used as the dispersion medium used when obtaining the core particle dispersion liquid instead of 50 parts by weight of deionized water. The 10% compressive strength of the obtained conductive resin particles was 34.3 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.2×10−3S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.2×10 −3 S/cm.

(比較例2)
ピロールに代えて3,4−エチレンジオキシチオフェンを使用し、重合時の撹拌時間を24時間に変更したこと以外は、比較例1と同様にして導電性樹脂粒子を得た。得られた導電性樹脂粒子の10%圧縮強度は36.4MPaであった。
[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、2.2×10−3S/cmであった。
(Comparative example 2)
Conductive resin particles were obtained in the same manner as in Comparative Example 1 except that 3,4-ethylenedioxythiophene was used instead of pyrrole, and the stirring time during polymerization was changed to 24 hours. The 10% compressive strength of the obtained conductive resin particles was 36.4 MPa.
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 2.2×10 −3 S/cm.

(比較例3)
[コア粒子の製造]
シード重合において、アクリル酸n−ブチル70重量部、アクリル酸メチル5重量部、アクリル酸2−エチルヘキシル5重量部、及びポリ(エチレングリコール−プロピレングリコール)モノメタクリレート(日油株式会社製の「ブレンマー(登録商標)50PEP−300」)5重量部に代えて、メタクリル酸メチル70重量部を使用し、エチレングリコールジメタクリレートの使用量を30重量部に変更したこと以外は、実施例4と同様にしてコア粒子を得た。得られたコア粒子の体積平均粒子径は1.1μmであった。
(Comparative example 3)
[Production of core particles]
In the seed polymerization, 70 parts by weight of n-butyl acrylate, 5 parts by weight of methyl acrylate, 5 parts by weight of 2-ethylhexyl acrylate, and poly(ethylene glycol-propylene glycol) monomethacrylate (“Blenmer (manufactured by NOF CORPORATION) (Registered trademark) 50 PEP-300") 5 parts by weight were replaced with 70 parts by weight of methyl methacrylate, and the amount of ethylene glycol dimethacrylate was changed to 30 parts by weight in the same manner as in Example 4. Core particles were obtained. The volume average particle diameter of the obtained core particles was 1.1 μm.

[導電性樹脂粒子の製造]
先の工程で得られたコア粒子を実施例4のコア粒子に代えて使用したこと以外は、実施例4と同様にして目的の導電性樹脂粒子を得た。得られた導電性樹脂粒子は、体積平均粒子径が1.2μmであり、体積基準の粒子径の変動係数が9%であり、10%圧縮強度が36.1MPaであった。
[Production of conductive resin particles]
The target conductive resin particles were obtained in the same manner as in Example 4 except that the core particles obtained in the previous step were used in place of the core particles of Example 4. The obtained conductive resin particles had a volume average particle diameter of 1.2 μm, a volume-based particle diameter variation coefficient of 9%, and a 10% compressive strength of 36.1 MPa.

[導電率測定]
先の工程で得られた導電性樹脂粒子の導電率を測定したところ、3.5×10−3S/cmであった。
[Conductivity measurement]
The conductivity of the conductive resin particles obtained in the previous step was measured and found to be 3.5×10 −3 S/cm.

実施例1〜7及び比較例1〜3で得られた導電性樹脂粒子の体積平均粒子径、体積基準の粒子径の変動係数、10%圧縮強度、及び導電率を、コア粒子の製造に使用した単量体混合物の組成(実施例4及び比較例3ではシード重合に使用した単量体混合物の組成)及びシェルの形成に使用した単量体の種類と共に表1にまとめて示す。なお、表1中では、アクリル酸n−ブチルを「BA」、アクリル酸メチルを「MA」、アクリル酸2−エチルヘキシルを「2EHA」、メタクリル酸メチルを「MMA」、ポリ(エチレングリコール−プロピレングリコール)モノメタクリレート「ブレンマー(登録商標)50PEP−300」)を「50PEP−300」、エチレングリコールジメタクリレートを「EGDMA」、テトラデカエチレングリコールジメタクリレートを「14EG」、ウレタンアクリレート「ニューフロンティア(登録商標)RST−402」を「RST−402」とそれぞれ略記する。 The volume average particle diameter of the conductive resin particles obtained in Examples 1 to 7 and Comparative Examples 1 to 3, the coefficient of variation of the volume-based particle diameter, 10% compressive strength, and the electrical conductivity are used for the production of the core particles. The composition of the prepared monomer mixture (the composition of the monomer mixture used for seed polymerization in Example 4 and Comparative Example 3) and the type of the monomer used for forming the shell are collectively shown in Table 1. In Table 1, n-butyl acrylate is "BA", methyl acrylate is "MA", 2-ethylhexyl acrylate is "2EHA", methyl methacrylate is "MMA", poly(ethylene glycol-propylene glycol). ) Monomethacrylate "Blenmer (registered trademark) 50PEP-300") is "50PEP-300", ethylene glycol dimethacrylate is "EGDMA", tetradecaethylene glycol dimethacrylate is "14EG", and urethane acrylate "New Frontier (registered trademark)". "RST-402" is abbreviated as "RST-402".

Figure 0006722766
Figure 0006722766

以上のように、実施例1〜7の導電性樹脂粒子は、10%圧縮強度が0.1〜30MPa(1.2〜2.5MPa)であることで、10%圧縮強度が30MPa超(34.3〜36.4MPa)である比較例1〜3の導電性樹脂粒子の導電率(2.2〜3.5×10−3S/cm)と比較して、優れた導電率(1.5〜2.9×10−2S/cm)を有していることが分かった。As described above, the conductive resin particles of Examples 1 to 7 have a 10% compressive strength of 0.1 to 30 MPa (1.2 to 2.5 MPa), and thus a 10% compressive strength of more than 30 MPa (34. Excellent conductivity (1. 3 to 36.4 MPa) as compared with the conductivity (2.2 to 3.5×10 −3 S/cm) of the conductive resin particles of Comparative Examples 1 to 3 which is 1.3 to 36.4 MPa. 5 to 2.9×10 −2 S/cm).

(実施例8)
バインダー樹脂としてのアクリル系樹脂(三菱ケミカル株式会社製、商品名「ダイヤナール(登録商標)BR−106」)10重量部を、有機溶剤としてのトルエン50重量部に溶解したバインダー溶液に、実施例1にて得られた導電性樹脂粒子を10重量部配合して、均一に分散させてコーティング剤を調製した。
(Example 8)
An example was applied to a binder solution prepared by dissolving 10 parts by weight of an acrylic resin (manufactured by Mitsubishi Chemical Co., Ltd., trade name "Dianal (registered trademark) BR-106") as a binder resin in 50 parts by weight of toluene as an organic solvent. 10 parts by weight of the conductive resin particles obtained in 1 were mixed and uniformly dispersed to prepare a coating agent.

このコーティング剤を30μmのアプリケーターを用いて、基材フィルムとしての厚さ100μmのPETフィルム上に塗布して塗膜を形成した。70℃の高温槽で2時間静置し、PETフィルム上の塗膜を乾燥させることにより、導電性を有するフィルムを得た。 This coating agent was applied to a PET film having a thickness of 100 μm as a base film using a 30 μm applicator to form a coating film. The coating film on the PET film was allowed to stand for 2 hours in a high temperature bath at 70° C. to obtain a conductive film.

本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be embodied in various other forms without departing from the spirit or the main features thereof. Therefore, the above embodiments are merely examples in all respects, and should not be limitedly interpreted. The scope of the present invention is defined by the scope of the claims, and is not bound by the text of the specification. Further, all modifications and changes belonging to the equivalent range of the claims are within the scope of the present invention.

また、この出願は、2016年9月30日に日本で出願された特願2016−194260に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。 Further, this application claims the priority right based on Japanese Patent Application No. 2016-194260 filed in Japan on September 30, 2016. By reference to this, the entire contents of which are incorporated into the present application.

Claims (12)

重合体からなるコア粒子と、
前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子であって、
10%圧縮変形時の圧縮強度が0.1〜30MPaであり、
前記重合体が、単官能(メタ)アクリル酸エステル単量体と、
下記一般式(I)
Figure 0006722766
(式中、R1は水素又はメチル基であり、nは1〜4の整数である。)で示される単量体とを含む単量体混合物の重合体を含むことを特徴とする導電性樹脂粒子。
Core particles made of a polymer,
A conductive resin particle having a shell made of a conductive polymer coating the core particle,
The compressive strength at 10% compression deformation is 0.1 to 30 MPa,
The polymer is a monofunctional (meth)acrylic acid ester monomer,
The following general formula (I)
Figure 0006722766
(Wherein, R 1 is hydrogen or a methyl group, and n is an integer of 1 to 4), and a polymer of a monomer mixture containing the monomer is included. Resin particles.
請求項1に記載の導電性樹脂粒子であって、
前記単量体混合物が、下記一般式(II)
Figure 0006722766
(式中、R2は水素又はメチル基であり、mは5〜15の整数である。)で示される単量体をさらに含むことを特徴とする導電性樹脂粒子。
The conductive resin particles according to claim 1,
The monomer mixture has the following general formula (II)
Figure 0006722766
(In formula, R< 2 > is hydrogen or a methyl group, m is an integer of 5-15.) The electroconductive resin particle further characterized by the above-mentioned.
重合体からなるコア粒子と、
前記コア粒子を被覆する導電性高分子からなるシェルとを有し、
前記シェルが繊維状ではない導電性樹脂粒子であって、
10%圧縮変形時の圧縮強度が0.1〜30MPaであり、
体積基準の粒子径の変動係数が9%以上であることを特徴とする導電性樹脂粒子。
Core particles made of a polymer,
Have a shell made of a conductive polymer covering the core particles,
The shell is a conductive resin particles that are not fibrous ,
The compressive strength at 10% compression deformation is 0.1 to 30 MPa,
A conductive resin particle having a volume-based particle diameter variation coefficient of 9% or more.
重合体からなるコア粒子と、Core particles made of a polymer,
前記コア粒子を被覆する導電性高分子からなるシェルとを有する導電性樹脂粒子であって、A conductive resin particle having a shell made of a conductive polymer coating the core particle,
10%圧縮変形時の圧縮強度が0.1〜30MPaであり、The compressive strength at 10% compression deformation is 0.1 to 30 MPa,
体積基準の粒子径の変動係数が9%以上であり、The coefficient of variation of volume-based particle diameter is 9% or more,
前記導電性高分子が、含窒素複素芳香族化合物及び含硫黄複素芳香族化合物からなる群より選ばれる少なくとも1種の単量体の重合体であり、The conductive polymer is a polymer of at least one monomer selected from the group consisting of nitrogen-containing heteroaromatic compounds and sulfur-containing heteroaromatic compounds,
前記単量体の添加量が、前記コア粒子100重量部に対し1〜30重量部の範囲であり、The amount of the monomer added is in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the core particles,
前記コア粒子の表面全体が前記導電性高分子で被覆されていることを特徴とする導電性樹脂粒子。Conductive resin particles, wherein the entire surface of the core particles is covered with the conductive polymer.
請求項1〜のいずれか1項に記載の導電性樹脂粒子であって、
前記導電性高分子が、含窒素複素芳香族化合物及び含硫黄複素芳香族化合物からなる群より選ばれる少なくとも1種の単量体の重合体であることを特徴とする導電性樹脂粒子。
The conductive resin particles according to any one of claims 1 to 5 ,
Conductive resin particles, wherein the conductive polymer is a polymer of at least one monomer selected from the group consisting of nitrogen-containing heteroaromatic compounds and sulfur-containing heteroaromatic compounds.
請求項1〜のいずれか1項に記載の導電性樹脂粒子であって、
1〜200μmの体積平均粒子径を有することを特徴とする導電性樹脂粒子。
The conductive resin particles according to any one of claims 1 to 5 ,
Conductive resin particles having a volume average particle diameter of 1 to 200 μm.
請求項1〜のいずれか1項に記載の導電性樹脂粒子であって、
体積基準の粒子径の変動係数が10%以上であることを特徴とする導電性樹脂粒子。
The conductive resin particles according to any one of claims 1 to 7 ,
A conductive resin particle having a volume-based particle diameter variation coefficient of 10% or more.
請求項1〜のいずれか1項に記載の導電性樹脂粒子であって、
上記シェルの厚さの振れが、50%以下であることを特徴とする導電性樹脂粒子。
The conductive resin particles according to any one of claims 1 to 8 ,
The conductive resin particles are characterized in that the thickness fluctuation of the shell is 50% or less.
請求項1〜のいずれか1項に記載の導電性樹脂粒子と、マトリックス樹脂とを含むことを特徴とする導電性樹脂組成物。 Claims and conductive resin particles of any one of 1-8, a conductive resin composition which comprises a matrix resin. 請求項1〜のいずれか1項に記載の導電性樹脂粒子と、バインダー樹脂とを含むことを特徴とするコーティング剤。 Coating agent characterized the conductive resin particles according, to include a binder resin to any one of claims 1-8. 請求項1〜のいずれか1項に記載の導電性樹脂粒子を含むことを特徴とするフィルム。 Film characterized in that it comprises an electrically conductive resin particles according to any one of claims 1-8. 請求項1〜のいずれか1項に記載の導電性樹脂粒子を含むことを特徴とするギャップ材。 Gap material, characterized in that it comprises an electrically conductive resin particles according to any one of claims 1-8.
JP2018541923A 2016-09-30 2017-06-30 Conductive resin particles and uses thereof Active JP6722766B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016194260 2016-09-30
JP2016194260 2016-09-30
PCT/JP2017/024195 WO2018061374A1 (en) 2016-09-30 2017-06-30 Conductive resin particles and use of same

Publications (2)

Publication Number Publication Date
JPWO2018061374A1 JPWO2018061374A1 (en) 2019-08-29
JP6722766B2 true JP6722766B2 (en) 2020-07-15

Family

ID=61763201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018541923A Active JP6722766B2 (en) 2016-09-30 2017-06-30 Conductive resin particles and uses thereof

Country Status (4)

Country Link
JP (1) JP6722766B2 (en)
KR (1) KR102248989B1 (en)
CN (1) CN109791813B (en)
WO (1) WO2018061374A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220548B2 (en) * 2018-10-19 2023-02-10 株式会社日本触媒 Substrate particles for conductive particles and use thereof
JP7408930B2 (en) * 2019-06-27 2024-01-09 東洋インキScホールディングス株式会社 Conductive particles, dispersion and manufacturing method thereof
FR3100250B1 (en) * 2019-09-04 2022-06-03 Univ De Pau Et Des Pays De L’Adour Electrically conductive nanocomposite particles with an alkyl polyacrylate core and a conductive polymer shell

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433799A (en) 1977-07-29 1979-03-12 Sankyo Denki Co Ltd Device of receiving and discharging article of automatic vending machine
JP2000268634A (en) * 1999-03-15 2000-09-29 Canon Inc Conductive expansion particle and manufacture thereof
JP2002367433A (en) * 2001-06-08 2002-12-20 Fujitsu Ltd Conductive polymer particulate and method of manufacture
JP2004241132A (en) * 2003-02-03 2004-08-26 Aica Kogyo Co Ltd Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member
JP4962706B2 (en) * 2006-09-29 2012-06-27 日本化学工業株式会社 Conductive particles and method for producing the same
JP4793456B2 (en) * 2009-02-20 2011-10-12 トヨタ自動車株式会社 Thermally conductive insulating resin molding
KR101751720B1 (en) * 2010-09-28 2017-06-28 세키스이가세이힝코교가부시키가이샤 Coloring resin particles, and production method and uses therefor
JP5722434B2 (en) * 2011-03-31 2015-05-20 積水化成品工業株式会社 Colored resin particles, production method thereof, and use thereof
KR101611210B1 (en) * 2011-09-28 2016-04-11 세키스이가세이힝코교가부시키가이샤 Resin particles, method for producing resin particles, and use of resin particles
JP6152105B2 (en) * 2012-07-24 2017-06-21 株式会社ダイセル Conductive fiber-coated particles, and curable composition and cured product thereof
WO2014050653A1 (en) * 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
JP5559947B1 (en) * 2013-01-24 2014-07-23 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP2014201595A (en) * 2013-04-01 2014-10-27 スリーボンドファインケミカル株式会社 Conductive coating material and adherend using the same
JP6737566B2 (en) * 2014-01-14 2020-08-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP5830196B1 (en) * 2014-02-24 2015-12-09 積水化学工業株式会社 Conductive paste, connection structure, and manufacturing method of connection structure
CN106463200B (en) * 2014-09-18 2019-05-31 积水化学工业株式会社 The manufacturing method of conductive paste, connection structural bodies and connection structural bodies
JP6514615B2 (en) * 2014-09-18 2019-05-15 積水化学工業株式会社 Method of manufacturing connection structure

Also Published As

Publication number Publication date
CN109791813A (en) 2019-05-21
WO2018061374A1 (en) 2018-04-05
KR20190029656A (en) 2019-03-20
KR102248989B1 (en) 2021-05-06
CN109791813B (en) 2020-08-14
JPWO2018061374A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6722766B2 (en) Conductive resin particles and uses thereof
JP5651106B2 (en) Transparent conductive film
JP5492486B2 (en) Optical laminate
JP6090174B2 (en) Method for producing conductive film
EP3518252B1 (en) (meth)acrylic conductive material
JP2020142525A (en) Transparent conductive film with adhesive layer
KR20180097461A (en) Transparent conductive film, transparent conductive laminate, three-dimensional shape display and resin composition
CN106575053A (en) Transparent conductor, liquid crystal display device and method for producing transparent conductor
JP6176431B2 (en) Active energy ray-curable coating composition and coating agent
JP2009286939A (en) Nano-material-containing composition, nano-material-containing porous material, method for producing the same, layered product, and method for producing the same
KR102112598B1 (en) Antistatic photho-curable resin composition, antistactic plastic sheet prepared by using this and manufacturing method for the sames
Yao et al. Granular ionogel particle inks for 3D printed tough and stretchable ionotronics
JP7008627B2 (en) Curable resin composition for forming an easily peelable film and its manufacturing method
JP2012247681A (en) Laminate for antireflection and manufacturing method thereof, and curable composition
WO2022210893A1 (en) Resin fine particles, coating softener, matting agent for paint, stress relaxation agent for curable resin, light diffusing agent, light diffusing resin composition, and resin composition
JP2017215367A (en) Laminate for polarization films and method for producing the same
JP2011031591A (en) Nano-material-containing molded article, and method for manufacturing the same
JP6188517B2 (en) COMPOSITE PARTICLE, PROCESS FOR PRODUCING THE SAME, AND FILM
JP7379782B2 (en) Resin fine particles and their manufacturing method
KR102033930B1 (en) Antistatic photho-curable resin composition, antistactic plastic sheet and manufacturing method of antistactic plastic sheet
KR20220046583A (en) New Conductivity Enhancer
JP5835552B2 (en) Antistatic laminate, method for producing the same, and curable composition
JP6690435B2 (en) Cured film forming composition and method for producing the same, cured film, light diffusion laminate, display device and method for producing the same
JP2024040119A (en) conductive composition
JP6682959B2 (en) Process for producing stretched film and emulsion composition for forming cured film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6722766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150