WO2018059092A1 - 一种报文交互方法及相关设备 - Google Patents

一种报文交互方法及相关设备 Download PDF

Info

Publication number
WO2018059092A1
WO2018059092A1 PCT/CN2017/093898 CN2017093898W WO2018059092A1 WO 2018059092 A1 WO2018059092 A1 WO 2018059092A1 CN 2017093898 W CN2017093898 W CN 2017093898W WO 2018059092 A1 WO2018059092 A1 WO 2018059092A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ncp
protocol
packet
message
Prior art date
Application number
PCT/CN2017/093898
Other languages
English (en)
French (fr)
Inventor
周文涛
陈殿福
柳清芬
沈智敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197010437A priority Critical patent/KR102244327B1/ko
Priority to BR112019005950A priority patent/BR112019005950A2/pt
Priority to EP17854546.3A priority patent/EP3506716B1/en
Priority to JP2019538297A priority patent/JP7012727B2/ja
Publication of WO2018059092A1 publication Critical patent/WO2018059092A1/zh
Priority to US16/364,792 priority patent/US10887943B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a packet interaction method and related device.
  • FMC Fixed Mobile Convergence
  • Primary Network Primary Network sensing
  • UE scene-to-end
  • CN Core Network
  • the FMC refers to the fact that the UE and the core network maintain multiple connections through the fixed and mobile access networks at the same time.
  • the working modes of the multiple connections may be flow-by-stream, split-splitting, active-standby mode, and the like.
  • a private network is a network formed by direct devices (Direct Devices) accessing different devices through WiFi or Bluetooth.
  • a direct terminal refers to a terminal that is directly connected to a fixed access network or a mobile access network and accesses a 5G core network, such as a terminal that accesses a mobile access network and a home gateway that accesses a fixed access network.
  • a device that accesses a direct terminal through WiFi or Bluetooth in a private network is called an indirect terminal.
  • the type 1 is the case where only the mobile access network is connected
  • the type 2 is the case where only the fixed network is connected
  • the type 3 is the mobile access at the same time.
  • CPE Customer Premise Equipment
  • DSL Digital Subscriber Line
  • Type 3 UEs need to support both 5G and Multi-connection for WiFi indirect access.
  • the working mode of multiple connections needs to be negotiated between the UE and the core network. If the working mode of the FMC multi-connection is packet-by-packet distribution, the UE and the core network need to directly mark the packet transmission sequence between the sender and the receiver. If the working mode of the FMC multi-connection is flow-by-flow, the UE and the core network need to exchange packets to perform channel mapping.
  • the scenario of the direct interaction between the UE and the core network in the 5G network is described.
  • the scenarios of the FMC multi-connection channel aggregation, the FMC multi-connection channel management, the private network sensing, and the private network control are described.
  • the private network is aware that the CPE or the UE needs to report the network status of the private network under its own device and the service type of the private network terminal to the 5G core network;
  • the 5G core network needs to send the quality of service (QoS) policy and the virtual local area network (VLAN) planning of the private network terminal to the CPE or the UE.
  • QoS quality of service
  • VLAN virtual local area network
  • the 3GPP non-access stratum carries the packets of the FMC multi-connection channel aggregation, the FMC multi-connection channel management, the private network sensing, and the private network control.
  • FIG. 4 is a schematic diagram of a control plane protocol stack of E-UTRAN access in 3GPP TS 23.401, wherein the NAS is a direct interaction channel between the UE and the core network.
  • the terminal uses the extended NAS to carry the packets of the FMC multi-connection channel aggregation, the FMC multi-connection channel management, the private network sensing, and the private network control.
  • the disadvantage of the first solution is that the 3GPP NAS acts as a channel for direct interaction between the UE and the core network.
  • the following restrictions are imposed: the multi-channel aggregation function is not supported.
  • the NAS is a signaling plane function, the NAS cannot support the aggregation of multiple connections on the user plane.
  • the multi-connection channel management, private network sensing, and private network control functions cannot be supported.
  • the performance of the signaling plane is affected.
  • the NAS is transmitted on the signaling plane channel.
  • the packets with multiple connection management, private network sensing, and private network control are frequently used. If the signaling load of the 3GPP is directly increased, the delay of the 3GPP signaling may increase, such as the possible handover interruption, the increase of the call delay, and the increase of the paging delay.
  • Multi-path Transmission Control Protocol MPTCP
  • FIG 5 shows the protocol stack description of MPTCP in RFC6824.
  • the TCP stream of an application layer is decomposed into two TCP sub-streams at the transmitting end, and the two streams are transmitted at the receiving end.
  • the substreams are combined and sent to the application layer.
  • FIG. 6 shows the usage scenario of MPTCP in RFC6824.
  • Host A and Host B have two addresses.
  • the aggregation point of the substream is on the Host, and its aggregation function is not in the 5G core network.
  • the disadvantage of the second solution is that when the MPTCP is used for the FMC multi-connection aggregation between the UE and the core network, the following restrictions are imposed: the convergence point of the MPTCP is on the Host, not on the 5G core network. Therefore, the 5G core network cannot be based on the function. MPTCP performs aggregation and management of FMC multi-connection; MPTCP convergence point is above the TCP layer, which exceeds the definition of 3GPP, and 3GPP cannot innovate on the MPTCP layer.
  • the embodiment of the present invention provides a packet interaction method and related device, which are used to implement direct interaction between a UE and a core network in a 5G network.
  • the embodiment of the present invention provides a packet exchange method, including: the first device acquires a packet through a network convergence protocol NCP layer, and sends the packet to the second device by using an NCP layer of the first device.
  • the NCP layer wherein the NCP layer is located at a data link layer of the user plane, and the NCP layer of the first device and the NCP layer of the second device constitute a direct data interaction between the first device and the second device.
  • the first device may be a terminal, and the second device may be a core network device; or the first device may be a core network device, and the second device is a terminal.
  • the NCP layer is set in the data link layer of the user plane of the terminal and the core network device respectively, and the NCP layer of the terminal and the NCP layer of the core network device form a direct data interaction channel, and the terminal and the core network device pass the direct data.
  • the interaction channel directly performs packet interaction, thereby implementing direct interaction between the terminal and the core network device.
  • the packet is a packet in a fixed mobile convergence FMC scenario.
  • the direct interaction of packets in the FMC scenario is implemented.
  • the packet is a packet used for FMC multi-connection aggregation, or is a packet used for FMC multi-connection management, or is a packet used for private network sensing, or is used for A packet controlled by the private network.
  • the direct interaction of packets in different scenarios is implemented.
  • the NCP layer is located at the top of the data link layer and is located below the Internet Protocol IP layer. This does not affect the protocol of the IP layer, ensuring application compatibility.
  • the NCP layer is located above the packet data convergence protocol PDCP layer; if the access network AN between the first device and the second device uses a digital subscriber line DSL protocol, The NCP layer is located above the PPP layer of the point-to-point protocol; if the access network between the first device and the second device uses a trusted wireless fidelity WiFi protocol, the NCP layer is located at the MAC layer of the medium access control. Above; if the access network between the first device and the second device adopts an untrusted wireless fidelity WiFi protocol, the NCP layer is located above the Internet Protocol Security IPSec layer. This further solves the problem of direct interaction in different access network type scenarios.
  • the protocol header of the NCP layer is carried by an Internet Protocol IP option with a specified option type; or the protocol header of the NCP layer includes an NCP type and NCP data.
  • the specific implementation of NCP is further clarified.
  • the embodiment of the present invention provides a packet exchange method, including: a first device receives a packet transmitted by an NCP layer of a second device by using a network convergence protocol NCP layer; and the first device processes the packet Wherein the NCP layer is located at a data link layer of the user plane, and the NCP layer of the first device and the NCP layer of the second device form direct data between the first device and the second device;
  • the first device may be a terminal, and the second device may be a core network device; or the first device may be a core network device, and the second device is a terminal.
  • the NCP layer is set in the data link layer of the user plane of the terminal and the core network device respectively, and the NCP layer of the terminal and the NCP layer of the core network device form a direct data interaction channel, and the terminal and the core network device pass the direct data.
  • the interaction channel directly performs packet interaction, thereby implementing direct interaction between the terminal and the core network device.
  • the packet is a packet in a fixed mobile convergence FMC scenario.
  • the direct interaction of packets in the FMC scenario is implemented.
  • the packet is a packet used for FMC multi-connection aggregation, or is a packet used for FMC multi-connection management, or is a packet used for private network sensing, or is used for A packet controlled by the private network.
  • the direct interaction of packets in different scenarios is implemented.
  • the NCP layer is located at the top of the data link layer and is located below the Internet Protocol IP layer. This does not affect the protocol of the IP layer, ensuring application compatibility.
  • the NCP layer is located on the PDCP layer of the packet data convergence protocol;
  • the access network AN between the first device and the second device adopts a digital subscriber line DSL protocol, and the NCP layer is located above the PPP layer of the point-to-point protocol; if the first device and the second device
  • the access network AN between the devices is a trusted wireless fidelity WiFi protocol, and the NCP layer is located above the medium access control MAC layer; if the access between the first device and the second device is The network AN adopts the untrusted wireless fidelity WiFi protocol, and the NCP layer is located above the Internet Protocol security IPSec layer.
  • the protocol header of the NCP layer is carried by an Internet Protocol IP option with a specified option type; or the protocol header of the NCP layer includes an NCP type and NCP data.
  • the specific implementation of NCP is further clarified.
  • an embodiment of the present invention provides a device, which has the function of implementing the behavior of the first device in the method implementation of the first aspect or the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides an apparatus, including a processor, a memory, and a transceiver, where the transceiver is configured to receive and transmit data under the control of a processor, and the preset program is stored in the memory, and the processing is performed.
  • the program reads a program in the memory, and the method of the first aspect or the second aspect described above is executed in accordance with the program.
  • data is respectively used on the user plane of the terminal and the core network device.
  • the link layer sets the NCP layer, and the NCP layer of the terminal and the NCP layer of the core network device form a direct data interaction channel, and the terminal and the core network device directly perform message interaction through the direct data interaction channel, thereby realizing the terminal and the core network device. Direct interaction between messages.
  • FIG. 1 is a schematic structural diagram of an FMC networking of a 5G network
  • FIG. 2 is a schematic diagram of a scenario in which a direct interaction between a UE and a core network in a 5G network is required;
  • FIG. 3 is a schematic diagram of an access scenario
  • FIG. 4 is a schematic diagram of a control plane protocol stack for E-UTRAN access
  • 5 is a schematic diagram of a protocol stack of MPTCP
  • FIG. 6 is a schematic diagram of a usage scenario of the MPTCP
  • FIG. 7 is a schematic structural diagram of a message interaction system according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for performing packet interaction between a terminal and a CN according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of a method for performing packet interaction between another terminal and a CN according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of locations of an NCP layer in a protocol layer of different communication access systems according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of locations of an NCP layer in each LTE protocol layer according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of locations of an NCP layer in each protocol layer of a DSL according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of locations of an NCP layer in a trusted WiFi protocol layer according to an embodiment of the present invention.
  • 15 is a schematic diagram of a process of establishing a link between a direct terminal and a CN at an NCP layer according to an embodiment of the present invention
  • 16 is a schematic diagram of a process of data transmission between a direct terminal and a CN at an NCP layer according to an embodiment of the present invention
  • 17 is a schematic diagram of a process of establishing a handshake at an NCP layer between an indirect terminal and a CN according to an embodiment of the present invention
  • FIG. 18 is a schematic diagram of a process of data transmission between an indirect UE and a CN at an NCP layer according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a process of parameter transfer through an NCP API interface according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of an NCP data transmission process in a multi-connection mode negotiation process according to an embodiment of the present invention
  • 21 is a schematic diagram of an NCP data transmission process in a multi-connection active/standby mode link switching process according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of an NCP data transmission process in a link switching process corresponding to a multi-connection flow-by-flow distribution mode according to an embodiment of the present invention
  • FIG. 23 is a schematic diagram of a packet-by-packet distribution process according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of a flow-by-stream distribution process according to an embodiment of the present invention.
  • 25 is a schematic diagram of a message delivery process in an active/standby mode according to an embodiment of the present invention.
  • 26 is a schematic diagram of IP packet transmission in an NCP single connection mode according to an embodiment of the present invention.
  • FIG. 27 is a schematic diagram of NCP data transmission for a private network status report according to an embodiment of the present invention.
  • 29 is a schematic diagram of NCP data transmission for private network control according to an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of definitions of IP options corresponding to an NCP protocol header according to an embodiment of the present invention.
  • FIG. 31 is a schematic structural diagram of an NCP protocol header according to an embodiment of the present invention.
  • FIG. 32 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • FIG. 33 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • FIG. 34 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • 35 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • 36 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • FIG. 37 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • the core idea of the present invention is to set a Network Convergence Protocol (NCP) layer as a direct data interaction channel between the UE and the CN at the data link layer of the user plane and independent of the access system.
  • NCP Network Convergence Protocol
  • the NCP layer implements direct interaction between packets between the UE and the core network in the 5G network.
  • the set NCP layer can be used in an FMC scenario or a non-FMC scenario.
  • the architecture of the packet interaction system includes CN701, Radio Access Network (RAN) 702, and fixed access network (Fixed Access Network). , FAN) 703, CPE 704, and UE 705.
  • RAN Radio Access Network
  • FAN FAN
  • CPE CPE
  • CN701 is a 5G core network, which is mainly used for mobile management, session management, security management, multi-connection management, private network awareness and private network control.
  • the RAN 702 is mainly used for the radio access service of the 3GPP standard such as LTE and 5G.
  • FAN703 is mainly used for fixed access services such as DSL.
  • the CPE 704 is mainly used to support aggregation access of home devices through a private network such as WiFi or Bluetooth.
  • the UE 705 is mainly used to support aggregation access of various WiFi or Bluetooth devices through a private network such as WiFi or Bluetooth.
  • the system further includes other terminal devices 706, which mainly include a personal computer (PC), a smart TV, a Bluetooth photo frame, a Bluetooth speaker, a Bluetooth light bulb, and the like.
  • other terminal devices 706 which mainly include a personal computer (PC), a smart TV, a Bluetooth photo frame, a Bluetooth speaker, a Bluetooth light bulb, and the like.
  • the FMC multi-connection scenario includes two sub-scenarios: CPE multi-connection and UE multi-connection.
  • the NCP1 protocol entity of the CPE 704 aggregates two connections of the RAN 702 and the FAN 703.
  • the CN 701 there is a peer NCP1 protocol entity that performs FMC multi-connection aggregation and FMC multi-connection management.
  • the NCP2 protocol entity of the UE 705 aggregates the RAN 702 and the WiFi two-way connection.
  • the CN 701 there is a peer NCP2 protocol entity that performs FMC multi-connection aggregation and FMC multi-connection management.
  • the private network sensing and private network control scenarios include four sub-scenarios: CPE private network sensing, CPE private network control, UE private network sensing, and UE private network control.
  • the CPE 704 scans the network congestion status of the private network and the device service of the private network, such as the smart TV service, and reports it to the NCP1 on the core network through the NCP1.
  • the NCP1 of the CN is sent to the corresponding CN. Functional entities are processed.
  • the NCP1 of the CN sends the QoS policy or VLAN plan of the device in the private network to the NCP1 in the CPE, and sends the NCP1 in the CPE to the corresponding functional entity in the CPE for processing.
  • the UE scans the network congestion status of the private network and scans the device services in the private network, such as the Bluetooth speaker service, and reports the NCP2 reported by the NCP2 to the CN, and the NCP2 of the CN sends the corresponding function to the CN.
  • the entity handles it.
  • the NCP2 of the CN sends the QoS policy or VLAN plan of the device in the private network to the NCP2 in the CPE, and the NCP2 in the CPE sends the corresponding function entity to the corresponding functional entity in the UE for processing.
  • data transmitted between the terminal and the CN through the NCP may not be limited to 3GPP signaling, and may also be used for direct transmission between the terminal and the CN, such as non-3GPP signaling, S1 port data, and the like. .
  • FIG. 8 a detailed method flow for performing packet exchange between a terminal and a CN, where the first device is a terminal, and the second device is a core network device; or The first device is a core network device, and the second device is a terminal, and the specific description is as follows:
  • Step 801 The first device acquires a packet by using an NCP layer of the first device.
  • the packet is a packet in an FMC scenario.
  • the packet in the FMC scenario may be a packet used for FMC multi-connection aggregation, or a packet used for FMC multi-connection management, or a packet used for private network sensing, or A packet controlled by the private network. It should be noted that the description is only for example. The packet may also be a packet in other FMC scenarios, and the scope of protection of the present invention is limited by the enumerated scenarios.
  • Step 802 The first device sends the packet to the NCP layer of the second device by using the NCP layer of the first device, where the NCP layer is located at the data link layer of the user plane, the NCP layer of the first device, and the second device.
  • the NCP layer constitutes a direct data interaction channel between the first device and the second device.
  • the NCP layer is located at the top of the data link layer and is located below the Internet Protocol (IP) layer.
  • IP Internet Protocol
  • the location of the NCP layer is described as follows:
  • the NCP layer is located on a Packet Data Convergence Protocol (PDCP) layer;
  • PDCP Packet Data Convergence Protocol
  • the NCP layer is located on a Point-to-Point Protocol (PPP) layer;
  • PPP Point-to-Point Protocol
  • the NCP layer is located above the Medium Access Control (MAC) layer;
  • MAC Medium Access Control
  • the NCP layer is located on the Internet Protocol Security (IPSec) layer.
  • IPSec Internet Protocol Security
  • the NCP when the NCP is independent of the access system, the NCP can be applied to various access network standards.
  • the access network standard corresponding to the NCP may be LTE, 4.5G, 5G, WiFi, DSL, WiMAX, CDMA, WCDMA, GSM, Zigbee, Bluetooth, infrared and other standards.
  • the protocol header of the NCP layer may adopt at least one of the following two definition manners, as follows:
  • the protocol header of the NCP layer is carried by an IP option with a specified option type
  • the protocol header of the NCP layer includes the NCP type and NCP data.
  • the definition of the NCP type can refer to the definition of the subtype in the IP option.
  • the terminal may be a UE or a CPE.
  • FIG. 9 a detailed method flow for performing packet exchange between another terminal and the CN, wherein the first device is a terminal, and the second device is a core network device.
  • the first device is a core network device
  • the second device is a terminal, and the specific description is as follows:
  • Step 901 The first device receives the message transmitted by the NCP layer of the second device by using the NCP layer of the first device.
  • the packet is a packet in an FMC scenario.
  • the packet in the FMC scenario is a packet used for FMC multi-connection aggregation, or a packet used for FMC multi-connection management, or a packet used for private network sensing, or Packets controlled by the private network.
  • Step 902 The first device processes the packet, where the NCP layer is located at a data link layer of a user plane, and an NCP layer of the first device and an NCP layer of the second device constitute the first device. A direct data interaction channel with the second device.
  • the NCP layer is located at the top of the data link layer and is located below the Internet Protocol IP layer.
  • the location of the NCP layer is described as follows:
  • the NCP layer is located above the PDCP layer
  • the NCP layer is located above the PPP layer
  • the NCP layer is located above the MAC layer
  • the NCP layer is located above the IPSec layer.
  • the protocol header of the NCP layer may adopt at least one of the following two definition manners, as follows:
  • the protocol header of the NCP layer is carried by an Internet Protocol IP option with a specified option type
  • the protocol header of the NCP layer includes an NCP type and NCP data.
  • the terminal may be a UE or a CPE.
  • the following describes the process of directly interacting between the UE and the core network in the 5G network in the case of multiple connections in the FMC.
  • FIG 10 is a schematic diagram showing the location of the NCP layer in different protocol layers of the communication access system.
  • the NCP layer is located on the data link layer of each communication access system and is located in the Internet Protocol (IP) layer. under.
  • IP Internet Protocol
  • the main functions of the NCP layer are: carrying the traditional IP packets, mainly adopting the transparent transmission mode to ensure the transmission performance of the IP packets; and carrying the message sequence number headers in the multi-connection aggregation to support the multi-connection aggregation and packet-by-packet distribution functions; Multi-connection management information is carried out to implement the flow-by-stream distribution and switching function of the FMC multiple connections.
  • the core network can sense the state and service of the private network; carrying the private network control information is the QG and VLAN planning of the 5G core network to control the private network device; and support the nesting of NCP.
  • the following takes the location of the NCP layer in the LTE, DSL, trusted WiFi, and untrusted WiFi protocols as an example.
  • NCP layer in each LTE protocol layer is as shown in FIG. 11, and the NCP layer is added on the Packet Data Convergence Protocol (PDCP) layer of the LTE existing protocol.
  • PDCP Packet Data Convergence Protocol
  • GTP-U supports transparent transmission of the NCP layer.
  • the NCP layer In addition to carrying IP packets, the NCP layer carries other packets required by 5G. In order to improve transmission efficiency, the NCP layer is optional.
  • NCP layer in each protocol layer of the DSL is as shown in FIG. 12, and the NCP layer is added above the PPP layer of the existing protocol of the DSL.
  • the NCP layer In addition to carrying IP packets, the NCP layer carries other packets required by 5G. In order to improve transmission efficiency, the NCP layer is optional.
  • the location of the NCP layer in the trusted WiFi protocol layer is as shown in Figure 13.
  • the NCP layer is added to the MAC layer of the existing protocol of the trusted WiFi.
  • the NCP layer carries the 5G requirement in addition to the IP packet. Other messages.
  • the location of the NCP layer in the untrusted WiFi protocol layer is as shown in Figure 14.
  • the NCP layer is added to the IPSec layer of the existing protocol of the untrusted WiFi.
  • the NCP layer carries the 5G requirement in addition to the IP packet. Other messages.
  • the NCP layer of the CN sends a handshake request message (Handshake-Request) to the NCP layer of the UE.
  • the handshake request message can be carried in the service packet or in the dedicated packet.
  • the handshake request message carries a destination address, where the destination address is an IP address of the UE.
  • the NCP layer of the UE returns a handshake response message (Handshake-Response) to the NCP layer of the CN.
  • the NCP layer of the CN sends a handshake acknowledgement message (Handshake-ACK) to the NCP layer of the UE, and completes the handshake establishment process between the direct terminal and the CN at the NCP layer.
  • Handshake-ACK handshake acknowledgement message
  • the NCP layer of the UE actively sends NCP data to the NCP layer of the CN.
  • the NCP data can be carried in a service packet or a dedicated packet.
  • the NCP layer of the CN determines whether to NCP to the UE according to service requirements. The layer returns a response.
  • the NCP layer of the CN actively sends the NCP data to the NCP layer of the UE, and the NCP data may be carried in the service packet or the constructed dedicated packet, and the NCP layer of the UE determines whether to return a response to the NCP layer of the CN according to the service requirement.
  • the NCP2 of the CN sends a handshake request message to the NCP2 layer of the indirect UE.
  • the handshake request message can be carried in the service packet or in the dedicated packet.
  • the NCP2 of the CN sends a handshake request message whose destination address is the IP address of the indirect UE to the NCP1 of the CN; the NCP1 of the CN transparently transmits the handshake request message to the NCP1 layer of the direct UE; and the direct UE finds the destination address of the handshake request message.
  • the handshake request message is transparently transmitted to the NCP2 layer of the indirect UE.
  • the NCP2 layer of the indirect UE After receiving the handshake request message, the NCP2 layer of the indirect UE transmits the handshake response message to the NCP2 layer of the CN through the NCP1 of the direct UE and the NCP1 layer of the CN.
  • the NCP2 layer of the CN transparently transmits a handshake acknowledgement message to the NCP2 layer of the indirect UE through the NCP1 layer of the CN and the NCP1 layer of the direct UE, and the NCP2 layer of the indirect UE completes the handshake establishment process after receiving the handshake acknowledgement message.
  • the NCP2 layer of the indirect UE transparently transmits NCP data to the NCP2 layer of the CN through the NCP1 layer of the direct UE and the NCP1 layer of the CN.
  • the NCP data carrying the NCP data carries the IP address of the NCP2 layer of the CN.
  • the NCP of the direct NCP1 layer and the NCP1 layer of the CN transmit the NCP data.
  • the IP address carried in the NCP data is not its own IP address. data.
  • the NCP2 layer of the CN determines whether to respond based on the business logic.
  • the NCP2 layer of the CN transparently transmits NCP data to the NCP2 layer of the indirect UE through the NCP1 layer of the CN and the NCP1 layer of the direct UE.
  • the NCP data of the indirect UE is carried in the packet carrying the NCP data, and the NCP data is transparently transmitted after the NCP1 layer of the CN and the NCP1 layer of the direct UE transmit the NCP data.
  • the NCP2 layer of the indirect UE determines whether to respond according to the business logic.
  • the application installed in the UE invokes the NCP function through the FunctionInvoke function in the API interface.
  • the NCP data is sent to the NCP of the CN.
  • the NCP of the CN invokes the corresponding functional entity in the CN according to the parameters encapsulated in the NCP data.
  • the functional entity in the CN replies to the NCP of the CN, and the NCP of the CN transmits a response to the NCP of the UE, and the NCP of the UE returns the response to the application in the UE.
  • the CN actively informs the NCP of the UE through the NCP in the CN, and then the NCP of the UE notifies the application of the event to the UE.
  • the NCP layer of the CN actively sends a multi-connection policy management message to the NCP layer of the UE, where the multi-connection policy management message carries the session identifier and the specified multi-connection mode indication information.
  • the NCP of the UE replies to the NCP of the CN with a multi-connection policy management acknowledgement message, and the multi-connection policy management acknowledgement message carries the session identifier and the indication information of the confirmed multi-connection mode.
  • the multi-connection mode includes, but is not limited to, a combination of any one or more of a master-slave mode, a stream-by-stream distribution mode, and a packet-by-packet distribution mode.
  • the active/standby mode means that only one of two or more links is active for data transfer, and other links do not pass data.
  • Stream-by-stream distribution mode means that two or more links are active at the same time, but the same data stream can only be sent on the same link.
  • the packet-by-packet distribution mode means that two or more links are active at the same time, but the same data stream can be sent on different links.
  • the multi-connection mode negotiation process initiated by the NCP of the UE is similar to this, and will not be described in detail herein.
  • the NCP of the UE sends a multi-connection link switching request to the NCP of the CN, where the multi-connection link switching request carries the session identifier and the indication information of the requested primary link.
  • the NCP of the CN sends a multi-link link handover indication to the NCP of the UE, where the multi-link link handover indication carries the session identifier and the indication information of the requested primary link.
  • the NCP of the UE replies to the multi-link link handover acknowledgement of the NCP of the CN, and the multi-link link handover acknowledgement carries the session identifier and the indication information of the switched primary link.
  • the NCP of the UE sends a multi-connection flow link switching request to the NCP of the CN, where the multi-connection flow link switching request carries the flow rule and the session identifier.
  • the NCP of the CN sends a multi-connection flow link switching indication to the NCP of the UE, where the multi-connection flow link switching indication carries the flow rule and the session identifier.
  • the NCP of the UE sends a multi-connection flow link handover confirmation to the NCP of the CN, and the multi-connection flow link handover confirmation carries the flow rule and the session identifier that are valid.
  • the flow rule main package The flow information and the corresponding link identifier are included.
  • the multi-connection flow link switching request, the multi-connection flow link switching indication, and the multi-connection flow link switching confirmation may carry one or more flow rules.
  • the IP packet of the UE is sent to the NCP layer of the UE.
  • the NCP layer of the UE sends IP packets on a different channel and inserts an NCP header into each IP packet.
  • the NCP header is included in the NCP header.
  • the NCP layer of the CN sorts and submits the IP packets according to the sequence number of the IP packets in the NCP header of each IP packet to the IP layer of the CN.
  • the IP packets of the UE are sent to the NCP layer of the UE.
  • the NCP layer of the UE sends IP packets on the different channels.
  • the NCP header is not inserted in the IP packets.
  • the NCP layer of the CN receives the synchronization. After the IP packet of the channel is directly submitted to the IP layer of the CN.
  • the IP packet of the UE is sent to the NCP layer of the UE.
  • the NCP layer of the UE sends IP packets only on the primary channel.
  • the NCP header is not inserted in the IP packet.
  • the NCP of the CN receives the IP address of the primary channel. After the message, submit it directly to the IP layer of CN.
  • the IP packet of the UE is sent to the NCP layer of the UE.
  • the NCP layer of the UE transparently transmits the IP packet.
  • the NCP header is not inserted in the IP packet.
  • the private network state entity of the UE schedules the API interface of the NCP layer of the UE, and sends the private network status value to the CN.
  • the NCP layer of the UE After receiving the private network status value, the NCP layer of the UE encapsulates the private network status value into NCP data and sends the NCP data to the NCP layer of the CN.
  • the NCP layer of the CN After receiving the status report, the NCP layer of the CN forwards the packet to the private state management entity of the CN.
  • the private network service scanning entity of the UE invokes the API interface of the NCP layer of the UE to send the service management information to the CN.
  • the NCP layer of the UE After receiving the service management information, the NCP layer of the UE encapsulates the service management information into NCP data and sends the NCP data to the NCP layer of the CN.
  • the NCP layer of the CN forwards the service management information in the received NCP data to the service management of the CN. entity.
  • the private network control entity of the CN sends a private network control message to the NCP layer of the CN.
  • the private network control message carries the control policy.
  • the NCP layer of the CN controls the private network.
  • the message is forwarded to the NCP layer of the UE.
  • the NCP layer of the UE transmits the control policy to the private network control entity of the UE by using a callback function registered by the private network control entity.
  • the control policy may include a QoS policy, such as a QoS policy of a certain user in a private network or a QoS policy of a certain service.
  • a QoS policy such as a QoS policy of a certain user in a private network or a QoS policy of a certain service.
  • the NCP layer belongs to the data link layer and is located below the IP layer.
  • the NCP header is implemented by means of an IP option (Option).
  • an Option Type can be requested for the NCP in the IETF, such as 28.
  • the NCP layer is at the top of the data link layer.
  • the NCP layer needs to be carried on the PDCP, PPP, WiFi MAC, and IPSec layers according to the adopted access network protocol.
  • a new SDU Type (such as 6) can be defined to indicate that the packet carried by the PDCP is an NCP packet.
  • the corresponding bearer type is the same as that of the IP packet, that is, 0x0800.
  • the IP packet header compression function is not enabled in the PPP, PDCP, WiFi MAC, and IPSec layers.
  • the compression function can be implemented by the NCP layer. This article does not define the process of NCP compression. That is to say, the packet type of the NCP layer is the same as the IP packet type.
  • FIG. 31 is a schematic structural diagram of a newly defined NCP protocol header.
  • the NCP protocol header includes an NCP type and an NCP data.
  • the definition of the NCP type may refer to a definition of a subtype in the first definition manner.
  • the equipment mainly includes:
  • the processing module 3201 is configured to obtain a packet by using an NCP layer of the device.
  • the communication module 3202 is configured to send, by using an NCP layer of the device, the packet to an NCP layer of the second device, where the NCP layer is located at a data link layer of the user plane, and the NCP layer and the device of the device.
  • the NCP layer of the second device constitutes a direct data interaction channel between the device and the second device;
  • the device is a terminal, and the second device is a core network device; or the device is a core network device, and the second device is a terminal.
  • the device mainly includes:
  • a communication module 3301 configured to receive, by using an NCP layer of the device, a message transmitted by an NCP layer of the second device;
  • the processing module 3302 is configured to process the packet.
  • the NCP layer is located at a data link layer of the user plane, and the NCP layer of the device and the NCP layer of the second device form a direct data interaction channel between the device and the second device;
  • the device is a terminal, and the second device is a core network device; or the device is a core network device, and the second device is a terminal.
  • the device mainly includes a processor 3401, a memory 3402, and a transceiver 3403.
  • the transceiver 3403 is configured to receive and transmit data under the control of the processor 3401.
  • the memory 3402 stores a preset program, and the processor 3401 reads
  • the program in the memory 3402 executes the following processes in accordance with the program:
  • the transceiver Instructing the transceiver to send the message to the NCP layer of the second device by using an NCP layer of the device; wherein the NCP layer is located at a data link layer of the user plane, and the NCP layer and the second device of the device
  • the NCP layer of the device constitutes a direct data interaction channel between the device and the second device;
  • the device is a terminal, and the second device is a core network device; or the device is a core network device, and the second device is a terminal.
  • the processor is configured to perform the functions of the processing module in the third embodiment
  • the transceiver is configured to perform the functions of the communication module in the third embodiment under the control of the processor.
  • the terminal is a UE.
  • the device mainly includes a processor 3501, a memory 3502, and a transceiver 3503.
  • the transceiver 3503 is configured to receive and transmit data under the control of the processor 3501.
  • the memory 3502 stores a preset program, and the processor 3501 reads The program in the memory 3502, according to the program, performs the following process:
  • the NCP layer is located at a data link layer of the user plane, and the NCP layer of the device and the NCP layer of the second device form a direct data interaction channel between the device and the second device;
  • the device is a terminal, and the second device is a core network device; or the device is a core network device, and the second device is a terminal.
  • the processor is configured to perform the functions of the processing module in the fourth embodiment
  • the transceiver is configured to perform the functions of the communication module in the fourth embodiment under the control of the processor.
  • the terminal is a UE.
  • the processor, the memory and the transceiver are connected by a bus, and the bus architecture may include any number of interconnected buses and bridges, specifically represented by one or more processors and memories represented by the processor.
  • the various circuits of the memory are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing.
  • the memory can store data used by the processor when performing operations.
  • the device mainly includes a processor 3601, a memory 3602, and a communication interface 3603.
  • the communication interface 3603 is configured to receive and transmit data under the control of the processor 3601.
  • the memory 3602 stores a preset program, and the processor 3601 reads
  • the program in the memory 3602 executes the following processes in accordance with the program:
  • the NCP layer of the device constitutes a direct data interaction channel between the device and the second device;
  • the device is a terminal, and the second device is a core network device; or the device is a core network device, and the second device is a terminal.
  • the processor is configured to perform the functions of the processing module in the third embodiment
  • the communication interface is configured to perform the functions of the communication module in the third embodiment under the control of the processor.
  • the terminal is a CPE.
  • the device mainly includes a processor 3701, a memory 3702, and a communication interface 3703.
  • the communication interface 3703 is configured to receive and transmit data under the control of the processor 3701.
  • the memory 3702 stores a preset program, and the processor 3701 reads
  • the program in the memory 3702 executes the following process in accordance with the program:
  • the NCP layer is located at a data link layer of the user plane, and the NCP layer of the device and the NCP layer of the second device form a direct data interaction channel between the device and the second device;
  • the device is a terminal, and the second device is a core network device; or the device is a core network device, and the second device is a terminal.
  • the processor is configured to perform the functions of the processing module in the fourth embodiment
  • the communication interface is configured to perform the functions of the communication module in the fourth embodiment under the control of the processor.
  • the processor, the memory and the communication interface are connected by a bus, and the bus architecture may include any number of interconnected buses and bridges, specifically represented by one or more processors and memories represented by the processor.
  • the various circuits of the memory are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • the message is directly transmitted between the terminal and the core network through the NCP layer, and the direct transmission of the message between the terminal and the core network is implemented.
  • the NCP transmits the message on the user plane, which avoids the performance impact on the signaling plane, and also supports the carrying of the message sequence number required for the multi-connection aggregation of the user plane, and the NCP is in the data.
  • the link layer transmits packets, so that the FMC multi-connection aggregation point is implemented inside the 5G core network. Therefore, the 5G core network can effectively implement FMC multi-connection management.
  • the NCP borrows the IP option as a protocol bearer, so that it is compatible with the existing IP system and spans the specific access system, so that the function can be used in different access network systems.
  • the NCP adopts a protocol header independent of the standard, so that it can be commonly used in various standards, and is not limited to the 3GPP channel.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种报文交互方法及相关设备,用以实现5G网络中UE和核心网之间报文的直接交互。方法为:第一设备通过所述第一设备的网络融合协议NCP层获取报文;所述第一设备通过所述第一设备的NCP层将所述报文发送给第二设备的NCP层;其中,所述NCP层位于用户面的数据链路层,所述第一设备的NCP层和所述第二设备的NCP层构成所述第一设备与所述第二设备之间的直接数据交互通道;所述第一设备为终端,所述第二设备为核心网设备;或者,所述第一设备为核心网设备,所述第二设备为终端。

Description

一种报文交互方法及相关设备
本申请要求于2016年9月28日提交中国专利局、申请号为201610864813.4、发明名称为“一种报文交互方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种报文交互方法及相关设备。
背景技术
第五代移动通信网络(简称5G网络)中固定移动融合(Fixed Mobile Convergence,FMC)多连接和私网(Private Network)感知、私网控制等场景对终端(User Equipment,UE)和核心网(Core Network,CN)之间直接交互报文提出了要求。FMC是指UE和核心网之间同时通过固定和移动接入网保持多条连接,多条连接的工作模式可以是逐流分发(steering)、逐包分发(Splitting)、主备模式等。私网是直接终端(Direct Device)通过WiFi、蓝牙(Bluetooth)接入不同的设备从而形成的网络。直接终端是指与固定接入网或移动接入网直接相连并接入到5G核心网的终端,例如接入移动接入网的终端和接入固定接入网的家庭网关。私网中通过WiFi、蓝牙接入到直接终端的设备称为间接终端。
如图1所示的5G网络的FMC组网中,定义类型(Type)1为仅有移动接入网连接的情况,类型2为仅有固定网连接的情况,类型3为同时有移动接入网和固定网连接的情况,类型3的客户终端设备(Customer Premise Equipment,CPE)需要同时支持通过5G和数字用户线路(Digital Subscriber Line,DSL)的多连接,类型3的UE需要同时支持5G和WiFi间接接入的多连接。
在FMC多连接的场景下,需要在UE和核心网之间协商多连接的工作模式。如果FMC多连接的工作模式为逐包分发,UE和核心网之间需要在发送端和接收端直接标记报文发送顺序。如果FMC多连接的工作模式为逐流分发,UE和核心网之间需要交互报文进行流的通道映射。
如图2所示为5G网络中UE和核心网之间需要直接交互的场景示意图,主要描述了FMC多连接通道汇聚、FMC多连接通道管理、私网感知和私网控制四种场景,这些场景中需要UE和核心网之间直接交互信息。以如图3所示的接入场景为例,私网感知,是指CPE或UE需要将自身设备下私网的网络状态和私网终端的服务类型报告给5G核心网;私网控制,是指5G核心网需要将私网终端的服务质量(Quality of Service,QoS)策略和虚拟局域网(Virtual Local Area Network,VLAN)规划等发送给CPE或UE。
方案一,采用3GPP非接入层(Non Access Stratum,NAS)承载用于实现FMC多连接通道汇聚、FMC多连接通道管理、私网感知和私网控制四种功能的报文。
如图4所示为3GPP TS 23.401中E-UTRAN接入的控制面协议栈示意图,其中,NAS是UE和核心网之间的直接交互通道。在终端有3GPP连接时,终端通过扩展NAS来承载用于实现FMC多连接通道汇聚、FMC多连接通道管理、私网感知和私网控制四种功能的报文。
方案一的缺点在于:3GPP NAS作为UE和核心网之间直接交互的通道,存在以下限制:不支持多通道汇聚功能,由于NAS是信令面的功能,因此NAS无法支持用户面多连接的汇聚功能中的报文序号携带的要求;3GPP通道不可用且仅有非3GPP通道时,例如不支持WLAN控制协议(WLAN Control Protocol,WLCP;WLAN,Wireless Local Area Network,无线局域网)的WiFi、DSL等,无法支持多连接通道管理、私网感知、私网控制功能;影响信令面的性能,NAS在信令面通道上传递,多连接管理、私网感知、私网控制的报文频繁时会直接提升3GPP的信令负荷,严重时会导致3GPP信令的延迟增大,如出现可能的切换中断、起呼时延增大、寻呼时延增大等降低用户基础业务体验的问题。
方案二,多通道传输控制协议(Multi-path Transmission Control Protocol,MPTCP)
如图5所示为RFC6824中关于MPTCP的协议栈描述,该协议栈中,一个应用(Application)层的TCP流在发送端的MPTCP层分解为两个TCP子流独立传送,在接收端将该两个子流合并后再发送给应用层。
如图6所示为RFC6824中MPTCP的使用场景示意图,主机(Host)A和Host B均有两个地址。子流的汇聚点在Host上,其汇聚功能不在5G核心网中。
方案二的缺点在于:MPTCP用于UE和核心网之间FMC多连接汇聚时,存在如下限制:MPTCP的汇聚点在Host上,而不在5G核心网上,因此,从功能上看5G核心网无法基于MPTCP进行FMC多连接的汇聚和管理;MPTCP的汇聚点在TCP层之上,该层次超过了3GPP的定义范围,3GPP无法在MPTCP层之上进行创新。
由此可见,如何实现5G网络中UE和核心网之间报文的直接交互,是需要解决的问题。
发明内容
本发明实施例提供一种报文交互方法及相关设备,用以实现5G网络中UE和核心网之间报文的直接交互。
第一方面,本发明实施例提供了一种报文交互方法,包括:第一设备通过网络融合协议NCP层获取报文;并通过第一设备的NCP层将所述报文发送给第二设备的NCP层;其中,所述NCP层位于用户面的数据链路层,所述第一设备的NCP层和所述第二设备的NCP层构成第一设备与第二设备之间的直接数据交互通道;所述第一设备可以为终端,所述第二设备为核心网设备;或者,所述第一设备可以为核心网设备,所述第二设备为终端。
上述方法中,通过分别在终端和核心网设备的用户面的数据链路层设置NCP层,终端的NCP层和核心网设备的NCP层构成直接数据交互通道,终端和核心网设备通过该直接数据交互通道直接进行报文交互,从而实现了终端和核心网设备之间报文的直接交互。
可能的实施方式中,所述报文为固定移动融合FMC场景下的报文。进一步实现了FMC场景下报文的直接交互。
可能的实施方式中,所述报文为用于FMC多连接汇聚的报文,或者,为用于FMC多连接管理的报文,或者,为用于私网感知的报文,或者,为用于私网控制的报文。进一步实现了不同场景下报文的直接交互。
可能的实施方式中,所述NCP层位于数据链路层的顶端,且位于因特网协议IP层之下。这样不影响IP层的协议,保证了应用程序的兼容性。
可能的实施方式中,若所述第一设备与所述第二设备之间的接入网AN采用的为长期演 进LTE协议,则所述NCP层位于分组数据汇聚协议PDCP层之上;若所述第一设备与所述第二设备之间的接入网AN采用的为数字用户线路DSL协议,则所述NCP层位于点对点协议PPP层之上;若所述第一设备与所述第二设备之间的接入网采用的为可信无线保真WiFi协议,则所述NCP层位于介质访问控制MAC层之上;若所述第一设备与所述第二设备之间的接入网采用的为不可信无线保真WiFi协议,则所述NCP层位于因特网协议安全IPSec层之上。这样进一步解决了不同的接入网类型场景下直接交互的问题。
可能的实施方式中,所述NCP层的协议头采用具有指定选项类型的因特网协议IP选项承载;或者,所述NCP层的协议头包括NCP类型和NCP数据。进一步明确了NCP具体实现。
第二方面,本发明实施例提供了一种报文交互方法,包括:第一设备通过网络融合协议NCP层接收第二设备的NCP层传送的报文;所述第一设备处理所述报文;其中,所述NCP层位于用户面的数据链路层,所述第一设备的NCP层和所述第二设备的NCP层构成所述第一设备与所述第二设备之间的直接数据交互通道;第一设备可以为终端,第二设备为核心网设备;或者,第一设备可以为核心网设备,第二设备为终端。
上述方法中,通过分别在终端和核心网设备的用户面的数据链路层设置NCP层,终端的NCP层和核心网设备的NCP层构成直接数据交互通道,终端和核心网设备通过该直接数据交互通道直接进行报文交互,从而实现了终端和核心网设备之间报文的直接交互。
可能的实施方式中,所述报文为固定移动融合FMC场景下的报文。进一步实现了FMC场景下报文的直接交互。
可能的实施方式中,所述报文为用于FMC多连接汇聚的报文,或者,为用于FMC多连接管理的报文,或者,为用于私网感知的报文,或者,为用于私网控制的报文。进一步实现了不同场景下报文的直接交互。
可能的实施方式中,所述NCP层位于数据链路层的顶端,且位于因特网协议IP层之下。这样不影响IP层的协议,保证了应用程序的兼容性。
可能的实施方式中,若所述第一设备与所述第二设备之间的接入网AN采用的为长期演进LTE协议,则所述NCP层位于分组数据汇聚协议PDCP层之上;若所述第一设备与所述第二设备之间的接入网AN采用的为数字用户线路DSL协议,则所述NCP层位于点对点协议PPP层之上;若所述第一设备与所述第二设备之间的接入网AN采用的为可信无线保真WiFi协议,则所述NCP层位于介质访问控制MAC层之上;若所述第一设备与所述第二设备之间的接入网AN采用的为不可信无线保真WiFi协议,则所述NCP层位于因特网协议安全IPSec层之上。这样进一步解决了不同的接入网类型场景下直接交互的问题。
可能的实施方式中,所述NCP层的协议头采用具有指定选项类型的因特网协议IP选项承载;或者,所述NCP层的协议头包括NCP类型和NCP数据。进一步明确了NCP具体实现。
第三方面,本发明实施例提供了一种设备,该设备具有实现上述第一方面或第二方面的方法实现中第一设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本发明实施例提供了一种设备,包括处理器、存储器和收发机,其中,收发机用于在处理器的控制下接收和发送数据,存储器中保存有预设的程序,处理器读取存储器中的程序,按照该程序执行上述第一方面或第二方面的方法。
基于上述技术方案,本发明实施例中,通过分别在终端和核心网设备的用户面的数据 链路层设置NCP层,终端的NCP层和核心网设备的NCP层构成直接数据交互通道,终端和核心网设备通过该直接数据交互通道直接进行报文交互,从而实现了终端和核心网设备之间报文的直接交互。
附图说明
图1为5G网络的FMC组网结构示意图;
图2为5G网络中UE和核心网之间需要直接交互的场景示意图;
图3为接入场景示意图;
图4为E-UTRAN接入的控制面协议栈示意图;
图5为MPTCP的协议栈示意图;
图6为MPTCP的使用场景示意图;
图7为本发明实施例中报文交互系统的架构示意图;
图8为本发明实施例中终端和CN之间进行报文交互的方法流程示意图;
图9为本发明实施例中另一终端和CN之间进行报文交互的方法流程示意图;
图10为本发明实施例中NCP层在不同的通信接入制式的协议层中的位置示意图;
图11为本发明实施例中NCP层在LTE各协议层中的位置示意图;
图12为本发明实施例中NCP层在DSL各协议层中的位置示意图;
图13为本发明实施例中NCP层在可信WiFi各协议层中的位置示意图;
图14为本发明实施例中NCP层在不可信WiFi各协议层中的位置示意图;
图15为本发明实施例中直接终端与CN之间在NCP层握手建链的过程示意图;
图16为本发明实施例中直接终端与CN之间在NCP层的数据传递的过程示意图;
图17为本发明实施例中间接终端与CN之间在NCP层的握手建链的过程示意图;
图18为本发明实施例中间接UE与CN之间在NCP层进行数据传递的过程示意图;
图19为本发明实施例中通过NCP API接口进行参数传递的过程示意图;
图20为本发明实施例中多连接模式协商过程中的NCP数据传递过程示意图;
图21为本发明实施例中多连接主备模式链路切换过程中的NCP数据传递过程示意图;
图22为本发明实施例中多连接逐流分发模式对应的链路切换过程中的NCP数据传递过程示意图;
图23为本发明实施例中逐包分发过程示意图;
图24为本发明实施例中逐流分发过程示意图;
图25为本发明实施例中主备模式下报文传递过程示意图;
图26为本发明实施例中NCP单连接模式下IP报文传递示意图;
图27为本发明实施例中用于私网状态报告的NCP数据传递示意图;
图28为本发明实施例中用于私网服务注册的NCP数据传递示意图;
图29为本发明实施例中用于私网控制的NCP数据传递示意图;
图30为本发明实施例中NCP协议头对应的IP选项的定义示意图;
图31为本发明实施例中NCP协议头的结构示意图;
图32为本发明实施例中设备结构示意图;
图33为本发明实施例中另一设备结构示意图;
图34为本发明实施例中另一设备结构示意图;
图35为本发明实施例中另一设备结构示意图;
图36为本发明实施例中另一设备结构示意图;
图37为本发明实施例中另一设备结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的核心思想为:设置网络融合协议(Network Convergence Protocol,NCP)层,作为UE和CN之间位于用户面的数据链路层、且与接入制式无关的直接数据交互通道,通过设置的NCP层实现5G网络中UE和核心网之间报文的直接交互。
需要说明的是,设置的NCP层可以用于FMC场景或非FMC场景,以下主要以FMC场景为例进行说明。
本发明实施例中,如图7所示为报文交互系统的架构示意图,该报文交互系统主要包括CN701、无线接入网(Radio Access Network,RAN)702、固定接入网(Fixed Access Network,FAN)703、CPE704和UE705。
其中,CN701为5G核心网,主要用于负责设备的移动管理、会话管理、安全管理以及多连接管理、私网感知和私网控制。
RAN702主要用于负责LTE、5G等3GPP制式的无线接入服务。
FAN703主要用于负责DSL等的固定接入服务。
CPE704主要用于支持通过WiFi或蓝牙等私网实现家庭设备的汇聚接入。
UE705主要用于支持通过WiFi或蓝牙等私网实现各种WiFi或蓝牙设备的汇聚接入。
可能的实施方式中,该系统中还包括其他终端设备706,该其他终端设备主要包括个人计算机(PC)、智能电视、蓝牙相框、蓝牙音箱、蓝牙灯泡等。
以下基于该报文交互系统分别对FMC多连接、私网感知和私网控制的场景进行说明如下:
1)FMC多连接场景
FMC多连接场景包括CPE多连接和UE多连接两个子场景。
A、CPE多连接场景中,CPE704的NCP1协议实体汇聚RAN702和FAN703两路连接,在CN701中有一个对等的NCP1协议实体进行FMC多连接汇聚和FMC多连接管理。
B、UE多连接场景中,UE705的NCP2协议实体汇聚RAN702和WiFi两路连接,在CN701中有一个对等的NCP2协议实体进行FMC多连接汇聚和FMC多连接管理。
2)私网感知和私网控制场景
私网感知和私网控制场景包括CPE私网感知、CPE私网控制、UE私网感知和UE私网控制四个子场景。
A、CPE私网感知场景中,CPE704扫描私网的网络拥塞状态以及扫描私网的设备服务,例如智能电视服务,并通过NCP1上报给核心网侧的NCP1,CN的NCP1发送给CN中相应的功能实体进行处理。
B、CPE私网控制场景中,CN的NCP1将私网中设备的QoS策略或VLAN规划发送给CPE中的NCP1,由CPE中的NCP1发送给CPE中相应的功能实体进行处理。
C、UE私网感知场景中,UE扫描私网的网络拥塞状态以及扫描私网中的设备服务,例如蓝牙音箱服务,并通过NCP2上报给CN的NCP2,CN的NCP2发送给CN中相应的功能实体进行处理。
D、UE私网控制场景中,CN的NCP2将私网中设备的QoS策略或VLAN规划发送给CPE中的NCP2,CPE中的NCP2发送给UE中相应的功能实体进行处理。
需要说明的是,以下各实施例中,终端和CN之间通过NCP传递的数据可以不限于3GPP信令,也可以用于非3GPP信令、S1口数据等在终端和CN之间的直接传递。
基于同一发明构思,本发明第一实施例中,如图8所示为终端和CN之间进行报文交互的详细方法流程,其中,第一设备为终端,第二设备为核心网设备;或者,第一设备为核心网设备,第二设备为终端,具体描述如下:
步骤801:第一设备通过所述第一设备的NCP层获取报文。
一个具体实施方式中,该报文为FMC场景下的报文。
实施中,FMC场景下的报文可以为用于FMC多连接汇聚的报文,或者,为用于FMC多连接管理的报文,或者,为用于私网感知的报文,或者,为用于私网控制的报文。需要说明的是,此处仅为举例说明,该报文也可以是其它FMC场景下的报文,本发明的保护范围并以所列举的场景为限制。
步骤802:第一设备通过第一设备的NCP层将该报文发送给第二设备的NCP层,其中,NCP层位于用户面的数据链路层,第一设备的NCP层和第二设备的NCP层构成第一设备与第二设备之间的直接数据交互通道。
一个具体实施方式中,NCP层位于数据链路层的顶端,且位于因特网协议(Internet Protocol,IP)层之下。
具体地,根据终端与核心网设备之间的接入网(Access Network,AN)协议的不同,对NCP层所处的位置进行说明如下:
若第一设备与第二设备之间的接入网采用的为长期演进(Long Term Evolution,LTE)协议,则所述NCP层位于分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层之上;
若第一设备与第二设备之间的接入网采用的为DSL协议,则NCP层位于点对点协议(Point-to-Point Protocol,PPP)层之上;
若第一设备与第二设备之间的接入网采用的为可信WiFi协议,则NCP层位于介质访问控制(Medium Access Control,MAC)层之上;
若第一设备与第二设备之间的接入网采用的为不可信WiFi协议,则NCP层位于因特网协议安全(Internet Protocol Security,IPSec)层之上。
需要说明的是,NCP与接入制式无关,则NCP可以应用于各种接入网制式中,此处仅为举例说明,例如,NCP对应的接入网制式可以是LTE、4.5G、5G、WiFi、DSL、WiMAX、CDMA、 WCDMA、GSM、Zigbee、蓝牙、红外等制式。
本发明实施例中,NCP层的协议头至少可以采用以下两种定义方式中的任意一种,具体如下:
第一,NCP层的协议头采用具有指定选项类型的IP选项承载;
第二,NCP层的协议头包括NCP类型和NCP数据。其中,NCP类型的定义可参照IP选项中子类型(subtype)的定义。
该实施例中,终端可以是UE或CPE。
基于同一发明构思,本发明第二实施例中,如图9所示为另一终端和CN之间进行报文交互的详细方法流程,其中,第一设备为终端,第二设备为核心网设备;或者,第一设备为核心网设备,第二设备为终端,具体描述如下:
步骤901:第一设备通过所述第一设备的NCP层接收第二设备的NCP层传送的报文。
一个具体实施例中,该报文为FMC场景下的报文。
实施中,FMC场景下的报文为用于FMC多连接汇聚的报文,或者,为用于FMC多连接管理的报文,或者,为用于私网感知的报文,或者,为用于私网控制的报文。
步骤902:第一设备处理所述报文,其中,所述NCP层位于用户面的数据链路层,所述第一设备的NCP层和所述第二设备的NCP层构成所述第一设备与所述第二设备之间的直接数据交互通道。
一个具体实施方式中,NCP层位于数据链路层的顶端,且位于因特网协议IP层之下。
具体地,根据终端与核心网设备之间的接入网协议的不同,对NCP层所处的位置进行说明如下:
若第一设备与第二设备之间的接入网采用的为LTE协议,则NCP层位于PDCP层之上;
若第一设备与第二设备之间的接入网采用的为DSL协议,则NCP层位于PPP层之上;
若第一设备与第二设备之间的接入网采用的为可信WiFi协议,则NCP层位于MAC层之上;
若第一设备与第二设备之间的接入网采用的为不可信WiFi协议,则NCP层位于IPSec层之上。
本发明实施例中,NCP层的协议头至少可以采用以下两种定义方式中的任意一种,具体如下:
第一,所述NCP层的协议头采用具有指定选项类型的因特网协议IP选项承载;
第二,所述NCP层的协议头包括NCP类型和NCP数据。
该实施例中,终端可以是UE或CPE。
以下通过具体实施例对FMC多连接情况下,实现5G网络中UE和核心网之间报文的直接交互的过程进行举例说明。
1)NCP层在不同的通信接入制式的协议层中的位置
如图10所示为NCP层在不同的通信接入制式的协议层中的位置示意图,NCP层位于各通信接入制式的数据链路层之上,且位于因特网协议(Internet Protocol,IP)层之下。
NCP层的主要功能为:承载传统的IP报文,主要采用透传模式保证IP报文的传送性能;承载多连接汇聚中的报文序列号头,以支持多连接汇聚、逐包分发功能;承载多连接管理信息,实现FMC多连接间的逐流分发、转换(Switching)功能;承载私网感知信息,使5G 核心网能感知私网的状态和服务;承载私网控制信息,是5G核心网能控制私网设备的Qos和VLAN规划;支持NCP的嵌套。
以下以NCP层在LTE、DSL、可信WiFi和不可信WiFi协议中的位置为例进行说明。
A、NCP层在LTE各协议层中的位置如图11所示,在LTE现有协议的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层之上增加NCP层。GTP-U支持NCP层的透传。NCP层除承载IP报文外,还承载5G需求的其他报文。为了提高传输效率,NCP层可选。
B、NCP层在DSL各协议层中的位置如图12所示,在DSL的现有协议的PPP层之上增加NCP层。NCP层除承载IP报文外,还承载5G需求的其他报文。为了提高传输效率,NCP层可选。
C、NCP层在可信WiFi各协议层中的位置如图13所示,在可信WiFi的现有协议的MAC层之上增加NCP层,NCP层除承载IP报文外,还承载5G需求的其他报文。
D、NCP层在不可信WiFi各协议层中的位置如图14所示,在不可信WiFi的现有协议的IPSec层之上增加NCP层,NCP层除承载IP报文外,还承载5G需求的其他报文。
2)NCP层的通用消息处理流程
A、直接终端与CN之间在NCP层握手建链
如图15所示,CN的NCP层主动向UE的NCP层发送握手请求消息(Handshake-Request),该握手请求消息可以携带在业务报文中或构建的专用报文中。可选地,该握手请求消息中携带目的地址,该目的地址为UE的IP地址。UE的NCP层向CN的NCP层返回握手响应消息(Handshake-Response)。CN的NCP层向UE的NCP层发送握手确认消息(Handshake-ACK),完成直接终端与CN之间在NCP层的握手建链过程。
B、直接终端与CN之间在NCP层的数据传递
如图16所示,UE的NCP层主动向CN的NCP层发送NCP数据,该NCP数据可以携带在业务报文或构建的专用报文中,CN的NCP层根据业务需要决定是否向UE的NCP层返回应答。或者,CN的NCP层主动向UE的NCP层发送NCP数据,该NCP数据可以携带在业务报文或构建的专用报文中,UE的NCP层根据业务需要决定是否向CN的NCP层返回应答。
C、间接终端与CN之间在NCP层的握手建链
如图17所示,CN的NCP2向间接UE的NCP2层发送握手请求消息,该握手请求消息可以携带在业务报文中或构建的专用报文中。具体地,CN的NCP2向CN的NCP1发送目的地址为间接UE的IP地址的握手请求消息;CN的NCP1透传该握手请求消息给直接UE的NCP1层;直接UE发现该握手请求消息的目的地址不是该直接UE的IP地址后,透传该握手请求消息给间接UE的NCP2层。
间接UE的NCP2层在收到握手请求消息后,通过直接UE的NCP1和CN的NCP1层透传握手响应消息给CN的NCP2层。
CN的NCP2层通过CN的NCP1层和直接UE的NCP1层透传握手确认消息给间接UE的NCP2层,间接UE的NCP2层收到握手确认消息后完成握手建链过程。
D、间接UE与CN之间在NCP层进行数据传递
如图18所示,间接UE的NCP2层通过直接UE的NCP1层和CN的NCP1层透传NCP数据至CN的NCP2层。其中,携带NCP数据的报文中携带CN的NCP2层的IP地址,直接UE的NCP1层和CN的NCP1层发送NCP数据中携带的IP地址不是自身的IP地址后,透传该NCP 数据。CN的NCP2层根据业务逻辑确定是否进行应答。
或者,CN的NCP2层通过CN的NCP1层和直接UE的NCP1层透传NCP数据至间接UE的NCP2层。其中,携带NCP数据的报文中携带间接UE的NCP2层的IP地址,CN的NCP1层和直接UE的NCP1层发送NCP数据中携带的IP地址不是自身的IP地址后,透传该NCP数据。间接UE的NCP2层根据业务逻辑确定是否进行应答。
E、NCP应用程序编程接口(Application Programming Interface,API)
如图19所示,安装在UE中的应用通过API接口中的FunctionInvoke函数调用NCP功能,UE的NCP将参数封装到NCP数据后,将NCP数据发送给CN的NCP。CN的NCP根据该NCP数据中封装的参数调用CN中对应的功能实体。CN中的该功能实体回复响应给CN的NCP,CN的NCP将响应传送给UE的NCP,UE的NCP将该响应返回给UE中的该应用。
如果UE中的应用请求订阅某个事件,则该事件发生后,CN主动通过CN中的NCP将该事件通知给UE的NCP,再由UE的NCP将该事件通知给UE的该应用。
3)NCP在不同场景下的数据传递过程
A、多连接模式协商过程中的NCP数据传递
如图20所示,CN的NCP层主动向UE的NCP层发送多连接策略管理消息,该多连接策略管理消息中携带会话标识和指定的多连接模式的指示信息。UE的NCP向CN的NCP回复多连接策略管理确认消息,该多连接策略管理确认消息中携带会话标识和确认的多连接模式的指示信息。
其中,多连接模式包括但不限于主备模式、逐流分发模式、逐包分发模式中的任意一种或多种的组合。
主备模式指两条或多条链路中只有一条链路处于活动状态,用于数据传递,其他链路不传递数据。
逐流分发模式指两条或多条链路同时处于活动状态,但同一个数据流只能在同一条链路上发送。
逐包分发模式指两条或多条链路同时处于活动状态,但同一个数据流可以在不同的链路上发送。
UE的NCP主动发送的多连接模式协商过程与此类似,此处不再详述。
B、多连接主备模式链路切换过程中的NCP数据传递
如图21所示,UE的NCP向CN的NCP发送多连接链路切换请求,该多连接链路切换请求中携带会话标识和所请求的主用链路的指示信息。CN的NCP向UE的NCP发送多连接链路切换指示,该多连接链路切换指示中携带会话标识和所请求的主用链路的指示信息。UE的NCP向CN的NCP回复多连接链路切换确认,该多连接链路切换确认中携带会话标识和切换后主用链路的指示信息。
CN的NCP主动发起主备模式链路切换的过程类似,此处不再详述。
C、多连接逐流分发模式对应的链路切换过程中的NCP数据传递
如图22所示,UE的NCP向CN的NCP发送多连接流链路切换请求,该多连接流链路切换请求中携带流规则和会话标识。CN的NCP向UE的NCP发送多连接流链路切换指示,该多连接流链路切换指示中携带流规则和会话标识。UE的NCP向CN的NCP发送多连接流链路切换确认,该多连接流链路切换确认中携带生效的流规则和会话标识。其中,流规则主要包 括流信息和对应的链路标识。其中,多连接流链路切换请求、多连接流链路切换指示以及多连接流链路切换确认中可以携带一个或多个流规则。
D、逐包分发,即多连接汇聚模式对应的NCP多连接IP报文传递
如图23所示,UE的IP报文发送到UE的NCP层,UE的NCP层在不同的通道上逐包发送IP报文,并在每个IP包中插入NCP头,该NCP头中包含IP报文的序号。CN的NCP层收到不同通道的IP包后,根据每个IP包的NCP头中的IP报文的序号进行排序并提交给CN的IP层。
E、逐流分发模式下NCP多连接IP报文传递
如图24所示,UE的IP报文发送到UE的NCP层,UE的NCP层在不同的通道上逐流发送IP报文,IP报文中不插入NCP头,CN的NCP层收到同步通道的IP报文后,直接提交给CN的IP层。
F、主备模式下NCP多连接IP报文传递
如图25所示,UE的IP报文发送到UE的NCP层,UE的NCP层仅在主通道上发送IP报文,IP报文中不插入NCP头,CN的NCP收到主通道的IP报文后,直接提交给CN的IP层。
G、NCP单连接模式下IP报文传递
如图26所示,UE的IP报文发送到UE的NCP层,UE的NCP层透传该IP报文,该IP报文中不插入NCP头,CN的NCP层收到IP报文后,直接提交给CN的IP层。
H、用于私网状态报告的NCP数据传递
如图27所示,UE的私网状态实体调度用UE的NCP层的API接口,将私网状态值发送给CN。其中,UE的NCP层在收到私网状态值后,将该私网状态值封装为NCP数据发送给CN的NCP层。CN的NCP层收到状态报告后,转发给CN的私网状态管理实体。
I、用于私网服务注册的NCP数据传递
如图28所示,UE的私网服务扫描实体调用UE的NCP层的API接口将服务管理信息发送给CN。其中,UE的NCP层收到服务管理信息后,将给服务管理信息封装为NCP数据发送给CN的NCP层;CN的NCP层将收到的NCP数据中的服务管理信息转发给CN的服务管理实体。
J、用于私网控制的NCP数据传递
如图29所示,CN的私网控制实体向CN的NCP层发送私网控制消息,该私网控制消息中携带控制策略;CN的NCP层收到私网控制消息后,将该私网控制消息转发给UE的NCP层。其中,UE的NCP层收到私网控制消息后,通过私网控制实体注册的回调函数将控制策略传给UE的私网控制实体。
其中,控制策略可以包括QoS策略,例如私网中某个用户的QoS策略或某个服务的QoS策略等。
4)NCP的协议头定义
第一定义方式,NCP层属于数据链路层,位于IP层之下。为保证NCP协议头和现有协议体系兼容,NCP头借用IP选项(Option)的方式实现。相应的,可以在IETF中单独为NCP申请一个选项类型(Option Type),如28。
NCP对应的IP选项的定义如图30所示。具体地,Option Type=28;Subtype=0,表示为Handshake-Request;Subtype=1,表示为Handshake-Response;Subtype=2,表示为 Handshake-ACK;Subtype=64,表示为DataTransfer--Multipath Policy management;Subtype=65,表示为DataTransfer--Multipath Policy management Ack;Subtype=66,表示为DataTransfer--Multipath Link Switch Request;Subtype=67,表示为DataTransfer--Multipath Link Switch Indication;Subtype=68,表示为DataTransfer--Multipath Link Switch Ack;Subtype=70,表示为DataTransfer--Multipath Flow Link Switch Request;Subtype=71,表示为DataTransfer--Multipath Flow Link Switch Indication;Subtype=72,表示为DataTransfer--Multipath Flow Link Switch Ack;Subtype=74,表示为DataTransfer--Multipath Splitting;Subtype=76,表示为DataTransfer--Private Device Service management;Subtype=78,表示为DataTransfer--Private network status report;Subtype=80,表示为DataTransfer--Private Device Policy Control;Subtype=82,表示为DataTransfer--Private Device VLAN Control;Subtype=84,表示为DataTransfer--Nested NCP;Subtype=86,表示为DataTransfer--Non 3GPP NAS Signal;Subtype=128,表示为FunctionInvoke–Private network congestion status;Subtype=130,表示为FunctionInvoke–Available Service Query in Private Network;Subtype=132,表示为FunctionEvent--Private。
第二定义方式,NCP层处于数据链路层的顶端,根据采用的接入网协议的不同,NCP层需要承载在PDCP、PPP、WiFi MAC、IPSec层之上。
对于3GPP的协议PDCP,可以定义一个新的SDU Type(如6)来标志PDCP承载的报文是NCP报文。
对于Non-3GPP的协议PPP、PDCP、WiFi MAC、IPSec在承载NCP层时,需要设置对应的承载(Payload)类型为与IP报文相同的类型,即0x0800。此时,PPP、PDCP、WiFi MAC、IPSec层不启用IP报文头压缩功能,该压缩功能可以考虑由NCP层实现。本文不定义NCP压缩的过程。也就是说,NCP层的报文类型采用与IP报文类型相同的定义。
如图31所示为新定义的NCP协议头的结构示意图,该NCP协议头包括NCP类型和NCP数据,其中,NCP类型的定义方式可参考第一定义方式中subtype的定义方式。
基于同一发明构思,本发明第三实施例中提供了一种设备,该设备的具体实施可参见第一实施例部分关于第一设备的相关描述,重复之处不再赘述,如图32所示,该设备主要包括:
处理模块3201,用于通过所述设备的NCP层获取报文;
通信模块3202,用于通过所述设备的NCP层将所述报文发送给第二设备的NCP层;其中,所述NCP层位于用户面的数据链路层,所述设备的NCP层和所述第二设备的NCP层构成所述设备与所述第二设备之间的直接数据交互通道;
所述设备为终端,所述第二设备为核心网设备;或者,所述设备为核心网设备,所述第二设备为终端。
基于同一发明构思,本发明第四实施例中提供了另一种设备,该设备的具体实施可参见第二实施例部分关于第一设备的相关描述,重复之处不再赘述,如图33所示,该设备主要包括:
通信模块3301,用于通过所述设备的NCP层接收第二设备的NCP层传送的报文;
处理模块3302,用于处理所述报文;
其中,所述NCP层位于用户面的数据链路层,所述设备的NCP层和所述第二设备的NCP层构成所述设备与所述第二设备之间的直接数据交互通道;
所述设备为终端,所述第二设备为核心网设备;或者,所述设备为核心网设备,所述第二设备为终端。
基于同一发明构思,本发明第五实施例中还提供了一种设备,该设备的具体实施可参见第一实施例中关于第一设备的描述,重复之处不再赘述,如图34所示,该设备主要包括处理器3401、存储器3402和收发机3403,其中,收发机3403用于在处理器3401的控制下接收和发送数据,存储器3402中保存有预设的程序,处理器3401读取存储器3402中的程序,按照该程序执行以下过程:
通过所述设备的NCP层获取报文;
指示收发机通过所述设备的NCP层将所述报文发送给第二设备的NCP层;其中,所述NCP层位于用户面的数据链路层,所述设备的NCP层和所述第二设备的NCP层构成所述设备与所述第二设备之间的直接数据交互通道;
所述设备为终端,所述第二设备为核心网设备;或者,所述设备为核心网设备,所述第二设备为终端。
具体地,处理器用于执行第三实施例中处理模块的功能,收发机用于在处理器的控制下完成第三实施例中通信模块的功能。
具体地,若该设备为终端,则该终端为UE。
基于同一发明构思,本发明第六实施例中还提供了一种设备,该设备的具体实施可参见第二实施例中关于第一设备的描述,重复之处不再赘述,如图35所示,该设备主要包括处理器3501、存储器3502和收发机3503,其中,收发机3503用于在处理器3501的控制下接收和发送数据,存储器3502中保存有预设的程序,处理器3501读取存储器3502中的程序,按照该程序执行以下过程:
指示收发机通过所述设备的NCP层接收第二设备的NCP层传送的报文;
处理所述报文;
其中,所述NCP层位于用户面的数据链路层,所述设备的NCP层和所述第二设备的NCP层构成所述设备与所述第二设备之间的直接数据交互通道;
所述设备为终端,所述第二设备为核心网设备;或者,所述设备为核心网设备,所述第二设备为终端。
具体地,处理器用于执行第四实施例中处理模块的功能,收发机用于在处理器的控制下完成第四实施例中通信模块的功能。
具体地,若该设备为终端,则该终端为UE。
其中,图34至图35中,处理器、存储器和收发机之间通过总线连接,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器负责管理总线架构和通常的处理, 存储器可以存储处理器在执行操作时所使用的数据。
基于同一发明构思,本发明第七实施例中还提供了一种设备,该设备的具体实施可参见第一实施例中关于第一设备的描述,重复之处不再赘述,如图36所示,该设备主要包括处理器3601、存储器3602和通信接口3603,其中,通信接口3603用于在处理器3601的控制下接收和发送数据,存储器3602中保存有预设的程序,处理器3601读取存储器3602中的程序,按照该程序执行以下过程:
通过所述设备的NCP层获取报文;
指示通信接口通过所述设备的NCP层将所述报文发送给第二设备的NCP层;其中,所述NCP层位于用户面的数据链路层,所述设备的NCP层和所述第二设备的NCP层构成所述设备与所述第二设备之间的直接数据交互通道;
所述设备为终端,所述第二设备为核心网设备;或者,所述设备为核心网设备,所述第二设备为终端。
具体地,处理器用于执行第三实施例中处理模块的功能,通信接口用于在处理器的控制下完成第三实施例中通信模块的功能。
具体地,若该设备为终端,则该终端为CPE。
基于同一发明构思,本发明第八实施例中还提供了一种设备,该设备的具体实施可参见第二实施例中关于第一设备的描述,重复之处不再赘述,如图37所示,该设备主要包括处理器3701、存储器3702和通信接口3703,其中,通信接口3703用于在处理器3701的控制下接收和发送数据,存储器3702中保存有预设的程序,处理器3701读取存储器3702中的程序,按照该程序执行以下过程:
指示通信接口通过所述设备的NCP层接收第二设备的NCP层传送的报文;
处理所述报文;
其中,所述NCP层位于用户面的数据链路层,所述设备的NCP层和所述第二设备的NCP层构成所述设备与所述第二设备之间的直接数据交互通道;
所述设备为终端,所述第二设备为核心网设备;或者,所述设备为核心网设备,所述第二设备为终端。
具体地,处理器用于执行第四实施例中处理模块的功能,通信接口用于在处理器的控制下完成第四实施例中通信模块的功能。
其中,图36至图37中,处理器、存储器和通信接口之间通过总线连接,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本发明实施例中,通过NCP层直接在终端和核心网之间传递报文,在功能上实现了报文在终端和核心网之间的直接传递。并且,相较于本文背景技术部分方案一,NCP在用户面传递报文,避免了对信令面的性能影响,也支持了用户面的多连接汇聚需要的报文序号的携带,NCP在数据链路层传递报文,使得FMC多连接汇聚点在5G核心网内部实现,因此,使得5G核心网能够有效实现FMC多连接的管理。
并且,本发明实施例中,NCP借用IP选项作为协议承载,使得与现有的IP体系兼容的同时,跨越了具体的接入制式,使得该功能可以在不同的接入网制式中使用。本实施例中,NCP采用与制式无关的协议头,使得可以通用于各种制式,不局限于3GPP通道。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (24)

  1. 一种报文交互方法,其特征在于,包括:
    第一设备通过所述第一设备的网络融合协议NCP层获取报文;
    所述第一设备通过所述第一设备的NCP层将所述报文发送给第二设备的NCP层;
    其中,所述NCP层位于用户面的数据链路层,所述第一设备的NCP层和所述第二设备的NCP层构成所述第一设备与所述第二设备之间的直接数据交互通道;
    所述第一设备为终端,所述第二设备为核心网设备;或者,所述第一设备为核心网设备,所述第二设备为终端。
  2. 如权利要求1所述的方法,其特征在于,所述报文为固定移动融合FMC场景下的报文。
  3. 如权利要求1所述的方法,其特征在于,所述报文为用于FMC多连接汇聚的报文,或者,为用于FMC多连接管理的报文,或者,为用于私网感知的报文,或者,为用于私网控制的报文。
  4. 如权利要求1所述的方法,其特征在于,所述NCP层位于数据链路层的顶端,且位于因特网协议IP层之下。
  5. 如权利要求4所述的方法,且特征在于,若所述第一设备与所述第二设备之间的接入网AN采用的为长期演进LTE协议,则所述NCP层位于分组数据汇聚协议PDCP层之上;
    若所述第一设备与所述第二设备之间的接入网AN采用的为数字用户线路DSL协议,则所述NCP层位于点对点协议PPP层之上;
    若所述第一设备与所述第二设备之间的接入网采用的为可信无线保真WiFi协议,则所述NCP层位于介质访问控制MAC层之上;
    若所述第一设备与所述第二设备之间的接入网采用的为不可信无线保真WiFi协议,则所述NCP层位于因特网协议安全IPSec层之上。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述NCP层的协议头采用具有指定选项类型的因特网协议IP选项承载;
    或者,所述NCP层的协议头包括NCP类型和NCP数据。
  7. 一种报文交互方法,其特征在于,包括:
    第一设备通过所述第一设备的网络融合协议NCP层接收第二设备的NCP层传送的报文;
    所述第一设备处理所述报文;
    其中,所述NCP层位于用户面的数据链路层,所述第一设备的NCP层和所述第二设备的NCP层构成所述第一设备与所述第二设备之间的直接数据交互通道;
    所述第一设备为终端,所述第二设备为核心网设备;或者,所述第一设备为核心网设备,所述第二设备为终端。
  8. 如权利要求7所述的方法,其特征在于,所述报文为固定移动融合FMC场景下的报文。
  9. 如权利要求7所述的方法,其特征在于,所述报文为用于FMC多连接汇聚的报文,或者,为用于FMC多连接管理的报文,或者,为用于私网感知的报文,或者,为用于私网控制的报文。
  10. 如权利要求7所述的方法,其特征在于,所述NCP层位于数据链路层的顶端,且位于因特网协议IP层之下。
  11. 如权利要求10所述的方法,且特征在于,若所述第一设备与所述第二设备之间的接 入网AN采用的为长期演进LTE协议,则所述NCP层位于分组数据汇聚协议PDCP层之上;
    若所述第一设备与所述第二设备之间的接入网AN采用的为数字用户线路DSL协议,则所述NCP层位于点对点协议PPP层之上;
    若所述第一设备与所述第二设备之间的接入网AN采用的为可信无线保真WiFi协议,则所述NCP层位于介质访问控制MAC层之上;
    若所述第一设备与所述第二设备之间的接入网AN采用的为不可信无线保真WiFi协议,则所述NCP层位于因特网协议安全IPSec层之上。
  12. 如权利要求7-11任一项所述的方法,其特征在于,所述NCP层的协议头采用具有指定选项类型的因特网协议IP选项承载;
    或者,所述NCP层的协议头包括NCP类型和NCP数据。
  13. 一种设备,其特征在于,包括:
    处理模块,用于通过所述设备的网络融合协议NCP层获取的报文;
    通信模块,用于通过所述设备的NCP层将所述报文发送给第二设备的NCP层;其中,所述NCP层位于用户面的数据链路层,所述设备的NCP层和所述第二设备的NCP层构成所述设备与所述第二设备之间的直接数据交互通道;
    所述设备为终端,所述第二设备为核心网设备;或者,所述设备为核心网设备,所述第二设备为终端。
  14. 如权利要求13所述的设备,其特征在于,所述报文为固定移动融合FMC场景下的报文。
  15. 如权利要求13所述的设备,其特征在于,所述报文为用于FMC多连接汇聚的报文,或者,为用于FMC多连接管理的报文,或者,为用于私网感知的报文,或者,为用于私网控制的报文。
  16. 如权利要求13所述的设备,其特征在于,所述NCP层位于数据链路层的顶端,且位于因特网协议IP层之下。
  17. 如权利要求16所述的设备,其特征在于,若所述设备与所述第二设备之间的接入网AN采用的为长期演进LTE协议,则所述NCP层位于分组数据汇聚协议PDCP层之上;
    若所述设备与所述第二设备之间的接入网AN采用的为数字用户线路DSL协议,则所述NCP层位于点对点协议PPP层之上;
    若所述设备与所述第二设备之间的接入网采用的为可信无线保真WiFi协议,则所述NCP层位于介质访问控制MAC层之上;
    若所述设备与所述第二设备之间的接入网采用的为不可信无线保真WiFi协议,则所述NCP层位于因特网协议安全IPSec层之上。
  18. 如权利要求13-17任一项所述的设备,其特征在于,所述NCP层的协议头采用具有指定选项类型的因特网协议IP选项承载;
    或者,所述NCP层的协议头包括NCP类型和NCP数据。
  19. 一种设备,其特征在于,包括:
    通信模块,用于通过所述设备的网络融合协议NCP层接收第二设备的NCP层传送的报文;
    处理模块,用于处理所述报文;
    其中,所述NCP层位于用户面的数据链路层,所述设备的NCP层和所述第二设备的NCP层构成所述设备与所述第二设备之间的直接数据交互通道;
    所述设备为终端,所述第二设备为核心网设备;或者,所述设备为核心网设备,所述第二设备为终端。
  20. 如权利要求19所述的设备,其特征在于,所述报文为固定移动融合FMC场景下的报文。
  21. 如权利要求19所述的设备,其特征在于,所述报文为用于FMC多连接汇聚的报文,或者,为用于FMC多连接管理的报文,或者,为用于私网感知的报文,或者,为用于私网控制的报文。
  22. 如权利要求19所述的设备,其特征在于,所述NCP层位于数据链路层的顶端,且位于因特网协议IP层之下。
  23. 如权利要求19所述的设备,其特征在于,若所述设备与所述第二设备之间的接入网AN采用的为长期演进LTE协议,则所述NCP层位于分组数据汇聚协议PDCP层之上;
    若所述设备与所述第二设备之间的接入网AN采用的为数字用户线路DSL协议,则所述NCP层位于点对点协议PPP层之上;
    若所述设备与所述第二设备之间的接入网AN采用的为可信无线保真WiFi协议,则所述NCP层位于介质访问控制MAC层之上;
    若所述设备与所述第二设备之间的接入网AN采用的为不可信无线保真WiFi协议,则所述NCP层位于因特网协议安全IPSec层之上。
  24. 如权利要求19-23任一项所述的设备,其特征在于,所述NCP层的协议头采用具有指定选项类型的因特网协议IP选项承载;
    或者,所述NCP层的协议头包括NCP类型和NCP数据。
PCT/CN2017/093898 2016-09-28 2017-07-21 一种报文交互方法及相关设备 WO2018059092A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197010437A KR102244327B1 (ko) 2016-09-28 2017-07-21 패킷 교환 방법 및 관련 장치
BR112019005950A BR112019005950A2 (pt) 2016-09-28 2017-07-21 método de troca de pacote e dispositivo relacionado
EP17854546.3A EP3506716B1 (en) 2016-09-28 2017-07-21 Methods for packet exchange and related devices
JP2019538297A JP7012727B2 (ja) 2016-09-28 2017-07-21 パケット交換方法及び関連装置
US16/364,792 US10887943B2 (en) 2016-09-28 2019-03-26 Packet exchange method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610864813.4A CN108307537B (zh) 2016-09-28 2016-09-28 一种报文交互方法及相关设备
CN201610864813.4 2016-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/364,792 Continuation US10887943B2 (en) 2016-09-28 2019-03-26 Packet exchange method and related device

Publications (1)

Publication Number Publication Date
WO2018059092A1 true WO2018059092A1 (zh) 2018-04-05

Family

ID=61763135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093898 WO2018059092A1 (zh) 2016-09-28 2017-07-21 一种报文交互方法及相关设备

Country Status (7)

Country Link
US (1) US10887943B2 (zh)
EP (1) EP3506716B1 (zh)
JP (1) JP7012727B2 (zh)
KR (1) KR102244327B1 (zh)
CN (1) CN108307537B (zh)
BR (1) BR112019005950A2 (zh)
WO (1) WO2018059092A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708486B (zh) * 2018-12-10 2020-10-21 聯發科技股份有限公司 無線裝置的無線通訊方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917352B1 (en) * 2019-09-04 2021-02-09 Cisco Technology, Inc. Selective tracking of acknowledgments to improve network device buffer utilization and traffic shaping
US11589264B2 (en) * 2020-07-31 2023-02-21 Charter Communications Operating, Llc System and method for leveraging access customer premise equipment (CPE) gateway resources to provide 5G edge computing services

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728715A (zh) * 2004-07-27 2006-02-01 邓里文 一种用于因特网与波分复用系统融合的适配方法
WO2013123467A1 (en) * 2012-02-17 2013-08-22 Vid Scale, Inc. Hierarchical traffic differentiation to handle congestion and/or manage user quality of experience
CN103582159A (zh) * 2012-07-20 2014-02-12 中兴通讯股份有限公司 一种固定移动网络融合场景下的多连接建立方法及系统
CN105357720A (zh) * 2015-10-10 2016-02-24 四川长虹通信科技有限公司 一种移动融合网络系统及终端设备及业务流程

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008148A1 (de) * 2000-02-22 2001-08-23 Bosch Gmbh Robert Verfahren zum Betreiben eines Mobilfunknetzes
FI20040280A0 (fi) * 2004-02-23 2004-02-23 Nokia Corp Menetelmä pakettikytkentäisen kanavanvaihdon suorittamiseksi matkaviestinjärjestelmässä
WO2006038268A1 (ja) * 2004-10-01 2006-04-13 Mitsubishi Denki Kabushiki Kaisha アクセスサービスネットワークシステム、アクセス装置、l2tpトンネル集線装置およびホームエージェント、並びにアクセスサービス提供方法
KR20060131671A (ko) * 2005-06-15 2006-12-20 한국전자통신연구원 셀룰러 시스템의 레이턴시를 향상시키는 프로토콜 구조를갖는 무선 통신 시스템
CN101442715B (zh) * 2007-11-20 2011-01-05 华为技术有限公司 一种gprs网络扁平化架构的实现方法、装置和系统
CN101494638A (zh) * 2008-01-25 2009-07-29 华为技术有限公司 一种固定移动融合fmc的方法、系统及装置
US20120087356A1 (en) * 2010-10-07 2012-04-12 Qualcomm, Incorporated Tunneled direct link setup through a tunnel
US8923816B2 (en) * 2011-07-28 2014-12-30 Samsung Electronics Co., Ltd. Apparatus and method for providing seamless service between a cellular network and wireless local area network for a mobile user
EP2987307B1 (en) * 2013-04-17 2019-01-02 Intel Corporation Techniques enabling use of a wi-fi direct services (wfds) application services platform (asp) for layer 2 services
CN105981433B (zh) * 2014-02-10 2019-09-10 Lg电子株式会社 无线通信系统中指示d2d数据的qos的方法和装置
US9596707B2 (en) * 2014-03-13 2017-03-14 Intel Corporation Bearer mobility and splitting in a radio access network-based, 3rd generation partnership project network having an integrated wireless local area network
HUE043080T2 (hu) * 2014-07-08 2019-08-28 Intel Corp Készülékek csomagrendszerhordozó felosztáshoz
EP3326408B1 (en) * 2015-07-22 2020-04-01 Intel IP Corporation Convergence layer for 5g communication systems
US10206232B2 (en) * 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
CN110121867B (zh) * 2017-01-23 2021-09-21 华为技术有限公司 一种传输数据包的方法、发送设备及接收设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728715A (zh) * 2004-07-27 2006-02-01 邓里文 一种用于因特网与波分复用系统融合的适配方法
WO2013123467A1 (en) * 2012-02-17 2013-08-22 Vid Scale, Inc. Hierarchical traffic differentiation to handle congestion and/or manage user quality of experience
CN103582159A (zh) * 2012-07-20 2014-02-12 中兴通讯股份有限公司 一种固定移动网络融合场景下的多连接建立方法及系统
CN105357720A (zh) * 2015-10-10 2016-02-24 四川长虹通信科技有限公司 一种移动融合网络系统及终端设备及业务流程

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708486B (zh) * 2018-12-10 2020-10-21 聯發科技股份有限公司 無線裝置的無線通訊方法

Also Published As

Publication number Publication date
CN108307537B (zh) 2020-07-14
EP3506716A4 (en) 2019-10-02
KR20190051034A (ko) 2019-05-14
EP3506716A1 (en) 2019-07-03
EP3506716B1 (en) 2022-06-22
JP2019535218A (ja) 2019-12-05
JP7012727B2 (ja) 2022-01-28
CN108307537A (zh) 2018-07-20
US10887943B2 (en) 2021-01-05
KR102244327B1 (ko) 2021-04-23
US20190223252A1 (en) 2019-07-18
BR112019005950A2 (pt) 2019-06-18

Similar Documents

Publication Publication Date Title
US10462229B2 (en) Method and apparatus for initiating and maintaining sessions between endpoints
JP2019532582A (ja) 無線通信システムにおけるreflective QoSの適用方法、及びこのための装置
US10506497B2 (en) Service processing method and apparatus
WO2013185653A1 (zh) 一种进行多网络联合传输的系统、用户设备及方法
US11356294B2 (en) Packet processing method and device
WO2016173078A1 (zh) 一种数据中转传输方法、系统和具备中继功能的ue
WO2015165051A1 (zh) 数据传输方法及设备
WO2016173076A1 (zh) 一种数据中转传输方法、系统和具备中继功能的ue
US11824685B2 (en) Method for implementing GRE tunnel, access point and gateway
WO2016015244A1 (zh) 多通信制式传输方法及装置
JP2012253750A (ja) MiAN及びMiAN帯域幅集約方法並びに集約システム
WO2014047942A1 (zh) 传输数据的方法、用户设备和网络侧设备
US10887943B2 (en) Packet exchange method and related device
US20220255849A1 (en) Data Transmission Method and Apparatus
CN109196918A (zh) 一种数据传输控制方法、通信设备及核心网设备
WO2013155981A1 (zh) 数据分流的方法和装置
WO2015010487A1 (zh) 分流数据传输方法、传输设备、系统以及用户终端
WO2015192317A1 (zh) 网络通信方法和装置
WO2014036728A1 (zh) 一种空口传输方法及相关设备、系统
WO2013086949A1 (zh) 一种通信方法及设备
WO2012119564A1 (zh) 一种用户面配置参数的处理方法及装置
WO2016155089A1 (zh) 一种数据传输方法、装置及系统
AU2013393112B2 (en) Method for releasing wireless link resource and user equipment
JP2015104048A (ja) 無線通信方法、そのシステムおよび無線基地局
WO2023246746A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019005950

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017854546

Country of ref document: EP

Effective date: 20190325

ENP Entry into the national phase

Ref document number: 20197010437

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019005950

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190326