JP7408930B2 - Conductive particles, dispersion and manufacturing method thereof - Google Patents

Conductive particles, dispersion and manufacturing method thereof Download PDF

Info

Publication number
JP7408930B2
JP7408930B2 JP2019119574A JP2019119574A JP7408930B2 JP 7408930 B2 JP7408930 B2 JP 7408930B2 JP 2019119574 A JP2019119574 A JP 2019119574A JP 2019119574 A JP2019119574 A JP 2019119574A JP 7408930 B2 JP7408930 B2 JP 7408930B2
Authority
JP
Japan
Prior art keywords
poly
conductive
conductive particles
particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019119574A
Other languages
Japanese (ja)
Other versions
JP2021005514A (en
Inventor
智文 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2019119574A priority Critical patent/JP7408930B2/en
Publication of JP2021005514A publication Critical patent/JP2021005514A/en
Application granted granted Critical
Publication of JP7408930B2 publication Critical patent/JP7408930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、導電性粒子とその製造方法およびそれを含んでなる分散体に関する。 The present invention relates to conductive particles, a method for producing the same, and a dispersion containing the same.

近年エレクロトにクス分野において、電子機器の薄型化・軽量化が加速するとともに、ウェアラブル用途などの展開に向け多機能化が求められている。従来のセラミックや銀、銅などといった無機材料に比べて、導電性高分子は、その軽さや柔軟性、透明性などから市場の拡大が期待されている。 In recent years, in the field of electronics, electronic devices have become thinner and lighter, and there is a need for multi-functionality for wearable applications. Compared to conventional inorganic materials such as ceramics, silver, and copper, the market for conductive polymers is expected to expand due to their lightness, flexibility, and transparency.

導電性高分子は、上述のように市場からの要求が高い材料の一つであるが、その多くは分散液として提供されているのが実情である。その理由として、分散液から分散媒を除去した導電性高分子そのものは、あらゆる溶剤や分散媒への溶解や分散が困難なものが多いため、製造過程で導電性高分子を分散液の形で得ているものが多いためと推察される。また、導電性高分子は、フィルムやシート等の形状に加工して使用することが期待されており、導電性を高めるためには厚膜化することが有利ではあるが、市販されている分散液は、導電性高分子の濃度(含有率)が数質量%以下と低いものが殆どであり、塗工によって容易に厚膜を得ることが困難であった。 As mentioned above, conductive polymers are one of the materials that are highly demanded by the market, but the reality is that most of them are provided as dispersions. The reason for this is that the conductive polymer itself, which has had the dispersion medium removed from the dispersion liquid, is often difficult to dissolve or disperse in any solvent or dispersion medium. It is assumed that this is because they are getting a lot of things. In addition, conductive polymers are expected to be processed into films, sheets, etc., and it is advantageous to make them thicker in order to increase conductivity, but commercially available dispersion Most of the liquids have a conductive polymer concentration (content) as low as several percent by mass or less, making it difficult to easily obtain a thick film by coating.

特許文献1には、π共役系導電性高分子を含む導電性複合体と、分散媒とを含有する導電性高分子分散液が開示されている。しかし、特許文献1に開示されている導電性複合体は、高濃度な分散液を得ることができないという点で問題があった。 Patent Document 1 discloses a conductive polymer dispersion containing a conductive composite containing a π-conjugated conductive polymer and a dispersion medium. However, the conductive composite disclosed in Patent Document 1 has a problem in that a highly concentrated dispersion cannot be obtained.

特開2017-210501号公報Japanese Patent Application Publication No. 2017-210501

本発明が解決しようとする課題は、高濃度に分散させることが可能な導電性粒子とその分散体、及び導電性粒子の製造方法を提供することにある。 The problem to be solved by the present invention is to provide conductive particles that can be dispersed at a high concentration, a dispersion thereof, and a method for manufacturing the conductive particles.

本発明者らは、上記の諸問題点を考慮し解決すべく鋭意研究を重ねた結果、本発明に至った。すなわち、本発明は、個数基準メジアン径D50が0.5~4μmの範囲内にあり、10μm以上の粒子径を有する粒子の個数の含有割合が1%未満である導電性粒子に関する。 The present inventors have conducted intensive research to solve the above-mentioned problems, and as a result, have arrived at the present invention. That is, the present invention relates to conductive particles having a number-based median diameter D50 within a range of 0.5 to 4 μm, and a content ratio of particles having a particle diameter of 10 μm or more is less than 1%.

また、本発明は、導電性高分子を含んでなり、導電性高分子が、ポリ(3,4-エチレンジオキシチオフェン)、ポリアニリン、ポリピロールからなる群より選ばれる1種以上である上記導電性粒子に関する。 The present invention also provides the above-mentioned conductive material comprising a conductive polymer, wherein the conductive polymer is one or more selected from the group consisting of poly(3,4-ethylenedioxythiophene), polyaniline, and polypyrrole. Regarding particles.

また、本発明は、アスペクト比が5以下である上記導電性粒子に関する。 Further, the present invention relates to the above conductive particles having an aspect ratio of 5 or less.

また、本発明は、導電性粒子5質量部と、水95質量部とを25℃にて混合した際に、均一に溶解または分散され得る上記導電性粒子に関する。 Further, the present invention relates to the above conductive particles that can be uniformly dissolved or dispersed when 5 parts by mass of the conductive particles and 95 parts by mass of water are mixed at 25°C.

また、本発明は、上記導電性粒子が、分散媒に溶解または分散された分散体であって、分散体中の導電性粒子の濃度が、2~30質量%の範囲内である分散体に関する。 The present invention also relates to a dispersion in which the conductive particles are dissolved or dispersed in a dispersion medium, and the concentration of the conductive particles in the dispersion is within a range of 2 to 30% by mass. .

また、本発明は、導電性高分子を含んでなる導電性粒子の製造方法であって、導電性高分子を含んでなる溶液または分散液を噴霧乾燥し、個数基準メジアン径D50が0.5~4μmの範囲内にあり、10μm以上の粒子径を有する粒子の個数の含有割合が1%未満である導電性粒子の製造方法に関する。 The present invention also provides a method for producing conductive particles containing a conductive polymer, in which a solution or dispersion containing the conductive polymer is spray-dried, and the number-based median diameter D50 is 0.5. The present invention relates to a method for producing conductive particles in which the number of particles having a diameter of 10 μm or more is less than 1%.

本発明により、高濃度に分散が可能な導電性粒子が提供できるようになった。また、高濃度な導電性粒子を含む分散体が提供できるようになった。 The present invention has made it possible to provide conductive particles that can be dispersed at high concentrations. Furthermore, it has become possible to provide a dispersion containing conductive particles at a high concentration.

以下、本発明を実施するための形態を具体的に説明する。
<導電性粒子>
本発明における導電性粒子は、下記条件を満たすことを特徴とする。
(1)個数基準メジアン径D50が0.5~4μmの範囲内にある。
(2)10μm以上の粒子径を有する粒子の個数の含有割合が1%未満である。
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated concretely.
<Conductive particles>
The conductive particles in the present invention are characterized by satisfying the following conditions.
(1) The number-based median diameter D50 is within the range of 0.5 to 4 μm.
(2) The content ratio of the number of particles having a particle diameter of 10 μm or more is less than 1%.

(粒子径、個数基準メジアン径D50)
本明細書において、導電性粒子の粒子径とは、導電性粒子を走査型電子顕微鏡(SEM;Scanning Electron Microscope)により観察して得られた画像から粒子の長軸の値と短軸の値を測定し、(長軸の値+短軸の値)/2の値を意味する。また、個数基準メジアン径D50とは、任意に選んだ200個の粒子について算出した粒子径の小さいものから順に累積した累積分布において、累積50%における粒子径を意味する。
導電性粒子の個数基準メジアン径D50は、高濃度に分散させるために、0.5~4μmの範囲内にあり、0.5~3μmの範囲がより好ましい。個数基準メジアン径D50が上記下限値以上では、表面積が多すぎず、粒子同士の凝集が抑制されることから、再分散性やハンドリングの観点で好ましい。一方、上記上限値以下では粗大粒子の割合が減少するため、均一に再分散させることができる点で好ましい。また、導電性粒子は、高濃度化の観点から、導電性粒子5質量部と、水95質量部とを25℃にて混合した際に、均一に溶解または分散され得るものが好ましい。
(Particle size, number-based median diameter D50)
In this specification, the particle diameter of a conductive particle is defined as the value of the long axis and the short axis of the conductive particle from an image obtained by observing the conductive particle using a scanning electron microscope (SEM). It is measured and means the value of (long axis value + short axis value)/2. In addition, the number-based median diameter D50 means the particle diameter at 50% cumulative distribution in the cumulative distribution calculated for 200 arbitrarily selected particles in descending order of particle diameter.
The number-based median diameter D50 of the conductive particles is in the range of 0.5 to 4 μm, more preferably in the range of 0.5 to 3 μm, in order to disperse at a high concentration. When the number-based median diameter D50 is equal to or larger than the above lower limit, the surface area is not too large and aggregation of particles is suppressed, which is preferable from the viewpoint of redispersibility and handling. On the other hand, below the above upper limit, the proportion of coarse particles decreases, which is preferable in that uniform redispersion can be achieved. Further, from the viewpoint of increasing the concentration, the conductive particles are preferably those that can be uniformly dissolved or dispersed when 5 parts by mass of the conductive particles and 95 parts by mass of water are mixed at 25°C.

(10μm以上の粒子含有率)
SEMを用いて観察された画像より選んだ任意の200個の粒子の内、粒子径が10μm以上の粒子の個数の割合を含有割合(含有率)とする。10μm以上の粒子は、均一に再分散させるために、1%未満である。10μm以上の粒子は表面積が小さく、分散媒との接触面積が低下するために、再分散の起点が得られず均一に分散することが難しい。
(Particle content of 10 μm or more)
Among 200 arbitrary particles selected from images observed using SEM, the ratio of the number of particles having a particle diameter of 10 μm or more is defined as the content ratio (content rate). Particles larger than 10 μm are less than 1% for uniform redispersion. Particles with a diameter of 10 μm or more have a small surface area and the contact area with the dispersion medium is reduced, so it is difficult to obtain a starting point for redispersion and it is difficult to uniformly disperse the particles.

(アスペクト比)
上記粒子径の算出方法の際に用いた各々の粒子の長軸の値と短軸の値を用いて、長軸の値/短軸の値を算出し、得られた数値の平均値をアスペクト比とした。アスペクト比は5以下であることが好ましく、3以下がより好ましい。上記上限値以下では、導電性粒子を再分散させる際に、より密に充填することができるため、高濃度化に適している。
(aspect ratio)
Using the long axis value and short axis value of each particle used in the above particle diameter calculation method, calculate the long axis value/short axis value, and calculate the average value of the obtained values as the aspect ratio. It was compared. The aspect ratio is preferably 5 or less, more preferably 3 or less. Below the above upper limit, the conductive particles can be more densely packed when redispersing them, which is suitable for increasing the concentration.

<導電性高分子>
本発明の導電性粒子は、導電性高分子を含んでなることが好ましい。導電性高分子としては、主鎖がπ共役系で構成されている有機高分子であることが好ましい。また、本明細書では、以下に示すドーパントを含むものも導電性高分子とみなすこととする。
<Conductive polymer>
The conductive particles of the present invention preferably contain a conductive polymer. The conductive polymer is preferably an organic polymer whose main chain is composed of a π-conjugated system. Furthermore, in this specification, materials containing the following dopants are also considered to be conductive polymers.

導電性高分子は特に制限されず、例えば、ポリアニリン系導電性高分子、ポリピロール系導電性高分子、ポリチオフェン系導電性高分子、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子、ポリフェニレンビニレン系導電性高分子、ポリアニリン系導電性高分子、ポリアセン系導電性高分子、ポリチオフェンビニレン系導電性高分子、及びこれらの共重合体等が挙げられる。空気中での安定性の点からは、ポリアニリン系導電性高分子、ポリピロール系導電性高分子、ポリチオフェン系導電性高分子が好ましく、導電性の観点から、ポリチオフェン系導電性高分子がより好ましい。導電性高分子は1種又は2種以上を併用することができる。 The conductive polymer is not particularly limited, and examples thereof include polyaniline conductive polymer, polypyrrole conductive polymer, polythiophene conductive polymer, polyacetylene conductive polymer, polyphenylene conductive polymer, and polyphenylene vinylene conductive polymer. Examples include conductive polymers, polyaniline conductive polymers, polyacene conductive polymers, polythiophene vinylene conductive polymers, and copolymers thereof. From the viewpoint of stability in air, polyaniline-based conductive polymers, polypyrrole-based conductive polymers, and polythiophene-based conductive polymers are preferred, and from the viewpoint of conductivity, polythiophene-based conductive polymers are more preferred. The conductive polymers can be used alone or in combination of two or more.

ポリアニリン系導電性高分子としては、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)等が挙げられる。 Examples of polyaniline-based conductive polymers include polyaniline, poly(2-methylaniline), poly(3-isobutylaniline), poly(2-anilinesulfonic acid), poly(3-anilinesulfonic acid), and the like.

ポリピロール系導電性高分子としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。 Examples of polypyrrole-based conductive polymers include polypyrrole, poly(N-methylpyrrole), poly(3-methylpyrrole), poly(3-ethylpyrrole), poly(3-n-propylpyrrole), and poly(3-butylpyrrole). pyrrole), poly(3-octylpyrrole), poly(3-decylpyrrole), poly(3-dodecylpyrrole), poly(3,4-dimethylpyrrole), poly(3,4-dibutylpyrrole), poly(3-dibutylpyrrole) -carboxypyrrole), poly(3-methyl-4-carboxypyrrole), poly(3-methyl-4-carboxyethylpyrrole), poly(3-methyl-4-carboxybutylpyrrole), poly(3-hydroxypyrrole) , poly(3-methoxypyrrole), poly(3-ethoxypyrrole), poly(3-butoxypyrrole), poly(3-hexyloxypyrrole), poly(3-methyl-4-hexyloxypyrrole), etc. .

ポリチオフェン系導電性高分子としては、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブチレンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)、ポリ(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-プロパンスルホン酸カリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-メチル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-エチル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-プロピル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-ブチル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-ペンチル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-ヘキシル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-イソプロピル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-イソブチル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-イソペンチル-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-フルオロ-1-プロパンスルホン酸ナトリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-イルオキシ]-1-メチル-1-プロパンスルホン酸カリウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-メチル-1-プロパンスルホン酸)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-メチル-1-プロパンスルホン酸アンモニウム)、ポリ(3-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-メチル-1-プロパンスルホン酸トリエチルアンモニウム)、ポリ(4-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-ブタンスルホン酸ナトリウム)、ポリ(4-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-ブタンスルホン酸カリウム)、ポリ(4-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-メチル-1-ブタンスルホン酸ナトリウム)、ポリ(4-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-メチル-1-ブタンスルホン酸カリウム)、ポリ(4-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-フルオロ-1-ブタンスルホン酸ナトリウム)、又はポリ(4-[(2,3-ジヒドロチエノ[3,4-b]-[1,4]ジオキセピン-3-イルオキシ]-1-フルオロ-1-ブタンスルホン酸カリウム)等が挙げられる。 Polythiophene-based conductive polymers include polythiophene, poly(3-methylthiophene), poly(3-ethylthiophene), poly(3-propylthiophene), poly(3-butylthiophene), poly(3-hexylthiophene), Poly(3-heptylthiophene), poly(3-octylthiophene), poly(3-decylthiophene), poly(3-dodecylthiophene), poly(3-octadecylthiophene), poly(3-bromothiophene), poly( 3-chlorothiophene), poly(3-iodothiophene), poly(3-cyanothiophene), poly(3-phenylthiophene), poly(3,4-dimethylthiophene), poly(3,4-dibutylthiophene), Poly(3-hydroxythiophene), poly(3-methoxythiophene), poly(3-ethoxythiophene), poly(3-butoxythiophene), poly(3-hexyloxythiophene), poly(3-heptyloxythiophene), Poly(3-octyloxythiophene), poly(3-decyloxythiophene), poly(3-dodecyloxythiophene), poly(3-octadecyloxythiophene), poly(3,4-dihydroxythiophene), poly(3, 4-dimethoxythiophene), poly(3,4-diethoxythiophene), poly(3,4-dipropoxythiophene), poly(3,4-dibutoxythiophene), poly(3,4-dihexyloxythiophene), Poly(3,4-diheptyloxythiophene), poly(3,4-dioctyloxythiophene), poly(3,4-didecyloxythiophene), poly(3,4-didodecyloxythiophene), poly(3,4-didecyloxythiophene) ,4-ethylenedioxythiophene), poly(3,4-propylenedioxythiophene), poly(3,4-butylenedioxythiophene), poly(3-methyl-4-methoxythiophene), poly(3-methyl -4-ethoxythiophene), poly(3-carboxythiophene), poly(3-methyl-4-carboxythiophene), poly(3-methyl-4-carboxyethylthiophene), poly(3-methyl-4-carboxybutyl) thiophene), poly(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-propanesulfonic acid sodium), poly(3-[(2,3-dihydrothieno[ 3,4-b]-[1,4]dioxepin-3-yloxy]-1-potassium propanesulfonate), poly(3-[(2,3-dihydrothieno[3,4-b]-[1,4 ] dioxepin-3-yloxy]-1-methyl-1-propanesulfonate sodium), poly(3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy] -1-ethyl-1-propanesulfonate), poly(3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-propyl-1- poly(sodium propanesulfonate), poly(sodium 3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-butyl-1-propanesulfonate)), (sodium 3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-pentyl-1-propanesulfonate), poly(3-[(2, Sodium 3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-hexyl-1-propanesulfonate), poly(3-[(2,3-dihydrothieno[3,4 -b]-[1,4]dioxepin-3-yloxy]-1-isopropyl-1-propanesulfonic acid sodium), poly(3-[(2,3-dihydrothieno[3,4-b]-[1, 4] Sodium dioxepin-3-yloxy]-1-isobutyl-1-propanesulfonate), poly(3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy) ]-1-isopentyl-1-propanesulfonate), poly(3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-fluoro-1 -sodium propanesulfonate), poly(3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-yloxy]-1-methyl-1-potassium propanesulfonate), poly(potassium 3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-methyl-1-propanesulfonic acid), poly(3-[(2,3- ammonium dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-methyl-1-propanesulfonate), poly(3-[(2,3-dihydrothieno[3,4-b ]-[1,4]dioxepin-3-yloxy]-1-methyl-1-propanesulfonic acid triethylammonium), poly(4-[(2,3-dihydrothieno[3,4-b]-[1,4 ] dioxepin-3-yloxy]-1-butanesulfonate), poly(4-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-butane potassium sulfonate), poly(4-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-methyl-1-butanesulfonate sodium), poly( 4-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-methyl-1-butanesulfonic acid potassium), poly(4-[(2,3 -dihydrothieno[3,4-b]-[1,4]dioxepin-3-yloxy]-1-fluoro-1-butanesulfonate), or poly(4-[(2,3-dihydrothieno[3,4 -b]-[1,4]dioxepin-3-yloxy]-1-fluoro-1-butanesulfonic acid potassium, and the like.

上記導電性高分子のなかでも、導電性、透明性、耐熱性の点から、ポリチオフェン系導電性高分子が好ましく、ポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。
導電性高分子は1種を単独で使用してもよいし、2種以上を併用してもよい。
Among the above-mentioned conductive polymers, polythiophene-based conductive polymers are preferred from the viewpoint of conductivity, transparency, and heat resistance, and poly(3,4-ethylenedioxythiophene) is particularly preferred.
One type of conductive polymer may be used alone, or two or more types may be used in combination.

(ドーパント)
本明細書において、ドーパントとは、アニオン基を有するモノマー単位を分子内に2つ以上有する重合体を意味し、導電性高分子の導電性向上に寄与する。ポリアニオンのアニオン基としては、スルホ基、またはカルボキシ基であることが好ましい。このようなポリアニオンの具体例としては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4-スルホブチルメタクリレート)、ポリメタクリルオキシベンゼンスルホン酸等のスルホン酸基を有する高分子や、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2-アクリルアミド-2-メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等のカルボン酸基を有する高分子が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。これらポリアニオンの中でも、導電性をより高くできることから、スルホン酸基を有する高分子が好ましく、ポリスチレンスルホン酸がより好ましい。前記ポリアニオンは1種を単独で使用してもよいし、2種以上を併用してもよい。ポリアニオンの質量平均分子量は2万以上100万以下であることが好ましく、10万以上50万以下であることがより好ましい。本明細書における質量平均分子量は、ゲルパーミエーションクロマトグラフィで測定し、標準物質をポリスチレンとして求めた値である。ドーパントの含有割合は、導電性高分子中、1~90質量%の範囲であることが好ましい。
(dopant)
In this specification, the term "dopant" refers to a polymer having two or more monomer units having anionic groups in its molecule, and contributes to improving the conductivity of a conductive polymer. The anion group of the polyanion is preferably a sulfo group or a carboxy group. Specific examples of such polyanions include polystyrene sulfonic acid, polyvinyl sulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), and polyisoprene sulfonic acid. acids, polymers with sulfonic acid groups such as polysulfoethyl methacrylate, poly(4-sulfobutyl methacrylate), polymethacryloxybenzenesulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacrylic carboxylic acid , polymethacryliccarboxylic acid, poly(2-acrylamido-2-methylpropanecarboxylic acid), polyisoprenecarboxylic acid, polyacrylic acid, and other polymers having carboxylic acid groups. It may be a homopolymer of these or a copolymer of two or more thereof. Among these polyanions, polymers having sulfonic acid groups are preferred, and polystyrene sulfonic acid is more preferred, since it can further increase the conductivity. The polyanions may be used alone or in combination of two or more. The mass average molecular weight of the polyanion is preferably 20,000 or more and 1,000,000 or less, more preferably 100,000 or more and 500,000 or less. The mass average molecular weight in this specification is a value determined by gel permeation chromatography using polystyrene as a standard substance. The content of the dopant is preferably in the range of 1 to 90% by mass in the conductive polymer.

<分散媒>
本明細書における分散媒とは、水または有機溶媒を指す。有機溶媒としては、特に限定されないが、例えば、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤等が挙げられる。分散媒は1種を単独で使用してもよいし、2種以上を併用してもよい。
アルコール系溶剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、t-ブタノール、アリルアルコール等が挙げられる。
ケトン系溶剤としては、例えば、ジエチルケトン、メチルプロピルケトン、メチルブチ
ルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、
ジイソプロピルケトン、メチルエチルケトン、アセトン、ジアセトンアルコール等が挙げ
られる。エステル系溶剤としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、イソプロピルベンゼン等が挙げられる。アミド系溶媒としては、例えば、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド等が挙げられる。分散媒の中でも、導電性高分子の分散性が高いことから、特に水が好ましい。
<Dispersion medium>
The dispersion medium herein refers to water or an organic solvent. Examples of the organic solvent include, but are not limited to, alcohol solvents, ketone solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like. One type of dispersion medium may be used alone, or two or more types may be used in combination.
Examples of alcoholic solvents include methanol, ethanol, isopropanol, n-butanol, t-butanol, and allyl alcohol.
Examples of ketone solvents include diethyl ketone, methylpropyl ketone, methyl butyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl amyl ketone,
Examples include diisopropyl ketone, methyl ethyl ketone, acetone, diacetone alcohol, and the like. Examples of the ester solvent include ethyl acetate, propyl acetate, butyl acetate, and the like. Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, ethylbenzene, propylbenzene, and isopropylbenzene. Examples of the amide solvent include N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and the like. Among dispersion media, water is particularly preferred since the conductive polymer has high dispersibility.

<分散体>
本発明における分散体とは、導電性粒子が分散媒に溶解または分散されたものを指す。分散体中の導電性粒子の濃度は、2~30質量%であることが好ましく、3~10質量%であることがより好ましい。上記下限値以上では容易に厚膜を得ることができ、上記下限値以下では粘度の観点から容易に分散することができる点で好ましい。
<Dispersion>
The dispersion in the present invention refers to conductive particles dissolved or dispersed in a dispersion medium. The concentration of conductive particles in the dispersion is preferably 2 to 30% by weight, more preferably 3 to 10% by weight. If it is above the above lower limit, a thick film can be easily obtained, and if it is below the above lower limit, it can be easily dispersed from the viewpoint of viscosity, which is preferable.

<導電性粒子の製造工程>
導電性粒子の製造工程は、導電性高分子の分散体を乾燥し、粒子径が10μm以上の粗大粒子を分級により除去することで得られ、必要に応じて乾燥中もしくは乾燥後にディスパーなどで解砕してもよい。乾燥方法としては、本発明の導電性粒子が得られれば特に限定されないが、真空加熱乾燥、凍結乾燥、噴霧乾燥が挙げられる。
<Manufacturing process of conductive particles>
The manufacturing process of conductive particles is obtained by drying a conductive polymer dispersion and removing coarse particles with a particle size of 10 μm or more by classification. You can crush it. The drying method is not particularly limited as long as the conductive particles of the present invention can be obtained, and examples thereof include vacuum heating drying, freeze drying, and spray drying.

導電性高分子の分散体は、例えば、ドーパントの分散媒中で、導電性高分子を形成するモノマーを化学酸化重合することにより得られる。また、導電性高分子水系分散液は市販のものを使用しても構わない。 The conductive polymer dispersion can be obtained, for example, by chemical oxidation polymerization of a monomer forming the conductive polymer in a dopant dispersion medium. Moreover, a commercially available aqueous conductive polymer dispersion may be used.

真空加熱乾燥では、前記導電性高分子分散体中の分散媒を加熱しながら真空乾燥する。 真空加熱乾燥の温度は、50℃以上、200℃以下が好ましく、温度の調整のしやすさから、80℃以上120℃以下がより好ましい。 In vacuum heating drying, the dispersion medium in the conductive polymer dispersion is vacuum dried while being heated. The temperature of vacuum heat drying is preferably 50°C or higher and 200°C or lower, and more preferably 80°C or higher and 120°C or lower for ease of temperature adjustment.

凍結乾燥では、前記導電性高分子水系分散液中の水分を凍結させ、真空乾燥する。
凍結乾燥の際の温度は、-60℃以上60℃以下とすることが好ましく、-40℃以上40℃以下とすることがより好ましい。凍結乾燥温度が前記下限値以上であれば、温度調整しやすく、前記上限値以下であれば、導電性高分子水系分散液を容易に凍結乾燥できる。
In freeze-drying, water in the conductive polymer aqueous dispersion is frozen and vacuum-dried.
The temperature during freeze-drying is preferably -60°C or higher and 60°C or lower, more preferably -40°C or higher and 40°C or lower. If the freeze-drying temperature is equal to or higher than the lower limit, the temperature can be easily adjusted, and if it is equal to or lower than the upper limit, the conductive polymer aqueous dispersion can be easily freeze-dried.

噴霧乾燥では、前記導電性高分子水系分散液を真空容器中に噴霧することにより水分を蒸発させて乾燥する。
噴霧乾燥の際の温度は、50℃以上200℃以下とすることが好ましく、100℃以上150℃以下とすることがより好ましい。噴霧乾燥温度が前記下限値以上であれば、導電性高分子水系分散液を容易に乾燥でき、前記上限値以下であれば、導電性高分子の熱劣化を防止できる。
In spray drying, the aqueous conductive polymer dispersion is sprayed into a vacuum container to evaporate water and dry.
The temperature during spray drying is preferably 50°C or higher and 200°C or lower, more preferably 100°C or higher and 150°C or lower. If the spray drying temperature is at least the above lower limit, the aqueous conductive polymer dispersion can be easily dried, and if it is at or below the upper limit, thermal deterioration of the conductive polymer can be prevented.

乾燥方法としては、凍結乾燥と噴霧乾燥がより好ましく、噴霧乾燥が特に好ましい。真空加熱乾燥や凍結乾燥ではアスペクト比の高い導電性粒子が得られる。 As a drying method, freeze drying and spray drying are more preferable, and spray drying is particularly preferable. Conductive particles with a high aspect ratio can be obtained by vacuum heating drying or freeze drying.

分級方法は特に限定されないが、分級機や篩で分級する。分級により除去する粒子径は10μm以上が好ましい。10μm以上の粗大粒子は表面積が小さく、分散媒との接触面積が低下するために、再分散の起点が得られず均一に分散することが難しい。 The classification method is not particularly limited, but classification is performed using a classifier or a sieve. The particle diameter to be removed by classification is preferably 10 μm or more. Coarse particles of 10 μm or more have a small surface area and the contact area with the dispersion medium is reduced, so it is difficult to obtain a starting point for redispersion and to uniformly disperse the particles.

導電性粒子の解砕方法は特に制限されず、スターラー等の剪断力が弱い攪拌であってもよいが、高剪断力の分散機(ホモジナイザ等)の方が粒子径を均一に揃えられるためより好ましい。 The method of crushing the conductive particles is not particularly limited, and stirring with a weak shearing force such as a stirrer may be used, but it is better to use a disperser with a high shearing force (homogenizer, etc.) because the particle diameter can be made uniform. preferable.

以下、実施例により本発明をさらに具体的に説明するが、以下の実施例は、本発明の権利範囲を何ら制限するものではない。なお、実施例において、「部」は特に明記しない限り、「質量部」を表す。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following Examples do not limit the scope of the present invention in any way. In the examples, "parts" represent "parts by mass" unless otherwise specified.

<個数基準メジアン径D50>
導電性粒子の個数基準メジアン径D50は、以下の方法により決定した。粒子の粒子径は、走査型電子顕微鏡(SEM;Scanning Electron Microscope)により観察して得られた画像から粒子の長軸の値と短軸の値を測定した。(長軸の値+短軸の値)/2の値を、その粒子の粒子径とみなした。任意に選んだ200個の粒子について、同様に粒子径を算出した。これら粒子径の小さいものから順に累積した累積分布において、累積50%における粒子径を個数基準メジアン径D50とした。
<Number-based median diameter D50>
The number-based median diameter D50 of conductive particles was determined by the following method. The particle size of the particles was determined by measuring the values of the long axis and short axis of the particles from an image obtained by observation using a scanning electron microscope (SEM). The value of (long axis value + short axis value)/2 was regarded as the particle diameter of the particle. Particle diameters were similarly calculated for 200 randomly selected particles. In the cumulative distribution accumulated in descending order of particle size, the particle size at 50% of the cumulative size was defined as the number-based median diameter D50.

<10μm以上の粒子径を有する粒子の個数の含有割合(10μm以上の粒子含有率)>
SEMを用いて観察された画像より選んだ任意の200個の粒子の内、粒子径が10μm以上の粒子の個数の割合を含有割合(含有率)とした。
<Content ratio of the number of particles having a particle diameter of 10 μm or more (particle content rate of 10 μm or more)>
Among 200 arbitrary particles selected from images observed using SEM, the ratio of the number of particles having a particle diameter of 10 μm or more was defined as the content ratio (content rate).

< アスペクト比>
上記粒子径の算出方法の際に用いた各々の粒子の長軸の値と短軸の値を用いて、長軸の値/短軸の値を算出した。得られた数値の平均値をアスペクト比とした。
<Aspect ratio>
Using the long axis value and short axis value of each particle used in the above particle diameter calculation method, the long axis value/short axis value was calculated. The average value of the obtained values was taken as the aspect ratio.

<導電性粒子の製造>
(実施例1)
ポリアニリンを含む分散液(三菱ケミカル社製、aquaPASS-50P)を固形分2質量%となるように水で希釈し、凍結乾燥した。得られた粉体をディスパー(プライミクス社製、ホモミクサーMARK II 2.5型)を用いて回転数5000rpmで粉砕し、孔径10μmのフィルターで分級することで、個数基準メジアン径D50:3μm、10μm以上の粒子含有率が1%未満、アスペクト比2.4の導電性粒子1を得た。
<Manufacture of conductive particles>
(Example 1)
A dispersion containing polyaniline (manufactured by Mitsubishi Chemical Corporation, aquaPASS-50P) was diluted with water to a solid content of 2% by mass, and freeze-dried. The obtained powder is pulverized at a rotational speed of 5000 rpm using a disper (Homomixer MARK II 2.5 type, manufactured by Primix), and classified using a filter with a pore size of 10 μm, so that the number-based median diameter D50: 3 μm, 10 μm or more Conductive particles 1 having a particle content of less than 1% and an aspect ratio of 2.4 were obtained.

(実施例2)
実施例1で使用した2質量%ポリアニリン水溶液をハイスピードミキサ(アーステクニカ社製、LFS2)で100℃に加熱しながら真空乾燥しながら撹拌(アジテータ1000rpm、チョッパー3000rpm)した後、10μmのフィルターで分級することで、個数基準メジアン径D50:4μm、10μm以上の粒子含有率が1%未満、アスペクト比4.3の導電性粒子2を得た。
(Example 2)
The 2% by mass polyaniline aqueous solution used in Example 1 was heated to 100°C with a high-speed mixer (manufactured by Earth Technica, LFS2) and stirred while drying in vacuum (agitator 1000 rpm, chopper 3000 rpm), and then classified using a 10 μm filter. By doing so, conductive particles 2 having a number-based median diameter D50 of 4 μm, a particle content of 10 μm or more of less than 1%, and an aspect ratio of 4.3 were obtained.

(実施例3)
実施例1で使用した2質量%ポリアニリン水溶液をスプレードライヤー(BUCHI社製、B-290)で150℃の下噴霧乾燥し、10μmのフィルターで分級することで、個数基準メジアン径D50:1μm、10μm以上の粒子含有率が1%未満、アスペクト比1.3の導電性粒子3を得た。
(Example 3)
The 2% by mass polyaniline aqueous solution used in Example 1 was spray-dried at 150°C with a spray dryer (manufactured by BUCHI, B-290) and classified with a 10 μm filter to obtain number-based median diameter D50: 1 μm, 10 μm. Conductive particles 3 having a particle content of less than 1% and an aspect ratio of 1.3 were obtained.

(実施例4)
実施例1で使用した2質量%ポリアニリン水溶液をスプレードライヤー(BUCHI社製、B-290)で120℃の下、噴霧乾燥し、10μmのフィルターで分級することで、個数基準メジアン径D50:2μm、10μm以上の粒子含有率が1%未満、アスペクト比1.9の導電性粒子4を得た。
(Example 4)
The 2% by mass polyaniline aqueous solution used in Example 1 was spray-dried at 120°C with a spray dryer (manufactured by BUCHI, B-290) and classified with a 10 μm filter to obtain a number-based median diameter D50 of 2 μm, Conductive particles 4 with a particle content of 10 μm or more of less than 1% and an aspect ratio of 1.9 were obtained.

(実施例5)
実施例1で使用した2質量%ポリアニリン水溶液を超音波ノズルを用いてスプレードライヤー(BUCHI社製、B-290)で120℃の下噴霧乾燥し、10μmのフィルターで分級することで、個数基準メジアン径D50:4μm、10μm以上の粒子含有率が1%未満、アスペクト比1.5の導電性粒子5を得た。
(Example 5)
The 2% by mass polyaniline aqueous solution used in Example 1 was spray-dried at 120°C with a spray dryer (manufactured by BUCHI, B-290) using an ultrasonic nozzle, and classified with a 10 μm filter to obtain a number-based median. Conductive particles 5 having a diameter D50 of 4 μm, a particle content of 10 μm or more of less than 1%, and an aspect ratio of 1.5 were obtained.

(実施例6~16)
以下、表1に記載の材料および方法に従い、実施例1~5で示した方法と同様にして、導電性粒子6~16をそれぞれ得た。尚、表1で使用した材料は以下のとおりである。
・aquaPASS-50P(ポリアニリンを含む水分散液、三菱ケミカル社製)
・PPY-12(ポリピロールを含む水分散液、丸菱油化工業社製)
・Clevios PH1000(ポリ(3,4-エチレンジオキシチオフェン)を含む水分散液、へレウス社製)
・Clevios P(ポリ(3,4-エチレンジオキシチオフェン)を含む水分散液、へレウス社製)
(Examples 6 to 16)
Hereinafter, conductive particles 6 to 16 were obtained in the same manner as in Examples 1 to 5 according to the materials and methods listed in Table 1, respectively. The materials used in Table 1 are as follows.
・aquaPASS-50P (aqueous dispersion containing polyaniline, manufactured by Mitsubishi Chemical Corporation)
・PPY-12 (aqueous dispersion containing polypyrrole, manufactured by Marubishi Yuka Kogyo Co., Ltd.)
・Clevios PH1000 (aqueous dispersion containing poly(3,4-ethylenedioxythiophene), manufactured by Heraeus)
・Clevios P (aqueous dispersion containing poly(3,4-ethylenedioxythiophene), manufactured by Heraeus)

(比較例1)
実施例1で使用した2質量%ポリアニリン水溶液をハイスピードミキサ(アーステクニカ社製、LFS2)で100℃に加熱しながら真空乾燥しながら撹拌(アジテータ300rpm、チョッパー1000rpm)することで、個数基準メジアン径D50:8μm、10μm以上の粒子含有率が10%、アスペクト比3.7の導電性粒子17を得た。
(Comparative example 1)
The 2% by mass polyaniline aqueous solution used in Example 1 was heated to 100°C with a high-speed mixer (manufactured by Earth Technica, LFS2) and stirred (agitator 300 rpm, chopper 1000 rpm) while vacuum drying to obtain a number-based median diameter. Conductive particles 17 having a D50 of 8 μm, a particle content of 10 μm or more of 10%, and an aspect ratio of 3.7 were obtained.

(実施例17~32、比較例2)
<分散体1~17の製造>
導電性粒子1~17それぞれ5部について、水95部を加え、25℃にて遊星撹拌機(シンキー社製、あわとり錬太郎AR-100)により分散し、分散体1~17をそれぞれ得た。
(Examples 17 to 32, Comparative Example 2)
<Production of dispersions 1 to 17>
95 parts of water was added to 5 parts each of conductive particles 1 to 17, and dispersed at 25°C using a planetary stirrer (Awatori Rentaro AR-100, manufactured by Shinky Co., Ltd.) to obtain dispersions 1 to 17, respectively. .

<分散体1~17の分散性評価>
分散体1~17をそれぞれ目視で確認し、下記評価基準に基づいて分散性を評価した。
<Dispersibility evaluation of dispersions 1 to 17>
Dispersions 1 to 17 were each visually confirmed and their dispersibility was evaluated based on the following evaluation criteria.

(評価基準)
◎:導電性粒子が凝集しておらず、24時間後でも沈殿が生じない(極めて良好)
〇:導電性粒子が凝集していないが、24時間後に沈殿が生じる(良好)
×:導電性粒子の凝集が発生し、均一な分散体が得られない(不良)
(Evaluation criteria)
◎: Conductive particles are not aggregated and no precipitation occurs even after 24 hours (very good)
○: Conductive particles are not aggregated, but precipitation occurs after 24 hours (good)
×: Aggregation of conductive particles occurs and a uniform dispersion cannot be obtained (defective)

(実施例33~48、比較例3)
<分散体18~34の製造>
導電性粒子の濃度が、2、5、7、10、15、20、25および30質量%となるように、導電性粒子1~17それぞれについて、水を添加して上記濃度の混合液を調製した。これらの混合液を遊星撹拌機(シンキー社製、あわとり錬太郎AR-100)を用いて、撹拌時間1分、脱泡時間1分で分散した。この分散された混合液を、マイクロトラック(MicrotracBel社製、MT3300II)により粒度分布をそれぞれ測定した。上記濃度の内、粒度分布におけるピーク粒径(最大頻度における粒子径)の値が100μmを超えない最大の濃度を最大充填率とした。各導電性粒子が最大充填率である分散体を、それぞれ分散体18~34とした。
(Examples 33 to 48, Comparative Example 3)
<Production of dispersions 18 to 34>
Water was added to each of conductive particles 1 to 17 to prepare a mixed solution with the above concentration so that the concentration of conductive particles was 2, 5, 7, 10, 15, 20, 25 and 30% by mass. did. These mixed liquids were dispersed using a planetary stirrer (Awatori Rentaro AR-100, manufactured by Shinky Co., Ltd.) for a stirring time of 1 minute and a defoaming time of 1 minute. The particle size distribution of each of the dispersed liquid mixtures was measured using Microtrac (manufactured by Microtrac Bel, MT3300II). Among the above concentrations, the maximum concentration in which the value of the peak particle size (particle size at the maximum frequency) in the particle size distribution did not exceed 100 μm was defined as the maximum filling rate. The dispersions in which each conductive particle had the maximum filling rate were designated as dispersions 18 to 34, respectively.

<分散体18~34の成膜>
分散体18~33をアプリケーター20milを用いて、それぞれポリエチレンテレフタレート(PET)フィルム(東レ社製、ルミラー(登録商標)E20#75、厚み75μm)に塗工し、80℃で4分間、更に120℃で30分間乾燥してそれぞれ塗膜18~33を作製した。分散体34についても、同じ成膜方法によって塗膜の作製を試みたが、凝集物が生じているために均一な塗膜を得ることはできなかったため、以下の評価は行わなかった。
<Film formation of dispersions 18 to 34>
Dispersions 18 to 33 were each applied to a polyethylene terephthalate (PET) film (manufactured by Toray Industries, Inc., Lumirror (registered trademark) E20 #75, thickness 75 μm) using a 20 mil applicator, and heated at 80°C for 4 minutes and then at 120°C. After drying for 30 minutes, coating films 18 to 33 were prepared. Regarding Dispersion 34, an attempt was made to form a coating film using the same film forming method, but a uniform coating film could not be obtained due to the formation of aggregates, so the following evaluation was not performed.

<塗膜18~33の膜厚評価>
塗膜18~33に対し、日本工業規格(JIS)B7503に規定されたダイヤルゲージを用いて、任意の5箇所を測定し、上限値と下限値を除いた3点の平均値を膜厚とした。
<Film thickness evaluation of coating films 18 to 33>
For coating films 18 to 33, measure five arbitrary points using a dial gauge specified in Japanese Industrial Standard (JIS) B7503, and take the average value of the three points excluding the upper and lower limits as the film thickness. did.

<塗膜18~33の均質性評価>
塗膜18~33を蛍光灯の光にかざした際の抜け(塗膜を通過した光の漏れ)の有無と、膜厚評価で得られた上限値と下限値の差が膜厚に対して10%以上かどうかで塗膜の均質性を評価した。
<Homogeneity evaluation of coating films 18 to 33>
The presence or absence of leakage (leakage of light passing through the coating film) when coating films 18 to 33 are held up to the light of a fluorescent lamp, and the difference between the upper and lower limit values obtained in the film thickness evaluation are relative to the film thickness. The homogeneity of the coating film was evaluated based on whether it was 10% or more.

(評価基準)
◎:光にかざした際に抜けがなく、膜厚の上限値と下限値の差が膜厚に対して10%未満(極めて良好)
〇:光にかざした際に抜けはないが、膜厚の上限値と下限値の差が膜厚に対して10%以上(良好)
×:光にかざした際に抜けがある(不良)
(Evaluation criteria)
◎: There is no cracking when held up to light, and the difference between the upper and lower limits of the film thickness is less than 10% of the film thickness (very good)
〇: There is no cracking when held up to light, but the difference between the upper and lower limits of the film thickness is 10% or more relative to the film thickness (good)
×: There are gaps when held up to light (defective)

以上述べた通り、本発明の導電性粒子は、いずれも5質量%以上の濃度で、凝集物のない均一な分散体を得ることができた。また、アスペクト比が小さいものほど、より均一な塗膜が得られることが明らかとなった。これに対して、比較例の導電性粒子では、凝集が生じ、均一な分散体を得ることができなかった。 As described above, the conductive particles of the present invention were able to obtain a uniform dispersion free of aggregates at a concentration of 5% by mass or more. Furthermore, it has become clear that the smaller the aspect ratio, the more uniform the coating film can be obtained. On the other hand, with the conductive particles of the comparative example, aggregation occurred and a uniform dispersion could not be obtained.

Claims (4)

個数基準メジアン径D50が0.5~4μmの範囲内にあり、10μm以上の粒子径を有する粒子の個数の含有割合が1%未満である導電性粒子であって、該導電性粒子5質量部と、水95質量部とを25℃にて混合した際に、均一に溶解または分散され得る導電性粒子。 Conductive particles having a number-based median diameter D50 within the range of 0.5 to 4 μm and containing less than 1% of particles having a particle diameter of 10 μm or more, 5 parts by mass of the conductive particles conductive particles that can be uniformly dissolved or dispersed when mixed with 95 parts by mass of water at 25°C. 導電性高分子を含んでなり、導電性高分子が、ポリチオフェン系導電性高分子、ポリアニリン系導電性高分子およびポリピロール系導電性高分子からなる群より選ばれる1種以上である請求項1記載の導電性粒子。 2. The conductive polymer comprises a conductive polymer, and the conductive polymer is one or more selected from the group consisting of a polythiophene conductive polymer, a polyaniline conductive polymer, and a polypyrrole conductive polymer. conductive particles. アスペクト比が5以下である請求項1または2記載の導電性粒子。 The conductive particles according to claim 1 or 2, having an aspect ratio of 5 or less. 請求項1~3いずれか記載の導電性粒子が、分散媒に溶解または分散された分散体であって、分散体中の導電性粒子の濃度が、2~30質量%の範囲内である分散体。 A dispersion in which the conductive particles according to any one of claims 1 to 3 are dissolved or dispersed in a dispersion medium, wherein the concentration of the conductive particles in the dispersion is within the range of 2 to 30% by mass. body.
JP2019119574A 2019-06-27 2019-06-27 Conductive particles, dispersion and manufacturing method thereof Active JP7408930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119574A JP7408930B2 (en) 2019-06-27 2019-06-27 Conductive particles, dispersion and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119574A JP7408930B2 (en) 2019-06-27 2019-06-27 Conductive particles, dispersion and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021005514A JP2021005514A (en) 2021-01-14
JP7408930B2 true JP7408930B2 (en) 2024-01-09

Family

ID=74099361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119574A Active JP7408930B2 (en) 2019-06-27 2019-06-27 Conductive particles, dispersion and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7408930B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045116A (en) 2006-07-18 2008-02-28 Arakawa Chem Ind Co Ltd Electroconductive polymer/dopant complex organic solvent dispersion, manufacturing method thereof, and composition containing the electroconductive polymer/dopant complex organic solvent dispersion
JP2008059914A (en) 2006-08-31 2008-03-13 Hayakawa Rubber Co Ltd Resin fine particle, and conductive particulate
JP2016169255A (en) 2015-03-11 2016-09-23 信越ポリマー株式会社 Method for producing conductive solid matter, method for producing conductive polymer organic solvent dispersion liquid, method for producing antistatic film and antistatic film
WO2018061374A1 (en) 2016-09-30 2018-04-05 積水化成品工業株式会社 Conductive resin particles and use of same
JP2019083159A (en) 2017-10-31 2019-05-30 信越ポリマー株式会社 Electrode and manufacturing method thereof, and cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118370A (en) * 1993-10-27 1995-05-09 Japan Synthetic Rubber Co Ltd Fine pyrrole polymer particle and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045116A (en) 2006-07-18 2008-02-28 Arakawa Chem Ind Co Ltd Electroconductive polymer/dopant complex organic solvent dispersion, manufacturing method thereof, and composition containing the electroconductive polymer/dopant complex organic solvent dispersion
JP2008059914A (en) 2006-08-31 2008-03-13 Hayakawa Rubber Co Ltd Resin fine particle, and conductive particulate
JP2016169255A (en) 2015-03-11 2016-09-23 信越ポリマー株式会社 Method for producing conductive solid matter, method for producing conductive polymer organic solvent dispersion liquid, method for producing antistatic film and antistatic film
WO2018061374A1 (en) 2016-09-30 2018-04-05 積水化成品工業株式会社 Conductive resin particles and use of same
JP2019083159A (en) 2017-10-31 2019-05-30 信越ポリマー株式会社 Electrode and manufacturing method thereof, and cell

Also Published As

Publication number Publication date
JP2021005514A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP5374841B2 (en) Conductive polymer / dopant complex organic solvent dispersion, method for producing the same, and composition containing conductive polymer / dopant complex organic solvent dispersion
JP5560003B2 (en) Conductive polymer solution and method for producing the same
TWI512000B (en) A conductive composition, a method for producing a conductive composition, an antistatic resin composition, and an antistatic resin film
JP5537862B2 (en) Conductive polymer solution and antistatic sheet
EP1918326B1 (en) Conductive composition
JP6640052B2 (en) Method for producing antistatic molded article
TW201629155A (en) Addition-curable antistatic organopolysiloxane composition and antistatic silicone film
JP5429652B2 (en) Process for producing conductive polymer / dopant complex organic solvent dispersion
JP2012524831A5 (en)
JP2011116860A (en) Conductive coating, method for producing the same and conductive molded product
JP7408930B2 (en) Conductive particles, dispersion and manufacturing method thereof
JP2024050695A (en) Conductive polymer composition, substrate, and method for producing substrate
JP6504706B2 (en) Method for producing conductive polymer organic solvent dispersion
JP6655387B2 (en) Method for producing conductive polymer dispersion, method for producing antistatic film, and method for producing antistatic molded article
JP6326834B2 (en) Carbon nanotube dispersion and conductive film
JP6312090B2 (en) Conductive material and substrate
JP7281973B2 (en) Electrodes and batteries
JP2016169261A (en) Method for producing conductive solid matter, method for producing conductive polymer organic solvent dispersion liquid, method for producing antistatic film and antistatic film
JP7311412B2 (en) Method for producing highly conductive composite, method for producing aqueous dispersion of highly conductive composite, method for producing organic solvent dispersion of highly conductive composite, method for producing conductive film
JP2017037760A (en) Transparent conductive substrate, method of manufacturing the same, and touch panel using the same
JP7133054B2 (en) Method for producing conductive particles
JP6954822B2 (en) Method of manufacturing conductive film
JP7253464B2 (en) Method for producing highly conductive composite, method for producing aqueous dispersion of highly conductive composite, method for producing organic solvent dispersion of highly conductive composite, method for producing conductive film
JP6706491B2 (en) Transparent conductive coating composition, transparent conductive sheet and method for producing the same
JP6465485B2 (en) Method for producing conductive solid, method for producing conductive polymer organic solvent dispersion, and method for producing antistatic film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R151 Written notification of patent or utility model registration

Ref document number: 7408930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151