WO2018058840A1 - 用于第五代无线通信的双频阵列天线 - Google Patents

用于第五代无线通信的双频阵列天线 Download PDF

Info

Publication number
WO2018058840A1
WO2018058840A1 PCT/CN2016/113404 CN2016113404W WO2018058840A1 WO 2018058840 A1 WO2018058840 A1 WO 2018058840A1 CN 2016113404 W CN2016113404 W CN 2016113404W WO 2018058840 A1 WO2018058840 A1 WO 2018058840A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
pad
dual
radiator
ghz
Prior art date
Application number
PCT/CN2016/113404
Other languages
English (en)
French (fr)
Inventor
赵安平
艾付强
吴会林
Original Assignee
深圳市信维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司 filed Critical 深圳市信维通信股份有限公司
Publication of WO2018058840A1 publication Critical patent/WO2018058840A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to the field of antenna communication, and more particularly to a dual-frequency array antenna for fifth-generation wireless communication.
  • the main solution is the communication between people, but the fifth generation (5G) mobile communication system, too That is, 5G will solve the communication between people and things other than people, things and things, that is, the desire to realize the interconnection of all things.
  • the transmission rate of 5G will be more than 100 times that of 4G and support a large number of device connections, which makes the Internet of Everything possible.
  • it can realize auto driving, 3D virtual reality, telemedicine and so on. It can be predicted that the 5th generation mobile communication system will be a new generation mobile communication system for 2020.
  • the US Federal Communications Commission defined the millimeter wave band for 5G: In addition to the 28 GHz (27.5-28.35 GHz) band, the overall operating frequency range is 37- The 40 GHz 37 GHz (37-38.6 GHz) and 39 GHz (38.6-40 GHz) bands.
  • the current low-frequency spectrum resources are already very crowded, and it is difficult to meet the needs of future 5G communications. Therefore, it is inevitable that the millimeter wave will be used as the 5G frequency band.
  • the millimeter wave used for 5G has the characteristics of rich spectrum resources, good orientation, and strong anti-interference ability.
  • the antenna at the front end of the millimeter wave communication system is especially important, and the performance of the gain, bandwidth, and efficiency of the antenna directly determines the advantages and disadvantages of the system.
  • the 5G antenna must be an antenna array.
  • the form of the feeder network that constitutes this antenna array is as follows: series, parallel, and series-parallel combination.
  • the technical problem to be solved by the present invention is: to provide a fifth-generation wireless communication dual-frequency array antenna, suitable for Used in 37GHz and 39GHz, it has the characteristics of large bandwidth, high gain and efficiency, and good directionality.
  • a dual-frequency array antenna for fifth-generation wireless communication the antenna unit of the dual-frequency array antenna includes a first antenna radiator and a second antenna radiator disposed on a surface of the stereo antenna carrier;
  • the first antenna radiator is a monopole antenna; the second antenna radiator is a loop antenna disposed around the first antenna radiator and connected to the ground of the PCB board.
  • the beneficial effects of the present invention are:
  • the 5G antenna array different from the prior art only supports the frequency band of 28 GHz.
  • the antenna of the present invention comprises two special antenna radiator structures by designing the antenna unit in the array antenna, each of the radiators generates a mutually independent resonance, so that the antenna has double resonance, and can simultaneously contain two frequency bands of 37 GHz and 39 GHz, thereby Extend the working frequency band of the 5G antenna to better meet the requirements of the 5G millimeter wave band.
  • the monopole antenna formed by the first antenna radiator directly feeds a resonance point having a frequency of about 36-40 GHz; and the second antenna radiator constituting the loop antenna is coupled with the first antenna radiator to generate Another resonance point with a frequency around 36-40G Hz, the resonance generated by each of the first radiator and the second radiator can be interchanged and adjusted by size adjustment, so that the antenna can obtain both 37GHz and 39GHz.
  • Frequency band The array antenna composed of the antenna unit of the above structure has an operating bandwidth which can perfectly integrate the two 5G frequency bands of 37 GHz and 39 GHz defined by the FCC; meanwhile, it can also have high radiation efficiency, high gain, and large bandwidth. Good directionality and stability.
  • FIG. 1 is a schematic structural view of an antenna unit according to the present invention.
  • FIG. 2 is a schematic view showing a connection structure of an antenna unit and a PCB board according to the present invention
  • 3 is a schematic view showing the overall structure of a dual-frequency array antenna according to the present invention
  • 4 is a diagram showing return loss of an antenna unit according to the present invention
  • FIG. 5 is a diagram showing return loss of an antenna array according to the present invention.
  • FIG. 7 is a three-dimensional radiation pattern of an antenna array of the present invention at a frequency of 40 GHz;
  • 9 is a two-dimensional radiation pattern of an antenna array of the present invention at a frequency of 38.5 GHz;
  • 10 is a two-dimensional radiation pattern of an antenna array of the present invention at a frequency of 40 GHz;
  • antenna unit -1 feed network -2; T-shaped network node -3; stereo antenna carrier -4;
  • the radiator structure of the antenna unit comprises a single-stage antenna and a loop antenna formed by connecting a single-stage antenna and connected to the PCB board, and each radiator generates an independent antenna.
  • the resonance makes the antenna double-resonant, meeting the frequency requirements of the FCC's newly defined 37GHz and 39GHz 5G millimeter wave.
  • the present invention provides a dual-frequency array antenna for fifth-generation wireless communication, where an antenna unit of the dual-frequency array antenna includes a first antenna radiator disposed on a surface of a stereo antenna carrier, and a second antenna radiator;
  • the first antenna radiator is a monopole antenna; the second antenna radiator is a loop antenna disposed around the first antenna radiator and connected to the ground of the PCB board.
  • the antenna of the present invention directly feeds a monopole antenna whose working frequency is 1/4 wavelength by the first antenna radiator, and generates a frequency of 36-40 GHz.
  • a second antenna radiator that surrounds the first antenna radiator and is connected to the ground of the PCB board constitutes a loop antenna having a working frequency of one wavelength, and can also generate a frequency of about 36-40 GHz.
  • Another resonance point by adjusting the lengths of the first antenna radiator and the second antenna radiator, the resonance frequency generated by the first antenna radiator is greater or smaller than the resonance frequency generated by the second antenna radiator, thereby making the antenna the same It includes two FCC's newly defined 37GHz and 39GHz 5G bands; it also features small size, large bandwidth, high gain and efficiency, and good directionality and stable performance.
  • the second antenna radiator is connected to the ground of the PCB board through a via hole on the PCB board.
  • the second antenna radiator on the surface of the stereo antenna carrier cannot form a complete loop circuit itself, and the two ends of the second antenna radiator are connected to the ground through the via holes on the PCB board to form a complete
  • the loop circuit thus forms a loop antenna operating at a wavelength of one wavelength and produces a resonance point having a frequency in the range of 36-40 G Hz.
  • the stereo antenna carrier and the PCB board are connected by a pad;
  • the pad is connected to both ends of the second radiator antenna, and the via is provided on the pad.
  • the pad connection method can not only improve the connection stability between the stereo antenna carrier and the PCB board, but also facilitate the installation; and can also facilitate the ground connection of the second radiator antenna and the PCB.
  • a bottom surface of the stereo antenna carrier is respectively provided with a first pad and a second pad corresponding to two end points of the second antenna radiator; an upper surface of the PCB board corresponds to the first solder
  • the first pad and the second pad are respectively disposed with a third pad and a fourth pad; the two end points are respectively connected to the first pad and the second pad, and the first pad and the second pad are respectively respectively Correspondingly, the third pad and the fourth pad are connected.
  • a bottom surface of the stereo antenna carrier is provided with a fifth pad connected thereto corresponding to a feeding point of the first antenna radiator; an upper surface of the PCB board corresponds to the fifth pad setting There is a sixth pad connected to it.
  • the arrangement of the fifth pad not only ensures that the feed connection of the first antenna radiator is stable; but also improves the connection stability between the carrier and the PCB.
  • the stereo antenna carrier is a rectangular solid ceramic; and the second antenna radiator is disposed along a ridge line of the rectangular solid ceramic.
  • the stereo antenna carrier is rectangular, which not only has good stability; but also facilitates the arrangement of the radiator.
  • the second antenna radiator is designed to be routed along the ridgeline of the carrier, which is not only convenient for production, but also easy to fall off; and can effectively prevent overlap between the radiators, and ensure that the radiator has good workability and is also more beautiful.
  • the size of the antenna radiator (antenna cell) is determined by the dielectric constant of the antenna carrier, the larger the dielectric constant of the carrier, the shorter the wavelength and thus the overall size of the antenna.
  • the carrier of the present invention is made of ceramic material. Because of the ideal dielectric constant, the size of the monopole antenna and the one-wavelength loop antenna that we require are also reduced. Therefore, the overall size of the antenna unit can be reduced, and the overall size of the array antenna can be reduced, which can be better applied to the micro communication device.
  • the first antenna radiator is disposed on one side of the rectangular solid ceramic; the second The antenna radiator is disposed on the one side, an upper surface of the rectangular ceramic, and a side adjacent to the one side.
  • the positional setting of the first antenna radiator and the second antenna radiator not only ensures that the two forms a desired resonance point; but also does not fall off easily.
  • FIG. 3 further comprising a feed network, wherein two or more antenna units are connected to the feed network; a distance between each antenna unit is the dual-frequency array antenna.
  • the operating frequency is between 1/2 and 1 wavelength.
  • the feed network is composed of 2n-1 power splitters connected to each other; the number of the antenna cells is 2n; and the ⁇ is a positive integer.
  • the feed network includes 2n-1 U-shaped network nodes, and each of the U-shaped network nodes includes an impedance of 1/4 wavelength with respect to a central operating frequency of the dual-frequency array antenna. converter.
  • a parallel microstrip line feed network is employed in the present invention.
  • the dual-frequency array antenna described in the invention can overcome the problem that the 5G frequency is high, the loss in the air is large, and the transmission distance is short, the transmission distance is guaranteed to reach the standard, and the gain of the antenna is increased, thereby achieving the requirement of long-distance transmission communication.
  • the embodiment provides a dual-frequency array antenna for fifth-generation wireless communication, which can simultaneously have a large bandwidth of two frequency bands of 37 GHz and 39 GHz, and has the same Gain and radiation efficiency, good directionality, etc., can provide future equipment 5G communication millimeter wave antenna array system for mobile devices
  • the dual-frequency array antenna includes a plurality of antenna elements 1 and a feed network 2, and the antenna unit 1 is connected to the feed network 2.
  • Each of the antenna elements 1 includes a stereo antenna carrier 4 and a PCB board 7; the surface of the stereo antenna carrier 4 is surrounded by a first antenna radiator 5 and a second antenna radiator 6, respectively generating different resonance points, achieving a double Frequency characteristics.
  • Each resonance point is generated by a different antenna branch, specifically:
  • the first antenna radiator 5 is a monopole antenna with a working frequency of 1/4 wavelength, and a feeding point thereof is connected to the upper surface of the PCB board 7 by directly performing the first antenna radiator.
  • the feeding forms a resonance point having an antenna frequency of about 36-40 GHz, that is, the first antenna radiator 5 itself as an antenna branch, and the resonance point is generated.
  • the second antenna radiator 6 forms an annular loop by connecting its two ends to the ground of the PCB board 7, the operating frequency of the loop circuit is one wavelength; the second antenna radiator 6 radiates the first antenna
  • the body 5 is surrounded therein to obtain a coupling relationship, whereby the second antenna radiator 6 is coupled to the first antenna radiator 5 to form another resonance point having an antenna frequency of about 36-40 GHz.
  • the first antenna radiator 5 and the second antenna radiator 6 can respectively form two resonance points having a frequency of about 39 GHz and about 36 GHz by adjusting the size, and of course, can also be mutually adjusted by size adjustment. Change and adjust.
  • the antenna unit 1 formed by the above structure is known from the return loss diagram of the antenna unit of FIG. 4, and the array antenna formed by the antenna has a dual frequency characteristic, and the operating frequency band of the antenna is extended to 37 GHz and 39 GHz, which can be very Good for future 5G antennas for millimeter wave band communication.
  • the feed network 2 in this embodiment may be in the form of series, parallel, or series-parallel; it may be a microstrip line-based feed network, or may be a substrate-integrated waveguide type.
  • the feed network 2 adopts a parallel microstrip line feed network, which is composed of 2n-1 power splitters and is cascaded with each other, and includes 2n-1 T-shaped network nodes 3
  • Each T-shaped network node 3 contains an impedance converter with a quarter-wavelength relative to the antenna operating frequency.
  • the other microstrip line characteristic impedances can be set to 50 ohms.
  • the number of the antenna elements 1 is 2n, and the distance between each antenna unit 1 is between 1/2 and 1 wavelength of the antenna center operating frequency.
  • the return loss of the feed network 2 in this embodiment is about -28 dB, which satisfies the antenna well.
  • the requirements of the array; the distance between each antenna unit 1 of the antenna array is about 0.65 wavelength.
  • the embodiment further expands the structure of the dual-frequency antenna unit on the basis of the first embodiment.
  • the bottom surface of the stereo antenna carrier 4 of the antenna unit 1 is provided with a first pad 11 and a second pad 12 respectively corresponding to two end points of the second antenna radiator 6.
  • the PCB board 7 includes a PCB substrate 8 and a PCB floor 9; a third pad 13 is disposed on the upper surface (PCB substrate 8) of the PCB board 7 corresponding to the first pad 11 and the second pad 12, respectively.
  • the two end points of the line radiator 6 are respectively connected to the first pad 11 and the second pad 12, and the first pad 11 and the second pad 12 are respectively connected to the third pad 13 and the fourth pad.
  • Disk 14 is provided with a first pad 11 and a second pad 12 respectively corresponding to two end points of the second antenna radiator 6.
  • the three-dimensional antenna carrier 4 and the PCB board 7 are securely connected by four pads; meanwhile, the second antenna radiator 6 can also be connected to the ground of the PCB board 7 by means of pads to form an annular loop.
  • the third pad 13 and the fourth pad 14 on the PCB board 7 are provided with vias 10 communicating with the ground, and the number of the preferred vias 10 is two or more; two of the second antenna radiators 6
  • the end point can be connected to the ground of the PCB through the pad to form a loop antenna.
  • the bottom surface of the stereo antenna carrier 4 is provided with a fifth pad 15 connected thereto corresponding to the feeding point 17 of the first antenna radiator 5, and the upper surface of the PCB board 7 corresponds to the fifth
  • the pad 15 is provided with a sixth pad 16 connected thereto, and the first antenna radiator 5 is directly fed through the array feeding point 19 to obtain a second resonance of the antenna.
  • the first pad 11, the second pad 12, the third pad 13, the fourth pad 14, and the fifth pad are identical to the first pad 11, the second pad 12, the third pad 13, the fourth pad 14, and the fifth pad
  • Both the 15 and the sixth pads 16 are elongated.
  • the arrangement of the pads not only ensures the connection between the carrier and the PCB 7 is stable; but also provides a channel for the connection of the second antenna radiator 6 and the PCB board 7, and the first antenna radiator 5 Directly feeding.
  • This embodiment further expands the structure of the dual-frequency antenna unit based on the first embodiment and the second embodiment.
  • the stereo antenna carrier 4 may be a rectangular three-dimensional structure (a square structure or a rectangular parallelepiped structure), or may be a cylindrical three-dimensional structure; the material may be ceramic or other material having a good dielectric constant.
  • the stereo antenna carrier 4 is a rectangular solid ceramic.
  • the size of the antenna radiator is determined by the dielectric constant of the antenna carrier, the larger the dielectric constant of the carrier, the shorter the wavelength.
  • the rectangular and three-dimensional ceramics have a length, a width, and a height of 0.9 mm, 0.75 mm, and 0.9 mm, respectively, but are not limited thereto, and the dielectric constant of the carrier can be changed by appropriately adjusting the size of the radiator.
  • Required double Frequency resonance such as ceramic materials with different dielectric constants for easy adjustment.
  • the above-mentioned rectangular three-dimensional ceramic can be directly SMT-welded to the PCB through the pad, which not only ensures a firm connection but also is easy to install.
  • PATCH patch
  • PATCH is fabricated on a multi-layer PCB board, which makes the antenna design lack flexibility.
  • the theoretical design of the antenna does not match the actual situation (this situation often occurs because of theoretical design ⁇ I can't take into account the environment around the antenna.) I have to re-create the entire PCB.
  • Our SMD ceramic antenna does not need to re-create the PCB. Only the rectangular ceramic itself can be modified. can.
  • the area or size of the patch antenna on the surface of the PCB is much larger than the size of the stereo antenna in the present invention, so that the antenna array based on the patch antenna will occupy a larger area on the PCB. Due to the limited space of the handheld device, the stereoscopic antenna of the present invention is more suitable for use in handheld devices than a patch-based antenna.
  • the arrangement of the first antenna radiator 5 and the second antenna radiator 6 on the rectangular solid ceramic may be:
  • the first antenna radiator 5 as a monopole antenna is vertically disposed on the side of the rectangular solid ceramic, and the feeding end thereof is connected to the PCB board 7, and the other end of the suspended space can be located on the side according to the required frequency range. Internally, extending to the upper surface of the rectangular ceramic or extending to the other side opposite the side. In the present embodiment, the first antenna radiator 5 is vertically disposed at an intermediate position of one side of the rectangular ceramic, and both the suspended end and the feeding end are located in the side.
  • the second antenna radiator 6 is disposed along the ridge line 18 of the rectangular solid ceramic, and surrounds the first antenna radiator 5 therein.
  • one end of the second antenna radiator 6 extends upward from the side where the first antenna radiator 5 extends along the ridge line 18 to the upper surface, and extends to the apex around the three sides of the upper surface, and the adjacent surface of the side surface
  • the ridge line common with the side surface extends downward to the PCB board; the second antenna radiator 6 is disposed on the one side surface, the upper surface of the rectangular solid ceramic, and the side surface adjacent to the one side surface, Form a convex shape.
  • the first antenna radiator 5 and the second antenna radiator 6 of the above-described structure disposed on the rectangular solid ceramic of the above size are capable of generating a first resonance point having a frequency of 39.544 GHz through the first antenna radiator 5;
  • the second antenna radiator 6 generates another resonance point having a frequency of 36.005 GHz, so that the array antenna can simultaneously obtain two frequency bands of 37 GHz and 39 GHz.
  • the harmonics obtained by the radiators of this embodiment are respectively obtained.
  • the vibration point is only a specific embodiment, and the resonance generated by each of the first antenna radiator 5 and the second antenna radiator 6 can be interchanged and adjusted by size adjustment.
  • the array antenna of this embodiment may include two frequency bands of 37 GHz and 39 GHz (ie, 37 GHz to 40 GHz).
  • Figure 6 shows the maximum gain curve of the antenna array. The gain of the antenna array is greater than 12.9 dB in the range of 37-40 GHz; the gain of the antenna will increase as the number of antenna elements included in the antenna array increases.
  • Figure 7 is a three-dimensional radiation pattern of a 40 GHz antenna array. It can be seen that the antenna array system has good radiation directivity, and the maximum value is distributed in the entire YZ plane, that is, the antenna system is in the YZ plane. Any angle can be used to receive and transmit 5G signals.
  • the antenna array has a high radiation efficiency, and the radiation efficiency of the antenna array is above -1.
  • Figure 8-10 shows the two-dimensional radiation pattern at frequencies of 37 GHz, 38.5 GHz, and 40 GHz, respectively. It can be seen from the above figure that the antenna array has a relatively uniform directivity at each frequency point.
  • the antenna array can be extended to other 5G operating bands, such as 2 8GHz or 60GHz.
  • the dual-frequency array antenna for fifth-generation wireless communication provided by the present invention not only has dual resonance, but also includes two large bandwidth bands of 37 GHz and 39 GHz; and has high gain and efficiency, and direction. Good characteristics; further, the installation with the PCB board is simple and firm; further, the ceramic carrier makes the antenna small in size.
  • the antenna array based on the stereo antenna unit proposed by the present invention can also control the beam direction of the antenna array by adding a phase adjuster to the feed network, thereby implementing beamforming of the antenna array. With beam scanning.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供用于第五代无线通信的双频阵列天线,其天线单体包括设置在立体天线载体表面的第一天线辐射体和第二天线辐射体;所述第一天线辐射体为一单极天线;所述第二天线辐射体为一环绕所述第一天线辐射体设置,并与PCB板的地连接的构成环形天线。由第一天线辐射体构成的单极天线直接馈电,产生频率为36-40GHz范围左右的一个谐振;由构成环形天线的第二天线辐射体与第一天线辐射体耦合,产生频率为36-40GHz范围左右的另一个谐振,使天线具有双谐振。本发明的阵列天线,其工作带宽可以将FCC定义的37GHz和39GHz的两个5G频段完美地包含在内;同时,还能具有高辐射效率和高增益、方向性好、稳定性强等特点。

Description

用于第五代无线通信的双频阵列天线 技术领域
[0001] 本发明涉及天线通信领域, 具体说的是用于第五代无线通信的双频阵列天线。
背景技术
[0002] 在现代通讯领域, 从第一代移动通信系统 2G到第四代移动通信系统 4G LTE,主 要解决的是人与人之间的沟通, 然而第五代 (5G) 移动通信系统, 也即 5G, 将 解决人与人之外的人与物、 物与物之间的沟通, 即实现万物互联的愿望。 5G的 传输速率将是 4G的百倍以上并且支持海量的设备连接, 进而使得万物互联成为 可能, 同吋可以实现汽车的自动驾驶、 3D的虚拟现实、 远程医疗等。 可以预言 , 第 5代移动通信系统将是面向 2020年之后的新一代移动通信系统。
[0003] 在移动终端上 5G的实施将使得移动终端设备的应用更加方便, 更加得心应手, 更加小型化多样化, 功能更加强大。 能否把 5G的技术在手持设备上得到良好的 应用的关键是如何设计出能适用于 5G通信的天线阵列系统。
[0004] 在 2016年 7月 15日, 美国联邦通信委员会 (FCC) 定义了用于 5G的毫米波频段 : 除了 28GHz (27.5-28.35GHz) 的频段外, 还包含了整体工作频率范围为 37-40 GHz的 37GHz (37-38.6GHz) 和 39GHz (38.6-40GHz) 这两个频段。
[0005] 现在的低频频谱资源已非常拥挤, 很难满足未来 5G通信的需求, 因此, 幵发毫 米波作为 5G频段成为必然。 用于 5G的毫米波具有频谱资源丰富、 定向性好、 抗 干扰能力强等特点。 毫米波通信系统前端的天线尤为重要, 而且天线的增益、 带宽、 效率等性能直接决定着系统的优劣。 我们知道 5G天线必须是天线阵列, 构成这个天线阵列的馈电网络形式有如下几种: 串联、 并联, 以及串并联的组 合。 过去, 5G天线阵列的设计多集中在带宽较窄的 28GHz的频段上, 而无法满 足最新定义的 5G毫米波频段的要求, 因此, 有必要提供一种能够适用于 37GHz 和 39GHz的双频 5G天线阵列系统。
技术问题
[0006] 本发明所要解决的技术问题是: 提供一种第五代无线通信的双频阵列天线, 适 用于 37GHz和 39GHz, 具有带宽大、 增益和效率高、 方向性好等特点。
问题的解决方案
技术解决方案
[0007] 为了解决上述技术问题, 本发明采用的技术方案为:
[0008] 用于第五代无线通信的双频阵列天线, 所述双频阵列天线的天线单体包括设置 在立体天线载体表面的第一天线辐射体和第二天线辐射体;
[0009] 所述第一天线辐射体为一单极天线; 所述第二天线辐射体为一环绕所述第一天 线辐射体设置, 并与 PCB板的地连接的环形天线。
发明的有益效果
有益效果
[0010] 本发明的有益效果在于: 区别于现有技术的 5G天线阵列只支持 28GHz的频段
, 无法满足其它 5G毫米波频段要求的不足。 本发明通过设计阵列天线中的天线 单体包含两个特殊的天线辐射体结构, 每个辐射体产生一个相互独立的谐振, 使天线具有双谐振, 可以同吋包含 37GHz和 39GHz两个频段, 从而扩展 5G天线 的工作频段, 更好地满足 5G毫米波频段的要求。 具体的, 由第一天线辐射体构 成的单极天线直接馈电, 产生频率为 36-40GHZ范围左右的一个谐振点; 由构成 环形天线的第二天线辐射体与第一天线辐射体耦合, 产生另一个频率为 36-40G Hz范围左右的另一个谐振点, 第一辐射体以及第二辐射体各自产生的谐振可通 过尺寸调整实现互换和调整, 从而使天线同吋获得 37GHz和 39GHz两个频段。 由上述结构的天线单体构成的阵列天线, 其工作带宽可以将 FCC定义的 37GHz 和 39GHz的两个 5G频段完美地包含在内; 同吋, 还能具有高辐射效率和高增益 、 带宽大、 方向性好、 稳定性强等特点。
对附图的简要说明
附图说明
[0011] 图 1为本发明天线单体的结构示意图;
[0012] 图 2为本发明天线单体与 PCB板的连接结构示意图;
[0013] 图 3为本发明双频阵列天线的整体结构示意图; [0014] 图 4为本发明天线单体的回波损耗图;
[0015] 图 5为本发明天线阵列的回波损耗图;
[0016] 图 6为本发明天线阵列的增益曲线图;
[0017] 图 7为本发明天线阵列在频率为 40GHz的三维辐射方向图;
[0018] 图 8为本发明天线阵列在频率为 37 GHz的二维辐射方向图;
[0019] 图 9为本发明天线阵列在频率为 38.5GHz的二维辐射方向图;
[0020] 图 10为本发明天线阵列在频率为 40GHz的二维辐射方向图;
[0021] 标号说明:
[0022] 天线单体 -1; 馈电网络 -2; T字形网络节点 -3; 立体天线载体 -4;
[0023] 第一天线辐射体 -5; 第二天线辐射体 -6; PCB板 -7;
[0024] 衬底 -8; PCB地板 -9; 过孔 -10; 第一焊盘 -11; 第二焊盘 -12;
[0025] 第三焊盘 -13; 第四焊盘 -14; 第五焊盘 -15; 第六焊盘 -16;
[0026] 馈电点 -17; 棱线 -18; 阵列馈电点 -19。
本发明的实施方式
[0027] 为详细说明本发明的技术内容、 所实现目的及效果, 以下结合实施方式并配合 附图予以说明。
[0028] 本发明最关键的构思在于: 天线单体的辐射体结构包括一单级天线和一环绕单 级天线并与 PCB板地连接后而构成的环形天线, 每个辐射体产生一个相互独立 的谐振, 使天线具有双谐振, 符合 FCC最新定义的 37GHz和 39GHz 5G毫米波的 频段要求。
[0029] 本发明涉及的技术术语解释: 1據术暴錄. 鲜暴
1拳欽纖 : 直錄 —波暴 :天线 ;
1 形: 錢 :是錄一灘金 导魏:欽烕一定影 爾形、誦、 f 厢威一个輝 鲁 ¾翁 '玲为输 縐翁錄翁:
1翁¾ 霧 多 天戴举暴讓凝' 乘:使其翁戴天戴:阵藉 I蝽:系统 最 系翁可;: 并纖: ¾ 翁 :继;?;璧:舰塵鍾暨龜 : ¾應举振 购! ¾ : 籍构中的 一 幾 ¾翁拳 .φ
[0030] 请参照图 1, 本发明提供一种用于第五代无线通信的双频阵列天线, 所述双频 阵列天线的天线单体包括设置在立体天线载体表面的第一天线辐射体和第二天 线辐射体;
[0031] 所述第一天线辐射体为一单极天线; 所述第二天线辐射体为一环绕所述第一天 线辐射体设置, 并与 PCB板的地连接的环形天线。
[0032] 从上述描述可知, 本发明的有益效果在于: 本发明的天线单体由第一天线辐射 体构成工作频率为 1/4波长的单极天线直接馈电, 产生频率为 36-40GHZ范围左右 的一个谐振点; 由将第一天线辐射体环绕其中, 并与 PCB板的地连接的第二天线 辐射体构成工作频率为 1个波长的环形天线, 同样可以产生频率为 36-40GHZ范围 左右的另一个谐振点; 通过调节第一天线辐射体和第二天线辐射体的长度可以 使得第一天线辐射体产生的谐振频率大于或小于第二天线辐射体产生的谐振频 率, 从而使天线同吋包含 FCC最新定义的 37GHz和 39GHz的两个 5G频段; 而且具 有尺寸小、 带宽大、 增益和效率高, 以及方向性好并性能稳定的特点。
[0033] 进一步的, 所述第二天线辐射体通过所述 PCB板上的过孔与 PCB板的地连接。
[0034] 由上述描述可知, 立体天线载体表面上的第二天线辐射体本身不能构成完整的 环形回路, 将第二天线辐射体的两端点通过 PCB板上的过孔与地连接后才形成完 整的环形回路, 从而构成工作频率为 1个波长的环形天线, 并产生频率为 36-40G Hz范围左右的一个谐振点。
[0035] 请参阅图 2, 进一步的, 所述立体天线载体和所述 PCB板之间通过焊盘连接; 所述焊盘与所述第二辐射体天线的两端点连接, 所述焊盘上设置有所述过孔。
[0036] 由上述描述可知, 焊盘连接方式不仅能够提高立体天线载体和 PCB板之间的连 接稳固性, 以及安装简易型; 而且还能方便第二辐射体天线与 PCB的地连接。
[0037] 进一步的, 所述立体天线载体的底面对应所述第二天线辐射体的两端点分别设 置有第一焊盘和第二焊盘; 所述 PCB板的上表面对应所述第一焊盘和第二焊盘分 别设置有第三焊盘和第四焊盘; 所述两端点分别对应连接所述第一焊盘和第二 焊盘, 所述第一焊盘和第二焊盘分别对应连接第三焊盘和第四焊盘。
[0038] 由上述描述可知, 载体和 PCB板上表面之间通过四个焊盘的焊接, 能够保证载 体连接牢固, 不易脱落; 同吋也方便载体的安装; 进一步也保证了第二辐射体 与 PCB板地连接的稳固性。
[0039] 进一步的, 所述立体天线载体的底面对应所述第一天线辐射体的馈电点设置有 与其连接的第五焊盘; 所述 PCB板的上表面对应所述第五焊盘设置有与其连接的 第六焊盘。
[0040] 由上述描述可知, 第五焊盘的设置不仅能够保证第一天线辐射体的馈电连接稳 固; 而且还能进一步提升载体与 PCB板之间的连接稳固性。
[0041] 进一步的, 所述立体天线载体为矩形立体陶瓷; 所述第二天线辐射体沿所述矩 形立体陶瓷的棱线设置。
[0042] 由上述描述可知, 立体天线载体为矩形, 不仅具有良好稳固性; 而且方便辐射 体的排布设置。 将第二天线辐射体设计为沿载体的棱线走线, 不仅方便生产, 不易脱落; 而且能够有效防止辐射体之间重叠, 保证辐射体具有良好的工作性 育^ 同吋也更加美观。
[0043] 由于天线辐射体 (天线单体) 的尺寸由天线载体的电介常数决定, 载体的电介 常数越大, 波长越短进而可以减小天线的整体尺寸。 本发明的载体为陶瓷材质 , 由于具有较理想的电介常数, 所以我们所要求的 1/4波长的单级 (monopole) 天线以及一个波长的环形 (loop) 天线的尺寸也就会变小, 从而实现天线单体整 体尺寸的缩小, 进而实现阵列天线整体尺寸的缩小, 能够更好的适用于微型通 讯设备。
[0044] 进一步的, 所述第一天线辐射体设置在所述矩形立体陶瓷的一侧面; 所述第二 天线辐射体分布设置在所述一侧面、 矩形立体陶瓷的上表面以及与所述一侧面 相邻的侧面。
[0045] 由上述描述可知, 第一天线辐射体和第二天线辐射体的走位设置不仅能够保证 二者形成所需谐振点; 而且不易脱落。
[0046] 请参阅图 3, 进一步的, 还包括馈电网络, 两个以上的所述天线单体与所述馈 电网络连接; 每个天线单体之间的距离为所述双频阵列天线的工作频率的 1/2到 1 个波长之间。
[0047] 进一步的, 所述馈电网络由 2n-l个功率分配器相互级联构成; 所述天线单体的 个数为 2η个; 所述 η为正整数。
[0048] 进一步的, 所述馈电网络包含 2η-1个 Τ字形网络节点, 每个所述 Τ字形网络节点 处包含一个相对所述双频阵列天线的中心工作频率 1/4个波长的阻抗转换器。
[0049] 由上述描述可知, 虽然也可以采取其它形式, 如串联或串并联混合等的馈电网 络, 本发明实例中采用的是并联式的微带线馈电网络。 本发明中所述的双频阵 列天线能够克服 5G频率很高, 在空气中损耗大, 传输距离短的问题, 保证传输 距离达到标准, 增加天线的增益, 从而达到远距离传输通信的要求。
[0050] 实施例一
[0051] 请参照图 1、 图 3和图 5, 本实施例提供一种用于第五代无线通信的双频阵列天 线, 可以同吋包含 37GHz和 39GHz两个频段的大带宽, 同吋具有增益和辐射效率 高, 方向性好等优点, 可以为移动设备提供未来 5G通信的毫米波天线阵列系统
[0052] 所述双频阵列天线包括多个的天线单体 1和馈电网络 2, 所述天线单体 1与所述 馈电网络 2连接。 每个所述天线单体 1包括立体天线载体 4和 PCB板 7; 立体天线载 体 4的表面围绕设置有第一天线辐射体 5和第二天线辐射体 6, 分别产生不同的谐 振点, 实现双频特点。 每个谐振点由不同的天线分支产生, 具体的:
[0053] 所述第一天线辐射体 5为一工作频率为 1/4波长的单极 (monopole) 天线, 其馈 电点与 PCB板 7的上表面连接, 通过直接对第一天线辐射体进行馈电形成天线频 率为 36-40GHZ范围左右的一个谐振点, 即第一天线辐射体 5本身作为一个天线分 支的全部, 产生该谐振点。 [0054] 所述第二天线辐射体 6通过将其两端点与 PCB板 7的地连接而构成环形回路, 环 形回路的工作频率为一个波长; 第二天线辐射体 6将所述第一天线辐射体 5环绕 在其中, 获取耦合关系, 由此第二天线辐射体 6通过与第一天线辐射体 5的耦合 形成天线频率为 36-40GHZ范围左右的另一个谐振点。
[0055] 优选的, 所述第一天线辐射体 5和第二天线辐射体 6可通过尺寸的调整分别形成 频率为 39GHz左右以及 36GHz左右的两个谐振点, 当然, 也可通过尺寸调整进行 互换和调整。
[0056] 由上述结构形成的天线单体 1, 由图 4天线单体的回波损耗图可知, 由其构成的 阵列天线具有双频特点, 将天线的工作频段拓展到了 37GHz和 39GHz, 能够很好 的适用于未来 5G天线为毫米波频段的通信。
[0057] 需要说明的是, 本实施例中的馈电网络 2可以是串联、 并联或者串并联组成的 形式; 可以是基于微带线的馈电网络, 也可以是采用衬底集成波导类型的形式
[0058] 请参阅图 3, 优选的, 上述馈电网络 2采用并联式的微带线馈电网络, 由 2n-l个 功率分配器相互级联构成, 包含 2n-l个 T字形网络节点 3, 每个 T字形网络节点 3 处包含一个相对天线工作频率 1/4个波长的阻抗转换器, 其他微带线特征阻抗均 可设为 50欧姆。 上述天线单体 1的个数为 2η个, 每个天线单体 1之间的距离为天 线中心工作频率的 1/2到 1个波长之间。
[0059] 参见图 5, 为具有 8个天线单体 1的双频阵列天线的回波损耗图, 本实施例中的 馈电网络 2的回波损耗在 -28dB左右, 很好地满足了天线阵列的要求; 该天线阵 列每个天线单体 1之间的距离为 0.65波长左右。
[0060] 实施例二
[0061] 请参照图 2, 本实施例在实施例一的基础上, 对双频天线单体的结构进一步的 拓展。
[0062] 具体的, 所述天线单体 1的立体天线载体 4的底面对应所述第二天线辐射体 6的 两端点分别设置有第一焊盘 11和第二焊盘 12。 所述 PCB板 7包括 PCB衬底 8和 PCB 地板 9; 在 PCB板 7的上表面 (PCB衬底 8) 对应所述第一焊盘 11和第二焊盘 12分 别设置有第三焊盘 13和第四焊盘 14, 它们通过过孔 10与 PCB地板 9连接; 第二天 线辐射体 6的两个端点分别对应连接所述第一焊盘 11和第二焊盘 12, 所述第一焊 盘 11和第二焊盘 12分别对应连接第三焊盘 13和第四焊盘 14。
[0063] 立体天线载体 4与 PCB板 7之间通过四个焊盘保证牢固连接; 同吋, 第二天线辐 射体 6还能借助焊盘, 与 PCB板 7的地连接, 从而形成环形回路。 具体的, PCB板 7上的第三焊盘 13和第四焊盘 14上设置有与地相通的过孔 10, 优选的过孔 10的数 量为两个以上; 第二天线辐射体 6的两端点能通过焊盘与 PCB板的地连接, 构成 一个环形天线。
[0064] 进一步的, 立体天线载体 4的底面对应所述第一天线辐射体 5的馈电点 17设置有 与其连接的第五焊盘 15, 所述 PCB板 7的上表面对应所述第五焊盘 15设置有与其 连接的第六焊盘 16, 通过阵列馈电点 19直接对第一天线辐射体 5进行馈电获取天 线的第二谐振。
[0065] 优选的, 所述第一焊盘 11、 第二焊盘 12、 第三焊盘 13、 第四焊盘 14、 第五焊盘
15以及第六焊盘 16均为长条形。
[0066] 本实施例中, 焊盘的设置不仅能够保证载体与 PCB板 7的连接稳固; 而且还能 为第二天线辐射体 6与 PCB板 7地连接提供通道, 以及对第一天线辐射体 5直接进 行馈电。
[0067] 实施例三
[0068] 本实施例在实施例一和实施例二的基础上, 对双频天线单体的结构再进一步的 拓展。
[0069] 具体的, 所述立体天线载体 4可以是矩形立体结构 (正方体结构或长方体结构 ) , 也可以是如圆柱形的柱状立体结构; 其材质可以是陶瓷或者其他具有良好 电介常数的材质。 本实施例中, 所述立体天线载体 4为矩形立体陶瓷。
[0070] 由于天线辐射体的尺寸由天线载体的电介常数 决定, 载体的电介常数越大, 波长越短。 本实施例中, 由于采用电介常数 e =8.0的陶瓷材料, 其电介常数较大 , 因此天线辐射体的尺寸便可缩小, 天线单体的尺寸也将缩小, 所获取的阵列 天线的整体尺寸也将缩小, 能够更好的适用于微小型设备。
[0071] 优选的, 所述矩形立体陶瓷的长宽高分别为 0.9mm、 0.75mm和 0.9mm, 但不局 限于此, 可通过适当调节辐射体的尺寸, 改变载体的电介常数来获取所需的双 频谐振, 如采用不同电介常数的陶瓷材料进行简易的调节。
[0072] 需要说明的是, 上述矩形立体陶瓷可以直接通过焊盘与 PCB板进行 SMT焊接, 不仅保证连接牢固, 而且安装简易。 区别于现有的贴片 (PATCH) 的天线形式 , 即将 PATCH制作在多层 PCB板上, 使得天线设计缺少灵活性, 当理论设计的 天线与实际不符吋 (这种情况经常出现, 因为理论设计吋无法把天线周围的环 境都考虑进来) , 不得不对整个 PCB做重新的制作, 而我们贴片式陶瓷天线就不 需要对 PCB板做重新的制作, 只对矩形立体陶瓷本身进行适当的修改即可。 此外 , 贴片式天线在 PCB板的表面上的面积或尺寸要远远大于本发明中的立体天线的 尺寸, 因此基于贴片式天线的天线阵列将在 PCB板上占有更大的面积。 由于手持 设备的空间有限, 因此本发明的立体天线比基于贴片式的天线更适合在手持设 备中的应用。
[0073] 进一步的, 矩形立体陶瓷上第一天线辐射体 5和第二天线辐射体 6的排布设置可 以是:
[0074] 作为单极天线的第一天线辐射体 5竖直设置在矩形立体陶瓷的侧面, 其馈电端 与 PCB板 7连接, 悬空设置的另一端依据所需的频率范围可以位于所述侧面内、 延伸到矩形立体陶瓷的上表面、 或者延伸到与所述侧面相对的另一侧面。 在本 实施例中, 第一天线辐射体 5竖直设置在矩形立体陶瓷一侧面的中间位置, 其悬 空端与馈电端均位于所述侧面内。
[0075] 第二天线辐射体 6沿所述矩形立体陶瓷的棱线 18设置, 将第一天线辐射体 5环绕 其中。 优选的, 第二天线辐射体 6的一端由第一天线辐射体 5所在的侧面沿其棱 线 18向上延伸至上表面后, 环绕上表面的三条边延伸至顶点, 顺势由上述侧面 的相邻面上与所述侧面共同的棱线向下延伸至与 PCB板; 所述第二天线辐射体 6 分布设置在所述一侧面、 矩形立体陶瓷的上表面以及与所述一侧面相邻的侧面 , 构成一凸字形。
[0076] 上述尺寸的矩形立体陶瓷上设置的上述结构的第一天线辐射体 5和第二天线辐 射体 6, 能够通过第一天线辐射体 5产生频率为 39.544GHz的第一个谐振点; 通过 第二天线辐射体 6产生频率为 36.005GHz的另一个谐振点, 从而使阵列天线同吋 获得 37GHz和 39GHz两个频段。 需要说明的是, 本实施例的辐射体各自获得的谐 振点仅为一具体实施例, 第一天线辐射体 5以及第二天线辐射体 6各自产生的谐 振可通过尺寸调整实现互换和调整。
[0077] 参见图 4可知, 本实施例的阵列天线可以包含 37GHz和 39GHz的两个频段 (也 即 37GHz-40GHz) 。 图 6为天线阵列的最大增益曲线, 在 37-40GHz范围内天线阵 列的增益大于 12.9dB; 天线的增益将随着天线阵列的所包含的天线单体个数的增 加而增加。 图 7为频率在 40GHz吋天线阵列的三维辐射方向图, 可以看出该天线 阵列系统有很好的辐射方向性, 而且最大值分布在整个 YZ平面内, 也就是说该 天线系统在 YZ平面的任何一个角度都可以用来接收和发射 5G信号, 这个特点恰 好适合手持设备的应用, 也即 5G信号既可以在屏幕的一侧而可以在设备的背面 被接收到。 此外, 该天线阵列具有较高的辐射效率, 在工作频段内天线阵列的 辐射效率都在—l.OdB以上。 图 8-10分别为频率在 37GHz、 38.5GHz和 40GHz频率 上的二维辐射方向图, 从上述图中可以看出该天线阵列在各个频率点上都具有 较为一致的方向性。 此外, 该天线阵列也可以扩展到其它的 5G工作频段, 比如 2 8GHz或 60GHz等。
[0078] 综上所述, 本发明提供的用于第五代无线通信的双频阵列天线, 不仅具有双谐 振, 可以包含 37GHz和 39GHz两个大带宽频段; 而且具有增益和效率高, 以及方 向性好的特点; 进一步的, 与 PCB板之间的安装简易和牢固; 再进一步的, 陶瓷 材质的载体使得天线具有体积小的特点。 此外, 同其它的天线阵列设计一样, 本发明提出的基于立体天线单元的天线阵列也可以通过在馈电网络中加入相位 调整器达到对天线阵列的波束方向进行控制, 进而实现天线阵列的波束成形与 波束扫描。
[0079] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等同变换, 或直接或间接运用在相关的技术领域 , 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 用于第五代无线通信的双频阵列天线, 其特征在于: 所述双频阵列天 线的天线单体包括设置在立体天线载体表面的第一天线辐射体和第二 天线辐射体;
所述第一天线辐射体为一单极天线; 所述第二天线辐射体为一环绕所 述第一天线辐射体设置, 并与 PCB板的地连接的环形天线。
[权利要求 2] 如权利要求 1所述的用于第五代无线通信的双频阵列天线, 其特征在 于: 所述第二天线辐射体通过所述 PCB板上的过孔与 PCB板的地连接
[权利要求 3] 如权利要求 2所述的用于第五代无线通信的双频阵列天线, 其特征在 于: 所述立体天线载体和所述 PCB板之间通过焊盘连接; 所述焊盘与 所述第二辐射体天线的两端点连接, 所述焊盘上设置有所述过孔。
[权利要求 4] 如权利要求 1所述的用于第五代无线通信的双频阵列天线, 其特征在 于: 所述立体天线载体的底面对应所述第二天线辐射体的两端点分别 设置有第一焊盘和第二焊盘; 所述 PCB板的上表面对应所述第一焊盘 和第二焊盘分别设置有第三焊盘和第四焊盘; 所述两端点分别对应连 接所述第一焊盘和第二焊盘, 所述第一焊盘和第二焊盘分别对应连接 第三焊盘和第四焊盘。
[权利要求 5] 如权利要求 1所述的用于第五代无线通信的双频阵列天线, 其特征在 于: 所述立体天线载体的底面对应所述第一天线辐射体的馈电点设置 有与其连接的第五焊盘; 所述 PCB板的上表面对应所述第五焊盘设置 有与其连接的第六焊盘。
[权利要求 6] 如权利要求 1所述的用于第五代无线通信的双频阵列天线, 其特征在 于: 所述立体天线载体为矩形立体陶瓷; 所述第二天线辐射体沿所述 矩形立体陶瓷的棱线设置。
[权利要求 7] 如权利要求 6所述的用于第五代无线通信的双频阵列天线, 其特征在 于: 所述第一天线辐射体设置在所述矩形立体陶瓷的一侧面; 所述第 二天线辐射体分布设置在所述一侧面、 矩形立体陶瓷的上表面以及与 所述一侧面相邻的侧面。
[权利要求 8] 如权利要求 1-7任意一项所述的用于第五代无线通信的双频阵列天线 , 其特征在于: 还包括馈电网络, 两个以上的所述天线单体与所述馈 电网络连接; 每个天线单体之间的距离为所述双频阵列天线的工作频 率的 1/2到 1个波长之间。
[权利要求 9] 如权利要求 8所述的用于第五代无线通信的双频阵列天线, 其特征在 于: 所述馈电网络由 2n-l个功率分配器相互级联构成; 所述天线单体 的个数为 2η个; 所述 η为正整数。
[权利要求 10] 如权利要求 9所述的用于第五代无线通信的双频阵列天线, 其特征在 于: 所述馈电网络包含 2η-1个 Τ字形网络节点, 每个所述 Τ字形网络节 点处包含一个相对所述双频阵列天线的中心工作频率 1/4个波长的阻 抗转换器。
PCT/CN2016/113404 2016-09-30 2016-12-30 用于第五代无线通信的双频阵列天线 WO2018058840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610875334.2 2016-09-30
CN201610875334.2A CN106374226B (zh) 2016-09-30 2016-09-30 用于第五代无线通信的双频阵列天线

Publications (1)

Publication Number Publication Date
WO2018058840A1 true WO2018058840A1 (zh) 2018-04-05

Family

ID=57894792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113404 WO2018058840A1 (zh) 2016-09-30 2016-12-30 用于第五代无线通信的双频阵列天线

Country Status (2)

Country Link
CN (1) CN106374226B (zh)
WO (1) WO2018058840A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088176A (zh) * 2017-06-14 2018-12-25 西安中兴新软件有限责任公司 一种天线结构
KR102019354B1 (ko) * 2017-11-03 2019-09-09 삼성전자주식회사 안테나 모듈
CN108288757B (zh) * 2017-12-29 2020-02-07 维沃移动通信有限公司 一种无线移动终端及天线
CN108493590B (zh) * 2018-01-15 2020-02-11 深圳市信维通信股份有限公司 天线单元、mimo天线及手持设备
KR102469571B1 (ko) * 2018-01-25 2022-11-22 삼성전자주식회사 루프 타입 안테나 및 그것을 포함하는 전자 장치
US10971819B2 (en) 2018-02-16 2021-04-06 Qualcomm Incorporated Multi-band wireless signaling
CN108539395B (zh) * 2018-04-18 2023-10-13 深圳市信维通信股份有限公司 适用于5g通信的双频毫米波天线系统及其手持设备
CN108511907B (zh) * 2018-05-11 2021-10-19 瑞声科技(新加坡)有限公司 天线系统及通讯终端
CN108847520B (zh) * 2018-06-22 2020-08-14 中国人民解放军陆军工程大学 组合式竖状毫米波天线
CN111384589B (zh) * 2018-12-28 2022-02-18 财团法人工业技术研究院 混合式多频天线阵列
CN110856088A (zh) * 2019-12-03 2020-02-28 瑞声科技(新加坡)有限公司 扬声器的组装方法和扬声器
CN117335129B (zh) * 2023-07-10 2024-04-19 上海安费诺永亿通讯电子有限公司 小天线结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093913A (zh) * 2006-06-20 2007-12-26 仁宝电脑工业股份有限公司 立体天线结构
CN101281998A (zh) * 2007-10-19 2008-10-08 哈尔滨工业大学 一种毫米波段宽带圆柱共形4×4微带天线及其设计方法
CN201994418U (zh) * 2011-01-27 2011-09-28 太盟光电科技股份有限公司 表面贴片式的多频天线模块
US20130249753A1 (en) * 2011-10-27 2013-09-26 Kenichi Asanuma Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency with ultra wide bandwidth
CN104733838A (zh) * 2013-12-18 2015-06-24 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN105449335A (zh) * 2014-08-20 2016-03-30 联想(北京)有限公司 一种电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI327386B (en) * 2006-10-25 2010-07-11 Yageo Corp Dual-band antenna
US20100309087A1 (en) * 2009-06-04 2010-12-09 Inpaq Technology Co., Ltd. Chip antenna device
KR101133626B1 (ko) * 2010-05-03 2012-04-10 엘에스엠트론 주식회사 이중대역 칩 안테나
WO2012025787A1 (en) * 2010-08-24 2012-03-01 Nokia Corporation Apparatus and methods for wireless communication
TWI488357B (zh) * 2011-09-27 2015-06-11 Acer Inc 通訊電子裝置及其天線結構
CN102403572B (zh) * 2011-12-13 2013-09-25 华南理工大学 一种宽带双频移动通信基站天线
CN102723585A (zh) * 2012-05-31 2012-10-10 中兴通讯股份有限公司 一种环路耦合宽带天线结构及其实现方法
CN206271888U (zh) * 2016-09-30 2017-06-20 深圳市信维通信股份有限公司 用于第五代无线通信的双频阵列天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093913A (zh) * 2006-06-20 2007-12-26 仁宝电脑工业股份有限公司 立体天线结构
CN101281998A (zh) * 2007-10-19 2008-10-08 哈尔滨工业大学 一种毫米波段宽带圆柱共形4×4微带天线及其设计方法
CN201994418U (zh) * 2011-01-27 2011-09-28 太盟光电科技股份有限公司 表面贴片式的多频天线模块
US20130249753A1 (en) * 2011-10-27 2013-09-26 Kenichi Asanuma Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency with ultra wide bandwidth
CN104733838A (zh) * 2013-12-18 2015-06-24 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN105449335A (zh) * 2014-08-20 2016-03-30 联想(北京)有限公司 一种电子设备

Also Published As

Publication number Publication date
CN106374226A (zh) 2017-02-01
CN106374226B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2018058840A1 (zh) 用于第五代无线通信的双频阵列天线
CN110534924A (zh) 天线模组和电子设备
JP7313479B2 (ja) アンテナユニット及び端末機器
US20140062822A1 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
JP2022533763A (ja) アンテナユニット及び端末機器
CN109980365A (zh) 一种应用于5g毫米波通信的大规模mimo有源天线阵列
US11984645B2 (en) Antenna element and electronic device
CN107154531A (zh) 一种基片集成腔体毫米波阵列天线
JP2004120733A (ja) ストリップライン並列‐直列給電型プロキシミティ結合空洞バックパッチアンテナアレイ
CN105896084B (zh) 一种全频段车载天线
CN111293435A (zh) 5g双频四元mimo天线
WO2020233518A1 (zh) 天线单元和电子设备
US20220328978A1 (en) Antenna module and communication device equipped with the same
WO2022134786A1 (zh) 一种天线和通信设备
WO2022242069A1 (zh) 双极化滤波天线单元和双极化滤波天线阵列
CN104966903B (zh) 一种用于60GHz毫米波通信的悬置微带天线阵列及其天线
CN105703084A (zh) 一种室分天线
WO2019100376A1 (zh) 全向阵列天线及其波束赋形方法
CN115775971A (zh) 一种基于多模谐振的双频宽带高增益印刷全向天线
CN117233809A (zh) 一种多频段双极化复合射频前端收发组件
CN206271888U (zh) 用于第五代无线通信的双频阵列天线
CN116417786A (zh) 一种移动宽频段室内分布双极化定向挂墙天线
CN114243280B (zh) 超宽带宽波束双极化天线和无线通信设备
CN108172993B (zh) 一种双极化频率可重构天线
CN114284709A (zh) 辐射单元、天线及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917584

Country of ref document: EP

Kind code of ref document: A1