WO2013185653A1 - 一种进行多网络联合传输的系统、用户设备及方法 - Google Patents

一种进行多网络联合传输的系统、用户设备及方法 Download PDF

Info

Publication number
WO2013185653A1
WO2013185653A1 PCT/CN2013/078035 CN2013078035W WO2013185653A1 WO 2013185653 A1 WO2013185653 A1 WO 2013185653A1 CN 2013078035 W CN2013078035 W CN 2013078035W WO 2013185653 A1 WO2013185653 A1 WO 2013185653A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
access network
user data
network
wlan
Prior art date
Application number
PCT/CN2013/078035
Other languages
English (en)
French (fr)
Inventor
王昕�
和峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2015506090A priority Critical patent/JP2015519792A/ja
Priority to EP13804534.9A priority patent/EP2811779A4/en
Priority to US14/382,483 priority patent/US20150139184A1/en
Publication of WO2013185653A1 publication Critical patent/WO2013185653A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0846Load balancing or load distribution between network providers, e.g. operators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a mobile communication system, and in particular, to a system, user equipment and method for performing multi-network joint transmission.
  • the Long Term Evolution (LTE) system can support data transmission with a maximum downlink rate of 100 Mbps in a 20 M bandwidth.
  • LTE Long Term Evolution Advanced, LTE-A
  • data is used.
  • the transmission rate will be further increased, even reaching 1Gbps.
  • wireless LANs that are currently widely used, especially wireless LANs based on the IEEE 802.11 standard, are already in the home and enterprise. Even the Internet is widely used for hotspot access coverage.
  • WiFi Wireless Fidelity
  • Wi-Fi Alliance Wi-Fi Alliance
  • Some operators and companies have proposed to jointly transmit the WLAN to the existing 3GPP network, that is, use the WLAN network to achieve the load sharing (Offload) and network performance improvement of the existing LTE network.
  • Interworking protocols for 3GPP networks and WLAN networks have been developed, as shown in Figure 1, the current Interworking architecture.
  • the WLAN network is allowed to use the Authentication Authorization Accounting (AAA) in the LTE network for unified authentication and authorization, and the packet data network gateway in the existing LTE network can be reused as the packet data gateway of the WLAN network, and can also be implemented.
  • AAA Authentication Authorization Accounting
  • the unified accounting and billing of the two networks has achieved the loose coupling of the two networks.
  • the current Interworking is triggered by the User Equipment (UE).
  • UE User Equipment
  • the network side does not have the active right to control the target network and lose control of the UE accessing the network. This may result in the operator not being able to guide the user. Enter its desired or optimal target network;
  • the UE does not know whether the network side (such as LTE network and WLAN network) supports interworking, so the UE may choose to connect to a target network that cannot interwork with the current network;
  • the network side such as LTE network and WLAN network
  • the terminal In order to realize the joint transmission between 3GPP and WLAN, the terminal needs to open two sets of transceivers at the same time, which will have a great impact on the power consumption of the terminal;
  • the embodiments of the present invention provide a system, a user equipment, and a method for performing multi-network joint transmission, so as to overcome the defect that the existing operators have large cost expenditures.
  • the system for performing multi-network joint transmission includes: a core network and an access network;
  • the access network includes: a third generation partnership project (3GPP) access network element and a wireless local area network (WLAN) access network network element;
  • the core network includes a 3GPP core network element;
  • the 3GPP access network The network element is connected to the network element of the core network through a network interface, and is connected to the network element of the WLAN access network through a traffic distribution interface.
  • the network element of the 3GPP access network is configured to be connected to the user equipment through a 3GPP wireless interface, and is received by the network element.
  • the WLAN access network element is configured to be connected to the user equipment by using a WLAN radio interface, where the network element of the 3GPP access network is The user equipment and the downlink user data are transmitted between the user equipments.
  • the 3GPP access network network element is configured to: after the downlink user data sent from the core network is offloaded, send at least part of the downlink user data to the WLAN access network element through the offload interface;
  • the WLAN access network element is configured to send the downlink user data received from the offload interface to the user equipment.
  • the 3GPP access network network element is further configured to send, to the user equipment, part of downlink user data that is not sent to the WLAN access network network element by using the offload interface, by using an interface with the user equipment. .
  • the network element of the 3GPP access network is configured to be configured to encapsulate at least part of the downlink user data in the form of an Ethernet transmission protocol or a wireless connection-based transmission protocol, and send the network element to the WLAN access network element through the offload interface.
  • the 3GPP access network element is configured to offload the downlink user data at an IP layer, or a packet convergence protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • IP layer or a packet convergence protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • MAC medium access control
  • the 3GPP access network network element is set to be any one of a load according to the device, a load of the WLAN access network element, a wireless environment quality of the user equipment, or other pre-configured algorithms.
  • the downlink user data is offloaded in any combination.
  • the WLAN access network network element is configured to send the received user equipment Sending uplink user data to the 3GPP access network network element;
  • the 3GPP access network network element is configured to combine uplink user data sent by the user equipment belonging to the same data source and uplink user data sent by the WLAN access network network element.
  • the 3GPP access network element is further configured to transmit control plane signaling directly between the core network element and the user equipment.
  • the 3GPP access network element In a Long Term Evolution (LTE) network, the 3GPP access network element is connected to the core network element through an S1 interface; in a Universal Mobile Telecommunications System (UMTS) network, the 3GPP access network element passes through the Iu The port is connected to the core network element.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the embodiment of the present invention further provides a user equipment, having a wireless local area network (WLAN) access function and at least one third generation partnership project (3GPP) wireless access function, including: a receiving module, a sending module, Shunt module and merge module;
  • WLAN wireless local area network
  • 3GPP third generation partnership project
  • the receiving module is configured to receive downlink user data sent by the 3GPP access network network element through the 3GPP wireless interface, and receive downlink user data sent by the WLAN access network network element by using the WLAN wireless interface;
  • the merging module is configured to merge the 3GPP access network element received by the receiving module with downlink user data sent by the WLAN access network element;
  • the offloading module is configured to offload uplink user data to be sent
  • the sending module is configured to send part of the uplink user data that is distributed by the offloading module to the network element of the 3GPP access network, and send another part of the uplink user data to the network element of the WLAN access network.
  • the offloading module is configured to offload the uplink user data at an IP layer, or a packet convergence protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • IP layer or a packet convergence protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • MAC medium access control
  • the offloading module is configured to perform offloading of the uplink user data to be sent according to a locally pre-configured offloading policy or a traffic offloading policy configured by the 3GPP access network network element.
  • the receiving module is further configured to directly receive the control plane signaling sent by the 3GPP access network network element.
  • the embodiment of the present invention further provides a method for performing multi-network joint transmission, which is applied to a core network and an access network side;
  • the access network includes: a third generation partnership project (3GPP) access network element and a wireless local area network (WLAN) access network network element;
  • the core network includes a 3GPP core network element;
  • the method includes:
  • the network element of the 3GPP access network is connected to the network element of the core network through a network interface, and is connected to the network element of the WLAN access network through a traffic distribution interface, and is connected to the user equipment through a 3GPP wireless interface; Merging the downlink user data, and offloading part of the downlink user data to the network element of the WLAN access network;
  • the WLAN access network element is connected to the user equipment by using a WLAN radio interface; and transmitting uplink user data and downlink user data between the 3GPP access network element and the user equipment.
  • the 3GPP access network element After the downlink user data sent from the core network is offloaded, the 3GPP access network element transmits the at least part of the downlink user data to the WLAN access network element through the offload interface;
  • the WLAN access network element sends the downlink user data received from the offload interface to the user equipment.
  • the method further includes:
  • the 3GPP access network network element sends part of the downlink user data that is not sent to the network element of the WLAN access network through the traffic distribution interface, and is sent to the user through an interface with the user equipment. Equipment.
  • the 3GPP access network element transmits the at least part of the downlink user data to the WLAN access network element through the offload interface in the form of an Ethernet transmission protocol or a wireless connection-based transmission protocol.
  • the 3GPP access network network element performs offloading of the downlink user data at an IP layer, or a packet convergence protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • IP layer or a packet convergence protocol layer
  • MAC medium access control
  • the 3GPP access network network element may be any one or any combination of the load of the device, the load of the WLAN access network network element, the wireless environment quality of the user equipment, or other pre-configured algorithms.
  • the downlink user data is offloaded.
  • the WLAN access network network element sends the received uplink user data sent by the user equipment to the 3GPP access network network element;
  • the 3GPP access network network element combines uplink user data sent by the user equipment belonging to the same data source and uplink user data sent by the WLAN access network network element.
  • the method further includes:
  • the 3GPP access network network element directly transmits control plane signaling between the core network element and the user equipment.
  • the embodiment of the present invention further provides a method for performing multi-network joint transmission, which is applied to a user equipment side, where the user equipment has a wireless local area network (WLAN) access function and at least one third-generation partnership plan ( 3GPP) wireless access function; the method includes:
  • the WLAN radio interface receives downlink user data sent by the WLAN access network network element
  • the uplink user data is offloaded at an IP layer, or a packet aggregation protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • IP layer or a packet aggregation protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • MAC medium access control
  • the uplink user data to be sent is offloaded according to the local pre-configured traffic off policy or the traffic policy configured by the 3GPP access network network element.
  • the method further includes:
  • the operator can use the data transmission of the WLAN band offloading frequency band without the license plate to divert the data traffic of the 3GPP access network, reduce the network load, and save the frequency band and cost; the operator can reuse
  • the existing WLAN access point network element saves the operation and maintenance expenditure of the network side; at the same time, the data throughput of the UE is increased to meet the requirements of the user's current multimedia service; in addition, the architecture also guarantees the protocol and the terminal device. Maximum compatibility makes the system run more reasonably and efficiently.
  • FIG. 1 is a schematic diagram of a related art network interworking protocol architecture
  • FIG. 2 is a schematic diagram of a joint transmission architecture between a 3GPP and a WLAN network in the embodiment of the present invention
  • FIG. 3(a) to FIG. 3(c) are respectively three types of traffic distribution interfaces between a 3GPP access network and a WLAN access network in an embodiment of the present invention
  • FIG. 4(a) and 4(b) are schematic diagrams of data distribution of a 3GPP access network according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present invention
  • 6 is a schematic diagram of an LTE and WLAN joint transmission network in an application example 1 of the present invention
  • FIG. 7 (a) to 7 (c) are schematic diagrams of a traffic distribution interface protocol stack in the application example 1 of the present invention
  • FIG. 8 (a ) and 8 ( b ) It is a schematic diagram of a WLAN air interface transmission data protocol stack in the application example 1 of the present invention
  • FIG. 9 is a schematic diagram of a transmission scheme of a user equipment and an access network tunnel in the application example 1 of the present invention
  • FIG. 10 (a) and 10 (b) are schematic diagrams of a UMTS and WLAN joint transmission network in the application example 2 of the present invention
  • 11(a) and 10(b) are schematic diagrams of a WLAN air interface data protocol stack in the second application example of the present invention.
  • FIG. 12 is a schematic diagram of a transmission scheme of a user equipment and an access network tunnel in an application example 2 of the present invention.
  • a system for jointly transmitting a 3GPP and a WLAN network includes: a core network and an access network, where the access network includes: a 3GPP access network element and a WLAN access network element, and a core
  • the network includes core network elements in the 3GPP system.
  • the core network element and the network element of the 3GPP access network can be connected through a network interface, for example, through an S1 interface in an LTE network, and through the Iu port in a UMTS (Universal Mobile Telecommunications System) network. Connections; can also be connected via a wired interface (such as fiber optics) or a wireless interface (such as via a microwave or 3GPP air interface based wireless connection).
  • the core network element includes: MME (Mobility Management Entity), SGW (Serving Gateway), and PGW (Packet Data Network Gateway). Network gateway), etc.
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • PGW Packet Data Network Gateway
  • Network gateway etc.
  • the core network element includes: SGSN (Serving GPRS Support Node, GPRS (General Packet Radio Service) Support node) and GGSN (Gateway GPRS Support Node).
  • the foregoing 3GPP access network network element may include: an evolved base station (Evolved Node B, hereinafter referred to as eNB), a relay node (Relay node, abbreviated as RN), or a Home Evolved Base Station (Home eNB, referred to as HeNB).
  • the UMTS network may include: a radio network controller (Radio Network Controller, RNC for short), a base station (Node B), and a home base station (Home Node B, HNB).
  • RNC Radio Network Controller
  • the 3GPP access network element has the functions of splitting downlink user data and merging uplink user data belonging to the same data source, in addition to the functions of the existing 3GPP access network element;
  • the WLAN access network element includes a WLAN access point (Access Point, referred to as
  • AP may also include a WLAN access control network element (Access Control, AC for short).
  • WLAN access control network element Access Control, AC for short.
  • the function of the WLAN access network element is similar to that of the existing WLAN access network element, and is mainly responsible for the transmission of user data; however, the difference from the existing WLAN access network element is that the WLAN access network element transmits
  • the data is the offloaded data that interacts with the network element of the 3GPP access network through the offload interface.
  • the shunt interface between the WLAN access network element and the 3GPP access network element is mainly responsible for
  • the user data of the split is transmitted between the network element of the 3GPP access network and the network element of the WLAN access network.
  • the user data can be transmitted using the Ethernet transport protocol, such as through the IP layer (as shown in Figure 3 (a)) or a higher level transport protocol (such as the Tunneling protocol shown in Figure 3 (b)
  • Figure 3 (c) shows the UDP (User Datagram Protocol); if the traffic distribution interface uses a wireless interface, the difference between the transmission and the wired interface is mainly at the bottom layer (ie, L1, L2 layers).
  • the transport protocol uses a transport protocol based on a wireless connection.
  • the user equipment is a multimode terminal supporting at least WLAN and a 3GPP radio access technology, and respectively performs data transmission with the 3GPP access network element and the WLAN access network element through the 3GPP air interface protocol and the WLAN air interface protocol.
  • the 3GPP air interface protocol and the WLAN air interface protocol are consistent with the existing Uu port transmission protocol and the 802.11 protocol, respectively.
  • the user data transmitted between the WLAN access network element and the user equipment is, in the downlink direction, the user data transmitted by the 3GPP access network network element to the WLAN access network element; and is generated by the UE in the uplink direction.
  • the user data of the WLAN access network is transmitted to the network element of the 3GPP access network through the traffic distribution interface.
  • the UE splits the uplink user data according to the traffic distribution policy. After the offloading, the UE sends part of the uplink user data to the 3GPP access network, and sends another part of the uplink user data to the WLAN access network.
  • the offloading policy may be pre-configured in the UE, or may be configured by the 3GPP access network element for the UE.
  • the splitting of the user data may occur in the IP layer, or the Packet Data Convergence Protocol (PDCP) layer, or the Radio Link Control (RLC) layer, or the medium access. Control (Medium Access Control, MAC for short) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Control Medium Access Control, MAC for short
  • the user data can be encapsulated in different package formats. If the offloading occurs at the IP layer, the sender transmits different user IP data packets to the receiver through different paths (that is, through 3GPP air interface or WLAN air interface), as shown in Figure 4 (a); if it occurs in the PDCP layer, The user data of the offloaded user is the user data processed by the PDCP layer, as shown in FIG. 4(b); similarly, the same applies to the RLC layer and the MAC layer offload, and details are not described herein again.
  • the sender transmits different user IP data packets to the receiver through different paths (that is, through 3GPP air interface or WLAN air interface), as shown in Figure 4 (a); if it occurs in the PDCP layer, The user data of the offloaded user is the user data processed by the PDCP layer, as shown in FIG. 4(b); similarly, the same applies to the RLC layer and the MAC layer offload, and details are not described herein again.
  • the sender may also use a logical link control layer (Logic Link Control, referred to as LLC) protocol for encapsulation processing on the 802.11 MAC layer protocol;
  • LLC logical Link Control layer
  • the receiver will also perform the unpacking process.
  • the sender is the 3GPP access network network element, and the receiver is the user equipment;
  • the sender is the user equipment, and the receiver is the 3GPP access network network element.
  • the 3GPP access network element is the dominant system of the entire system, and the WLAN access network element is only responsible for the transmission of part of the user data. That is to say, which WLAN access network the UE specifically accesses can be controlled or assisted by the 3GPP access network.
  • the transceiver on the WLAN side can be controlled by the 3GPP access network, which achieves the purpose of power saving by the UE.
  • a user equipment having a wireless local area network (WLAN) access function and at least one third generation partnership project (3GPP) wireless access function, includes: a receiving module 50, The sending module 51, the shunt module 52 and the merging module 53;
  • WLAN wireless local area network
  • 3GPP third generation partnership project
  • the receiving module 50 is configured to receive a 3GPP access network element through a 3GPP radio interface. Downlink user data, and receiving downlink user data sent by the WLAN access network element through the WLAN radio interface;
  • the merging module 51 is configured to combine the 3GPP access network element received by the receiving module with the downlink user data sent by the WLAN access network element;
  • the offloading module 52 is configured to offload uplink user data to be sent
  • the sending module 53 is configured to send part of the uplink user data that is distributed by the offloading module to the network element of the 3GPP access network, and send another part of the uplink user data to the network element of the WLAN access network.
  • the offloading module 52 is configured to offload the uplink user data at an IP layer, or a packet convergence protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • IP layer or a packet convergence protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • MAC medium access control
  • the offloading module 52 is configured to offload the uplink user data to be sent according to a locally pre-configured offloading policy or a traffic offloading policy configured by the 3GPP access network element.
  • the receiving module 50 is further configured to directly receive control plane signaling sent by the 3GPP access network network element.
  • a method for performing multi-network joint transmission is applied to a core network and an access network side;
  • the access network includes: a third generation partnership project (3GPP) access network element and a wireless local area network (WLAN) access network network element;
  • the core network includes a 3GPP core network element;
  • the method includes:
  • the network element of the 3GPP access network is connected to the network element of the core network through a network interface, and is connected to the network element of the WLAN access network through a traffic distribution interface, and is connected to the user equipment through a 3GPP wireless interface; Merging the downlink user data, and offloading part of the downlink user data to the network element of the WLAN access network;
  • the WLAN access network element is connected to the user equipment through a WLAN radio interface; and the uplink user data and the downlink user data are transmitted between the network element of the 3GPP access network and the user equipment.
  • the 3GPP access network element After the downlink user data sent from the core network is offloaded, the 3GPP access network element transmits the at least part of the downlink user data to the WLAN access network element through the offload interface;
  • the WLAN access network element sends the downlink user data received from the offload interface to the user equipment.
  • the method further includes:
  • the 3GPP access network network element sends a part of downlink user data that is not sent to the WLAN access network element by using the offload interface, and is sent to the user equipment through an interface with the user equipment.
  • the network element of the 3GPP access network sends at least part of the downlink user data to the WLAN access network element through the offload interface in the form of an Ethernet transmission protocol or a wireless connection-based transmission protocol.
  • the 3GPP access network network element performs offloading of the downlink user data at an IP layer, or a packet convergence protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • IP layer or a packet convergence protocol layer
  • MAC medium access control
  • the 3GPP access network network element may be any one or any combination of the load of the device, the load of the WLAN access network network element, the wireless environment quality of the user equipment, or other pre-configured algorithms.
  • the downlink user data is offloaded.
  • the WLAN access network network element sends the received uplink user data sent by the user equipment to the 3GPP access network network element;
  • the 3GPP access network network element combines uplink user data sent by the user equipment belonging to the same data source and uplink user data sent by the WLAN access network network element.
  • the method further includes:
  • the 3GPP access network network element directly transmits control plane signaling between the core network element and the user equipment.
  • a method for performing multi-network joint transmission is applied to a user equipment side, where the user equipment has a wireless local area network (WLAN) access function and at least one third generation partnership project (3GPP) Wireless access function; the method includes:
  • the uplink user data is offloaded at an IP layer, or a packet aggregation protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • IP layer or a packet aggregation protocol layer, or a radio link control layer or a medium access control (MAC) layer.
  • MAC medium access control
  • the uplink user data to be sent is offloaded according to the local pre-configured traffic off policy or the traffic policy configured by the 3GPP access network network element.
  • the method further includes:
  • Application example 1 Take the joint transmission of LTE and WLAN as an example.
  • the eNB is connected to the LTE core network through the S1 interface; on the RAN (Radio Access Network) side, the eNB is also connected to the WLAN AP through the offload interface, where the data under the offload interface is based on Ethernet.
  • the protocol performs data exchange; the UE performs data transmission with the eNB and the WLAN AP according to the Uu interface protocol and the WLAN air interface protocol, respectively.
  • the eNB and the UE directly interact with each other through the Uu interface, and do not participate in data offloading.
  • the eNB For the downlink user data, after the eNB receives the user IP data on the different bearers sent from the core network through the S1 interface, the eNB divides the user data on the different bearers at the IP layer, and the eNB determines that the basis for the offloading may be based on the eNB and/or Or the load of the WLAN AP, or according to the quality of the radio environment in which the UE is located (ie, according to the UE's measurement of the quality of the LTE and WLAN network radio environment), or according to other predetermined algorithms.
  • the eNB may also offload the user data in other protocol layers, such as the PDCP layer, the RLC layer, or the MAC layer.
  • the data that is offloaded at this time is a protocol data unit (Protocol Data Unit, which is processed by the upper protocol layer.
  • PDU Protocol Data Unit
  • the user data after the split is a PDCP PDU.
  • the eNB After the offloading, the eNB transmits the partial user IP data to the corresponding UE through the Uu interface, that is, the corresponding PDCP, RLC, or MAC layer data encapsulation processing is required, and the specific mechanism is consistent with the existing air interface delivery mechanism, and is not described again.
  • the part of the user IP data is transmitted by the eNB to the WLAN AP through the offload interface, and is transmitted by the WLAN AP to the corresponding UE through the WLAN air interface (ie, based on the 802.11 protocol).
  • the user data of the offload interface can be transmitted based on the IP data packet, as shown in FIG. 7( a ), where the data is used as an IP packet payload, and the source address and the destination address in the IP header are respectively the sender and the receiver.
  • IP address the IP address may be pre-configured, or may be obtained by the sender and the receiver through other processes (such as DHCP (Dynamic Host Configuration Protocol) protocol); or through a tunneling protocol.
  • DHCP Dynamic Host Configuration Protocol
  • Encapsulation as shown in Figure 7 (b), such as through the GTP (GPRS Tunneling Protocol) protocol (as shown in Figure 7 (c)), where the MAC PDU is used as the GTP packet payload, GTP tunnel transmission.
  • the layer address and port number can be pre-configured, or can be obtained through other processes (such as the L3 protocol process) through sending and receiving dual-issue; GRE (Generic Routing) can also be used in the high-level tunnel protocol.
  • the user data transmitted through the WLAN air interface may be an IP data packet encapsulated by the WLAN AP, as shown in FIG.
  • the offload data (here, the IP packet) directly serves as the new local IP data.
  • the payload of the packet, the source address and the destination address of the local IP header are respectively the sender and the receiver IP address, and the IP address may be pre-configured, or may be performed by the sender and the receiver through other processes (such as DHCP protocol). Obtained by negotiation; or other transport protocol data packets, such as multiplexed PDCP and/or RLC and/or MAC layer protocols of LTE, as shown in Figure 8(b), at this time, the WLAN AP pairs the split IP packets according to PDCP accordingly.
  • Encapsulation is performed in the form of RLC and MAC, where each protocol layer parameter can be configured by the eNB, and the final protocol PDU is sent as a Payload of the WLAN MAC layer.
  • the offloaded user data may be further encapsulated by using an LLC protocol before being sent to the WLAN MAC layer, where the destination service access node and the source service access node field in the LLC packet respectively point to the peer protocol layer of the transceiver party. , Streaming data as the payload of the LLC.
  • the above-mentioned shunt interface and the protocol stack of the WLAN air interface can be combined in any combination.
  • an end-to-end tunnel can also be established between the UE and the eNB for data transmission, as shown in FIG. 9.
  • the tunneling protocol can use existing tunneling technologies, such as IPsec, GTP, or GRE, or other tunneling protocols.
  • the traffic distribution interface and the WLAN air interface can also be added with security protection mechanisms according to actual requirements.
  • security protection mechanisms for example, through IPSec or other tunnel security mechanisms, the protection implementation method is consistent with the existing security mechanism, and details are not described herein.
  • the transmission path of the downlink user data and the interface protocol stack are the same, except that the sender is the UE, and the receiver is the eNB and the WLAN AP. This is not repeated here.
  • the above architecture is also applicable to the scenario where the RN and the HeNB are combined.
  • the difference is that only the network element of the access network changes, and the backhaul link of the network element is also different.
  • the backhaul link of the RN is based on the LTE air interface, and the HeNB
  • the backhaul link may also be managed by a home base station gateway, and the like.
  • the offload interface protocol and the offload mode between the access network elements are the same.
  • Application example 2 Take the joint transmission of the UMTS network and the WLAN network as an example.
  • the RNC is connected to the core network through the Iu interface.
  • the RNC is also connected to the WLAN AP through the traffic distribution interface.
  • the data under the traffic distribution interface is based on the Ethernet protocol for data exchange.
  • the interface protocol and the WLAN air interface protocol perform data transmission with the RNC and the WLAN AP.
  • the offload interface between the UMTS network and the WLAN AP can also be established between the NodeB and the AP, as shown in Figure 10 (b).
  • the control plane signaling transmitted between the access network and the UE is still exchanged between the RNC and the UE through the Uu port, and does not participate in the offload.
  • the RNC receives the user IP data of different bearers sent from the core network through the Iu interface, and then offloads the user data on different bearers at the MAC layer.
  • the RNC determines that the basis for the offloading may be based on the RNC, the NodeB, and the / or the load of the WLAN AP, or according to the quality of the wireless environment in which the UE is located (ie, according to the UE's measurement of the quality of the UMTS and WLAN network wireless environment), or according to other predetermined algorithms.
  • the RNC can also offload user data at other protocol layers, such as the IP layer, the PDCP layer, or the RLC layer. The difference is that the user data after the offloading is the PDU processed by the upper protocol layer.
  • the RNC After the offloading, the RNC transmits the partial user IP data to the corresponding UE through the Uu interface, that is, the corresponding PDCP, RLC, or MAC layer data encapsulation processing is required, and the specific mechanism is consistent with the existing air interface delivery mechanism, and is not described again.
  • the RNC After the RNC performs the layer 2 protocol, that is, the UMTS PDCP, RLC, or MAC layer encapsulation processing, the RNC transmits the MAC protocol packet to the WLAN AP through the offload interface, and the WLAN AP passes the WLAN air interface (that is, based on the 802.11 protocol). Passed to the corresponding UE.
  • the user data of the offload interface can be transmitted based on the IP data packet, as shown in FIG. 6( a ), where the MAC PDU is used as the IP packet payload, and the source address and the destination address in the IP header are respectively the sender and the receiver.
  • the IP address of the party may be pre-configured, or may be obtained by the sender and the receiver through other processes (such as DHCP protocol); or encapsulated by a tunneling protocol, as shown in Figure 7 (b)
  • the MAC PDU is used as the GTP packet payload, and the transport layer address and port number of the GTP tunnel can be pre-configured.
  • Other processes such as the L3 Association
  • the high-level tunneling protocol can also use the GRE protocol or the IPsec protocol, or other high-level connection protocol forms.
  • the user data transmitted through the WLAN air interface may be the data obtained after the offloading, or may be the IP data packet encapsulated by the WLAN AP, as shown in FIG. 10( a ), where the data is shunted (here, MAC).
  • the PDU packet is directly used as the payload of the IP packet.
  • the source address and the destination address in the IP header are the addresses of the sender and the receiver IP respectively.
  • the IP address can be pre-configured, or the sender and the receiver can pass other
  • the process (such as the DHCP protocol) is negotiated; or other transport protocol data packets, such as LLC, as shown in Figure 11 (b), at this time, the destination service access node and the source service access node field in the LLC packet respectively point to the transceiver.
  • the MAC layer of both parties, the data is offloaded as the payload of the LLC.
  • the above-mentioned shunt interface and the protocol stack of the WLAN air interface can be combined in any combination.
  • an end-to-end tunnel can also be established between the UE and the RNC for data transmission, as shown in FIG.
  • the tunnel protocol can use IPsec, GTP or GRE, or other tunneling protocols.
  • the traffic distribution interface and the WLAN air interface can also be added with security protection mechanisms according to actual requirements.
  • security protection mechanisms for example, through IPSec or other tunnel security mechanisms, the protection implementation method is consistent with the existing security mechanism, and will not be described again.
  • the transmission path of the downlink user data and the interface protocol stack are the same, except that the sender is the UE, and the receiver is the RNC and the WLAN AP. This is not repeated here.
  • the NodeB needs to offload the user data.
  • the NodeB determines whether the traffic is based on the NodeB reservation algorithm or the RNC trigger.
  • the data offloading method performed on the NodeB and the shunt data transfer mechanism on the offload interface are similar to those of the RNC, and are not described here.
  • the above architecture is also applicable to other scenarios such as HNB.
  • the difference lies in the change of the network element of the access network.
  • the backhaul link of the network element is also different.
  • the backhaul link of the HNB may be managed by the home base station gateway.
  • the offload interface protocol and the offload mode between the access network and the WLAN AP are the same.
  • the operator can utilize the data transmission of the WLAN band offloading frequency band without the license plate, divert the data traffic of the 3GPP access network, reduce the network load, save the frequency band and the cost; the operator can reuse the present Some WLAN access point NEs save network operation and maintenance expenses.
  • the data throughput of the UE is increased to meet the user's current multimedia service requirements.
  • the architecture also guarantees the maximum protocol and terminal equipment. Compatibility makes the system run more reasonably and efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种进行多网络联合传输的系统、用户设备及方法,所述系统包括:核心网和接入网;接入网包括:3GPP接入网网元和WLAN接入网网元;核心网包括3GPP核心网网元;3GPP接入网网元通过网络接口与核心网网元相连,通过分流接口与WLAN接入网网元相连,通过3GPP无线接口与用户设备相连;用于对接收到的上行用户数据进行合并;还用于对下行用户数据进行分流,将部分下行用户数据分流到WLAN接入网网元;WLAN接入网网元通过WLAN无线接口与用户设备相连,用于在3GPP接入网网元与用户设备之间传输上行用户数据及下行用户数据。采用本发明减轻网络负荷,节约了频段及成本。

Description

一种进行多网络联合传输的系统、 用户设备及方法 技术领域
本发明涉及移动通信系统, 尤其涉及一种进行多网络联合传输的系统、 用户设备及方法。
背景技术
随着无线通信技术和协议标准的不断演进, 移动分组业务经历了巨大的 发展,单个终端的数据吞吐能力不断提升。以长期演进( Long Term Evolution, 简称为 LTE ) 系统为例, 在 20M带宽内可以支持下行最大速率为 100Mbps 的数据传输; 后续的增强 LTE ( LTE Advanced, 简称为 LTE-A ) 系统中, 数 据的传输速率将进一步提升, 甚至可以达到 lGbps。
终端数据业务量膨胀式的增长, 使得现有的网络资源渐渐力不从心, 尤 其是在新一代通信技术(如 3G( 3rd-generation,第三代移动通信技术)、 LTE ) 还无法广泛布网的情况下, 导致的结果是用户速率和流量需求均无法满足, 用户的体验较差。 如何预防和改变这一情况是运营商必须考虑的问题, 一方 面需要加快新技术的推广和网络部署; 另一方面,通过增强现有网络和技术, 达到快速提升网络性能的目的。
众所周知, 在第三代合作伙伴计划 ( The 3rd Generation Partnership Project, 简称为 3GPP )提供的无线网络技术之外, 当前已经普遍应用的无线 局域网, 尤其是基于 IEEE 802.11标准的无线局域网已经在家庭、 企业甚至 是互联网中被广泛的应用于热点接入覆盖。其中,由 WiFi( Wireless Fidelity, 无线相容性认证 )联盟(Wi-Fi Alliance )提出的技术规范应用最广, 因此在 实际使用中经常将 WiFi 网络和基于 IEEE 802.11 标准的 WLAN ( Wireless LAN, 无线局域网) 网络划等号。
在上述前提下,有的运营商和公司已经提出将 WLAN与现有的 3GPP网 络进行联合传输, 即使用 WLAN 网络达到对现有 LTE 网络的负荷分担 ( Offload )和网络性能提升的目的。现在已经制定了 3GPP网络与 WLAN网 络互通 ( Interworking ) 的相关协议, 如图 1所示, 目前的 Interworking架构 允许 WLAN 网络使用 LTE 网络内的认证授权记账服务器 (Authentication Authorization Accounting, AAA )进行统一认证授权, 同时可以复用现有 LTE 网络中的分组数据网络网关作为 WLAN网络的分组数据网关,还可以实现两 个网络的统一记账计费等, 达到了两个网络的松耦合。
但是, 目前的 Interworking架构中还存在一些不足之处, 比如:
1 )目前的 Interworking是由终端用户设备( User Equipment,简称为 UE ) 触发的, 网络侧对目标网络没有主动选择权、对 UE接入网络失去了控制权, 这导致运营商可能无法引导用户接入其期望的或最优的目标网络;
2 ) UE 并不知道网络侧 (比如 LTE 网络和 WLAN 网络)是否支持 interworking , 因此 UE 可能会选择连接到一个无法与当前网络进行 interworking的目标网络;
3 )为实现 3GPP与 WLAN的联合传输, 需要终端同时开启两套收发机, 这对终端的耗电会带来很大影响;
4 )两个网络的数据流都需要经过 3GPP核心网网元,造成的负荷比较大, 终端用户设备在 3GPP 网络和 WLAN 网络之间移动时数据流切换也比较緩 慢。 另外, 很重要的一点是, 当前这种架构还是依赖于运营商能够拥有独立 的 3GPP网络和独立完整的 WLAN网络, 这就要求运营商要同时运营、 维护 多张网络, 运营成本支出 (Capital Expenditure , 简称为 CAPEX )较大。 发明内容
本发明实施例提供一种进行多网络联合传输的系统、 用户设备及方法, 以克服现有运营商成本支出较大的缺陷。
所述进行多网络联合传输的系统, 包括: 核心网和接入网;
所述接入网包括: 第三代合作伙伴计划( 3GPP )接入网网元和无线局域 网 (WLAN )接入网网元; 所述核心网包括 3GPP核心网网元; 所述 3GPP 接入网网元通过网络接口与所述核心网网元相连, 通过分流接口与所述 WLAN接入网网元相连, 所述 3GPP接入网网元设置为通过 3GPP无线接口 与用户设备相连, 对接收到的上行用户数据进行合并, 以及对下行用户数据 进行分流, 将部分下行用户数据分流到所述 WLAN接入网网元; 所述 WLAN接入网网元设置为通过 WLAN无线接口与所述用户设备相 连, 在所述 3GPP接入网网元与所述用户设备之间传输上行用户数据及下行 用户数据。
较佳地,
所述 3GPP接入网网元是设置为对从所述核心网发来的下行用户数据进 行分流后, 将至少部分下行用户数据通过所述分流接口发送到所述 WLAN 接入网网元;
所述 WLAN接入网网元是设置为将从所述分流接口接收到的所述下行 用户数据发送给所述用户设备。
较佳地,
所述 3GPP 接入网网元还设置为将未通过所述分流接口发送给所述 WLAN接入网网元的部分下行用户数据,通过与所述用户设备之间的接口发 送给所述用户设备。
较佳地,
所述 3GPP接入网网元是设置为将至少部分下行用户数据, 封装为以太 网传输协议或者基于无线连接的传输协议的形式, 通过所述分流接口发送到 所述 WLAN接入网网元。
较佳地,
所述 3GPP接入网网元是设置为在 IP层、 或数据包汇聚协议层、 或无线 链路控制层或者媒体接入控制 (MAC )层, 对所述下行用户数据进行分流。
较佳地,
所述 3GPP接入网网元是设置为根据本设备的负荷、所述 WLAN接入网 网元的负荷、 所述用户设备所处的无线环境质量或其他预配置的算法中的任 意一项或任意组合, 对所述下行用户数据进行分流。
较佳地,
所述 WLAN接入网网元是设置为将接收到的所述用户设备发来的所述 上行用户数据发送给所述 3GPP接入网网元;
所述 3GPP接入网网元是设置为将属于同一数据源的所述用户设备发来 的上行用户数据及所述 WLAN接入网网元发来的上行用户数据进行合并。
较佳地,
所述 3GPP接入网网元还设置为直接在所述核心网网元与所述用户设备 之间传输控制面信令。
较佳地,
在长期演进( LTE ) 网络中, 所述 3GPP接入网网元通过 S1接口与所述 核心网网元相连; 在通用移动通信系统(UMTS ) 网络中, 所述 3GPP接入 网网元通过 Iu口与所述核心网网元相连。
相应地,本发明实施例还提供了一种用户设备,具有无线局域网( WLAN ) 接入功能和至少一种第三代合作伙伴计划(3GPP )无线接入功能, 包括: 接 收模块、 发送模块、 分流模块及合并模块;
所述接收模块设置为通过 3GPP无线接口接收 3GPP接入网网元发来的 下行用户数据, 通过 WLAN无线接口接收 WLAN接入网网元发来的下行用 户数据;
所述合并模块设置为将所述接收模块接收到的所述 3GPP接入网网元与 所述 WLAN接入网网元发来的下行用户数据进行合并;
所述分流模块设置为对待发送的上行用户数据进行分流;
所述发送模块设置为将所述分流模块分流出的部分上行用户数据发送给 所述 3GPP接入网网元,将另一部分上行用户数据发送给所述 WLAN接入网 网元。
较佳地,
所述分流模块用于在 IP层、或数据包汇聚协议层、或无线链路控制层或 者媒体接入控制 (MAC )层, 对所述上行用户数据进行分流。
较佳地, 所述分流模块是设置为按照本地预配置的分流策略或者所述 3GPP接入 网网元为本设备配置的分流策略, 对待发送的上行用户数据进行分流。
较佳地,
所述接收模块还设置为直接接收所述 3GPP接入网网元发来的控制面信 令。
相应地, 本发明实施例还提供了一种进行多网络联合传输的方法, 应用 于核心网和接入网侧;
所述接入网包括: 第三代合作伙伴计划( 3GPP )接入网网元和无线局域 网 ( WLAN )接入网网元; 所述核心网包括 3GPP核心网网元;
所述方法包括:
所述 3GPP接入网网元通过网络接口与所述核心网网元相连, 通过分流 接口与所述 WLAN接入网网元相连, 通过 3GPP无线接口与用户设备相连; 对接收到的上行用户数据进行合并; 对下行用户数据进行分流, 将部分下行 用户数据分流到所述 WLAN接入网网元;
所述 WLAN接入网网元通过 WLAN无线接口与所述用户设备相连; 在 所述 3GPP接入网网元与所述用户设备之间传输上行用户数据及下行用户数 据。
较佳地,
所述 3GPP接入网网元对从所述核心网发来的下行用户数据进行分流 后,将至少部分下行用户数据通过所述分流接口发送到所述 WLAN接入网网 元;
所述 WLAN接入网网元将从所述分流接口接收到的所述下行用户数据 发送给所述用户设备。
较佳地, 所述方法还包括:
所述 3GPP接入网网元将未通过所述分流接口发送给所述 WLAN接入网 网元的部分下行用户数据, 通过与所述用户设备之间的接口发送给所述用户 设备。
较佳地,
所述 3GPP接入网网元将至少部分下行用户数据, 封装为以太网传输协 议或者基于无线连接的传输协议的形式, 通过所述分流接口发送到所述 WLAN接人网网元。
较佳地,
所述 3GPP接入网网元在 IP层、 或数据包汇聚协议层、 或无线链路控制 层或者媒体接入控制 (MAC )层, 对所述下行用户数据进行分流。
较佳地,
所述 3GPP接入网网元根据本设备的负荷、所述 WLAN接入网网元的负 荷、 所述用户设备所处的无线环境质量或其他预配置的算法中的任意一项或 任意组合, 对所述下行用户数据进行分流。
较佳地,
所述 WLAN接入网网元将接收到的所述用户设备发来的所述上行用户 数据发送给所述 3GPP接入网网元;
所述 3GPP接入网网元将属于同一数据源的所述用户设备发来的上行用 户数据及所述 WLAN接入网网元发来的上行用户数据进行合并。
较佳地, 所述方法还包括:
所述 3GPP接入网网元直接在所述核心网网元与所述用户设备之间传输 控制面信令。
相应地, 本发明实施例还提供了一种进行多网络联合传输的方法, 应用 于用户设备侧, 所述用户设备具有无线局域网 (WLAN )接入功能和至少一 种第三代合作伙伴计划 (3GPP )无线接入功能; 所述方法包括:
通过 3GPP无线接口接收 3GPP接入网网元发来的下行用户数据, 通过
WLAN无线接口接收 WLAN接入网网元发来的下行用户数据;
将接收到的所述 3GPP接入网网元与所述 WLAN接入网网元发来的下行 用户数据进行合并;
对待发送的上行用户数据进行分流;
将所述分流模块分流出的部分上行用户数据发送给所述 3GPP接入网网 元, 将另一部分上行用户数据发送给所述 WLAN接入网网元。
较佳地,
在 IP层、 或数据包汇聚协议层、 或无线链路控制层或者媒体接入控制 ( MAC )层, 对所述上行用户数据进行分流。
较佳地,
按照本地预配置的分流策略或者所述 3GPP接入网网元为本设备配置的 分流策略, 对待发送的上行用户数据进行分流。
较佳地, 所述方法还包括:
直接接收所述 3GPP接入网网元发来的控制面信令。
釆用本发明实施例的方案后,运营商可以利用无需牌照的 WLAN频段分 流付费频段的数据传输, 分流 3GPP接入网的数据流量, 减轻网络负荷, 节 约了频段及成本;运营商可以复用现有的 WLAN接入点网元,节省了网络侧 的运维支出; 同时增加了 UE的数据吞吐量, 满足了用户现今的多媒体业务 需求; 另外, 本架构也保证了对协议和终端设备的最大兼容性, 使得系统运 行更合理、 高效。 附图概述
图 1是相关技术网络互通协议架构示意图;
图 2 是本发明实施例中 3GPP与 WLAN网络联合传输架构示意图; 图 3 ( a )〜图 3 ( c )分别是本发明实施例中 3GPP接入网与 WLAN接入 网间分流接口的三种协议栈示意图;
图 4 ( a )及 4 ( b )是本发明实施例中 3GPP接入网数据分流示意图; 图 5是本发明实施例的用户设备的结构示意图; 图 6是本发明应用示例一中 LTE与 WLAN联合传输网络示意图; 图 7 ( a ) ~7 ( c )是本发明应用示例一中分流接口协议栈示意图; 图 8 ( a )及 8 ( b )是本发明应用示例一中 WLAN空口传递数据协议栈 示意图;
图 9是本发明应用示例一中用户设备与接入网隧道传输方案示意图; 图 10 ( a )及 10 ( b )是本发明应用示例二中 UMTS与 WLAN联合传输 网络示意图;
图 11 ( a )及 10 ( b )是本发明应用示例二中 WLAN空口传递数据协议 栈示意图;
图 12是本发明应用示例二中用户设备与接入网隧道传输方案示意图。
本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。
如图 2所示, 在本实施例中, 3GPP与 WLAN网络联合传输的系统中包 含: 核心网和接入网,接入网包括: 3GPP接入网网元和 WLAN接入网网元, 核心网包括 3GPP系统中的核心网网元。 其中, 核心网网元与 3GPP接入网 网元间可通过网络接口连接,比如在 LTE网络中通过 S 1接口连接,在 UMTS ( Universal Mobile Telecommunications System, 通用移动通信系统) 网络中 可以通过 Iu口连接; 也可以通过有线接口 (如光纤)或无线接口 (比如通过 基于微波或 3GPP空口协议的无线连接 )相连。
其中, 核心网中的核心网网元间的接口和功能与现有 3GPP网络一致。 例如, 在 EPS ( Evolved Packet System, 演进分组系统)中, 核心网网元包 括: MME ( Mobility Management Entity, 移动管理实体) 、 SGW ( Serving Gateway, 服务网关)及 PGW ( Packet Data Network Gateway, 分组数据网络 网关)等; 在 UMTS中, 核心网网元包括: SGSN ( Serving GPRS Support Node , GPRS ( General Packet Radio Service , 通用分组无线服务技术服务) 支持节点)及 GGSN ( Gateway GPRS Support Node, 网关 GPRS支持节 点) 等。
上述 3GPP接入网网元,在 LTE网络中可以包括:演进基站( Evolved Node B ,简称为 eNB )、中继节点( Relay node,简称为 RN )或家庭演进基站( Home eNB, 简称为 HeNB )等;在 UMTS网络中可以包括:无线网络控制器( Radio Network Controller,简称为 RNC )、基站( Node B )以及家庭基站 ( Home Node B, HNB )等。 此外, 3GPP接入网网元除具备现有 3GPP接入网网元的功能 之外, 还具备对下行用户数据进行分流及对属于同一数据源的上行用户数据 进行合并的功能;
上述 WLAN接入网网元, 包括 WLAN接入点 (Access Point, 简称为
AP ) , 还可以包括 WLAN接入控制网元(Access Control, 简称为 AC ) 。
WLAN接入网网元的功能与现有 WLAN接入网网元的功能类似, 主要负责 用户数据的传输; 但与现有 WLAN接入网网元的区别在于, WLAN接入网 网元传递的数据为通过分流接口与 3GPP接入网网元交互的分流数据。
此外 , WLAN接入网网元与 3GPP接入网网元间的分流接口主要负责在
3GPP接入网网元和 WLAN接入网网元之间传递分流的用户数据。 该用户数 据可以釆用以太网传输协议进行传递, 比如通过 IP层(如图 3 ( a )所示) 或更高层次的传输协议传递(如图 3 ( b )所示 Tunneling (网络隧道)协议、 图 3 ( c )所示 UDP ( User Datagram Protocol, 用户数据报协议) ) ; 如果该 分流接口釆用无线接口,则与釆用有线接口进行传输的区别主要在于底层(即 Ll、 L2层)传输协议釆用基于无线连接的传输协议。
用户设备为至少支持 WLAN和一种 3GPP无线接入技术的多模终端,其 分别通过 3GPP空口协议和 WLAN空口协议, 相应地与 3GPP接入网网元和 WLAN接入网网元进行数据传递。 其中 , 3GPP空口协议与 WLAN空口协议 分别与现有 Uu口传输协议和 802.11协议一致。
较佳地, WLAN接入网网元与用户设备之间传递的用户数据, 在下行方 向为 3GPP接入网网元向 WLAN接入网网元传递的分流用户数据;在上行方 向为 UE产生的分流用户数据, WLAN接入网网元收到后需要通过分流接口 传递给 3GPP接入网网元。其中, UE根据分流策略对上行用户数据进行分流, 经过分流后 UE将部分上行用户数据发送到 3GPP接入网, 将另一部分上行 用户数据发送到 WLAN接入网。 该分流策略可以是预配置在该 UE中的, 也 可以是由 3GPP接入网网元为该 UE配置的。
此外,对用户数据的分流可以发生在 IP层、或者数据包汇聚协议( Packet Data Convergence Protocol ,简称为 PDCP )层、或者无线链路控制( Radio Link Control, 简称为 RLC )层、 或者媒体接入控制 ( Medium Access Control, 简 称为 MAC )层。
按照分流层次的不同, 可以釆用不同的封装形式对分流用户数据进行封 装。 如果分流发生在 IP层, 则发送方将不同的用户 IP数据包分别通过不同 路径(即通过 3GPP空口或 WLAN空口)传递给接收方, 如图 4 ( a )所示; 如果发生在 PDCP层, 则该分流用户数据为经过 PDCP层封装处理的用户数 据, 如图 4 ( b )所示; 类似地, 同样适用于 RLC层和 MAC层分流, 在此不 再进行赘述。
较佳地, 分流用户数据在通过底层 802.11 协议进行传递时, 发送方在 802.11MAC层协议之上还可以釆用逻辑链路控制层(Logic Link Control, 简 称为 LLC )协议进行封装处理; 相应地, 接收方也会同样进行拆包处理。 其 中, 对于下行用户数据, 发送方为 3GPP接入网网元, 接收方为用户设备; 对于上行用户数据, 发送方为用户设备, 接收方为 3GPP接入网网元。
基于上述系统架构, 由于控制信令是由 3GPP接入网网元直接发给 UE 的, 因此 3GPP接入网网元是整个系统的主导, WLAN接入网网元只负责部 分用户数据的传输, 也就是说, UE具体接入哪个 WLAN接入网, 完全可以 由 3GPP接入网进行控制或者辅助。 此外, 由于 UE被 3GPP接入网所控制, 因此其 WLAN侧的收发机可由 3GPP接入网来控制开关, 这就达到了 UE省 电的目的。
如图 5所示, 在本实施例中, 一种用户设备, 具有无线局域网(WLAN ) 接入功能和至少一种第三代合作伙伴计划(3GPP )无线接入功能, 包括: 接 收模块 50、 发送模块 51、 分流模块 52及合并模块 53;
所述接收模块 50设置为通过 3GPP无线接口接收 3GPP接入网网元发来 的下行用户数据, 以及通过 WLAN无线接口接收 WLAN接入网网元发来的 下行用户数据;
所述合并模块 51设置为将所述接收模块接收到的所述 3GPP接入网网元 与所述 WLAN接入网网元发来的下行用户数据进行合并;
所述分流模块 52设置为对待发送的上行用户数据进行分流;
所述发送模块 53 设置为将所述分流模块分流出的部分上行用户数据发 送给所述 3GPP接入网网元,将另一部分上行用户数据发送给所述 WLAN接 入网网元。
较佳地,
所述分流模块 52是设置为在 IP层、 或数据包汇聚协议层、 或无线链路 控制层或者媒体接入控制 (MAC )层, 对所述上行用户数据进行分流。
较佳地,
所述分流模块 52是设置为按照本地预配置的分流策略或者所述 3GPP接 入网网元为本设备配置的分流策略, 对待发送的上行用户数据进行分流。
较佳地,
所述接收模块 50还设置为直接接收所述 3GPP接入网网元发来的控制面 信令。
相应地, 本实施例中, 一种进行多网络联合传输的方法, 应用于核心网 和接入网侧;
所述接入网包括: 第三代合作伙伴计划( 3GPP )接入网网元和无线局域 网 ( WLAN )接入网网元; 所述核心网包括 3GPP核心网网元;
所述方法包括:
所述 3GPP接入网网元通过网络接口与所述核心网网元相连, 通过分流 接口与所述 WLAN接入网网元相连, 通过 3GPP无线接口与用户设备相连; 对接收到的上行用户数据进行合并; 对下行用户数据进行分流, 将部分下行 用户数据分流到所述 WLAN接入网网元; 所述 WLAN接入网网元通过 WLAN无线接口与所述用户设备相连; 在 所述 3GPP接入网网元与所述用户设备之间传输上行用户数据及下行用户数 据。
较佳地,
所述 3GPP接入网网元对从所述核心网发来的下行用户数据进行分流 后,将至少部分下行用户数据通过所述分流接口发送到所述 WLAN接入网网 元;
所述 WLAN接入网网元将从所述分流接口接收到的所述下行用户数据 发送给所述用户设备。
较佳地, 所述方法还包括:
所述 3GPP接入网网元将未通过所述分流接口发送给所述 WLAN接入网 网元的部分下行用户数据, 通过与所述用户设备之间的接口发送给所述用户 设备。
较佳地,
所述 3GPP接入网网元将至少部分下行用户数据, 封装为以太网传输协 议或者基于无线连接的传输协议的形式, 通过所述分流接口发送到所述 WLAN接入网网元。
较佳地,
所述 3GPP接入网网元在 IP层、 或数据包汇聚协议层、 或无线链路控制 层或者媒体接入控制 (MAC )层, 对所述下行用户数据进行分流。
较佳地,
所述 3GPP接入网网元根据本设备的负荷、所述 WLAN接入网网元的负 荷、 所述用户设备所处的无线环境质量或其他预配置的算法中的任意一项或 任意组合, 对所述下行用户数据进行分流。
较佳地,
所述 WLAN接入网网元将接收到的所述用户设备发来的所述上行用户 数据发送给所述 3GPP接入网网元; 所述 3GPP接入网网元将属于同一数据源的所述用户设备发来的上行用 户数据及所述 WLAN接入网网元发来的上行用户数据进行合并。
较佳地, 所述方法还包括:
所述 3GPP接入网网元直接在所述核心网网元与所述用户设备之间传输 控制面信令。
相应地, 本实施例中, 一种进行多网络联合传输的方法, 应用于用户设 备侧, 所述用户设备具有无线局域网 (WLAN )接入功能和至少一种第三代 合作伙伴计划 (3GPP )无线接入功能; 所述方法包括:
通过 3GPP无线接口接收 3GPP接入网网元发来的下行用户数据, 通过 WLAN无线接口接收 WLAN接入网网元发来的下行用户数据;
将接收到的所述 3GPP接入网网元与所述 WLAN接入网网元发来的下行 用户数据进行合并;
对待发送的上行用户数据进行分流;
将所述分流模块分流出的部分上行用户数据发送给所述 3GPP接入网网 元, 将另一部分上行用户数据发送给所述 WLAN接入网网元。
较佳地,
在 IP层、 或数据包汇聚协议层、 或无线链路控制层或者媒体接入控制 ( MAC )层, 对所述上行用户数据进行分流。
较佳地,
按照本地预配置的分流策略或者所述 3GPP接入网网元为本设备配置的 分流策略, 对待发送的上行用户数据进行分流。
较佳地, 所述方法还包括:
直接接收所述 3GPP接入网网元发来的控制面信令。
下面结合不同的实施例对本发明进行进一步的说明。 应用示例一: 以 LTE与 WLAN的联合传输为例。
如图 6所示, eNB通过 S 1接口连接到 LTE核心网;在 RAN( Radio Access Network, 无线接入网 )侧 eNB还通过分流接口与 WLAN AP连接, 其中分 流接口上的数据底层基于以太网协议进行数据交换; UE分别按照 Uu接口协 议和 WLAN空口协议与 eNB和 WLAN AP进行数据传递。
对于接入网与 UE之间传递的控制面信令, 仍由 eNB与 UE通过 Uu口 进行直接交互, 不参与数据分流。
对于下行用户数据, eNB通过 S1 口收到从核心网发来的不同承载上的 用户 IP数据后, 将不同承载上的用户数据在 IP层进行分流, eNB决定分流 的依据可以是根据 eNB和 /或 WLAN AP的负荷,或者根据 UE所处的无线环 境质量(即根据 UE对 LTE和 WLAN网络无线环境质量的测量 )等, 或根 据其他预定算法。 当然, eNB也可以将该用户数据在其他协议层进行分流, 比如在 PDCP层、 RLC层或 MAC层等, 区别在于此时分流的数据是经过上 层协议层处理的协议数据单元(Protocol Data Unit, 简称为 PDU ) , 比如在 PDCP层进行分流时, 分流后的用户数据为 PDCP PDU。
其中, 经过分流后, eNB将部分用户 IP数据通过 Uu 口传递给相应的 UE, 即需要进行相应 PDCP、 RLC或 MAC层数据封装处理, 具体机制与现 有空口传递机制一致, 不再赘述;
而部分用户 IP数据由 eNB通过分流接口传递到 WLAN AP,并由 WLAN AP通过 WLAN空口 (即基于 802.11协议)传递到相应的 UE。 其中, 分流 接口的用户数据可以基于 IP数据包进行传递, 如图 7 ( a ) 所示, 此时数据 作为 IP包负载(payload ) , IP包头中源地址和目的地址分别为发送方和接 收方的 IP地址, 所述 IP地址可以是预配置的, 也可以是由发送方和接收方 通过其他流程 (比如 DHCP ( Dynamic Host Configuration Protocol, 动态主机 设置协议)协议)进行协商获得; 或者通过隧道协议进行封装, 如图 7 ( b ) 所示, 比如通过 GTP ( GPRS Tunnelling Protocol, GPRS隧道协议)协议(如 图 7 ( c )所示) , 此时 MAC PDU作为 GTP数据包 payload, GTP隧道的传 输层地址和端口号可以是预配置的 ,也可以是通过收发双发通过其他流程(比 如 L3协议流程)获取的; 高层隧道协议还可以釆用 GRE ( Generic Routing Encapsulation, 通用路由封装)协议或 IPsec ( internet 协议安全性, 互联 网协议安全性) 协议等, 或其他高层连接协议形式。 其中, 通过 WLAN 空口传递的用户数据可以是由 WLAN AP对分流数据进行封装的 IP数据 包, 如图 8 ( a )所示, 此时分流数据(这里即 IP包)直接作为新的本地 IP 数据包 payload, 本地 IP包头中源地址和目的地址分别为发送方和接收方 IP 地址, 所述 IP地址可以是预配置的,也可以是由发送方和接收方通过其他流 程(比如 DHCP协议)进行协商获得的; 或者其他传输协议数据包, 比如复 用 LTE的 PDCP和 /或 RLC和 /或 MAC层协议,如图 8( b )所示,此时 WLAN AP对分流 IP数据包相应地按照 PDCP、 RLC、 MAC形式进行封装, 其中各 协议层参数可由 eNB对其进行配置, 最终的协议 PDU作为 WLAN MAC层 的 Payload进行发送。 可选的, 分流用户数据在发送到 WLAN MAC层之前, 还可以利用 LLC协议进行进一步封装, 此时 LLC数据包中的目的服务访问 节点和源服务访问节点字段分别指向收发双方的对等协议层, 分流数据作为 LLC的 payload。
上述分流接口和 WLAN空口的协议栈可以进行任意组合。 可选的, UE 与 eNB之间也可以建立端到端的隧道用于数据传递, 如图 9所示。 其中隧道 协议可以使用现有的隧道技术,比如 IPsec协议、 GTP协议、或 GRE协议等, 也可以是其他隧道协议。
较佳地,分流接口和 WLAN空口根据实际需求,还可以增加安全保护机 制, 比如通过 IPSec或其他隧道安全机制, 保护实现方法与现有安全机制一 致, 不再赘述。
对于上行用户数据,与下行用户数据的传输路径和使用接口协议栈相同, 不同之处在于发送方为 UE, 接收方为 eNB和 WLAN AP。 在此不再进行赘 述。
当然, 上述架构也同样适用于 RN和 HeNB组合的场景, 不同之处在仅 在于接入网网元发生变化, 网元的回程链路也有所不同, 比如 RN的回程链 路基于 LTE空口, HeNB的回程链路还可能由家庭基站网关管理等。 但接入 网网元间的分流接口协议和分流方式都是相同的。 应用示例二: 以 UMTS网络与 WLAN网络的联合传输为例。 如图 10 ( a ) 所示, RNC通过 Iu接口连接到核心网; 在 RAN侧 RNC 还通过分流接口与 WLAN AP连接, 其中分流接口上的数据底层基于以太网 协议进行数据交换; UE分别按照 Uu接口协议和 WLAN空口协议与 RNC和 WLAN AP进行数据传递。
可选的, UMTS网络与 WLAN AP之间的分流接口也可以建立在 NodeB 与 AP之间, 如图 10 ( b ) 所示。
对于接入网与 UE之间传递的控制面信令, 仍由 RNC与 UE通过 Uu口 进行交互, 不参与分流。
对于下行用户数据, RNC通过 Iu 口收到从核心网发来的不同承载的用 户 IP数据后,将不同承载上的用户数据在 MAC层进行分流, RNC决定分流 的依据可以是根据 RNC、 NodeB和 /或 WLAN AP的负荷, 或者根据 UE所 处的无线环境质量(即根据 UE对 UMTS和 WLAN网络无线环境质量的测 量)等, 或根据其他预定算法。 RNC也可以将用户数据在其他协议层分流, 比如在 IP层、 PDCP层、 或 RLC层等, 区别在于此时分流后的用户数据是 经过的上层协议层处理的 PDU。
其中,经过分流后, RNC将部分用户 IP数据通过 Uu口传递给相应 UE, 即需要进行相应 PDCP、 RLC或 MAC层数据封装处理, 具体机制与现有空 口传递机制一致, 不再赘述;
而部分用户数据由 RNC进行层 2协议, 即 UMTS PDCP、 RLC或 MAC 层封装处理后, RNC将 MAC协议数据包通过分流接口传递到 WLAN AP, 并由 WLAN AP通过 WLAN空口 (即基于 802.11协议 )传递到相应的 UE。 其中, 分流接口的用户数据可以基于 IP数据包进行传递, 如图 6 ( a )所示, 此时 MAC PDU作为 IP包负载( payload ) , IP包头中源地址和目的地址分 别为发送方和接收方的 IP地址, 所述 IP地址可以是预配置的, 也可以是由 发送方和接收方通过其他流程 (比如 DHCP协议)进行协商获得的; 或者通 过隧道协议进行封装, 如图 7 ( b )所示, 比如通过 GTP协议(如图 7 ( c ) 所示) , 此时 MAC PDU作为 GTP数据包 payload, GTP隧道的传输层地址 和端口号可以预配置的, 也可以是通过收发双发通过其他流程(比如 L3 协 议流程)获取的; 高层隧道协议还可以釆用 GRE协议或 IPsec协议等, 或其 他高层连接协议形式。其中,通过 WLAN空口传递的用户数据可以是分流后 得到的棵数据, 也可以是由 WLAN AP对分流数据进行封装后的 IP数据包, 如图 10 ( a ) , 此时分流数据(这里即 MAC PDU包)直接作为 IP数据包的 payload, IP包头中源地址和目的地址分别为发送方和接收方 IP的地址, 该 IP 地址可以是预配置的, 也可以是由发送方和接收方通过其他流程 (比如 DHCP协议)进行协商获得的; 或者其他传输协议数据包, 比如 LLC, 如图 11 ( b )所示, 此时 LLC数据包中的目的服务访问节点和源服务访问节点字 段分别指向收发双方的 MAC层, 分流数据作为 LLC的 payload。
上述分流接口和 WLAN空口的协议栈可以进行任意组合。 可选的, UE 与 RNC之间也可以建立端到端的隧道用于数据传递, 如图 12所示。 其中隧 道协议可以使用 IPsec协议、 GTP协议或 GRE协议等, 也可以使用其他隧道 协议。
较佳的,分流接口和 WLAN空口根据实际需求,还可以增加安全保护机 制, 比如通过 IPSec或其他隧道安全机制, 保护实现方法与现有安全机制一 致, 不再赘述。
对于上行用户数据,与下行用户数据的传输路径和使用接口协议栈相同, 不同之处在于发送方为 UE, 接收方为 RNC和 WLAN AP。 在此不再进行赘 述。
此外, 如果分流接口建立在 NodeB与 WLAN AP之间, 则需要 NodeB 对用户数据进行分流, NodeB决定分流的依据可以是根据 NodeB预定算法, 也可以是由 RNC触发。 NodeB上进行的数据分流方法, 以及在分流接口上 的分流数据传递机制与 RNC的处理方法类似, 不做赘述。
上述架构也同样适用于 HNB等其他场景, 不同之处在仅在于接入网网 元发生的变化, 网元的回程链路也有所不同, 比如 HNB 的回程链路还可能 由家庭基站网关管理等。 但接入网与 WLAN AP间的分流接口协议和分流方 式都是相同的。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并非用于限定本发明的保护范 围。 根据本发明的发明内容, 还可有其他多种实施例, 在不背离本发明精神 改变和变形, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
釆用本发明的实施方式后,运营商可以利用无需牌照的 WLAN频段分流 付费频段的数据传输, 分流 3GPP接入网的数据流量, 减轻网络负荷, 节约 了频段及成本;运营商可以复用现有的 WLAN接入点网元,节省了网络侧的 运维支出; 同时增加了 UE的数据吞吐量, 满足了用户现今的多媒体业务需 求; 另外, 本架构也保证了对协议和终端设备的最大兼容性, 使得系统运行 更合理、 高效。

Claims

权 利 要 求 书
1、 一种进行多网络联合传输的系统, 包括: 核心网和接入网; 所述接入网包括: 第三代合作伙伴计划( 3GPP )接入网网元和无线局域 网 (WLAN )接入网网元; 所述核心网包括 3GPP核心网网元; 所述 3GPP 接入网网元通过网络接口与所述核心网网元相连, 通过分流接口与所述 WLAN接入网网元相连, 所述 3GPP接入网网元设置为: 通过 3GPP无线接 口与用户设备相连; 对接收到的上行用户数据进行合并, 以及对下行用户数 据进行分流, 将部分下行用户数据分流到所述 WLAN接入网网元;
所述 WLAN接入网网元设置为: 通过 WLAN无线接口与所述用户设备 相连, 在所述 3GPP接入网网元与所述用户设备之间传输上行用户数据及下 行用户数据。
2、 如权利要求 1所述的系统, 其中:
所述 3GPP接入网网元是设置为以如下方式对下行用户数据进行分流, 将部分下行用户数据分流到所述 WLAN接入网网元:
对从所述核心网发来的下行用户数据进行分流后, 将至少部分下行用户 数据通过所述分流接口发送到所述 WLAN接入网网元;
所述 WLAN接入网网元是设置为以如下方式在所述 3GPP接入网网元与 所述用户设备之间传输下行用户数据:
将从所述分流接口接收到的所述下行用户数据发送给所述用户设备。
3、 如权利要求 2所述的系统, 其中:
所述 3GPP接入网网元还设置为: 将未通过所述分流接口发送给所述 WLAN接入网网元的部分下行用户数据,通过与所述用户设备之间的接口发 送给所述用户设备。
4、 如权利要求 2所述的系统, 其中:
所述 3GPP接入网网元是设置为以如下方式将至少部分下行用户数据通 过所述分流接口发送到所述 WLAN接入网网元:
将至少部分下行用户数据, 封装为以太网传输协议或者基于无线连接的 传输协议的形式, 通过所述分流接口发送到所述 WLAN接入网网元。
5、 如权利要求 1所述的系统, 其中:
所述 3GPP接入网网元是设置为以如下方式对下行用户数据进行分流: 在 IP层、 或数据包汇聚协议层、 或无线链路控制层或者媒体接入控制 ( MAC )层, 对所述下行用户数据进行分流。
6、 如权利要求 1~5中任意一项所述的系统, 其中:
所述 3GPP接入网网元是设置为以如下方式对下行用户数据进行分流: 根据所述 3GPP接入网网元的负荷、 所述 WLAN接入网网元的负荷、 所 述用户设备所处的无线环境质量或其他预配置的算法中的任意一项或任意组 合, 对所述下行用户数据进行分流。
7、 如权利要求 1所述的系统, 其中:
所述 WLAN接入网网元是设置为以如下方式在所述 3GPP接入网网元与 所述用户设备之间传输上行用户数据:
将接收到的所述用户设备发来的所述上行用户数据发送给所述 3GPP接 人网网元;
所述 3GPP接入网网元是设置为以如下方式对接收到的上行用户数据进 行合并:
将属于同一数据源的所述用户设备发来的上行用户数据及所述 WLAN 接入网网元发来的上行用户数据进行合并。
8、 如权利要求 1所述的系统, 其中:
所述 3GPP接入网网元还设置为: 直接在所述核心网网元与所述用户设 备之间传输控制面信令。
9、 如权利要求 1所述的系统, 其中:
在长期演进( LTE ) 网络中, 所述 3GPP接入网网元通过 S1接口与所述 核心网网元相连; 在通用移动通信系统(UMTS ) 网络中, 所述 3GPP接入 网网元通过 Iu口与所述核心网网元相连。
10、 一种用户设备, 具有无线局域网 (WLAN )接入功能和至少一种第 三代合作伙伴计划 (3GPP )无线接入功能, 包括: 接收模块、 发送模块、 分 流模块及合并模块;
所述接收模块设置为: 通过 3GPP无线接口接收 3GPP接入网网元发来 的下行用户数据, 以及通过 WLAN无线接口接收 WLAN接入网网元发来的 下行用户数据;
所述合并模块设置为: 将所述接收模块接收到的所述 3GPP接入网网元 与所述 WLAN接入网网元发来的下行用户数据进行合并;
所述分流模块设置为: 对待发送的上行用户数据进行分流;
所述发送模块设置为: 将所述分流模块分流出的部分上行用户数据发送 给所述 3GPP接入网网元,将另一部分上行用户数据发送给所述 WLAN接入 网网元。
11、 如权利要求 10所述的用户设备, 其中:
所述分流模块是设置为以如下方式对待发送的上行用户数据进行分流,: 在 IP层、 或数据包汇聚协议层、 或无线链路控制层或者媒体接入控制 ( MAC )层, 对所述上行用户数据进行分流。
12、 如权利要求 10或 11所述的用户设备, 其中:
所述分流模块是设置为以如下方式对待发送的上行用户数据进行分流: 按照本地预配置的分流策略或者所述 3GPP接入网网元为本设备配置的 分流策略, 对待发送的上行用户数据进行分流。
13、 如权利要求 10所述的系统, 其中:
所述接收模块还设置为直接接收所述 3GPP接入网网元发来的控制面信 令。
14、 一种进行多网络联合传输的方法, 应用于核心网和接入网侧; 所述接入网包括: 第三代合作伙伴计划( 3GPP )接入网网元和无线局域 网 ( WLAN )接入网网元; 所述核心网包括 3GPP核心网网元;
所述方法包括:
所述 3GPP接入网网元通过网络接口与所述核心网网元相连, 通过分流 接口与所述 WLAN接入网网元相连, 通过 3GPP无线接口与用户设备相连; 对接收到的上行用户数据进行合并; 对下行用户数据进行分流, 将部分下行 用户数据分流到所述 WLAN接入网网元;
所述 WLAN接入网网元通过 WLAN无线接口与所述用户设备相连; 在 所述 3GPP接入网网元与所述用户设备之间传输上行用户数据及下行用户数 据。
15、 如权利要求 14所述的方法, 其中:
所述 3GPP接入网网元对下行用户数据进行分流, 将部分下行用户数据 分流到所述 WLAN接入网网元, 包括:
所述 3GPP接入网网元对从所述核心网发来的下行用户数据进行分流 后,将至少部分下行用户数据通过所述分流接口发送到所述 WLAN接入网网 元;
所述 WLAN接入网网元在所述 3GPP接入网网元与所述用户设备之间传 输下行用户数据, 包括:
所述 WLAN接入网网元将从所述分流接口接收到的所述下行用户数据 发送给所述用户设备。
16、 如权利要求 15所述的方法, 还包括:
所述 3GPP接入网网元将未通过所述分流接口发送给所述 WLAN接入网 网元的部分下行用户数据, 通过与所述用户设备之间的接口发送给所述用户 设备。
17、 如权利要求 15所述的方法, 其中:
所述 3GPP接入网网元将至少部分下行用户数据通过所述分流接口发送 到所述 WLAN接入网网元, 包括:
所述 3GPP接入网网元将至少部分下行用户数据, 封装为以太网传输协 议或者基于无线连接的传输协议的形式, 通过所述分流接口发送到所述 WLAN接入网网元。
18、 如权利要求 14所述的方法, 其中: 所述 3GPP接入网网元对下行用户数据进行分流, 包括: 所述 3GPP接入网网元在 IP层、 或数据包汇聚协议层、 或无线链路控制 层或者媒体接入控制 (MAC )层, 对所述下行用户数据进行分流。
19、 如权利要求 14~18中任意一项所述的方法, 其中:
所述 3GPP接入网网元对下行用户数据进行分流, 包括:
所述 3GPP接入网网元根据本设备的负荷、所述 WLAN接入网网元的负 荷、 所述用户设备所处的无线环境质量或其他预配置的算法中的任意一项或 任意组合, 对所述下行用户数据进行分流。
20、 如权利要求 14所述的方法, 其中:
所述 WLAN接入网元在所述 3GPP接入网网元与所述用户设备之间传输 上行用户数据, 包括:
所述 WLAN接入网网元将接收到的所述用户设备发来的所述上行用户 数据发送给所述 3GPP接入网网元;
所述 3GPP接入网网元对接收到的上行用户数据进行合并, 包括: 所述 3GPP接入网网元将属于同一数据源的所述用户设备发来的上行用 户数据及所述 WLAN接入网网元发来的上行用户数据进行合并。
21、 如权利要求 14所述的方法, 还包括:
所述 3GPP接入网网元直接在所述核心网网元与所述用户设备之间传输 控制面信令。
22、 一种进行多网络联合传输的方法, 应用于用户设备侧, 所述用户设 备具有无线局域网 (WLAN ) 接入功能和至少一种第三代合作伙伴计划 ( 3GPP )无线接入功能; 所述方法包括:
通过 3GPP无线接口接收 3GPP接入网网元发来的下行用户数据, 通过 WLAN无线接口接收 WLAN接入网网元发来的下行用户数据;
将接收到的所述 3GPP接入网网元与所述 WLAN接入网网元发来的下行 用户数据进行合并;
对待发送的上行用户数据进行分流; 将所述分流模块分流出的部分上行用户数据发送给所述 3GPP接入网网 元, 将另一部分上行用户数据发送给所述 WLAN接入网网元。
23、 如权利要求 22所述的方法, 其中:
所述对待发送的上行用户数据进行分流, 包括:
在 IP层、 或数据包汇聚协议层、 或无线链路控制层或者媒体接入控制 ( MAC )层, 对所述上行用户数据进行分流。
24、 如权利要求 22或 23所述的方法, 其中:
所述对待发送的上行用户数据进行分流, 包括:
按照本地预配置的分流策略或者所述 3GPP接入网网元为本设备配置的 分流策略, 对待发送的上行用户数据进行分流。
25、 如权利要求 22所述的方法, 还包括:
直接接收所述 3GPP接入网网元发来的控制面信令。
PCT/CN2013/078035 2012-07-26 2013-06-26 一种进行多网络联合传输的系统、用户设备及方法 WO2013185653A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015506090A JP2015519792A (ja) 2012-07-26 2013-06-26 マルチネットワークジョイント伝送を行うシステム、ユーザ装置及び方法
EP13804534.9A EP2811779A4 (en) 2012-07-26 2013-06-26 SYSTEM, USER DEVICE AND METHOD FOR IMPLEMENTING COMMON MULTI-NETWORK TRANSMISSION
US14/382,483 US20150139184A1 (en) 2012-07-26 2013-06-26 System, User Equipment and Method for Implementing Multi-network Joint Transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210261476.1 2012-07-26
CN201210261476.1A CN103582011A (zh) 2012-07-26 2012-07-26 一种进行多网络联合传输的系统、用户设备及方法

Publications (1)

Publication Number Publication Date
WO2013185653A1 true WO2013185653A1 (zh) 2013-12-19

Family

ID=49757556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078035 WO2013185653A1 (zh) 2012-07-26 2013-06-26 一种进行多网络联合传输的系统、用户设备及方法

Country Status (5)

Country Link
US (1) US20150139184A1 (zh)
EP (1) EP2811779A4 (zh)
JP (1) JP2015519792A (zh)
CN (1) CN103582011A (zh)
WO (1) WO2013185653A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170764A1 (ja) * 2014-05-08 2015-11-12 京セラ株式会社 通信システム、ユーザ端末及び通信制御方法
CN106559409A (zh) * 2015-09-24 2017-04-05 株式会社Kt 使用wlan载波发送和接收数据的方法及其装置
EP3131333A4 (en) * 2014-04-29 2017-04-26 Huawei Technologies Co., Ltd. Data transmission method and device
JP2017512034A (ja) * 2014-01-30 2017-04-27 インテル アイピー コーポレイション 二重接続におけるアプリケーション固有のルーティングのためのシステム、方法及びデバイス
JP2017514343A (ja) * 2014-03-24 2017-06-01 インテル アイピー コーポレイション ヘテロジニアス無線ネットワークにおける競合管理及びサービス品質推定に関するシステム並びに方法
JP2017519436A (ja) * 2014-06-03 2017-07-13 インテル コーポレイション 統合wlan/3gpp ratアーキテクチャのための帯域内制御シグナリング
JP2017130964A (ja) * 2014-03-20 2017-07-27 京セラ株式会社 セルラ基地局、プロセッサ、及び方法
JP6172419B2 (ja) * 2015-04-10 2017-08-02 富士通株式会社 無線通信システム、基地局、移動局および処理方法
JP2017530598A (ja) * 2014-08-12 2017-10-12 華為技術有限公司Huawei Technologies Co.,Ltd. ダウンリンクのオフロードおよび統合の方法、アップリンクのオフロードおよび統合の方法、ならびにデバイス
EP3158818A4 (en) * 2014-06-23 2018-02-14 Intel Corporation Apparatus, system and method of tunneling data radio bearers via a wireless local area network link

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945461A (zh) * 2013-01-23 2014-07-23 中兴通讯股份有限公司 数据多流传输方法及装置
KR102207484B1 (ko) * 2013-08-30 2021-01-26 삼성전자 주식회사 무선 랜에서 다중 연결을 지원하는 방법 및 장치
CN103491578B (zh) * 2013-08-30 2016-11-16 华为技术有限公司 网络分流方法及装置
IN2014MU01113A (zh) * 2014-03-28 2015-10-02 Tech Mahindra Ltd
US20150296415A1 (en) * 2014-04-11 2015-10-15 Alcatel Lucent Ack For Downlink WiFi Carrier Aggregation
CN104010370B (zh) * 2014-04-28 2019-07-09 北京邮电大学 异构系统融合控制方法及装置
CN106537987B (zh) * 2014-07-28 2020-01-31 Lg 电子株式会社 在无线通信系统中配置用于紧密互通的传输模式和路由的方法和装置
WO2016029409A1 (zh) * 2014-08-28 2016-03-03 华为技术有限公司 一种数据传输方法及装置
CN104320812B (zh) * 2014-10-13 2018-12-28 中国联合网络通信集团有限公司 一种联合传输的方法、装置及系统
WO2016074222A1 (zh) * 2014-11-14 2016-05-19 华为技术有限公司 数据传输方法及设备
US10219310B2 (en) 2014-12-12 2019-02-26 Alcatel Lucent WiFi boost with LTE IP anchor
US9806905B2 (en) * 2014-12-14 2017-10-31 Alcatel Lucent WiFi boost with uplink offload to LTE with independent IP addresses
CN105873187A (zh) * 2015-01-21 2016-08-17 中兴通讯股份有限公司 指示信息的下发方法及装置
US9781652B2 (en) * 2015-02-05 2017-10-03 Mediatek Inc. Method and apparatus of LWA PDU routing
JP2016146542A (ja) * 2015-02-06 2016-08-12 株式会社Kddi研究所 制御装置、通信装置、制御方法及びプログラム
CN107455014A (zh) * 2015-03-06 2017-12-08 瑞典爱立信有限公司 用于业务聚合的方法和通信节点
EP3269198B1 (en) 2015-03-13 2018-06-27 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for traffic aggregation setup between wlan and 3gpp
CN106688270A (zh) * 2015-03-27 2017-05-17 华为技术有限公司 一种数据传输方法、装置及系统
CN104796227B (zh) * 2015-04-03 2018-11-02 电信科学技术研究院 一种数据传输方法及设备
CN104717699B (zh) * 2015-04-09 2018-05-15 宇龙计算机通信科技(深圳)有限公司 无线资源控制信令的传输方法及传输系统
CN104735728A (zh) * 2015-04-10 2015-06-24 宇龙计算机通信科技(深圳)有限公司 传输业务数据流的方法和系统
CN104869666B (zh) * 2015-04-10 2019-05-21 电信科学技术研究院 数据无线承载配置方法、数据传输方法及设备
CN106162744B (zh) * 2015-04-13 2021-01-22 电信科学技术研究院 一种数据分流的路径建立方法及装置
US10567554B2 (en) 2015-05-15 2020-02-18 Hfi Innovation Inc. Routing solutions for LTE-WLAN aggregation
US10327143B2 (en) 2015-07-24 2019-06-18 Intel IP Corporation Apparatus, system and method of communicating between a cellular manager and a user equipment (UE) via a WLAN node
CN106412949B (zh) * 2015-07-31 2020-09-11 中兴通讯股份有限公司 一种3gpp-wlan融合组网聚合的方法和装置
CN108702650A (zh) * 2015-08-06 2018-10-23 优科无线公司 建立lwa-wlan通信
US11006467B2 (en) * 2015-09-24 2021-05-11 Kt Corporation Method and apparatus for transmitting and receiving data using WLAN radio resources
WO2017113562A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 一种计费系统、方法及网络设备
WO2017146710A1 (en) * 2016-02-25 2017-08-31 Nokia Solutions And Networks Oy Techniques for providing proximity services (prose) priority-related information to a base station in a wireless network
CN108235377A (zh) * 2016-12-14 2018-06-29 中兴通讯股份有限公司 一种上行数据的传输方法、装置及设备
CN107172713B (zh) * 2017-07-03 2020-08-18 中国科学院上海高等研究院 无线资源分配/管理方法/系统、可读存储介质、设备
ES2800574T3 (es) * 2018-01-26 2020-12-30 Deutsche Telekom Ag Entidad de acceso a red para proporcionar acceso a una red de comunicación
CN111585906A (zh) * 2020-05-11 2020-08-25 浙江大学 一种面向工业互联网的低时延自适应数据分流传输方法
CN113747420B (zh) * 2020-05-29 2023-02-03 中国电信股份有限公司 多连接网络中的数据传输方法、网络设备和系统
CN114390627A (zh) * 2020-10-21 2022-04-22 中国移动通信有限公司研究院 一种数据传输方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080046573A1 (en) * 2006-08-21 2008-02-21 Nokia Corporation Mechanism for charging and session handling supporting forking
CN101330713A (zh) * 2007-06-19 2008-12-24 华为技术有限公司 异网协调装置、无线网络及用户设备切换及附着方法
CN102215530A (zh) * 2011-05-27 2011-10-12 上海华为技术有限公司 一种数据流传输方法及相关设备、系统
CN102318237A (zh) * 2010-03-12 2012-01-11 联发科技股份有限公司 异质无线通信网络中多接入网际互连方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442745B (zh) * 2007-11-22 2011-02-09 华为技术有限公司 一种WiMAX网络和3GPP网络融合的方法与系统
EP2312875A1 (en) * 2008-08-06 2011-04-20 Panasonic Corporation Prefix allocation administration system and mobile terminal, and prefix allocation administration device
US8855138B2 (en) * 2008-08-25 2014-10-07 Qualcomm Incorporated Relay architecture framework
CN101795494B (zh) * 2009-02-03 2012-10-10 中国移动通信集团公司 一种lte-a系统内的数据分流方法、装置及系统
US8867486B2 (en) * 2009-04-17 2014-10-21 Qualcomm Incorporated Wireless data communications employing IP flow mobility
CN101720079B (zh) * 2009-06-19 2013-04-03 中兴通讯股份有限公司 网元策略融合网络中的业务接入方法及策略融合系统
EP2464187A3 (en) * 2009-08-14 2013-11-06 BlackBerry Limited Frame structure and control signaling for downlink coordinated multi-point (COMP) transmission
WO2011114471A1 (ja) * 2010-03-17 2011-09-22 富士通株式会社 移動局、基地局、通信システムおよび通信方法
CN102457444B (zh) * 2010-10-22 2016-09-07 中兴通讯股份有限公司 一种融合固定网络与移动网络的系统及方法
EP2688363B1 (en) * 2011-05-31 2017-11-29 Huawei Technologies Co., Ltd. System, device for convergence transmission and method for data distribution convergence
CN102497660B (zh) * 2011-12-09 2014-08-13 电子科技大学 一种用于异构无线网络的多业务并发接入方法
WO2013153542A1 (en) * 2012-04-13 2013-10-17 Telefonaktiebolaget L M Ericsson (Publ) Non-seamless offload indicator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080046573A1 (en) * 2006-08-21 2008-02-21 Nokia Corporation Mechanism for charging and session handling supporting forking
CN101330713A (zh) * 2007-06-19 2008-12-24 华为技术有限公司 异网协调装置、无线网络及用户设备切换及附着方法
CN102318237A (zh) * 2010-03-12 2012-01-11 联发科技股份有限公司 异质无线通信网络中多接入网际互连方法
CN102215530A (zh) * 2011-05-27 2011-10-12 上海华为技术有限公司 一种数据流传输方法及相关设备、系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811779A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512034A (ja) * 2014-01-30 2017-04-27 インテル アイピー コーポレイション 二重接続におけるアプリケーション固有のルーティングのためのシステム、方法及びデバイス
US10057810B2 (en) 2014-03-20 2018-08-21 Kyocera Corporation Communication system, cellular base station, and WLAN access point
JP2017130964A (ja) * 2014-03-20 2017-07-27 京セラ株式会社 セルラ基地局、プロセッサ、及び方法
JP2017514343A (ja) * 2014-03-24 2017-06-01 インテル アイピー コーポレイション ヘテロジニアス無線ネットワークにおける競合管理及びサービス品質推定に関するシステム並びに方法
US9942793B2 (en) 2014-03-24 2018-04-10 Intel IP Corporation Systems and methods for contention management and quality of service estimation in heterogeneous wireless networks
KR101879969B1 (ko) * 2014-04-29 2018-07-18 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법 및 디바이스
US10098173B2 (en) 2014-04-29 2018-10-09 Huawei Technologies Co., Ltd. Data transmission method and device
EP3131333A4 (en) * 2014-04-29 2017-04-26 Huawei Technologies Co., Ltd. Data transmission method and device
JP2017516398A (ja) * 2014-04-29 2017-06-15 華為技術有限公司Huawei Technologies Co.,Ltd. データ伝送方法およびデバイス
JP2017112625A (ja) * 2014-05-08 2017-06-22 京セラ株式会社 セルラ基地局、ユーザ端末、及びプロセッサ
WO2015170764A1 (ja) * 2014-05-08 2015-11-12 京セラ株式会社 通信システム、ユーザ端末及び通信制御方法
JP6084754B2 (ja) * 2014-05-08 2017-02-22 京セラ株式会社 セルラ基地局、ユーザ端末、及びプロセッサ
JP2017519436A (ja) * 2014-06-03 2017-07-13 インテル コーポレイション 統合wlan/3gpp ratアーキテクチャのための帯域内制御シグナリング
EP3158818A4 (en) * 2014-06-23 2018-02-14 Intel Corporation Apparatus, system and method of tunneling data radio bearers via a wireless local area network link
US10531249B2 (en) 2014-08-12 2020-01-07 Huawei Technologies Co., Ltd. Downlink offloading and converging method, uplink offloading and converging method, and device
JP2017530598A (ja) * 2014-08-12 2017-10-12 華為技術有限公司Huawei Technologies Co.,Ltd. ダウンリンクのオフロードおよび統合の方法、アップリンクのオフロードおよび統合の方法、ならびにデバイス
AU2014403758B2 (en) * 2014-08-12 2018-11-15 Huawei Technologies Co., Ltd. Downlink offloading and converging method, uplink offloading and converging method, and device
JP6172419B2 (ja) * 2015-04-10 2017-08-02 富士通株式会社 無線通信システム、基地局、移動局および処理方法
JPWO2016163036A1 (ja) * 2015-04-10 2017-08-17 富士通株式会社 無線通信システム、基地局、移動局および処理方法
CN106559409A (zh) * 2015-09-24 2017-04-05 株式会社Kt 使用wlan载波发送和接收数据的方法及其装置
CN106559409B (zh) * 2015-09-24 2019-11-12 株式会社Kt 使用wlan载波发送和接收数据的方法及其装置
US10855658B2 (en) 2015-09-24 2020-12-01 Kt Corporation Method for transmitting and receiving data using WLAN carriers and apparatus thereof

Also Published As

Publication number Publication date
JP2015519792A (ja) 2015-07-09
EP2811779A4 (en) 2015-11-11
CN103582011A (zh) 2014-02-12
US20150139184A1 (en) 2015-05-21
EP2811779A1 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013185653A1 (zh) 一种进行多网络联合传输的系统、用户设备及方法
US11510058B2 (en) Methods for support of user plane separation and user plane local offloading for 5G non-3GPP access
US11284328B2 (en) Multi-RAT heterogeneous carrier aggregation
US20180248983A1 (en) Methods and apparatus for aggregating network access within a single unified platform for a myriad of devices
EP3213580B1 (en) Method and apparatus of lwa pdu routing
JP5806394B2 (ja) データストリーム伝送方法及び関連設備、システム
US9883441B2 (en) Method and apparatus to route packet flows over two transport radios
EP3131333B1 (en) Data transmission method and device
WO2014040574A1 (zh) 一种基于多网络联合传输的分流方法、系统及接入网网元
US20150156774A1 (en) Interworking base station between a wireless network and a cellular network
TWI601440B (zh) 用於訊務聚合之方法及通信節點
WO2011140927A1 (zh) 一种增强移动性的分流方法及装置
JP6635973B2 (ja) データ分流のための方法およびデバイス
US8990892B2 (en) Adapting extensible authentication protocol for layer 3 mesh networks
WO2013185678A1 (zh) 一种实现融合网络数据传输方法、ue和接入网设备
Määttanen et al. LTE-WLAN aggregation (LWA) in 3GPP release 13 & release 14
EP3506716B1 (en) Methods for packet exchange and related devices
JP2015104048A (ja) 無線通信方法、そのシステムおよび無線基地局
RU2803196C1 (ru) Способ передачи пакета данных и устройство
WO2016095598A1 (zh) 一种实现用户面地址互通的方法和装置
WO2016095586A1 (zh) 一种实现用户面地址绑定的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14382483

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013804534

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015506090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE