WO2022036692A1 - 一种裸眼3d显示方法及智能终端 - Google Patents

一种裸眼3d显示方法及智能终端 Download PDF

Info

Publication number
WO2022036692A1
WO2022036692A1 PCT/CN2020/110524 CN2020110524W WO2022036692A1 WO 2022036692 A1 WO2022036692 A1 WO 2022036692A1 CN 2020110524 W CN2020110524 W CN 2020110524W WO 2022036692 A1 WO2022036692 A1 WO 2022036692A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic
optical film
display screen
position information
eye
Prior art date
Application number
PCT/CN2020/110524
Other languages
English (en)
French (fr)
Inventor
杨亚军
Original Assignee
深圳市立体通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市立体通科技有限公司 filed Critical 深圳市立体通科技有限公司
Priority to PCT/CN2020/110524 priority Critical patent/WO2022036692A1/zh
Publication of WO2022036692A1 publication Critical patent/WO2022036692A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays

Definitions

  • the present invention relates to the field of naked eye 3D, and more particularly, to a naked eye 3D display method and an intelligent terminal.
  • the naked-eye 3D display technology does not require users to wear 3D glasses to watch, the user experience is greatly improved, but there are still problems to be solved when multiple people watch the same display screen at the same time.
  • the naked-eye 3D display principle different viewers see different images at different positions in front of the naked-eye 3D display panel, respectively, for the left and right eyes.
  • some people's eyes are easily in the wrong view area, so that the left eye can see the right view content while seeing the left view content (the same is true for the right eye). There will be ghosting on the top, and the experience is poor. Or what the left eye sees is the content of the right viewpoint, and what the right eye sees is the content of the left viewpoint, so that the protruding place is concave instead, and the stereo vision is completely wrong.
  • the improvement method that has been disclosed so far is to increase the number of meshes of the content through multi-camera shooting, so that the probability of viewers seeing the wrong viewport is reduced, but if the probability of error is lower, the more meshes of the content are required. It is understandable that under a fixed-resolution display screen, the more the content meshes, the lower the resolution allocated to each group of left and right views, and the viewing experience is greatly reduced. This solution is to increase the probability of the human eye in the effective viewing area by sacrificing the display resolution, and multi-eye shooting will also increase the difficulty and cost of production.
  • this solution is not conducive to the promotion and development of the naked-eye 3D technical solution.
  • the technical problem to be solved by the present invention is to provide a naked-eye 3D display method and an intelligent terminal aiming at the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a naked-eye 3D display method, which is applied to a smart terminal, the display screen of the smart terminal is covered with an electronic 3D optical film, and the smart terminal is communicatively connected to the electronic terminal.
  • 3D optical film the method comprising:
  • the intelligent terminal is initialized and displayed on the display screen according to the preset unit layout length
  • the step S2 includes:
  • the camera of the intelligent terminal acquires the spatial position information of at least one group of human eyes in front of the display screen.
  • the camera of the smart terminal obtains the spatial position information of at least one group of human eyes in front of the display screen, including:
  • the camera of the intelligent terminal acquires image information in front of the display screen
  • the method further includes:
  • the step S3 includes:
  • the binocular center point coordinates of each group of human eyes are obtained according to all the spatial position information, and the effective viewing area width is calculated according to the binocular center point coordinates of all eyes.
  • the step S4 includes:
  • the target grating constant of the electronic 3D optical film is obtained according to the width of the effective viewing area, the distance between the display screen and the electronic 3D optical film, and the preset unit pattern length.
  • the smart terminal executes the steps S2 to S5 once at a preset time interval;
  • the smart terminal executes the steps S2 to S5 after receiving the adjustment instruction for adjusting the grating constant of the electronic 3D optical film;
  • the step S2 includes: acquiring the spatial position information of at least one group of human eyes in front of the display screen in real time.
  • the method further includes:
  • the mobile layout of the display screen it is judged whether the mobile layout of the display screen can be adjusted to meet the simultaneous viewing needs of all eyes, wherein the mobile layout includes the left and right displacement of the layout and/or the up and down displacement of the layout;
  • the step S3 includes: calculating the width of the effective viewing area and the amount of moving images according to all the spatial position information;
  • the step S5 includes: adjusting the grating constant of the electronic 3D optical film to the target grating constant, and adjusting the display screen according to the displacement amount.
  • the present invention also provides an intelligent terminal, the display screen of the intelligent terminal is covered with an electronic 3D optical film, the intelligent terminal includes a processor and a memory, and the controller communicates with the memory and the electronic device respectively.
  • 3D optical film
  • the memory is used to store computer programs
  • the processor is used for executing the computer program in the memory to realize the above-mentioned naked eye 3D display method.
  • the electronic 3D optical film is an electronic lenticular grating optical film or an electronic barrier parallax grating optical film.
  • the smart terminal is one or more of a smart phone, a computer, a smart TV, a vehicle-mounted terminal, an advertising machine, and a game console.
  • the present invention does not require multi-eye shooting to increase the number of 3D contents, but adjusts the electronic 3D by acquiring the spatial position information of multiple groups of human eyes
  • the grating constant of the optical film can realize simultaneous viewing by many people without reducing the resolution, and the cost is low and the effect is good.
  • 1 is a flowchart of a naked-eye 3D display method provided by an embodiment
  • FIG. 2 is a schematic diagram of a camera acquiring spatial position information of a human eye provided by an embodiment
  • FIG. 3 is a schematic structural diagram of an electronic 3D optical film before and after adjustment of grating constants
  • FIG. 5 is a schematic structural diagram of an effective viewing area according to an embodiment
  • FIG. 6 is a flowchart of a naked-eye 3D display method provided by an embodiment
  • FIG. 7 is a flowchart of a naked-eye 3D display method provided by an embodiment
  • FIG. 9 is a schematic structural diagram of multiple sets of spatial position information of human eyes provided by an embodiment.
  • the naked-eye 3D display method of this embodiment is applied to a smart terminal.
  • the display screen of the smart terminal is covered with an electronic 3D optical film, and the electronic 3D optical film can be integrated on the display screen during the production process of the smart terminal, or after the production of the smart terminal is completed. Paste it on the display.
  • the electronic 3D optical film in this embodiment can adjust the grating constant; as an option, the electronic 3D optical film can be selected as electronic lenticular grating optical film, electronic barrier parallax grating optical film, etc., electronic lenticular grating optical film and
  • For the structure of the electronic barrier parallax barrier optical film reference may be made to the prior art, which will not be repeated in this embodiment.
  • the intelligent terminal processes the 3D content according to the preset algorithm, and displays it on the display screen after processing.
  • the light of the displayed image enters the user's eyes through the electronic 3D optical film, the user's left eye sees the left viewpoint content, and the user's right eye sees the content.
  • the left eye and the right eye see the image to generate a 3D stereoscopic sense in the user's brain, and the user can see the 3D stereoscopic image.
  • the smart terminal includes, but is not limited to, a smart phone, a computer, a smart TV, a vehicle-mounted terminal, an advertising machine, a game console, etc., that is, a terminal having the function of playing video.
  • 3D content includes 3D pictures, 3D videos, 3D games, etc.
  • the naked-eye 3D display method of this embodiment includes the following steps:
  • the intelligent terminal performs initialized display on the display screen according to the preset unit layout length.
  • the preset unit layout length there are various ways to initialize and display on the display screen according to the preset unit layout length.
  • a video player When a video player is used, it is initialized and displayed on the display screen according to the preset unit layout length; or when the 3D video player on the smart terminal loads 3D content, it is initialized and displayed on the display screen according to the preset unit layout length.
  • the smart terminal needs to obtain the spatial position information of the human eyes of all users in front of the display screen.
  • the intelligent terminal can realize the positioning of the human eye through a wireless positioning module, a camera, etc.
  • This embodiment uses a camera as an example to illustrate the principle, and other wireless positioning modules can be implemented with reference.
  • the camera and the display screen are located on the same side of the smart terminal, so that the camera can obtain all user images in front of the display screen.
  • the camera After receiving the image acquisition instruction, the camera acquires the image information in front of the display screen. After acquiring the image information, it needs to identify whether there is a human eye in the image information through a human eye recognition algorithm.
  • the human eye recognition algorithm can refer to the prior art. After identification, if no human eye is identified in the image information, the camera re-acquires the image information and performs human eye identification again. If human eyes are identified in the image information, the spatial position information of at least one group of human eyes in the image information is acquired.
  • the spatial position information of the human eye in this embodiment is the position information relative to the display screen, that is, the spatial coordinate system is established based on the display screen. Since the position of the camera is known, it can be calculated according to the existing image algorithm. The spatial position information of each group of human eyes in the spatial coordinate system. There are many ways to select the coordinate system, which is not limited in this embodiment.
  • this embodiment When calculating the spatial position information of human eyes, considering that the user watches the video with the binocular center point as the base point, this embodiment first obtains the binocular center point coordinates of each group of human eyes according to all the spatial position information, that is, using After the image recognition technology identifies a group of human eyes, the coordinates of the binocular center point of the human eye are calculated. For example, in Figure 2, there are three groups of human eyes in front of the display screen. The camera recognizes the user's human eyes after acquiring the user image in front of the display screen, and calculates the spatial position information of each group of human eyes. The coordinates of the binocular center point are: P1 (x1, y1, z1), P2 (x2, y2, z2), P3 (x3, y3, z3).
  • the effective viewing area width is calculated according to the binocular center point coordinates of all eyes.
  • the coordinates of the binocular center point are regarded as the center point of the width of the viewport, and then the left and right view spans are adjusted equally, and the adjusted width of the left and right views is in the range of 3.25cm--6.5cm.
  • the coordinates of the binocular center points of the three groups of human eyes are: P1 (x1, y1, z1), P2 (x2, y2, z2), P3 (x3, y3, z3), according to the three groups of human eyes
  • the effective view area width is calculated from the coordinates of the binocular center point.
  • L2 is the effective view area width.
  • P10 is the effective viewing area before adjustment
  • L1 is the effective viewing area width of the effective viewing area before adjustment
  • P20 is the effective viewing area after adjustment using this embodiment
  • L2 is the effective viewing area after adjustment. Viewport width.
  • the width of the effective viewing area after adjustment in this embodiment is obviously smaller than the width of the effective viewing area before the adjustment.
  • By reducing the width of the effective viewing area more users can be accommodated in the effective viewing area of the same size, and each viewing area is guaranteed. Users can clearly see 3D stereoscopic images without reducing the resolution.
  • the preset unit layout length is fixed, and the distance between the display screen and the electronic 3D optical film is a known amount.
  • the distance between the electronic 3D optical film and the preset unit pattern length can obtain the target grating constant of the electronic 3D optical film.
  • P10 in the figure is the effective viewing area before adjustment
  • L1 is the effective viewing area width of the effective viewing area before adjustment
  • X is the grating constant of the electronic 3D optical film before adjustment
  • a is the preset unit row length, That is, the content layout length of one unit
  • P20 is the effective viewing area adjusted by this embodiment
  • L2 is the effective viewing area width of the adjusted effective viewing area
  • Y is the grating constant of the adjusted electronic 3D optical film.
  • the width of the effective viewing area after adjustment in this embodiment is significantly smaller than the width of the effective viewing area before adjustment
  • the grating constant Y of the electronic 3D optical film after adjustment is smaller than the grating constant X of the electronic 3D optical film before adjustment.
  • the smart terminal is connected to the electronic 3D optical film, for example, the smart terminal is connected to the electronic 3D optical film through a USB interface, and the smart terminal controls the grating constant of the electronic 3D optical film by adjusting the output voltage and/or output current.
  • the corresponding relationship between the grating constant of the electronic 3D optical film and the working parameters can be known, for example, the corresponding relationship between the grating constant and the working voltage of the electronic 3D optical film can be obtained by adjusting the working parameters.
  • Required grating constant can be used in the electronic 3D optical film.
  • the smart terminal adjusts the grating constant of the electronic 3D optical film to the target grating constant according to the corresponding relationship between the grating constant of the electronic 3D optical film and the working parameters.
  • the target grating constant of the electronic 3D optical film determines whether the target grating constant is the same as the current grating constant of the electronic 3D optical film, or within the allowable error range of the current grating constant of the electronic 3D optical film. If the target grating constant is the same as the current grating constant, or the target grating constant is within the allowable error range of the current grating constant, the grating constant of the electronic 3D optical film is no longer adjusted. If the target grating constant is different from the current grating constant, or the target grating constant is not within the allowable error range of the current grating constant, adjust the current grating constant of the electronic 3D optical film to the target grating constant.
  • FIG. 4 shows the effective viewing area and the effective viewing area width obtained by using the prior art.
  • the effective viewing area width L3 in the prior art is 13 cm and is a fixed value; When viewing the content, some people's eyes are easily in the wrong viewing area, causing the left eye to see the content of the left view at the same time as the content of the right view (the same for the right eye). Difference. Or what the left eye sees is the content of the right viewpoint, and what the right eye sees is the content of the left viewpoint, so that the protruding place is concave instead, and the stereo vision is completely wrong.
  • Fig. 5 shows the effective viewing area and the width of the effective viewing area obtained in this embodiment.
  • the width of the effective viewing area after adjustment in this embodiment is obviously smaller than the width of the effective viewing area before the adjustment.
  • the value range is 6.5cm-13cm, and the value range of the effective viewing area width is obtained from the statistical data of the user's human eyes; in addition, the grating constant Y of the electronic 3D optical film after adjustment is smaller than the grating constant of the electronic 3D optical film before adjustment. X.
  • the intelligent terminal acquires the spatial position information of at least one group of human eyes in front of the display screen in real time, that is, the intelligent terminal continuously and cyclically executes steps S2 to S5 in real time, thereby realizing continuous and uninterrupted adjustment.
  • the smart terminal may perform steps S2 to S5 once at a preset time interval, and the preset time interval may be set by the user, such as 10 seconds, 20 seconds, 30 seconds, and the like.
  • the adjustment instruction can also be manually issued by the user, that is, the adjustment is made only when the user thinks that the 3D stereoscopic image seen is not clear; the user can issue the adjustment instruction through physical buttons, virtual buttons or voice, etc. Steps S2 to S5 are executed after adjusting the adjustment command of the grating constant of the electronic 3D optical film.
  • multi-eye photography is not required to increase the number of 3D contents, but the grating constant of the electronic 3D optical film can be adjusted by acquiring the spatial position information of multiple groups of human eyes, so that multiple people can watch at the same time without reducing the High resolution, low cost and good effect.
  • the method further includes:
  • S21 Determine whether all eyes are within a preset viewing area corresponding to a preset unit layout length according to the spatial position information. Since the preset unit layout length in this embodiment is fixed, the distance between the display screen and the electronic 3D optical film is a known amount. The distance of the electronic 3D optical film yields the grating constant of the electronic 3D optical film. After obtaining the preset viewing area corresponding to the preset unit layout length, it is determined whether all eyes are within the preset viewing area corresponding to the preset unit layout length according to the spatial position information.
  • step S22 If all eyes are in the preset viewing area corresponding to the preset unit layout length, it means that the current viewing area has met the needs of all users, then the 3D content is played according to the preset unit layout length, and there is no need to adjust the electronic 3D optics The grating constant of the film. If not all eyes are in the preset viewing area corresponding to the preset unit arrangement length, it means that the grating constant of the electronic 3D optical film needs to be adjusted, then step S3 is performed.
  • the smart terminal first performs initialized display on the display screen according to the preset unit layout length, and then adjusts the grating constant of the electronic 3D optical film when the viewing area needs to be adjusted.
  • this embodiment does not require multi-eye shooting to increase the number of 3D content, but adjusts the grating constant of the electronic 3D optical film by acquiring the spatial position information of multiple groups of human eyes, so that multiple people can watch at the same time without Reduce the resolution, the cost is low and the effect is good.
  • the method further includes:
  • the moving layout includes the left and right displacement of the layout and/or the up and down displacement of the layout, and the adjustment can be completed only by the left and right displacement of the layout, or only by the up and down displacement of the layout, or at the same time by the left and right displacement of the layout
  • the adjustment is completed by the up and down displacement of the and arrangement diagram, and the judgment process can refer to the prior art.
  • the mobile layout of the display screen can be adjusted to meet the simultaneous viewing needs of all eyes, adjust the mobile layout of the display screen according to the spatial position information, that is, first calculate the mobile layout according to the spatial position information, and the mobile layout Including the left and right displacement of the arrangement and/or the up and down displacement of the arrangement, and then the display screen will arrange the arrangement according to the moving arrangement.
  • the amount of moving images according to the spatial position information it is necessary to first obtain the position information of the left and right eyes of each group of human eyes according to the spatial position information, and then calculate the position information of the left and right eyes of all groups of human eyes.
  • Mobile layout volume Mobile layout volume.
  • P1L and P1R are a group of human eyes
  • P2L and P2R are a group of human eyes
  • P3L and P3R are a group of human eyes
  • the left and right eyes of these three groups of eyes are obtained.
  • the moving layout amount can be calculated according to the position information of the left eye and the right eye of the three groups of human eyes. If the requirement for simultaneous viewing by all eyes cannot be met by adjusting the moving layout of the display screen, step S3 is performed.
  • step S3 of this embodiment includes: calculating the width of the effective viewing area and the amount of moving layout according to all the spatial position information. Specifically, according to all the spatial position information, the width of the effective viewing area and the amount of moving layout are calculated. Because this embodiment adopts two methods for adjustment, the two adjustment methods should be coordinated, that is, the size and movement of the width of the effective viewing area are reasonably configured. Arrange the size of the map to complete the adjustment work together.
  • Step S5 includes: adjusting the grating constant of the electronic 3D optical film to the target grating constant, and adjusting the display screen according to the displacement amount. Specifically, after obtaining the target grating constant of the electronic 3D optical film, the intelligent terminal adjusts the grating constant of the electronic 3D optical film to the target grating constant, and adjusts the display screen according to the moving layout amount.
  • the mobile layout of the display screen can be adjusted to meet the simultaneous viewing requirements of all eyes. If not, the grating constant of the electronic 3D optical film and the mobile layout of the display screen can not only improve the adjustment efficiency, but also make the adjustment more efficient. More flexibility and wider adjustment range.
  • the naked-eye 3D display method of this embodiment includes the following steps:
  • the intelligent terminal performs initialized display on the display screen according to the preset unit layout length.
  • the preset unit layout length there are various ways to initialize and display on the display screen according to the preset unit layout length.
  • a video player When a video player is used, it is initialized and displayed on the display screen according to the preset unit layout length; or when the 3D video player on the smart terminal loads 3D content, it is initialized and displayed on the display screen according to the preset unit layout length.
  • the smart terminal needs to obtain the spatial position information of the human eyes of all the users in front of the display screen.
  • the intelligent terminal can realize the positioning of the human eye through a wireless positioning module, a camera, etc.
  • This embodiment uses a camera as an example to illustrate the principle, and other wireless positioning modules can be implemented with reference.
  • the preset unit layout length is fixed, and the distance between the display screen and the electronic 3D optical film is a known amount.
  • the distance between the electronic 3D optical film and the preset unit pattern length can obtain the target grating constant of the electronic 3D optical film.
  • the intelligent terminal adjusts the grating constant of the electronic 3D optical film to the target grating constant, and adjusts the display screen according to the moving layout amount.
  • both the grating constant of the electronic 3D optical film and the moving layout of the display screen make the adjustment more flexible and the adjustment range wider.
  • the display screen of the smart terminal in this embodiment is covered with an electronic 3D optical film
  • the smart terminal includes a processor and a memory
  • the controller communicates and connects the memory and the electronic 3D optical film respectively.
  • the memory is used for storing the computer program; the processor is used for executing the computer program in the memory to realize the naked-eye 3D display method as described above.
  • the smart terminal controls the grating constant of the electronic 3D optical film by adjusting the output voltage and/or output current.
  • the corresponding relationship between the grating constant of the electronic 3D optical film and the working parameters can be known, for example, the corresponding relationship between the grating constant and the working voltage of the electronic 3D optical film can be obtained by adjusting the working parameters.
  • Required grating constant Therefore, after calculating the target grating constant of the electronic 3D optical film, the corresponding relationship between the grating constant of the electronic 3D optical film of the smart terminal and the working parameters adjusts the grating constant of the electronic 3D optical film to the target grating constant.
  • the naked-eye 3D display method of this embodiment is applied to a smart terminal.
  • the display screen of the smart terminal is covered with an electronic 3D optical film.
  • the electronic 3D optical film can be integrated on the display screen during the production process of the smart terminal, or after the smart terminal is produced. Paste it on the display.
  • the electronic 3D optical film in this embodiment can adjust the grating constant; alternatively, the electronic 3D optical film can be selected as electronic lenticular grating optical film, electronic barrier parallax grating optical film, etc., and the electronic 3D optical film is electronic column
  • the structures of the mirror grating optical film and the electronic barrier parallax optical film may refer to the prior art, which will not be repeated in this embodiment.
  • the intelligent terminal processes the 3D content according to the preset algorithm, and displays it on the display screen after processing.
  • the light of the displayed image enters the user's eyes through the electronic 3D optical film, the user's left eye sees the left viewpoint content, and the user's right eye sees the content.
  • the left eye and the right eye see the image to generate a 3D stereoscopic sense in the user's brain, and the user can see the 3D stereoscopic image.
  • the smart terminal includes, but is not limited to, a smart phone, a computer, a smart TV, a vehicle-mounted terminal, an advertising machine, a game console, etc., that is, a terminal having the function of playing video.
  • multi-eye photography is not required to increase the number of 3D contents, but the grating constant of the electronic 3D optical film can be adjusted by acquiring the spatial position information of multiple groups of human eyes, so that multiple people can watch at the same time without reducing the High resolution, low cost and good effect.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk removable disk
  • CD-ROM compact disc-read only memory

Abstract

本发明涉及一种裸眼3D显示方法及智能终端。该方法应用于智能终端,智能终端的显示屏上覆盖有电子3D光学膜,智能终端通信连接电子3D光学膜。该方法包括:S1、智能终端按照预设单位排图长度在显示屏进行初始化显示;S2、获取显示屏前方至少一组人眼的空间位置信息;S3、依据所有空间位置信息计算出有效视区宽度;S4、根据有效视区宽度得到电子3D光学膜的目标光栅常数;S5、调整电子3D光学膜的光栅常数至目标光栅常数。本发明不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整电子3D光学膜的光栅常数,即可实现多人同时观看,且不会降低分辨率,成本低效果好。

Description

一种裸眼3D显示方法及智能终端 技术领域
本发明涉及裸眼3D领域,更具体地说,涉及一种裸眼3D显示方法及智能终端。
背景技术
因裸眼3D显示技术不需要用户佩戴3D眼镜观看,大大提高了用户体验,但多人同时观看同一显示屏时仍有问题需要解决。根据裸眼3D显示原理可知,不同的观看者在裸眼3D显示面板前不同的位置,左、右眼各自看到的图像也各不相同。在多人同时观看裸眼3D内容时,部分人的双眼很容易在错误的视区内,导致左眼在看到左视点内容的同时又能看到右视点内容(右眼同样),则在视觉上会出现重影,体验差。又或者左眼看到的是右视点内容,右眼看到的是左视点内容,则导致该凸出的地方反而凹陷,立体视觉完全错误。
目前已公开的改善方法是通过多目拍摄,增加内容的目数,让观看者看到错误视区的几率减少,但若要出错的几率更低,则需要内容的目数就会越多。可以理解的,在固定分辨率显示屏下,内容的目数越多又会导致分配到每一组左右视图的分辨率下降,观看体验大打折扣。这种方案是通过牺牲显示分辨率来提升人眼在有效视区的几率,而且多目拍摄也会增加制作的难度和成本。另外,这种方案的有效视区空间位置虽能变动,但其有效视区的面积大小并未发生变化,造成在同一距离,部分视区浪费,可容纳的观看人数变少。因此,该方案不利于裸眼3D技术方案推广和发展。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种裸眼3D显示方法及智能终端。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种裸眼3D显示方法,应用于智能终端,所述智能终端的显示屏上覆盖有电子3D光学膜,所述智能终端通信连接所述电子3D光学膜;所述方法包括:
S1、所述智能终端按照预设单位排图长度在显示屏进行初始化显示;
S2、获取所述显示屏前方至少一组人眼的空间位置信息;
S3、依据所有所述空间位置信息计算出有效视区宽度;
S4、根据所述有效视区宽度得到所述电子3D光学膜的目标光栅常数;
S5、调整所述电子3D光学膜的光栅常数至所述目标光栅常数。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S2包括:
所述智能终端的摄像头获取所述显示屏前方至少一组人眼的空间位置信息。
进一步,在本发明所述的裸眼3D显示方法中,所述智能终端的摄像头获取所述显示屏前方至少一组人眼的空间位置信息包括:
所述智能终端的摄像头获取所述显示屏前方的图像信息;
识别所述图像信息中是否存在人眼;
若否,则重新获取;
若是,则获取所述图像信息中至少一组人眼的空间位置信息。
进一步,在本发明所述的裸眼3D显示方法中,在所述步骤S2之后所述步骤S3之前还包括:
根据所述空间位置信息判断所有人眼是否在所述预设单位排图长度对应的预设视区内;
若是,则按照所述预设单位排图长度播放3D内容;
若否,则执行所述步骤S3。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S3包括:
依据所有所述空间位置信息得到每组人眼的双目中心点坐标,根据所有人眼的双目中心点坐标计算出有效视区宽度。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S4包括:
根据所述有效视区宽度、所述显示屏和所述电子3D光学膜之间的距离、所述预设单位排图长度得到所述电子3D光学膜的目标光栅常数。
进一步,在本发明所述的裸眼3D显示方法中,所述智能终端在播放3D内容过程中,间隔预设时间间隔执行一次所述步骤S2至步骤S5;或
所述智能终端接收到用于调整所述电子3D光学膜的光栅常数的调整指令后执行所述步骤S2至步骤S5;或
所述步骤S2包括:实时获取所述显示屏前方至少一组人眼的空间位置信息。
进一步,在本发明所述的裸眼3D显示方法中,在所述步骤S2之后所述步骤S3之前还包括:
根据所述空间位置信息判断是否能通过调整显示屏的移动排图满足所有人眼同时观看需求,其中所述移动排图包括排图左右位移和/或排图上下位移;
若是,则根据所述空间位置信息调整显示屏的移动排图;
若否,则执行所述步骤S3。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S3包括:依据所有所述空间位置信息计算出有效视区宽度和移动排图量;
所述步骤S5包括:调整所述电子3D光学膜的光栅常数至所述目标光栅常数,以及按照所述移动排图量调整所述显示屏。
另外,本发明还提供一种智能终端,所述智能终端的显示屏上覆盖有电子3D光学膜,所述智能终端包括处理器和存储器,所述控制器分别通信连接所述存储器和所述电子3D光学膜;
所述存储器用于存储计算机程序;
所述处理器用于执行所述存储器中的计算机程序以实现如上述的裸眼3D显示方法。
进一步,在本发明所述的智能终端中,所述电子3D光学膜为电子柱镜光栅光学膜或电子屏障视差光栅光学膜。
进一步,在本发明所述的智能终端中,所述智能终端为智能手机、电脑、智能电视、车载终端、广告机、游戏机中的一种或几种。
有益效果
实施本发明的一种裸眼3D显示方法及智能终端,具有以下有益效果:本发明不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整电子3D光学膜的光栅常数,即可实现多人同时观看,且不会降低分辨率,成本低效果好。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是一实施例提供的裸眼3D显示方法的流程图;
图2是一实施例提供的摄像头获取人眼的空间位置信息的示意图;
图3是一实施例提供的电子3D光学膜的光栅常数调整前后的结构示意图;
图4是现有技术中有效视区的结构示意图;
图5是一实施例的有效视区的结构示意图;
图6是一实施例提供的裸眼3D显示方法的流程图;
图7是一实施例提供的裸眼3D显示方法的流程图;
图8是一实施例提供的裸眼3D显示方法的流程图;
图9是一实施例提供的多组人眼的空间位置信息的结构示意图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
实施例1
本实施例的裸眼3D显示方法应用于智能终端,智能终端的显示屏上覆盖有电子3D光学膜,电子3D光学膜可在智能终端生产过程中集成在显示屏上,或者在智能终端生成完成后再粘贴到显示屏上。本实施例中的电子3D光学膜可调节光栅常数;作为选择,电子3D光学膜可选用电子3D光学膜为电子柱镜光栅光学膜、电子屏障视差光栅光学膜等,电子柱镜光栅光学膜和电子屏障视差光栅光学膜的结构可参考现有技术,本实施例不再赘述。该智能终端按照预设算法对3D内容进行排图处理,处理后在显示屏上显示,显示图像的光线透过电子3D光学膜进入用户眼睛,用户的左眼看到左视点内容,用户的右眼看到右视点内容,左眼和右眼看到图像在用户大脑中产生3D立体感,用户就可以看到3D立体图像。作为选择,智能终端包括但不限于智能手机、电脑、智能电视、车载终端、广告机、游戏机等,即具有播放视频功能的终端即可。3D内容包括3D图片、3D视频、3D游戏等。
参考图1,本实施例的裸眼3D显示方法包括下述步骤:
S1、智能终端按照预设单位排图长度在显示屏进行初始化显示。本实施例按照预设单位排图长度在显示屏进行初始化显示有多种方式,例如可在启动智能终端时按照预设单位排图长度在显示屏进行初始化显示;或在启动智能终端上的3D视频播放器时按照预设单位排图长度在显示屏进行初始化显示;或智能终端上的3D视频播放器加载3D内容时按照预设单位排图长度在显示屏进行初始化显示。
S2、获取显示屏前方至少一组人眼的空间位置信息。
具体的,多个用户在智能终端前面观看时,智能终端需获取显示屏前所有用户的人眼的空间位置信息。作为选择,智能终端可通过无线定位模块、摄像头等实现对人眼的定位,本实施例以摄像头为例进行原理说明,其他无线定位模块可参考实施。
参考图2,摄像头与显示屏位于智能终端的同侧,以方便摄像头能获取显示屏前所有用户图像。摄像头接收到图像获取指令后获取显示屏前方的图像信息,获取图像信息后需要通过人眼识别算法识别图像信息中是否存在人眼,人眼识别算法可参考现有技术。经过识别,若图像信息中没有识别出人眼,则摄像头重新获取图像信息并重新进行人眼识别。若图像信息中识别出人眼,则获取图像信息中至少一组人眼的空间位置信息。可以理解,本实施例中人眼的空间位置信息是相对于显示屏的位置信息,即以显示屏为基础建立空间坐标系,因摄像头的位置已知,则根据现有图像算法即可计算出每组人眼的在空间坐标系中的空间位置信息。坐标系的选择有多种方式,本实施例对此不做限定。
在计算人眼的空间位置信息时,考虑到用户看视频时是以双目中心点为基点进行观看,本实施例首先依据所有空间位置信息得到每组人眼的双目中心点坐标,即利用图像识别技术识别出一组人眼后,计算出该人眼的双目中心点坐标。例如,图2中显示屏前有3组人眼,摄像头获取显示屏前的用户图像后识别出用户人眼,并计算出每组人眼的空间位置信息,经计算得出3组人眼的双目中心点坐标分别是:P1(x1、y1、z1)、P2(x2、y2、z2)、P3(x3、y3、z3)。
S3、依据所有空间位置信息计算出有效视区宽度。
具体的,确定显示屏前所有人眼的双目中心点坐标后,根据所有人眼的双目中心点坐标计算出有效视区宽度。在计算过程中,将双目中心点坐标视为视区宽度中心点,然后对左右视图跨度进行等量调整,调整后的左右视图的宽度在3.25cm--6.5cm的范围内。参考图2,3组人眼的双目中心点坐标分别是:P1(x1、y1、z1)、P2(x2、y2、z2)、P3(x3、y3、z3),根据3组人眼的双目中心点坐标计算出有效视区宽度,图2中L2为有效视区宽度。参考图3,图中P10为调整前的有效视区,L1是调整前有效视区的有效视区宽度;P20是使用本实施例调整后的有效视区,L2是调整后有效视区的有效视区宽度。可看出,本实施例调整后的有效视区宽度明显小于调整前的有效视区宽度,通过减小有效视区宽度,让同样大小的有效视区范围内容纳更多用户观看,且保证每个用户能清晰看到3D立体图像,不会降低分辨率。
S4、根据有效视区宽度得到电子3D光学膜的目标光栅常数。
具体的,本实施例中预设单位排图长度固定不变,显示屏和电子3D光学膜之间的距离为已知量,在计算出有效视区宽度后,根据有效视区宽度、显示屏和电子3D光学膜之间的距离、预设单位排图长度得到电子3D光学膜的目标光栅常数。
参考图3,图中P10为调整前的有效视区,L1是调整前有效视区的有效视区宽度,X是为调整前电子3D光学膜的光栅常数,a为预设单位排图长度,即一个单位的内容排图长度;P20是使用本实施例调整后的有效视区,L2是调整后有效视区的有效视区宽度,Y是调整后电子3D光学膜的光栅常数。可看出,本实施例调整后的有效视区宽度明显小于调整前的有效视区宽度,调整后电子3D光学膜的光栅常数Y小于调整前电子3D光学膜的光栅常数X。通过减小有效视区宽度,让同样大小的有效视区范围内容纳更多用户观看,且保证每个用户能清晰看到3D立体图像,不会降低分辨率,提高用户观影体验。
S5、调整电子3D光学膜的光栅常数至目标光栅常数。
具体的,本实施例中智能终端连接电子3D光学膜,例如智能终端通过USB接口连接电子3D光学膜,智能终端通过调节输出电压和/或输出电流控制电子3D光学膜的光栅常数。可以理解,在选定电子3D光学膜后,便可知电子3D光学膜的光栅常数和工作参数的对应关系,例如电子3D光学膜的光栅常数和工作电压的对应关系,通过调节工作参数即可得到需要的光栅常数。所以在计算得到电子3D光学膜的目标光栅常数后,智能终端根据电子3D光学膜的光栅常数和工作参数的对应关系调整电子3D光学膜的光栅常数至目标光栅常数。
作为选择,计算得到电子3D光学膜的目标光栅常数后,判断目标光栅常数与电子3D光学膜的当前光栅常数是否相同,或是否在电子3D光学膜的当前光栅常数的允许误差范围内。若目标光栅常数与当前光栅常数相同,或目标光栅常数在当前光栅常数的允许误差范围内,则不再调整电子3D光学膜的光栅常数。若目标光栅常数与当前光栅常数不相同,或目标光栅常数不在当前光栅常数的允许误差范围内,调整电子3D光学膜的当前光栅常数至目标光栅常数。
参考图4和图5,图4是利用现有技术得到的有效视区和有效视区宽度,现有技术中的有效视区宽度L3为13cm,且为固定值;在多人同时观看裸眼3D内容时,部分人的双眼很容易在错误的视区内,导致左眼在看到左视点内容的同时又能看到右视点内容(右眼同样),则在视觉上会出现重影,体验差。又或者左眼看到的是右视点内容,右眼看到的是左视点内容,则导致该凸出的地方反而凹陷,立体视觉完全错误。图5是本实施例得到的有效视区和有效视区宽度,可以看出,本实施例调整后的有效视区宽度明显小于调整前的有效视区宽度,调整后的有效视区宽度的取值范围为6.5cm-13cm,该有效视区宽度的取值范围是由用户人眼的统计数据得到的;另外,调整后电子3D光学膜的光栅常数Y小于调整前电子3D光学膜的光栅常数X。通过减小电子3D光学膜的光栅常数,让同样大小的有效视区范围内容纳更多用户观看,且保证每个用户能清晰看到3D立体图像,不会降低分辨率,提高用户观影体验。
在实际观影过程中用户是不断变化的,例如观影人数的增减、人眼位置的变化等,所以需要动态调整电子3D光学膜的光栅常数,以快速适应用户的变化,提高用户观影体验。作为选择,智能终端实时获取显示屏前方至少一组人眼的空间位置信息,即智能终端实时连续循环执行步骤S2至步骤S5,从而实现连续不间断的调整。或者,智能终端在播放3D内容过程中,可间隔预设时间间隔执行一次步骤S2至步骤S5,预设时间间隔可由用户进行设定,例如10秒、20秒、30秒等。或者,也可由用户手动下发调整指令,即用户认为看到的3D立体图像不清晰时才进行调整;用户可通过实体按键、虚拟按键或语音等方式下发调整指令,智能终端接收到用于调整电子3D光学膜的光栅常数的调整指令后执行步骤S2至步骤S5。
本实施例不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整电子3D光学膜的光栅常数,即可实现多人同时观看,且不会降低分辨率,成本低效果好。
实施例2
参考图6,在实施例1的基础上,本实施例的本实施例的裸眼3D显示方法中,在步骤S2之后步骤S3之前还包括:
S21、根据空间位置信息判断所有人眼是否在预设单位排图长度对应的预设视区内。因本实施例中预设单位排图长度固定不变,显示屏和电子3D光学膜的距离为已知量,在此基础上,根据有效视区宽度、预设单位排图长度、显示屏和电子3D光学膜的距离得到电子3D光学膜的光栅常数。得到预设单位排图长度对应的预设视区后,根据空间位置信息判断所有人眼是否在预设单位排图长度对应的预设视区内。
S22、若所有人眼都在预设单位排图长度对应的预设视区内,说明当前视区已经满足所有用户需求,则按照预设单位排图长度播放3D内容,不需要调整电子3D光学膜的光栅常数。若不是所有人眼都在预设单位排图长度对应的预设视区内,说明需要调整电子3D光学膜的光栅常数,则执行步骤S3。
本实施例智能终端首先按照预设单位排图长度在显示屏进行初始化显示,在视区需要调整时再进行调整电子3D光学膜的光栅常数。另外本实施例不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整电子3D光学膜的光栅常数,即可实现多人同时观看,且不会降低分辨率,成本低效果好。
实施例3
参考图7,在实施例1的基础上,本实施例的裸眼3D显示方法中,在步骤S2之后步骤S3之前还包括:
S23、根据空间位置信息判断是否能通过调整显示屏的移动排图满足所有人眼同时观看需求,即根据空间位置信息判断是否能通过调整显示屏的移动排图使所有人眼都位于有效视区范围内,其中所述移动排图包括排图左右位移和/或排图上下位移,即可仅通过排图左右位移完成调节,或仅通过排图上下位移完成调节,或同时通过排图左右位移和排图上下位移完成调节,该判断过程可参考现有技术。
S24、若能通过调整显示屏的移动排图满足所有人眼同时观看需求,则根据空间位置信息调整显示屏的移动排图,即首先根据空间位置信息计算出移动排图量,移动排图量包括排图左右位移量和/或排图上下位移量,然后显示屏根据按照移动排图量进行排图。根据空间位置信息计算出移动排图量时,首先需要根据空间位置信息得到每组人眼的左眼和右眼的位置信息,然后根据所有组人眼的左眼和右眼的位置信息计算出移动排图量。参考图9,图中有3组人眼:P1L和P1R为一组人眼,P2L和P2R为一组人眼,P3L和P3R为一组人眼,获取这3组人眼的左眼和右眼的位置信息后,即可根据这3组人眼的左眼和右眼的位置信息计算出移动排图量。若不能通过调整显示屏的移动排图满足所有人眼同时观看需求,则执行步骤S3。
本实施例在获取空间位置信息后首先判断是否能通过调整显示屏的移动排图满足所有人眼同时观看需求,若能则不需要执行后续调整方案,可快速完成调整,耗费资源少。
实施例4
在实施例3的基础上,本实施例的步骤S3包括:依据所有空间位置信息计算出有效视区宽度和移动排图量。具体的,依据所有空间位置信息计算出有效视区宽度和移动排图量,因本实施例采取两种方式进行调节,两种调节方式应协调配合,即合理配置有效视区宽度的大小和移动排图量的大小,共同完成调节工作。
步骤S5包括:调整电子3D光学膜的光栅常数至目标光栅常数,以及按照移动排图量调整显示屏。具体的,得到电子3D光学膜的目标光栅常数后,智能终端调整电子3D光学膜的光栅常数至目标光栅常数,以及按照移动排图量调整显示屏。
本实施例首先判断能否通过调整显示屏的移动排图满足所有人眼同时观看需求,若不能则电子3D光学膜的光栅常数,以及显示屏的移动排图,不仅提高调整效率,还使调整更加灵活,调整范围更广。
实施例5
参考图8,本实施例的裸眼3D显示方法包括下述步骤:
S1、智能终端按照预设单位排图长度在显示屏进行初始化显示。本实施例按照预设单位排图长度在显示屏进行初始化显示有多种方式,例如可在启动智能终端时按照预设单位排图长度在显示屏进行初始化显示;或在启动智能终端上的3D视频播放器时按照预设单位排图长度在显示屏进行初始化显示;或智能终端上的3D视频播放器加载3D内容时按照预设单位排图长度在显示屏进行初始化显示。
S2、获取显示屏前方至少一组人眼的空间位置信息。
具体的,多个用户在智能终端前面观看时,智能终端需获取显示屏前所有用户的人眼的空间位置信息。作为选择,智能终端可通过无线定位模块、摄像头等实现对人眼的定位,本实施例以摄像头为例进行原理说明,其他无线定位模块可参考实施。
S31、依据所有空间位置信息计算出有效视区宽度和移动排图量。具体的,依据所有空间位置信息计算出有效视区宽度和移动排图量,因本实施例采取两种方式进行调节,两种调节方式应协调配合,即合理配置有效视区宽度的大小和移动排图量的大小,共同完成调节工作。
S4、根据有效视区宽度得到电子3D光学膜的目标光栅常数。
具体的,本实施例中预设单位排图长度固定不变,显示屏和电子3D光学膜之间的距离为已知量,在计算出有效视区宽度后,根据有效视区宽度、显示屏和电子3D光学膜之间的距离、预设单位排图长度得到电子3D光学膜的目标光栅常数。
S51、调整电子3D光学膜的光栅常数至目标光栅常数,以及按照移动排图量调整显示屏。具体的,得到电子3D光学膜的目标光栅常数后,智能终端调整电子3D光学膜的光栅常数至目标光栅常数,以及按照移动排图量调整显示屏。
本实施例同时电子3D光学膜的光栅常数和显示屏的移动排图,使调整更加灵活,调整范围更广。
实施例6
本实施例的智能终端的显示屏上覆盖有电子3D光学膜,智能终端包括处理器和存储器,控制器分别通信连接存储器和电子3D光学膜。存储器用于存储计算机程序;处理器用于执行存储器中的计算机程序以实现如上述实施例的裸眼3D显示方法。作为选择,智能终端通过调节输出电压和/或输出电流控制电子3D光学膜的光栅常数。可以理解,在选定电子3D光学膜后,便可知电子3D光学膜的光栅常数和工作参数的对应关系,例如电子3D光学膜的光栅常数和工作电压的对应关系,通过调节工作参数即可得到需要的光栅常数。所以在计算得到电子3D光学膜的目标光栅常数后,智能终端电子3D光学膜的光栅常数和工作参数的对应关系调整电子3D光学膜的光栅常数至目标光栅常数。
本实施例的裸眼3D显示方法应用于智能终端,智能终端的显示屏上覆盖有电子3D光学膜,电子3D光学膜可在智能终端生产过程中集成在显示屏上,或者在智能终端生成完成后再粘贴到显示屏上。本实施例中的电子3D光学膜可调节光栅常数;作为选择,电子3D光学膜可选用电子3D光学膜为电子柱镜光栅光学膜、电子屏障视差光栅光学膜等,电子3D光学膜为电子柱镜光栅光学膜和电子屏障视差光栅光学膜的结构可参考现有技术,本实施例不再赘述。该智能终端按照预设算法对3D内容进行排图处理,处理后在显示屏上显示,显示图像的光线透过电子3D光学膜进入用户眼睛,用户的左眼看到左视点内容,用户的右眼看到右视点内容,左眼和右眼看到图像在用户大脑中产生3D立体感,用户就可以看到3D立体图像。作为选择,智能终端包括但不限于智能手机、电脑、智能电视、车载终端、广告机、游戏机等,即具有播放视频功能的终端即可。
本实施例不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整电子3D光学膜的光栅常数,即可实现多人同时观看,且不会降低分辨率,成本低效果好。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。

Claims (12)

  1. 一种裸眼3D显示方法,应用于智能终端,其特征在于,所述智能终端的显示屏上覆盖有电子3D光学膜,所述智能终端通信连接所述电子3D光学膜;所述方法包括:
    S1、所述智能终端按照预设单位排图长度在显示屏进行初始化显示;
    S2、获取所述显示屏前方至少一组人眼的空间位置信息;
    S3、依据所有所述空间位置信息计算出有效视区宽度;
    S4、根据所述有效视区宽度得到所述电子3D光学膜的目标光栅常数;
    S5、调整所述电子3D光学膜的光栅常数至所述目标光栅常数。
  2. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述步骤S2包括:
    所述智能终端的摄像头获取所述显示屏前方至少一组人眼的空间位置信息。
  3. 根据权利要求2所述的裸眼3D显示方法,其特征在于,所述智能终端的摄像头获取所述显示屏前方至少一组人眼的空间位置信息包括:
    所述智能终端的摄像头获取所述显示屏前方的图像信息;
    识别所述图像信息中是否存在人眼;
    若否,则重新获取;
    若是,则获取所述图像信息中至少一组人眼的空间位置信息。
  4. 根据权利要求1所述的裸眼3D显示方法,其特征在于,在所述步骤S2之后所述步骤S3之前还包括:
    根据所述空间位置信息判断所有人眼是否在所述预设单位排图长度对应的预设视区内;
    若是,则按照所述预设单位排图长度播放3D内容;
    若否,则执行所述步骤S3。
  5. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述步骤S3包括:
    依据所有所述空间位置信息得到每组人眼的双目中心点坐标,根据所有人眼的双目中心点坐标计算出有效视区宽度。
  6. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述步骤S4包括:
    根据所述有效视区宽度、所述显示屏和所述电子3D光学膜之间的距离、所述预设单位排图长度得到所述电子3D光学膜的目标光栅常数。
  7. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述智能终端在播放3D内容过程中,间隔预设时间间隔执行一次所述步骤S2至步骤S5;或
    所述智能终端接收到用于调整所述电子3D光学膜的光栅常数的调整指令后执行所述步骤S2至步骤S5;或
    所述步骤S2包括:实时获取所述显示屏前方至少一组人眼的空间位置信息。
  8. 根据权利要求1所述的裸眼3D显示方法,其特征在于,在所述步骤S2之后所述步骤S3之前还包括:
    根据所述空间位置信息判断是否能通过调整显示屏的移动排图满足所有人眼同时观看需求,其中所述移动排图包括排图左右位移和/或排图上下位移;
    若是,则根据所述空间位置信息调整显示屏的移动排图;
    若否,则执行所述步骤S3。
  9. 根据权利要求1或8所述的裸眼3D显示方法,其特征在于,所述步骤S3包括:依据所有所述空间位置信息计算出有效视区宽度和移动排图量;
    所述步骤S5包括:调整所述电子3D光学膜的光栅常数至所述目标光栅常数,以及按照所述移动排图量调整所述显示屏。
  10. 一种智能终端,其特征在于,所述智能终端的显示屏上覆盖有电子3D光学膜,所述智能终端包括处理器和存储器,所述控制器分别通信连接所述存储器和所述电子3D光学膜;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述存储器中的计算机程序以实现如权利要求1至9任一项所述的裸眼3D显示方法。
  11. 根据权利要求10所述的智能终端,其特征在于,所述电子3D光学膜为电子柱镜光栅光学膜或电子屏障视差光栅光学膜。
  12. 根据权利要求10所述的智能终端,其特征在于,所述智能终端为智能手机、电脑、智能电视、车载终端、广告机、游戏机中的一种或几种。
PCT/CN2020/110524 2020-08-21 2020-08-21 一种裸眼3d显示方法及智能终端 WO2022036692A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110524 WO2022036692A1 (zh) 2020-08-21 2020-08-21 一种裸眼3d显示方法及智能终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110524 WO2022036692A1 (zh) 2020-08-21 2020-08-21 一种裸眼3d显示方法及智能终端

Publications (1)

Publication Number Publication Date
WO2022036692A1 true WO2022036692A1 (zh) 2022-02-24

Family

ID=80322499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110524 WO2022036692A1 (zh) 2020-08-21 2020-08-21 一种裸眼3d显示方法及智能终端

Country Status (1)

Country Link
WO (1) WO2022036692A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584754A (zh) * 2022-02-28 2022-06-03 广东未来科技有限公司 3d显示方法及相关装置
CN115776560A (zh) * 2022-12-05 2023-03-10 杭州思影奇数字科技有限公司 基于裸眼3d技术的图像拼接修复处理系统及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085596A (ja) * 2012-10-25 2014-05-12 Dainippon Printing Co Ltd 裸眼式立体映像表示装置、裸眼式立体映像表示装置に用いられる調整装置
US20150029425A1 (en) * 2013-07-26 2015-01-29 Hon Hai Precision Industry Co., Ltd. Auto-stereoscopic display device
CN108307187A (zh) * 2016-09-28 2018-07-20 擎中科技(上海)有限公司 裸眼3d显示设备及其显示方法
CN110035274A (zh) * 2018-01-12 2019-07-19 中山大学 基于光栅的三维显示方法
CN110401829A (zh) * 2019-08-26 2019-11-01 京东方科技集团股份有限公司 一种裸眼3d显示设备及其显示方法
CN110602478A (zh) * 2019-08-26 2019-12-20 宁波视睿迪光电有限公司 一种三维显示装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085596A (ja) * 2012-10-25 2014-05-12 Dainippon Printing Co Ltd 裸眼式立体映像表示装置、裸眼式立体映像表示装置に用いられる調整装置
US20150029425A1 (en) * 2013-07-26 2015-01-29 Hon Hai Precision Industry Co., Ltd. Auto-stereoscopic display device
CN108307187A (zh) * 2016-09-28 2018-07-20 擎中科技(上海)有限公司 裸眼3d显示设备及其显示方法
CN110035274A (zh) * 2018-01-12 2019-07-19 中山大学 基于光栅的三维显示方法
CN110401829A (zh) * 2019-08-26 2019-11-01 京东方科技集团股份有限公司 一种裸眼3d显示设备及其显示方法
CN110602478A (zh) * 2019-08-26 2019-12-20 宁波视睿迪光电有限公司 一种三维显示装置及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584754A (zh) * 2022-02-28 2022-06-03 广东未来科技有限公司 3d显示方法及相关装置
CN114584754B (zh) * 2022-02-28 2023-12-26 广东未来科技有限公司 3d显示方法及相关装置
CN115776560A (zh) * 2022-12-05 2023-03-10 杭州思影奇数字科技有限公司 基于裸眼3d技术的图像拼接修复处理系统及其方法
CN115776560B (zh) * 2022-12-05 2023-08-22 杭州思影奇数字科技有限公司 基于裸眼3d技术的图像拼接修复处理系统及其方法

Similar Documents

Publication Publication Date Title
JP6511386B2 (ja) 情報処理装置および画像生成方法
CN103402106B (zh) 三维图像显示方法及装置
CN102274633B (zh) 图像显示系统、装置以及方法
US9241155B2 (en) 3-D rendering for a rotated viewer
US20160246061A1 (en) Display
CN103018915B (zh) 一种基于人眼追踪的3d集成成像显示方法及集成成像3d显示器
KR102121389B1 (ko) 무안경 3d 디스플레이 장치 및 그 제어 방법
CN104661012B (zh) 个人全息三维显示方法及设备
CN104155824B (zh) 一种主动式光栅、裸眼3d显示装置及显示方法
JP2005295004A (ja) 立体画像処理方法および立体画像処理装置
JP2008083534A (ja) 三次元画像表示方法および三次元画像表示装置
WO2022036692A1 (zh) 一种裸眼3d显示方法及智能终端
CN102497563A (zh) 跟踪式裸眼立体显示控制方法、显示控制装置和显示系统
CN103392342A (zh) 视区调整的方法和装置、能实现立体显示视频信号的设备
CN105894567A (zh) 放缩三维场景中的用户控制的虚拟对象的像素深度值
CN112135115B (zh) 一种裸眼3d显示方法及智能终端
KR101975246B1 (ko) 다시점 영상 디스플레이 장치 및 그 제어 방법
CN108345108A (zh) 头戴式显示设备、三维图像信息的生成方法及装置
CN115668913A (zh) 现场演出的立体显示方法、装置、介质及系统
JP4218937B2 (ja) 立体視用表示装置及び立体視用表示方法
CN103676167A (zh) 立体显示装置及储存媒体
US9258546B2 (en) Three-dimensional imaging system and image reproducing method thereof
US20190281280A1 (en) Parallax Display using Head-Tracking and Light-Field Display
CN106200973A (zh) 一种基于外部图像播放虚拟现实文件的方法及装置
CN103051909B (zh) 用于裸眼3d显示的蒙版变换人眼跟踪方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04-07-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20949900

Country of ref document: EP

Kind code of ref document: A1