WO2018058914A1 - 裸眼3d显示设备及其显示方法 - Google Patents

裸眼3d显示设备及其显示方法 Download PDF

Info

Publication number
WO2018058914A1
WO2018058914A1 PCT/CN2017/077102 CN2017077102W WO2018058914A1 WO 2018058914 A1 WO2018058914 A1 WO 2018058914A1 CN 2017077102 W CN2017077102 W CN 2017077102W WO 2018058914 A1 WO2018058914 A1 WO 2018058914A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
display
sub
column
row
Prior art date
Application number
PCT/CN2017/077102
Other languages
English (en)
French (fr)
Inventor
蒋顺
田广彦
Original Assignee
蒋顺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒋顺 filed Critical 蒋顺
Publication of WO2018058914A1 publication Critical patent/WO2018058914A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof

Definitions

  • the embodiments of the present application relate to the field of the naked eye 3D, and in particular, to a naked eye 3D display device and a display method thereof.
  • Crosstalk is a very important factor affecting the 3D observation effect.
  • the position of the observation and the design and process of the 3D display device itself can cause crosstalk.
  • the naked-eye 3D viewport can be roughly divided into a left view region, a right view region, and a crosstalk region.
  • the two eyes are in the best viewing area, for example, the left eye is located in the left viewing zone, and the right eye is located in the right viewing zone to see a better naked eye 3D image.
  • the image seen has a significant ghosting that affects the 3D viewing effect.
  • the naked eye 3D eyeball tracking technology can be used to locate the observation area where the human eye is located, and adjust each according to the observation area where the human eye is located.
  • the image displayed by the naked eye 3D viewport reduces image crosstalk of the left and right eyes.
  • There is a certain difficulty in the design of the specific image adjustment scheme because when the display image corresponding to the crosstalk area is adjusted, the corresponding left view area or right view area is also affected, and the image displayed by each naked eye 3D view area is adjusted. To reduce left and right eye image crosstalk, it is difficult to guarantee the image quality of the display device.
  • the embodiment of the present application provides a naked-eye 3D display device and a display method thereof, which are used to solve the left-eye image crosstalk problem existing when the position of the eyes of the observer is in the non-optimal observation area.
  • An embodiment of the present disclosure provides a display method of a naked-eye 3D display device, where a display screen of the naked-eye 3D display device includes a plurality of rows and columns of pixels; and a grating structure of the naked-eye 3D display device includes a plurality of raster units arranged in sequence, at least Each adjacent four rows of pixels uniquely corresponds to one raster unit, and the method includes:
  • At least each of the four rows of pixels and the corresponding image unit of the corresponding raster unit in the space include at least four naked-eye 3D viewing zones within a range of less than one lay length.
  • Arbitrarily adjacent two of the naked eye 3D viewing zones are superimposed to form a crosstalk zone between the ideal viewing zone having a crosstalk lower than the crosstalk threshold and the ideal viewing zone, the optimal viewing zone being an ideal left viewing zone or ideal right a viewport; if the binocular position does not fall within the optimal viewing area, adjusting an image display of a row of pixels corresponding to each of the raster elements to adjust a spatial position of the optimal viewing area, including: when the left eye position Or when the right eye position falls into any of the crosstalk regions, the display content of the row pixels corresponding to the ideal viewing region adjacent to the crosstalk region is adjusted to be the same, so that the left eye falling into the crosstalk region is only The left eye image is seen, or the right eye that falls into the crosstalk area sees only the
  • An embodiment of the present application provides a display method of a naked-eye 3D display device, where a display screen of the naked-eye 3D display device includes a plurality of rows and columns of pixels, each column of pixels includes three columns of sub-pixels; and a grating structure of the naked-eye 3D display device includes a plurality of Arranged grating elements, at least each adjacent four columns of sub-pixels uniquely corresponding to one grating unit; the method comprises:
  • At least each of the four columns of sub-pixels and the corresponding image unit of the corresponding grating unit in the space include at least four naked-eye 3D viewing zones within a range of less than one lay length.
  • Arbitrarily adjacent two of the naked eye 3D viewing zones are superimposed to form a crosstalk zone between the ideal viewing zone having a crosstalk lower than the crosstalk threshold and the ideal viewing zone, the optimal viewing zone being an ideal left viewing zone or ideal right a viewport; if the binocular position does not fall within the optimal viewing area, adjusting an image display of a row of pixels corresponding to each of the raster elements to adjust a spatial position of the optimal viewing area, including: when the left eye position Or when the right eye position falls into any of the crosstalk regions, the display content of the column sub-pixels corresponding to the ideal viewing region adjacent to the crosstalk region is adjusted to be the same, so that the left eye falling into the crosstalk region is only The left eye image is seen, or the right eye that falls into the cross
  • the embodiment of the present application provides a naked eye 3D display device, including:
  • the display screen comprises a plurality of rows and columns of pixels;
  • the grating structure comprises a plurality of raster elements arranged in sequence, and at least each adjacent four rows of pixels uniquely corresponds to one grating unit;
  • a human eye tracker for acquiring a binocular position of the observer when facing the display screen, the binocular position being a spatial position of the binocular relative to the display screen; and determining whether the binocular position falls within the naked eye 3D viewport Good observation area;
  • an image processor configured to: when the human eye tracker determines that the binocular position does not fall into the optimal viewing area, adjust an image display of a row pixel corresponding to each raster unit to adjust the optimal observation The spatial location of the area.
  • At least each of the four rows of pixels and the corresponding image unit of the grating unit in the space include at least four naked-eye 3D viewing zones included in a range of a lay length, and any two adjacent ones.
  • the naked eye 3D view region superimposed to form a crosstalk region between an ideal viewing region having a crosstalk lower than a crosstalk threshold and the ideal viewing region, wherein the optimal viewing region is an ideal left viewing region or an ideal right viewing region;
  • the processor is specifically configured to: when the left eye position or the right eye position falls into any of the crosstalk regions, adjust display contents of the row pixels corresponding to the ideal viewing region adjacent to the crosstalk region to be the same, such that The left eye falling into the crosstalk area sees only the left eye image or falls to the right of the crosstalk area The eye only sees the right eye image.
  • the embodiment of the present application provides a naked eye 3D display device, including:
  • the display screen includes a plurality of rows and columns of pixels, and each column of pixels includes three columns of sub-pixels;
  • a grating structure comprising a plurality of raster elements arranged in sequence, at least one adjacent one of the adjacent four columns of sub-pixels;
  • a human eye tracker for acquiring a binocular position of the observer when facing the display screen, the binocular position being a spatial position of the binocular relative to the display screen; and determining whether the binocular position falls within the naked eye 3D viewport Good observation area;
  • an image processor configured to: when the human eye tracker determines that the binocular position does not fall into the optimal viewing area, adjust an image display of a column sub-pixel corresponding to each raster unit to adjust the optimal observation The spatial location of the area.
  • At least each of the four columns of sub-pixels and the corresponding image unit of the grating unit in the space includes at least four naked-eye 3D viewing zones included in a range of a lay length, and any two adjacent ones.
  • the naked eye 3D view region superimposed to form a crosstalk region between an ideal viewing region having a crosstalk lower than a crosstalk threshold and the ideal viewing region, wherein the optimal viewing region is an ideal left viewing region or an ideal right viewing region;
  • the processor is configured to: when the left eye position or the right eye position falls into any of the crosstalk regions, adjust display contents of the column sub-pixels corresponding to the ideal viewing region adjacent to the crosstalk region to be the same, so that the falling The left eye of the crosstalk area only sees the left eye image, or the right eye that falls into the crosstalk area sees only the right eye image.
  • an embodiment of the present application provides a 3D display device, including: a display screen, a grating structure, at least one processor, and a memory communicatively coupled to the at least one processor;
  • the display screen includes a plurality of rows and columns of pixels
  • the grating structure includes a plurality of grating units arranged in sequence, and at least each adjacent four rows of pixels uniquely correspond to one grating unit;
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to:
  • At least each of the four rows of pixels and the corresponding image unit of the grating unit in the space include at least four naked-eye 3D viewing zones included in a range of a lay length, and any two adjacent ones.
  • the naked eye 3D view region superimposed to form a crosstalk region between an ideal viewing region having a crosstalk lower than a crosstalk threshold and the ideal viewing region, wherein the optimal viewing region is an ideal left viewing region or an ideal right viewing region;
  • the device can adjust the display content of the row pixels corresponding to the ideal viewing region adjacent to the crosstalk region to be the same when the left eye position or the right eye position falls within any of the crosstalk regions, so that the falling into the office
  • the left eye of the crosstalk area only sees the left eye image, or the right eye that falls into the crosstalk area sees only the right eye image.
  • an embodiment of the present application provides a 3D display device, including: a display screen, a grating structure, at least one processor, and a memory communicatively coupled to the at least one processor;
  • the display screen includes a plurality of rows and columns of pixels, and each column of pixels includes three columns of sub-pixels;
  • the grating structure includes a plurality of grating units arranged in sequence, and at least each adjacent four columns of sub-pixels uniquely correspond to one grating unit;
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to:
  • At least each of the adjacent four columns of sub-pixels and the corresponding image unit of the raster unit in the space includes at least four segments included in a range of a lay length
  • any two adjacent naked-eye 3D viewing zones are superimposed to form a crosstalk zone between the ideal viewing zone with a crosstalk lower than the crosstalk threshold and the ideal viewing zone, and the optimal viewing area is ideal left a viewport or an ideal right view;
  • the processor capable of: when the left eye position or the right eye position falls within any of the crosstalk regions, a column subpixel corresponding to the ideal viewing region adjacent to the crosstalk region
  • the display content is adjusted to be the same such that the left eye falling into the crosstalk area sees only the left eye image, or the right eye falling into the crosstalk area sees only the right eye image.
  • embodiments of the present application provide a non-transitory computer storage medium storing computer-executable instructions for causing the computer A display method of the naked-eye 3D display device in any of the above embodiments is performed.
  • an embodiment of the present application provides a computer program product, the computer program product comprising a computing program stored on a non-transitory computer readable storage medium, the computer program comprising the computer executable instruction,
  • the computer executable instructions When executed by a computer, the computer is caused to perform the display method of the naked eye 3D display device in any of the above embodiments.
  • each viewing zone is within a certain range.
  • the offset after the entire naked eye 3D viewport is shifted, the left eye of the human eye is located in the left viewport, and the right eye is located in the right viewport, thereby reducing the crosstalk problem of the left and right eye images.
  • FIG. 1 is a schematic diagram of a method for dividing a 3D viewport of a naked eye according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a method for displaying a naked-eye 3D display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a method for determining a best observation area by a naked-eye 3D display device according to an embodiment of the present application
  • 4a and 4b are schematic diagrams of scenario 3 and scenario 4 provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method for displaying a naked eye 3D display device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a method for determining a best observation area by a naked-eye 3D display device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a naked-eye 3D display device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a naked-eye 3D display device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a naked-eye 3D display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a naked-eye 3D display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a positional shift of a naked-eye 3D viewport of a naked-eye 3D display device according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a preferred viewing area of a naked-eye 3D display device according to an embodiment of the present application.
  • 13a and 13b are schematic structural diagrams of a naked-eye 3D display device according to an embodiment of the present application.
  • 14a and 14b are schematic structural diagrams of a naked-eye 3D display device according to an embodiment of the present application.
  • the naked-eye 3D display device of the embodiment of the present application includes a display screen, a backlight, and a grating structure (post grating) disposed between the display panel (display panel) and the backlight, and the light emitted from the backlight module is narrow from the grating structure.
  • the slit passes through and is incident on the pixels (or sub-pixels) of the display panel, a part of the pixels (or sub-pixels) on the display panel displays the left-eye image, and a part of the pixels (or sub-pixels) displays the right-eye image in the 3D display mode.
  • the lower left eye image and the right eye image are alternately displayed, so that the left eye of the observer sees the left eye image, and the right eye observes the right eye image, thereby achieving the naked eye 3D display.
  • the naked eye 3D display device display method Before the introduction of the naked eye 3D display device display method in the embodiment of the present application, the naked eye 3D viewport in the embodiment of the present application is described.
  • the naked eye 3D display device in the embodiment of the present application is The left view area, the right view area, and the crosstalk area are defined as follows:
  • the image of the left eye is a pure white image
  • the image of the right eye is a pure black image.
  • the left-eye image displayed on the display screen is a pure white image
  • the display screen The displayed right eye image is a pure black image
  • the eyes are located in different observation areas of the display screen to observe the left eye image and the right eye image, and simultaneously detect the brightness of the image entering the observer's left eye and the brightness of the image entering the observer's right eye.
  • Ratio for simplicity, use L/R to represent the ratio of the brightness of the left eye to the brightness of the right eye, define the observation area where L/R is greater than the first threshold as the left view area, and define the observation area where L/R is less than the second threshold
  • an observation area in which L/R is between the first threshold and the second threshold is defined as a crosstalk area. For example, if the first threshold is 5 and the second threshold is 0.2 (the second threshold is the reciprocal of the first threshold), the observation area with L/R greater than 5 is defined as the left view area, and the L/R is between 0.2 and 5.
  • the observation area between them is defined as a crosstalk area, and an observation area having an L/R of less than 0.2 is defined as a right view area.
  • the purpose of this division is to determine that the visible area of the left eye image (the brightness of the right eye image is extremely weak) is the left view area, and the visible area of the right eye image is mainly the right eye image, and the left side is seen.
  • the visible area corresponding to the eye image and the right eye image is a crosstalk area.
  • the eyes in the crosstalk area can be clearly seen in the left eye image and the right eye image, and the left eye image and the right eye image crosstalk generate a more serious ghost.
  • the pixel (or sub-pixel) for displaying the left-eye image is L
  • the pixel (or sub-pixel) for displaying the right-eye image is R
  • the image displayed by the pixel (or sub-pixel) L is in part or all of the visible area outside the display screen
  • the image displayed by the pixel (or sub-pixel) R is partially or completely visible in the outside of the display screen.
  • the visible range as can be seen from FIG. 1, there are a plurality of overlapping regions between the visible area of each pixel (or sub-pixel) L and the visible area of each pixel (or sub-pixel) R.
  • the 3D display effect of the naked-eye 3D display device is related to the position where the observer is located. If the observer's left eye is located in the area where the left eye image is mainly seen, and the right eye is located in the area where the right eye image is mainly seen, it can be observed. Good naked eye 3D effect.
  • the visible area of the image displayed by the naked-eye 3D display device is divided into respective left view area, right view area, and crosstalk area.
  • each left view region, right view region, and crosstalk region are Based on the display content of at least every four adjacent rows of pixels or at least every four columns of sub-pixels corresponding to each of the raster elements.
  • a raster unit corresponds to each adjacent four rows of pixels
  • the naked-eye 3D display device performs 3D display
  • the first row of pixels and the second row of pixels corresponding to each of the raster elements are displayed with a left eye image
  • each of the rasters The third row of pixels and the fourth row of pixels corresponding to the unit display the right eye image, and then divide the visible area corresponding to the displayed image into respective left view regions, right view regions, and crosstalk regions, and compare the respective naked eye 3D view regions with respect to The spatial position of the display is stored.
  • the spatial position of the observer relative to the display screen determines the corresponding relationship between the observer's left and right eyes and the respective viewing zones. Only the left eye is located in the left viewing zone, and the right eye is located in the right viewing zone, which is the best viewing position. The best observation is observed. 3D display effect. The left eye is in a right view zone or a crosstalk zone, the right eye is in a crosstalk zone or a left view zone, and the 3D effect of the observed image is affected.
  • the embodiment of the present application realizes the tracking of the spatial position of the binocular position and the naked eye 3D view zone by a human eye tracker.
  • the human eye tracker tracks the position of both eyes, mainly including:
  • the front camera is photographed by the front camera of the naked eye 3D display device, and the face image when the observer faces the display screen of the naked eye 3D display device is mainly photographed;
  • the position of the two eyes in the face image that is, the coordinates of the left eye pupil and the right eye pupil; then, according to the binocular position, the center position of both eyes and the pupil distance in the face image are obtained; and then according to the left eye pupil and the right eye
  • the coordinates of the pupil are calculated to the coordinates of the center of both eyes and the distance between the eyes.
  • the coordinates of the center of the eyes are the coordinates of the midpoint of the coordinates of the pupils of the eyes.
  • the distance between the eyes is the distance between the coordinates of the pupils of the eyes.
  • the physical distance between the observer's eyes relative to the display screen can be determined, and then the spatial positions of the left and right eyes relative to the display screen can be determined according to the coordinates of the left eye pupil and the right eye pupil.
  • each of the left view region, the right view region, and the crosstalk region relative to the display screen is pre-stored in the naked eye 3D display device.
  • at least four rows of pixels corresponding to each raster unit or each are adjusted.
  • the left and right eye images displayed by at least four columns of sub-pixels corresponding to the grating unit are used to adjust the spatial position of the naked eye 3D viewing zone, so that the naked eye 3D viewing zone is offset, and the human eye tracker can track the before and after the naked eye 3D viewing zone is offset. Spatial location.
  • each adjacent four rows of pixels and the corresponding raster unit when each adjacent four rows of pixels uniquely correspond to one raster unit, each adjacent four rows of pixels and the corresponding raster unit include a pitch within a range of less than one lay length in the image projection area of the space.
  • 4 naked-eye 3D viewing zones any adjacent two naked-eye 3D viewing zones are superimposed, forming a crosstalk zone between the ideal viewing zone and the ideal viewing zone with crosstalk below the crosstalk threshold.
  • the best viewing area is the ideal left viewing zone. Or ideal right view area.
  • the display content of the partial row pixels corresponding to the ideal viewing region adjacent to the crosstalk region is adjusted to be the same, so that the left eye falling into the crosstalk region is only The left eye image is seen, or the right eye that falls into the crosstalk area sees only the right eye image.
  • the on and off of each row of pixels can be controlled separately.
  • each adjacent four columns of sub-pixels and corresponding grating elements when each adjacent four columns of sub-pixels uniquely correspond to one grating unit, each adjacent four columns of sub-pixels and corresponding grating elements include a pitch within a range of less than one lay length in an image projection area of the space.
  • At least 4 naked-eye 3D viewing zones any adjacent two naked-eye 3D viewing zones are superimposed, forming a crosstalk zone between an ideal viewing zone and an ideal viewing zone with a crosstalk lower than the crosstalk threshold, and the best viewing area is an ideal left viewing zone. Or ideal right view area.
  • the display content of the partial column sub-pixel corresponding to the ideal viewing region adjacent to the crosstalk region is adjusted to be the same, so that the left eye falling into the crosstalk region is only The left eye image is seen, or the right eye that falls into the crosstalk area sees only the right eye image.
  • the opening and closing of each column of sub-pixels can be controlled separately.
  • each pixel of the display device is divided into two halves, respectively controlling the opening and closing of each half pixel to increase the range of the left viewing zone or the right viewing zone, and after tracking the position of the human eye, by adjusting each The switch control and/or image content of the row pixels (or each column of sub-pixels) will change the respective naked-eye 3D viewports to realize the offset of each viewport within a certain range.
  • each naked-eye 3D viewport is offset overall, The left eye of the human eye is located in the left view zone, and the right eye is located in the right view zone, which reduces the crosstalk problem of the left and right eye images.
  • each raster element corresponds to two adjacent rows of pixels, and each of the raster elements corresponds to four or more adjacent pixels (or four or more adjacent sub-pixels).
  • the number of grating elements is reduced to half of the existing one, and one grating unit corresponds to at least four adjacent rows of pixels (or four columns of sub-pixels);
  • the number of row pixels (or the number of sub-pixel columns) on the display panel is increased by 2 times, so that one raster unit corresponds to at least four adjacent rows of pixels (or adjacent four columns of sub-pixels).
  • the range of the overall naked eye 3D viewport offset is not more than one lay length range.
  • the display method of the naked eye 3D display device provided by the embodiment of the present application is described in detail based on the content of the naked eye 3D viewport and the binocular position tracking in the above embodiment.
  • the embodiment of the present application provides a display method for a naked-eye 3D display device, including:
  • Step 201 Obtain a position of the eyes of the observer when facing the display screen, where the position of the eyes is a spatial position of the eyes with respect to the display screen;
  • Step 202 Determine whether the position of both eyes falls into the best observation area of the naked eye 3D viewport;
  • Step 203 If the binocular position does not fall within the optimal observation area, adjust the image display of the row pixels corresponding to each raster unit to adjust the spatial position of the optimal observation area.
  • the naked-eye 3D display device realizes naked-eye 3D display through a post-grating, and the grating structure is located between the display screen and the backlight.
  • the display screen of the naked-eye 3D display device includes a plurality of rows and columns of pixels, and each column of pixels includes three columns of sub-pixels.
  • the grating structure of the naked-eye 3D display device includes a plurality of raster elements arranged in sequence, each of which includes a grating and a slit disposed adjacent to each other.
  • the multi-line pixel of the display screen has a corresponding relationship with the plurality of grating elements of the grating structure, so that the spatial position of the optimal viewing area of the naked eye 3D viewing zone and the naked-eye 3D viewing zone moves as the image display changes, so that the display At least one adjacent pixel of the screen corresponds to at least one raster unit.
  • the display method of the embodiment of the present application is suitable for a naked-eye 3D display device for vertical screen display, and the raster unit is flat with each line of pixels. Line, perpendicular to each column of subpixels.
  • each adjacent four rows of pixels uniquely corresponds to one raster unit, and each adjacent four rows of pixels sequentially includes a first row of pixels, a second row of pixels, a third row of pixels, and a fourth row of pixels.
  • each adjacent four rows of pixels sequentially includes a first row of pixels, a second row of pixels, a third row of pixels, and a fourth row of pixels.
  • the foregoing method further includes:
  • Step 301 controlling a first row of pixels and a second row of pixels corresponding to each of the raster units to display a left eye image, and controlling a third row of pixels and a fourth row of pixels corresponding to each of the raster cells to display a right eye image;
  • Step 302 Determine, according to an image display of a row pixel corresponding to each raster unit, a spatial location of a naked eye 3D viewport;
  • Step 303 determining an optimal viewing area of the naked eye 3D viewing zone according to the spatial location of the naked eye 3D viewing zone.
  • every 4 rows of pixels and the corresponding grating unit form a projection area in which the four independent fields of view are grouped in the space, and each projection area has an ideal observation area lower than the crosstalk threshold and a crosstalk area between the ideal observation areas.
  • the optimal observation area is an ideal observation area
  • the ideal observation area is an ideal left view area or an ideal right view area, which may be according to the display contents of the first row pixel, the second row pixel, the third row pixel and the fourth row pixel respectively. Determine the position of the ideal left and right right zones.
  • the first row of pixels, the second row of pixels, the third row of pixels, and the fourth row of pixels respectively display the left eye image, the left eye image, the right eye image, and the right eye image.
  • the projected area of the space includes four independent fields of view, and the four independent fields of view superimposed to form at least the ideal left view area, the ideal right view area, and the ideal left view area and the ideal right view area.
  • Crosstalk area is the ideal left view area, the ideal right view area, and the ideal left view area and the ideal right view area.
  • the left eye position is in the ideal left view area
  • the right eye position is in the ideal right view area
  • the best viewing area corresponds to the central area of the display.
  • a naked-eye 3D viewing zone that conforms to the observer's binocular distance feature can be calibrated for different observers. Specifically, the spatial location of the naked-eye 3D viewing zone is determined as follows:
  • Step one displaying one frame of the naked eye 3D corrected image, and the naked eye 3D corrected image including the left eye corrected image
  • the left eye correction image is clearly different from the right eye correction image
  • the left eye corrected image is a red image and the right eye corrected image is a blue image.
  • the red image is clearly different from the blue image.
  • the observer alternately closes the left and right eyes, so that the observer moves the position of both eyes until the left eye is closed, only the blue image is observed in the right eye, and the observed red image has the lowest brightness.
  • the right eye is closed, the left eye mainly observes the red image and the blue image has the lowest brightness, and this is the best observation position.
  • Step 2 displaying the first prompt information, wherein the first prompt information is used to prompt the observer to face the display screen, and alternately close the left eye and the right eye to position the left and right eyes relative to the display screen according to the images alternately observed by the left and right eyes. Adjusted to the optimal viewing position, the first prompt information is also used to prompt the observer to determine the feedback confirmation information when the position of the left and right eyes relative to the display screen is the best viewing position;
  • Step 3 when receiving the confirmation information, photographing a face correction image when the observer faces the display screen;
  • Step 4 according to the face correction image, determining the eye distance of the observer calibration and the center position of the calibrated eyes;
  • Step 5 correcting the spatial position of each naked eye 3D viewport obtained in steps 301 to 303 according to the deviation between the calibrated center position of the two eyes and the center position of the display screen, and obtaining the calibrated left view area, right view area and crosstalk area.
  • the naked eye 3D viewing zone is pre-calibrated, and the image display is adjusted based on the corresponding relationship between the calibrated naked eye 3D viewing zone and the binocular position, and the eye located in the crosstalk zone is further weakened while the left eye image and the right eye image are generated.
  • the ghost is
  • the foregoing step 203 specifically includes:
  • the left eye position does not fall into the ideal left view area of the optimal observation area, and the right eye position does not fall into the ideal right view area of the optimal observation area, adjust the first line to the fourth line corresponding to each raster unit The image of the pixel is displayed.
  • the corresponding pixel displays the correct content that the eye needs to see.
  • the display content of the pixel corresponding to the left eye image is adjusted to the right eye image.
  • the display content of the pixel corresponding to the right eye image is adjusted to the left eye image.
  • the display content corresponding to the adjacent ideal viewing area is adjusted to be the correct content that the eye needs to see.
  • the display content of the adjacent observation area of the crosstalk area is set to be the same, and the left or right eye of the person does not see the crosstalk of the two pictures, and the crosstalk area becomes the ideal observation area, which is equivalent to dynamically eliminating the crosstalk. Area.
  • the on and off of each row of pixels can be controlled separately.
  • the display content corresponding to the pixel of the first row to the fourth row is controlled, and the display content of the pixel corresponding to the ideal viewing region adjacent to the crosstalk region is adjusted to be the same, so that the left eye position is The ideal left-view area is formed, the original cross-talk area disappears, the original cross-talk area becomes the ideal observation area, and the left-eye position only sees the left-eye image.
  • the pixels in the first to fourth rows sequentially display the left eye image, the left eye image, the right eye image, and the right eye image
  • the formed crosstalk region corresponds to the second row pixel and the third row pixel
  • the ideal left view region adjacent to the crosstalk region corresponds to the first row of pixels and the second row of pixels
  • the ideal right view region adjacent to the crosstalk region corresponds to the third row of pixels and the fourth row of pixels
  • the pixel corresponding to the ideal view region adjacent to the crosstalk region is the second row of pixels and the third pixel Line pixels.
  • the display contents of the pixels of the second row and the third row are set as the left eye image, and the pixels of the fourth row and the first
  • the display contents of the line pixels are all set to the right eye image, that is, the pixels in the first to fourth rows sequentially display the right eye image, the left eye image, the left eye image, and the right eye image, so that the original crosstalk region becomes the ideal left view region.
  • the left eye position will only see the left eye image.
  • the display contents of the pixels of the second row and the third row are set as the image of the right eye, and the pixel of the fourth row and the first
  • the display contents of the line pixels are all set as the left eye image, that is, the pixels in the first to fourth rows sequentially display the left eye image, the right eye image, the right eye image, and the left eye image, so that the original crosstalk region becomes the ideal right view region.
  • the right eye position will only see the right eye image.
  • the display content adjustment manner of each adjacent four rows of pixels is the same as the display content of the pixels in the first row to the fourth row.
  • the left eye position does not fall into the ideal left view area
  • the right eye position does not fall into the ideal right position.
  • the viewing zone including the observer facing the display screen, is offset left and right along the best viewing area, or the viewer is offset from front to back of the display.
  • the left eye position and the right eye position are respectively located in the ideal left view area and the left right half of the ideal right view area;
  • the left eye position and the right eye position are respectively located in the ideal left view area and the right right view area on the right half of the lay length.
  • step 203 specifically includes: controlling a first row of pixels corresponding to each raster unit to display a left eye image, a second row of pixels and a third row of pixels displaying a right eye image, and a fourth row of pixels displaying a left eye image, Shift the best viewing area to the left by half a lay length.
  • the first row of pixels to the fourth row of pixels corresponding to each of the raster elements respectively display a left eye image, a right eye image, a right eye image, and a left eye image
  • the first row of pixels to the fourth row of pixels corresponding to each of the raster elements respectively display the left eye image, the left eye image, the right eye image, and the right eye image, and the entire naked eye 3D viewport is shifted to the left, as shown in the figure.
  • the following naked-eye 3D viewing zone is before adjustment, and the upper naked-eye 3D viewing zone is adjusted.
  • the overall displacement of the naked-eye 3D viewing zone is biased by a half-pitch step. Shifted, so the ideal left view area and the ideal right view area of the best viewing area are also shifted to the left by half a lay length, so by the above-mentioned pair of first row pixels corresponding to each raster unit to the fourth line
  • the adjustment of the display image of the pixel is such that the spatial position of the optimal observation area is shifted to the left by half a lay length, the left eye position is located in the ideal left view area of the adjusted optimal observation area, and the right eye position is located at the most adjusted position. Ideal right view of the good observation area Area.
  • the step 203 specifically includes: controlling a first row of pixels corresponding to each raster unit to display a right eye image, the second row of pixels and a third row of pixels displaying a left eye image, and the fourth row of pixels displaying The right eye image is used to translate the best viewing area to the right by half a lay length.
  • the first line of pixels to the fourth line of pixels corresponding to each of the raster elements respectively display a right eye image, a left eye image, a left eye image, and a right eye image, and when forming the best viewing area determined in step 303,
  • the first row of pixels to the fourth row of pixels corresponding to a raster unit respectively display a left eye image, a left eye image, a right eye image, and a right eye image, and the entire naked eye 3D view region is shifted to the right, due to the above adjustment In this way, the overall displacement of the naked-eye 3D viewport is offset by a half-pitch step, so the ideal left-view zone and the ideal right-view zone of the best observation zone are also offset to the left by half a lay length.
  • the spatial position of the optimal viewing area is shifted to the left by half a distance, and the left eye position is adjusted.
  • the ideal left view area of the best viewing area afterwards, and the right eye position is located in the ideal right view area of the adjusted optimal viewing area.
  • each adjacent four rows of pixels uniquely correspond to one raster unit, and the slit of the grating unit corresponds to one row of pixels, and the grating of the grating unit corresponds to three adjacent rows of pixels; or, each adjacent four rows
  • the pixel uniquely corresponds to one grating unit, and the slit of the grating unit corresponds to two adjacent rows of pixels, and the grating of the grating unit corresponds to two adjacent rows of pixels.
  • the observer is facing the display screen along the best viewing area, causing the left eye position not to fall into the ideal left viewing area of the optimal viewing area, and the right eye position does not fall into the ideal right viewing area of the optimal viewing area, including:
  • the distance between the eyes is far from the vertical distance of the display screen, the vertical distance between the position of the eyes and the display screen is not less than the farthest observation distance, and the farthest observation distance is the display position of the eyes when the observer is located in the optimal observation area.
  • the farthest vertical distance see Figure 4a, where an, bn, cn, dn represent the first row of pixels to the fourth row of pixels, respectively.
  • Scene 4 when the distance between the eyes is close to the vertical distance of the display screen, the vertical distance between the position of the eyes and the display screen is not greater than the closest observation distance, and the closest observation distance is the distance between the eyes of the observer when the observer is in the best observation area.
  • the closest vertical distance see Figure 4b, where an, bn, cn, dn represent the first row of pixels to the fourth row of pixels, respectively.
  • a left-eye corrected image and a right-eye corrected image for correcting an observer's optimal viewing position are displayed, the left-eye corrected image is a red image, and the right-eye corrected image is a blue image.
  • the left and right eyes are alternately closed, so that the observer moves the position of both eyes until the left eye is closed, and only the blue image is observed in the right eye, and the observed red image has the lowest brightness, and when the observer closes the right eye, The left eye mainly observes the red image and the blue image has the lowest brightness, and this is the best observation position.
  • the observer is prompted to move forward or backward toward the display screen, the observer alternately closes the left eye and the right eye, the left eye only sees the red image, and the right eye only sees the blue image, the left and right eyes are opposite to
  • the nearest vertical distance of the display screen is determined as the most recent observation position; the left eye only sees the red image, and the right eye only sees the blue image, and the farthest vertical distance of the left and right eyes relative to the display screen is determined as the farthest observation position.
  • the embodiment of the present application can also solve the image display of the first row to the fourth row of pixels corresponding to each of the raster units to solve the problem that the binocular positions involved in the scene 3 and the scene 4 are not optimal. Observe the problem of the area.
  • Step 203 includes the following adjustment methods:
  • the first adjustment method if the distance between the eyes is perpendicular to the display screen, near the farthest observation distance, the first line of pixels corresponding to each raster unit is controlled to display the left eye image, and the second corresponding to each raster unit
  • the line pixel displays the right eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is ideally located in the adjusted optimal viewing area.
  • Right view area if the distance between the eyes is perpendicular to the display screen, near the farthest observation distance, the first line of pixels corresponding to each raster unit is controlled to display the left eye image, and the second corresponding to each raster unit
  • the line pixel displays the right eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is ideally located in the adjusted optimal viewing area.
  • the control and each grating are controlled.
  • the first row of pixels corresponding to the unit displays the left eye image
  • the second row of pixels corresponding to each raster unit displays the right eye image
  • the third row of pixels corresponding to each raster unit controls the third row of pixels corresponding to each raster unit to display the all black image
  • each The fourth row of pixels corresponding to a raster unit displays a full black image, where the display of the all black image can be regarded as turning off the switches of the third row of pixels and the fourth row of pixels corresponding to each of the raster elements.
  • the second adjustment method if the distance between the eyes is perpendicular to the display, the farthest observation distance is attached. Nearly, controlling a second row of pixels corresponding to each raster unit to display a left eye image, and a third row of pixels corresponding to each raster unit displaying a right eye image to adjust the movement of the spatial position of the optimal viewing region, such that the left eye The position is in the ideal left view area of the adjusted optimal viewing area, and the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • the control and each grating are controlled.
  • the second row of pixels corresponding to the unit displays the left eye image
  • the third row of pixels corresponding to each raster unit displays the right eye image
  • each The fourth row of pixels corresponding to a raster unit displays a full black image.
  • the third adjustment mode if the distance between the eyes is perpendicular to the display screen, near the farthest observation distance, the third line of pixels corresponding to each raster unit is controlled to display the left eye image, and the fourth image corresponding to each raster unit
  • the line pixels display the right eye image such that the left eye position is in the ideal left view area of the adjusted optimal viewing area and the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • the control and each grating are controlled.
  • the third row of pixels corresponding to the unit displays the left eye image
  • the fourth row of pixels corresponding to each raster unit displays the right eye image
  • each The second row of pixels corresponding to a raster unit displays a full black image.
  • the fourth adjustment method if the vertical distance between the position of the eyes and the display screen is near the farthest observation distance, the fourth line of pixels is displayed to display the left eye image, and the first line of pixels displays the right eye image to adjust the optimal observation area.
  • the movement of the spatial position is such that the left eye position is in the ideal left view area of the adjusted optimal viewing area and the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • the control and each grating are controlled.
  • the fourth row of pixels corresponding to the unit displays the left eye image
  • the first row of pixels corresponding to each raster unit displays the right eye image
  • each The third row of pixels corresponding to a raster unit displays a full black image.
  • the above four adjustment methods can be used cyclically to solve the movement of the observer's eyes while moving back and forth relative to the display screen.
  • Step 203 includes the following adjustment methods:
  • the first adjustment method if the distance between the eyes and the vertical distance of the display screen is near the closest observation distance, the first line of pixels corresponding to each raster unit is controlled to display the left eye image, and the third line corresponding to each raster unit The pixel displays the right eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is in the ideal right of the adjusted optimal viewing area. Viewport.
  • each grating The first row of pixels corresponding to the unit displays the left eye image, and the third row of pixels corresponding to each raster unit displays the right eye image, and also controls the second row of pixels corresponding to each raster unit to display the all black image, and each The fourth row of pixels corresponding to a raster unit displays a full black image.
  • the second adjustment mode if the distance between the eyes is perpendicular to the display screen, near the closest observation distance, the second row of pixels corresponding to each raster unit is controlled to display the left eye image, and the fourth row corresponding to each raster unit
  • the pixel displays the right eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is in the ideal right of the adjusted optimal viewing area. Viewport.
  • control each grating unit if the vertical distance between the position of the eyes and the display screen is less than the closest observation distance (excluding the case where the distance between the eyes is too close to the vertical distance of the display screen, which exceeds the adjustment range of the embodiment of the present application), then control each grating unit.
  • Corresponding second row of pixels display a left eye image
  • a fourth row of pixels corresponding to each raster unit displays a right eye image
  • each The third row of pixels corresponding to the grating unit displays a full black image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is located in the adjusted The ideal right view area for the best viewing area.
  • the third adjustment method if the distance between the eyes is perpendicular to the display, the closest observation distance is attached. Near, the first row of pixels corresponding to each raster unit is controlled to display a right eye image, and the third row of pixels corresponding to each raster unit displays a left eye image to adjust the movement of the spatial position of the optimal observation area, so that left The eye position is in the ideal left view area of the adjusted optimal viewing area, and the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • each grating The first row of pixels corresponding to the unit displays a right eye image, and the third row of pixels corresponding to each raster unit displays a left eye image, and also controls a second row of pixels corresponding to each raster unit to display a full black image, and each The fourth row of pixels corresponding to a raster unit displays a full black image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is located after adjustment The ideal right viewing area for the best viewing area.
  • the fourth adjustment mode if the distance between the eyes is perpendicular to the display screen, near the nearest observation distance, the second row of pixels corresponding to each raster unit is controlled to display the right eye image, and the fourth row corresponding to each raster unit
  • the pixel displays the left eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is in the ideal right of the adjusted optimal viewing area. Viewport.
  • each grating The second row of pixels corresponding to the unit displays the right eye image, and the fourth row of pixels corresponding to each raster unit displays the left eye image, and also controls the first row of pixels corresponding to each raster unit to display the all black image, and each A third row of pixels corresponding to a raster unit displays a full black image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is located after adjustment The ideal right viewing area for the best viewing area.
  • the above four adjustment methods can be used cyclically to solve the movement of the observer's eyes while moving back and forth relative to the display screen.
  • the image display of the first row of pixels to the fourth row of pixels corresponding to each of the raster elements, the overall offset of the naked eye 3D viewport is realized, thereby ensuring that the optimal viewing region is offset, and the binocular positions are located at the offset Within the best viewing area.
  • step 202 if it is determined that the binocular position does not fall into the optimal observation area, and the vertical distance between the binocular position and the display screen is too far or too close, which exceeds the adjustable range of the embodiment of the present application, before step 203,
  • the above methods also include:
  • the second prompt information is displayed, and the second prompt information is used to prompt the observer to adjust the spatial position of the left and right eyes relative to the display screen, so that the spatial distance of the two-eye position from the optimal viewing area is within the adjustment range of the embodiment of the present application.
  • step 203 may be performed according to several scenario examples in the above embodiment.
  • the adjustable range of the entire naked-eye 3D viewing zone may be determined according to the simulated binocular position and the adjustment range of all the adjustment schemes of the foregoing embodiment.
  • the embodiment of the present application further provides a display method of another naked-eye 3D display device, as shown in FIG. 5, including:
  • Step 501 Obtain a position of the eyes of the observer when facing the display screen, where the position of the eyes is a spatial position of the eyes with respect to the display screen;
  • Step 502 determining whether the position of the two eyes falls into the best observation area of the naked eye 3D view area, and the optimal observation area includes an ideal left view area and an ideal right view area belonging to a range of the pupil distance;
  • Step 503 If the binocular position does not fall within the optimal observation area, adjust the image display of the column sub-pixel corresponding to each raster unit to adjust the spatial position of the optimal observation area.
  • the above-mentioned naked-eye 3D display device realizes naked-eye 3D display through the rear grating. Its grating structure is located between the display and the backlight.
  • the display screen of the naked-eye 3D display device includes a plurality of rows and columns of pixels, and each column of pixels includes three columns of sub-pixels.
  • the grating structure of the naked-eye 3D display device includes a plurality of raster elements arranged in sequence, each of which includes a grating and a slit disposed adjacent to each other.
  • the multi-line pixel of the display screen has a corresponding relationship with the plurality of grating elements of the grating structure, so that the spatial position of the optimal viewing area of the naked eye 3D viewing zone and the naked-eye 3D viewing zone moves as the image display changes, so that the display
  • the screen corresponds to at least one raster unit at least every adjacent four columns of sub-pixels.
  • the display method of the embodiment of the present application is suitable for a naked-eye 3D display device for horizontal display, and the raster unit is parallel to each column of sub-pixels and perpendicular to each row of pixels.
  • each adjacent four columns of sub-pixels uniquely correspond to one raster unit; each adjacent four columns of sub-pixels sequentially includes a first column of sub-pixels, a second column of sub-pixels, a third column of sub-pixels and a fourth column of sub-pixels, and the following combination
  • An example in which each adjacent four columns of sub-pixels uniquely correspond to one raster unit is used to illustrate the above method flow.
  • the foregoing method further includes:
  • Step 601 controlling a first column sub-pixel and a second column sub-pixel corresponding to each of the raster units to display a left-eye image, and controlling a third column sub-pixel and a fourth column sub-pixel corresponding to each of the raster units to display a right-eye image;
  • Step 602 Determine, according to an image display of a column sub-pixel corresponding to each raster unit, a spatial location of a naked eye 3D viewport;
  • Step 603 determining an optimal viewing area of the naked eye 3D viewing zone according to the spatial location of the naked eye 3D viewing zone.
  • every 4 sub-pixels and corresponding grating elements form a projection area in a space of 4 independent fields of view, each projection area has an ideal observation area lower than a crosstalk threshold, and crosstalk between the ideal observation area. Area.
  • the corresponding sub-pixel displays the correct content that the eye needs to see.
  • the display content corresponding to the adjacent ideal viewing area is adjusted to be the correct content that the eye needs to see.
  • the display content of the adjacent observation area of the crosstalk area is set to be the same, and the left or right eye of the person does not see the crosstalk of the two pictures, and the crosstalk area becomes the ideal observation area, which is equivalent to dynamically eliminating the crosstalk. Area.
  • the best viewing area corresponds to the central area of the display screen.
  • a naked-eye 3D viewing zone that conforms to the observer's binocular distance feature can be calibrated for different observers. Specifically, the spatial location of the naked-eye 3D viewing zone is determined as follows:
  • Step one displaying a frame of the naked eye 3D corrected image, the naked eye 3D corrected image includes a left eye corrected image and a right eye corrected image, and the left eye corrected image and the right eye corrected image are significantly different;
  • the left eye corrected image is a red image and the right eye corrected image is a blue image.
  • the red image is clearly different from the blue image.
  • the observer alternately closes the left and right eyes, so that the observer moves the position of both eyes until the left eye is closed, only the blue image is observed in the right eye, and the observed red image has the lowest brightness.
  • the right eye is closed, the left eye mainly observes the red image and the blue image has the lowest brightness, and this is the best observation position.
  • Step 2 displaying the first prompt information, wherein the first prompt information is used to prompt the observer to face the display screen, and alternately close the left eye and the right eye to position the left and right eyes relative to the display screen according to the images alternately observed by the left and right eyes. Adjusted to the optimal viewing position, the first prompt information is also used to prompt the observer to determine the feedback confirmation information when the position of the left and right eyes relative to the display screen is the best viewing position;
  • Step 3 when receiving the confirmation information, photographing a face correction image when the observer faces the display screen;
  • Step 4 according to the face correction image, determining the eye distance of the observer calibration and the center position of the calibrated eyes;
  • Step 5 correct the spatial position of each naked eye 3D viewport obtained in steps 501 to 503 according to the deviation between the center position of the calibrated eyes and the center position of the display screen, and obtain the calibrated left view area, right view area and crosstalk area.
  • the naked eye 3D viewing zone is pre-calibrated, and the image display is adjusted based on the corresponding relationship between the calibrated naked eye 3D viewing zone and the binocular position, and the eye located in the crosstalk zone is further weakened while the left eye image and the right eye image are generated.
  • the ghost is a pre-calibrated, and the image display is adjusted based on the corresponding relationship between the calibrated naked eye 3D viewing zone and the binocular position, and the eye located in the crosstalk zone is further weakened while the left eye image and the right eye image are generated. The ghost.
  • Step 503 specifically includes:
  • the image display of the first column to the fourth column of sub-pixels corresponding to each raster unit is adjusted.
  • the corresponding sub-pixel displays the correct content that the eye needs to see.
  • the display content corresponding to the adjacent ideal viewing area is adjusted to be the correct content that the eye needs to see.
  • the display content of the adjacent observation area of the crosstalk area is set to be the same, and the left or right eye of the person does not see the crosstalk of the two pictures, and the crosstalk area becomes the ideal observation area, which is equivalent to dynamically eliminating the crosstalk. Area.
  • the opening and closing of each column of sub-pixels can be controlled separately.
  • the display content corresponding to the first column to the fourth column of subpixels is controlled, and the display content of the partial subpixel corresponding to the ideal viewing region adjacent to the crosstalk region is adjusted to be the same, so that the left The ideal left-view area is formed at the eye position, the original cross-talk area disappears, the original cross-talk area becomes the ideal observation area, and the left-eye position only sees the left-eye image.
  • the first to fourth sub-pixels sequentially display a left-eye image, a left-eye image, a right-eye image, and a right-eye image
  • the formed crosstalk region corresponds to the second column sub-pixel and the third column sub-pixel, and the ideal left-view region adjacent to the crosstalk region.
  • the ideal right-view region adjacent to the cross-talk region corresponds to the third column sub-pixel and the fourth column sub-pixel
  • the pixel corresponding to the ideal view region adjacent to the crosstalk region is the second column sub-pixel and the third pixel Column subpixels.
  • the display contents of the second column and the third column of the sub-pixel are set as the left eye image, and the fourth column and the first column are
  • the display contents of the column sub-pixels are all set to the right-eye image, that is, the first to fourth column sub-pixels sequentially display the right-eye image, the left-eye image, the left-eye image, and the right-eye image, so that the original crosstalk region becomes the ideal left-view region.
  • the left eye position will only see the left eye image.
  • the display contents of the second column and the third column of the sub-pixel are set as the right-eye image
  • the fourth column and the first column are
  • the display contents of the column sub-pixels are all set as the left-eye image, that is, the first to fourth column sub-pixels sequentially display the left-eye image, the right-eye image, the right-eye image, and the left-eye image, so that the original crosstalk region becomes the ideal right-view region.
  • the right eye position will only see the right eye image.
  • the display content of each adjacent 4 columns of sub-pixels is adjusted.
  • the equations are the same as the manner in which the display contents of the first to fourth column sub-pixels are adjusted.
  • the left eye position does not fall into the ideal left view area of the optimal observation area
  • the right eye position does not fall into the ideal right view area of the optimal observation area, including the observer facing the display screen along the optimal observation area. Move, or the observer shifts back and forth toward the display.
  • the left eye position and the right eye position are respectively located in the ideal left view area and the left right half of the ideal right view area;
  • the left eye position and the right eye position are respectively located in the ideal left view area and the right right view area on the right half of the lay length.
  • step 503 specifically includes: controlling a first column of sub-pixels corresponding to each raster unit to display a left eye image, a second column of sub-pixels and a third column of sub-pixels for displaying a right-eye image, and a fourth column of sub-pixels for displaying a left-eye image, Shift the best viewing area to the left by half a lay length.
  • a schematic diagram of the adjustment of the display position of the first column sub-pixel to the fourth column sub-pixel corresponding to each of the raster elements is performed such that the spatial position of the optimal observation region is shifted.
  • the first column sub-pixel to the fourth column sub-pixel corresponding to each raster unit respectively display a left eye image, a right eye image, a right eye image, and a left eye image, and when forming the optimal observation area determined in step 303,
  • the first column sub-pixel to the fourth column sub-pixel corresponding to each raster unit respectively display a left-eye image, a left-eye image, a right-eye image, and a right-eye image, and the entire naked-eye 3D view region is shifted to the left, as shown in the figure.
  • the following naked-eye 3D viewing zone is before adjustment, and the upper naked-eye 3D viewing zone is adjusted.
  • the overall displacement of the naked-eye 3D viewing zone is biased by a half-pitch step. Shifted, so the ideal left view area and the ideal right view area of the best observation area are also shifted to the left by half a lay length, and therefore, by the above-mentioned pair of first column sub-pixels corresponding to each raster unit to the fourth column
  • the display image of the pixel is adjusted such that the spatial position of the optimal observation area is shifted to the left by half a lay length, the left eye position is located in the ideal left view area of the adjusted optimal observation area, and the right eye position is located after adjustment.
  • the ideal right view area for the best viewing area is adjusted such that the spatial position of the optimal observation area is shifted to the left by half a lay length, the left eye position is located in the ideal left view area of the adjusted optimal observation area, and the right eye position is located after adjustment.
  • the step 503 specifically includes: controlling a first column of sub-pixels corresponding to each raster unit to display a right eye image, the second column of sub-pixels and a third column of sub-pixels for displaying a left-eye image, and the fourth column of sub-pixels for displaying a right-eye image, Shift the best viewing area to the right by half a lay length.
  • the first column sub-pixel to the fourth column sub-pixel corresponding to each raster unit respectively display a right-eye image, a left-eye image, a left-eye image, and a right-eye image, and when forming the optimal observation region determined in step 303,
  • the first column sub-pixel to the fourth column sub-pixel corresponding to a raster unit respectively display a left eye image, a left eye image, a right eye image, and a right eye image, and the entire naked eye 3D view region is shifted to the right, due to the above adjustment In this way, the overall displacement of the naked-eye 3D viewport is offset by a half-pitch step, so the ideal left-view zone and the ideal right-view zone of the best observation zone are also offset to the left by half a lay length.
  • each adjacent four rows of pixels uniquely correspond to one raster unit, and the slit of the grating unit corresponds to one row of pixels, and the grating of the grating unit corresponds to three adjacent rows of pixels; or, each adjacent four rows
  • the pixel uniquely corresponds to one grating unit, and the slit of the grating unit corresponds to two adjacent rows of pixels, and the grating of the grating unit corresponds to two adjacent rows of pixels.
  • the observer is facing the display screen along the best viewing area, causing the left eye position not to fall into the ideal left viewing area of the optimal viewing area, and the right eye position does not fall into the ideal right viewing area of the optimal viewing area, including:
  • the distance between the eyes is far from the vertical distance of the display screen, the vertical distance between the position of the eyes and the display screen is not less than the farthest observation distance, and the farthest observation distance is the display position of the eyes when the observer is located in the optimal observation area.
  • the farthest vertical distance see Figure 4a, where an, bn, cn, dn represent the first column to the fourth column of sub-pixels, respectively.
  • Scene 4 when the distance between the eyes is close to the vertical distance of the display screen, the vertical distance between the position of the eyes and the display screen is not greater than the closest observation distance, and the closest observation distance is the distance between the eyes of the observer when the observer is in the best observation area.
  • the nearest vertical distance see Figure 4b, where an, bn, cn, Dn represents the first column to the fourth column of sub-pixels, respectively.
  • a left-eye corrected image and a right-eye corrected image for correcting an observer's optimal viewing position are displayed, the left-eye corrected image is a red image, and the right-eye corrected image is a blue image.
  • the observer alternately closes the left and right eyes, so that the observer moves the position of both eyes until the left eye is closed, only the blue image is observed in the right eye, and the observed red image has the lowest brightness.
  • the right eye is closed, the left eye mainly observes the red image and the blue image has the lowest brightness, and this is the best observation position.
  • the observer is prompted to move forward or backward toward the display screen, the observer alternately closes the left eye and the right eye, the left eye only sees the red image, and the right eye only sees the blue image, the left and right eyes are opposite to
  • the nearest vertical distance of the display screen is determined as the most recent observation position; the left eye only sees the red image, and the right eye only sees the blue image, and the farthest vertical distance of the left and right eyes relative to the display screen is determined as the farthest observation position.
  • the embodiment of the present application can also solve the image display of the first column to the fourth column of sub-pixels corresponding to each of the raster elements to solve the problem that the binocular positions involved in the scene 3 and the scene 4 do not fall into the most Good observation area problems.
  • step 503 includes the following adjustment methods:
  • the first adjustment mode if the distance between the eyes is perpendicular to the display screen, in the vicinity of the farthest observation distance, the first column of sub-pixels corresponding to each raster unit is controlled to display the left eye image, and the second image corresponding to each raster unit
  • the column sub-pixel displays the right eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is ideally located in the adjusted optimal viewing area.
  • Right view area if the distance between the eyes is perpendicular to the display screen, in the vicinity of the farthest observation distance, the first column of sub-pixels corresponding to each raster unit is controlled to display the left eye image, and the second image corresponding to each raster unit
  • the column sub-pixel displays the right eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is ideally located
  • the control and each grating are controlled.
  • the first column of sub-pixels corresponding to the unit displays a left-eye image
  • the second column of sub-pixels corresponding to each of the raster elements display a right-eye image
  • the column sub-pixels display a full black image
  • the fourth column of sub-pixels corresponding to each raster unit displays a full black image.
  • the second adjustment mode if the distance between the eyes is perpendicular to the display screen, near the farthest observation distance, the second column of sub-pixels corresponding to each raster unit is controlled to display the left eye image, and the third image corresponding to each raster unit
  • the column sub-pixel displays the right-eye image to adjust the movement of the spatial position of the optimal viewing area such that the left-eye position is in the ideal left-view area of the adjusted optimal viewing area, and the right-eye position is in the ideal right of the adjusted optimal viewing area. Viewport.
  • the control and each grating are controlled.
  • the second column of sub-pixels corresponding to the unit displays the left-eye image
  • the third column of sub-pixels corresponding to each of the raster elements display the right-eye image
  • the first column of sub-pixels corresponding to each of the raster elements to display the all-black image
  • each A fourth column of sub-pixels corresponding to a raster unit displays a full black image.
  • the third adjustment mode if the distance between the eyes and the vertical distance of the display screen is near the farthest observation distance, the third column sub-pixel corresponding to each raster unit is controlled to display the left eye image, and the fourth image corresponding to each raster unit
  • the column sub-pixel displays the right eye image such that the left eye position is in the ideal left view area of the adjusted optimal viewing area and the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • the control and each grating are controlled.
  • the third column of sub-pixels corresponding to the unit displays the left-eye image
  • the fourth column of sub-pixels corresponding to each of the raster units display the right-eye image
  • the first column of sub-pixels corresponding to each of the raster elements to display the all-black image
  • each A second column of sub-pixels corresponding to a raster unit displays a full black image.
  • the fourth adjustment method if the distance between the eyes is perpendicular to the display screen, in the vicinity of the farthest observation distance, the fourth column of sub-pixels is controlled to display the left eye image, and the first column of sub-pixels displays the right eye image to adjust the optimal observation area.
  • the movement of the spatial position is such that the left eye position is in the ideal left view area of the adjusted optimal viewing area and the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • the control and each grating are controlled.
  • the fourth column of sub-pixels corresponding to the unit displays a left eye image, with each raster unit pair While the first column of sub-pixels displays the image of the right eye, it also controls the second column of sub-pixels corresponding to each of the raster elements to display a full black image, and the third column of sub-pixels corresponding to each of the raster elements displays a full black image.
  • the above four adjustment methods can be used cyclically to solve the movement of the observer's eyes while moving back and forth relative to the display screen.
  • step 503 includes the following adjustment methods:
  • the first adjustment method if the distance between the eyes is perpendicular to the display screen, near the closest observation distance, the first column of sub-pixels corresponding to each raster unit is controlled to display a left eye image, and the third column corresponding to each raster unit
  • the pixel displays the right eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is in the ideal right of the adjusted optimal viewing area. Viewport.
  • each grating The first column of sub-pixels corresponding to the unit displays a left-eye image, and the third column of sub-pixels corresponding to each of the raster elements display the right-eye image, and also controls the second column of sub-pixels corresponding to each of the raster elements to display an all-black image, and each A fourth column of sub-pixels corresponding to a raster unit displays a full black image.
  • the second adjustment mode if the distance between the eyes is perpendicular to the display screen, near the nearest observation distance, the second column of sub-pixels corresponding to each raster unit is controlled to display a left eye image, and the fourth column corresponding to each raster unit
  • the pixel displays the right eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is in the ideal right of the adjusted optimal viewing area. Viewport.
  • each grating unit controls each grating unit.
  • Corresponding second column sub-pixels display a left-eye image
  • a fourth column of sub-pixels corresponding to each raster unit displays a right-eye image
  • each The third column of sub-pixels corresponding to the raster unit displays a black image.
  • the left eye position is located in the ideal left viewing zone of the adjusted optimal viewing area
  • the right eye position is located in the ideal right viewing zone of the adjusted optimal viewing area.
  • the third adjustment mode if the distance between the eyes is perpendicular to the display screen, near the closest observation distance, the first column of sub-pixels corresponding to each raster unit is controlled to display a right eye image, and the third column corresponding to each raster unit
  • the pixel displays the left eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is in the ideal right of the adjusted optimal viewing area. Viewport.
  • each grating The first column of sub-pixels corresponding to the unit displays a right-eye image, and the third column of sub-pixels corresponding to each of the raster elements display the left-eye image, and also controls the second column of sub-pixels corresponding to each of the raster elements to display an all-black image, and each A fourth column of sub-pixels corresponding to a raster unit displays a full black image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is located after adjustment The ideal right viewing area for the best viewing area.
  • the fourth adjustment mode if the distance between the eyes is perpendicular to the display screen, near the nearest observation distance, the second column of sub-pixels corresponding to each raster unit is controlled to display the right eye image, and the fourth column corresponding to each raster unit
  • the pixel displays the left eye image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is in the ideal right of the adjusted optimal viewing area. Viewport.
  • each grating The second column of sub-pixels corresponding to the unit displays a right-eye image, and the fourth column of sub-pixels corresponding to each of the raster elements display the left-eye image, and also controls the first column of sub-pixels corresponding to each of the raster elements to display an all-black image, and each A third column of sub-pixels corresponding to a raster unit displays a full black image to adjust the movement of the spatial position of the optimal viewing area such that the left eye position is in the ideal left viewing zone of the adjusted optimal viewing area, and the right eye position is located after adjustment Ideal right view of the best viewing area Area.
  • the above four adjustment methods can be used cyclically to solve the movement of the observer's eyes while moving back and forth relative to the display screen.
  • step 503 of the foregoing method only the scene in which the binocular position does not fall into the optimal observation area and the spatial distance of the binocular position deviates from the optimal observation area is within the adjustment range of the embodiment of the present application, and is adjusted to correspond to each raster unit.
  • the image of the first column to the fourth column of sub-pixels is displayed to realize the overall offset of the naked-eye 3D viewing zone, thereby ensuring that the optimal viewing area is offset, and the binocular position is located in the optimal viewing area of the offset.
  • step 202 if it is determined that the binocular position does not fall into the optimal observation area, and the vertical distance between the binocular position and the display screen is too far or too close, which exceeds the adjustable range of the embodiment of the present application, before step 503,
  • the above methods also include:
  • the second prompt information is displayed, and the second prompt information is used to prompt the observer to adjust the spatial position of the left and right eyes relative to the display screen, so that the spatial distance of the binocular position from the optimal viewing area is within the adjustable range.
  • step 503 can be performed according to several scenario examples in the above embodiment.
  • the adjustable range of the entire naked-eye 3D viewing zone may be determined according to the simulated binocular position and the adjustment range of all the adjustment schemes of the foregoing embodiment.
  • the above method further includes: switching the 3D image displayed on the display screen to a 2D image.
  • the pixels corresponding to two adjacent rows of each raster unit are changed to pixels corresponding to adjacent four rows or more of each raster unit, and correspondingly, each pixel of the display device is divided.
  • Switch control will change the naked-eye 3D viewports to achieve the offset of each viewport within a certain range.
  • the left eye of the human eye is located in the left viewport, and the right eye is located just right.
  • the right viewing zone which in turn reduces the crosstalk problem of the left and right eye images.
  • each raster element corresponds to two adjacent rows of pixels, and each of the raster elements corresponds to adjacent four or more rows of pixels, and the number of grating structures can be adjusted to make the grating
  • the number of cells is reduced to half of the existing one, and one raster unit corresponds to at least every four adjacent rows of pixels (or four columns of sub-pixels); the number of row pixels on the display panel can also be maintained by keeping the grating structure unchanged (or The number of column pixels is increased by 2 times as much as the existing one, so that one raster unit corresponds to at least every four adjacent rows of pixels (or four columns of sub-pixels).
  • the embodiment of the present application further provides a naked-eye 3D display device, which is used to execute the foregoing method flow.
  • a naked-eye 3D display device as shown in FIG. 7 includes:
  • the display screen 100 includes a plurality of rows and columns of pixels
  • the grating structure 200 includes a plurality of grating units arranged in sequence, each of the grating units includes a grating and a slit disposed adjacent to each other; at least each adjacent four rows of pixels uniquely correspond to one grating unit;
  • the human eye tracker 300 is configured to acquire the position of the eyes of the observer when facing the display screen 100, the position of the eyes is the spatial position of the eyes with respect to the display screen 100; and the best viewing area for determining whether the position of the eyes falls into the 3D view of the naked eye
  • the optimal viewing area includes an ideal left viewing zone and an ideal right viewing zone belonging to a range of lay lengths;
  • the image processor 400 is configured to adjust an image display of the row pixels corresponding to each of the raster units to adjust the spatial position of the optimal viewing area when the human eye tracker 300 determines that the binocular position does not fall within the optimal viewing area.
  • the grating structure 200 is located between the display screen 100 and the backlight 500.
  • the plurality of rows of pixels of the display screen 100 have a corresponding relationship with the plurality of grating elements of the grating structure 200, in order to achieve the best observation of the naked eye 3D viewing zone and the naked eye 3D viewing zone.
  • the spatial position of the area moves as the image display changes, so that at least one adjacent pixel unit of the display screen 100 corresponds to at least one raster unit, and one grating and one slit respectively correspond to at least two rows of pixels.
  • each adjacent four rows of pixels uniquely corresponds to one raster unit; if each adjacent four rows of pixels sequentially includes a first row of pixels, a second row of pixels, a third row of pixels, and a fourth row of pixels.
  • one grating unit includes a grating and a slit, and each grating unit corresponds to four rows of pixels, for example, the first grating unit corresponds to the first to fourth rows of sub-pixels; the second grating unit corresponds to the fifth. To the 8th row of subpixels; and so on.
  • Each row of pixels includes a plurality of pixel units, each of which includes a sub-pixel R, a sub-pixel G, and a sub-pixel B.
  • the image processor 400 is further configured to control the first row of pixels and the second row of pixels corresponding to each of the raster units before the human eye tracker 300 acquires the binocular position of the observer when facing the display screen 100. Displaying a left eye image, controlling a third row of pixels and a fourth row of pixels corresponding to each of the raster elements to display a right eye image;
  • the human eye tracker 300 is further configured to: determine the spatial position of the naked eye 3D viewing zone according to the image display of the row pixels corresponding to each raster unit before acquiring the binocular position of the observer facing the display screen 100, the naked eye 3D view
  • the area includes a left view area, a right view area, and a crosstalk area; and an optimal viewing area of the naked eye 3D view area is determined according to the spatial position of the naked eye 3D view area.
  • the best viewing area of the naked eye 3D viewing zone determined by the human eye tracker 300 in the above manner refers to a visible area including an ideal left viewing zone and an ideal right viewing zone within a range of a lay length, and the left eye position is at an ideal left.
  • the optimal viewing area corresponds to the central area of the display screen 100.
  • a naked-eye 3D viewing zone that conforms to the observer's binocular distance feature can be calibrated for different observers, as described in detail in the method embodiments.
  • the image processor 400 is specifically configured to: if the human eye tracker 300 determines that the left eye position does not fall into the ideal left viewing zone, the right eye position If it does not fall within the ideal right view area, the image display of the first row to the fourth row of pixels corresponding to each raster unit is adjusted.
  • the human eye tracker 300 determines an ideal left view area where the left eye position does not fall within the optimal viewing area, and the right eye position does not fall within the ideal right view area of the best viewing area, including two scenarios:
  • the left eye position and the right eye position are respectively located in the ideal left view area and the right right view area on the right half of the lay length.
  • the image processor 400 is specifically configured to:
  • the spatial position of the optimal viewing area is shifted to the left by half a distance, and the left eye position is adjusted.
  • the ideal left view area of the best viewing area afterwards, and the right eye position is located in the ideal right view area of the adjusted optimal viewing area.
  • the image processor 400 is specifically configured to: control a first row of pixels corresponding to each raster unit to display a right eye image, a second row of pixels and a third row of pixels to display a left eye image, and a fourth row of pixels to display a right eye image. Image to pan the best viewing area to the right by half a lay length.
  • the spatial position of the optimal viewing area is shifted to the left by half a distance, and the left eye position is adjusted.
  • the ideal left view area of the best viewing area afterwards, and the right eye position is located in the ideal right view area of the adjusted optimal viewing area.
  • each adjacent four rows of pixels uniquely correspond to one raster unit, and the slit of the grating unit corresponds to one row of pixels, and the grating of the grating unit corresponds to three adjacent rows of pixels; or, each adjacent four rows
  • the pixel uniquely corresponds to one grating unit, and the slit of the grating unit corresponds to two adjacent rows of pixels, and the grating of the grating unit corresponds to two adjacent rows of pixels.
  • the observer is facing the display screen along the best viewing area, causing the left eye position not to fall into the ideal left viewing area of the optimal viewing area, and the right eye position does not fall into the ideal right viewing area of the optimal viewing area, including:
  • the distance between the eyes is far from the vertical distance of the display screen, the vertical distance between the position of the eyes and the display screen is not less than the farthest observation distance, and the farthest observation distance is the display position of the eyes when the observer is located in the optimal observation area.
  • Farthest vertical distance
  • Scene 4 when the distance between the eyes is close to the vertical distance of the display, the position of the eyes and the display The vertical distance of the screen is not greater than the closest viewing distance, and the closest viewing distance is the closest vertical distance of the binocular position from the display screen when the observer is in the best viewing area.
  • a left-eye corrected image and a right-eye corrected image for correcting an observer's optimal viewing position are displayed, the left-eye corrected image is a red image, and the right-eye corrected image is a blue image.
  • the observer alternately closes the left and right eyes, so that the observer moves the position of both eyes until the left eye is closed, only the blue image is observed in the right eye, and the observed red image has the lowest brightness.
  • the right eye is closed, the left eye mainly observes the red image and the blue image has the lowest brightness, and this is the best observation position.
  • the observer is prompted to move forward or backward toward the display screen, the observer alternately closes the left eye and the right eye, the left eye only sees the red image, and the right eye only sees the blue image, the left and right eyes are opposite to
  • the nearest vertical distance of the display screen is determined as the most recent observation position; the left eye only sees the red image, and the right eye only sees the blue image, and the farthest vertical distance of the left and right eyes relative to the display screen is determined as the farthest observation position.
  • the embodiment of the present application can also solve the image display of the first row to the fourth row of pixels corresponding to each of the raster units to solve the problem that the binocular positions involved in the scene 3 and the scene 4 are not optimal. Observe the problem of the area.
  • the image processor 400 is specifically configured to:
  • the ideal left view area of the adjusted optimal viewing area, the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • the image processor 400 Specifically used for:
  • the above four adjustment methods can be used cyclically to solve the movement of the observer's eyes while moving back and forth relative to the display screen.
  • the image processor 400 is specifically configured to:
  • the ideal left view area of the adjusted optimal viewing area, the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • the image processor 400 is specifically Used for:
  • the above four adjustment methods can be used cyclically to solve the movement of the observer's eyes while moving back and forth relative to the display screen.
  • the position of both eyes does not fall into the optimal observation area, and the position of both eyes is deviated.
  • the spatial distance of the best viewing area is within the adjustment range of the embodiment of the present application, and the image of the first row to the fourth row of pixels corresponding to each raster unit is adjusted to realize the overall partiality of the naked eye 3D viewing zone. After shifting, and then ensuring the best observation area shift, the binocular position is located in the best observation area after the offset.
  • the display screen 100 is also used.
  • the second prompt information is displayed, and the second prompt information is used to prompt the observer to adjust the spatial position of the left and right eyes relative to the display screen 100, so that the observer moves the position of the two eyes, and adjusts the spatial position of the left and right eyes relative to the display screen.
  • the spatial distance from the optimal viewing area is within the adjustable range.
  • the adjustable range of the entire naked-eye 3D viewing zone may be determined according to the simulated binocular position and the adjustment range of all the adjustment schemes of the foregoing embodiment.
  • the image The processor 400 is further configured to: switch the 3D image displayed by the display screen into a 2D image.
  • the embodiment of the present application provides a naked-eye 3D display device as shown in FIG. 8, which includes:
  • the display screen 100 includes a plurality of rows and columns of pixels, and each column of pixels includes three columns of sub-pixels;
  • the grating structure 600 includes a plurality of grating units arranged in sequence, each of the grating units includes a grating and a slit disposed adjacent to each other; at least each adjacent four columns of sub-pixels uniquely correspond to one grating unit;
  • the human eye tracker 300 is configured to acquire the position of the eyes of the observer when facing the display screen 100, the position of the eyes is the spatial position of the eyes with respect to the display screen 100; and the best viewing area for determining whether the position of the eyes falls into the 3D view of the naked eye
  • the optimal viewing area includes an ideal left viewing zone and an ideal right viewing zone belonging to a range of lay lengths;
  • the image processor 400 is configured to adjust an image display of the column sub-pixels corresponding to each of the raster units to adjust the spatial position of the optimal viewing area when the human eye tracker 300 determines that the binocular position does not fall within the optimal viewing area.
  • the grating structure 600 is located between the display screen 100 and the backlight 500.
  • the plurality of columns of sub-pixels of the display screen 100 have a corresponding relationship with the plurality of grating elements of the grating structure 600, in order to realize the best observation of the entire naked-eye 3D viewing area and the naked-eye 3D viewing area.
  • the spatial position of the region moves as the image display changes, such that the display screen 100 uniquely corresponds to at least one raster unit per adjacent four columns of sub-pixels.
  • each adjacent four columns of sub-pixels uniquely correspond to one raster unit; each adjacent four columns of sub-pixels sequentially includes a first column of sub-pixels, a second column of sub-pixels, a third column of sub-pixels, and a fourth column of sub-pixels.
  • a grating unit includes a grating and a slit, and each of the grating units corresponds to four columns of sub-pixels.
  • the four columns of sub-pixels corresponding to the first grating unit are: a first column of sub-pixels R, and a second column of sub-pixels G.
  • the third column sub-pixel B and the fourth column sub-pixel R are the four columns of sub-pixels corresponding to the first grating unit.
  • the four columns of sub-pixels corresponding to the second raster unit are: a first column of sub-pixels G, a second column of sub-pixels B, a third column of sub-pixels R, and a fourth column of sub-pixels G.
  • the four columns of sub-pixels corresponding to the third raster unit are: a first column of sub-pixels B, a second column of sub-pixels R, a third column of sub-pixels G, and a fourth column of sub-pixels B.
  • the image processor 400 is further configured to: control the first column sub-pixel and the second column sub-pixel corresponding to each of the raster units before the human eye tracker 300 acquires the binocular position of the observer when facing the display screen 100 Displaying a left eye image, and controlling a third column subpixel and a fourth column subpixel corresponding to each of the raster units to display a right eye image;
  • the human eye tracker 300 is further configured to: determine the spatial position of the naked eye 3D viewing zone according to the image display of the column sub-pixel corresponding to each raster unit before acquiring the binocular position of the observer facing the display screen 100, the naked eye 3D view
  • the area includes a left view area, a right view area, and a crosstalk area; and the best observed area of the naked eye 3D view area is determined according to the spatial position of the naked eye 3D view area.
  • the best viewing area of the naked eye 3D viewing zone determined by the human eye tracker 300 in the above manner refers to a visible area including an ideal left viewing zone and an ideal right viewing zone within a range of a lay length, and the left eye position is at an ideal left.
  • the optimal viewing area corresponds to the central area of the display screen 100.
  • a naked-eye 3D viewing zone that conforms to the observer's binocular distance feature can be calibrated for different viewers. See the above embodiment for details.
  • the image processor 400 is specifically configured to:
  • the image display of the first column to the fourth column of sub-pixels corresponding to each of the raster elements is adjusted. .
  • the human eye tracker 300 determines that the left eye position does not fall into the ideal left view area of the optimal viewing area, and the right eye position does not fall into the ideal right view area of the optimal viewing area, including the observer facing the display screen along the best viewing area. Offset, or the observer is offset back and forth toward the display.
  • the left eye position and the right eye position are respectively located in the ideal left view area and the left right half of the ideal right view area;
  • the left eye position and the right eye position are respectively located in the ideal left view area and the right right view area on the right half of the lay length.
  • the image processor 400 is specifically configured to: control the first column of sub-pixels to display the left eye image, the second column of sub-pixels and the third column of sub-pixels to display the right-eye image, and the fourth column of sub-pixels to display the left-eye image to best observe
  • the area is translated to the left by half a lay length. Adjusting the display image of the first column sub-pixel to the fourth column sub-pixel corresponding to each raster unit, so that the spatial position of the optimal observation area is shifted to the left by half a distance, and the left-eye position is adjusted. The ideal left view area of the best viewing area afterwards, and the right eye position is located in the ideal right view area of the adjusted optimal viewing area.
  • the image processor 400 is specifically configured to: control the first column of sub-pixels to display the right eye image, the second column of sub-pixels and the third column of sub-pixels to display the left-eye image, and the fourth column of sub-pixels to display the right-eye image for optimal observation.
  • the area is translated to the right by half a lay length. Adjusting the display image of the first column sub-pixel to the fourth column sub-pixel corresponding to each raster unit by the above, so that the optimal viewing area is obtained After the spatial position is shifted to the left by half a lay length, the left eye position is located in the ideal left view area of the adjusted optimal observation area, and the right eye position is located in the ideal right view area of the adjusted optimal observation area.
  • each adjacent four rows of pixels uniquely correspond to one raster unit, and the slit of the grating unit corresponds to one row of pixels, and the grating of the grating unit corresponds to three adjacent rows of pixels; or, each adjacent four rows
  • the pixel uniquely corresponds to one grating unit, and the slit of the grating unit corresponds to two adjacent rows of pixels, and the grating of the grating unit corresponds to two adjacent rows of pixels.
  • the following may further include:
  • the observer is facing the display screen along the best viewing area, causing the left eye position not to fall into the ideal left viewing area of the optimal viewing area, and the right eye position does not fall into the ideal right viewing area of the optimal viewing area, including:
  • the distance between the eyes is far from the vertical distance of the display screen, the vertical distance between the position of the eyes and the display screen is not less than the farthest observation distance, and the farthest observation distance is the display position of the eyes when the observer is located in the optimal observation area.
  • Farthest vertical distance
  • the closest observation distance is the distance between the eyes of the observer when the observer is in the best observation area. The closest vertical distance.
  • the closest observation distance and the farthest observation distance are specifically referred to the above embodiments.
  • the image processor 400 is specifically configured to:
  • the above four adjustment methods can be used cyclically to solve the movement of the observer's eyes while moving back and forth relative to the display screen.
  • the image processor 400 Specifically used for:
  • the image processor 400 is specifically configured to:
  • the ideal left view area of the adjusted optimal viewing area, the right eye position is in the ideal right view area of the adjusted optimal viewing area.
  • the above four adjustment methods can be used cyclically to solve the movement of the observer's eyes while moving back and forth relative to the display screen.
  • the image processor 400 is specifically Used for:
  • the scene corresponding to each raster unit is adjusted for the scene in which the binocular position does not fall into the optimal observation area and the spatial distance of the binocular position deviates from the optimal observation area within the adjustment range of the embodiment of the present application.
  • the image display of one column to the fourth column of sub-pixels is used to realize the overall offset of the naked-eye 3D viewport, thereby ensuring that the optimal viewing area is shifted, and the binocular position is located in the optimal observation area of the offset.
  • the display screen 100 is also used for :
  • the second prompt information is displayed, and the second prompt information is used to prompt the observer to adjust the spatial position of the left and right eyes relative to the display screen, so that the observer moves the position of the two eyes, and adjusts the spatial position of the left and right eyes relative to the display screen, and the position of the two eyes is the most The spatial distance of the good viewing area is within the adjustable range.
  • the adjustable range of the entire naked-eye 3D viewing zone may be determined according to the simulated binocular position and the adjustment range of all the adjustment schemes of the foregoing embodiment.
  • the image The processor 400 is further configured to: switch the 3D image displayed by the display screen into a 2D image.
  • the embodiment of the present application provides a 3D display device, as shown in FIG. 13a, including a display screen 1301, a grating structure 1302, and a backlight 1300.
  • the grating structure 1302 is located between the display screen 1301 and the backlight 1300.
  • FIG. 13b in addition to the display screen 1301 and the grating structure 1302, at least one processor 1303, and a memory 1304 communicatively coupled to the at least one processor 1303; and a processor 1303 in FIG. 13b as an example Be explained.
  • a transceiver 1305 and an input device 1306 are also included.
  • the setting 1306 can be connected by a bus or other means, and the connection by a bus is taken as an example in FIG. 13b.
  • the input device 1306 can receive the input digital or character information and generate a key signal input related to user settings and function control of the naked eye 3D display device.
  • the display 1301 is an output device of the naked-eye 3D display device.
  • the display screen 1301 may be a touch screen that not only has a display function but also a function of receiving input control of a user.
  • the processor 1303 is a core of the terminal, which may be implemented by a CPU or the like, and the human eye tracker 300 and the image processor 400 mentioned in the foregoing embodiments may be implemented by the processor 1303.
  • the transceiver 1305 is configured to implement a wireless or wired communication function of the 3D display device, thereby enabling the 3D display device to interact with the server, for example, interacting with the web server to implement the function of browsing the webpage.
  • the memory 1304 is a non-volatile computer readable storage medium that can be used to store non-volatile software programs, non-volatile computer executable programs, and modules.
  • the processor 1303 executes various functional applications and data processing of the server by executing nonvolatile software programs, instructions, and modules stored in the memory 1304, that is, the display method of the naked-eye 3D display device in the above embodiment.
  • the memory 1304 can include a storage program area and a storage data area, wherein the storage program area can store an operating system, an application required by at least one function; the storage data area can store data created according to usage of the processing device of the request queue listening device Wait.
  • memory 1304 can include high speed random access memory 1304, and can also include non-volatile memory 1304, such as at least one disk storage 1304 piece, flash memory device, or other non-volatile solid state memory 1304 piece.
  • the memory 1304 can optionally include a memory 1304 remotely located relative to the processor 1303, which can be connected to the processing device of the listening method of the request queue via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the display screen 1301 includes multiple rows and columns of pixels
  • the grating structure 1302 includes a plurality of raster elements arranged in sequence, and at least each adjacent four rows of pixels uniquely correspond to one grating unit;
  • the memory 1304 stores instructions executable by at least one processor 1303, the instructions being at least A processor 1303 executes to enable the at least one processor 1303 to:
  • the optimal viewing area includes an ideal left viewing zone and an ideal right viewing zone belonging to a range of lay lengths;
  • an image display of the row pixels corresponding to each of the raster elements is adjusted to adjust a spatial position of the optimal viewing area.
  • the naked-eye 3D display device further includes an imaging device, which may be a front camera, or a camera connected to the processor 1303 in a wireless or wired manner, and the observer photographed by the processor 1303 through the camera is facing
  • the binocular image at the time of the display screen 1301 captures the binocular position of the viewer when facing the display screen 1301.
  • each adjacent four rows of pixels uniquely correspond to one of the grating units; if each adjacent four rows of pixels sequentially includes a first row of pixels, a second row of pixels, a third row of pixels, and a fourth row of pixels;
  • the processor 1303 can also:
  • controlling the first row of pixels and the second row of pixels corresponding to each of the barrier cells to display a left eye image, and controlling the corresponding to each of the raster cells Before acquiring the binocular position of the observer when facing the display screen 1301, controlling the first row of pixels and the second row of pixels corresponding to each of the barrier cells to display a left eye image, and controlling the corresponding to each of the raster cells
  • the third row of pixels and the fourth row of pixels display a right eye image
  • the processor 1303 can:
  • the ideal right view area is left Half a pitch, controlling the first row of pixels to display a left eye image, the second row of pixels and the third row of pixels displaying a right eye image, and the fourth row of pixels displaying a left eye image to The best observation area is shifted to the left by half a distance;
  • the first line of pixels is controlled to display a right eye image
  • the third row of pixels displays a left eye image
  • the fourth row of pixels displays a right eye image to translate the best viewing area to the right by a half pitch.
  • each of the grating units includes a grating and a slit disposed adjacent to each other, and each adjacent four rows of pixels uniquely correspond to one of the grating units, specifically, the slit of the grating unit corresponds to one row of pixels.
  • the grating of the grating unit corresponds to three adjacent rows of pixels; the processor 1303 is further capable of:
  • the farthest viewing distance is the farthest vertical distance of the binocular position from the display screen 1301 when the observer is in the optimal viewing area
  • each of the grating units includes a grating and a slit disposed adjacent to each other, and each adjacent four rows of pixels uniquely correspond to one grating unit, specifically: the slit of the grating unit corresponds to one row of pixels.
  • the grating of the grating unit corresponds to three adjacent rows of pixels; the processor 1303 can:
  • the vertical distance between the two eyes position and the display screen 1301 is not greater than the closest observed distance.
  • the recent observation distance is when the observer is located in the optimal observation area and the distance between the eyes is the distance from the display screen
  • the nearest vertical distance of 1301 controls the first row of pixels to display a left eye image, and the third row of pixels displays a right eye image; or
  • the second row of pixels is controlled to display a right eye image, and the fourth row of pixels displays a left eye image.
  • the embodiment of the present application provides a 3D display device.
  • the structure includes a display screen 1401 , a grating structure 1402 , and a backlight 1400 .
  • the grating structure 1402 is located on the display screen 1401 . Between the backlight 1400 and the backlight.
  • FIG. 14b in addition to the display screen 1401 and the raster structure 1402, at least one processor 1403 and a memory 1404 communicatively coupled to the at least one processor 1403 are included; and a processor 1403 is illustrated in FIG. 14b as an example.
  • a transceiver 1405 and an input device 1406 are also included.
  • the display screen 1401, the transceiver 1405, the processor 1403, the memory 1404, and the input device 1406 may be connected by a bus or other means, and the bus connection is taken as an example in FIG. 14b.
  • Input device 1406 can receive input numeric or character information and generate key signal inputs related to user settings and function control of the naked eye 3D display device.
  • the display screen 1401 is an output device of the naked-eye 3D display device.
  • the display screen 1401 may be a touch screen that not only has a display function but also a function of receiving input control of a user.
  • the processor 1403 is a core of the terminal, which can be implemented by a CPU or the like, and the human eye tracker 300 and the image processor 400 mentioned in the foregoing embodiments can be implemented by the processor 1403.
  • the transceiver 1405 is configured to implement a wireless or wired communication function of the 3D display device, so that the 3D display device can interact with the server, for example, interact with a web server to implement the function of browsing the webpage.
  • the memory 1404 is a non-volatile computer readable storage medium that can be used to store non-volatile software programs, non-volatile computer executable programs, and modules.
  • the processor 1403 executes by executing non-volatile software programs, instructions, and modules stored in the memory 1404.
  • Various functional applications of the line server and data processing that is, a display method of the naked-eye 3D display device in the above embodiment is implemented.
  • the memory 1404 can include a storage program area and a storage data area, wherein the storage program area can store an operating system, an application required by at least one function; the storage data area can store data created according to usage of the processing device of the request queue listening device Wait.
  • memory 1404 can include high speed random access memory 1404, and can also include non-volatile memory 1404, such as at least one disk storage 1404 piece, flash memory device, or other non-volatile solid state memory 1404 piece.
  • the memory 1404 can optionally include a memory 1404 remotely located relative to the processor 1403, which can be connected to the processing device of the listening method of the request queue via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the display screen 1401 includes a plurality of rows and columns of pixels, and each column of pixels includes three columns of sub-pixels;
  • the grating structure 1402 includes a plurality of grating units arranged in sequence, and at least each adjacent four columns of sub-pixels uniquely correspond to one grating unit;
  • the memory 1404 stores instructions executable by the at least one processor 1403, the instructions being executed by the at least one processor 1403 to enable the at least one processor 1403 to:
  • the optimal viewing area includes an ideal left viewing zone and an ideal right viewing zone belonging to a range of lay lengths;
  • the naked-eye 3D display device further includes a camera device, which may be a front camera, or a camera connected to the processor 1403 in a wireless or wired manner, and the processor 1403
  • the observer who photographed by the imaging device acquires the binocular position of the observer when facing the display screen 1401 on the image of both eyes when facing the display screen 1401.
  • a camera device which may be a front camera, or a camera connected to the processor 1403 in a wireless or wired manner, and the processor 1403
  • the observer who photographed by the imaging device acquires the binocular position of the observer when facing the display screen 1401 on the image of both eyes when facing the display screen 1401.
  • each adjacent four columns of sub-pixels uniquely correspond to one of the grating units; if each adjacent four columns of sub-pixels sequentially includes a first column of sub-pixels, a second column of sub-pixels, a third column of sub-pixels, and a fourth column of sub-pixels;
  • the processor 1403 is also capable of:
  • the first column sub-pixel and the second column sub-pixel corresponding to each of the raster units are controlled to display a left-eye image, and the corresponding to each raster unit is controlled.
  • the third column of subpixels and the fourth column of subpixels display a right eye image;
  • the naked-eye 3D viewport Determining a spatial position of the naked-eye 3D viewport according to an image display of a column of sub-pixels corresponding to each raster unit before acquiring a binocular position of the viewer facing the display screen 1401, the naked-eye 3D viewport including a left viewport a right viewing zone and a crosstalk zone; determining an optimal viewing area of the naked eye 3D viewing zone according to a spatial location of the naked eye 3D viewing zone;
  • the processor 1403 can:
  • the left eye position and the right eye position are respectively located in the ideal left view area and the left right half distance of the ideal right view area, controlling the first column of sub-pixels to display a left eye image, the second column of sub-pixels and The third column of sub-pixels displays a right eye image, and the fourth column of sub-pixels displays a left eye image to shift the optimal viewing area to the left by a half pitch;
  • the first column subpixel is controlled to display a right eye image
  • the second column subpixel and The third column of sub-pixels displays a left eye image
  • the fourth column of sub-pixels displays a right eye image to translate the best viewing area to the right by a half pitch.
  • each of the grating units includes a grating and a slit disposed adjacent to each other,
  • Each adjacent four columns of sub-pixels uniquely correspond to one of the grating units, specifically: the slit of the grating unit corresponds to one column of sub-pixels, and the grating of the grating unit corresponds to three adjacent columns of sub-pixels; the processor 1403 can :
  • the vertical distance between the binocular position and the display screen 1401 is not less than the farthest observation distance, wherein The farthest viewing distance is the farthest vertical distance of the binocular position from the display screen 1401 when the observer is located in the optimal viewing area;
  • the fourth column of sub-pixels is controlled to display a left eye image, and the first column of sub-pixels displays a right eye image.
  • each of the grating units includes a grating and a slit disposed adjacent to each other, and each adjacent four rows of pixels uniquely correspond to one grating unit, specifically: the slit of the grating unit corresponds to a column a pixel, the grating of the grating unit corresponding to three adjacent columns of sub-pixels; the processor 1403 can:
  • the vertical distance between the two eyes position and the display screen 1401 is not greater than the closest observed distance, wherein The closest viewing distance is the closest vertical distance of the binocular position from the display screen 1401 when the observer is in the optimal viewing area.
  • the second column of sub-pixels is controlled to display a right eye image, and the fourth column of sub-pixels displays a left eye image.
  • the naked-eye 3D display device of the embodiment of the present application exists in various forms, including but not limited to:
  • Mobile communication devices These devices are characterized by mobile communication functions and are mainly aimed at providing voice and data communication.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has computing and processing functions, and generally has mobile Internet access.
  • Such terminals include: PDAs, MIDs, and UMPC devices, such as the iPad.
  • Portable entertainment devices These devices can display and play multimedia content. Such devices include: audio, video players (such as iPod), handheld game consoles, e-books, and smart toys and portable car navigation devices.
  • embodiments of the present application provide a non-transitory computer storage medium storing computer-executable instructions for causing the computer A display method of the naked-eye 3D display device in any of the above embodiments is performed.
  • an embodiment of the present application provides a computer program product, the computer program product comprising a computing program stored on a non-transitory computer readable storage medium, the computer program comprising the computer executable instruction,
  • the computer executable instructions When executed by a computer, the computer is caused to perform the display method of the naked eye 3D display device in any of the above embodiments.
  • the pixels corresponding to two adjacent rows of each raster unit are changed to pixels corresponding to adjacent four rows or more of each raster unit, and correspondingly, each pixel of the display device is divided.
  • Switch control will change the naked-eye 3D viewports to achieve the offset of each viewport within a certain range.
  • the left eye of the human eye is located in the left viewport, and the right eye is located just right.
  • the right viewing zone which in turn reduces the crosstalk problem of the left and right eye images.
  • each raster element corresponds to two adjacent rows of pixels, and each of the raster elements corresponds to adjacent four or more rows of pixels, and the number of grating structures can be adjusted to make the grating
  • the number of cells is reduced to half of the existing one, and one raster unit corresponds to at least every four adjacent rows of pixels (or four columns of sub-pixels); the number of row pixels on the display panel can also be maintained by keeping the grating structure unchanged (or The number of column pixels is increased by 2 times as much as the existing one, so that one raster unit corresponds to at least every four adjacent rows of pixels (or four columns of sub-pixels).
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Abstract

一种裸眼3D显示设备及其显示方法,裸眼3D显示设备的显示屏包括多行多列像素;裸眼3D显示设备的光栅结构包括多个依次排列的光栅单元,至少每相邻的四行像素唯一对应一个光栅单元,方法包括:获取观察者在面向显示屏时的双眼位置(201);判断双眼位置是否落入裸眼3D视区的最佳观察区域(202);若双眼位置未落入最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,以调整最佳观察区域的空间位置(203)。通过调整每行像素的开关控制,将会重新改变各个裸眼3D视区来实现各个视区在一定范围内的偏移,各个裸眼3D视区整体偏移后,人眼的左眼刚好位于左视区,右眼刚好位于右视区,进而减弱了左右眼图像的串扰问题。

Description

裸眼3D显示设备及其显示方法
本申请要求在2016年9月28日提交中国专利局、申请号为201610861168.0、发明名称为“裸眼3D显示设备及其显示方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及裸眼3D领域,尤其涉及一种裸眼3D显示设备及其显示方法。
背景技术
串扰(Crosstalk)是影响3D观察效果的一个非常重要的因素。观察位置以及3D显示器件本身的设计、工艺都会导致串扰的产生。
对于通常的裸眼3D显示器件,裸眼3D视区大致可分为左视区,右视区和串扰区。当两只眼睛处于最佳观察区域时,如左眼刚好位于左视区,右眼刚好位于右视区时可以看到较好的裸眼3D图像。当其中一只眼睛位于串扰区,则看到的图像有明显的重影,会影响3D观察的效果。
因分辨率、3D显示的实现方式的差异,不同显示器件的串扰区域的范围大小也不同。
为了解决双眼位置在非最佳观察区域时存在的左右眼图像串扰问题,可利用裸眼3D眼球追踪技术,来定位人眼所处的观察区域,并根据人眼所处的观察区域,来调整各个裸眼3D视区显示的图像来减小左右眼的图像串扰。在具体图像调整方案的设计上存在一定难度,因为当对串扰区对应的显示图像进行调整后,也会对相应的左视区或者右视区造成影响,通过调整各个裸眼3D视区显示的图像来减小左右眼图像串扰,很难保证显示设备的图像质量。
综上,亟需一种更优的方案来解决观察者双眼的位置在非最佳观察区域时,存在的左右眼图像串扰问题。
发明内容
本申请实施例提供一种裸眼3D显示设备及其显示方法,用以解决观察者双眼的位置在非最佳观察区域时,存在的左右眼图像串扰问题。
本申请实施例提供一种裸眼3D显示设备的显示方法,所述裸眼3D显示设备的显示屏包括多行多列像素;所述裸眼3D显示设备的光栅结构包括多个依次排列的光栅单元,至少每相邻的四行像素唯一对应一个光栅单元,所述方法包括:
获取观察者在面向显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置。
可选的,本发明实施例中,至少每相邻的所述四行像素与对应的所述光栅单元在空间的图像投射区域包括间距小于一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置,包括:当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的行像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
本申请实施例提供一种裸眼3D显示设备的显示方法,所述裸眼3D显示设备的显示屏包括多行多列像素,每列像素包括三列子像素;所述裸眼3D显示设备的光栅结构包括多个依次排列的光栅单元,至少每相邻的四列子像素唯一对应一个光栅单元;所述方法包括:
获取观察者在面向显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的 列子像素的图像显示,以调整所述最佳观察区域的空间位置。
可选的,本发明实施例中,至少每相邻的所述四列子像素与对应的所述光栅单元在空间的图像投射区域包括间距小于一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置,包括:当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的列子像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
本申请实施例提供一种裸眼3D显示设备,包括:
显示屏,包括多行多列像素;光栅结构,包括多个依次排列的光栅单元,至少每相邻的四行像素唯一对应一个光栅单元;
人眼追踪器,用于获取观察者在面向显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;
图像处理器,用于在所述人眼追踪器确定所述双眼位置未落入所述最佳观察区域时,调整与每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置。
可选的,至少每相邻的所述四行像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;所述图像处理器具体用于:当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的行像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右 眼只看到右眼图像。
本申请实施例提供一种裸眼3D显示设备,包括:
显示屏,包括多行多列像素,每列像素包括三列子像素;
光栅结构,包括多个依次排列的光栅单元,至少每相邻的四列子像素唯一对应一个光栅单元;
人眼追踪器,用于获取观察者在面向显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;
图像处理器,用于在所述人眼追踪器确定所述双眼位置未落入所述最佳观察区域时,调整与每一光栅单元对应的列子像素的图像显示,以调整所述最佳观察区域的空间位置。
可选的,至少每相邻的所述四列子像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;所述图像处理器用于:当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的列子像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
基于相同的发明构思,本申请实施例提供一种3D显示设备,包括:显示屏、光栅结构、至少一个处理器,以及与所述至少一个处理器通信连接的存储器;
所述显示屏,包括多行多列像素;
所述光栅结构包括多个依次排列的光栅单元,至少每相邻的四行像素唯一对应一个光栅单元;
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
获取观察者在面向所述显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;以及在确定所述双眼位置未落入所述最佳观察区域时,调整与所述每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置。
可选的,至少每相邻的所述四行像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;所述处理器能够:当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的行像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
基于相同的发明构思,本申请实施例提供一种3D显示设备,包括:显示屏、光栅结构、至少一个处理器,以及与所述至少一个处理器通信连接的存储器;
所述显示屏,包括多行多列像素,每列像素包括三列子像素;
所述光栅结构包括多个依次排列的光栅单元,至少每相邻的四列子像素唯一对应一个光栅单元;
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
获取观察者在面向所述显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;以及在所述人眼追踪器确定所述双眼位置未落入所述最佳观察区域时,调整与所述每一光栅单元对应的列子像素的图像显示,以调整所述最佳观察区域的空间位置。可选的,至少每相邻的所述四列子像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个 裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;所述处理器能够:当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的列子像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
基于相同的发明构思,本申请实施例提供一种非易失性计算机存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一实施例中的裸眼3D显示设备的显示方法。
基于相同的发明构思,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括所述计算机可执行指令,当所述计算机可执行指令被计算机执行时,使所述计算机执行上述任一实施例中的裸眼3D显示设备的显示方法。
上述实施例中,通过调整每行像素或每列子像素的开关控制,和/或调整每行像素或每列子像素的显示内容,重新改变各个裸眼3D视区,来实现各个视区在一定范围内的偏移,各个裸眼3D视区整体偏移后,人眼的左眼刚好位于左视区,右眼刚好位于右视区,进而减弱了左右眼图像的串扰问题。
附图说明
图1为本申请实施例提供的一种裸眼3D视区划分的方法示意图;
图2为本申请实施例提供的一种裸眼3D显示设备的显示方法的方法示意图;
图3为本申请实施例提供的一种裸眼3D显示设备确定最佳观察区域的方法示意图;
图4a、图4b分别为本申请实施例提供的场景三和场景四的示意图;
图5为本申请实施例提供的一种裸眼3D显示设备的显示方法的方法示意 图;
图6为本申请实施例提供的一种裸眼3D显示设备确定最佳观察区域的方法示意图;
图7为本申请实施例提供的一种裸眼3D显示设备的结构示意图;
图8为本申请实施例提供的一种裸眼3D显示设备的结构示意图;
图9为本申请实施例提供的一种裸眼3D显示设备的结构示意图;
图10为本申请实施例提供的一种裸眼3D显示设备的结构示意图;
图11为本申请实施例提供的一种裸眼3D显示设备的裸眼3D视区的位置偏移示意图;
图12为本申请实施例提供的一种裸眼3D显示设备的最佳观察区域的示意图;
图13a和图13b为本申请实施例提供的一种裸眼3D显示设备的结构示意图;
图14a和图14b为本申请实施例提供的一种裸眼3D显示设备的结构示意图。
具体实施方式
下面结合附图,对本申请的技术方案进行描述。
本申请实施例的裸眼3D显示设备包括显示屏、背光源以及设置在显示面板(显示屏)和背光源之间的光栅结构(后置光栅),从背光模组发出的光从光栅结构的狭缝中透过并入射在显示面板的像素(或子像素)上,显示面板上的一部分像素(或子像素)显示左眼图像,一部分像素(或子像素)显示右眼图像,在3D显示模式下左眼图像和右眼图像交替显示,使得观察者的左眼看到左眼图像,右眼观察到右眼图像,进而实现裸眼3D显示。
在介绍本申请实施例的裸眼3D显示设备显示方法之前,对本申请实施例中的裸眼3D视区进行说明。
因为光的衍射效应、显示屏的串扰以及工艺偏差原因,很难实现在左视 区完全看不到右眼图像,在右视区完全看不到左眼图像,基于上述裸眼3D设备左视区、右视区和串扰区的示例,对本申请实施例中的裸眼3D显示设备的左视区、右视区和串扰区进行如下定义:
令左眼图像为纯白图像,右眼图像为纯黑图像,驱动显示面板上奇数行和偶数行像素(或子像素)交替打开时,显示屏显示的左眼图像为纯白图像,显示屏显示的右眼图像为纯黑图像,令人的双眼位于显示屏的不同观察区域观察左眼图像和右眼图像,同时检测进入观察者左眼的图像亮度和进入观察者右眼的图像亮度的比值,为了简单起见,用L/R代表左眼亮度与右眼亮度的比值,将L/R大于第一阈值的观察区域定义为左视区,将L/R小于第二阈值的观察区域定义为右视区,将L/R介于第一阈值和第二阈值之间的观察区域定义为串扰区。例如,第一阈值为5,第二阈值为0.2(第二阈值为第一阈值的倒数),则将L/R大于5的观察区域定义为左视区,将L/R介于0.2和5之间的观察区域定义为串扰区,将L/R小于0.2的观察区域定义为右视区。这样划分的目的是确定出主要看到左眼图像(右眼图像的亮度极弱)的可视区为左视区,主要看到右眼图像的可视区为右眼图像,看到的左眼图像和右眼图像相当的可视区为串扰区,位于串扰区的眼睛,左眼图像和右眼图像都能清晰的看到,左眼图像和右眼图像串扰产生较为严重的重影。
下面举例说明,如图1所示,用于显示左眼图像的像素(或子像素)为L,用于显示右眼图像的像素(或子像素)为R。像素(或子像素)L显示的图像在显示屏外部的部分或全部可视区,像素(或子像素)R显示的图像在显示屏外部的部分或全部可视区参见图1用双向箭头标示的可视范围,从图1中可以看出,各个像素(或子像素)L的可视区与各个像素(或子像素)R的可视区之间存在多个交叠区域。这些交叠区域构成的观察区域中,有一些区域主要看到左眼图像,有一些区域主要看到右眼图像,有一些区域既能看到左眼图像,又能看到右眼图像。裸眼3D显示设备的3D显示效果与观察者所处的位置有关,如果观察者的左眼位于主要看到左眼图像的区域,右眼位于主要看到右眼图像的区域,则能观察到较好的裸眼3D效果。
按照上述定义,裸眼3D显示设备显示的图像的可视区划分为各个左视区、右视区和串扰区。
值得说明的是,本申请实施例中,因一个光栅单元与至少每相邻四行像素或与一个光栅单元与至少每四列子像素对应,因此,各个左视区、右视区和串扰区是基于与每一个光栅单元对应的至少每相邻四行像素或至少每四列子像素的显示内容得到的。例如,一个光栅单元与每相邻四行像素对应,裸眼3D显示设备在进行3D显示时,令与每一个光栅单元对应的第一行像素和第二行像素显示左眼图像,与每一个光栅单元对应的第三行像素和第四行像素显示右眼图像,然后将所显示图像对应的可视区域划分为各个左视区、右视区和串扰区,并将各个裸眼3D视区相对于显示屏的空间位置进行存储。
观察者相对于显示屏的空间位置,决定了观察者左右眼与各个视区的对应关系,只有左眼位于左视区,右眼位于右视区才是最佳观察位置,观察到最佳的3D显示效果。左眼位于一个右视区或一个串扰区,右眼位于一个串扰区或者一个左视区,观察到的图像的3D效果都会受到影响。本申请实施例通过一个人眼跟踪器实现双眼位置、裸眼3D视区的空间位置的跟踪。
人眼跟踪器追踪双眼位置,主要包括:
首先,由裸眼3D显示设备的前置摄像头拍摄人脸图像,主要拍摄观察者面向裸眼3D显示设备的显示屏时的人脸图像;
其次,根据拍摄到的人脸图像,确定观察者的双眼相对于显示屏的空间位置;
例如,先识别人脸图像中双眼位置,即左眼瞳孔和右眼瞳孔的坐标;然后,根据双眼位置,得到人脸图像中的双眼中心位置和双眼瞳距;再根据左眼瞳孔和右眼瞳孔的坐标,计算到双眼中心的坐标和双眼瞳距,双眼中心的坐标为双眼瞳孔的坐标的连线中点的坐标,双眼瞳距为双眼瞳孔坐标间的距离;最后,根据双眼瞳距,可以确定出观察者双眼相对于显示屏的物理距离,再根据左眼瞳孔和右眼瞳孔的坐标,即可确定出左眼和右眼相对于显示屏的空间位置。
裸眼3D显示设备中预先存储了各个左视区、右视区、串扰区相对于显示屏的空间位置,本申请实施例中,通过调整与每个光栅单元对应的至少四行像素或与每个光栅单元对应的至少四列子像素显示的左右眼图像,来调整裸眼3D视区的空间位置,使裸眼3D视区发生偏移,人眼跟踪器能够追踪裸眼3D视区发生偏移前、后的空间位置。
例如,本申请实施例中,在每相邻的四行像素唯一对应一个光栅单元时,每相邻的四行像素与对应的光栅单元在空间的图像投射区域包括间距小于一个瞳距范围内的4个裸眼3D视区,任意相邻的两个裸眼3D视区叠加,形成了串扰度低于串扰阈值的理想观察区和理想观察区之间的串扰区,最佳观察区域为理想左视区或理想右视区。基于此,当左眼位置或者右眼位置落入任一串扰区时,将与串扰区邻近的理想观察区所对应的部分行像素的显示内容调整为相同,使得落入串扰区的左眼只看到左眼图像,或者落入串扰区的右眼只看到右眼图像。其中,每行像素的开和关都可以单独控制。
例如,本申请实施例中,在每相邻的四列子像素唯一对应一个光栅单元时,每相邻的四列子像素与对应的光栅单元在空间的图像投射区域包括间距小于一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个裸眼3D视区叠加,形成串扰度低于串扰阈值的理想观察区和理想观察区之间的串扰区,最佳观察区域为理想左视区或理想右视区。基于此,当左眼位置或者右眼位置落入任一串扰区时,将与串扰区邻近的理想观察区所对应的部分列子像素的显示内容调整为相同,使得落入串扰区的左眼只看到左眼图像,或者落入串扰区的右眼只看到右眼图像。其中,每列子像素的开和关都可以单独控制。
本申请实施例中,与现有技术相比,将每个光栅单元对应相邻两行像素变更为每个光栅单元对应相邻四行或以上的像素(或相邻四列或以上的子像素),相应地,显示设备的每个像素分为两半,分别控制每一半像素的开与关,以增加左视区或右视区的区域范围,当跟踪到人眼位置之后,通过调整每行像素(或者每列子像素)的开关控制和/或图像内容,将会重新改变各个裸眼3D视区来实现各个视区在一定范围内的偏移,各个裸眼3D视区整体偏移后, 人眼的左眼刚好位于左视区,右眼刚好位于右视区,进而减弱了左右眼图像的串扰问题。
值得说明的是,本申请实施例中,将每个光栅单元对应相邻两行像素变更为每个光栅单元对应相邻四行或以上的像素(或相邻四列或以上的子像素),可通过将光栅结构的数量进行调整,使得光栅单元数量减小为现有的一半,并且一个光栅单元至少对应相邻四行像素(或四列子像素);也可以通过保持光栅结构不变,将显示面板上的行像素的数量(或者是子像素列数)增加为现有的2倍,使一个光栅单元至少对应相邻四行像素(或相邻四列子像素)。
值得说明的是,本申请实施例中,各个裸眼3D视区整体偏移的范围不大于一个瞳距范围。
基于上述实施例中裸眼3D视区和双眼位置追踪的内容,对本申请实施例提供的裸眼3D显示设备的显示方法进行详细说明。
如图2所示,本申请实施例提供一种裸眼3D显示设备的显示方法,包括:
步骤201,获取观察者在面向显示屏时的双眼位置,双眼位置为双眼相对于显示屏的空间位置;
步骤202,判断双眼位置是否落入裸眼3D视区的最佳观察区域;
步骤203,若双眼位置未落入最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,以调整最佳观察区域的空间位置。
其中,上述裸眼3D显示设备通过后置光栅实现裸眼3D显示,其光栅结构位于显示屏和背光源之间。裸眼3D显示设备的显示屏包括多行多列像素,每列像素包括三列子像素。裸眼3D显示设备的光栅结构包括多个依次排列的光栅单元,每个光栅单元包括相邻设置的一个光栅和一个狭缝。显示屏的多行像素与光栅结构的多个光栅单元存在对应关系,为了实现整个裸眼3D视区以及裸眼3D视区的最佳观察区域的空间位置随着图像显示的变化而发生移动,令显示屏至少每相邻的四行像素唯一对应一个光栅单元。本申请实施例的这种显示方法适合纵屏显示的裸眼3D显示设备,光栅单元与每行像素平 行,与每列子像素垂直。
可选实施例中,每相邻的四行像素唯一对应一个光栅单元,每相邻的四行像素依次包括第一行像素,第二行像素,第三行像素和第四行像素。下面结合每相邻的四行像素唯一对应一个光栅单元的示例,来说明上述方法流程。
如图3所示,在步骤201之前,上述方法还包括:
步骤301,控制与每一个光栅单元对应的第一行像素和第二行像素显示左眼图像,控制与每一个光栅单元对应的第三行像素和第四行像素显示右眼图像;
步骤302,根据与每一光栅单元对应的行像素的图像显示,确定裸眼3D视区的空间位置;
步骤303,根据裸眼3D视区的空间位置,确定裸眼3D视区的最佳观察区域。
其中,每4行像素与对应光栅单元在空间形成以4个独立视场为一组的投射区域,每个投射区域有低于串扰阈值的理想观察区,和理想观察区之间的串扰区。最佳观察区为理想观察区,理想观察区为理想左视区或理想右视区,可根据第一行像素,第二行像素,第三行像素和第四行像素分别对应的显示内容来确定理想左视区和理想右视区的位置。
例如,如图12所示,第一行像素,第二行像素,第三行像素和第四行像素分别显示左眼图像、左眼图像、右眼图像、右眼图像时,这四行像素在空间的投射区域包括4个独立视场,4个独立视场叠加后至少形成了图12中所示的理想左视区,理想右视区,以及理想左视区与理想右视区之间的串扰区。
其中,左眼位置处于理想左视区,右眼位置处于理想右视区时,左右眼没有串扰,可以观察到最佳的3D显示效果。通常最佳观察区域与显示屏的中心区域对应。
优选的实施例中,可以针对不同的观察者,校准出符合该观察者双眼瞳距特征的裸眼3D视区,具体的,按照如下方式确定裸眼3D视区的空间位置:
步骤一,显示一帧裸眼3D校正图像,裸眼3D校正图像包括左眼校正图 像和右眼校正图像,左眼校正图像与右眼校正图像有明显的区别;
例如,左眼校正图像为红色图像,右眼校正图像为蓝色图像。红色图像和明显区别于蓝色图像。在校正时,令观察者交替闭上左眼和右眼,使观察者移动双眼位置,直至闭上左眼时,右眼只观察到主要是蓝色图像,观察到的红色图像亮度最低,观察者闭上右眼时,左眼主要观察到红色图像、蓝色图像亮度最低,此时为最佳观察位置。
步骤二,显示第一提示信息,第一提示信息用于提示观察者面向显示屏,交替闭上左眼和右眼,以根据左右眼交替观察到的图像,将左右眼相对于显示屏的位置调整为最佳观察位置,第一提示信息还用于提示观察者确定左右眼相对于显示屏的位置为最佳观察位置时反馈确认信息;
步骤三,在接收到确认信息时,拍摄观察者面向显示屏时的人脸校正图像;
步骤四,根据人脸校正图像,确定观察者校准的双眼瞳距和校准的双眼中心位置;
步骤五,根据校准的双眼中心位置与显示屏的中心位置的偏差,校正上述步骤301至步骤303得到的各个裸眼3D视区的空间位置,得到校准后的左视区、右视区和串扰区。预先进行裸眼3D视区的校准,基于校准后的裸眼3D视区与双眼位置的对应关系,来调整图像的显示,进一步可减弱位于串扰区的眼睛同时看到左眼图像和右眼图像所产生的重影。
基于步骤301至步骤303所确定的裸眼3D视区的最佳观察区域,上述步骤203具体包括:
若左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,则调整与每一光栅单元对应的第一行像素至第四行像素的图像显示。
可选的,在人左眼或右眼分别落入不同理想观察区时,所对应的像素显示该眼需要看到的正确内容。例如,左眼位置落入理想右视区时,右眼位置落入理想左视区时,将与左眼图像对应的像素的显示内容调整为右眼图像, 将与右眼图像对应的像素的显示内容调整为左眼图像。
可选的,在人左眼或右眼落入不同理想观察区之间的串扰区时,调整相邻理想观察区对应的显示内容为该眼需要看到的正确内容。将串扰区的相邻观察区显示内容设置为相同,人左眼或右眼不会看到两幅画面串扰的情况,串扰区也就变成了理想观察区,也就相当于动态消除了串扰区。其中,每行像素的开和关都可以单独控制。
例如,当左眼位置落入串扰区时,控制第一行像素至第四行像素分别对应的显示内容,将串扰区邻近的理想观察区对应的像素的显示内容调整为相同,使左眼位置处形成理想左视区,原来的串扰区消失,原来的串扰区变成了理想观察区,左眼位置只会看到左眼图像。
比如,第1至第4行像素依次显示左眼图像、左眼图像、右眼图像、右眼图像,形成的串扰区对应第2行像素和第3行像素,串扰区邻近的理想左视区分别对应第1行像素和第2行像素,串扰区邻近的理想右视区对应第3行像素和第4行像素,则串扰区邻近的理想视区对应的像素为第2行像素和第3行像素。当左眼位置落入串扰区时,为了使左眼位置所处的串扰区消失,将第2行像素和第3行像素的显示内容都设置为左眼图像,将第4行像素和第1行像素的显示内容都设置为右眼图像,即第1至第4行像素依次显示右眼图像、左眼图像、左眼图像、右眼图像,使得原来的串扰区变成了理想左视区,左眼位置只会看到左眼图像。当右眼位置落入串扰区时,为了使右眼位置所处的串扰区消失,将第2行像素和第3行像素的显示内容都设置为右眼图像,将第4行像素和第1行像素的显示内容都设置为左眼图像,即第1至第4行像素依次显示左眼图像、右眼图像、右眼图像、左眼图像,使得原来的串扰区变成了理想右视区,右眼位置只会看到右眼图像。可选的,将每相邻4行的像素的显示内容调整方式都与第1行至第4行像素的显示内容的调整方式相同。
下面结合具体的场景进行说明。
上述方法流程中,左眼位置未落入理想左视区,右眼位置未落入理想右 视区,包括观察者面向显示屏沿最佳观察区域左右偏移,或者观察者面向显示屏前后偏移。
观察者面向显示屏沿最佳观察区域左右偏移,导致左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括两种场景:
场景一,左眼位置、右眼位置分别位于理想左视区、理想右视区偏左半个瞳距;
场景二,左眼位置、右眼位置分别位于理想左视区、理想右视区偏右半个瞳距。
对于场景一,步骤203具体包括:控制与每一光栅单元对应的第一行像素显示左眼图像,第二行像素和第三行像素显示右眼图像,第四行像素显示左眼图像,以将最佳观察区域向左平移半个瞳距。
通过上述对与每一光栅单元对应的第一行像素至所述第四行像素的显示图像的调整,使得最佳观察区域的空间位置发生偏移的示意图参见图11。其中,与每一光栅单元对应的第一行像素至所述第四行像素分别显示左眼图像,右眼图像,右眼图像,左眼图像,与形成步骤303确定的最佳观察区域时,与每一光栅单元对应的第一行像素至所述第四行像素分别显示左眼图像,左眼图像,右眼图像,右眼图像相比,整个裸眼3D视区向左偏移,如图11所示,下面的裸眼3D视区为调整前的,上面的裸眼3D视区为调整后的,由于按照上述调整方式,裸眼3D视区整体偏移是以半个瞳距为步长进行偏移的,所以最佳观察区域的理想左视区和理想右视区同样向左偏移半个瞳距,因此,通过上述对与每一光栅单元对应的第一行像素至所述第四行像素的显示图像的调整,使得最佳观察区域的空间位置向左偏移半个瞳距后,左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
对于场景二,步骤203具体包括:控制与每一光栅单元对应的第一行像素显示右眼图像,第二行像素和第三行像素显示左眼图像,第四行像素显示 右眼图像,以将最佳观察区域向右平移半个瞳距。
与每一光栅单元对应的第一行像素至所述第四行像素分别显示右眼图像,左眼图像,左眼图像,右眼图像,与形成步骤303确定的最佳观察区域时,与每一光栅单元对应的第一行像素至所述第四行像素分别显示左眼图像,左眼图像,右眼图像,右眼图像相比,整个裸眼3D视区向右偏移,由于按照上述调整方式,裸眼3D视区整体偏移是以半个瞳距为步长进行偏移的,所以最佳观察区域的理想左视区和理想右视区同样向左偏移半个瞳距,因此,通过上述对与每一光栅单元对应的第一行像素至所述第四行像素的显示图像的调整,使得最佳观察区域的空间位置向左偏移半个瞳距后,左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。对于场景一和场景二,每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应一行像素,光栅单元的光栅对应相邻的三行像素;或者,每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应相邻两行像素,光栅单元的光栅对应另外相邻的两行像素。
观察者面向显示屏沿最佳观察区域前后偏移,导致左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括:
场景三,双眼位置距离显示屏的垂直距离较远,双眼位置与显示屏的垂直距离不小于最远观察距离,最远观察距离为观察者位于所述最佳观察区域时双眼位置距述显示屏的最远垂直距离;参见图4a,其中的an、bn、cn、dn分别代表第一行像素至第四行像素。
场景四,双眼位置距离显示屏的垂直距离较近时,双眼位置与所述显示屏的垂直距离不大于最近观察距离,最近观察距离为观察者位于最佳观察区域时双眼位置距离所述显示屏的最近垂直距离;参见图4b,其中的an、bn、cn、dn分别代表第一行像素至第四行像素。
对于最近观察区域和最远观察距离可以按照如下方式确定:
显示用于校正观察者的最佳观察位置的左眼校正图像和右眼校正图像,左眼校正图像为红色图像,右眼校正图像为蓝色图像。在校正时,令观察者 交替闭上左眼和右眼,使观察者移动双眼位置,直至闭上左眼时,右眼只观察到主要是蓝色图像,观察到的红色图像亮度最低,观察者闭上右眼时,左眼主要观察到红色图像、蓝色图像亮度最低,此时为最佳观察位置。基于此,提示观察者面向显示屏向前或向后移动,观察者交替闭上左眼和右眼,将左眼只看到红色图像,右眼只看到蓝色图像时,左右眼相对于显示屏的最近垂直距离,确定为最近观察位置;将左眼只看到红色图像,右眼只看到蓝色图像时,左右眼相对于显示屏的最远垂直距离,确定为最远观察位置。
在一种可选的实施例中,如果每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应一行像素,光栅单元的光栅对应相邻的三行像素;如图4a和图4b所示,则本申请实施例还可以通过调整与每一光栅单元对应的第一行像素至第四行像素的图像显示,来解决场景三和场景四涉及的双眼位置未落入最佳观察区域的问题。
对于场景三,基于光栅单元的狭缝对应一行像素,光栅单元的光栅对应相邻的三行像素的结构特征,步骤203包括以下几种调整方式:
第一种调整方式:若双眼位置与显示屏的垂直距离,在最远观察距离附近,则控制与每一光栅单元对应的第一行像素显示左眼图像,与每一光栅单元对应的第二行像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况)控制与每一光栅单元对应的第一行像素显示左眼图像,与每一光栅单元对应的第二行像素显示右眼图像的同时,还控制与每一光栅单元对应的第三行像素显示全黑图像,与每一光栅单元对应的第四行像素显示全黑图像,此处的显示全黑图像,可以视为将与每一光栅单元对应的第三行像素、第四行像素的开关关闭。
第二种调整方式:若双眼位置与显示屏的垂直距离,在最远观察距离附 近,则控制与每一光栅单元对应的第二行像素显示左眼图像,与每一光栅单元对应的第三行像素显示右眼图像以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况)控制与每一光栅单元对应的第二行像素显示左眼图像,与每一光栅单元对应的第三行像素显示右眼图像的同时,还控制与每一光栅单元对应的第一行像素显示全黑图像,与每一光栅单元对应的第四行像素显示全黑图像。
第三种调整方式:若双眼位置与显示屏的垂直距离,在最远观察距离附近,则控制与每一光栅单元对应的第三行像素显示左眼图像,与每一光栅单元对应的第四行像素显示右眼图像,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况)控制与每一光栅单元对应的第三行像素显示左眼图像,与每一光栅单元对应的第四行像素显示右眼图像的同时,还控制与每一光栅单元对应的第一行像素显示全黑图像,与每一光栅单元对应的第二行像素显示全黑图像。
第四种调整方式:若双眼位置与显示屏的垂直距离,在最远观察距离附近,则控制第四行像素显示左眼图像,第一行像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况)控制与每一光栅单元对应的第四行像素显示左眼图像,与每一光栅单元对应的第一行像素显示右眼图像的同时,还控制与每一光栅单元对应的第二行像素显示全黑图像,与每一光栅单元对应的第三行像素显示全黑图像。
上述四种调整方式可循环使用,以解决观察者双眼相对于显示屏前后移动的同时,左右也进行移动。
对于场景四,基于光栅单元的狭缝对应一行像素,光栅单元的光栅对应相邻的三行像素的结构特征,步骤203包括以下几种调整方式:
第一种调整方式:若双眼位置与显示屏的垂直距离,在最近观察距离附近,则控制与每一光栅单元对应的第一行像素显示左眼图像,与每一光栅单元对应的第三行像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离,小于最近观察距离(不包括双眼位置与显示屏的垂直距离过小,超过本申请实施例的调整范围的情况),则控制与每一光栅单元对应的第一行像素显示左眼图像,与每一光栅单元对应的第三行像素显示右眼图像的同时,还控制与每一光栅单元对应的第二行像素显示全黑图像,与每一光栅单元对应的第四行像素显示全黑图像。
第二种调整方式:若双眼位置与显示屏的垂直距离,在最近观察距离附近,则控制与每一光栅单元对应的第二行像素显示左眼图像,与每一光栅单元对应的第四行像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离小于最近观察距离,(不包括双眼位置与显示屏的垂直距离过近,超过本申请实施例的调整范围的情况)则控制与每一光栅单元对应的第二行像素显示左眼图像,与每一光栅单元对应的第四行像素显示右眼图像的同时,还控制与每一光栅单元对应的第一行像素显示全黑图像,与每一光栅单元对应的第三行像素显示全黑图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
第三种调整方式:若双眼位置与显示屏的垂直距离,在最近观察距离附 近,则控制与每一光栅单元对应的第一行像素显示右眼图像,与每一光栅单元对应的第三行像素显示左眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离,小于最近观察距离(不包括双眼位置与显示屏的垂直距离过近,超过本申请实施例的调整范围的情况),则控制与每一光栅单元对应的第一行像素显示右眼图像,与每一光栅单元对应的第三行像素显示左眼图像的同时,还控制与每一光栅单元对应的第二行像素显示全黑图像,与每一光栅单元对应的第四行像素显示全黑图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
第四种调整方式:若双眼位置与显示屏的垂直距离,在最近观察距离附近,则控制与每一光栅单元对应的第二行像素显示右眼图像,与每一光栅单元对应的第四行像素显示左眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离,小于最近观察距离(不包括双眼位置与显示屏的垂直距离过近,超过本申请实施例的调整范围的情况),则控制与每一光栅单元对应的第二行像素显示右眼图像,与每一光栅单元对应的第四行像素显示左眼图像的同时,还控制与每一光栅单元对应的第一行像素显示全黑图像,与每一光栅单元对应的第三行像素显示全黑图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
上述四种调整方式可循环使用,以解决观察者双眼相对于显示屏前后移动的同时,左右也进行移动。
上述方法流程步骤203中,仅针对双眼位置未落入最佳观察区域,且双眼位置偏离最佳观察区域的空间距离在本申请实施例的调整范围内的场景, 通过调整与每一光栅单元对应的第一行像素至第四行像素的图像显示,来实现裸眼3D视区的整体偏移,进而保证最佳观察区域偏移后,双眼位置位于偏移后额最佳观察区域内。
在上述步骤202中,若确定双眼位置未落入最佳观察区域,且双眼位置与显示屏的垂直距离过远或者过近,超过了本申请实施例的可调整范围,则在步骤203之前,上述方法还包括:
显示第二提示信息,第二提示信息用于提示观察者调整左右眼相对于显示屏的空间位置,以使双眼位置偏离最佳观察区域的空间距离在本申请实施例的调整范围内。
当观察者移动双眼位置,调整左右眼相对于显示屏的空间位置之后,双眼位置偏离最佳观察区域的空间距离在可调整范围内,可按照上述实施例中的几种场景示例执行步骤203。
本申请实施例中,整个裸眼3D视区(包括最佳观察区域)的可调整范围可以根据模拟双眼位置与上述实施例所有调整方案的调整范围来确定出合适的阈值。
可选的,在上述步骤202中,若确定双眼位置未落入最佳观察区域,且双眼位置偏离最佳观察区域的空间距离过远或者过近,超过本申请实施例的可调整范围,则上述方法还包括:将显示屏显示的3D图像切换为2D图像。基于同样的发明构思,本申请实施例还提供了另一种裸眼3D显示设备的显示方法,如图5所示,包括:
步骤501,获取观察者在面向显示屏时的双眼位置,双眼位置为双眼相对于显示屏的空间位置;
步骤502,判断双眼位置是否落入裸眼3D视区的最佳观察区域,最佳观察区域包括属于一个瞳距范围内的理想左视区和理想右视区;
步骤503,若双眼位置未落入最佳观察区域,调整与每一光栅单元对应的列子像素的图像显示,以调整最佳观察区域的空间位置。
值得说明的是,上述裸眼3D显示设备通过后置光栅实现裸眼3D显示, 其光栅结构位于显示屏和背光源之间。裸眼3D显示设备的显示屏包括多行多列像素,每列像素包括三列子像素。裸眼3D显示设备的光栅结构包括多个依次排列的光栅单元,每个光栅单元包括相邻设置的一个光栅和一个狭缝。显示屏的多行像素与光栅结构的多个光栅单元存在对应关系,为了实现整个裸眼3D视区以及裸眼3D视区的最佳观察区域的空间位置随着图像显示的变化而发生移动,令显示屏至少每相邻的四列子像素唯一对应一个光栅单元。本申请实施例的这种显示方法适合横屏显示的裸眼3D显示设备,光栅单元与每列子像素平行,与每行像素垂直。
可选实施例中,每相邻的四列子像素唯一对应一个光栅单元;每相邻的四列子像素依次包括第一列子像素,第二列子像素,第三列子像素和第四列子像素,下面结合每相邻的四列子像素唯一对应一个光栅单元的示例,来说明上述方法流程。
如图6所示,在步骤501之前,上述方法还包括:
步骤601,控制与每一个光栅单元对应的第一列子像素和第二列子像素显示左眼图像,控制与每一个光栅单元对应的第三列子像素和第四列子像素显示右眼图像;
步骤602,根据与每一光栅单元对应的列子像素的图像显示,确定裸眼3D视区的空间位置;
步骤603,根据裸眼3D视区的空间位置,确定裸眼3D视区的最佳观察区域。
可选的,每4个子像素与对应光栅单元在空间形成以4个独立视场为一组的投射区域,每个投射区域有低于串扰阈值的理想观察区,和理想观察区之间的串扰区。人左眼或右眼分别落入不同理想观察区时,所对应的子像素显示该眼需要看到的正确内容。人左眼或右眼落入不同理想观察区之间的串扰区时,调整相邻理想观察区对应的显示内容为该眼需要看到的正确内容。将串扰区的相邻观察区显示内容设置为相同,人左眼或右眼不会看到两幅画面串扰的情况,串扰区也就变成了理想观察区,也就相当于动态消除了串扰 区。
左眼位置处于理想左视区,右眼位置处于理想右视区时,左右眼没有串扰,可以观察到最佳的3D显示效果,通常最佳观察区域与显示屏的中心区域对应。
优选的实施例中,可以针对不同的观察者,校准出符合该观察者双眼瞳距特征的裸眼3D视区,具体的,按照如下方式确定裸眼3D视区的空间位置:
步骤一,显示一帧裸眼3D校正图像,裸眼3D校正图像包括左眼校正图像和右眼校正图像,左眼校正图像与右眼校正图像有明显的区别;
例如,左眼校正图像为红色图像,右眼校正图像为蓝色图像。红色图像和明显区别于蓝色图像。在校正时,令观察者交替闭上左眼和右眼,使观察者移动双眼位置,直至闭上左眼时,右眼只观察到主要是蓝色图像,观察到的红色图像亮度最低,观察者闭上右眼时,左眼主要观察到红色图像、蓝色图像亮度最低,此时为最佳观察位置。
步骤二,显示第一提示信息,第一提示信息用于提示观察者面向显示屏,交替闭上左眼和右眼,以根据左右眼交替观察到的图像,将左右眼相对于显示屏的位置调整为最佳观察位置,第一提示信息还用于提示观察者确定左右眼相对于显示屏的位置为最佳观察位置时反馈确认信息;
步骤三,在接收到确认信息时,拍摄观察者面向显示屏时的人脸校正图像;
步骤四,根据人脸校正图像,确定观察者校准的双眼瞳距和校准的双眼中心位置;
步骤五,根据校准的双眼中心位置与显示屏的中心位置的偏差,校正上述步骤501至步骤503得到的各个裸眼3D视区的空间位置,得到校准后的左视区、右视区和串扰区。预先进行裸眼3D视区的校准,基于校准后的裸眼3D视区与双眼位置的对应关系,来调整图像的显示,进一步可减弱位于串扰区的眼睛同时看到左眼图像和右眼图像所产生的重影。
基于步骤601至步骤603所确定的裸眼3D视区的最佳观察区域,上述步 骤503具体包括:
若左眼位置未落入理想左视区,右眼位置未落入理想右视区,则调整与每一光栅单元对应的第一列子像素至第四列子像素的图像显示。
其中,人左眼或右眼分别落入不同理想观察区时,所对应的子像素显示该眼需要看到的正确内容。人左眼或右眼落入不同理想观察区之间的串扰区时,调整相邻理想观察区对应的显示内容为该眼需要看到的正确内容。将串扰区的相邻观察区显示内容设置为相同,人左眼或右眼不会看到两幅画面串扰的情况,串扰区也就变成了理想观察区,也就相当于动态消除了串扰区。其中,每列子像素的开和关都可以单独控制。
例如,当右眼位置落入串扰区时,控制第一列子像素至第四列子像素分别对应的显示内容,将串扰区邻近的理想观察区对应的部分子像素的显示内容调整为相同,使左眼位置处形成理想左视区,原来的串扰区消失,原来的串扰区变成了理想观察区,左眼位置只会看到左眼图像。
比如,第1至第4列子像素依次显示左眼图像、左眼图像、右眼图像、右眼图像,形成的串扰区对应第2列子像素和第3列子像素,串扰区邻近的理想左视区分别对应第1列子像素和第2列子像素,串扰区邻近的理想右视区对应第3列子像素和第4列子像素,则串扰区邻近的理想视区对应的像素为第2列子像素和第3列子像素。当左眼位置落入串扰区时,为了使左眼位置所处的串扰区消失,将第2列子像素和第3列子像素的显示内容都设置为左眼图像,将第4列子像素和第1列子像素的显示内容都设置为右眼图像,即第1至第4列子像素依次显示右眼图像、左眼图像、左眼图像、右眼图像,使得原来的串扰区变成了理想左视区,左眼位置只会看到左眼图像。当右眼位置落入串扰区时,为了使右眼位置所处的串扰区消失,将第2列子像素和第3列子像素的显示内容都设置为右眼图像,将第4列子像素和第1列子像素的显示内容都设置为左眼图像,即第1至第4列子像素依次显示左眼图像、右眼图像、右眼图像、左眼图像,使得原来的串扰区变成了理想右视区,右眼位置只会看到右眼图像。可选的,将每相邻4列子像素的显示内容调整方 式都与第1至第4列子像素的显示内容的调整方式相同。
下面结合具体的场景进行说明。
上述方法流程中,左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括观察者面向显示屏沿最佳观察区域左右偏移,或者观察者面向显示屏前后偏移。
观察者面向显示屏沿最佳观察区域左右偏移,导致左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括两种场景:
场景一,左眼位置、右眼位置分别位于理想左视区、理想右视区偏左半个瞳距;
场景二,左眼位置、右眼位置分别位于理想左视区、理想右视区偏右半个瞳距。
对于场景一,步骤503具体包括:控制与每一光栅单元对应的第一列子像素显示左眼图像,第二列子像素和第三列子像素显示右眼图像,第四列子像素显示左眼图像,以将最佳观察区域向左平移半个瞳距。
通过上述对与每一光栅单元对应的第一列子像素至所述第四列子像素的显示图像的调整,使得最佳观察区域的空间位置发生偏移的示意图参见图11。其中,与每一光栅单元对应的第一列子像素至所述第四列子像素分别显示左眼图像,右眼图像,右眼图像,左眼图像,与形成步骤303确定的最佳观察区域时,与每一光栅单元对应的第一列子像素至所述第四列子像素分别显示左眼图像,左眼图像,右眼图像,右眼图像相比,整个裸眼3D视区向左偏移,如图11所示,下面的裸眼3D视区为调整前的,上面的裸眼3D视区为调整后的,由于按照上述调整方式,裸眼3D视区整体偏移是以半个瞳距为步长进行偏移的,所以最佳观察区域的理想左视区和理想右视区同样向左偏移半个瞳距,因此,通过上述对与每一光栅单元对应的第一列子像素至所述第四列子像素的显示图像的调整,使得最佳观察区域的空间位置向左偏移半个瞳距后,左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的 最佳观察区域的理想右视区。
对于场景二,步骤503具体包括:控制与每一光栅单元对应的第一列子像素显示右眼图像,第二列子像素和第三列子像素显示左眼图像,第四列子像素显示右眼图像,以将最佳观察区域向右平移半个瞳距。
与每一光栅单元对应的第一列子像素至所述第四列子像素分别显示右眼图像,左眼图像,左眼图像,右眼图像,与形成步骤303确定的最佳观察区域时,与每一光栅单元对应的第一列子像素至所述第四列子像素分别显示左眼图像,左眼图像,右眼图像,右眼图像相比,整个裸眼3D视区向右偏移,由于按照上述调整方式,裸眼3D视区整体偏移是以半个瞳距为步长进行偏移的,所以最佳观察区域的理想左视区和理想右视区同样向左偏移半个瞳距,因此,通过上述对与每一光栅单元对应的第一列子像素至所述第四列子像素的显示图像的调整,使得最佳观察区域的空间位置向左偏移半个瞳距后,左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
对于场景一和场景二,每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应一行像素,光栅单元的光栅对应相邻的三行像素;或者,每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应相邻两行像素,光栅单元的光栅对应另外相邻的两行像素。
观察者面向显示屏沿最佳观察区域前后偏移,导致左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括:
场景三,双眼位置距离显示屏的垂直距离较远,双眼位置与显示屏的垂直距离不小于最远观察距离,最远观察距离为观察者位于所述最佳观察区域时双眼位置距述显示屏的最远垂直距离;参见图4a,其中的an、bn、cn、dn分别代表第一列子像素至第四列子像素。
场景四,双眼位置距离显示屏的垂直距离较近时,双眼位置与所述显示屏的垂直距离不大于最近观察距离,最近观察距离为观察者位于最佳观察区域时双眼位置距离所述显示屏的最近垂直距离;参见图4b,其中的an、bn、cn、 dn分别代表第一列子像素至第四列子像素。
对于最近观察区域和最远观察距离可以按照如下方式确定:
显示用于校正观察者的最佳观察位置的左眼校正图像和右眼校正图像,左眼校正图像为红色图像,右眼校正图像为蓝色图像。在校正时,令观察者交替闭上左眼和右眼,使观察者移动双眼位置,直至闭上左眼时,右眼只观察到主要是蓝色图像,观察到的红色图像亮度最低,观察者闭上右眼时,左眼主要观察到红色图像、蓝色图像亮度最低,此时为最佳观察位置。基于此,提示观察者面向显示屏向前或向后移动,观察者交替闭上左眼和右眼,将左眼只看到红色图像,右眼只看到蓝色图像时,左右眼相对于显示屏的最近垂直距离,确定为最近观察位置;将左眼只看到红色图像,右眼只看到蓝色图像时,左右眼相对于显示屏的最远垂直距离,确定为最远观察位置。
在一种可选的实施例中,如果每相邻的四列子像素唯一对应一个光栅单元,且光栅单元的狭缝对应一列子像素,光栅单元的光栅对应相邻的三列子像素;如图4a和图4b所示,则本申请实施例还可以通过调整与每一光栅单元对应的第一列子像素至第四列子像素的图像显示,来解决场景三和场景四涉及的双眼位置未落入最佳观察区域的问题。
对于场景三,基于光栅单元的狭缝对应一列子像素,光栅单元的光栅对应相邻的三列子像素的结构特征,步骤503包括以下几种调整方式:
第一种调整方式:若双眼位置与显示屏的垂直距离,在最远观察距离附近,则控制与每一光栅单元对应的第一列子像素显示左眼图像,与每一光栅单元对应的第二列子像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况)控制与每一光栅单元对应的第一列子像素显示左眼图像,与每一光栅单元对应的第二列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第三 列子像素显示全黑图像,与每一光栅单元对应的第四列子像素显示全黑图像。
第二种调整方式:若双眼位置与显示屏的垂直距离,在最远观察距离附近,则控制与每一光栅单元对应的第二列子像素显示左眼图像,与每一光栅单元对应的第三列子像素显示右眼图像以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况)控制与每一光栅单元对应的第二列子像素显示左眼图像,与每一光栅单元对应的第三列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第一列子像素显示全黑图像,与每一光栅单元对应的第四列子像素显示全黑图像。
第三种调整方式:若双眼位置与显示屏的垂直距离,在最远观察距离附近,则控制与每一光栅单元对应的第三列子像素显示左眼图像,与每一光栅单元对应的第四列子像素显示右眼图像,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况)控制与每一光栅单元对应的第三列子像素显示左眼图像,与每一光栅单元对应的第四列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第一列子像素显示全黑图像,与每一光栅单元对应的第二列子像素显示全黑图像。
第四种调整方式:若双眼位置与显示屏的垂直距离,在最远观察距离附近,则控制第四列子像素显示左眼图像,第一列子像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况)控制与每一光栅单元对应的第四列子像素显示左眼图像,与每一光栅单元对 应的第一列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第二列子像素显示全黑图像,与每一光栅单元对应的第三列子像素显示全黑图像。
上述四种调整方式可循环使用,以解决观察者双眼相对于显示屏前后移动的同时,左右也进行移动。
对于场景四,基于光栅单元的狭缝对应一列子像素,光栅单元的光栅对应相邻的三列子像素的结构特征,步骤503包括以下几种调整方式:
第一种调整方式:若双眼位置与显示屏的垂直距离,在最近观察距离附近,则控制与每一光栅单元对应的第一列子像素显示左眼图像,与每一光栅单元对应的第三列子像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离,小于最近观察距离(不包括双眼位置与显示屏的垂直距离过小,超过本申请实施例的调整范围的情况),则控制与每一光栅单元对应的第一列子像素显示左眼图像,与每一光栅单元对应的第三列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第二列子像素显示全黑图像,与每一光栅单元对应的第四列子像素显示全黑图像。
第二种调整方式:若双眼位置与显示屏的垂直距离,在最近观察距离附近,则控制与每一光栅单元对应的第二列子像素显示左眼图像,与每一光栅单元对应的第四列子像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离小于最近观察距离,(不包括双眼位置与显示屏的垂直距离过近,超过本申请实施例的调整范围的情况)则控制与每一光栅单元对应的第二列子像素显示左眼图像,与每一光栅单元对应的第四列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第一列子像素显示全黑图像,与每一光栅单元对应的第三列子像素显示全黑图像, 以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
第三种调整方式:若双眼位置与显示屏的垂直距离,在最近观察距离附近,则控制与每一光栅单元对应的第一列子像素显示右眼图像,与每一光栅单元对应的第三列子像素显示左眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离,小于最近观察距离(不包括双眼位置与显示屏的垂直距离过近,超过本申请实施例的调整范围的情况),则控制与每一光栅单元对应的第一列子像素显示右眼图像,与每一光栅单元对应的第三列子像素显示左眼图像的同时,还控制与每一光栅单元对应的第二列子像素显示全黑图像,与每一光栅单元对应的第四列子像素显示全黑图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
第四种调整方式:若双眼位置与显示屏的垂直距离,在最近观察距离附近,则控制与每一光栅单元对应的第二列子像素显示右眼图像,与每一光栅单元对应的第四列子像素显示左眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离,小于最近观察距离(不包括双眼位置与显示屏的垂直距离过近,超过本申请实施例的调整范围的情况),则控制与每一光栅单元对应的第二列子像素显示右眼图像,与每一光栅单元对应的第四列子像素显示左眼图像的同时,还控制与每一光栅单元对应的第一列子像素显示全黑图像,与每一光栅单元对应的第三列子像素显示全黑图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视 区。
上述四种调整方式可循环使用,以解决观察者双眼相对于显示屏前后移动的同时,左右也进行移动。
上述方法流程步骤503中,仅针对双眼位置未落入最佳观察区域,且双眼位置偏离最佳观察区域的空间距离在本申请实施例的调整范围内的场景,通过调整与每一光栅单元对应的第一列子像素至第四列子像素的图像显示,来实现裸眼3D视区的整体偏移,进而保证最佳观察区域偏移后,双眼位置位于偏移后额最佳观察区域内。
在上述步骤202中,若确定双眼位置未落入最佳观察区域,且双眼位置与显示屏的垂直距离过远或者过近,超过了本申请实施例的可调整范围,则在步骤503之前,上述方法还包括:
显示第二提示信息,第二提示信息用于提示观察者调整左右眼相对于显示屏的空间位置,以使双眼位置偏离最佳观察区域的空间距离在可调整范围内。
当观察者移动双眼位置,调整左右眼相对于显示屏的空间位置之后,双眼位置偏离最佳观察区域的空间距离在可调整范围内,可按照上述实施例中的几种场景示例执行步骤503。
本申请实施例中,整个裸眼3D视区(包括最佳观察区域)的可调整范围可以根据模拟双眼位置与上述实施例所有调整方案的调整范围来确定出合适的阈值。
可选的,在上述步骤202中,若确定双眼位置未落入最佳观察区域,且双眼位置偏离最佳观察区域的空间距离过远或者过近,超过本申请实施例的可调整范围,则上述方法还包括:将显示屏显示的3D图像切换为2D图像。
本申请实施例中,与现有技术相比,将每个光栅单元对应相邻两行像素变更为每个光栅单元对应相邻四行或以上的像素,相应地,显示设备的每个像素分为两半,单独控制每一半像素的开与关,以增加左视区或右视区的区域范围,当跟踪到人眼位置之后,通过调整每行像素(或者每列子像素)的 开关控制,将会重新改变各个裸眼3D视区来实现各个视区在一定范围内的偏移,各个裸眼3D视区整体偏移后,人眼的左眼刚好位于左视区,右眼刚好位于右视区,进而减弱了左右眼图像的串扰问题。
值得说明的是,本申请实施例中,将每个光栅单元对应相邻两行像素变更为每个光栅单元对应相邻四行或以上的像素,可通过将光栅结构的数量进行调整,使得光栅单元数量减小为现有的一半,并且一个光栅单元至少对应每相邻四行像素(或四列子像素);也可以通过保持光栅结构不变,将显示面板上的行像素的数量(或者是列像素的数量)增加为现有的2倍,使一个光栅单元至少对应每相邻四行像素(或四列子像素)。
基于上述方法流程,本申请实施例还提供一种裸眼3D显示设备,用于执行上述方法流程。
如图7所示的一种裸眼3D显示设备,包括:
显示屏100,包括多行多列像素;
光栅结构200,包括多个依次排列的光栅单元,每个光栅单元包括相邻设置的一个光栅和一个狭缝;至少每相邻的四行像素唯一对应一个光栅单元;
人眼追踪器300,用于获取观察者在面向显示屏100时的双眼位置,双眼位置为双眼相对于显示屏100的空间位置;以及判断双眼位置是否落入裸眼3D视区的最佳观察区域,最佳观察区域包括属于一个瞳距范围内的理想左视区和理想右视区;
图像处理器400,用于在人眼追踪器300确定双眼位置未落入最佳观察区域时,调整与每一光栅单元对应的行像素的图像显示,以调整最佳观察区域的空间位置。
光栅结构200位于显示屏100和背光源500之间,显示屏100的多行像素与光栅结构200的多个光栅单元存在对应关系,为了实现整个裸眼3D视区以及裸眼3D视区的最佳观察区域的空间位置随着图像显示的变化而发生移动,令显示屏100至少每相邻的四行像素唯一对应一个光栅单元,一个光栅、一个狭缝分别对应至少两行像素。
可选实施例中,每相邻的四行像素唯一对应一个光栅单元;若每相邻的四行像素依次包括第一行像素,第二行像素,第三行像素和第四行像素。
如图9所示,一个光栅单元包括一个光栅和一个狭缝,每个光栅单元对应4行像素,如第1个光栅单元对应第1至第4行子像素;第2个光栅单元对应第5至第8行子像素;依次类推。每行像素包括多个像素单元,每个像素单元包括子像素R、子像素G和子像素B。
基于上述优选实例,图像处理器400还用于:在人眼追踪器300获取观察者在面向显示屏100时的双眼位置之前,控制与每一个光栅单元对应的第一行像素和第二行像素显示左眼图像,控制与每一个光栅单元对应的第三行像素和第四行像素显示右眼图像;
人眼追踪器300还用于:在获取观察者在面向显示屏100时的双眼位置之前,根据与每一光栅单元对应的行像素的图像显示,确定裸眼3D视区的空间位置,裸眼3D视区包括左视区、右视区和串扰区;以及根据裸眼3D视区的空间位置,确定裸眼3D视区的最佳观察区域。
人眼追踪器300按照上述方式确定的裸眼3D视区的最佳观察区域,是指包括属于一个瞳距范围内的理想左视区和理想右视区的可视区域,左眼位置处于理想左视区,右眼位置处于理想右视区时,左右眼没有串扰,可以观察到最佳的3D显示效果,通常最佳观察区域与显示屏100的中心区域对应。
优选的实施例中,可以针对不同的观察者,校准出符合该观察者双眼瞳距特征的裸眼3D视区,具体参见方法实施例。
基于人眼追踪器300按照上述方式确定的裸眼3D视区的最佳观察区域,图像处理器400具体用于:若人眼追踪器300确定左眼位置未落入理想左视区,右眼位置未落入理想右视区,则调整与每一光栅单元对应的第一行像素至第四行像素的图像显示。
人眼追踪器300确定左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括两种场景:
场景一,左眼位置、右眼位置分别位于理想左视区、理想右视区偏左半 个瞳距;
场景二,左眼位置、右眼位置分别位于理想左视区、理想右视区偏右半个瞳距。
对于场景一,图像处理器400具体用于:
控制与每一光栅单元对应的第一行像素显示左眼图像,第二行像素和第三行像素显示右眼图像,第四行像素显示左眼图像,以将最佳观察区域向左平移半个瞳距。通过上述对与每一光栅单元对应的第一行像素至所述第四行像素的显示图像的调整,使得最佳观察区域的空间位置向左偏移半个瞳距后,左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
对于场景二,图像处理器400具体用于:控制与每一光栅单元对应的第一行像素显示右眼图像,第二行像素和第三行像素显示左眼图像,第四行像素显示右眼图像,以将最佳观察区域向右平移半个瞳距。
通过上述对与每一光栅单元对应的第一行像素至所述第四行像素的显示图像的调整,使得最佳观察区域的空间位置向左偏移半个瞳距后,左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
对于场景一和场景二,每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应一行像素,光栅单元的光栅对应相邻的三行像素;或者,每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应相邻两行像素,光栅单元的光栅对应另外相邻的两行像素。
观察者面向显示屏沿最佳观察区域前后偏移,导致左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括:
场景三,双眼位置距离显示屏的垂直距离较远,双眼位置与显示屏的垂直距离不小于最远观察距离,最远观察距离为观察者位于所述最佳观察区域时双眼位置距述显示屏的最远垂直距离;
场景四,双眼位置距离显示屏的垂直距离较近时,双眼位置与所述显示 屏的垂直距离不大于最近观察距离,最近观察距离为观察者位于最佳观察区域时双眼位置距离所述显示屏的最近垂直距离。
对于最近观察区域和最远观察距离可以按照如下方式确定:
显示用于校正观察者的最佳观察位置的左眼校正图像和右眼校正图像,左眼校正图像为红色图像,右眼校正图像为蓝色图像。在校正时,令观察者交替闭上左眼和右眼,使观察者移动双眼位置,直至闭上左眼时,右眼只观察到主要是蓝色图像,观察到的红色图像亮度最低,观察者闭上右眼时,左眼主要观察到红色图像、蓝色图像亮度最低,此时为最佳观察位置。基于此,提示观察者面向显示屏向前或向后移动,观察者交替闭上左眼和右眼,将左眼只看到红色图像,右眼只看到蓝色图像时,左右眼相对于显示屏的最近垂直距离,确定为最近观察位置;将左眼只看到红色图像,右眼只看到蓝色图像时,左右眼相对于显示屏的最远垂直距离,确定为最远观察位置。
在一种可选的实施例中,如果每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应一行像素,光栅单元的光栅对应相邻的三行像素;如图4a和图4b所示,则本申请实施例还可以通过调整与每一光栅单元对应的第一行像素至第四行像素的图像显示,来解决场景三和场景四涉及的双眼位置未落入最佳观察区域的问题。
对于场景三,若双眼位置与显示屏的垂直距离,在最远观察距离附近,图像处理器400具体用于:
控制与每一光栅单元对应的第一行像素显示左眼图像,与每一光栅单元对应的第二行像素显示右眼图像;或者,
控制与每一光栅单元对应的第二行像素显示左眼图像,与每一光栅单元对应的第三行像素显示右眼图像;或者,
控制与每一光栅单元对应的第三行像素显示左眼图像,与每一光栅单元对应的第四行像素显示右眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况),图像处理器400具体用于:
控制与每一光栅单元对应的第一行像素显示左眼图像,与每一光栅单元对应的第二行像素显示右眼图像的同时,还控制与每一光栅单元对应的第三行像素显示全黑图像,与每一光栅单元对应的第四行像素显示全黑图像;或者,
控制与每一光栅单元对应的第二行像素显示左眼图像,与每一光栅单元对应的第三行像素显示右眼图像的同时,还控制与每一光栅单元对应的第一行像素显示全黑图像,与每一光栅单元对应的第四行像素显示全黑图像;或者,
控制与每一光栅单元对应的第三行像素显示左眼图像,与每一光栅单元对应的第四行像素显示右眼图像的同时,还控制与每一光栅单元对应的第一行像素显示全黑图像,与每一光栅单元对应的第二行像素显示全黑图像;或者,
控制与每一光栅单元对应的第四行像素显示左眼图像,与每一光栅单元对应的第一行像素显示右眼图像的同时,还控制与每一光栅单元对应的第二行像素显示全黑图像,与每一光栅单元对应的第三行像素显示全黑图像。
上述四种调整方式可循环使用,以解决观察者双眼相对于显示屏前后移动的同时,左右也进行移动。
对于场景四,若双眼位置与显示屏的垂直距离,在最近观察距离附近,图像处理器400具体用于:
控制与每一光栅单元对应的第一行像素显示左眼图像,与每一光栅单元对应的第三行像素显示右眼图像;或者,
控制与每一光栅单元对应的第二行像素显示左眼图像,与每一光栅单元对应的第四行像素显示右眼图像;或者,
控制与每一光栅单元对应的第一行像素显示右眼图像,与每一光栅单元 对应的第三行像素显示左眼图像;
控制与每一光栅单元对应的第二行像素显示右眼图像,与每一光栅单元对应的第四行像素显示左眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
可选的,若双眼位置与显示屏的垂直距离,小于最近观察距离(不包括双眼位置与显示屏的垂直距离过小,超过本申请实施例的调整范围的情况),则图像处理器400具体用于:
控制与每一光栅单元对应的第一行像素显示左眼图像,与每一光栅单元对应的第三行像素显示右眼图像的同时,还控制与每一光栅单元对应的第二行像素显示全黑图像,与每一光栅单元对应的第四行像素显示全黑图像;或者,
控制与每一光栅单元对应的第二行像素显示左眼图像,与每一光栅单元对应的第四行像素显示右眼图像的同时,还控制与每一光栅单元对应的第一行像素显示全黑图像,与每一光栅单元对应的第三行像素显示全黑图像;或者,
控制与每一光栅单元对应的第一行像素显示右眼图像,与每一光栅单元对应的第三行像素显示左眼图像的同时,还控制与每一光栅单元对应的第二行像素显示全黑图像,与每一光栅单元对应的第四行像素显示全黑图像;或者,
控制与每一光栅单元对应的第二行像素显示右眼图像,与每一光栅单元对应的第四行像素显示左眼图像的同时,还控制与每一光栅单元对应的第一行像素显示全黑图像,与每一光栅单元对应的第三行像素显示全黑图像。或者,
上述四种调整方式可循环使用,以解决观察者双眼相对于显示屏前后移动的同时,左右也进行移动。
上述实施例中,仅针对双眼位置未落入最佳观察区域,且双眼位置偏离 最佳观察区域的空间距离在本申请实施例的调整范围内的场景,通过调整与每一光栅单元对应的第一行像素至第四行像素的图像显示,来实现裸眼3D视区的整体偏移,进而保证最佳观察区域偏移后,双眼位置位于偏移后额最佳观察区域内。
若人眼追踪器300确定双眼位置未落入最佳观察区域,且双眼位置与显示屏的垂直距离过远或者过近,超过了本申请实施例的可调整范围,所述显示屏100还用于显示第二提示信息,第二提示信息用于提示观察者调整左右眼相对于显示屏100的空间位置,以使观察者移动双眼位置,调整左右眼相对于显示屏的空间位置之后,双眼位置偏离最佳观察区域的空间距离在可调整范围内。
本申请实施例中,整个裸眼3D视区(包括最佳观察区域)的可调整范围可以根据模拟双眼位置与上述实施例所有调整方案的调整范围来确定出合适的阈值。
可选的,若人眼追踪器300确定双眼位置未落入最佳观察区域,且双眼位置偏离最佳观察区域的空间距离过远或者过近,超过本申请实施例的可调整范围,则图像处理器400还用于:将显示屏显示的3D图像切换为2D图像。
本申请上述实施例中的可选地一些其它特征与上述方法实施例中的相同,可参见上述方法实施例中的论述,在此不再赘述。
基于相同的发明构思,本申请实施例提供如图8所示的一种裸眼3D显示设备,包括:
显示屏100,包括多行多列像素,每列像素包括三列子像素;
光栅结构600,包括多个依次排列的光栅单元,每个光栅单元包括相邻设置的一个光栅和一个狭缝;至少每相邻的四列子像素唯一对应一个光栅单元;
人眼追踪器300,用于获取观察者在面向显示屏100时的双眼位置,双眼位置为双眼相对于显示屏100的空间位置;以及判断双眼位置是否落入裸眼3D视区的最佳观察区域,最佳观察区域包括属于一个瞳距范围内的理想左视区和理想右视区;
图像处理器400,用于在人眼追踪器300确定双眼位置未落入最佳观察区域时,调整与每一光栅单元对应的列子像素的图像显示,以调整最佳观察区域的空间位置。
光栅结构600位于显示屏100和背光源500之间,显示屏100的多列子像素与光栅结构600的多个光栅单元存在对应关系,为了实现整个裸眼3D视区以及裸眼3D视区的最佳观察区域的空间位置随着图像显示的变化而发生移动,令显示屏100至少每相邻的四列子像素唯一对应一个光栅单元。
可选实施例中,每相邻的四列子像素唯一对应一个光栅单元;每相邻的四列子像素依次包括第一列子像素,第二列子像素,第三列子像素和第四列子像素。如图10所示,一个光栅单元包括一个光栅和一个狭缝,每个光栅单元对应4列子像素,如第1个光栅单元对应的4列子像素为:第一列子像素R,第二列子像素G,第三列子像素B和第四列子像素R。第2个光栅单元对应的4列子像素为:第一列子像素G,第二列子像素B,第三列子像素R和第四列子像素G。依次类推,第3个光栅单元对应的4列子像素为:第一列子像素B,第二列子像素R,第三列子像素G和第四列子像素B。
基于上述优选实例,图像处理器400还用于:在人眼追踪器300获取观察者在面向显示屏100时的双眼位置之前,控制与每一个光栅单元对应的第一列子像素和第二列子像素显示左眼图像,控制与每一个光栅单元对应的第三列子像素和第四列子像素显示右眼图像;
人眼追踪器300还用于:在获取观察者在面向显示屏100时的双眼位置之前,根据与每一光栅单元对应的列子像素的图像显示,确定裸眼3D视区的空间位置,裸眼3D视区包括左视区、右视区和串扰区;根据裸眼3D视区的空间位置,确定裸眼3D视区的最佳观察区域。
人眼追踪器300按照上述方式确定的裸眼3D视区的最佳观察区域,是指包括属于一个瞳距范围内的理想左视区和理想右视区的可视区域,左眼位置处于理想左视区,右眼位置处于理想右视区时,左右眼没有串扰,可以观察到最佳的3D显示效果,通常最佳观察区域与显示屏100的中心区域对应。
优选的实施例中,可以针对不同的观察者,校准出符合该观察者双眼瞳距特征的裸眼3D视区。具体参见上述实施例。
基于人眼追踪器300按照上述方式确定的裸眼3D视区的最佳观察区域,图像处理器400具体用于:
若人眼追踪器300确定左眼位置未落入理想左视区,右眼位置未落入理想右视区,则调整与每一光栅单元对应的第一列子像素至第四列子像素的图像显示。
人眼追踪器300确定左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括观察者面向显示屏沿最佳观察区域左右偏移,或者观察者面向显示屏前后偏移。
观察者面向显示屏沿最佳观察区域左右偏移,导致左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括两种场景:
场景一,左眼位置、右眼位置分别位于理想左视区、理想右视区偏左半个瞳距;
场景二,左眼位置、右眼位置分别位于理想左视区、理想右视区偏右半个瞳距。
对于场景一,图像处理器400具体用于:控制第一列子像素显示左眼图像,第二列子像素和第三列子像素显示右眼图像,第四列子像素显示左眼图像,以将最佳观察区域向左平移半个瞳距。通过上述对与每一光栅单元对应的第一列子像素至所述第四列子像素的显示图像的调整,使得最佳观察区域的空间位置向左偏移半个瞳距后,左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
对于场景二,图像处理器400具体用于:控制第一列子像素显示右眼图像,第二列子像素和第三列子像素显示左眼图像,第四列子像素显示右眼图像,以将最佳观察区域向右平移半个瞳距。通过上述对与每一光栅单元对应的第一列子像素至所述第四列子像素的显示图像的调整,使得最佳观察区域 的空间位置向左偏移半个瞳距后,左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
对于场景一和场景二,每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应一行像素,光栅单元的光栅对应相邻的三行像素;或者,每相邻的四行像素唯一对应一个光栅单元,且光栅单元的狭缝对应相邻两行像素,光栅单元的光栅对应另外相邻的两行像素。
除了上述两种场景之外,若人眼追踪器300确定双眼位置未落入最佳观察区域的情况还可包括:
观察者面向显示屏沿最佳观察区域前后偏移,导致左眼位置未落入最佳观察区域的理想左视区,右眼位置未落入最佳观察区域的理想右视区,包括:
场景三,双眼位置距离显示屏的垂直距离较远,双眼位置与显示屏的垂直距离不小于最远观察距离,最远观察距离为观察者位于所述最佳观察区域时双眼位置距述显示屏的最远垂直距离;
场景四,双眼位置距离显示屏的垂直距离较近时,双眼位置与所述显示屏的垂直距离不大于最近观察距离,最近观察距离为观察者位于最佳观察区域时双眼位置距离所述显示屏的最近垂直距离。
最近观察距离和最远观察距离,具体参见上述实施例。
对于场景三,若双眼位置与显示屏的垂直距离,在最远观察距离附近,图像处理器400具体用于:
控制与每一光栅单元对应的第一列子像素显示左眼图像,与每一光栅单元对应的第二列子像素显示右眼图像;或者,
控制与每一光栅单元对应的第二列子像素显示左眼图像,与每一光栅单元对应的第三列子像素显示右眼图像,或者,
控制与每一光栅单元对应的第三列子像素显示左眼图像,与每一光栅单元对应的第四列子像素显示右眼图像,或者,
控制与每一光栅单元对应的第四列子像素显示左眼图像,与每一光栅单元对应的第一列子像素显示右眼图像,以调整最佳观察区域的空间位置的移 动。
上述四种调整方式可循环使用,以解决观察者双眼相对于显示屏前后移动的同时,左右也进行移动。
可选的,若双眼位置与显示屏的垂直距离继续大于最远观察距离,(不包括双眼位置与显示屏的垂直距离过远,超过本申请实施例的调整范围的情况),图像处理器400具体用于:
控制与每一光栅单元对应的第一列子像素显示左眼图像,与每一光栅单元对应的第二列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第三列子像素显示全黑图像,与每一光栅单元对应的第四列子像素显示全黑图像;或者,
控制与每一光栅单元对应的第二列子像素显示左眼图像,与每一光栅单元对应的第三列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第一列子像素显示全黑图像,与每一光栅单元对应的第四列子像素显示全黑图像;或者,
控制与每一光栅单元对应的第三列子像素显示左眼图像,与每一光栅单元对应的第四列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第一列子像素显示全黑图像,与每一光栅单元对应的第二列子像素显示全黑图像;或者,
控制与每一光栅单元对应的第四列子像素显示左眼图像,与每一光栅单元对应的第一列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第二列子像素显示全黑图像,与每一光栅单元对应的第三列子像素显示全黑图像。
对于场景四,若双眼位置与显示屏的垂直距离,在最近观察距离附近,图像处理器400具体用于:
控制与每一光栅单元对应的第一列子像素显示左眼图像,与每一光栅单元对应的第三列子像素显示右眼图像;或者,
控制与每一光栅单元对应的第二列子像素显示左眼图像,与每一光栅单 元对应的第四列子像素显示右眼图像;或者,
控制与每一光栅单元对应的第一列子像素显示右眼图像,与每一光栅单元对应的第三列子像素显示左眼图像;
控制与每一光栅单元对应的第二列子像素显示右眼图像,与每一光栅单元对应的第四列子像素显示左眼图像,以调整最佳观察区域的空间位置的移动,使得左眼位置位于调整后的最佳观察区域的理想左视区,右眼位置位于调整后的最佳观察区域的理想右视区。
上述四种调整方式可循环使用,以解决观察者双眼相对于显示屏前后移动的同时,左右也进行移动。
可选的,若双眼位置与显示屏的垂直距离,小于最近观察距离(不包括双眼位置与显示屏的垂直距离过小,超过本申请实施例的调整范围的情况),则图像处理器400具体用于:
控制与每一光栅单元对应的第一列子像素显示左眼图像,与每一光栅单元对应的第三列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第二列子像素显示全黑图像,与每一光栅单元对应的第四列子像素显示全黑图像;或者,
控制与每一光栅单元对应的第二列子像素显示左眼图像,与每一光栅单元对应的第四列子像素显示右眼图像的同时,还控制与每一光栅单元对应的第一列子像素显示全黑图像,与每一光栅单元对应的第三列子像素显示全黑图像;或者,
控制与每一光栅单元对应的第一列子像素显示右眼图像,与每一光栅单元对应的第三列子像素显示左眼图像的同时,还控制与每一光栅单元对应的第二列子像素显示全黑图像,与每一光栅单元对应的第四列子像素显示全黑图像;或者,
控制与每一光栅单元对应的第二列子像素显示右眼图像,与每一光栅单元对应的第四列子像素显示左眼图像的同时,还控制与每一光栅单元对应的第一列子像素显示全黑图像,与每一光栅单元对应的第三列子像素显示全黑 图像。
上述实施例中,仅针对双眼位置未落入最佳观察区域,且双眼位置偏离最佳观察区域的空间距离在本申请实施例的调整范围内的场景,通过调整与每一光栅单元对应的第一列子像素至第四列子像素的图像显示,来实现裸眼3D视区的整体偏移,进而保证最佳观察区域偏移后,双眼位置位于偏移后额最佳观察区域内。
若人眼追踪器300确定双眼位置未落入最佳观察区域,且双眼位置与显示屏的垂直距离过远或者过近,超过了本申请实施例的可调整范围,则显示屏100还用于:
显示第二提示信息,第二提示信息用于提示观察者调整左右眼相对于显示屏的空间位置,以使观察者移动双眼位置,调整左右眼相对于显示屏的空间位置之后,双眼位置偏离最佳观察区域的空间距离在可调整范围内。
本申请实施例中,整个裸眼3D视区(包括最佳观察区域)的可调整范围可以根据模拟双眼位置与上述实施例所有调整方案的调整范围来确定出合适的阈值。
可选的,若人眼追踪器300确定双眼位置未落入最佳观察区域,且双眼位置偏离最佳观察区域的空间距离过远或者过近,超过本申请实施例的可调整范围,则图像处理器400还用于:将显示屏显示的3D图像切换为2D图像。
本申请上述实施例中的可选地一些其它特征与上述方法实施例中的相同,可参见上述方法实施例中的论述,在此不再赘述。
基于相同的发明构思,本申请实施例提供一种3D显示设备,如图13a,包括显示屏1301,光栅结构1302和背光源1300,光栅结构1302位于显示屏1301和背光源1300之间。如图13b所示,除了包括显示屏1301和光栅结构1302之外,还包括:至少一个处理器1303,以及与至少一个处理器1303通信连接的存储器1304;图13b中以一个处理器1303为例进行说明。如图13b,还包括:收发器1305和输入装置1306。
其中,显示屏1301,收发器1305、处理器1303、存储器1304和输入装 置1306可以通过总线或者其他方式连接,图13b中以通过总线连接为例。
其中,输入装置1306可接收输入的数字或字符信息,以及产生与裸眼3D显示设备的用户设置以及功能控制有关的键信号输入。
显示屏1301为裸眼3D显示设备的输出装置。显示屏1301可以为触控屏,其不仅具有显示功能还有接收用户的输入控制的功能。
其中,处理器1303为终端的核心,其可以由CPU等实现,并且前述实施例中提及的人眼追踪器300和图像处理器400可以由该处理器1303实现。
其中,收发器1305用于实现3D显示设备的无线或有线通信功能,从而使得3D显示设备能够与服务器交互,例如与网页服务器进行交互,以实现浏览网页的功能。存储器1304作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。处理器1303通过运行存储在存储器1304中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述实施方式中的裸眼3D显示设备的显示方法。
存储器1304可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据请求队列的监听的处理装置的使用所创建的数据等。此外,存储器1304可以包括高速随机存取存储器1304,还可以包括非易失性存储器1304,例如至少一个磁盘存储器1304件、闪存器件、或其他非易失性固态存储器1304件。在一些实施例中,存储器1304可选包括相对于处理器1303远程设置的存储器1304,这些远程存储器1304可以通过网络连接至请求队列的监听方法的处理装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
具体的,所述显示屏1301,包括多行多列像素;
所述光栅结构1302包括多个依次排列的光栅单元,至少每相邻的四行像素唯一对应一个光栅单元;
存储器1304存储有可被至少一个处理器1303执行的指令,指令被至少 一个处理器1303执行,以使至少一个处理器1303能够:
获取观察者在面向所述显示屏1301时的双眼位置,所述双眼位置为双眼相对于所述显示屏1301的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域,所述最佳观察区域包括属于一个瞳距范围内的理想左视区和理想右视区;以及
在确定所述双眼位置未落入所述最佳观察区域时,调整与所述每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置。
其中,裸眼3D显示设备还包括一个摄像装置,该摄像装置可以是前置摄像头,也可以是以无线或有线方式与处理器1303连接的摄像头,处理器1303通过该摄像装置拍摄的观察者在面向所述显示屏1301时的双眼的图像来获取观察者在面向所述显示屏1301时的双眼位置。具体可参见本申请方法部分的具体内容。
可选的,每相邻的四行像素唯一对应一个所述光栅单元;若每相邻的四行像素依次包括第一行像素,第二行像素,第三行像素和第四行像素;所述处理器1303还能够:
在获取观察者在面向显示屏1301时的双眼位置之前,控制与每一个光栅单元对应的所述第一行像素和所述第二行像素显示左眼图像,控制与每一个光栅单元对应的所述第三行像素和所述第四行像素显示右眼图像;以及
在获取观察者在面向显示屏1301时的双眼位置之前,根据与每一光栅单元对应的行像素的图像显示,确定所述裸眼3D视区的空间位置,所述裸眼3D视区包括左视区、右视区和串扰区;以及根据所述裸眼3D视区的空间位置,确定所述裸眼3D视区的最佳观察区域;以及
若所述确定左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,则调整与每一光栅单元对应的所述第一行像素至所述第四行像素的图像显示。
可选的,所述处理器1303能够:
若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏左 半个瞳距,则控制所述第一行像素显示左眼图像,所述第二行像素和所述第三行像素显示右眼图像,所述第四行像素显示左眼图像,以将所述最佳观察区域向左平移半个瞳距;
若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏右半个瞳距,则控制所述第一行像素显示右眼图像,所述第二行像素和所述第三行像素显示左眼图像,所述第四行像素显示右眼图像,以将所述最佳观察区域向右平移半个瞳距。
可选的,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述光栅单元的狭缝对应一行像素,所述光栅单元的光栅对应相邻的三行像素;所述处理器1303还能够:
若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏1301的垂直距离不小于所述最远观察距离,所述最远观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏1301的最远垂直距离;则
控制所述第一行像素显示左眼图像,所述第二行像素显示右眼图像;或者,
控制所述第二行像素显示左眼图像,所述第三行像素显示右眼图像;或者,
控制所述第三行像素显示左眼图像,所述第四行像素显示右眼图像;或者控制所述第四行像素显示左眼图像,所述第一行像素显示右眼图像。
可选的,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个光栅单元,具体为:所述光栅单元的狭缝对应一行像素,所述光栅单元的光栅对应相邻的三行像素;所述处理器1303能够:
若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏1301的垂直距离不大于所述最近观察距离,所述最近观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏 1301的最近垂直距离,则控制所述第一行像素显示左眼图像,所述第三行像素显示右眼图像;或者,
控制所述第二行像素显示左眼图像,所述第四行像素显示右眼图像;或者,控制所述第一行像素显示右眼图像,所述第三行像素显示左眼图像;或者,
控制所述第二行像素显示右眼图像,所述第四行像素显示左眼图像。
本申请上述实施例中的可选地一些其它特征与上述方法实施例中的相同,可参见上述方法实施例中的论述,在此不再赘述。
基于相同的发明构思,本申请实施例提供一种3D显示设备,如图14所示,其结构包括如图14a,包括显示屏1401,光栅结构1402和背光源1400,光栅结构1402位于显示屏1401和背光源1400之间。如图14b所示,除了显示屏1401和光栅结构1402,还包括:至少一个处理器1403,以及与至少一个处理器1403通信连接的存储器1404;图14b中以一个处理器1403为例进行说明。如图14b,还包括:收发器1405和输入装置1406。
其中,显示屏1401,收发器1405、处理器1403、存储器1404和输入装置1406可以通过总线或者其他方式连接,图14b中以通过总线连接为例。
输入装置1406可接收输入的数字或字符信息,以及产生与裸眼3D显示设备的用户设置以及功能控制有关的键信号输入。
显示屏1401为裸眼3D显示设备的输出装置。显示屏1401可以为触控屏,其不仅具有显示功能还有接收用户的输入控制的功能。
处理器1403为终端的核心,其可以由CPU等实现,并且前述实施例中提及的人眼追踪器300和图像处理器400可以由该处理器1403实现。
其中,收发器1405用于实现3D显示设备的无线或有线通信功能,从而使得3D显示设备能够与服务器交互,例如与网页服务器进行交互,以实现浏览网页的功能。存储器1404作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。处理器1403通过运行存储在存储器1404中的非易失性软件程序、指令以及模块,从而执 行服务器的各种功能应用以及数据处理,即实现上述实施方式中的裸眼3D显示设备的显示方法。
存储器1404可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据请求队列的监听的处理装置的使用所创建的数据等。此外,存储器1404可以包括高速随机存取存储器1404,还可以包括非易失性存储器1404,例如至少一个磁盘存储器1404件、闪存器件、或其他非易失性固态存储器1404件。在一些实施例中,存储器1404可选包括相对于处理器1403远程设置的存储器1404,这些远程存储器1404可以通过网络连接至请求队列的监听方法的处理装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
具体的,所述显示屏1401,包括多行多列像素,每列像素包括三列子像素;
所述光栅结构1402包括多个依次排列的光栅单元,至少每相邻的四列子像素唯一对应一个光栅单元;
所述存储器1404存储有可被所述至少一个处理器1403执行的指令,所述指令被所述至少一个处理器1403执行,以使所述至少一个处理器1403能够:
获取观察者在面向所述显示屏1401时的双眼位置,所述双眼位置为双眼相对于所述显示屏1401的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域,所述最佳观察区域包括属于一个瞳距范围内的理想左视区和理想右视区;以及
在所述人眼追踪器确定所述双眼位置未落入所述最佳观察区域时,调整与所述每一光栅单元对应的列子像素的图像显示,以调整所述最佳观察区域的空间位置。
其中,裸眼3D显示设备还包括一个摄像装置,该摄像装置可以是前置摄像头,也可以是以无线或有线方式与处理器1403连接的摄像头,处理器1403 通过该摄像装置拍摄的观察者在面向所述显示屏1401时的双眼的图像来获取观察者在面向所述显示屏1401时的双眼位置。具体可参见本申请方法部分的具体内容。
可选的,每相邻的四列子像素唯一对应一个所述光栅单元;若每相邻的四列子像素依次包括第一列子像素,第二列子像素,第三列子像素和第四列子像素;所述处理器1403还能够:
在获取观察者在面向显示屏1401时的双眼位置之前,控制与每一个光栅单元对应的所述第一列子像素和所述第二列子像素显示左眼图像,控制与每一个光栅单元对应的所述第三列子像素和所述第四列子像素显示右眼图像;以及
在获取观察者在面向显示屏1401时的双眼位置之前,根据与每一光栅单元对应的列子像素的图像显示,确定所述裸眼3D视区的空间位置,所述裸眼3D视区包括左视区、右视区和串扰区;根据所述裸眼3D视区的空间位置,确定所述裸眼3D视区的最佳观察区域;以及
若确定左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,则调整与每一光栅单元对应的所述第一列子像素至所述第四列子像素的图像显示。
可选的,所述处理器1403能够:
若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏左半个瞳距,则控制所述第一列子像素显示左眼图像,所述第二列子像素和所述第三列子像素显示右眼图像,所述第四列子像素显示左眼图像,以将所述最佳观察区域向左平移半个瞳距;
若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏右半个瞳距,则控制所述第一列子像素显示右眼图像,所述第二列子像素和所述第三列子像素显示左眼图像,所述第四列子像素显示右眼图像,以将所述最佳观察区域向右平移半个瞳距。
可选的,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,所述 每相邻的四列子像素唯一对应一个所述光栅单元,具体为:所述光栅单元的狭缝对应一列子像素,所述光栅单元的光栅对应相邻的三列子像素;所述处理器1403能够:
若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,所述双眼位置与所述显示屏1401的垂直距离不小于所述最远观察距离,其中,所述最远观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏1401的最远垂直距离;则
控制所述第一列子像素显示左眼图像,所述第二列子像素显示右眼图像;或者,
控制所述第二列子像素显示左眼图像,所述第三列子像素显示右眼图像;或者,
控制所述第三列子像素显示左眼图像,所述第四列子像素显示右眼图像;或者,
控制所述第四列子像素显示左眼图像,所述第一列子像素显示右眼图像。
可选的,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,所述每相邻的四行像素唯一对应一个光栅单元,具体为:所述光栅单元的狭缝对应一列子像素,所述光栅单元的光栅对应相邻的三列子像素;所述处理器1403能够:
若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏1401的垂直距离不大于所述最近观察距离,其中,所述最近观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏1401的最近垂直距离,则
控制所述第一列子像素显示左眼图像,所述第三列子像素显示右眼图像;或者,
控制所述第二列子像素显示左眼图像,所述第四列子像素显示右眼图像;或者,
控制所述第一列子像素显示右眼图像,所述第三列子像素显示左眼图像; 或者,
控制所述第二列子像素显示右眼图像,所述第四列子像素显示左眼图像。
本申请上述实施例中的可选地一些其它特征与上述方法实施例中的相同,可参见上述方法实施例中的论述,在此不再赘述。
本申请实施例的裸眼3D显示设备以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)其他具有数据交互功能的电子装置,可穿戴式设备,智能电视等。
基于相同的发明构思,本申请实施例提供一种非易失性计算机存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一实施例中的裸眼3D显示设备的显示方法。
基于相同的发明构思,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括所述计算机可执行指令,当所述计算机可执行指令被计算机执行时,使所述计算机执行上述任一实施例中的裸眼3D显示设备的显示方法。
本申请实施例中,与现有技术相比,将每个光栅单元对应相邻两行像素变更为每个光栅单元对应相邻四行或以上的像素,相应地,显示设备的每个像素分为两半,单独控制每一半像素的开与关,以增加左视区或右视区的区域范围,当跟踪到人眼位置之后,通过调整每行像素(或者每列子像素)的 开关控制,将会重新改变各个裸眼3D视区来实现各个视区在一定范围内的偏移,各个裸眼3D视区整体偏移后,人眼的左眼刚好位于左视区,右眼刚好位于右视区,进而减弱了左右眼图像的串扰问题。
值得说明的是,本申请实施例中,将每个光栅单元对应相邻两行像素变更为每个光栅单元对应相邻四行或以上的像素,可通过将光栅结构的数量进行调整,使得光栅单元数量减小为现有的一半,并且一个光栅单元至少对应每相邻四行像素(或四列子像素);也可以通过保持光栅结构不变,将显示面板上的行像素的数量(或者是列像素的数量)增加为现有的2倍,使一个光栅单元至少对应每相邻四行像素(或四列子像素)。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (40)

  1. 一种裸眼3D显示设备的显示方法,其特征在于,所述裸眼3D显示设备的显示屏包括多行多列像素;所述裸眼3D显示设备的光栅结构包括多个依次排列的光栅单元,至少每相邻的四行像素唯一对应一个光栅单元,所述方法包括:
    获取观察者在面向显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;
    判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;
    若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置。
  2. 如权利要求1所述的显示方法,其特征在于,
    至少每相邻的所述四行像素与对应的所述光栅单元在空间的图像投射区域包括间距小于一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;
    若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置,包括:
    当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的行像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
  3. 如权利要求2所述的显示方法,其特征在于,每相邻的四行像素唯一对应一个光栅单元;
    若每相邻的四行像素依次包括第一行像素,第二行像素,第三行像素和第四行像素,在获取观察者在面向显示屏时的双眼位置之前,所述方法还包括:
    控制与每一个光栅单元对应的所述第一行像素和所述第二行像素显示左 眼图像,控制与每一个光栅单元对应的所述第三行像素和所述第四行像素显示右眼图像;
    根据与每一光栅单元对应的行像素的图像显示,确定所述裸眼3D视区的空间位置;
    根据所述裸眼3D视区的空间位置,确定所述裸眼3D视区的最佳观察区域。
  4. 如权利要求3所述的显示方法,其特征在于,
    所述若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,包括:
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏左半个瞳距,则控制所述第一行像素显示左眼图像,所述第二行像素和所述第三行像素显示右眼图像,所述第四行像素显示左眼图像,以将所述最佳观察区域向左平移半个瞳距;
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏右半个瞳距,则控制所述第一行像素显示右眼图像,所述第二行像素和所述第三行像素显示左眼图像,所述第四行像素显示右眼图像,以将所述最佳观察区域向右平移半个瞳距。
  5. 如权利要求3所述的显示方法,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一行像素,所述光栅对应相邻的三行像素;
    所述若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,还包括:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不小于最远观察距离,所述最远观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最远垂直距离;则
    控制所述第一行像素显示左眼图像,所述第二行像素显示右眼图像;或 者,
    控制所述第二行像素显示左眼图像,所述第三行像素显示右眼图像;或者,
    控制所述第三行像素显示左眼图像,所述第四行像素显示右眼图像;或者控制所述第四行像素显示左眼图像,所述第一行像素显示右眼图像。
  6. 如权利要求3所述的显示方法,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一行像素,所述光栅对应相邻的三行像素;
    所述若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,包括:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不大于所述最近观察距离,所述最近观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最近垂直距离,则控制所述第一行像素显示左眼图像,所述第三行像素显示右眼图像;或者,
    控制所述第二行像素显示左眼图像,所述第四行像素显示右眼图像;或者,控制所述第一行像素显示右眼图像,所述第三行像素显示左眼图像;或者,
    控制所述第二行像素显示右眼图像,所述第四行像素显示左眼图像。
  7. 一种裸眼3D显示设备的显示方法,其特征在于,所述裸眼3D显示设备的显示屏包括多行多列像素,每列像素包括三列子像素;所述裸眼3D显示设备的光栅结构包括多个依次排列的光栅单元,至少每相邻的四列子像素唯一对应一个光栅单元;所述方法包括:
    获取观察者在面向显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;
    判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;
    若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的 列子像素的图像显示,以调整所述最佳观察区域的空间位置。
  8. 如权利要求7所述的显示方法,其特征在于,
    至少每相邻的所述四列子像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;
    若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置,包括:
    当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的列子像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
  9. 如权利要求8所述的显示方法,其特征在于,每相邻的四列子像素唯一对应一个光栅单元;
    若每相邻的四列子像素依次包括第一列子像素,第二列子像素,第三列子像素和第四列子像素,在获取观察者在面向显示屏时的双眼位置之前,所述方法还包括:
    控制与每一个光栅单元对应的所述第一列子像素和所述第二列子像素显示左眼图像,控制与每一个光栅单元对应的所述第三列子像素和所述第四列子像素显示右眼图像;
    根据与每一光栅单元对应的列子像素的图像显示,确定所述裸眼3D视区的空间位置;
    根据所述裸眼3D视区的空间位置,确定所述裸眼3D视区的最佳观察区域。
  10. 如权利要求9所述的显示方法,其特征在于,
    所述若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的列子像素的图像显示,包括:
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏左 半个瞳距,则控制所述第一列子像素显示左眼图像,所述第二列子像素和所述第三列子像素显示右眼图像,所述第四列子像素显示左眼图像,以将所述最佳观察区域向左平移半个瞳距;
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏右半个瞳距,则控制所述第一列子像素显示右眼图像,所述第二列子像素和所述第三列子像素显示左眼图像,所述第四列子像素显示右眼图像,以将所述最佳观察区域向右平移半个瞳距。
  11. 如权利要求9所述的显示方法,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,所述每相邻的四列子像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一列子像素,所述光栅对应相邻的三列子像素;
    所述若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的列子像素的图像显示,包括:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,所述双眼位置与所述显示屏的垂直距离不小于所述最远观察距离,其中,所述最远观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最远垂直距离;则
    控制所述第一列子像素显示左眼图像,所述第二列子像素显示右眼图像;或者,
    控制所述第二列子像素显示左眼图像,所述第三列子像素显示右眼图像;或者,
    控制所述第三列子像素显示左眼图像,所述第四列子像素显示右眼图像;或者,
    控制所述第四列子像素显示左眼图像,所述第一列子像素显示右眼图像。
  12. 如权利要求9所述的显示方法,其特征在于,
    每个光栅单元包括相邻设置的一个光栅和一个狭缝,所述每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一列子像素,所述 光栅对应相邻的三列子像素;
    所述若所述双眼位置未落入所述最佳观察区域,调整与每一光栅单元对应的列子像素的图像显示,包括:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不大于所述最近观察距离,其中,所述最近观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最近垂直距离,则
    控制所述第一列子像素显示左眼图像,所述第三列子像素显示右眼图像;或者,
    控制所述第二列子像素显示左眼图像,所述第四列子像素显示右眼图像;或者,
    控制所述第一列子像素显示右眼图像,所述第三列子像素显示左眼图像;或者,
    控制所述第二列子像素显示右眼图像,所述第四列子像素显示左眼图像。
  13. 一种裸眼3D显示设备,其特征在于,包括:
    显示屏,包括多行多列像素;
    光栅结构,包括多个依次排列的光栅单元,至少每相邻的四行像素唯一对应一个光栅单元;
    人眼追踪器,用于获取观察者在面向显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;
    图像处理器,用于在所述人眼追踪器确定所述双眼位置未落入所述最佳观察区域时,调整与每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置。
  14. 如权利要求13所述的裸眼3D显示设备,其特征在于,至少每相邻的所述四行像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠 加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;
    所述图像处理器具体用于:
    当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的行像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
  15. 如权利要求14所述的裸眼3D显示设备,其特征在于,每相邻的四行像素唯一对应一个光栅单元;
    若每相邻的四行像素依次包括第一行像素,第二行像素,第三行像素和第四行像素,则
    所述图像处理器还用于:在所述人眼追踪器获取观察者在面向显示屏时的双眼位置之前,控制与每一个光栅单元对应的所述第一行像素和所述第二行像素显示左眼图像,控制与每一个光栅单元对应的所述第三行像素和所述第四行像素显示右眼图像;
    所述人眼追踪器还用于:在获取观察者在面向显示屏时的双眼位置之前,根据与每一光栅单元对应的行像素的图像显示,确定所述裸眼3D视区的空间位置;以及根据所述裸眼3D视区的空间位置,确定所述裸眼3D视区的最佳观察区域。
  16. 如权利要求15所述的裸眼3D显示设备,其特征在于,所述图像处理器具体用于:
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏左半个瞳距,则控制所述第一行像素显示左眼图像,所述第二行像素和所述第三行像素显示右眼图像,所述第四行像素显示左眼图像,以将所述最佳观察区域向左平移半个瞳距;
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏右半个瞳距,则控制所述第一行像素显示右眼图像,所述第二行像素和所述第三行像素显示左眼图像,所述第四行像素显示右眼图像,以将所述最佳观察 区域向右平移半个瞳距。
  17. 如权利要求15所述的裸眼3D显示设备,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一行像素,所述光栅对应相邻的三行像素;所述图像处理器还用于:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不小于所述最远观察距离,所述最远观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最远垂直距离;则
    控制所述第一行像素显示左眼图像,所述第二行像素显示右眼图像;或者,
    控制所述第二行像素显示左眼图像,所述第三行像素显示右眼图像;或者,
    控制所述第三行像素显示左眼图像,所述第四行像素显示右眼图像;或者控制所述第四行像素显示左眼图像,所述第一行像素显示右眼图像。
  18. 如权利要求15所述的裸眼3D显示设备,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一行像素,所述光栅对应相邻的三行像素;所述图像处理器具体用于:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不大于所述最近观察距离,所述最近观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最近垂直距离,则控制所述第一行像素显示左眼图像,所述第三行像素显示右眼图像;或者,
    控制所述第二行像素显示左眼图像,所述第四行像素显示右眼图像;或者,控制所述第一行像素显示右眼图像,所述第三行像素显示左眼图像;或者,
    控制所述第二行像素显示右眼图像,所述第四行像素显示左眼图像。
  19. 一种裸眼3D显示设备,其特征在于,包括:
    显示屏,包括多行多列像素,每列像素包括三列子像素;
    光栅结构,包括多个依次排列的光栅单元,至少每相邻的四列子像素唯一对应一个光栅单元;
    人眼追踪器,用于获取观察者在面向显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;
    图像处理器,用于在所述人眼追踪器确定所述双眼位置未落入所述最佳观察区域时,调整与每一光栅单元对应的列子像素的图像显示,以调整所述最佳观察区域的空间位置。
  20. 如权利要求19所述的裸眼3D显示设备,其特征在于,
    至少每相邻的所述四列子像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;
    所述图像处理器用于:
    当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的列子像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
  21. 如权利要求20所述的裸眼3D显示设备,其特征在于,每相邻的四列子像素唯一对应一个光栅单元;
    若每相邻的四列子像素依次包括第一列子像素,第二列子像素,第三列子像素和第四列子像素,则
    所述图像处理器还用于:在所述人眼追踪器获取观察者在面向显示屏时的双眼位置之前,控制与每一个光栅单元对应的所述第一列子像素和所述第二列子像素显示左眼图像,控制与每一个光栅单元对应的所述第三列子像素 和所述第四列子像素显示右眼图像;
    所述人眼追踪器还用于:在获取观察者在面向显示屏时的双眼位置之前,根据与每一光栅单元对应的列子像素的图像显示,确定所述裸眼3D视区的空间位置;根据所述裸眼3D视区的空间位置,确定所述裸眼3D视区的最佳观察区域。
  22. 如权利要求21所述的裸眼3D显示设备,其特征在于,所述图像处理器具体用于:
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏左半个瞳距,则控制所述第一列子像素显示左眼图像,所述第二列子像素和所述第三列子像素显示右眼图像,所述第四列子像素显示左眼图像,以将所述最佳观察区域向左平移半个瞳距;
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏右半个瞳距,则控制所述第一列子像素显示右眼图像,所述第二列子像素和所述第三列子像素显示左眼图像,所述第四列子像素显示右眼图像,以将所述最佳观察区域向右平移半个瞳距。
  23. 如权利要求21所述的裸眼3D显示设备,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,所述每相邻的四列子像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一列子像素,所述光栅对应相邻的三列子像素;所述图像处理器具体用于:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,所述双眼位置与所述显示屏的垂直距离不小于所述最远观察距离,其中,所述最远观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最远垂直距离;则
    控制所述第一列子像素显示左眼图像,所述第二列子像素显示右眼图像;或者,
    控制所述第二列子像素显示左眼图像,所述第三列子像素显示右眼图像;或者,
    控制所述第三列子像素显示左眼图像,所述第四列子像素显示右眼图像;或者,
    控制所述第四列子像素显示左眼图像,所述第一列子像素显示右眼图像。
  24. 如权利要求21所述的裸眼3D显示设备,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,所述每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一列子像素,所述光栅对应相邻的三列子像素;
    所述图像处理器具体用于:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不大于所述最近观察距离,其中,所述最近观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最近垂直距离,则
    控制所述第一列子像素显示左眼图像,所述第三列子像素显示右眼图像;或者,
    控制所述第二列子像素显示左眼图像,所述第四列子像素显示右眼图像;或者,
    控制所述第一列子像素显示右眼图像,所述第三列子像素显示左眼图像;或者,
    控制所述第二列子像素显示右眼图像,所述第四列子像素显示左眼图像。
  25. 一种裸眼3D显示设备,其特征在于,包括:显示屏、光栅结构、至少一个处理器,以及与所述至少一个处理器通信连接的存储器;
    所述显示屏,包括多行多列像素;
    所述光栅结构包括多个依次排列的光栅单元,至少每相邻的四行像素唯一对应一个光栅单元;
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
    获取观察者在面向所述显示屏时的双眼位置,所述双眼位置为双眼相对 于所述显示屏的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域,所述最佳观察区域包括属于一个瞳距范围内的理想左视区和理想右视区;以及
    在确定所述双眼位置未落入所述最佳观察区域时,调整与所述每一光栅单元对应的行像素的图像显示,以调整所述最佳观察区域的空间位置。
  26. 如权利要求21所述的裸眼3D显示设备,其特征在于,
    至少每相邻的所述四行像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;
    所述处理器能够:
    当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近的所述理想观察区所对应的行像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
  27. 如权利要求26所述的裸眼3D显示设备,其特征在于,每相邻的四行像素唯一对应一个所述光栅单元;
    若每相邻的四行像素依次包括第一行像素,第二行像素,第三行像素和第四行像素,所述处理器还能够:
    在获取观察者在面向显示屏时的双眼位置之前,控制与每一个光栅单元对应的所述第一行像素和所述第二行像素显示左眼图像,控制与每一个光栅单元对应的所述第三行像素和所述第四行像素显示右眼图像;以及
    在获取观察者在面向显示屏时的双眼位置之前,根据与每一光栅单元对应的行像素的图像显示,确定所述裸眼3D视区的空间位置;以及根据所述裸眼3D视区的空间位置,确定所述裸眼3D视区的最佳观察区域。
  28. 如权利要求27所述的裸眼3D显示设备,其特征在于,所述处理器能够:
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏左 半个瞳距,则控制所述第一行像素显示左眼图像,所述第二行像素和所述第三行像素显示右眼图像,所述第四行像素显示左眼图像,以将所述最佳观察区域向左平移半个瞳距;
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏右半个瞳距,则控制所述第一行像素显示右眼图像,所述第二行像素和所述第三行像素显示左眼图像,所述第四行像素显示右眼图像,以将所述最佳观察区域向右平移半个瞳距。
  29. 如权利要求27所述的裸眼3D显示设备,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一行像素,所述光栅对应相邻的三行像素;所述处理器还能够:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不小于所述最远观察距离,所述最远观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最远垂直距离;则
    控制所述第一行像素显示左眼图像,所述第二行像素显示右眼图像;或者,
    控制所述第二行像素显示左眼图像,所述第三行像素显示右眼图像;或者,
    控制所述第三行像素显示左眼图像,所述第四行像素显示右眼图像;或者控制所述第四行像素显示左眼图像,所述第一行像素显示右眼图像。
  30. 如权利要求27所述的裸眼3D显示设备,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一行像素,所述光栅对应相邻的三行像素;所述处理器能够:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不大于所述最近观察距离,所述最 近观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最近垂直距离,则控制所述第一行像素显示左眼图像,所述第三行像素显示右眼图像;或者,
    控制所述第二行像素显示左眼图像,所述第四行像素显示右眼图像;或者,控制所述第一行像素显示右眼图像,所述第三行像素显示左眼图像;或者,
    控制所述第二行像素显示右眼图像,所述第四行像素显示左眼图像。
  31. 一种裸眼3D显示设备,其特征在于,包括:显示屏、光栅结构、至少一个处理器,以及与所述至少一个处理器通信连接的存储器;
    所述显示屏,包括多行多列像素,每列像素包括三列子像素;
    所述光栅结构包括多个依次排列的光栅单元,至少每相邻的四列子像素唯一对应一个光栅单元;
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
    获取观察者在面向所述显示屏时的双眼位置,所述双眼位置为双眼相对于所述显示屏的空间位置;以及判断所述双眼位置是否落入裸眼3D视区的最佳观察区域;以及
    在所述人眼追踪器确定所述双眼位置未落入所述最佳观察区域时,调整与所述每一光栅单元对应的列子像素的图像显示,以调整所述最佳观察区域的空间位置。
  32. 如权利要求31所述的裸眼3D显示设备,其特征在于,
    至少每相邻的所述四列子像素与对应的所述光栅单元在空间的图像投射区域包括包括在一个瞳距范围内的至少4个裸眼3D视区,任意相邻的两个所述裸眼3D视区叠加形成串扰度低于串扰阈值的理想观察区和所述理想观察区之间的串扰区,所述最佳观察区域为理想左视区或理想右视区;
    所述处理器能够:
    当左眼位置或者右眼位置落入任一所述串扰区时,将与所述串扰区邻近 的所述理想观察区所对应的列子像素的显示内容调整为相同,使得落入所述串扰区的左眼只看到左眼图像,或者落入所述串扰区的右眼只看到右眼图像。
  33. 如权利要求32所述的裸眼3D显示设备,其特征在于,每相邻的四列子像素唯一对应一个所述光栅单元;
    若每相邻的四列子像素依次包括第一列子像素,第二列子像素,第三列子像素和第四列子像素;所述处理器还能够:
    在获取观察者在面向显示屏时的双眼位置之前,控制与每一个光栅单元对应的所述第一列子像素和所述第二列子像素显示左眼图像,控制与每一个光栅单元对应的所述第三列子像素和所述第四列子像素显示右眼图像;以及
    在获取观察者在面向显示屏时的双眼位置之前,根据与每一光栅单元对应的列子像素的图像显示,确定所述裸眼3D视区的空间位置;根据所述裸眼3D视区的空间位置,确定所述裸眼3D视区的最佳观察区域。
  34. 如权利要求33所述的裸眼3D显示设备,其特征在于,所述处理器能够:
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏左半个瞳距,则控制所述第一列子像素显示左眼图像,所述第二列子像素和所述第三列子像素显示右眼图像,所述第四列子像素显示左眼图像,以将所述最佳观察区域向左平移半个瞳距;
    若左眼位置、右眼位置分别位于所述理想左视区、所述理想右视区偏右半个瞳距,则控制所述第一列子像素显示右眼图像,所述第二列子像素和所述第三列子像素显示左眼图像,所述第四列子像素显示右眼图像,以将所述最佳观察区域向右平移半个瞳距。
  35. 如权利要求33所述的裸眼3D显示设备,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一行像素,所述光栅对应相邻的三行像素;所述处理器能够:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区, 所述双眼位置与所述显示屏的垂直距离不小于所述最远观察距离,其中,所述最远观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最远垂直距离;则
    控制所述第一列子像素显示左眼图像,所述第二列子像素显示右眼图像;或者,
    控制所述第二列子像素显示左眼图像,所述第三列子像素显示右眼图像;或者,
    控制所述第三列子像素显示左眼图像,所述第四列子像素显示右眼图像;或者,
    控制所述第四列子像素显示左眼图像,所述第一列子像素显示右眼图像。
  36. 如权利要求33所述的裸眼3D显示设备,其特征在于,每个所述光栅单元包括相邻设置的一个光栅和一个狭缝,每相邻的四行像素唯一对应一个所述光栅单元,具体为:所述狭缝对应一行像素,所述光栅对应相邻的三行像素;所述处理器能够:
    若左眼位置未落入所述理想左视区,右眼位置未落入所述理想右视区,且所述双眼位置与所述显示屏的垂直距离不大于所述最近观察距离,其中,所述最近观察距离为观察者位于所述最佳观察区域时双眼位置距离所述显示屏的最近垂直距离,则
    控制所述第一列子像素显示左眼图像,所述第三列子像素显示右眼图像;或者,
    控制所述第二列子像素显示左眼图像,所述第四列子像素显示右眼图像;或者,
    控制所述第一列子像素显示右眼图像,所述第三列子像素显示左眼图像;或者,
    控制所述第二列子像素显示右眼图像,所述第四列子像素显示左眼图像。
  37. 一种非易失性计算机存储介质,其特征在于,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计 算机执行权利要求1-6任一项所述的裸眼3D显示设备的显示方法。
  38. 一种非易失性计算机存储介质,其特征在于,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求7-12任一项所述的裸眼3D显示设备的显示方法。
  39. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括所述计算机可执行指令,当所述计算机可执行指令被计算机执行时,使所述计算机执行权利要求1-6任一项所述的裸眼3D显示设备的显示方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括所述计算机可执行指令,当所述计算机可执行指令被计算机执行时,使所述计算机执行权利要求7-12任一项所述的裸眼3D显示设备的显示方法。
PCT/CN2017/077102 2016-09-28 2017-03-17 裸眼3d显示设备及其显示方法 WO2018058914A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610861168.0A CN108307187B (zh) 2016-09-28 2016-09-28 裸眼3d显示设备及其显示方法
CN201610861168.0 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018058914A1 true WO2018058914A1 (zh) 2018-04-05

Family

ID=61763115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077102 WO2018058914A1 (zh) 2016-09-28 2017-03-17 裸眼3d显示设备及其显示方法

Country Status (2)

Country Link
CN (1) CN108307187B (zh)
WO (1) WO2018058914A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296252A (zh) * 2022-01-10 2022-04-08 合肥京东方光电科技有限公司 光栅控制方法及控制装置、3d显示装置
CN115136227A (zh) * 2020-11-30 2022-09-30 京东方科技集团股份有限公司 显示装置及其显示方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108881880A (zh) * 2018-08-01 2018-11-23 上海玮舟微电子科技有限公司 基于人眼跟踪的裸眼3d显示方法、装置、设备及存储介质
CN109061893B (zh) * 2018-09-28 2020-12-29 杭州行开科技有限公司 一种光栅后置的裸眼3d显示系统
CN110018573A (zh) * 2019-05-07 2019-07-16 深圳市华星光电半导体显示技术有限公司 组合式显示面板
CN110189704B (zh) * 2019-06-28 2021-10-15 上海天马有机发光显示技术有限公司 一种电致发光显示面板、其驱动方法及显示装置
CN110381305B (zh) * 2019-07-31 2021-06-01 南方医科大学南方医院 裸眼3d的去串扰方法、系统、存储介质及电子设备
CN110401829B (zh) * 2019-08-26 2022-05-13 京东方科技集团股份有限公司 一种裸眼3d显示设备及其显示方法
CN112929643B (zh) * 2019-12-05 2022-06-28 北京芯海视界三维科技有限公司 3d显示设备、方法及终端
WO2022036692A1 (zh) * 2020-08-21 2022-02-24 深圳市立体通科技有限公司 一种裸眼3d显示方法及智能终端
WO2022036691A1 (zh) * 2020-08-21 2022-02-24 深圳市立体通科技有限公司 一种裸眼3d显示方法及智能终端
CN114360367B (zh) * 2020-10-13 2023-04-11 京东方科技集团股份有限公司 可穿戴显示设备
CN114630099B (zh) * 2020-12-14 2024-04-05 京东方科技集团股份有限公司 显示方法、装置、系统及计算机可读存储介质
CN113660480B (zh) * 2021-08-16 2023-10-31 纵深视觉科技(南京)有限责任公司 一种环视功能实现方法、装置、电子设备及存储介质
TWI806379B (zh) 2022-01-24 2023-06-21 宏碁股份有限公司 特徵點位置偵測方法及電子裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165068A (ja) * 2010-02-12 2011-08-25 Nec System Technologies Ltd 画像生成装置、画像表示システム、画像生成方法、及びプログラム
CN103067728A (zh) * 2013-01-25 2013-04-24 青岛海信电器股份有限公司 一种裸眼3d图像的处理方法及装置
CN103392342A (zh) * 2011-12-21 2013-11-13 青岛海信电器股份有限公司 视区调整的方法和装置、能实现立体显示视频信号的设备
CN103595993A (zh) * 2013-11-08 2014-02-19 深圳市奥拓电子股份有限公司 一种基于智能识别技术的led裸眼3d显示系统及其工作方法
CN103969833A (zh) * 2013-02-05 2014-08-06 鸿富锦精密工业(深圳)有限公司 裸眼立体显示装置
CN104137538A (zh) * 2011-12-23 2014-11-05 韩国科学技术研究院 可应用于多个观察者的用于使用动态视区扩展来显示多视点3d图像的装置及其方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629009B (zh) * 2011-10-25 2016-02-03 京东方科技集团股份有限公司 裸眼三维图像显示方法及装置
CN105230013A (zh) * 2013-06-28 2016-01-06 汤姆逊许可公司 具有位置感测和适配数量的视图的多视图三维显示系统和方法
CN105072431A (zh) * 2015-07-28 2015-11-18 上海玮舟微电子科技有限公司 一种基于人眼跟踪的裸眼3d播放方法及系统
CN105025289B (zh) * 2015-08-10 2017-08-08 重庆卓美华视光电有限公司 一种立体显示方法及装置
CN204887281U (zh) * 2015-08-10 2015-12-16 重庆卓美华视光电有限公司 一种立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165068A (ja) * 2010-02-12 2011-08-25 Nec System Technologies Ltd 画像生成装置、画像表示システム、画像生成方法、及びプログラム
CN103392342A (zh) * 2011-12-21 2013-11-13 青岛海信电器股份有限公司 视区调整的方法和装置、能实现立体显示视频信号的设备
CN104137538A (zh) * 2011-12-23 2014-11-05 韩国科学技术研究院 可应用于多个观察者的用于使用动态视区扩展来显示多视点3d图像的装置及其方法
CN103067728A (zh) * 2013-01-25 2013-04-24 青岛海信电器股份有限公司 一种裸眼3d图像的处理方法及装置
CN103969833A (zh) * 2013-02-05 2014-08-06 鸿富锦精密工业(深圳)有限公司 裸眼立体显示装置
CN103595993A (zh) * 2013-11-08 2014-02-19 深圳市奥拓电子股份有限公司 一种基于智能识别技术的led裸眼3d显示系统及其工作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115136227A (zh) * 2020-11-30 2022-09-30 京东方科技集团股份有限公司 显示装置及其显示方法
CN115136227B (zh) * 2020-11-30 2023-11-17 京东方科技集团股份有限公司 显示装置及其显示方法
CN114296252A (zh) * 2022-01-10 2022-04-08 合肥京东方光电科技有限公司 光栅控制方法及控制装置、3d显示装置
CN114296252B (zh) * 2022-01-10 2024-01-12 合肥京东方光电科技有限公司 光栅控制方法及控制装置、3d显示装置

Also Published As

Publication number Publication date
CN108307187A (zh) 2018-07-20
CN108307187B (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2018058914A1 (zh) 裸眼3d显示设备及其显示方法
KR102030830B1 (ko) 곡면형 다시점 영상 디스플레이 장치 및 그 제어 방법
US9041782B2 (en) Multiple-viewer auto-stereoscopic 3D display apparatus
JP6154323B2 (ja) 映像表示装置
US8610711B2 (en) Device for three-dimensional image display using viewing zone enlargement
JP5427035B2 (ja) 複数の個別設定を用いた画像観察
US20140168390A1 (en) Multi-view autostereoscopic display and method for controlling optimal viewing distance thereof
US20130114135A1 (en) Method of displaying 3d image
CN101394572A (zh) 三维图像处理装置以及方法
US9049435B2 (en) Image providing apparatus and image providing method based on user's location
WO2015180401A1 (zh) 裸眼3d显示控制方法、装置及系统
WO2015180402A1 (zh) 显示控制方法、装置及系统
TWI502958B (zh) 立體影像顯示裝置及其方法
CN102970569A (zh) 视域调整装置、视频处理装置以及视域调整方法
KR102141520B1 (ko) 무안경 다시점 영상 디스플레이 장치
JP2004264858A (ja) 立体映像表示装置
KR20160062312A (ko) 입체 영상 표시 장치
US9167237B2 (en) Method and apparatus for providing 3-dimensional image
WO2018028138A1 (zh) 裸眼3d显示设备及其显示方法
JP2008058583A (ja) 三次元画像表示装置および三次元画像表示方法
WO2017202059A1 (zh) 液晶透镜、3d显示面板及它们的控制方法
TWI515457B (zh) 多視點三維顯示器系統及其控制方法
JP2013161035A (ja) 映像表示装置
US10313663B2 (en) 3D viewing with better performance in both lumen per watt and brightness
JP5010746B1 (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854374

Country of ref document: EP

Kind code of ref document: A1