WO2022036691A1 - 一种裸眼3d显示方法及智能终端 - Google Patents

一种裸眼3d显示方法及智能终端 Download PDF

Info

Publication number
WO2022036691A1
WO2022036691A1 PCT/CN2020/110523 CN2020110523W WO2022036691A1 WO 2022036691 A1 WO2022036691 A1 WO 2022036691A1 CN 2020110523 W CN2020110523 W CN 2020110523W WO 2022036691 A1 WO2022036691 A1 WO 2022036691A1
Authority
WO
WIPO (PCT)
Prior art keywords
layout
display screen
eye
position information
spatial position
Prior art date
Application number
PCT/CN2020/110523
Other languages
English (en)
French (fr)
Inventor
杨亚军
Original Assignee
深圳市立体通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市立体通科技有限公司 filed Critical 深圳市立体通科技有限公司
Priority to PCT/CN2020/110523 priority Critical patent/WO2022036691A1/zh
Publication of WO2022036691A1 publication Critical patent/WO2022036691A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays

Definitions

  • the present invention relates to the field of naked eye 3D, and more particularly, to a naked eye 3D display method and an intelligent terminal.
  • the naked-eye 3D display technology does not require users to wear 3D glasses to watch, the user experience is greatly improved, but there are still problems to be solved when multiple people watch the same display screen at the same time.
  • the naked-eye 3D display principle different viewers see different images at different positions in front of the naked-eye 3D display panel, respectively, for the left and right eyes.
  • some people's eyes are easily in the wrong view area, so that the left eye can see the right view content while seeing the left view content (the same is true for the right eye). There will be ghosting on the top, and the experience is poor. Or what the left eye sees is the content of the right viewpoint, and what the right eye sees is the content of the left viewpoint, so that the protruding place is concave instead, and the stereo vision is completely wrong.
  • the improvement method that has been disclosed so far is to increase the number of meshes of the content through multi-camera shooting, so that the probability of viewers seeing the wrong viewport is reduced, but if the probability of error is lower, the more meshes of the content are required. It is understandable that under a fixed-resolution display screen, the more the content meshes, the lower the resolution allocated to each group of left and right views, and the viewing experience is greatly reduced. This solution is to increase the probability of the human eye in the effective viewing area by sacrificing the display resolution, and multi-eye shooting will also increase the difficulty and cost of production.
  • this solution is not conducive to the promotion and development of the naked-eye 3D technical solution.
  • the technical problem to be solved by the present invention is to provide a naked-eye 3D display method and an intelligent terminal aiming at the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a naked-eye 3D display method, which is applied to an intelligent terminal, and the display screen of the intelligent terminal is covered with a 3D optical film, and the method includes:
  • the step S1 includes:
  • the camera of the intelligent terminal acquires the spatial position information of at least one group of human eyes in front of the display screen.
  • the camera of the smart terminal obtains the spatial position information of at least one group of human eyes in front of the display screen, including:
  • the camera of the intelligent terminal acquires image information in front of the display screen
  • the method before the step S1, the method further includes: the intelligent terminal performs initialized display on the display screen according to a preset unit layout length;
  • the method further includes: judging whether all eyes are within the preset viewing area corresponding to the preset unit layout length according to the spatial position information;
  • the step S2 includes:
  • the binocular center point coordinates of each group of human eyes are obtained according to all the spatial position information, and the effective viewing area width is calculated according to the binocular center point coordinates of all eyes.
  • the step S3 includes:
  • the unit arrangement length of the display screen is obtained according to the width of the effective viewing area, the distance between the display screen and the 3D optical film, and the grating constant of the 3D optical film.
  • the smart terminal executes the steps S1 to S4 once at a preset time interval;
  • the intelligent terminal executes the steps S1 to S4 after receiving the adjustment instruction for adjusting the length of the unit layout; or
  • the step S1 includes: acquiring the spatial position information of at least one group of human eyes in front of the display screen in real time.
  • the method further includes:
  • the mobile layout of the display screen it is judged whether the mobile layout of the display screen can be adjusted to meet the simultaneous viewing needs of all eyes, wherein the mobile layout includes the left and right displacement of the layout and/or the up and down displacement of the layout;
  • the step S2 includes: calculating the width of the effective viewing area and the moving layout amount according to all the spatial position information;
  • the step S4 includes: performing layout processing on the 3D content according to the unit layout length and the moving layout amount, and playing on the display screen after processing.
  • the step S3 includes: S31 , calculating the grating rotation angle of the 3D optical film according to the width of the effective viewing area, and then correspondingly adjusting the grating rotation angle The layout of the display screen and the unit layout length;
  • the step S4 includes: S42, performing layout processing on the 3D content according to the layout layout and unit layout length, and adjusting the 3D optical film according to the grating rotation angle.
  • the present invention also provides an intelligent terminal, the display screen of the intelligent terminal is covered with a 3D optical film, and the intelligent terminal further includes a processor and a memory;
  • the memory is used to store computer programs
  • the processor is used for executing the computer program in the memory to realize the above-mentioned naked eye 3D display method.
  • the 3D optical film is a lenticular grating optical film or a barrier parallax grating optical film.
  • the smart terminal is one or more of a smart phone, a computer, a smart TV, a vehicle-mounted terminal, an advertising machine, and a game console.
  • the present invention does not require multi-eye shooting to increase the number of 3D content, but adjusts the 3D content by acquiring spatial position information of multiple groups of human eyes
  • the layout of the playback layout can be achieved by multiple people watching at the same time, without reducing the resolution, and the cost is low and the effect is good.
  • 1 is a flowchart of a naked-eye 3D display method provided by an embodiment
  • FIG. 2 is a schematic diagram of a camera acquiring spatial position information of a human eye provided by an embodiment
  • FIG. 3 is a schematic structural diagram of an effective viewing area before and after adjustment provided by an embodiment
  • FIG. 5 is a schematic structural diagram of an effective viewing area according to an embodiment
  • FIG. 6 is a flowchart of a naked-eye 3D display method provided by an embodiment
  • FIG. 7 is a flowchart of a naked-eye 3D display method provided by an embodiment
  • FIG. 10 is a comparison diagram of the layout and unit layout length of the display screen before and after the grating rotation angle adjustment of the 3D optical film provided by an embodiment
  • FIG. 11 is a schematic structural diagram of multiple sets of spatial position information of human eyes provided by an embodiment.
  • the naked-eye 3D display method of this embodiment is applied to a smart terminal.
  • the display screen of the smart terminal is covered with a 3D optical film.
  • the 3D optical film can be integrated on the display screen during the production process of the smart terminal, or can be pasted after the production of the smart terminal is completed. to the display.
  • the 3D optical film can be selected from a lenticular grating optical film, a barrier parallax grating optical film, etc.
  • the structures of the lenticular grating optical film and the barrier parallax grating optical film may refer to the prior art, which will not be repeated in this embodiment.
  • the intelligent terminal processes the 3D content according to the preset algorithm, and displays it on the display screen after processing.
  • the smart terminal includes, but is not limited to, a smart phone, a computer, a smart TV, a vehicle-mounted terminal, an advertising machine, a game console, etc., that is, a terminal having the function of playing video.
  • 3D content includes 3D pictures, 3D videos and 3D games.
  • the naked-eye 3D display method of this embodiment includes the following steps:
  • the smart terminal needs to obtain the spatial position information of the human eyes of all users in front of the display screen.
  • the intelligent terminal can realize the positioning of the human eye through a wireless positioning module, a camera, etc.
  • This embodiment uses a camera as an example to illustrate the principle, and other wireless positioning modules can be implemented with reference.
  • the camera and the display screen are located on the same side of the smart terminal, so that the camera can obtain all user images in front of the display screen.
  • the camera After receiving the image acquisition instruction, the camera acquires the image information in front of the display screen. After acquiring the image information, it needs to identify whether there is a human eye in the image information through a human eye recognition algorithm.
  • the human eye recognition algorithm can refer to the prior art. After identification, if no human eye is identified in the image information, the camera re-acquires the image information and performs human eye identification again. If human eyes are identified in the image information, the spatial position information of at least one group of human eyes in the image information is acquired.
  • the spatial position information of the human eye in this embodiment is the position information relative to the display screen, that is, the spatial coordinate system is established based on the display screen. Since the position of the camera is known, it can be calculated according to the existing image algorithm. The spatial position information of each group of human eyes in the spatial coordinate system. There are many ways to select the coordinate system, which is not limited in this embodiment.
  • this embodiment When calculating the spatial position information of human eyes, considering that the user watches the video with the binocular center point as the base point, this embodiment first obtains the binocular center point coordinates of each group of human eyes according to all the spatial position information, that is, using After the image recognition technology identifies a group of human eyes, the coordinates of the binocular center point of the human eye are calculated. For example, in Figure 2, there are three groups of human eyes in front of the display screen. The camera recognizes the user's human eyes after acquiring the user image in front of the display screen, and calculates the spatial position information of each group of human eyes. The coordinates of the binocular center point are: P1 (x1, y1, z1), P2 (x2, y2, z2), P3 (x3, y3, z3).
  • the effective viewing area width is calculated according to the binocular center point coordinates of all eyes.
  • the coordinates of the binocular center point are regarded as the center point of the width of the viewport, and then the left and right view spans are adjusted equally, and the adjusted width of the left and right views is in the range of 3.25cm--6.5cm.
  • the coordinates of the binocular center points of the three groups of human eyes are: P1 (x1, y1, z1), P2 (x2, y2, z2), P3 (x3, y3, z3), according to the three groups of human eyes
  • the effective view area width is calculated from the coordinates of the binocular center point.
  • L2 is the effective view area width.
  • P10 is the effective viewing area before adjustment
  • L1 is the effective viewing area width of the effective viewing area before adjustment
  • P20 is the effective viewing area after adjustment using this embodiment
  • L2 is the effective viewing area after adjustment. Viewport width.
  • the width of the effective viewing area after adjustment in this embodiment is obviously smaller than the width of the effective viewing area before the adjustment.
  • By reducing the width of the effective viewing area more users can be accommodated in the effective viewing area of the same size, and each viewing area is guaranteed. Users can clearly see 3D stereoscopic images without reducing the resolution.
  • the distance between the display screen and the 3D optical film is fixed, and the grating constant of the 3D optical film is a known quantity.
  • the distance and the grating constant of the 3D optical film obtain the unit row length of the display screen.
  • P10 is the effective view area before adjustment
  • L1 is the effective view area width of the effective view area before adjustment
  • a is the unit row length before adjustment, that is, the content row length of one unit
  • P20 is the use of this
  • L2 is the effective view area width of the adjusted effective view area
  • b is the adjusted unit layout length, that is, the content layout length of one unit.
  • the width of the effective viewing area after adjustment in this embodiment is obviously smaller than the width of the effective viewing area before adjustment, and the length of the unit layout after adjustment is smaller than the length of the unit layout before adjustment.
  • the intelligent terminal after obtaining the unit layout length, performs layout processing on the 3D content according to the unit layout length.
  • the processing algorithm can refer to the prior art, and after processing, it is played on the display screen.
  • FIG. 4 shows the effective viewing area and the effective viewing area width obtained by using the prior art.
  • the effective viewing area width L3 in the prior art is 13 cm and is a fixed value; When viewing the content, some people's eyes are easily in the wrong viewing area, causing the left eye to see the content of the left view at the same time as the content of the right view (the same for the right eye). Difference. Or what the left eye sees is the content of the right viewpoint, and what the right eye sees is the content of the left viewpoint, so that the protruding place is concave instead, and the stereo vision is completely wrong.
  • Fig. 5 shows the effective viewing area and the width of the effective viewing area obtained in this embodiment.
  • the width of the effective viewing area after adjustment in this embodiment is obviously smaller than the width of the effective viewing area before the adjustment.
  • the value range is 6.5cm-13cm, and the value range of the effective viewport width is obtained from the statistical data of the user's human eyes; in addition, the length of the unit row after adjustment is smaller than the length of the unit row before adjustment.
  • the intelligent terminal acquires the spatial position information of at least one group of human eyes in front of the display screen in real time, that is, the intelligent terminal continuously and cyclically executes steps S1 to S4 in real time, thereby realizing continuous and uninterrupted adjustment.
  • the smart terminal may perform steps S1 to S4 at a preset time interval, and the preset time interval may be set by the user, such as 10 seconds, 20 seconds, 30 seconds, etc.
  • the adjustment instruction can also be manually issued by the user, that is, the adjustment is made only when the user thinks that the 3D stereoscopic image seen is not clear; the user can issue the adjustment instruction through physical buttons, virtual buttons or voice, etc. Steps S1 to S4 are executed after adjusting the adjustment instruction of the unit layout length.
  • multi-eye shooting is not needed to increase the number of 3D content, but the playback layout of 3D content is adjusted by acquiring the spatial position information of multiple groups of human eyes, so that multiple people can watch at the same time without reducing resolution and cost. Low effect is good.
  • the method further includes:
  • the intelligent terminal performs initialized display on the display screen according to the preset unit layout length.
  • the preset unit layout length there are various ways to initialize and display on the display screen according to the preset unit layout length.
  • a video player When a video player is used, it is initialized and displayed on the display screen according to the preset unit layout length; or when the 3D video player on the smart terminal loads 3D content, it is initialized and displayed on the display screen according to the preset unit layout length.
  • step S1 in Embodiment 1 and before step S2 it also includes:
  • S11 Determine whether all eyes are within a preset viewing area corresponding to a preset unit layout length according to the spatial position information. Since the distance between the display screen and the 3D optical film in this embodiment is fixed, the grating constant of the 3D optical film is a known quantity. The distance and the grating constant of the 3D optical film get the preset viewing area. After the preset viewing area is obtained, it is determined whether all eyes are within the preset viewing area corresponding to the preset unit layout length according to the spatial position information.
  • step S2 If all eyes are in the preset viewing area corresponding to the preset unit layout length, it means that the current viewing area has met the needs of all users, and the 3D content is played according to the preset unit layout length. If not all eyes are within the preset viewing area corresponding to the preset unit layout length, indicating that adjustment is required, step S2 is performed.
  • the intelligent terminal first performs initialized display on the display screen according to the preset unit layout length, and then adjusts when the viewing area needs to be adjusted.
  • this embodiment does not require multi-eye shooting to increase the number of 3D content, but adjusts the playback layout of 3D content by acquiring the spatial position information of multiple groups of human eyes, so that multiple people can watch at the same time without reducing the resolution. Low cost and good effect.
  • the method further includes:
  • the moving layout includes the left and right displacement of the layout and/or the up and down displacement of the layout, and the adjustment can be completed only by the left and right displacement of the layout, or only by the up and down displacement of the layout, or through the left and right displacement of the layout and the layout at the same time.
  • the up and down displacement of the graph completes the adjustment, and the judgment process can refer to the prior art.
  • the mobile layout of the display screen can be adjusted to meet the simultaneous viewing needs of all eyes, adjust the mobile layout of the display screen according to the spatial position information, that is, first calculate the mobile layout according to the spatial position information, and the mobile layout Including the left and right displacement of the arrangement and/or the up and down displacement of the arrangement, and then the display screen will arrange the arrangement according to the moving arrangement.
  • the amount of moving images according to the spatial position information it is necessary to first obtain the position information of the left and right eyes of each group of human eyes according to the spatial position information, and then calculate the position information of the left and right eyes of all groups of human eyes.
  • Mobile layout volume Mobile layout volume.
  • P1L and P1R are a group of human eyes
  • P2L and P2R are a group of human eyes
  • P3L and P3R are a group of human eyes
  • the moving layout amount can be calculated according to the position information of the left eye and the right eye of the three groups of human eyes. If the requirement for simultaneous viewing by all eyes cannot be met by adjusting the moving layout of the display screen, step S2 is performed.
  • step S2 of this embodiment includes: calculating the width of the effective viewing area and the amount of moving layout according to all the spatial position information.
  • the width of the effective viewing area and the amount of moving layout are calculated. Because this embodiment adopts two methods for adjustment, the two adjustment methods should be coordinated, that is, the size and movement of the width of the effective viewing area should be reasonably configured. Arrange the size of the map to complete the adjustment work together.
  • Step S4 in this embodiment includes: performing layout processing on the 3D content according to the unit layout length and the moving layout amount, and playing on the display screen after processing.
  • the intelligent terminal after obtaining the unit layout length and the moving layout quantity, performs layout processing on the 3D content according to the unit layout length and the moving layout quantity, and plays it on the display screen after processing.
  • the mobile layout of the display screen it is first judged whether the mobile layout of the display screen can be adjusted to meet the simultaneous viewing needs of all eyes. If not, the unit layout length and the mobile layout can be adjusted at the same time, which not only improves the adjustment efficiency, but also makes the adjustment more flexible and the adjustment range. wider.
  • the naked-eye 3D display method of this embodiment includes the following steps:
  • the smart terminal needs to obtain the spatial position information of the human eyes of all users in front of the display screen.
  • the intelligent terminal can realize the positioning of the human eye through a wireless positioning module, a camera, etc.
  • This embodiment uses a camera as an example to illustrate the principle, and other wireless positioning modules can be implemented with reference.
  • the width of the effective viewing area and the amount of moving layout are calculated. Because this embodiment adopts two methods for adjustment, the two adjustment methods should be coordinated, that is, the size and movement of the width of the effective viewing area should be reasonably configured. Arrange the size of the map to complete the adjustment work together.
  • the intelligent terminal after obtaining the unit layout length and the moving layout quantity, performs layout processing on the 3D content according to the unit layout length and the moving layout quantity, and plays it on the display screen after processing.
  • the unit layout length and the moving layout are adjusted at the same time, so that the adjustment is more flexible and the adjustment range is wider.
  • the naked-eye 3D display method of this embodiment includes the following steps:
  • the smart terminal needs to obtain the spatial position information of the human eyes of all users in front of the display screen.
  • the intelligent terminal can realize the positioning of the human eye through a wireless positioning module, a camera, and the like.
  • the effective viewing area width is calculated according to the binocular center point coordinates of all eyes.
  • the coordinates of the binocular center point are regarded as the center point of the width of the viewport, and then the left and right view spans are adjusted equally, and the adjusted width of the left and right views is in the range of 3.25cm--6.5cm.
  • the intelligent terminal After determining the map layout and unit layout length, the intelligent terminal performs layout processing on the 3D content according to the layout layout and unit layout length.
  • a servo motor can be used to adjust the grating angle of the 3D optical film. The intelligent terminal sends an adjustment command to the servo motor, and the servo motor drives the grating of the 3D optical film to rotate.
  • This embodiment determines the grating rotation angle of the 3D optical film according to the control position information of multiple groups of human eyes, and then determines the layout of the display screen and the length of the unit layout, so as to quickly adapt to multiple people watching naked-eye 3D videos at the same time, and improve the user experience .
  • the display screen of the smart terminal in this embodiment is covered with a 3D optical film, and the smart terminal further includes a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program in the memory to realize the naked eye 3D as in the above-mentioned embodiment Display method.
  • the naked-eye 3D display method of this embodiment is applied to a smart terminal.
  • the display screen of the smart terminal is covered with a 3D optical film.
  • the 3D optical film can be integrated on the display screen during the production process of the smart terminal, or can be pasted after the production of the smart terminal is completed. to the display.
  • the 3D optical film can be selected from a lenticular grating optical film, a barrier parallax grating optical film, etc.
  • the structures of the lenticular grating optical film and the barrier parallax grating optical film may refer to the prior art, which will not be repeated in this embodiment.
  • the intelligent terminal processes the 3D content according to the preset algorithm, and displays it on the display screen after processing.
  • the smart terminal includes, but is not limited to, a smart phone, a computer, a smart TV, a vehicle-mounted terminal, an advertising machine, a game console, etc., that is, a terminal having the function of playing video.
  • multi-eye shooting is not needed to increase the number of 3D content, but the playback layout of 3D content is adjusted by acquiring the spatial position information of multiple groups of human eyes, so that multiple people can watch at the same time without reducing resolution and cost. Low effect is good.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk removable disk
  • CD-ROM compact disc-read only memory

Abstract

本发明涉及一种裸眼3D显示方法及智能终端。该方法应用于智能终端,智能终端的显示屏上覆盖有3D光学膜。该方法包括:S1、获取显示屏前方至少一组人眼的空间位置信息;S2、依据所有空间位置信息计算出有效视区宽度;S3、根据有效视区宽度得到显示屏的单位排图长度;S4、按照单位排图长度对3D内容进行排图处理,处理后在显示屏上播放。本发明不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整3D内容的播放排图,实现多人同时观看,不会降低分辨率,成本低效果好。

Description

一种裸眼3D显示方法及智能终端 技术领域
本发明涉及裸眼3D领域,更具体地说,涉及一种裸眼3D显示方法及智能终端。
背景技术
因裸眼3D显示技术不需要用户佩戴3D眼镜观看,大大提高了用户体验,但多人同时观看同一显示屏时仍有问题需要解决。根据裸眼3D显示原理可知,不同的观看者在裸眼3D显示面板前不同的位置,左、右眼各自看到的图像也各不相同。在多人同时观看裸眼3D内容时,部分人的双眼很容易在错误的视区内,导致左眼在看到左视点内容的同时又能看到右视点内容(右眼同样),则在视觉上会出现重影,体验差。又或者左眼看到的是右视点内容,右眼看到的是左视点内容,则导致该凸出的地方反而凹陷,立体视觉完全错误。
目前已公开的改善方法是通过多目拍摄,增加内容的目数,让观看者看到错误视区的几率减少,但若要出错的几率更低,则需要内容的目数就会越多。可以理解的,在固定分辨率显示屏下,内容的目数越多又会导致分配到每一组左右视图的分辨率下降,观看体验大打折扣。这种方案是通过牺牲显示分辨率来提升人眼在有效视区的几率,而且多目拍摄也会增加制作的难度和成本。另外,这种方案的有效视区空间位置虽能变动,但其有效视区的面积大小并未发生变化,造成在同一距离,部分视区浪费,可容纳的观看人数变少。因此,该方案不利于裸眼3D技术方案推广和发展。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种裸眼3D显示方法及智能终端。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种裸眼3D显示方法,应用于智能终端,所述智能终端的显示屏上覆盖有3D光学膜,所述方法包括:
S1、获取所述显示屏前方至少一组人眼的空间位置信息;
S2、依据所有所述空间位置信息计算出有效视区宽度;
S3、根据所述有效视区宽度得到所述显示屏的单位排图长度;
S4、按照所述单位排图长度对3D内容进行排图处理,处理后在所述显示屏上播放。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S1包括:
所述智能终端的摄像头获取所述显示屏前方至少一组人眼的空间位置信息。
进一步,在本发明所述的裸眼3D显示方法中,所述智能终端的摄像头获取所述显示屏前方至少一组人眼的空间位置信息包括:
所述智能终端的摄像头获取所述显示屏前方的图像信息;
识别所述图像信息中是否存在人眼;
若否,则重新获取;
若是,则获取所述图像信息中至少一组人眼的空间位置信息。
进一步,在本发明所述的裸眼3D显示方法中,在所述步骤S1之前还包括:所述智能终端按照预设单位排图长度在显示屏进行初始化显示;
在所述步骤S1之后所述步骤S2之前还包括:根据所述空间位置信息判断所有人眼是否在所述预设单位排图长度对应的预设视区内;
若是,则按照所述预设单位排图长度播放3D内容;
若否,则执行所述步骤S2。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S2包括:
依据所有所述空间位置信息得到每组人眼的双目中心点坐标,根据所有人眼的双目中心点坐标计算出有效视区宽度。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S3包括:
根据所述有效视区宽度、所述显示屏和所述3D光学膜的距离、所述3D光学膜的光栅常数得到所述显示屏的单位排图长度。
进一步,在本发明所述的裸眼3D显示方法中,所述智能终端在播放3D内容过程中,间隔预设时间间隔执行一次所述步骤S1至步骤S4;或
所述智能终端接收到用于调整单位排图长度的调整指令后执行所述步骤S1至步骤S4;或
所述步骤S1包括:实时获取所述显示屏前方至少一组人眼的空间位置信息。
进一步,在本发明所述的裸眼3D显示方法中,在所述步骤S1之后所述步骤S2之前还包括:
根据所述空间位置信息判断是否能通过调整显示屏的移动排图满足所有人眼同时观看需求,其中所述移动排图包括排图左右位移和/或排图上下位移;
若是,则根据所述空间位置信息调整显示屏的移动排图;
若否,则执行所述步骤S2。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S2包括:依据所有所述空间位置信息计算出有效视区宽度和移动排图量;
所述步骤S4包括:按照所述单位排图长度和移动排图量对3D内容进行排图处理,处理后在所述显示屏上播放。
进一步,在本发明所述的裸眼3D显示方法中,所述步骤S3包括:S31、根据所述有效视区宽度计算出所述3D光学膜的光栅旋转角度,进而根据所述光栅旋转角度对应调整所述显示屏的排图布局和单位排图长度;
所述步骤S4包括:S42、按照所述排图布局和单位排图长度对3D内容进行排图处理,以及按照所述光栅旋转角度调节所述3D光学膜。
另外,本发明还提供一种智能终端,所述智能终端的显示屏上覆盖有3D光学膜,所述智能终端还包括处理器和存储器;
所述存储器用于存储计算机程序;
所述处理器用于执行所述存储器中的计算机程序以实现如上述的裸眼3D显示方法。
进一步,本发明所述的智能终端中,所述3D光学膜为柱镜光栅光学膜或屏障视差光栅光学膜。
进一步,本发明所述的智能终端中,所述智能终端为智能手机、电脑、智能电视、车载终端、广告机、游戏机中的一种或几种。
有益效果
实施本发明的一种裸眼3D显示方法及智能终端,具有以下有益效果:本发明不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整3D内容的播放排图,实现多人同时观看,不会降低分辨率,成本低效果好。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是一实施例提供的裸眼3D显示方法的流程图;
图2是一实施例提供的摄像头获取人眼的空间位置信息的示意图;
图3是一实施例提供的有效视区调整前后的结构示意图;
图4是现有技术中有效视区的结构示意图;
图5是一实施例的有效视区的结构示意图;
图6是一实施例提供的裸眼3D显示方法的流程图;
图7是一实施例提供的裸眼3D显示方法的流程图;
图8是一实施例提供的裸眼3D显示方法的流程图;
图9是一实施例提供的裸眼3D显示方法的流程图;
图10是一实施例提供的3D光学膜的光栅旋转角度调整前后显示屏的排图布局和单位排图长度的对比图;
图11是一实施例提供的多组人眼的空间位置信息的结构示意图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
实施例1
本实施例的裸眼3D显示方法应用于智能终端,智能终端的显示屏上覆盖有3D光学膜,3D光学膜可在智能终端生产过程中集成在显示屏上,或者在智能终端生成完成后再粘贴到显示屏上。作为选择,3D光学膜可选用柱镜光栅光学膜、屏障视差光栅光学膜等,柱镜光栅光学膜和屏障视差光栅光学膜的结构可参考现有技术,本实施例不再赘述。该智能终端按照预设算法对3D内容进行排图处理,处理后在显示屏上显示,显示图像的光线透过3D光学膜进入用户眼睛,用户的左眼看到左视点内容,用户的右眼看到右视点内容,左眼和右眼看到图像在用户大脑中产生3D立体感,用户就可以看到3D立体图像。作为选择,智能终端包括但不限于智能手机、电脑、智能电视、车载终端、广告机、游戏机等,即具有播放视频功能的终端即可。3D内容包括3D图片、3D视频和3D游戏等。
参考图1,本实施例的裸眼3D显示方法包括下述步骤:
S1、获取显示屏前方至少一组人眼的空间位置信息。
具体的,多个用户在智能终端前面观看时,智能终端需获取显示屏前所有用户的人眼的空间位置信息。作为选择,智能终端可通过无线定位模块、摄像头等实现对人眼的定位,本实施例以摄像头为例进行原理说明,其他无线定位模块可参考实施。
参考图2,摄像头与显示屏位于智能终端的同侧,以方便摄像头能获取显示屏前所有用户图像。摄像头接到图像获取指令后获取显示屏前方的图像信息,获取图像信息后需要通过人眼识别算法识别图像信息中是否存在人眼,人眼识别算法可参考现有技术。经过识别,若图像信息中没有识别出人眼,则摄像头重新获取图像信息并重新进行人眼识别。若图像信息中识别出人眼,则获取图像信息中至少一组人眼的空间位置信息。可以理解,本实施例中人眼的空间位置信息是相对于显示屏的位置信息,即以显示屏为基础建立空间坐标系,因摄像头的位置已知,则根据现有图像算法即可计算出每组人眼的在空间坐标系中的空间位置信息。坐标系的选择有多种方式,本实施例对此不做限定。
在计算人眼的空间位置信息时,考虑到用户看视频时是以双目中心点为基点进行观看,本实施例首先依据所有空间位置信息得到每组人眼的双目中心点坐标,即利用图像识别技术识别出一组人眼后,计算出该人眼的双目中心点坐标。例如,图2中显示屏前有3组人眼,摄像头获取显示屏前的用户图像后识别出用户人眼,并计算出每组人眼的空间位置信息,经计算得出3组人眼的双目中心点坐标分别是:P1(x1、y1、z1)、P2(x2、y2、z2)、P3(x3、y3、z3)。
S2、依据所有空间位置信息计算出有效视区宽度。
具体的,确定显示屏前所有人眼的双目中心点坐标后,根据所有人眼的双目中心点坐标计算出有效视区宽度。在计算过程中,将双目中心点坐标视为视区宽度中心点,然后对左右视图跨度进行等量调整,调整后的左右视图的宽度在3.25cm--6.5cm的范围内。参考图2,3组人眼的双目中心点坐标分别是:P1(x1、y1、z1)、P2(x2、y2、z2)、P3(x3、y3、z3),根据3组人眼的双目中心点坐标计算出有效视区宽度,图2中L2为有效视区宽度。参考图3,图中P10为调整前的有效视区,L1是调整前有效视区的有效视区宽度;P20是使用本实施例调整后的有效视区,L2是调整后有效视区的有效视区宽度。可看出,本实施例调整后的有效视区宽度明显小于调整前的有效视区宽度,通过减小有效视区宽度,让同样大小的有效视区范围内容纳更多用户观看,且保证每个用户能清晰看到3D立体图像,不会降低分辨率。
S3、根据有效视区宽度得到显示屏的单位排图长度。
具体的,本实施例中显示屏和3D光学膜的距离是固定不变的,3D光学膜的光栅常数为已知量,在此基础上,根据有效视区宽度、显示屏和3D光学膜的距离、3D光学膜的光栅常数得到显示屏的单位排图长度。参考图3,图中P10为调整前的有效视区,L1是调整前有效视区的有效视区宽度,a为调整前单位排图长度,即一个单位的内容排图长度;P20是使用本实施例调整后的有效视区,L2是调整后有效视区的有效视区宽度,b是调整后的单位排图长度,即一个单位的内容排图长度。可看出,本实施例调整后的有效视区宽度明显小于调整前的有效视区宽度,调整后的单位排图长度小于调整前的单位排图长度。通过减小有效视区宽度,让同样大小的有效视区范围内容纳更多用户观看,且保证每个用户能清晰看到3D立体图像,不会降低分辨率,提高用户观影体验。
S4、按照单位排图长度对3D内容进行排图处理,处理后在显示屏上播放。
具体的,得到单位排图长度后,智能终端按照单位排图长度对3D内容进行排图处理,该处理算法可参考现有技术,处理后在显示屏上播放。
参考图4和图5,图4是利用现有技术得到的有效视区和有效视区宽度,现有技术中的有效视区宽度L3为13cm,且为固定值;在多人同时观看裸眼3D内容时,部分人的双眼很容易在错误的视区内,导致左眼在看到左视点内容的同时又能看到右视点内容(右眼同样),则在视觉上会出现重影,体验差。又或者左眼看到的是右视点内容,右眼看到的是左视点内容,则导致该凸出的地方反而凹陷,立体视觉完全错误。图5是本实施例得到的有效视区和有效视区宽度,可以看出,本实施例调整后的有效视区宽度明显小于调整前的有效视区宽度,调整后的有效视区宽度的取值范围为6.5cm-13cm,该有效视区宽度的取值范围是由用户人眼的统计数据得到的;另外,调整后的单位排图长度小于调整前的单位排图长度。通过减小有效视区宽度,让同样大小的有效视区范围内容纳更多用户观看,且保证每个用户能清晰看到3D立体图像,不会降低分辨率,提高用户观影体验。
在实际观影过程中用户是不断变化的,例如观影人数的增减、人眼位置的变化等,所以需要动态调整单位排图长度,以快速适应用户的变化,提高用户观影体验。作为选择,智能终端实时获取显示屏前方至少一组人眼的空间位置信息,即智能终端实时连续循环执行步骤S1至步骤S4,从而实现连续不间断的调整。或者,智能终端在播放3D内容过程中,可间隔预设时间间隔执行一次步骤S1至步骤S4,预设时间间隔可由用户进行设定,例如10秒、20秒、30秒等。或者,也可由用户手动下发调整指令,即用户认为看到的3D立体图像不清晰时才进行调整;用户可通过实体按键、虚拟按键或语音等方式下发调整指令,智能终端接收到用于调整单位排图长度的调整指令后执行步骤S1至步骤S4。
本实施例不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整3D内容的播放排图,实现多人同时观看,不会降低分辨率,成本低效果好。
实施例2
参考图6,在实施例1的基础上,本实施例的本实施例的裸眼3D显示方法中,在步骤S1之前还包括:
S01、智能终端按照预设单位排图长度在显示屏进行初始化显示。本实施例按照预设单位排图长度在显示屏进行初始化显示有多种方式,例如可在启动智能终端时按照预设单位排图长度在显示屏进行初始化显示;或在启动智能终端上的3D视频播放器时按照预设单位排图长度在显示屏进行初始化显示;或智能终端上的3D视频播放器加载3D内容时按照预设单位排图长度在显示屏进行初始化显示。
进一步,在实施例1的步骤S1之后步骤S2之前还包括:
S11、根据空间位置信息判断所有人眼是否在预设单位排图长度对应的预设视区内。因本实施例中显示屏和3D光学膜的距离是固定不变的,3D光学膜的光栅常数为已知量,在此基础上,根据预设单位排图长度、显示屏和3D光学膜的距离、3D光学膜的光栅常数得到预设视区。得到预设视区后,根据空间位置信息判断所有人眼是否在预设单位排图长度对应的预设视区内。
S12、若所有人眼都在预设单位排图长度对应的预设视区内,说明当前视区已经满足所有用户需求,则按照预设单位排图长度播放3D内容。若不是所有人眼都在预设单位排图长度对应的预设视区内,说明需要进行调整,则执行步骤S2。
本实施例智能终端首先按照预设单位排图长度在显示屏进行初始化显示,在视区需要调整时再进行调整。另外本实施例不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整3D内容的播放排图,实现多人同时观看,不会降低分辨率,成本低效果好。
实施例3
参考图7,在实施例1的基础上,本实施例的裸眼3D显示方法中,在步骤S1之后步骤S2之前还包括:
S13、根据空间位置信息判断是否能通过调整显示屏的移动排图满足所有人眼同时观看需求,即根据空间位置信息判断是否能通过调整显示屏的移动排图使所有人眼都位于有效视区范围内,其中移动排图包括排图左右位移和/或排图上下位移,即可仅通过排图左右位移完成调节,或仅通过排图上下位移完成调节,或同时通过排图左右位移和排图上下位移完成调节,该判断过程可参考现有技术。
S14、若能通过调整显示屏的移动排图满足所有人眼同时观看需求,则根据空间位置信息调整显示屏的移动排图,即首先根据空间位置信息计算出移动排图量,移动排图量包括排图左右位移量和/或排图上下位移量,然后显示屏根据按照移动排图量进行排图。根据空间位置信息计算出移动排图量时,首先需要根据空间位置信息得到每组人眼的左眼和右眼的位置信息,然后根据所有组人眼的左眼和右眼的位置信息计算出移动排图量。参考图11,图中有3组人眼:P1L和P1R为一组人眼,P2L和P2R为一组人眼,P3L和P3R为一组人眼,获取这3组人眼的左眼和右眼的位置信息后,即可根据这3组人眼的左眼和右眼的位置信息计算出移动排图量。若不能通过调整显示屏的移动排图满足所有人眼同时观看需求,则执行步骤S2。
本实施例在获取空间位置信息后首先判断是否能通过调整显示屏的移动排图满足所有人眼同时观看需求,若能则不需要执行后续调整方案,可快速完成调整,耗费资源少。
实施例4
在实施例3的基础上,本实施例的步骤S2包括:依据所有空间位置信息计算出有效视区宽度和移动排图量。
具体的,依据所有空间位置信息计算出有效视区宽度和移动排图量,因本实施例采取两种方式进行调节,两种调节方式应协调配合,即合理配置有效视区宽度的大小和移动排图量的大小,共同完成调节工作。
本实施例的步骤S4包括:按照单位排图长度和移动排图量对3D内容进行排图处理,处理后在显示屏上播放。
具体的,在得到单位排图长度和移动排图量后,智能终端按照单位排图长度和移动排图量对3D内容进行排图处理,处理后在显示屏上播放。
本实施例首先判断能否通过调整显示屏的移动排图满足所有人眼同时观看需求,若不能则同时调整单位排图长度和移动排图,不仅提高调整效率,还使调整更加灵活,调整范围更广。
实施例5
参考图8,本实施例的裸眼3D显示方法包括下述步骤:
S1、获取显示屏前方至少一组人眼的空间位置信息。
具体的,多个用户在智能终端前面观看时,智能终端需获取显示屏前所有用户的人眼的空间位置信息。作为选择,智能终端可通过无线定位模块、摄像头等实现对人眼的定位,本实施例以摄像头为例进行原理说明,其他无线定位模块可参考实施。
S21、依据所有空间位置信息计算出有效视区宽度和移动排图量。
具体的,依据所有空间位置信息计算出有效视区宽度和移动排图量,因本实施例采取两种方式进行调节,两种调节方式应协调配合,即合理配置有效视区宽度的大小和移动排图量的大小,共同完成调节工作。
S3、根据有效视区宽度得到显示屏的单位排图长度。
S41、按照单位排图长度和移动排图量对3D内容进行排图处理,处理后在显示屏上播放。
具体的,在得到单位排图长度和移动排图量后,智能终端按照单位排图长度和移动排图量对3D内容进行排图处理,处理后在显示屏上播放。
本实施例同时调整单位排图长度和移动排图,使调整更加灵活,调整范围更广。
实施例6
参考图9和图10,本实施例的裸眼3D显示方法包括下述步骤:
S1、获取显示屏前方至少一组人眼的空间位置信息。
具体的,多个用户在智能终端前面观看时,智能终端需获取显示屏前所有用户的人眼的空间位置信息。作为选择,智能终端可通过无线定位模块、摄像头等实现对人眼的定位。
S2、依据所有空间位置信息计算出有效视区宽度。
具体的,确定显示屏前所有人眼的双目中心点坐标后,根据所有人眼的双目中心点坐标计算出有效视区宽度。在计算过程中,将双目中心点坐标视为视区宽度中心点,然后对左右视图跨度进行等量调整,调整后的左右视图的宽度在3.25cm--6.5cm的范围内。
S31、根据有效视区宽度计算出3D光学膜的光栅旋转角度,进而根据光栅旋转角度对应调整显示屏的排图布局和单位排图长度。参考图10,在根据有效视区宽度计算出3D光学膜的光栅旋转角度后,如果3D光学膜的光栅旋转角度发生变化,必然引起显示屏的排图布局的变化和单位排图长度的变化,也就是说在确定3D光学膜的光栅旋转角度后,根据光栅旋转角度调整显示屏的排图布局和单位排图长度,以适应光栅旋转角度的变化。
S42、按照排图布局和单位排图长度对3D内容进行排图处理,以及按照光栅旋转角度调节3D光学膜。在确定图布局和单位排图长度后,智能终端按照排图布局和单位排图长度对3D内容进行排图处理。作为选择,3D光学膜的光栅角度的调整可使用伺服电机,智能终端发送调节指令至伺服电机,伺服电机驱动3D光学膜的光栅转动。
本实施例根据多组人眼的控制位置信息确定3D光学膜的光栅旋转角度,进而确定显示屏的排图布局和单位排图长度,以快速适应多人同时观看裸眼3D视频,提高用户使用体验。
实施例7
本实施例的智能终端的显示屏上覆盖有3D光学膜,智能终端还包括处理器和存储器;存储器用于存储计算机程序;处理器用于执行存储器中的计算机程序以实现如上述实施例的裸眼3D显示方法。
本实施例的裸眼3D显示方法应用于智能终端,智能终端的显示屏上覆盖有3D光学膜,3D光学膜可在智能终端生产过程中集成在显示屏上,或者在智能终端生成完成后再粘贴到显示屏上。作为选择,3D光学膜可选用柱镜光栅光学膜、屏障视差光栅光学膜等,柱镜光栅光学膜和屏障视差光栅光学膜的结构可参考现有技术,本实施例不再赘述。该智能终端按照预设算法对3D内容进行排图处理,处理后在显示屏上显示,显示图像的光线透过3D光学膜进入用户眼睛,用户的左眼看到左视点内容,用户的右眼看到右视点内容,左眼和右眼看到图像在用户大脑中产生3D立体感,用户就可以看到3D立体图像。作为选择,智能终端包括但不限于智能手机、电脑、智能电视、车载终端、广告机、游戏机等,即具有播放视频功能的终端即可。
本实施例不需要多目拍摄来增加3D内容的目数,而是通过获取多组人眼的空间位置信息来调整3D内容的播放排图,实现多人同时观看,不会降低分辨率,成本低效果好。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。

Claims (13)

  1. 一种裸眼3D显示方法,应用于智能终端,所述智能终端的显示屏上覆盖有3D光学膜,其特征在于,所述方法包括:
    S1、获取所述显示屏前方至少一组人眼的空间位置信息;
    S2、依据所有所述空间位置信息计算出有效视区宽度;
    S3、根据所述有效视区宽度得到所述显示屏的单位排图长度;
    S4、按照所述单位排图长度对3D内容进行排图处理,处理后在所述显示屏上播放。
  2. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述步骤S1包括:
    所述智能终端的摄像头获取所述显示屏前方至少一组人眼的空间位置信息。
  3. 根据权利要求2所述的裸眼3D显示方法,其特征在于,所述智能终端的摄像头获取所述显示屏前方至少一组人眼的空间位置信息包括:
    所述智能终端的摄像头获取所述显示屏前方的图像信息;
    识别所述图像信息中是否存在人眼;
    若否,则重新获取;
    若是,则获取所述图像信息中至少一组人眼的空间位置信息。
  4. 根据权利要求1所述的裸眼3D显示方法,其特征在于,在所述步骤S1之前还包括:所述智能终端按照预设单位排图长度在显示屏进行初始化显示;
    在所述步骤S1之后所述步骤S2之前还包括:根据所述空间位置信息判断所有人眼是否在所述预设单位排图长度对应的预设视区内;
    若是,则按照所述预设单位排图长度播放3D内容;
    若否,则执行所述步骤S2。
  5. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述步骤S2包括:
    依据所有所述空间位置信息得到每组人眼的双目中心点坐标,根据所有人眼的双目中心点坐标计算出有效视区宽度。
  6. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述步骤S3包括:
    根据所述有效视区宽度、所述显示屏和所述3D光学膜的距离、所述3D光学膜的光栅常数得到所述显示屏的单位排图长度。
  7. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述智能终端在播放3D内容过程中间隔预设时间间隔执行一次所述步骤S1至步骤S4;或
    所述智能终端接收到用于调整单位排图长度的调整指令后执行所述步骤S1至步骤S4;或
    所述步骤S1包括:实时获取所述显示屏前方至少一组人眼的空间位置信息。
  8. 根据权利要求1所述的裸眼3D显示方法,其特征在于,在所述步骤S1之后所述步骤S2之前还包括:
    根据所述空间位置信息判断是否能通过调整显示屏的移动排图满足所有人眼同时观看需求,其中所述移动排图包括排图左右位移和/或排图上下位移;
    若是,则根据所述空间位置信息调整显示屏的移动排图;
    若否,则执行所述步骤S2。
  9. 根据权利要求1或8所述的裸眼3D显示方法,其特征在于,所述步骤S2包括:依据所有所述空间位置信息计算出有效视区宽度和移动排图量;
    所述步骤S4包括:按照所述单位排图长度和移动排图量对3D内容进行排图处理,处理后在所述显示屏上播放。
  10. 根据权利要求1所述的裸眼3D显示方法,其特征在于,所述步骤S3包括:S31、根据所述有效视区宽度计算出所述3D光学膜的光栅旋转角度,进而根据所述光栅旋转角度对应调整所述显示屏的排图布局和单位排图长度;
    所述步骤S4包括:S42、按照所述排图布局和单位排图长度对3D内容进行排图处理,以及按照所述光栅旋转角度调节所述3D光学膜。
  11. 一种智能终端,所述智能终端的显示屏上覆盖有3D光学膜,其特征在于,所述智能终端还包括处理器和存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述存储器中的计算机程序以实现如权利要求1至10任一项所述的裸眼3D显示方法。
  12. 根据权利要求11所述的智能终端,其特征在于,所述3D光学膜为柱镜光栅光学膜或屏障视差光栅光学膜。
  13. 根据权利要求11所述的智能终端,其特征在于,所述智能终端为智能手机、电脑、智能电视、车载终端、广告机、游戏机中的一种或几种。
PCT/CN2020/110523 2020-08-21 2020-08-21 一种裸眼3d显示方法及智能终端 WO2022036691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110523 WO2022036691A1 (zh) 2020-08-21 2020-08-21 一种裸眼3d显示方法及智能终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110523 WO2022036691A1 (zh) 2020-08-21 2020-08-21 一种裸眼3d显示方法及智能终端

Publications (1)

Publication Number Publication Date
WO2022036691A1 true WO2022036691A1 (zh) 2022-02-24

Family

ID=80322506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110523 WO2022036691A1 (zh) 2020-08-21 2020-08-21 一种裸眼3d显示方法及智能终端

Country Status (1)

Country Link
WO (1) WO2022036691A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085596A (ja) * 2012-10-25 2014-05-12 Dainippon Printing Co Ltd 裸眼式立体映像表示装置、裸眼式立体映像表示装置に用いられる調整装置
US20150029425A1 (en) * 2013-07-26 2015-01-29 Hon Hai Precision Industry Co., Ltd. Auto-stereoscopic display device
CN108307187A (zh) * 2016-09-28 2018-07-20 擎中科技(上海)有限公司 裸眼3d显示设备及其显示方法
CN110035274A (zh) * 2018-01-12 2019-07-19 中山大学 基于光栅的三维显示方法
CN110401829A (zh) * 2019-08-26 2019-11-01 京东方科技集团股份有限公司 一种裸眼3d显示设备及其显示方法
CN110602478A (zh) * 2019-08-26 2019-12-20 宁波视睿迪光电有限公司 一种三维显示装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085596A (ja) * 2012-10-25 2014-05-12 Dainippon Printing Co Ltd 裸眼式立体映像表示装置、裸眼式立体映像表示装置に用いられる調整装置
US20150029425A1 (en) * 2013-07-26 2015-01-29 Hon Hai Precision Industry Co., Ltd. Auto-stereoscopic display device
CN108307187A (zh) * 2016-09-28 2018-07-20 擎中科技(上海)有限公司 裸眼3d显示设备及其显示方法
CN110035274A (zh) * 2018-01-12 2019-07-19 中山大学 基于光栅的三维显示方法
CN110401829A (zh) * 2019-08-26 2019-11-01 京东方科技集团股份有限公司 一种裸眼3d显示设备及其显示方法
CN110602478A (zh) * 2019-08-26 2019-12-20 宁波视睿迪光电有限公司 一种三维显示装置及系统

Similar Documents

Publication Publication Date Title
US11575876B2 (en) Stereo viewing
US9241155B2 (en) 3-D rendering for a rotated viewer
CN103402106B (zh) 三维图像显示方法及装置
US10306202B2 (en) Image encoding and display
US10054796B2 (en) Display
US9549174B1 (en) Head tracked stereoscopic display system that uses light field type data
US20160366392A1 (en) Image encoding and display
CN103018915B (zh) 一种基于人眼追踪的3d集成成像显示方法及集成成像3d显示器
CN106303706A (zh) 基于人脸和物件跟踪实现以主角跟随视角观看虚拟现实视频的方法
CN105898138A (zh) 全景视频播放方法及装置
US20150187132A1 (en) System and method for three-dimensional visualization of geographical data
JP2014095809A (ja) 画像生成方法、画像表示方法、画像生成プログラム、画像生成システム、および画像表示装置
WO2022036692A1 (zh) 一种裸眼3d显示方法及智能终端
US20130088488A1 (en) Method, apparatus and system for adjusting stereoscopic image, television set and stereoscopic glasses
US20140049620A1 (en) Entertainment displaying system and interactive stereoscopic displaying method of the same
CN112135115B (zh) 一种裸眼3d显示方法及智能终端
CN115668913A (zh) 现场演出的立体显示方法、装置、介质及系统
US20190281280A1 (en) Parallax Display using Head-Tracking and Light-Field Display
WO2012021129A1 (en) 3d rendering for a rotated viewer
WO2022036691A1 (zh) 一种裸眼3d显示方法及智能终端
US11187895B2 (en) Content generation apparatus and method
JP5649846B2 (ja) プログラム及び画像生成システム
CN113382222B (zh) 一种在用户移动过程中基于全息沙盘的展示方法
CN112135116A (zh) 一种裸眼3d显示方法及智能终端
CN106231285A (zh) 一种立体显示的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20949899

Country of ref document: EP

Kind code of ref document: A1