WO2018059416A1 - 电动汽车以及电动汽车之间充电的方法 - Google Patents

电动汽车以及电动汽车之间充电的方法 Download PDF

Info

Publication number
WO2018059416A1
WO2018059416A1 PCT/CN2017/103559 CN2017103559W WO2018059416A1 WO 2018059416 A1 WO2018059416 A1 WO 2018059416A1 CN 2017103559 W CN2017103559 W CN 2017103559W WO 2018059416 A1 WO2018059416 A1 WO 2018059416A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
charging
discharge
battery pack
controller
Prior art date
Application number
PCT/CN2017/103559
Other languages
English (en)
French (fr)
Inventor
周岿
贺文涛
刘晓康
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854866.5A priority Critical patent/EP3511193A4/en
Publication of WO2018059416A1 publication Critical patent/WO2018059416A1/zh
Priority to US16/366,633 priority patent/US11260759B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present application relates to the field of electric vehicles, and more particularly to a method of charging between an electric vehicle and an electric vehicle.
  • Electric vehicles generally replenish energy through AC and DC charging piles, but because of the limited number of charging piles and the uneven distribution, electric vehicles are not convenient to charge. When the remaining power of the electric vehicle cannot travel to the next charging pile, mutual charging between the vehicle and the vehicle is a better choice.
  • the prior art solution is to modify the on-board charger in an electric vehicle to have a bidirectional conversion function (which can convert AC power into DC power and DC power into AC power), and charge and discharge the AC socket of the charging vehicle during charging.
  • the cable is connected to the AC outlet of the discharge vehicle.
  • the high-voltage battery pack of the discharge vehicle When charging, the high-voltage battery pack of the discharge vehicle outputs high-voltage direct current, and the high-voltage direct current is converted into alternating current by the vehicle charger, and the alternating current enters the AC socket of the charging vehicle through the AC outlet and the charging and discharging cable, and finally The alternating current is changed to high-voltage direct current by the on-board charger of the charging vehicle, thereby realizing charging of the high-voltage battery pack of the charging vehicle.
  • the solution needs to modify the on-board charger to have a two-way conversion function, which will inevitably increase the cost and volume of the on-board charger and reduce the conversion efficiency of the on-board charger.
  • the present application provides a method of charging between an electric vehicle and an electric vehicle to better achieve charging between electric vehicles.
  • an electric vehicle comprising: a battery pack; a DC outlet; a controller, wherein the controller is connected to the AC outlet of another electric vehicle through a charge and discharge cable, A charging request of an electric vehicle controls the battery pack to charge the other electric vehicle.
  • the above controller can be integrated in a power management module of an electric vehicle or a module having a control function in an electric vehicle.
  • the controller When the DC socket of the electric vehicle is connected to the AC outlet of another electric vehicle through the charging and discharging cable, if the controller receives the charging request of another electric vehicle, the controller can control the battery pack of the electric vehicle according to the charging request. Charging another electric vehicle, compared with the prior art design that requires changing the electric vehicle's charger, the battery pack of the electric vehicle can be utilized as the other without changing the design scheme of the electric vehicle's charger. An electric car is charged, which makes it easier to charge the electric car.
  • the controlling before the controller controls the battery pack to charge the another electric vehicle according to the charging request of the another electric vehicle
  • the device is also operative to send a discharge configuration parameter to the other electric vehicle.
  • the other electric vehicle can convert the direct current outputted from the electric vehicle to the direct current of the battery pack of the other electric vehicle according to the discharge configuration parameter, and charge the other electric vehicle.
  • the discharge configuration parameter includes an electrical energy and a discharge voltage that the battery pack can provide when charging the another electric vehicle At least one of a discharge current and a discharge power.
  • the controller is based on the another electric vehicle Before the charging request controls the battery pack to charge the another electric vehicle, the controller is further configured to: receive a handshake request message sent by the another electric vehicle; and send a handshake response message to the another electric vehicle, Establishing a communication connection between the electric vehicle and the another electric vehicle; acquiring the charging request based on the communication connection.
  • the safety and reliability of charging can be improved by establishing a communication connection.
  • the controller is further configured to: In the case, the battery pack is controlled to stop charging the other electric vehicle.
  • the charge and discharge cable includes a discharge plug, a charging plug, and a connection a cable between the charging plug and the discharge plug, wherein the discharge plug mates with the DC outlet, the charging plug mating with an AC outlet of the other electric vehicle.
  • the discharge plug and the charging plug are respectively matched with the DC socket and the AC socket, so that the discharge plug can obtain DC power from the DC socket of the discharge vehicle, and input the DC power to the charging plug through the cable, and then input the DC power to the charging vehicle. In the socket, thereby charging the charging vehicle.
  • any one of the L1 pin, the L2 pin, and the L3 pin of the charging plug is connected to the a first pin of the discharge plug is connected, and an N pin of the charging plug is connected to a second pin of the discharge plug through a cable, wherein the first pin and the second pin are respectively DC+ lead
  • the pin and the DC-pin, or the first pin and the second pin are a DC-pin and a DC+ pin, respectively.
  • the L1 pin of the charging plug is connected to the DC-pin of the discharge plug through a cable
  • the N pin of the charging plug is connected to the DC+ pin of the discharge plug through a cable.
  • the electric vehicle further includes the charge and discharge cable. That is to say, the charging and discharging cable is also an integral part of the above electric vehicle.
  • the charging request includes a charging demand parameter including at least one of electrical energy, charging voltage, charging current, and charging power required for charging of another electric vehicle.
  • the controller determines that the electric vehicle is a discharge vehicle.
  • the controller determining that the electric vehicle is a discharge vehicle includes: when the DC outlet is connected to a discharge plug of the charge and discharge cable, the controller determines that the electric vehicle is a discharge vehicle .
  • the controller is further configured to receive a ready charging command sent by the another electric vehicle before the controller controls the battery pack to charge the another electric vehicle, the preparation A charging command is used to notify the electric vehicle to charge the other electric vehicle.
  • the controller is further configured to send a ready discharge command to the another electric vehicle before the controller controls the battery pack to charge the another electric vehicle.
  • the ready discharge command is used to notify the other electric vehicle that it is ready to receive the direct current output from the electric vehicle.
  • an electric vehicle including: a battery pack; an AC outlet; a charger, wherein the charger receives the DC socket and the DC socket of another electric vehicle through a charging and discharging cable.
  • the direct current output from another electric vehicle is used to charge the battery pack.
  • the DC power output by the other electric vehicle can be used to charge the battery pack of the electric vehicle, and the charging of the electric vehicle needs to be changed in the prior art.
  • the DC electric power outputted by another electric vehicle can be used to charge the battery pack of the electric vehicle without changing the design scheme of the electric vehicle's charger, which can conveniently realize the electric vehicle between the electric vehicles. Charging.
  • the electric vehicle further includes:
  • a controller configured to acquire a discharge configuration parameter of the another electric vehicle
  • the charger is specifically configured to convert direct current output by the another electric vehicle into direct current matched with the battery pack according to the discharge configuration parameter to charge the battery pack.
  • the controller acquires a charging configuration parameter of another electric vehicle by transmitting a charging request to another electric vehicle, so that the charging machine can convert the direct current output of the other electric vehicle into the electric vehicle according to the discharging configuration parameter of the other electric vehicle.
  • the battery pack matches the DC power and charges the battery pack for that electric vehicle.
  • the controller is specifically configured to: send a charging request to the another electric vehicle; and receive the another electric vehicle A discharge configuration parameter sent after receiving the charging request.
  • the discharge configuration parameter includes an electrical energy and a discharge voltage that the another electric vehicle can provide when charging the battery pack At least one of a discharge current and a discharge power.
  • the controller is further configured to: before the charging of the battery pack by the charger Another electric vehicle transmits a handshake request message; receives a handshake response message of the other electric vehicle to establish a communication connection between the electric vehicle and the another electric vehicle.
  • the controller can acquire a discharge configuration parameter of another electric vehicle based on the above communication connection.
  • establishing a communication connection before charging can improve the safety and reliability of charging.
  • the controller is further configured to: in a case where an abnormality occurs in charging, the control device The charger stops charging the battery pack.
  • the charging and discharging cable includes a discharge plug, a charging plug, and a charging plug And a cable between the discharge plug, wherein the charging plug mates with the AC outlet, the discharge plug mates with a DC outlet of the other electric vehicle.
  • the discharge plug and the charging plug are respectively matched with the DC socket and the AC socket, so that the discharge plug can obtain DC power from the DC socket of the discharge vehicle, and input the DC power to the charging plug through the cable, and then input the DC power to the charging vehicle. In the socket, thereby charging the charging vehicle.
  • any one of the L1 pin, the L2 pin, and the L3 pin of the charging plug is connected to the a first pin of the discharge plug is connected, and an N pin of the charging plug is connected to a second pin of the discharge plug through a cable, wherein the first pin and the second pin are respectively DC+ lead
  • the pin and the DC-pin, or the first pin and the second pin are a DC-pin and a DC+ pin, respectively.
  • the L1 pin of the charging plug is connected to the DC+ pin of the discharge plug through a cable
  • the N pin of the charging plug is connected to the DC-pin of the discharge plug through a cable.
  • the electric vehicle further includes the charge and discharge cable. That is to say, the charging and discharging cable is also an integral part of the above electric vehicle.
  • the charging request includes a charging demand parameter including at least one of electrical energy, charging voltage, charging current, and charging power required for charging the electric vehicle.
  • the controller determines that the electric vehicle is a discharge vehicle before the charger receives DC power output by another electric vehicle to charge the battery pack.
  • the controller determining that the electric vehicle is a discharge vehicle includes: when the AC outlet is connected to a charging plug of the charging and discharging cable, the controller determines that the electric vehicle is a charging vehicle .
  • the controller is further configured to send a ready charging command to the another electric vehicle before the charger receives DC power output by another electric vehicle.
  • the preparation charge command is used to notify the other electric vehicle to charge the electric vehicle.
  • the controller is further configured to receive the another electric vehicle to send a ready discharge command before the charger receives the direct current output from the other electric vehicle to charge the battery pack.
  • the ready discharge command is used to notify the electric vehicle that it is ready to receive the direct current output from the other electric vehicle.
  • a method of charging between electric vehicles is provided, the method being applied to a first electric vehicle that is discharged, the first electric vehicle comprising a battery pack, a DC outlet, and a controller, wherein the method
  • the controller includes: determining, by the controller, that the DC outlet is connected to an AC outlet of the second electric vehicle through a charge and discharge cable; and the controller controls the battery pack to charge the second electric vehicle.
  • the battery pack of the first electric vehicle can be controlled by the controller to charge the second electric vehicle, which is required in the prior art.
  • the battery pack of the first electric vehicle can be used to charge the second electric vehicle without changing the design scheme of the electric vehicle's charger, and the electric vehicle can be more conveniently realized. Charging between.
  • the method further includes: the controller receiving the a charging request of the second electric vehicle; after receiving the charging request, the controller transmits a discharging configuration parameter to the second electric vehicle.
  • the second electric vehicle can convert the direct current outputted by the first electric vehicle to the direct current of the battery pack of the second electric vehicle according to the discharge configuration parameter, and charge the second electric vehicle. .
  • the discharging configuration parameter includes an electrical energy, a discharging voltage, and a battery voltage that the battery pack can provide when charging the second electric vehicle. At least one of a discharge current and a discharge power.
  • the controller controls the battery pack as described Before the charging of the second electric vehicle, the method further includes: the controller receiving a handshake request message sent by the second electric vehicle; the controller sending a handshake response message to the second electric vehicle to establish the A communication connection between the first electric vehicle and the second electric vehicle.
  • the safety and reliability of charging can be improved by establishing a communication connection.
  • the method further includes: in a case where an abnormality occurs in charging Controlling the battery pack to stop charging the second electric vehicle.
  • a method for charging between electric vehicles is provided, the method being applied to a charged second electric vehicle, the second electric vehicle comprising a battery pack, an AC outlet, a charger, and a controller, wherein The method includes: the controller determines that the AC outlet is connected to a DC outlet of a first electric vehicle through a charge and discharge cable; and the controller controls the charger to receive a DC power output by the first electric vehicle.
  • the battery pack is charged.
  • the method further includes: the controller acquiring a discharge configuration parameter of the first electric vehicle; and the charger according to the discharge configuration parameter, The direct current outputted by the first electric vehicle is converted into direct current matched with the battery pack to charge the battery pack.
  • the DC power outputted by the first electric vehicle can be used to charge the battery pack of the second electric vehicle, and the electric power needs to be changed in the prior art.
  • the DC battery outputted by the first electric vehicle can be used to charge the battery pack of the second electric vehicle without changing the design scheme of the charger of the electric vehicle, and the electric battery can be conveniently realized. Charging between cars.
  • the controller acquires a discharge configuration parameter of the first electric vehicle, including: the controller is to the first The electric vehicle transmits a charging request; the controller receives the discharging configuration parameter sent by the first electric vehicle after receiving the charging request.
  • the charging configuration parameter of the first electric vehicle is obtained by transmitting a charging request to the first electric vehicle, so that the controller can convert the direct current outputted by the first electric vehicle to the direct current of the battery pack of the second electric vehicle according to the discharging configuration parameter. And charging the second electric car.
  • the discharge configuration parameter includes at least one of electrical energy, discharge voltage, discharge current, and discharge power that the first electric vehicle can provide when charging the battery pack.
  • the method further includes: the controller transmitting a handshake request message to the first electric vehicle; the controller receiving a handshake response message of the first electric vehicle to establish the first electric vehicle and the second Communication connection between electric cars.
  • Establishing a communication connection before charging can improve the safety and reliability of charging.
  • the method further includes: in a case where an abnormality occurs in charging, The controller controls the charger to stop charging the battery pack.
  • 1 is a schematic block diagram of an electric vehicle.
  • Fig. 2 is a schematic view showing the connection between electric vehicles during charging in the prior art.
  • FIG. 3 is a schematic block diagram of an electric vehicle of an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of an electric vehicle of an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of an electric vehicle of an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a charging system composed of an electric vehicle according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a charging system composed of an electric vehicle according to an embodiment of the present application.
  • FIG. 8 is a schematic flow chart of a method of charging between electric vehicles according to an embodiment of the present application.
  • FIG. 9 is a schematic flow chart of a method of charging between electric vehicles according to an embodiment of the present application.
  • FIG. 10 is a schematic flow chart of a method of charging between electric vehicles according to an embodiment of the present application.
  • 11 is a schematic flow chart of a method of charging between electric vehicles according to an embodiment of the present application.
  • the electric vehicle in FIG. 1 includes: a high voltage battery pack, a motor driver, a motor, a wheel, and a vehicle.
  • DCDC car DC power supply
  • lead storage battery lead storage battery
  • vehicle control device DC charging socket
  • AC charging socket AC charging socket
  • car charger DC charging socket
  • car charger AC charging socket
  • the high voltage battery pack includes a battery core and a switch.
  • the electric vehicle can be charged through a DC charging socket and an AC charging socket.
  • the AC charging pile When charging through the AC charging socket, the AC charging pile is connected to the AC charging socket through a cable, and the AC charging of the AC charging pile is input from the AC outlet, and the vehicle charging device inputs
  • the alternating current is converted into high voltage direct current, and the high voltage battery pack is used to charge the high voltage battery pack.
  • the DC charging post and the DC charging socket are connected by a cable, and the DC power of the DC charging pile is input from the DC socket, and the high voltage battery pack is directly charged.
  • the high-voltage battery pack When the vehicle is running, the high-voltage battery pack outputs high-voltage direct current to the motor driver, and the motor driver converts the high-voltage direct current into an alternating current power supply, and the motor drives the vehicle to rotate.
  • the high-voltage battery pack can also charge the lead-acid battery.
  • the high-voltage battery pack will output the high-voltage direct current to the vehicle DCDC, and the vehicle DCDC converts the high-voltage direct current into the low-voltage direct current to charge the lead-acid battery.
  • Fig. 2 is a schematic view showing the connection between electric vehicles during charging in the prior art.
  • the AC outlet of the discharge vehicle is connected to the AC outlet of the charging vehicle through a charging and discharging cable.
  • the bidirectional conversion charger of the discharge vehicle converts the DC power outputted in the battery pack into AC power, and the AC power is charged.
  • the discharge cable is output to an AC outlet of the charging vehicle, and after receiving the AC power, the AC outlet of the charging vehicle converts the AC power into DC power that matches the battery pack of the charging vehicle to charge the battery pack of the charging vehicle.
  • the bidirectional conversion charger of the discharge vehicle needs to convert the direct current outputted by the battery pack into alternating current, that is, the bidirectional conversion charger is subjected to the inverter process.
  • the charger in an electric vehicle can only convert the AC power received by the AC outlet into a DC power that matches the battery pack, and cannot convert the DC power into AC power.
  • the embodiment of the present application proposes a method for charging between an electric vehicle and an electric vehicle, and the method for charging between the electric vehicle and the electric vehicle can realize the electric vehicle without changing the structure of the electric vehicle's charger. Recharge each other.
  • the electric vehicle of the embodiment of the present application will be described in detail below with reference to FIGS.
  • the electric vehicle 100 of FIG. 3 includes:
  • Battery pack 110 DC outlet 120, controller 130.
  • the controller 130 is configured to control the battery pack 110 to charge the other electric vehicle according to the charging request of the other electric vehicle.
  • the DC socket 120 is a socket capable of charging the battery pack 110 by a DC charging post. Specifically, when the DC socket 120 is connected to the DC charging post through a charging cable, the battery pack 110 can be quickly charged by the DC charging post. In addition, the DC outlet 120 can also output DC power to achieve charging of other battery packs.
  • the electric vehicle 100 described above belongs to a discharge vehicle during charging, that is, a vehicle that supplies electric power to other electric vehicles during charging.
  • the above-mentioned charging and discharging cable may be an integral part of the electric vehicle, or may be independent of A separate component from the electric car.
  • the DC outlet 120 is connected to the battery pack 110
  • the controller 130 is connected to the battery pack 110 and the DC outlet 120.
  • the controller 130 may be a controller having both a communication function and a control function, and the controller 130 can communicate with other electric vehicles as well as other modules in the electric vehicle 100.
  • the controller 130 may include a communication device and a control device in the electric vehicle 100, the controller 130 having the functions of the communication device and the control device.
  • the battery pack of the electric vehicle when the DC socket of the electric vehicle is connected to the AC outlet of another electric vehicle through the charging and discharging cable, the battery pack of the electric vehicle can be controlled by the controller to charge another electric vehicle, and the prior art Compared with the design scheme of the charger that needs to change the electric vehicle, the battery pack of the electric vehicle can be used to charge another electric vehicle without changing the design scheme of the electric vehicle's charger, and the electric motor can be conveniently realized. Charging between cars.
  • the controller 130 determines that the electric vehicle 100 is a discharge vehicle.
  • the controller 130 determines that the electric vehicle 100 is a discharge vehicle specifically includes:
  • the controller 130 determines a connection between the DC outlet 120 and the charging and discharging cable
  • the controller 130 determines that the electric vehicle 100 is a discharge vehicle.
  • the controller 130 may first determine that the DC socket 120 and the first plug of the charging and discharging cable (for example, the resistor may be a resistor between the CC2 pin and the PE pin) are connected, and then determine the first plug.
  • the resistance value of the resistor when the resistance value of the resistor in the first plug is a preset resistance value, the controller 130 determines that the electric vehicle 100 is a discharge vehicle.
  • the controller 130 before the controller 130 controls the battery pack 110 to charge another electric vehicle according to the charging request of another electric vehicle, the controller 130 is further configured to send a discharge configuration parameter to the another electric vehicle. .
  • the other electric vehicle transmits a charging request to the controller 130 for requesting the electric vehicle 100 to charge another electric vehicle.
  • the charging request may include a charging demand parameter, which may include at least one of electric energy, charging voltage, charging current, and charging power required by another electric vehicle during charging.
  • the controller 130 is to return to another electric vehicle the discharge configuration parameter of the electric vehicle 100 when charging another electric vehicle.
  • the discharge configuration parameter may include at least one of electrical energy, discharge voltage, discharge current, and discharge power that the battery pack 110 can provide when charging another electric vehicle.
  • the discharge configuration parameter may be directly generated by the controller according to the attribute information of the battery pack 110 after receiving the charging request.
  • the battery pack 110 can only supply 50 kWh of electric energy to another electric vehicle, and the controller directly The battery pack 110 can provide 50 kWh of information to another electric vehicle.
  • the above-mentioned discharge configuration parameter may also be comprehensively generated according to the charging demand parameter in the charging request and the attribute information of the battery pack 110.
  • the charging demand parameter indicates that another electric vehicle needs 30 kWh of electric energy
  • the battery pack 110 Capable of providing 50 kWh of electrical energy the controller can transmit charging configuration parameters that the battery pack 110 can provide 30 kWh of electrical energy to another electric vehicle.
  • the charger of another electric vehicle can convert the DC power outputted by the battery pack 110 into a DC power matched with the battery pack of the other electric vehicle according to the discharge configuration parameter, and the other electric motor The car's battery pack is charged.
  • the controller 130 before the controller 130 controls the battery pack 110 to charge another electric vehicle, the controller 130 is further configured to receive a handshake request message sent by another electric vehicle, and send the message to another electric vehicle.
  • the handshake response message is established to establish a communication connection between the electric vehicle 100 and the another electric vehicle, and after establishing the communication connection, the controller acquires the charging request based on the communication connection.
  • establishing a communication connection before charging can improve the security and reliability of charging.
  • the electric vehicle 100 may first send a handshake request message to another electric vehicle, and then receive a handshake response message replied by another electric vehicle, that is, both the discharge vehicle and the charging vehicle.
  • a handshake request message can be sent.
  • the controller 130 before the controller 130 controls the battery pack 110 to charge another electric vehicle, the controller 130 is further configured to receive a ready charging command of another electric vehicle and send the preparation to another electric vehicle. Discharge command.
  • the above preparation charging command indicates that another electric vehicle is ready for charging, requesting the battery pack 110 to be another electric motor. Car charging.
  • the above-described preparation discharge command is a reply to the preparation of the charging command, which is used to notify another electric vehicle to prepare to receive the direct current output from the battery pack 110.
  • the electric power output from the battery pack 110 can be used to charge another electric vehicle.
  • controller 130 may exchange information with another electric vehicle in the form of a power line carrier through a charging and discharging cable connected between the electric vehicle 100 and another electric vehicle, or may exchange information through wireless communication.
  • the controller 130 controls the battery pack 110 to stop charging another electric vehicle.
  • An abnormality in charging may be that the charging current is too large, the charging power is too large, and the charging voltage is too high.
  • the charging and discharging cable includes a discharge plug, a charging plug, and a cable connected between the charging plug and the discharging plug, wherein the discharging plug matches the DC socket 120, and the charging plug is connected to another electric vehicle.
  • the AC outlet is matched.
  • any one of the L1 pin, the L2 pin, and the L3 pin of the charging plug is connected to the first pin of the discharge plug through a cable, and the N pin of the charging plug passes the cable.
  • the first pin and the second pin are respectively a DC+ pin and a DC- pin, or the first pin and the second pin are respectively a DC- pin and DC+ pin.
  • the L1 pin of the charging plug is connected to the DC-pin of the discharge plug through a cable
  • the N pin of the charging plug is connected to the DC+ pin of the discharge plug through a cable.
  • the L2 or L3 pin of the charging plug is connected to the DC-pin of the discharge plug through a cable, and the N pin of the charging plug is connected to the DC+ pin of the discharge plug through a cable.
  • the matching of the discharge plug to the DC outlet 120 may specifically be that the external dimensions and the definition of the position of the discharge plug match the DC outlet 120.
  • the charging plug can be matched with the AC outlet of another electric vehicle. Specifically, the external size and the foot definition of the charging plug can be matched with the AC outlet of another electric vehicle.
  • the controller may first determine that the electric vehicle 100 is a discharging vehicle, and then establish an electric vehicle. 100 is connected to another electric vehicle, establishes a communication connection, receives another electric vehicle to send a charging request, and sends a discharge configuration parameter to another electric vehicle, and then receives another electric vehicle to send a ready charging command, and Another electric vehicle replies to the ready to discharge command, thus completing the pre-charging preparation, and then charging the other electric vehicle with the charging package 110.
  • the electric vehicle of the embodiment of the present application is described above with reference to FIG. 3 from the perspective of a discharge vehicle.
  • the electric vehicle of the embodiment of the present application will be described in detail below with reference to FIG. 4 from the perspective of a charging vehicle.
  • the electric vehicle in the embodiment of the present application can be used as both a charging vehicle and a discharging vehicle.
  • the electric vehicle of the embodiment of the present application will be described in terms of a discharge vehicle and a charging vehicle, respectively.
  • the electric vehicle 200 of FIG. 4 includes:
  • the battery pack 210, the AC outlet 220, and the charger 230 receives the DC power output from the other electric vehicle to charge the battery pack.
  • the AC outlet 220 is a socket capable of charging the battery pack 210 through an AC charging post. Specifically, when the AC outlet 220 is connected to the AC charging post through a charging cable, the battery pack 210 can be charged by the AC charging post. In addition, the AC outlet 120 can also receive DC or AC power output by other electric vehicles, and is a battery pack 210. Charging.
  • the electric vehicle 200 described above belongs to a charging vehicle during charging, that is, a vehicle that charges itself by using another electric vehicle.
  • the above-mentioned charging and discharging cable may be an integral part of an electric vehicle, or may be a separate component from the electric vehicle.
  • the DC power output by the other electric vehicle can be used to charge the battery pack of the electric vehicle, and the prior art Compared with the design of the charger of the electric vehicle, it is possible to charge the battery pack of the electric vehicle by using the direct current output from the electric vehicle without changing the design scheme of the electric vehicle. Realize charging between electric cars.
  • the electric vehicle 200 further includes a controller 240 for acquiring a discharge configuration parameter of another electric vehicle.
  • the charger 230 is specifically configured to convert the DC power outputted by the other electric vehicle into a DC power matched with the battery pack according to the discharge configuration parameter acquired by the controller 240 to charge the battery pack 210.
  • the charger 230 may convert the current and voltage of the direct current output by the other electric vehicle into a direct current that matches the battery pack according to the discharge configuration parameter.
  • the discharge configuration parameter described above may include at least one of electric energy, discharge voltage, discharge current, and discharge power that another electric vehicle can provide when charging the battery pack 210.
  • the charger can An electric vehicle outputs 400V of direct current into a direct current of 350V, and charges the battery pack 210 with the target direct current.
  • the method before the charger 230 receives the DC power output by the other electric vehicle to charge the battery pack 210, the method further includes: the controller 240 determines that the electric vehicle 200 is a charging vehicle.
  • the controller 240 determines that the electric vehicle 200 is a charging vehicle specifically includes:
  • the controller 240 determines the connection between the AC outlet 220 and the charging and discharging cable
  • the controller 240 determines that the electric vehicle 200 is a charging vehicle.
  • the controller 240 may first determine that the AC outlet 220 is connected to the second plug of the charging and discharging cable, and then determine the resistance in the second plug (for example, the resistance may be between the CC pin and the PE pin).
  • the resistance value of the resistor when the resistance value of the resistor in the second plug is a preset resistance value, the controller 240 determines that the electric vehicle 200 is a discharge vehicle.
  • the controller 240 acquiring the discharge configuration parameter of another electric vehicle includes: the controller 240 sends a charging request to another electric vehicle, and the controller 240 receives the discharging configuration parameter sent by another electric vehicle.
  • the controller 240 before the charger 230 receives the DC power output by the other electric vehicle, before charging the battery pack 210, the controller 240 further sends a ready charging command to the other electric vehicle, the ready charging command indicating the The electric vehicle 200 is ready for charging and requests another electric vehicle to charge the battery pack 210.
  • the controller 240 receives a ready charging command of another electric vehicle for notifying the electric vehicle 200 that it is ready to receive the direct current output by the other electric vehicle to charge the electric vehicle 200.
  • the controller 240 receives the ready discharge command, a charging configuration connection between the electric vehicle 200 and another electric vehicle is established. After the charging configuration connection is completed, the controller 240 begins to control the charger 230 to charge the battery pack 210.
  • the controller 240 is further configured to send a handshake request message to another electric vehicle, and receive a handshake response message sent by another electric vehicle to establish A communication connection between the electric vehicle 200 and another electric vehicle.
  • establishing a communication connection before charging can improve the security and reliability of the charging process.
  • controller 240 may exchange information with another electric vehicle in the form of a power line carrier through a charging and discharging cable connected between the electric vehicle 200 and another electric vehicle, or may exchange information through wireless communication.
  • the controller 240 is further configured to control the charger 230 to stop charging the battery pack 210 if an abnormality occurs in charging.
  • An abnormality in charging may be that the charging current is too large, the charging power is too large, and the charging voltage is too high.
  • the charging and discharging cable includes a discharge plug, a charging plug, and a cable connected between the charging plug and the discharging plug, wherein the charging plug matches the AC socket 220, and the discharging plug and another electric vehicle
  • the DC socket is matched.
  • any one of the L1 pin, the L2 pin, and the L3 pin of the charging plug is connected to the first pin of the discharge plug through a cable, and the N pin of the charging plug passes the cable.
  • the first pin and the second pin are respectively a DC+ pin and a DC- pin, or the first pin and the second pin are respectively a DC- pin and DC+ pin.
  • the L1 pin of the charging plug is connected to the DC-pin of the discharge plug through a cable
  • the N pin of the charging plug is connected to the DC+ pin of the discharge plug through a cable.
  • the L2 or L3 pin of the charging plug is connected to the DC+ pin of the discharge plug through a cable, and the N pin of the charging plug is connected to the DC-pin of the discharge plug through a cable.
  • the L2 or L3 pin of the charging plug is connected to the DC-pin of the discharge plug via a cable, and the N pin of the charging plug is connected to the DC+ pin of the discharge plug via a cable.
  • the controller may first determine that the electric vehicle 200 is a charging vehicle, and then establish the electric vehicle 200 with another The communication connection of the electric vehicle, after establishing the communication connection, sends a charging request to another electric vehicle, and acquires a discharge configuration parameter sent by another electric vehicle, and then sends a ready charging command to another electric vehicle, and receives another The electric vehicle returns to the ready-discharge command, so that the pre-charging preparation is completed, and then the electric vehicle 200 can be charged by another electric vehicle.
  • the electric vehicle of the embodiment of the present application is described in detail with reference to FIG. 2 and FIG. 3 respectively.
  • the electric vehicle of the embodiment of the present application is described in detail with reference to FIG. 5 to FIG. Introduction.
  • Fig. 5 is a schematic block diagram of an electric vehicle of an embodiment of the present application.
  • the electric vehicle 300 includes:
  • the battery pack 310, the DC outlet 320, the AC outlet 330, the charger 340, the communication device 350, and the vehicle control device 360 are connected to the battery pack 310, the DC outlet 320, the AC outlet 330, the charger 340, the communication device 350, and the vehicle control device 360.
  • the AC outlet 330 is connected to the battery pack 310 through the charger 340 to charge the battery pack 310 by using the AC power input from the AC outlet 330 (first convert the AC power into DC power and then charge the battery pack).
  • the communication device 350 is in a connected state with other modules in the electric vehicle 300, and the vehicle control device 360 and the electric vehicle 300 The other modules are also connected.
  • the vehicle control device 360 controls the charger 340 to charge other vehicles; when the AC outlet 330 is connected to the DC outlet of the other vehicle through the charge and discharge cable, the charger 340 The DC power of the output of the other vehicle is received to charge the battery pack 310.
  • the communication device 350 and the vehicle control device 360 in FIG. 4 correspond to the controller 130 in the electric vehicle 100 described above or the controller 240 in the electric vehicle 200.
  • FIG. 6 is a schematic block diagram of a charging system composed of an electric vehicle according to an embodiment of the present application.
  • the charging system comprises a discharge vehicle, a charging vehicle and a charging and discharging cable connecting the two, the charging and discharging cable comprises a discharging plug and a charging plug, wherein the discharging plug is inserted in a DC socket of the discharging vehicle, and the charging plug is inserted in an AC socket of the charging vehicle In this way, the battery pack of the charging vehicle can be charged by the battery pack of the discharge vehicle.
  • FIG. 7 is a schematic block diagram of a charging system composed of an electric vehicle according to an embodiment of the present application.
  • the discharge plug of the charging and discharging cable conforms to the external size definition and pin definition of the international DC charging plug
  • the charging plug of the charging and discharging cable conforms to the external size definition of the international AC charging plug and the definition of the foot.
  • the way in which the discharge plug and the charging plug in the charging and discharging cable are connected through the cable is modified.
  • the DC+ of the discharging plug is connected with the L1 of the charging plug, and the DC- and charging plug of the discharging plug are connected.
  • the PE of the discharge plug is connected with the PE of the charging plug
  • the CC2 pin of the discharge plug is connected to the PE through the resistor Rb and the switch Sb
  • the CC pin of the charging plug is connected to the PE through the Ra and the switch Sa, wherein Ra
  • Ra is generally 2K ⁇
  • the value of Ra is generally 2.5K ⁇ .
  • the charging and discharging cables in the embodiments of the present application respectively comprise plugs matching the DC socket and the AC socket, and the two plugs are connected together by a special connection manner through the cable, so that the two plugs can be inserted into the two plugs respectively.
  • the electric car's DC socket and AC socket enable charging between electric cars.
  • the battery pack of the discharge vehicle can charge the battery pack of the charging vehicle.
  • the vehicle control device of the discharge vehicle detects that Rb is 2K ⁇ through the CC2 pin, and determines that the discharge plug has been inserted into the DC socket, and the vehicle is a discharge vehicle.
  • the vehicle control device of the charging vehicle detects that Ra is 2.5 K ⁇ through the CC pin, and determines that the discharge plug has been inserted into the AC outlet, and the vehicle is a charging vehicle.
  • steps S101 and S102 may be performed simultaneously or at different times.
  • the communication device of the discharge vehicle sends a handshake signal to the charging vehicle.
  • the communication device can transmit the handshake signal through wireless communication, or can send the handshake signal through the power line carrier through the DC socket.
  • the communication device of the charging vehicle receives the handshake signal sent by the charging vehicle, and sends a handshake signal or a handshake response message to the discharge vehicle.
  • the discharge vehicle may first send a handshake signal to the charging vehicle, or the charging vehicle may first send a handshake signal to the discharge vehicle, and if the handshake information or the handshake response information of the opposite device is received within a preset time, then it is determined.
  • the communication connection is successful, otherwise, it is determined that the communication connection is unsuccessful.
  • the communication device of the charging vehicle sends a charging demand parameter to the discharge vehicle.
  • the communication device of the discharge vehicle receives a charging demand parameter of the charging vehicle, and sends a discharge distribution to the charging vehicle. Set the parameters.
  • the communication device of the charging vehicle sends a preparation charging command to the discharge vehicle.
  • the communication device of the discharge vehicle receives the preparation charging command of the charging vehicle, and transmits a preparation discharge command to the charging vehicle.
  • the battery pack inside the discharge vehicle can charge the charging vehicle through the DC outlet output current.
  • the electric vehicle mentioned in FIG. 2 to FIG. 7 includes a module or device related to charge and discharge.
  • the structure of the electric vehicle mentioned in FIG. 2 to FIG. 7 may also be As shown in Figure 1.
  • the method of charging between the electric vehicles described in FIGS. 8 and 9 can be performed by the electric vehicle shown in FIGS. 1 to 7, and the first electric vehicle and the second electric vehicle described in FIG. 8 and FIG. 9, respectively.
  • the repeated description is omitted as appropriate for the sake of brevity.
  • FIG. 8 is a schematic diagram of a method of charging between electric vehicles according to an embodiment of the present application.
  • the method of Figure 8 is applied to a first electric vehicle that is discharged, the first electric vehicle including a battery pack, a DC outlet, a controller, and the method of Figure 8 includes:
  • the controller determines that the DC socket and the AC socket of the second electric vehicle are connected by a charging and discharging cable;
  • the controller controls the battery pack to charge the second electric vehicle.
  • the above charging and discharging cable may include a discharge plug, a charging plug, and a cable connected between the charging plug and the discharging plug, wherein the discharging plug matches the DC outlet of the first electric vehicle, and the charging plug matches the AC outlet of the second electric vehicle.
  • the battery pack of the first electric vehicle when the DC socket of the first electric vehicle is connected to the AC outlet of the second electric vehicle through the charging and discharging cable, the battery pack of the first electric vehicle can be controlled by the controller to charge the second electric vehicle.
  • the battery pack of the first electric vehicle can be used to charge the second electric vehicle without changing the design scheme of the electric vehicle. It is convenient to charge between electric vehicles.
  • the method before the controller controls the battery pack to charge the second electric vehicle, the method further includes: determining that the first electric vehicle is a discharge vehicle.
  • the controller determines the connection between the DC socket and the charging and discharging cable
  • the controller determines that the first electric vehicle is a discharge vehicle.
  • controller and the DC outlet herein are modules or devices in the first electric vehicle.
  • the controller determines that the DC socket is connected to the first plug of the charging and discharging cable
  • the controller determines that the first electric vehicle is a discharge vehicle.
  • the method before the controller controls the battery pack to charge the second electric vehicle, the method further includes: the controller receives a charging request of the second electric vehicle; and the controller sends the discharging configuration parameter to the second electric vehicle. .
  • the DC socket of the first electric vehicle is connected to the AC outlet of the second electric vehicle in the charging and discharging cable Thereafter, the second electric vehicle sends a charging request to the controller for requesting the first electric vehicle to charge the second electric vehicle.
  • the charging request may include a charging demand parameter, which may include at least one of electrical energy, charging voltage, charging current, and charging power required by the second electric vehicle during charging.
  • the controller After obtaining the charging request of the second electric vehicle, the controller returns to the second electric vehicle a discharge configuration parameter of the first electric vehicle when charging the second electric vehicle.
  • the discharge configuration parameter may include at least one of electric energy, discharge voltage, discharge current, and discharge power that the battery pack of the first electric vehicle can provide when charging the second electric vehicle.
  • the method further includes: the controller receiving the handshake request message sent by the second electric vehicle; and the controller sending a handshake to the second electric vehicle Responding to a message to establish a communication connection between the first electric vehicle and the second electric vehicle.
  • establishing a communication connection before charging can improve the security and reliability of the charging process.
  • the first electric vehicle may first send a handshake request message to the second electric vehicle, and then receive a handshake response message of the second electric vehicle reply, that is, the first electric vehicle and The second electric car can send a handshake request message.
  • the method before the controller controls the battery pack to charge the second electric vehicle, the method further includes:
  • the controller receives a ready charging command of the second electric vehicle
  • the controller sends a ready discharge command to the second electric vehicle to establish a charging configuration connection between the first electric vehicle and the second electric vehicle.
  • the above-mentioned preparation charging command indicates that the second electric vehicle is ready for charging, and requests the battery pack to charge the second electric vehicle.
  • the above-described preparatory discharge command is a reply to the preparation of the charging command for notifying the second electric vehicle that it is ready to receive the direct current output from the first electric vehicle. In this way, the second electric vehicle can be charged by using the direct current output from the first electric vehicle.
  • the controller may exchange information with the second electric vehicle in the form of a power line carrier through a charging and discharging cable connected between the first electric vehicle and the second electric vehicle, or may exchange information through wireless communication.
  • the method further includes: controlling the battery pack to stop charging the second electric vehicle if an abnormality occurs in charging.
  • An abnormality in charging may be that the charging current is too large, the charging power is too large, and the charging voltage is too high.
  • the controller may first determine that the first electric vehicle is a discharge vehicle, and then establish a communication connection between the first electric vehicle and the second electric vehicle by using a handshake message, and then the controller receives the communication. Receiving a charging request of the second electric vehicle, and returning the discharging configuration parameter to the second electric vehicle, and then the controller receives the ready charging command sent by the second electric vehicle, and returns a ready discharging command to the second electric vehicle, thus completing Before the charging is completed, the second electric vehicle can be charged by using the charging bag of the first electric vehicle.
  • FIG. 9 is a schematic diagram of a method of charging between electric vehicles according to an embodiment of the present application.
  • the method of Figure 8 is applied to a second electric vehicle that is charged, the second electric vehicle including a battery pack, an AC outlet, a charger, a controller, and the method of Figure 9 includes:
  • the controller determines that the AC outlet is connected to the DC outlet of the first electric vehicle through a charging and discharging cable.
  • the charger of the second electric vehicle receives the charging current output by the first electric vehicle to charge the battery pack.
  • the above charging and discharging cable may include a discharge plug, a charging plug, and a connection between the charging plug and the discharging plug.
  • the DC power output by the first electric vehicle can be used to charge the battery pack of the second electric vehicle, and
  • the first electric vehicle's battery pack can be charged by using the direct current output from the second electric vehicle without changing the design scheme of the electric vehicle's charger. It is convenient to charge between electric vehicles.
  • the first electric vehicle includes a controller
  • the method further includes: the controller acquires a discharge configuration parameter of the first electric vehicle; and the charger converts the direct current output of the first electric vehicle according to the discharge configuration parameter. Charge the battery pack for DC power that matches the battery pack.
  • the charger can convert the current and voltage of the direct current output by the first electric vehicle into direct current with the battery pack according to the discharge configuration parameter.
  • the controller acquires a discharge configuration parameter of the first electric vehicle, including: the controller sends a charging request to another electric vehicle; and the controller receives the transmission discharge configuration parameter sent by another electric vehicle.
  • the discharge configuration parameter described above may include at least one of electric energy, discharge voltage, discharge current, and discharge power that another electric vehicle can provide when charging the battery pack.
  • the battery pack can be The direct current output from the first electric vehicle is converted into a target direct current having a voltage value of 360V, and the battery pack is charged with the target direct current.
  • the method before the charging device charges the battery pack, the method further includes:
  • the controller determines that the second electric vehicle is a charging vehicle.
  • the controller determines the connection between the AC outlet and the charging and discharging cable
  • the controller determines that the second electric vehicle is a charging vehicle.
  • controller and the DC outlet herein are modules or devices in the second electric vehicle.
  • the controller determines that the AC outlet is connected to the second plug of the charging and discharging cable
  • the controller determines that the second electric vehicle is a charging vehicle.
  • the method before the charging device charges the battery pack, the method further includes:
  • the controller sends a ready charging command to the first electric vehicle
  • the controller receives a ready discharge command for the first electric vehicle to reply.
  • the above-mentioned preparation charging command indicates that the second electric vehicle is ready for charging, and requests the first electric vehicle to charge the second electric vehicle.
  • the above-described preparatory discharge command is a reply to the preparation of the charging command for notifying the second electric vehicle that it is ready to receive the direct current output from the first electric vehicle. In this way, the second electric vehicle can be charged by using the direct current output from the first electric vehicle.
  • the method before the charging device charges the battery pack, the method further includes: the controller sending a handshake request message to the first electric vehicle; and the controller receiving the handshake response message of the first electric vehicle to establish the first A communication connection between an electric car and a second electric car.
  • establishing a communication connection before charging can improve the security and reliability of the charging process.
  • the controller may exchange information with the first electric vehicle in the form of a power line carrier through a charging and discharging cable connected between the second electric vehicle and the first electric vehicle, or may exchange information through wireless communication.
  • the method further includes: controlling the charger to stop charging the battery pack if the charging is abnormal.
  • the first electric vehicle is equivalent to the electric vehicle 100 in the above embodiment
  • the second electric vehicle is equivalent to the electric vehicle 200 in the above embodiment
  • the electric vehicle 100 is capable of performing charging between the electric vehicles shown in FIG.
  • the electric vehicle 200 can perform the method of charging between the electric vehicles shown in FIG. 5.
  • the controller may first determine that the second electric vehicle is the charging vehicle, and then establish the first a communication connection between the electric vehicle and the first electric vehicle, after the communication connection is established, the controller sends a charging request to the first electric vehicle, and acquires a discharge configuration parameter sent by the first electric vehicle, and then sends the first electric vehicle to the first electric vehicle.
  • the charging command is prepared, and the ready-discharge command of the first electric vehicle recovery is received, thus completing the pre-charging preparation, and then the electric vehicle 200 can be charged by the first electric vehicle.
  • steps 601 to 605 are performed on the discharge vehicle side, and steps 701 to 705 are performed on the charging vehicle side. Specific steps are as follows:
  • the discharge plug of the charging and discharging cable is inserted into the DC socket of the discharge vehicle;
  • the vehicle control device detects whether the resistance in the discharge plug is a preset value through a CC2 pin. If the preset value is a preset value, step 603 is performed. If the resistance in the discharge plug is not determined by the CC2 pin, the execution continues. Step 602.
  • the default value here can be 2K ⁇ .
  • the communication device sends a handshake signal to the charging vehicle.
  • the communication device may send a handshake signal to the charging vehicle in the form of a power line carrier through the DC socket and the charging and discharging cable, or may send a handshake signal to the charging vehicle through wireless communication.
  • the communication device determines whether the handshake signal sent by the charging vehicle is received. If the handshake signal of the charging vehicle is received, the vehicle charging handshake is determined to be successful. If the handshake signal sent by the charging vehicle is still not received within the predetermined time, then Determine the vehicle charging handshake failed.
  • the charging plug of the charging and discharging cable is inserted into the AC socket of the discharge vehicle;
  • the vehicle control device detects, by using the CC pin, whether the resistance in the charging plug is a preset value. If the preset value is a preset value, step 703 is performed. If the resistance in the discharge plug is detected by the CC pin is not a preset value, then the execution is continued. Step 702.
  • the default value here can be 2.5K ⁇ .
  • the communication device sends a handshake signal to the discharge vehicle.
  • the communication device may specifically send a handshake signal to the charging vehicle in the form of a power line carrier through a DC socket and a charging and discharging cable, or may send the charging vehicle to the charging vehicle through wireless communication. Send a handshake signal.
  • the communication device determines whether the handshake signal sent by the discharge vehicle is received. If the handshake signal of the discharge vehicle is received, the vehicle charging handshake is determined to be successful. If the handshake signal sent by the discharge vehicle is still not received within the predetermined time, then Determine the vehicle charging handshake failed.
  • the steps 601-605 performed on the discharge vehicle side are substantially identical to the steps 701-705 performed on the charging vehicle side, except that on the discharge device side, the resistance of the resistance in the discharge plug is detected.
  • the value is on the charging device side to detect the resistance of the resistor in the charging plug.
  • the order in which the discharge vehicle and the charging vehicle transmit the handshake signal is not limited, and the discharge vehicle may first transmit a handshake signal or the charging vehicle may first transmit a handshake signal.
  • steps 801 to 805 are performed on the discharge vehicle side, and steps 901 to 905 are performed on the charging vehicle side. Specific steps are as follows:
  • the communication device determines whether the charging demand parameter of the charging vehicle is received. If the charging demand parameter is not received, step 801 is continued, and if the charging demand parameter is received, step 802 is performed.
  • the communications device After receiving the charging demand parameter, the communications device sends a discharging configuration parameter to the charging vehicle.
  • the communication device determines whether a ready charging command for the charging vehicle is received, and if not, proceeds to step 803, and if the step 804 is received.
  • the communication device sends a ready charging command to the charging vehicle to instruct the discharging vehicle to charge the charging vehicle.
  • the communication device sends a ready charging demand parameter to the discharge vehicle.
  • the communication device determines whether a discharge configuration parameter of the discharge vehicle is received, and if not, proceeds to step 702, and if received, performs step 703.
  • the communication device sends a preparation charging command to the discharge vehicle, and requests the discharge vehicle to charge the charging vehicle.
  • the communication device determines whether a ready discharge command of the discharge vehicle is received, and if not, proceeds to step 904, and if received, determines that the vehicle charging configuration is successful.
  • step 803 and step 904 the communication device of the discharge vehicle still does not receive the ready charging command of the charging vehicle within the preset time, and/or the communication device of the charging vehicle still does not receive the discharge vehicle within the preset time. Prepare the charging command, then determine the vehicle charging configuration failed.
  • the charging demand parameter may include at least one of electric energy, charging voltage, charging current, and charging power required for charging the vehicle during charging.
  • the discharge configuration parameter includes at least one of electrical energy, discharge voltage, discharge current, and discharge power that the discharge vehicle can provide when charging the charging vehicle.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, such as multiple units or groups. Pieces can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车,包括:电池包;直流插座;控制器,在直流插座与另一电动汽车的交流插座通过充放电电缆连接的过程中,根据另一电动汽车的充电请求控制电池包为另一电动汽车充电。还公开了在电动汽车之间充电的充电方法。其能够较方便地实现电动汽车之间的充电。

Description

电动汽车以及电动汽车之间充电的方法
本申请要求于2016年09月27日提交中国专利局、申请号为201610852719.7、申请名称为“电动汽车以及电动汽车之间充电的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车领域,并且更具体地,涉及一种电动汽车以及电动汽车之间充电的方法。
背景技术
电动车一般是通过交、直流充电桩补充能量,但是由于充电桩的数量有限并且分布不太均衡,使得电动车充电不太方便。当电动车的剩余电量无法行驶到下一个充电桩时,车与车之间的相互充电是一种较好的选择。
现有技术的方案是修改电动汽车中的车载充电机,使其具有双向变换功能(既能将交流电转变为直流电也能将直流电转变为交流电),在充电时将充电车辆的交流插座通过充放电电缆与放电车辆的交流插座相连,在充电时,放电车辆的高压电池包输出高压直流电,该高压直流电通过车载充电机转变为交流电,交流电经过交流插座和充放电电缆进入充电车辆的交流插座,最后该交流电通过充电车辆的车载充电机变化成高压直流电,从而实现为充电车辆的高压电池包充电。
该方案需要修改车载充电机使其具有双向转换功能,这样势必会增加车载充电机的成本、体积等,降低车载充电机的转化效率。
发明内容
本申请提供一种电动汽车以及电动汽车之间充电的方法,以更好地实现电动汽车之间的充电。
第一方面,提供了一种电动汽车,包括:电池包;直流插座;控制器,在所述直流插座与另一电动汽车的交流插座通过充放电电缆连接时,所述控制器根据所述另一电动汽车的充电请求控制所述电池包为所述另一电动汽车充电。
上述控制器可以集成在电动汽车的电源管理模块或者电动汽车中具有控制功能的模块中。
当通过充放电电缆将电动汽车的直流插座与另一电动汽车的交流插座相连时,如果控制器接收到另一电动汽车的充电请求,那么控制器就可以根据该充电请求控制电动汽车的电池包为另一电动汽车充电,与现有技术中需要改变电动汽车的充电机的设计方案相比,在不改变电动汽车的充电机的设计方案的情况下就可以利用该电动汽车的电池包为另一电动汽车充电,能够较方便地实现电动汽车之间的充电。
结合第一方面,在第一方面的第一种实现方式中,在所述控制器根据所述另一电动汽车的充电请求控制所述电池包为所述另一电动汽车充电之前,所述控制器还用于向所述另一电动汽车发送放电配置参数。
通过向另一电动汽车发送放电配置参数,使得另一电动汽车能够根据放电配置参数对该电动汽车输出的直流电转换为另一电动汽车的电池包匹配的直流电,并为另一电动汽车充电。
结合第一方面的第一种实现方式,在第一方面的第二种实现方式中,所述放电配置参数包括所述电池包在为所述另一电动汽车充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
结合第一方面,以及第一方面的第一种至第二种实现方式中的任意一种,在第一方面的第三种实现方式中,在所述控制器根据所述另一电动汽车的充电请求控制所述电池包为所述另一电动汽车充电之前,所述控制器还用于:接收所述另一电动汽车发送的握手请求消息;向所述另一电动汽车发送握手响应消息,以建立所述电动汽车和所述另一电动汽车之间的通信连接;基于所述通信连接获取所述充电请求。
通过建立通信连接能够提高充电的安全性和可靠性。
结合第一方面,以及第一方面的第一种至第三种实现方式中的任意一种,在第一方面的第四种实现方式中,所述控制器还用于:在充电出现异常的情况下,控制所述电池包停止为所述另一电动汽车充电。
在出现异常时,能够控制电池包停止输出直流电,停止为另一电动汽车充电,提高了充电的安全性。
结合第一方面,以及第一方面的第一种至第四种实现方式中的任意一种,在第一方面的第五种实现方式中,所述充放电电缆包括放电插头、充电插头以及连接在所述充电插头和所述放电插头之间的电缆,其中,所述放电插头与所述直流插座匹配,所述充电插头与所述另一电动汽车的交流插座匹配。
放电插头、充电插头分别与直流插座和交流插座匹配,使得放电插头能够从放电车辆的直流插座中获取直流电,并将直流电通过电缆输入到充电插头处,充电插头再将直流电输入到充电车辆的交流插座中,从而为充电车辆充电。
结合第一方面的第五种实现方式,在第一方面的第六种实现方式中,所述充电插头的L1引脚、L2引脚和L3引脚中的任意一个引脚通过电缆与所述放电插头的第一引脚连接,所述充电插头的N引脚通过电缆与所述放电插头的第二引脚连接,其中,所述第一引脚和所述第二引脚分别为DC+引脚和DC-引脚,或者,所述第一引脚和所述第二引脚分别为DC-引脚和DC+引脚。
例如,充电插头的L1引脚通过电缆与放电插头的DC-引脚连接,充电插头的N引脚通过电缆与放电插头的DC+引脚连接。
在某些实现方式中,所述电动汽车还包括所述充放电电缆。也就是说充放电电缆也是上述电动汽车的组成部分。
在某些实现方式中,所述充电请求包含充电需求参数,所述充电需求参数包括所述另一电动汽车充电时需要的电能、充电电压、充电电流以及充电功率中的至少一种。
在某些实现方式中,在所述控制器控制所述电池包为所述另一电动汽车充电之前,所 述控制器确定所述电动汽车为放电车辆。
在某些实现方式中,所述控制器确定所述电动汽车为放电车辆包括:当所述直流插座与所述充放电电缆的放电插头相连时,所述控制器确定所述电动汽车为放电车辆。
在某些实现方式中,在所述控制器控制所述电池包为所述另一电动汽车充电之前,所述控制器还用于接收所述另一电动汽车发送的准备充电命令,所述准备充电命令用于通知所述电动汽车为所述另一电动汽车充电。
在某些实现方式中,在所述控制器控制所述电池包为所述另一电动汽车充电之前,所述控制器还用于向所述另一电动汽车发送准备放电命令。该准备放电命令用来通知所述另一电动汽车准备接收所述电动汽车输出的直流电。
第二方面,提供了一种电动汽车,包括:电池包;交流插座;充电机,在所述交流插座与另一电动汽车的直流插座通过充放电电缆连接的过程中,所述充电机接收所述另一电动汽车输出的直流电,为所述电池包充电。
当通过充放电电缆将电动汽车的交流插座与另一电动汽车的直流插座相连就可以利用另一电动汽车输出的直流电为该电动汽车的电池包充电,与现有技术中需要改变电动汽车的充电机的设计方案相比,在不改变电动汽车的充电机的设计方案的情况下就可以利用另一电动汽车输出的直流电为该电动汽车的电池包充电,能够较方便地实现电动汽车之间的充电。
结合第二方面,在第二方面的第一种实现方式中,所述电动汽车还包括:
控制器,用于获取所述另一电动汽车的放电配置参数;
所述充电机具体用于根据所述放电配置参数,将所述另一电动汽车输出的直流电转换为与所述电池包匹配的直流电,为所述电池包充电。
控制器通过向另一电动汽车发送充电请求,从而获取另一电动汽车的放电配置参数,使得充电机能够根据另一电动汽车的放电配置参数将另一电动汽车输出的直流电转换为与该电动汽车的电池包匹配的直流电,并为该电动汽车的电池包充电。
结合第二方面的第一种实现方式,在第二方面的第二种实现方式中,所述控制器具体用于:向所述另一电动汽车发送充电请求;接收所述另一电动汽车在接收到所述充电请求后发送的放电配置参数。
结合第二方面的第二种实现方式,在第二方面的第三种实现方式中,所述放电配置参数包括所述另一电动汽车在为所述电池包充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
结合第二方面的第二种或者第三种实现方式,在第二方面的第四种实现方式中,在所述充电机为所述电池包充电之前,所述控制器还用于:向所述另一电动汽车发送握手请求消息;接收所述另一电动汽车的握手响应消息,以建立所述电动汽车和所述另一电动汽车之间的通信连接。
控制器基于上述通信连接能获取另一电动汽车的放电配置参数。另外,充电前建立通信连接能够提高充电的安全性和可靠性。
结合第二方面的第二种至第四种实现方式中的任意一种,在第二方面的第五种实现方式中,所述控制器还用于:在充电出现异常的情况下,控制所述充电机停止为所述电池包充电。
在出现异常时,能够控制电池包停止输出直流电,停止为另一电动汽车充电,提高了充电的安全性。
结合第二方面的第二种至第五种实现方式中的任意一种,在第二方面的第六种实现方式中,所述充放电电缆包括放电插头、充电插头以及连接在所述充电插头和所述放电插头之间的电缆,其中,所述充电插头与所述交流插座匹配,所述放电插头与所述另一电动汽车的直流插座匹配。
放电插头、充电插头分别与直流插座和交流插座匹配,使得放电插头能够从放电车辆的直流插座中获取直流电,并将直流电通过电缆输入到充电插头处,充电插头再将直流电输入到充电车辆的交流插座中,从而为充电车辆充电。
结合第二方面的第六种实现方式,在第二方面的第七种实现方式中,所述充电插头的L1引脚、L2引脚和L3引脚中的任意一个引脚通过电缆与所述放电插头的第一引脚连接,所述充电插头的N引脚通过电缆与所述放电插头的第二引脚连接,其中,所述第一引脚和所述第二引脚分别为DC+引脚和DC-引脚,或者,所述第一引脚和所述第二引脚分别为DC-引脚和DC+引脚。
例如,充电插头的L1引脚通过电缆与放电插头的DC+引脚连接,充电插头的N引脚通过电缆与放电插头的DC-引脚连接。
在某些实现方式中,所述电动汽车还包括所述充放电电缆。也就是说充放电电缆也是上述电动汽车的组成部分。
在某些实现方式中,所述充电请求包含充电需求参数,所述充电需求参数包括所述电动汽车充电时需要的电能、充电电压、充电电流以及充电功率中的至少一种。
在某些实现方式中,在所述充电机接收另一辆电动汽车输出的直流电,为所述电池包充电之前,所述控制器确定所述电动汽车为放电车辆。
在某些实现方式中,所述控制器确定所述电动汽车为放电车辆包括:当所述交流插座与所述充放电电缆的充电插头连接时,所述控制器确定所述电动汽车为充电车辆。
在某些实现方式中,在所述充电机接收另一辆电动汽车输出的直流电,为所述电池包充电之前,所述控制器还用于向所述另一电动汽车发送准备充电命令,所述准备充电命令用于通知所述另一电动汽车为所述电动汽车充电。
在某些实现方式中,在所述充电机接收另一辆电动汽车输出的直流电,为所述电池包充电之前,所述控制器还用于接收所述另一电动汽车发送准备放电命令。该准备放电命令用来通知所述电动汽车准备接收所述另一电动汽车输出的直流电。
第三方面,提供一种电动汽车之间充电的方法,所述方法应用于放电的第一电动汽车,所述第一电动汽车包括电池包,直流插座,控制器,其特征在于,所述方法包括:所述控制器确定所述直流插座与第二电动汽车的交流插座通过充放电电缆连接;所述控制器控制所述电池包为所述第二电动汽车充电。
当通过充放电电缆将第一电动汽车的直流插座与第二电动汽车的交流插座相连时,就可以通过控制器控制第一电动汽车的电池包为第二电动汽车充电,与现有技术中需要改变电动汽车的充电机的设计方案相比,在不改变电动汽车的充电机的设计方案的情况下就可以利用第一电动汽车的电池包为第二电动汽车充电,能够较方便地实现电动汽车之间的充电。
结合第三方面,在第三方面的第一种实现方式中,在所述控制器控制所述电池包为所述第二电动汽车充电之前,所述方法还包括:所述控制器接收所述第二电动汽车的充电请求;在接收到所述充电请求后,所述控制器向所述第二电动汽车发送放电配置参数。
通过向第二电动汽车发送放电配置参数,使得第二电动汽车能够根据放电配置参数对该第一电动汽车输出的直流电转换为第二电动汽车的电池包匹配的直流电,并为第二电动汽车充电。
结合第三方面的第一种实现方式,结合第三方面的第二种实现方式中,所述放电配置参数包括所述电池包为所述第二电动汽车充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
结合第三方面,以及第三方面的第一种至第二种实现方式中的任意一种,在第三方面的第三种实现方式中,在所述控制器控制所述电池包为所述第二电动汽车充电之前,所述方法还包括:所述控制器接收所述第二电动汽车发送的握手请求消息;所述控制器向所述第二电动汽车发送握手响应消息,以建立所述第一电动汽车和所述第二电动汽车之间的通信连接。
通过建立通信连接能够提高充电的安全性和可靠性。
结合第三方面,以及第三方面的第一种至第三种实现方式中的任意一种,在第三方面的第四种实现方式中,所述方法还包括:在充电出现异常的情况下,控制所述电池包停止为所述第二电动汽车充电。
在出现异常时,能够控制电池包停止输出直流电,停止为另一电动汽车充电,提高了充电的安全性。
第四方面,提供一种电动汽车之间充电的方法,所述方法应用于充电的第二电动汽车,所述第二电动汽车包括电池包,交流插座,充电机,控制器,其特征在于,所述方法包括:所述控制器确定所述交流插座与第一电动汽车的直流插座通过充放电电缆连接;所述控制器控制所述充电机接收所述第一电动汽车输出的直流电,为所述电池包充电。
结合第四方面,在第四方面的第一种实现方式中,所述方法还包括:所述控制器获取所述第一电动汽车的放电配置参数;所述充电机根据所述放电配置参数,将所述第一电动汽车输出的直流电转换为与所述电池包匹配的直流电,为所述电池包充电。
当通过充放电电缆将第二电动汽车的交流插座与第一电动汽车的直流插座相连就可以利用第一电动汽车输出的直流电为第二电动汽车的电池包充电,与现有技术中需要改变电动汽车的充电机的设计方案相比,在不改变电动汽车的充电机的设计方案的情况下就可以利用第一电动汽车输出的直流电为第二电动汽车的电池包充电,能够较方便地实现电动汽车之间的充电。
结合第四方面的第一种实现方式,在第四方面的第二种实现方式中,所述控制器获取所述第一电动汽车的放电配置参数,包括:所述控制器向所述第一电动汽车发送充电请求;所述控制器接收所述第一电动汽车在接收到所述充电请求后发送的所述放电配置参数。
通过向第一电动汽车发送充电请求,从而获取第一电动汽车的放电配置参数,使得控制器能够根据放电配置参数对该第一电动汽车输出的直流电转换为第二电动汽车的电池包匹配的直流电,并为第二电动汽车充电。
结合第四方面的第一种或者第二种实现方式,在第四方面的第三种实现方式中,所述 放电配置参数包括所述第一电动汽车在为所述电池包充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
结合第四方面以及第四方面的第一种至第三种实现方式中的任意一种,在第四方面的第四种实现方式中,在所述充电机为所述电池包充电之前,所述方法还包括:所述控制器向所述第一电动汽车发送握手请求消息;所述控制器接收所述第一电动汽车的握手响应消息,以建立所述第一电动汽车和所述第二电动汽车之间的通信连接。
充电前建立通信连接能够提高充电的安全性和可靠性。
结合第四方面以及第四方面的第一种至第四种实现方式中的任意一种,在第四方面的第五种实现方式中,所述方法还包括:在充电出现异常的情况下,所述控制器控制所述充电机停止为所述电池包充电。
在出现异常时,能够控制电池包停止输出直流电,停止为另一电动汽车充电,提高了充电的安全性。
附图说明
图1是电动汽车的示意性框图。
图2是现有技术中电动汽车之间充电时的连接示意图。
图3是本申请实施例的电动汽车的示意性框图。
图4是本申请实施例的电动汽车的示意性框图。
图5是本申请实施例的电动汽车的示意性框图。
图6是本申请实施例的电动汽车组成的充电系统的示意性框图。
图7是本申请实施例的电动汽车组成的充电系统的示意性框图。
图8是本申请实施例的电动汽车之间充电的方法的示意性流程图。
图9是本申请实施例的电动汽车之间充电的方法的示意性流程图。
图10是本申请实施例的电动汽车之间充电的方法的示意性流程图。
图11是本申请实施例的电动汽车之间充电的方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了更方便地理解本申请实施例中的电动汽车,下面先结合图1对电动汽车的具体结构进行简单的介绍,图1中的电动汽车包括:高压电池包、电机驱动器、电机、车轮、车载DCDC(车载直流电源)、铅蓄电池、车辆控制装置、直流充电插座、交流充电插座以及车载充电机。其中,高压电池包包括电芯和开关。
该电动汽车可以通过直流充电插座和交流充电插座进行充电,当通过交流充电插座充电时,通过电缆将交流充电桩和交流充电插座相连,交流充电桩的交流电从交流插座输入,车载充电机将输入的交流电转化为高压直流电,并以该高压直流电为高压电池包充电。当通过直流充电插座充电时,通过电缆将直流充电桩和直流充电插座相连,直流充电桩的直流电从直流插座输入,直接给高压电池包充电。
在车辆行驶时,高压电池包输出高压直流电给电机驱动器,电机驱动器将高压直流电转换为交流电供电机使用,电机驱动车辆转动。
另外,高压电池包还可以为铅酸电池充电,具体来说,高压电池包将输出的高压直流电给车载DCDC,车载DCDC将高压直流电转换为低压直流电为铅酸电池充电。
以上这些过程可以由电动汽车的车辆控制装置来完成。
为了更好地理解本申请实施例的电动汽车以及电动汽车之间充电的方法,下面先结合图2对现有技术中电动汽车之间如何进行充电进行详细的介绍。
图2是现有技术中电动汽车之间充电时的连接示意图。在图2中,放电车辆的交流插座通过充放电电缆与充电车辆的交流插座连接,在充电时,放电车辆的双向变换充电机将电池包中输出的直流电转化为交流电,并将该交流电通过充放电电缆输出到充电车辆的交流插座,充电车辆的交流插座在接收到该交流电之后将该交流电转化为与充电车辆的电池包匹配的直流电,为充电车辆的电池包充电。在上述过程中,放电车辆的双向变换充电机需要将电池包输出的直流电转化为交流电,也就是说双向变换充电机要进行逆变过程。而一般情况下,电动汽车中的充电机只能将交流插座接收到的交流电转化为与电池包匹配的直流电,而并不能将直流电转化为交流电。为了使得电动汽车中的充电机具有将直流电逆变成交流电的功能势必要在充电机中增加逆变电路,这样会增加充电机的体积、成本,可能会降低充电机的转换效率。因此,本申请实施例提出了一种电动汽车以及电动汽车之间充电的方法,该电动汽车以及电动汽车之间充电的方法能够在不改变电动汽车的充电机的结构的前提下实现电动汽车之间的相互充电。下面结合图3-图6对本申请实施例的电动汽车进行详细的介绍。
图3是本申请实施例的电动汽车的示意性框图。图3的电动汽车100包括:
电池包110,直流插座120,控制器130。在电动汽车100的直流插座120通过充放电电缆与另一电动汽车的交流插座连接时,控制器130用于根据另一电动汽车的充电请求控制电池包110为该另一电动汽车充电。
上述直流插座120是能够通过直流充电桩为电池包110充电的插座,具体地,当直流插座120通过充电电缆与直流充电桩连接时,可以通过直流充电桩为电池包110进行快速充电。另外,该直流插座120还可以向外输出直流电,以实现为其它的电池包充电。
应理解,上述电动汽车100在充电过程中属于放电车辆,也就是在充电过程中为其它的电动汽车提供电能的车辆,另外,上述充放电电缆可以是电动汽车的组成部分,也可以是独立于电动汽车之外的单独部件。
还应理解,在电动汽车100中,直流插座120与电池包110相连,控制器130与电池包110、直流插座120连接。控制器130可以是既具有通信功能又具有控制功能的控制器,控制器130既可以与其它电动汽车之间进行通信,也可以对电动汽车100中的其它模块进行控制。具体地,该控制器130可以包含电动汽车100中的通信装置和控制装置,该控制器130具有通信装置和控制装置的功能。
本申请实施例中,当通过充放电电缆将电动汽车的直流插座与另一电动汽车的交流插座相连时,就可以通过控制器控制电动汽车的电池包为另一电动汽车充电,与现有技术中需要改变电动汽车的充电机的设计方案相比,在不改变电动汽车的充电机的设计方案的情况下就可以利用该电动汽车的电池包为另一电动汽车充电,能够较方便地实现电动汽车之间的充电。
可选地,作为一个实施例,在控制器130控制电池包110为另一电动汽车充电之前, 控制器130确定电动汽车100为放电车辆。
控制器130确定电动汽车100为放电车辆具体包括:
控制器130确定直流插座120与充放电电缆的连接情况;
当直流插座120与充放电电缆连接时,控制器130确定电动汽车100为放电车辆。
可选地,控制器130还可以先确定直流插座120与充放电电缆的第一插头(例如,该电阻可以是CC2引脚与PE引脚之间的电阻)连接,然后再确定第一插头中的电阻的电阻值,当第一插头中的电阻的电阻值为预设阻值时,控制器130确定电动汽车100为放电车辆。
可选地,作为一个实施例,在控制器130根据另一电动汽车的充电请求控制电池包110为另一电动汽车充电之前,该控制器130还用于向该另一电动汽车发送放电配置参数。
具体地,在充放电电缆通过直流插座120与另一电动汽车的交流插座连接后,另一电动汽车向控制器130发送充电请求,该充电请求用于请求电动汽车100为另一电动汽车充电。该充电请求可以包含充电需求参数,该充电需求参数可以包含另一电动车在充电时需要的电能、充电电压、充电电流以及充电功率的至少一种。在得到另一电动汽车的充电请求后,控制器130要向另一电动汽车回复电动汽车100在为另一电动汽车充电时的放电配置参数。具体来说,该放电配置参数可以包括电池包110在为另一电动汽车充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
上述放电配置参数可以是控制器在接收到充电请求后根据电池包110的属性信息直接生成的,例如,电池包110最多只能向另一电动汽车提供50千瓦时的电能,那么控制器就直接将电池包110能够提供50千瓦时的信息发给另一电动汽车。
另外,上述放电配置参数也可以是根据充电请求中的充电需求参数以及电池包110的属性信息综合生成的,例如,充电需求参数中指示另一电动汽车需要30千瓦时的电能,而电池包110能够提供50千瓦时的电能,那么控制器可以将电池包110能够提供30千瓦时的电能的充电配置参数发送给另一电动汽车。
在接收到上述放电配置参数后,另一电动汽车的充电机可以根据该放电配置参数,将电池包110输出的直流电转换为与该另一电动汽车的电池包匹配的直流电,为该另一电动汽车的电池包充电。
可选地,作为一个实施例,在控制器130控制电池包110为另一电动汽车充电之前,该控制器130还用于接收另一电动汽车发送的握手请求消息,并向另一电动汽车发送握手响应消息,以建立电动汽车100和所述另一电动汽车之间的通信连接,在建立通信连接后,控制器基于该通信连接获取上述充电请求。
本申请实施例中,在充电之前先建立通信连接能够提高充电的安全性和可靠性。
应理解,在建立通信连接的过程中,还可以是电动汽车100先向另一电动汽车发送握手请求消息,然后再接收另一电动汽车回复的握手响应消息,也就是说放电车辆和充电车辆都可以发送握手请求消息。
可选地,作为一个实施例,在控制器130控制电池包110为另一电动汽车充电之前,该控制器130还用于接收另一电动汽车的准备充电命令,并向另一电动汽车发送准备放电命令。
上述准备充电命令表示另一电动汽车已经做好充电准备,请求电池包110为另一电动 汽车充电。上述准备放电命令是对准备充电命令的答复,它用于通知另一电动汽车准备接收电池包110输出的直流电。这样就可以利用电池包110输出的直流电为另一电动汽车充电。
应理解,控制器130可以通过电动汽车100与另一电动汽车之间连接的充放电电缆以电力线载波的形式与另一电动汽车进行信息的交互,也可以通过无线通信进行信息的交互。
可选地,作为一个实施例,在充电出现异常的情况下,控制器130控制电池包110停止为另一电动汽车充电。充电出现异常可以是充电电流过大,充电功率过大以及充电电压过高等。
可选地,作为一个实施例,上述充放电电缆包括放电插头、充电插头以及连接在充电插头和放电插头之间的电缆,其中,放电插头与直流插座120匹配,充电插头与另一电动汽车的交流插座匹配。
可选地,作为一个实施例,上述充电插头的L1引脚、L2引脚和L3引脚中的任意一个引脚通过电缆与放电插头的第一引脚连接,充电插头的N引脚通过电缆与放电插头的第二引脚连接,其中,第一引脚和第二引脚分别为DC+引脚和DC-引脚,或者,第一引脚和第二引脚分别为DC-引脚和DC+引脚。
例如,充电插头的L1引脚通过电缆与放电插头的DC-引脚连接,充电插头的N引脚通过电缆与放电插头的DC+引脚连接。
当然,也可以是充电插头的L2或L3引脚通过电缆与放电插头的DC-引脚连接,充电插头的N引脚通过电缆与放电插头的DC+引脚连接。
应理解,放电插头与直流插座120匹配具体可以是放电插头的外形尺寸和脚位定义与直流插座120匹配。充电插头与另一电动汽车的交流插座匹配具体可以是充电插头的外形尺寸和脚位定义与另一电动汽车的交流插座匹配。
应理解,在本申请实施例中,当充放电电缆将直流插座120与另一电动汽车的交流插座通过充放电电缆连接后,可以是控制器先确定电动汽车100为放电车辆,然后建立电动汽车100与另一电动汽车的通信连接,建立通信连接后再接收另一电动汽车发送充电请求,并向另一电动汽车发送放电配置参数,接下来再接收另一电动汽车发送准备充电命令,并向另一电动汽车回复准备放电命令,这样就完成了充电前的准备工作,接下来就可以利用充电包110为另一电动汽车充电了。
上文结合图3以从放电车辆的角度对本申请实施例的电动汽车进行了介绍,下面结合图4以充电车辆的角度对本申请实施例的电动汽车进行详细的描述。应理解,本申请实施例中的电动汽车既可以作为充电车辆也可以作为放电车辆,为了描述方便这里分别以放电车辆和充电车辆的角度对本申请实施例的电动汽车进行描述。
图4是本申请实施例的电动汽车的示意性框图。图4的电动汽车200包括:
电池包210,交流插座220和充电机230。在交流插座220与另一电动汽车通过充放电电缆连接的过程中,充电机230接收另一电动汽车输出的直流电,为电池包充电。
上述交流插座220是能通过交流充电桩为电池包210充电的插座,具体地,当交流插座220通过充电电缆与交流充电桩连接时,可以通过交流充电桩为电池包210进行充电。另外,该交流插座120还可以接收其它电动汽车输出的直流电或者交流电,为电池包210 充电。
应理解,上述电动汽车200在充电过程中属于充电车辆,也就是利用其它的电动汽车为自身充电的车辆。另外,上述充放电电缆可以是电动汽车的组成部分,也可以是独立于电动汽车之外的单独部件。
本申请实施例中,当通过充放电电缆将电动汽车的交流插座与另一电动汽车的直流插座相连就可以利用另一电动汽车输出的直流电为该电动汽车的电池包充电,与现有技术中需要改变电动汽车的充电机的设计方案相比,在不改变电动汽车的充电机的设计方案的情况下就可以利用另一电动汽车输出的直流电为该电动汽车的电池包充电,能够较方便地实现电动汽车之间的充电。
可选地,作为一个实施例,上述电动汽车200还包括控制器240,该控制器240用于获取另一电动汽车的放电配置参数。在获取了该放电配置参数后,充电机230具体用于根据控制器240获取的放电配置参数将另一电动汽车输出的直流电转换为与电池包匹配的直流电,为电池包210充电。
具体地,充电机230可以根据放电配置参数将另一电动汽车输出的直流电的电流和电压转换为与电池包匹配的直流电。
上述放电配置参数可以包括另一电动汽车在为该电池包210充电时能够提供的电能、放电电压、放电电流以及放电功率中的至少一种。
具体地,当放电配置参数指示另一电动汽车在为电池包210充电时能够提供的直流电的电压值为400V,而与电池包210匹配的电压值为350V,那么接下来,充电机可以将另一电动汽车输出400V的直流电转化为电压值为350V目标直流电,并以该目标直流电为电池包210充电。
可选地,作为一个实施例,在充电机230接收另一电动汽车输出的直流电,为电池包210充电之前,所述方法还包括:所述控制器240确定电动汽车200为充电车辆。
控制器240确定电动汽车200为充电车辆具体包括:
控制器240确定交流插座220与充放电电缆的连接情况;
当交流插座220与充放电电缆连接时,控制器240确定电动汽车200为充电车辆。
可选地,控制器240还可以先确定交流插座220与充放电电缆的第二插头连接,然后再确定第二插头中的电阻(例如,该电阻可以是CC引脚与PE引脚之间的电阻)的电阻值,当第二插头中的电阻的电阻值为预设阻值时,控制器240确定电动汽车200为放电车辆。
可选地,作为一个实施例,控制器240获取另一电动汽车的放电配置参数包括:控制器240向另一电动汽车发送充电请求,控制器240接收另一电动汽车发送的放电配置参数。
可选地,作为一个实施例,在充电机230接收另一电动汽车输出的直流电,为电池包210充电之前,该控制器240还向另一电动汽车发送准备充电命令,该准备充电命令表示该电动汽车200已经做好充电准备,并请求另一电动汽车为电池包210充电。接下来该控制器240接收另一电动汽车的准备充电命令,该准备放电命令用于通知电动汽车200准备接收另一电动汽车输出的直流电,为电动汽车200充电。当控制器240接收到该准备放电命令之后就建立了电动汽车200与另一电动汽车之间的充电配置连接。在充电配置连接完成后,控制器240开始控制充电机230为电池包210充电。
可选地,作为一个实施例,在充电机230为电池包210充电之前,控制器240还用于向另一电动汽车发送握手请求消息,并接收另一电动汽车发送的握手响应消息,以建立电动汽车200和另一电动汽车之间的通信连接。
本申请实施例中,在充电之前先建立通信连接能够提高充电过程的安全性和可靠性。
应理解,控制器240可以通过电动汽车200与另一电动汽车之间连接的充放电电缆以电力线载波的形式与另一电动汽车进行信息的交互,也可以通过无线通信进行信息的交互。
可选地,作为一个实施例,上述控制器240还用于在充电出现异常的情况下,控制充电机230停止为电池包210充电。充电出现异常可以是充电电流过大,充电功率过大以及充电电压过高等。
可选地,作为一个实施例,上述充放电电缆包括放电插头、充电插头以及连接在充电插头和放电插头之间的电缆,其中,充电插头与上述交流插座220匹配,放电插头与另一电动汽车的直流插座匹配。具体地,可以是充电插头的外形尺寸和脚位定义与直流插座220匹配,放电插头的外形尺寸和脚位定义与另一电动汽车的直流插座匹配。
可选地,作为一个实施例,上述充电插头的L1引脚、L2引脚和L3引脚中的任意一个引脚通过电缆与放电插头的第一引脚连接,充电插头的N引脚通过电缆与放电插头的第二引脚连接,其中,第一引脚和第二引脚分别为DC+引脚和DC-引脚,或者,第一引脚和第二引脚分别为DC-引脚和DC+引脚。
例如,充电插头的L1引脚通过电缆与放电插头的DC-引脚连接,充电插头的N引脚通过电缆与放电插头的DC+引脚连接。
当然,也可以是充电插头的L2或L3引脚通过电缆与放电插头的DC+引脚连接,充电插头的N引脚通过电缆与放电插头的DC-引脚连接。
或者,充电插头的L2或L3引脚通过电缆与放电插头的DC-引脚连接,充电插头的N引脚通过电缆与放电插头的DC+引脚连接。
应理解,在本申请实施例中,当充放电电缆将交流插座220与另一电动汽车的直流插座连接后,可以是控制器先确定电动汽车200为充电车辆,然后建立电动汽车200与另一电动汽车的通信连接,在建立通信连接后再向另一电动汽车发送充电请求,并获取另一电动汽车发送的放电配置参数,接下来再向另一电动汽车发送准备充电命令,并接收另一电动汽车回复的准备放电命令,这样就完成了充电前的准备工作,接下来就可以利用另一电动汽车为电动汽车200充电了。
上文结合图2和图3分别以放电车辆和充电车辆的角度对本申请实施例的电动汽车进行了详细的描述,下面结合图5至图7以具体的实例对本申请实施例的电动汽车进行详细的介绍。
图5是本申请实施例的电动汽车的示意性框图。该电动汽车300包括:
电池包310、直流插座320、交流插座330、充电机340、通信装置350和车辆控制装置360。
其中,交流插座330通过充电机340与电池包310相连,以利用交流插座330输入的交流电对电池包310进行充电(先将交流电转换为直流电再为电池包充电)。通信装置350与电动汽车300中的其它模块均处于连接状态,车辆控制装置360与电动汽车300中 的其它模块也均处于连接状态。
当直流插座320通过充放电电缆与其它车辆的交流插座连接时,车辆控制装置360控制充电机340为其它车辆充电;当交流插座330通过充放电电缆与其它车辆的直流插座连接时,充电机340接收其它车辆的输出的直流电,为电池包310充电。图4中的通信装置350和车辆控制装置360相当于上述电动汽车100中的控制器130或者电动汽车200中的控制器240。
图6是本申请实施例的电动汽车组成的充电系统的示意性框图。该充电系统包括放电车辆、充电车辆以及连接两者的充放电电缆,充放电电缆包括放电插头和充电插头,其中,放电插头插在放电车辆的直流插座上,充电插头插在充电车辆的交流插座上,这样就可以利用放电车辆的电池包为充电车辆的电池包充电。
图7是本申请实施例的电动汽车组成的充电系统的示意性框图。在该系统中,充放电电缆的放电插头符合国际直流充电插头的外形尺寸定义和脚位定义,充放电电缆的充电插头符合国际交流充电插头的外形尺寸定义和脚位定义。
本申请实施例中对充放电电缆中的放电插头与充电插头通过电缆连接的方式进行了一定的修改,具体来说,放电插头的DC+与充电插头的L1连接,放电插头的DC-与充电插头的N连接,放电插头的PE与充电插头的PE连接,放电插头的CC2引脚通过电阻Rb和开关Sb连接到PE,充电插头的CC引脚通过Ra和开关Sa连接到PE,其中,Ra的取值一般为2KΩ,Ra的取值一般为2.5KΩ。本申请实施例中的充放电电缆的分别包含与直流插座和交流插座匹配的插头,并通过电缆以特殊的连接方式将两个插头连接在一起,这样就可以将两个插头分别插在两个电动汽车的直流插座和交流插座上,从而实现电动汽车之间的充电。
当充放电电缆的放电插头插在放电车辆的直流插座,充电插头连接在充电车辆的交流插座时,放电车辆的电池包可以为充电车辆的电池包进行充电。在充电时放电车辆和充电车辆的与充电相关的各个模块执行的步骤如下:
S101、放电车辆的车辆控制装置通过CC2引脚检测到Rb为2KΩ,则确定放电插头已经插入直流插座,本车为放电车辆。
S102、充电车辆的车辆控制装置通过CC引脚检测到Ra为2.5KΩ,则确定放电插头已经插入交流插座,本车为充电车辆。
上述步骤S101和S102可以同时进行,也可以不同时进行。
S102、放电车辆的通信装置向充电车辆发送握手信号。
通信装置可以通过无线通信发送握手信号,也可以通过直流插座通过电力线载波发送握手信号。
S103、充电车辆的通信装置接收充电车辆发送的握手信号,并向放电车辆发送握手信号或者握手响应信息。
应理解,可以是放电车辆先向充电车辆发送握手信号,也可以是充电车辆先向放电车辆发送握手信号,如果在预设时间内接收到对侧设备回复的握手信息或者握手响应信息那么就确定通信连接成功,否则,确定通信连接不成功。
S104、充电车辆的通信装置向放电车辆发送充电需求参数。
S105、放电车辆的通信装置接收充电车辆的充电需求参数,并向充电车辆发送放电配 置参数。
S106、充电车辆的通信装置向放电车辆发送准备充电命令。
S107、放电车辆的通信装置接收充电车辆的准备充电命令,并向充电车辆发送准备放电命令。
接下来,放电车辆内部的电池包就可以通过直流插座输出电流为充电车辆充电。
应理解,为了描述方便,图2至图7中提及的电动汽车所包含的是与充放电相关的模块或者装置,实际上,图2至图7中的提及的电动汽车的结构也可以如图1所示。
上文结合图1至图7,详细的描述了根据本申请实施例的电动汽车,下面将结合图8和图9,描述本申请实施例的电动汽车之间充电的方法。
应理解,图8和图9描述的电动汽车之间充电的方法可以由图1至图7所示的电动汽车来执行,图8和图9中描述的第一电动汽车和第二电动汽车分别相当于上文中的电动汽车100和电动汽车200,为了简洁,适当省略重复的描述。
图8是本申请实施例的电动汽车之间充电的方法的示意图。图8的方法应用于放电的第一电动汽车,该第一电动汽车包括电池包,直流插座,控制器,图8的方法包括:
410、控制器确定直流插座与第二电动汽车的交流插座通过充放电电缆连接;
420、控制器控制电池包为第二电动汽车充电。
上述充放电电缆可以包括放电插头、充电插头以及连接在充电插头和放电插头之间的电缆,其中,放电插头与第一电动汽车的直流插座匹配,充电插头与第二电动汽车的交流插座匹配。
本申请实施例中,当通过充放电电缆将第一电动汽车的直流插座与第二电动汽车的交流插座相连时,就可以通过控制器控制第一电动汽车的电池包为第二电动汽车充电,与现有技术中需要改变电动汽车的充电机的设计方案相比,在不改变电动汽车的充电机的设计方案的情况下就可以利用第一电动汽车的电池包为第二电动汽车充电,能够较方便地实现电动汽车之间的充电。
可选地,作为一个实施例,在控制器控制电池包为第二电动汽车充电之前,所述方法还包括:确定第一电动汽车为放电车辆。
确定第一电动汽车为放电车辆的方式有两种:
方式一:
控制器确定直流插座与充放电电缆的连接情况;
当直流插座与充放电电缆连接时,控制器定第一电动汽车为放电车辆。
应理解,这里的控制器和直流插座均是第一电动汽车中的模块或者设备。
方式二:
控制器确定直流插座与充放电电缆的第一插头连接;
确定第一插头中的电阻的电阻值;
当第一插头中的电阻的电阻值为预设阻值(例如,可以为2KΩ)时,控制器确定第一电动汽车为放电车辆。
可选地,作为一个实施例,在控制器控制电池包为第二电动汽车充电之前,该方法还包括:控制器接收第二电动汽车的充电请求;控制器向第二电动汽车发送放电配置参数。
具体地,在充放电电缆将第一电动汽车的直流插座与第二电动汽车的交流插座连接 后,第二电动汽车向控制器发送充电请求,该充电请求用于请求第一电动汽车为第二电动汽车充电。该充电请求可以包含充电需求参数,该充电需求参数可以包含第二电动车在充电时需要的电能、充电电压、充电电流以及充电功率的至少一种。在得到第二电动汽车的充电请求后,控制器要向第二电动汽车回复第一电动汽车在为第二电动汽车充电时的放电配置参数。具体来说,该放电配置参数可以包括第一电动汽车的电池包在为第二电动汽车充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
可选地,作为一个实施例,在控制器控制电池包为第二电动汽车充电之前,该方法还包括:控制器接收第二电动汽车发送的握手请求消息;控制器向第二电动汽车发送握手响应消息,以建立第一电动汽车和第二电动汽车之间的通信连接。
本申请实施例中,在充电之前先建立通信连接能够提高充电过程的安全性和可靠性。
应理解,在建立通信连接的过程中,还可以是第一电动汽车先向第二电动汽车发送握手请求消息,然后再接收第二电动汽车回复的握手响应消息,也就是说第一电动汽车和第二电动汽车都可以发送握手请求消息。
可选地,作为一个实施例,在控制器控制电池包为第二电动汽车充电之前,所述方法还包括:
控制器接收第二电动汽车的准备充电命令;
所述控制器向第二电动汽车发送准备放电命令,以建立第一电动汽车和第二电动汽车之间的充电配置连接。
上述准备充电命令表示第二电动汽车已经做好充电准备,请求电池包为第二电动汽车充电。上述准备放电命令是对准备充电命令的答复,它用于通知第二电动汽车准备接收第一电动汽车输出的直流电。这样就可以利用第一电动汽车输出的直流电为第二电动汽车充电。
应理解,上述控制器可以通过第一电动汽车与第二电动汽车之间连接的充放电电缆以电力线载波的形式与第二电动汽车进行信息的交互,也可以通过无线通信进行信息的交互。
可选地,作为一个实施例,所述方法还包括:在充电出现异常的情况下,控制所述电池包停止为所述第二电动汽车充电。充电出现异常可以是充电电流过大,充电功率过大以及充电电压过高等。
应理解,在本申请实施例中,控制器可以先确定第一电动汽车为放电车辆,然后通过握手消息建立第一电动汽车与第二电动汽车之间的通信连接,接下来,控制器再接收第二电动汽车的充电请求,并向第二电动汽车回复放电配置参数,接下来控制器再接收第二电动汽车发送的准备充电命令,并向第二电动汽车回复准备放电命令,这样就完成了充电前的准备工作,接下来就可以利用第一电动汽车的充电包为第二电动汽车充电了。
图9是本申请实施例的电动汽车之间充电的方法的示意图。图8的方法应用于充电的第二电动汽车,该第二电动汽车包括电池包,交流插座,充电机,控制器,图9的方法包括:
510、控制器确定交流插座与第一电动汽车的直流插座通过充放电电缆连接;
520、第二电动汽车的充电机接收第一电动汽车输出的充电电流,为电池包充电。
上述充放电电缆可以包括放电插头、充电插头以及连接在充电插头和放电插头之间的 电缆,其中,充电插头与第二电动汽车的交流插座匹配,放电插头与第一电动汽车的直流插座匹配。
本申请实施例中,当通过充放电电缆将第二电动汽车的交流插座与第一电动汽车的直流插座相连就可以利用第一电动汽车输出的直流电为该第二电动汽车的电池包充电,与现有技术中需要改变电动汽车的充电机的设计方案相比,在不改变电动汽车的充电机的设计方案的情况下就可以利用第二电动汽车输出的直流电为第一电动汽车的电池包充电,能够较方便地实现电动汽车之间的充电。
可选地,作为一个实施例,第一电动汽车包括控制器,该方法还包括:控制器获取第一电动汽车的放电配置参数;充电机根据放电配置参数,将第一电动汽车输出的直流电转换为与电池包匹配的直流电,为电池包充电。
具体地,充电机可以根据放电配置参数将第一电动汽车输出的直流电的电流和电压转换为与电池包的直流电。
可选地,作为一个实施例,控制器获取第一电动汽车的放电配置参数,包括:控制器向另一电动汽车发送充电请求;控制器接收另一电动汽车发送的发送放电配置参数。
上述放电配置参数可以包括另一电动汽车在为电池包充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
具体地,当放电配置参数指示第一电动汽车在为电池包充电时能够提供的直流电的电压值为420V,而与电池包210匹配的直流电的电压值为360V,那么接下来,电池包可以将第一电动汽车输出的直流电转化为电压值为360V的目标直流电,并以该目标直流电为电池包充电。
可选地,作为一个实施例,在充电机为电池包充电之前,该方法还包括:
控制器确定第二电动汽车为充电车辆。
确定第二电动汽车为充电车辆的方式有两种:
方式三:
控制器确定交流插座与充放电电缆的连接情况;
当交流插座与充放电电缆连接时,控制器定第二电动汽车为充电车辆。
应理解,这里的控制器和直流插座均是第二电动汽车中的模块或者设备。
方式四:
控制器确定交流插座与充放电电缆的第二插头连接;
确定第二插头中的电阻的电阻值;
当第二插头中的电阻的电阻值为预设阻值(例如,可以为2.5KΩ)时,控制器确定第二电动汽车为充电车辆。
可选地,作为一个实施例,在充电机为电池包充电之前,该方法还包括:
控制器向第一电动汽车发送准备充电命令;
控制器接收第一电动汽车回复的准备放电命令。
上述准备充电命令表示第二电动汽车已经做好充电准备,请求第一电动汽车为第二电动汽车充电。上述准备放电命令是对准备充电命令的答复,它用于通知第二电动汽车准备接收第一电动汽车输出的直流电。这样就可以利用第一电动汽车输出的直流电为第二电动汽车充电。
可选地,作为一个实施例,在充电机为电池包充电之前,该方法还包括:控制器向第一电动汽车发送握手请求消息;控制器接收第一电动汽车的握手响应消息,以建立第一电动汽车和第二电动汽车之间的通信连接。
本申请实施例中,在充电之前先建立通信连接能够提高充电过程的安全性和可靠性。
应理解,控制器可以通过第二电动汽车与第一电动汽车之间连接的充放电电缆以电力线载波的形式与第一电动汽车进行信息的交互,也可以通过无线通信进行信息的交互。
可选地,作为一个实施例,方法还包括:在充电出现异常的情况下,控制充电机停止为电池包充电。
应理解,上述第一电动汽车相当于上述实施例中的电动汽车100,第二电动汽车相当于上述实施例中的电动汽车200,电动汽车100能够执行图4所示的电动汽车之间充电的方法,电动汽车200能够执行图5所示的电动汽车之间充电的方法。
还应理解,在本申请实施例中,当充放电电缆将第二电动汽车的交流插座与第一电动汽车的直流插座连接后,控制器可以先确定第二电动汽车为充电车辆,然后建立第二电动汽车与第一电动汽车的通信连接,在建立通信连接后控制器再向第一电动汽车发送充电请求,并获取第一电动汽车发送的放电配置参数,接下来再向第一电动汽车发送准备充电命令,并接收第一一电动汽车回复的准备放电命令,这样就完成了充电前的准备工作,接下来就可以利用第一电动汽车为电动汽车200充电了。
下面结合图10和图11对本申请实施例的电动汽车之间充电的方法中建立通信连接和进行充电配置的过程进行详细的说明。
如图10所示,在建立通信连接的过程中,步骤601至步骤605在放电车辆侧进行,步骤701至步骤705在充电车辆侧执行。具体步骤如下:
601、充放电电缆的放电插头插入放电车辆的直流插座;
602、车辆控制装置通过CC2引脚检测放电插头中的电阻是否为预设值,如果为预设值则执行步骤603,如果通过CC2引脚检测放电插头中的电阻不是预设值,那么继续执行步骤602。这里的预设值可以是2KΩ。
603、当放电插头中的电阻为预设值时确定放电插头已经与直流插座连接。
604、通信装置向充电车辆发送握手信号。通信装置具体可以通过直流插座以及充放电电缆以电力线载波的形式向充电车辆发送握手信号,也可以通过无线通信向充电车辆发送握手信号。
605、通信装置确定是否接收到了充电车辆发送的握手信号,如果接收到了充电车辆的握手信号那么就确定车车充电握手成功,如果在预定的时间内仍然没有接收到充电车辆发送的握手信号那么就确定车车充电握手失败。
701、充放电电缆的充电插头插入放电车辆的交流插座;
702、车辆控制装置通过CC引脚检测充电插头中的电阻是否为预设值,如果为预设值则执行步骤703,如果通过CC引脚检测放电插头中的电阻不是预设值,那么继续执行步骤702。这里的预设值可以是2.5KΩ。
703、当充电插头中的电阻为预设值时确定充电插头已经与交流插座连接。
704、通信装置向放电车辆发送握手信号。通信装置具体可以通过直流插座以及充放电电缆以电力线载波的形式向充电车辆发送握手信号,也可以通过无线通信向充电车辆发 送握手信号。
705、通信装置确定是否接收到了放电车辆发送的握手信号,如果接收到了放电车辆的握手信号那么就确定车车充电握手成功,如果在预定的时间内仍然没有接收到放电车辆发送的握手信号那么就确定车车充电握手失败。
在建立通信连接的过程中,在放电车辆侧执行的步骤601-605与在充电车辆侧执行的步骤701-705基本是一致的,区别仅在于在放电设备侧是检测放电插头中的电阻的阻值,在充电设备侧是检测充电插头中的电阻的阻值。另外,在建立通信连接的过程中放电车辆和充电车辆发送握手信号的先后顺序不做限制,既可以是放电车辆先发送握手信号也可以是充电车辆先发送握手信号。
如图11所示,在进行充电配置的过程中,步骤801至步骤805在放电车辆侧进行,步骤901至步骤905在充电车辆侧执行。具体步骤如下:
801、通信装置确定是否接收到了充电车辆的充电需求参数,如果没有接收到该充电需求参数就继续执行步骤801,如果接收该充电需求参数就执行步骤802。
802、在接收到充电需求参数后,通信装置向充电车辆发送放电配置参数。
803、通信装置确定是否接收到充电车辆的准备充电命令,如果没有接收到就继续执行步骤803,如果接收到了执行步骤804。
804、通信装置向充电车辆发送准备充电命令,以指示放电车辆为充电车辆进行充电。
901、通信装置向放电车辆发送准备充电需求参数。
902、通信装置确定是否接收到放电车辆的放电配置参数,如果没有接收到就继续执行步骤702,如果接收就执行步骤703。
903、通信装置向放电车辆发送准备充电命令,请求放电车辆为充电车辆进行充电。
904、通信装置确定是否接收到放电车辆的准备放电命令,如果没有接收到就继续执行步骤904,如果接收到了就确定车车充电配置成功。
如果在步骤803和步骤904中,放电车辆的通信装置在预设时间内仍然没有接收到充电车辆的准备充电命令,和/或充电车辆的通信装置在预设时间内仍然没有接收到放电车辆的准备充电命令,那么就确定车车充电配置失败。
在上述步骤中,充电需求参数可以包括充电车辆在充电时需要的电能、充电电压、充电电流以及充电功率中的至少一种。放电配置参数包括放电车辆在为充电车辆充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种电动汽车,其特征在于,包括:
    电池包;
    直流插座,用于插入充放电电缆,通过所述充放电电缆与另一电动汽车的交流插座连接;
    控制器,用于在所述直流插座与所述另一电动汽车的交流插座通过所述充放电电缆连接时,根据所述另一电动汽车的充电请求,控制所述电池包为所述另一电动汽车充电。
  2. 如权利要求1所述的电动汽车,其特征在于,在所述控制器根据所述另一电动汽车的充电请求控制所述电池包为所述另一电动汽车充电之前,所述控制器还用于向所述另一电动汽车发送放电配置参数。
  3. 如权利要求2所述的电动汽车,其特征在于,所述放电配置参数包括所述电池包在为所述另一电动汽车充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
  4. 如权利要求1-3中任一项所述的电动汽车,其特征在于,在所述控制器根据所述另一电动汽车的充电请求控制所述电池包为所述另一电动汽车充电之前,所述控制器还用于:
    接收所述另一电动汽车发送的握手请求消息;
    向所述另一电动汽车发送握手响应消息,以建立所述电动汽车和所述另一电动汽车之间的通信连接;
    基于所述通信连接获取所述充电请求。
  5. 如权利要求1-4中任一项所述的电动汽车,其特征在于,所述控制器还用于:
    在充电出现异常的情况下,控制所述电池包停止为所述另一电动汽车充电。
  6. 如权利要求1-5中任一项所述的电动汽车,其特征在于,所述充放电电缆包括放电插头、充电插头以及连接在所述充电插头和所述放电插头之间的电缆,其中,所述放电插头与所述直流插座匹配,所述充电插头与所述另一电动汽车的交流插座匹配。
  7. 如权利要求6所述的电动汽车,其特征在于,所述充电插头的L1引脚、L2引脚和L3引脚中的任意一个引脚通过电缆与所述放电插头的第一引脚连接,所述充电插头的N引脚通过电缆与所述放电插头的第二引脚连接,其中,所述第一引脚和所述第二引脚分别为DC+引脚和DC-引脚,或者,所述第一引脚和所述第二引脚分别为DC-引脚和DC+引脚。
  8. 一种电动汽车,其特征在于,包括:
    电池包;
    交流插座;
    充电机,用于在所述交流插座与另一电动汽车的直流插座通过充放电电缆连接的过程中,接收所述另一电动汽车输出的直流电,为所述电池包充电。
  9. 如权利要求8所述的电动汽车,其特征在于,所述电动汽车还包括:
    控制器,用于获取所述另一电动汽车的放电配置参数;
    所述充电机具体用于根据所述放电配置参数,将所述另一电动汽车输出的直流电转换为与所述电池包匹配的直流电,为所述电池包充电。
  10. 如权利要求9所述的电动汽车,其特征在于,所述控制器具体用于:
    向所述另一电动汽车发送充电请求;
    接收所述另一电动汽车在接收到所述充电请求后发送的放电配置参数。
  11. 如权利要求9或10所述的电动汽车,其特征在于,所述放电配置参数包括所述另一电动汽车在为所述电池包充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
  12. 如权利要求9-11中任一项所述的电动汽车,其特征在于,在所述充电机为所述电池包充电之前,所述控制器还用于:
    向所述另一电动汽车发送握手请求消息;
    接收所述另一电动汽车的握手响应消息,以建立所述电动汽车和所述另一电动汽车之间的通信连接。
  13. 如权利要求9-12中任一项所述的电动汽车,其特征在于,所述控制器还用于:
    在充电出现异常的情况下,控制所述充电机停止为所述电池包充电。
  14. 如权利要求8-13中任一项所述的电动汽车,其特征在于,所述充放电电缆包括放电插头、充电插头以及连接在所述充电插头和所述放电插头之间的电缆,其中,所述充电插头与所述交流插座匹配,所述放电插头与所述另一电动汽车的直流插座匹配。
  15. 如权利要求14所述的电动汽车,其特征在于,所述充电插头的L1引脚、L2引脚和L3引脚中的任意一个引脚通过电缆与所述放电插头的第一引脚连接,所述充电插头的N引脚通过电缆与所述放电插头的第二引脚连接,其中,所述第一引脚和所述第二引脚分别为DC+引脚和DC-引脚,或者,所述第一引脚和所述第二引脚分别为DC-引脚和DC+引脚。
  16. 一种电动汽车之间充电的方法,所述方法应用于放电的第一电动汽车,所述第一电动汽车包括电池包,直流插座,控制器,其特征在于,所述方法包括:
    所述控制器确定所述直流插座与第二电动汽车的交流插座通过充放电电缆连接;
    所述控制器控制所述电池包为所述第二电动汽车充电。
  17. 如权利要求16所述的方法,其特征在于,在所述控制器控制所述电池包为所述第二电动汽车充电之前,所述方法还包括:
    所述控制器接收所述第二电动汽车的充电请求;
    在接收到所述充电请求后,所述控制器向所述第二电动汽车发送放电配置参数。
  18. 如权利要求17所述的方法,其特征在于,放电配置参数包括所述电池包为所述第二电动汽车充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
  19. 如权利要求16-18中任一项所述的方法,其特征在于,在所述控制器控制所述电池包为所述第二电动汽车充电之前,所述方法还包括:
    所述控制器接收所述第二电动汽车发送的握手请求消息;
    所述控制器向所述第二电动汽车发送握手响应消息,以建立所述第一电动汽车和所述第二电动汽车之间的通信连接。
  20. 如权利要求16-19中任一项所述的方法,其特征在于,所述方法还包括:
    在充电出现异常的情况下,控制所述电池包停止为所述第二电动汽车充电。
  21. 一种电动汽车之间充电的方法,所述方法应用于充电的第二电动汽车,所述第二电动汽车包括电池包,交流插座,充电机,控制器,其特征在于,所述方法包括:
    所述控制器确定所述交流插座与第一电动汽车的直流插座通过充放电电缆连接;
    所述控制器控制所述充电机接收所述第一电动汽车输出的直流电,为所述电池包充电。
  22. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    所述控制器获取所述第一电动汽车的放电配置参数;
    所述充电机根据所述放电配置参数,将所述第一电动汽车输出的直流电转换为与所述电池包匹配的直流电,为所述电池包充电。
  23. 如权利要求22所述的方法,其特征在于,所述控制器获取所述第一电动汽车的放电配置参数,包括:
    所述控制器向所述第一电动汽车发送充电请求;
    所述控制器接收所述第一电动汽车在接收到所述充电请求后发送的所述放电配置参数。
  24. 如权利要求22或23所述的方法,其特征在于,所述放电配置参数包括所述第一电动汽车在为所述电池包充电时能提供的电能、放电电压、放电电流以及放电功率中的至少一种。
  25. 如权利要求21-24中任一项所述的方法,其特征在于,在所述充电机为所述电池包充电之前,所述方法还包括:
    所述控制器向所述第一电动汽车发送握手请求消息;
    所述控制器接收所述第一电动汽车的握手响应消息,以建立所述第一电动汽车和所述第二电动汽车之间的通信连接。
  26. 如权利要求21-25中任一项所述的方法,其特征在于,所述方法还包括:
    在充电出现异常的情况下,所述控制器控制所述充电机停止为所述电池包充电。
PCT/CN2017/103559 2016-09-27 2017-09-27 电动汽车以及电动汽车之间充电的方法 WO2018059416A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854866.5A EP3511193A4 (en) 2016-09-27 2017-09-27 ELECTRIC CAR AND METHOD FOR PROVIDING ELECTRICITY CHARGE BETWEEN ELECTRIC CARS
US16/366,633 US11260759B2 (en) 2016-09-27 2019-03-27 Electric vehicle and method for charging between electric vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610852719.7A CN107867186B (zh) 2016-09-27 2016-09-27 电动汽车以及电动汽车之间充电的方法
CN201610852719.7 2016-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/366,633 Continuation US11260759B2 (en) 2016-09-27 2019-03-27 Electric vehicle and method for charging between electric vehicles

Publications (1)

Publication Number Publication Date
WO2018059416A1 true WO2018059416A1 (zh) 2018-04-05

Family

ID=61751973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103559 WO2018059416A1 (zh) 2016-09-27 2017-09-27 电动汽车以及电动汽车之间充电的方法

Country Status (4)

Country Link
US (1) US11260759B2 (zh)
EP (1) EP3511193A4 (zh)
CN (1) CN107867186B (zh)
WO (1) WO2018059416A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092371B (zh) * 2016-11-15 2020-04-03 华为技术有限公司 充放电装置
DE102017220017A1 (de) * 2017-11-10 2019-05-16 Kuka Ag Mobile Ladestation und Verfahren zum Laden eines Elektrofahrzeuges
CN109050315A (zh) * 2018-08-22 2018-12-21 北京长城华冠汽车科技股份有限公司 一种电动汽车的充电方法和充电系统
US11225162B2 (en) 2018-09-27 2022-01-18 Landis+Gyr Innovations, Inc. Providing on-demand power charging for electric vehicles
CN109515229A (zh) * 2018-11-01 2019-03-26 广州小鹏汽车科技有限公司 一种电动车双向充电装置及其控制方法
US11104244B2 (en) * 2019-04-12 2021-08-31 Ford Global Technologies, Llc Method for charging a plug-in electric vehicle via another plug-in electric vehicle
KR102613207B1 (ko) * 2019-07-12 2023-12-14 현대자동차주식회사 차대차 충전 케이블 및 그 제어방법
FR3098768A1 (fr) * 2019-07-19 2021-01-22 Psa Automobiles Sa Procédé et dispositif de contrôle de recharges entre batteries de véhicules
CN111697403B (zh) * 2019-07-31 2021-09-03 比亚迪股份有限公司 电缆组件和车辆充电系统
US11407322B2 (en) * 2019-09-05 2022-08-09 Hong Kong Applied Science and Technology Research Institute Company, Limited Smart power hub
CN110723002B (zh) * 2019-10-28 2023-08-11 大陆投资(中国)有限公司 一种移动充电小车
US11447016B2 (en) * 2019-11-01 2022-09-20 Ford Global Technologies, Llc System and method for battery preconditioning based on selected regenerative braking amount
CN113472197A (zh) * 2020-03-30 2021-10-01 北京新能源汽车股份有限公司 一种直流转换器、直流充电控制方法及装置
CN111510030B (zh) * 2020-05-21 2022-04-12 华为数字能源技术有限公司 一种电机驱动系统及车辆
CN113715638B (zh) * 2020-05-26 2024-03-01 北京新能源汽车股份有限公司 一种车对车充电的控制方法及电动汽车
CN113858986B (zh) * 2020-06-30 2023-06-13 比亚迪股份有限公司 充电转接装置、车辆以及识别车辆充放电模式的方法
CN112078394A (zh) * 2020-07-29 2020-12-15 中通客车控股股份有限公司 一种电动客车的车-车移动充电系统及方法
CN112208390A (zh) * 2020-09-04 2021-01-12 智新控制系统有限公司 新能源汽车用通用型附加电池包系统及新能源汽车
CN112532073B (zh) * 2020-12-08 2024-06-21 数源科技股份有限公司 直流充电桩整流模块的安装结构
US11923713B2 (en) * 2021-01-29 2024-03-05 Rivian Ip Holdings, Llc Systems and methods for vehicle-to-load charging
CN112810470B (zh) * 2021-01-29 2022-10-21 深圳威迈斯新能源股份有限公司 车载充电机v2v快充系统及其控制方法
CN113525122B (zh) * 2021-07-19 2023-09-12 北京新能源汽车股份有限公司 充电座切换机构和充电口总成
DE102022104557A1 (de) 2022-02-25 2023-08-31 Man Truck & Bus Se Fahrzeug, Fahrzeugverbund, Verfahren zum Laden einer Batterie eines Fahrzeugs und Verwendung eines Ladeanschlusses
GB2617070A (en) * 2022-03-28 2023-10-04 Jaguar Land Rover Ltd Vehicle charging control system and method
CN117913933A (zh) * 2022-10-11 2024-04-19 宝马股份公司 电源适配器和用于其的方法、电动车辆和用于其的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161318A (zh) * 2010-02-18 2011-08-24 索尼公司 信息处理装置、电机驱动可移动体和放电控制方法
CN103187759A (zh) * 2011-12-31 2013-07-03 比亚迪股份有限公司 电动汽车之间相互充电的系统及充电连接器
US20150175022A1 (en) * 2013-12-23 2015-06-25 Contour Hardening, Inc. Pto driven dc generator for electric vehicle charging
US20160023562A1 (en) * 2013-03-15 2016-01-28 Schneider Electric USA, Inc. Portable electric vehicle charging device
CN105835714A (zh) * 2015-11-04 2016-08-10 郑州宇通客车股份有限公司 一种车对车充电机和系统以及充电方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007020B2 (en) * 2011-05-25 2015-04-14 Green Charge Networks Charging service vehicles with battery and generator sources
JP5725172B2 (ja) * 2011-05-27 2015-05-27 トヨタ自動車株式会社 車両
US20130020993A1 (en) * 2011-07-18 2013-01-24 Green Charge Networks Llc Multi-Mode Electric Vehicle Charging Station
US9114716B2 (en) * 2013-01-02 2015-08-25 Ford Global Technologies, Llc Method and apparatus for high-voltage DC charging of battery-electric and plug-in hybrid electric vehicles
JP6198109B2 (ja) * 2013-04-26 2017-09-20 パナソニックIpマネジメント株式会社 電力供給システム
DE102014223585A1 (de) * 2014-11-19 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs
DE102016211335A1 (de) * 2016-06-24 2017-12-28 Volkswagen Aktiengesellschaft Elektrisches Aufladen von Elektrofahrzeugen mittels Adapter zur Signalwandlung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161318A (zh) * 2010-02-18 2011-08-24 索尼公司 信息处理装置、电机驱动可移动体和放电控制方法
CN103187759A (zh) * 2011-12-31 2013-07-03 比亚迪股份有限公司 电动汽车之间相互充电的系统及充电连接器
US20160023562A1 (en) * 2013-03-15 2016-01-28 Schneider Electric USA, Inc. Portable electric vehicle charging device
US20150175022A1 (en) * 2013-12-23 2015-06-25 Contour Hardening, Inc. Pto driven dc generator for electric vehicle charging
CN105835714A (zh) * 2015-11-04 2016-08-10 郑州宇通客车股份有限公司 一种车对车充电机和系统以及充电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3511193A4 *

Also Published As

Publication number Publication date
US11260759B2 (en) 2022-03-01
US20190217732A1 (en) 2019-07-18
CN107867186B (zh) 2021-02-23
CN107867186A (zh) 2018-04-03
EP3511193A1 (en) 2019-07-17
EP3511193A4 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2018059416A1 (zh) 电动汽车以及电动汽车之间充电的方法
CN105008173B (zh) 跨协议充电适配器
EP2628631A2 (en) Data transmission device and method between charger and electric vehicle
US20150224890A1 (en) Connector converter and vehicle charging system and method using the same
US11135935B2 (en) Vehicle charging system
US20160126756A1 (en) Method for controlling charge/discharge system, and charge/discharge system
JP7371732B2 (ja) 車両の制御装置およびそれを備えた車両ならびに車両の制御方法
KR20150109608A (ko) 전기 자동차 충전 장치
JP2015173589A (ja) 車両のジャンプスタート過程又は緊急充電過程を実行する方法
KR102628571B1 (ko) 차량의 제어 장치 및 그것을 구비한 차량 그리고 차량의 제어 방법
CN109474043A (zh) 一种充电方法及充电设备
TW202308872A (zh) 充電裝置及充電系統
US9520730B2 (en) Method and system for charging high voltage battery packs
EP4344936A1 (en) Vehicle controller, vehicle including the same, and method for controlling vehicle
JP6629203B2 (ja) 電気またはハイブリッド車両の再充電管理のためのシステム
KR102017574B1 (ko) 전기 자동차와 충전기의 신호 세기 측정 간소화방법
KR20220073532A (ko) 전동화 차량 및 그의 충전 방법
JP6301021B2 (ja) パワーコンディショナ及び蓄電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854866

Country of ref document: EP

Effective date: 20190411