WO2018058349A1 - 手持式工具机 - Google Patents

手持式工具机 Download PDF

Info

Publication number
WO2018058349A1
WO2018058349A1 PCT/CN2016/100496 CN2016100496W WO2018058349A1 WO 2018058349 A1 WO2018058349 A1 WO 2018058349A1 CN 2016100496 W CN2016100496 W CN 2016100496W WO 2018058349 A1 WO2018058349 A1 WO 2018058349A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
power tool
held power
gear
moving part
Prior art date
Application number
PCT/CN2016/100496
Other languages
English (en)
French (fr)
Inventor
王佳
Original Assignee
博世电动工具(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博世电动工具(中国)有限公司 filed Critical 博世电动工具(中国)有限公司
Priority to PCT/CN2016/100496 priority Critical patent/WO2018058349A1/zh
Priority to US16/336,145 priority patent/US10828707B2/en
Priority to EP16917104.8A priority patent/EP3549734B1/en
Priority to CN201680089626.1A priority patent/CN109843525B/zh
Publication of WO2018058349A1 publication Critical patent/WO2018058349A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D51/00Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends
    • B23D51/16Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends of drives or feed mechanisms for straight tools, e.g. saw blades, or bows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D49/00Machines or devices for sawing with straight reciprocating saw blades, e.g. hacksaws
    • B23D49/10Hand-held or hand-operated sawing devices with straight saw blades
    • B23D49/16Hand-held or hand-operated sawing devices with straight saw blades actuated by electric or magnetic power or prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D49/00Machines or devices for sawing with straight reciprocating saw blades, e.g. hacksaws
    • B23D49/10Hand-held or hand-operated sawing devices with straight saw blades
    • B23D49/16Hand-held or hand-operated sawing devices with straight saw blades actuated by electric or magnetic power or prime movers
    • B23D49/162Pad sawing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B3/00Gang saw mills; Other sawing machines with reciprocating saw blades, specially designed for length sawing of trunks
    • B27B3/02Gang saw mills; Other sawing machines with reciprocating saw blades, specially designed for length sawing of trunks with vertically-reciprocating saw frame
    • B27B3/12Mechanisms for producing the reciprocating movement of the saw frame; Arrangements for damping vibration; Arrangements for counter-balancing

Definitions

  • the invention relates to the field of hand-held power tool technology; in particular, the invention relates to a hand-held power tool with a vibration balancing function.
  • the vibration conditions under their working conditions are very complicated.
  • the direction of movement and the type of motion of different moving parts inside the machine tool may be completely different, but all contribute to the vibration of the tool, which together determine the complexity of the vibration of the tool.
  • the vibration balance weight is arranged only in the prior art based on its reciprocating motion. , does not take into account the impact of other components on the vibration.
  • the reciprocating saw is provided with a counterweight such that the counterweight reciprocates parallel to the direction of movement of the linear reciprocating member at an opposite step to the reciprocating member;
  • the balance weight provided by the reciprocating saw reciprocates in a direction intersecting the direction of movement of the linear reciprocating member of the saw, in a step opposite to that of the linear reciprocating member.
  • the balance block in the two prior art solutions only considers the inertial force and/or the moment of inertia of the linear reciprocating component itself, and does not consider the machine tool as a whole, ignoring other moving parts in the machine tool.
  • the result is that the vibration balance of the machine tool is not ideal.
  • the vibration balance block described above is used, significant vibration or even vibration is generated in the vicinity of the hand-held area, which increases the operation difficulty and adversely affects the operation precision.
  • the present invention provides a hand-held power tool comprising:
  • a first moving member as a main vibration source, the first moving member reciprocating substantially in a straight line in a first direction;
  • a second moving member as a secondary vibration source, the second moving member having a different motion state than the first moving member
  • balance block whose linear motion direction is a second direction that is different from the first direction, and the motion step of the balance block is opposite to the first moving part.
  • the hand-held power tool thus arranged can effectively provide vibration or impact balance, which is beneficial to increase the operational stability and improve the working accuracy.
  • the angle between the first direction and the second direction is set such that the stability of the specific region is optimized when the hand-held power tool is in operation.
  • the specific area is the hand holding area of the hand-held power tool.
  • the hand-held power tool thus arranged can optimize the stability of a particular area during operation; this specific area can be, for example, a hand holding area or the like.
  • the hand-held power tool further comprises a linkage mechanism between the first moving part and the weight.
  • the linkage mechanism is a crank slide mechanism or a swing bearing mechanism.
  • the hand-held power tool comprises a movement for guiding the weight Directional guides.
  • the guide member is a guide groove or a guide rod.
  • the two ends of the balance block are respectively formed with a first sliding slot and a second sliding slot, and the first sliding slot and the second sliding slot are parallel Or in the same line, and
  • the guiding member has a flat guiding surface, and the guiding surface is provided with guiding pins along the second direction, the guiding pins respectively engaging the first sliding slot and the second sliding of the balancing block Within the slot, a stop on the guide pin defines the weight to conform to the guide surface.
  • the guiding of the balancing block is realized by a simple structure, the structure is simple and compact, and the components are easy to process and assemble, and the associated costs can be correspondingly reduced.
  • the guide has a recess or a through hole for avoiding interference.
  • the first direction passes through a centroid of the first moving part, and the second direction passes through a centroid of the balancing block.
  • the hand-held power tool is a hand-held reciprocating saw and the first moving component is a saw blade or a saw blade driving mechanism, or the hand-held device
  • the machine tool is a hand-held hammer and the first moving component is a hammer or hammer drive mechanism.
  • the second moving part comprises a gear, the gear rotates in a plane parallel to the first direction, and the gear simultaneously drives the first moving part And a balance block motion, the motion state including a motion state of the inertial force that the gear itself has in a non-first direction when rotated.
  • the second moving component comprises a gear, the center of mass of the machine tool and the first direction defining a centroid plane, the motion state comprising The state of motion of the inertial force that the gear itself has outside the plane of the centroid when it is rotated.
  • the second moving part further comprises an accompanying moving part that is driven by the gear and swings out of the plane of the centroid.
  • the accompanying moving part is a rocking lever associated with the gear and periodically driving the first moving part to swing forward.
  • the state of motion further comprises a state of motion having a tendency to reverse the gear axis when the gear itself is rotated.
  • Figure 1 shows, in a schematic perspective view, the arrangement of counterweights in a hand-held power tool according to an embodiment of the invention
  • Figure 2 shows the arrangement of Figure 1 in a schematic side cross-sectional view
  • Figure 3 shows the arrangement of Figure 1 in a schematic side view
  • Figure 4 shows the arrangement of Figure 1 in a schematic front view
  • Figure 5 shows a schematic front view of the guide in the arrangement of Figure 1;
  • Figure 6 shows a schematic side view of the guide member of Figure 5;
  • Figure 7 shows a schematic front view of the weight in the arrangement of Figure 1;
  • Figure 8 shows a schematic side view of the weight block of Figure 7;
  • Figure 9 is a schematic perspective view showing the arrangement of weights in a hand-held power tool according to another embodiment of the present invention.
  • FIGS 10, 11 and 12 show the vibrations produced by the forces or moments overcome by the counterweight in the hand-held power tool according to the invention.
  • the application is exemplarily described in connection with the use of a weight in a hand-held reciprocating saw with a saw blade.
  • the weight in the hand-held reciprocating saw according to the present invention will be applicable to a variety of hand-held power tools for balancing it primarily from substantially linear reciprocating moving parts, and additionally having Vibration, chatter, wobble, etc. caused by the second moving member in a different state of motion than the substantially linear reciprocating moving member.
  • the "different state of motion” may include any state of motion that differs from the aforementioned linear reciprocating motion properties, is different in direction, or has a different position of action on the force or moment generated by the saw.
  • hand-held power tools may include, but are not limited to, the aforementioned hand-held reciprocating saws and hand-held electric hammers and the like which will be mentioned hereinafter.
  • FIGS. 1 and 2 show the arrangement of counterweights in a hand-held power tool according to an embodiment of the invention, in a schematic perspective view and a side cross-sectional view, respectively.
  • the arrangement of the vibration weights of the hand-held power tool can be basically understood from FIGS. 1 and 2 .
  • the weight 130 is applied to a saw having a saw blade 112.
  • the weight 130 and the saw blade 112 are driven via a crank slide mechanism.
  • the saw blade driving mechanism 111 and the weight block 130 are driven by the gear 121 having the driving pin 122 and the eccentric wheel 123, and the saw blade 112 and the saw blade driving mechanism 111 are substantially straight along the first direction A.
  • the reciprocating motion performs a cutting action, and the weight 130 reciprocates in a second direction B of the opposite surface at a step opposite to the saw blade 112 and the saw blade driving mechanism 111.
  • facet in the present application means that the first direction A and the second direction B are not in the same plane, and the two are neither parallel nor intersect.
  • the saw blade 112 and/or the saw blade drive mechanism 111 can be considered as the first moving part 110, and the linkage mechanism including the gear can be regarded as the second moving part 120 or a part thereof.
  • the first moving component 110, the second moving component 120, the weighting block 130, and the like herein are not necessarily a single component, but may also be components.
  • a combination of the saw blade driving mechanism 111 and the saw blade 112 may be used as the first moving member.
  • the linkage mechanism as the second moving member 120 also includes a gear 121 (the gear 121 also has a drive pin 122 and an eccentric wheel 123, etc.), a drive gear 151, a bearing 152, and the like.
  • the linkage mechanism supplies power from a power source such as a motor to the saw blade drive mechanism 111 and the weight block 130, and drives them to operate together.
  • the saw blade drive mechanism 111 can drive the saw blade 112 to reciprocate substantially linearly in the first direction A, and the second moving member in the saw machine has a different motion state than the saw blade.
  • the various components in the linkage are rotating.
  • the present invention reciprocates the weight block 130 in a second direction B that is different from the first direction A, thereby realizing good effect.
  • the first direction and the second direction can be adjusted to optimize the stability of a particular region of the hand-held power tool while it is in operation.
  • the "specific area” herein is an area that can be arbitrarily selected by a person skilled in the art according to design requirements, so it is clear and certain.
  • This specific area may be, for example, a hand holding area 100 (see FIG. 10) or the like in order to facilitate holding.
  • the optimization of the stability can be determined by the average value of the acceleration of the particular region, which more accurately reflects the degree of vibration.
  • the guiding surface 141 may be inclined with respect to the first direction A, and the angle of inclination between the two is as indicated by a.
  • the angle a can be zero.
  • the angle ⁇ between the first direction A and the second direction B as shown in FIG. 4 cannot be zero, so that the balance block can generate the inertial component of the left and right direction in FIG. 4 to Balance the vibration of the tool in this direction.
  • the balance block can balance the vibration of the hand-held power tool in three directions of XYZ.
  • a guide 140 for guiding the direction of movement of the weight block 130 is shown in the drawing.
  • the guide 140 may not be limited to the illustrated structure, as the case may be.
  • it can be achieved by placing the balance block on both sides in the guide groove, as shown in Figure 9; it is also possible to use a guide rod to slide the balance block over the guide rod.
  • the guide member 140 may be fixed; in particular, in the hand-held power tool, the guide member 140 may be fixed to the frame of the machine tool or integrally formed on the frame.
  • the saw blade drive mechanism 111 can be an elongate member with a saw blade 112 attached to its end.
  • An oblong hole 113 may be formed at the driven portion of the saw blade driving mechanism 111.
  • the oblong hole 113 may be laterally formed on the saw blade driving mechanism 111, having straight upper and lower sides and curved end sides on both sides, which form a crank slide mechanism with the driving pin 122 on the gear 121.
  • the upper and lower sides of the oblong hole 113 serve as working portions.
  • the height of the oblong hole 113 may be set such that its upper and lower sides are substantially in contact with the drive pin 122 that is inserted into the gear 121 in the oblong hole 113.
  • the drive pin 122 rotates on the gear 121 and acts on the upper or lower side of the oblong hole to drive the saw blade drive mechanism 111 and the saw blade 112 to reciprocate linearly.
  • the lateral length of the oblong hole 113 is such that the two arcuate ends are never driven by the drive pin 122 or contact the drive pin 122, so that the blade drive mechanism 111 and the saw blade 112 do not move laterally. It can be understood that in order to more stably realize the linear motion of the saw blade driving mechanism 111 and the saw blade 112, it is preferable to additionally provide a guide member to guide the direction of movement thereof.
  • the guide 140 can have a flat guide surface 141.
  • the guiding surface 141 may be divided into two segments by a concave surface 144 at a position corresponding to the linkage mechanism, corresponding to the first sliding groove 131a and the second sliding groove 131b portion on the weighting block 130, respectively.
  • Two guide pins 142a, 142b may be respectively disposed on the two sections of the guide surface 141.
  • the guides 140 are arranged such that the straight lines of the two guide pins are in the second direction B, which are opposite to the first direction A of the saw blade drive mechanism 111 and the saw blade 112.
  • Mounting holes 145 adapted to mount the guide pins 142a, 142b are shown in Figures 5 and 6.
  • the guide pins 142a, 142b can be fixed to the guide member 140 by being inserted into the mounting hole 145.
  • the guide pins 142a, 142b are preferably perpendicular to the guide surface 141.
  • the surface 144 of the guide member 140 at a position corresponding to the linkage mechanism may be recessed and parallel with the first end side and the second end side of the gear 121 to prevent the eccentric wheel 123 from interacting with the mechanism.
  • the end faces of the drive gear 151 and the like interfere with each other.
  • a mounting hole 146 for fixing the gear shaft 124 and a mounting hole 147 for fixing the driving gear 151 through the bearing 152 are formed at the recessed recess. It is conceivable that when the gear shaft 124, the bearing 152, and the like are directly fixed to the frame, in order to prevent interference, a through hole through which the through hole can be formed may be formed under the guide member 140.
  • the guide member can adopt a structure different from that shown in the drawings.
  • the guide members are guide grooves located at both sides of the weight block 130, it is not necessary to reserve mounting holes 146, 147, etc. thereon, as in the example of FIG.
  • the gear shaft 124, the bearing 152 of the drive gear 151, and the like can be directly fixedly mounted on the frame.
  • the two ends of the balance block 130 may be respectively formed with a first chute 131a and a second chute 131b, and the first chute 131a and the second chute 131b are parallel or in line.
  • These chutes are preferably straight chutes and may be open slots that open to opposite ends of the weight block 130, respectively.
  • the arrangement of such open slots facilitates the processing and assembly of the weights.
  • the rounding at the open slot facilitates the loading of the guide pin into the chute. It is conceivable that in an alternative embodiment, the chutes may not be provided with openings at both ends.
  • the weight block 130 is adapted to be attached to and movable along the guiding surface 141.
  • the guide pins 142a, 142b on the guide surface 141 are engaged in the first and second chutes 131a, 131b, respectively, and the guide pins 142a, 142b and the first The sliding groove 131a and the second sliding groove 131b can be relatively slipped.
  • the diameter of the guide pins 142a, 142b is substantially equal to or slightly larger than the width of the first chute 131a and the second chute 131b, such that The joint will not be too tight or too loose.
  • the guide pins 142a, 142b may further be provided with stoppers 143a, 143b for defining the weight 130 to be fitted to the guiding surface 141 to prevent accidental falling off.
  • the stops 143a, 143b are circular flaps. Based on the above, the weight block 130 is defined to be movable only in the direction defined by the guide pins 142a, 142b on the guide surface 141.
  • the number of guide pins and chutes is not necessarily limited to the number in the drawings. In the case where production efficiency and manufacturing cost permit, the provision of a larger number of guide pins and chutes in parallel or along the same straight line can improve the stability of the movement of the balance block on the guide.
  • the weight block 130 may be further formed with an oblong hole 132 adapted to be driven by the eccentric wheel 123 and a through hole 133 adapted to drive the gear 151 therethrough.
  • the through hole 133 is also adapted to be provided with a growth hole so as not to interfere with the drive gear 151 during the upward movement of the weight block 130.
  • the oblong holes 132 are formed substantially horizontally in the weight 130, the upper and lower sides are straight, and the ends may be curved, respectively.
  • the diameter of the eccentric 123 is preferably substantially equal to or slightly larger than the height of the oblong hole 132, that is, the distance between the upper and lower sides.
  • the eccentric wheel 123 can be engaged in the oblong hole 132, the outer circumference of which contacts the upper or lower edge of the oblong hole 132 to enable the counterweight 130 to reciprocate; and at the same time, due to the guiding of the chute and the guide pin
  • the moving direction of the weight block 130 is restricted to the second direction B.
  • the lateral length of the oblong hole 132 is sufficient such that the eccentric 123 does not drive or even contact the curved sides of the oblong holes 132 during operation.
  • the gear 121 actually constitutes a crank slide mechanism between the eccentric wheel 123 and the weight.
  • the linkage mechanism between the first moving member 110 and the weight 130 is described in detail below.
  • the linkage mechanism can include drive gear 151, gear 121, and the like.
  • the drive gear 151 can be mounted in the mounting hole 147 of the guide 140 through the bearing 152.
  • the drive gear 151 engages and provides power to the gear 121 to drive the first moving part 110 and the weight 130.
  • the gear 121 can be mounted in the mounting hole 146 of the guide 140 through the gear shaft 124.
  • the first end side of the gear 121 may be provided with an eccentrically arranged drive pin 122 for the first moving part 110 adapted to engage within the oblong hole 113 of the first moving part 110.
  • the second end side of the gear 121 may be provided with an eccentric wheel 123 for driving the weight 130.
  • the movement of the gear 121, the drive gear 151, and the like in the linkage mechanism is different from the rotation of the first moving member 110, and will also cause undesired vibration.
  • the linkage is also included within the scope of the second moving component 120 in the sense of the present invention.
  • the second moving component 120 described in the present invention may further comprise other types of moving components in the mechanism or machine tool other than the first moving component 110, such as but not limited to linear motion in the operating state of the machine tool. Other components of motion, rotation, swinging, etc., will also be part of the secondary vibration source.
  • These moving parts may perform various kinds of complicated movements; although the vibrations and the like generated by them are less affected than the first moving parts 110, the motion law is more complicated and unmeasurable, resulting in the mechanism or the machine tool The balance of jitter, wobble, etc. is more difficult.
  • linkage mechanisms are contemplated by those skilled in the art from the teachings of this application.
  • a oscillating bearing can be used as the linkage mechanism, and the application of the specific oscillating bearing in the hand-held power tool is known, so the structure thereof will not be specifically described herein.
  • the orientation of the guide rods in the oscillating bearing mechanism in the hand-held power tool can be appropriately adjusted, thereby changing the direction of the reciprocating motion of the weight. It is conceivable that the oscillating bearing will similarly also become part of the secondary vibration source.
  • the linkage mechanism may also be eliminated, and the two moving power sources are respectively used to drive the first moving part and the balance block to perform opposite movements; it is understood that this may be in production cost and operation. Limited in accuracy.
  • the primary source of vibration is produced by a linear reciprocating motion of the first moving part 110.
  • the saw will perform a rapid, substantially linear reciprocating motion relative to the saw, causing the saw itself to vibrate strongly.
  • the hand-held power tool is a hand-held hammer
  • the first moving part 110 can be a hammer or a hammer driving mechanism, and the impact force of the reciprocating motion is stronger. In the absence of a balanced design, it is easy to cause the hand-held electric hammer to shake and oscillate greatly, which seriously affects the operation of the device.
  • the implementation is as shown in the figure.
  • the arrangement of the equations provides a weight block 130.
  • the weight 130 moves in a reciprocating linear motion along a second direction B that is different from the first direction A, and the motion step of the weight 130 is opposite to that of the first moving member 110.
  • opposite step means that the action of the balance block and the movement of the first moving part on the entire product cancels each other, so that the dynamic balance can be basically achieved. They basically move in opposite directions.
  • the drive pin 122 and the eccentric wheel 123 are located on different sides of the rotation axis of the gear 121 along the same diameter, it can be seen that when the drive pin 122 drives the first moving part upward At 110 o'clock, the eccentric wheel 123 drives the balance weight 130 downward; when the drive pin 122 drives the first moving part 110 downward, the eccentric wheel 123 drives the balance block 130 upward.
  • first direction A and the "second direction B" described in the context may be passed through the centroid of the first moving part and the centroid of the balancing block, respectively, and in the corresponding direction.
  • the corresponding rays will be in a line of different faces, neither parallel nor intersecting.
  • FIG. 9 shows, in a schematic perspective view, an arrangement of weights in a hand-held power tool according to another embodiment of the invention, in which a first moving part 210, a linkage 220, a weight 230 and a guide are shown. 240.
  • the guide member 240 has a U-shaped guide groove, and both side edges of the weight block 230 are guided in the U-shaped guide groove.
  • the linkage mechanism 220 herein may also be replaced by a non-crank slide mechanism, such as a swing bearing mechanism or the like.
  • FIGS. 10, 11, and 12 illustrate inertial forces or moments of inertia that have not been balanced by the balancing mass in the prior art.
  • the CM in Fig. 10 indicates the centroid position of the entire machine tool, and the figure indicates the inertia moment R of the tool holder (the first moving part 110) and the balance block acting on the machine tool, and the moment of inertia R causes the hand holding area 100 to generate Z.
  • the weights should be arranged obliquely in the direction of the ⁇ angle shown in FIG.
  • the inertial force S acting on the machine tool during the movement of the rocking lever (second moving member) is shown in Fig.
  • the weights should be arranged obliquely in the direction of the ⁇ angle shown in FIG.
  • the oscillating tendency T at the hand-held portion of the machine tool, which is caused by a linkage mechanism such as the rotation of the gear itself, is shown in FIG.
  • the hand-held power tool of the invention can effectively balance these factors which are not conducive to reducing the vibration of the tool, and improves the operational stability of the machine tool.
  • the inertial force brought about by the rotation of the gear 121 itself can be more easily understood in conjunction with Figs.
  • the gear 121 can be rotated in a plane parallel to the first direction A while driving the movement of the first moving part 110 and the weight 130, the movement state of the gear 121 including the gear 121 itself being rotated
  • the motion state of the inertial force in one direction A It can be understood that the centroid CM (see FIG. 10) and the first direction A of the overall machine tool define a centroid plane, and the motion state of the gear 121 may include a motion state of the inertial force that the gear 121 itself has outside the centroid plane when rotated.
  • the second moving component 120 can further include an accompanying moving component that is driven by the gear 121 and swings out of the center of mass plane; the accompanying moving component can be a rocking bar that is associated with the gear 121 and periodically drives the first moving component to swing forward.
  • the state of motion of the gear 121 may further include a state of motion having a tendency to reverse the gear shaft when the gear 121 itself is rotated. It can be understood that these motion states belong to the state of motion that can be balanced by the balance block in the present invention. In comparison, in the prior art, the vibration, the swing, the turning tendency, and the like caused by these motion states cannot be balanced.
  • the first moving component can be a corresponding working execution component in the hand-held power tool
  • the second moving component can include an eccentric gear, a swing bearing or a rocking lever.
  • the structure can also include any other moving parts at the same time, and the balancing block serves to balance (at least partially) the amount of imbalance caused by the first moving part and the second moving part at the same time.
  • the guide 140 should preferably be fixed to the frame of the hand-held power tool.
  • the first moving part 110 can be a saw blade or a saw blade drive mechanism.
  • the hand-held power tool is a hand-held hammer
  • the first moving part 110 can be a hammer or hammer drive mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Sawing (AREA)

Abstract

一种手持式工具机,包括:作为主要振动源的第一运动部件(110),第一运动部件在第一方向(A)上大致沿直线往复运动;作为次要振动源的第二运动部件(120),第二运动部件具有与第一运动部件不同的运动状态;以及平衡块(130),平衡块的直线运动方向为与第一方向异面的第二方向(B),并且平衡块的运动步调与第一运动部件相反。

Description

手持式工具机 【技术领域】
本发明涉及手持式工具机技术领域;具体地说,本发明涉及一种具有振动平衡功能的手持式工具机。
【背景技术】
对于动力驱动运行的各种手持式工具机而言,其工作状态下的振动情况非常复杂。例如,工具机内部的不同运动部件的动运方向、运动类型可能是完全不同的,但是均对工具的振动作出贡献,共同决定了工具振动的复杂性。
现有技术中往往未能意识到这种复杂性。
例如,对于曲线锯等手持式往复锯机而言,由于其中具有对锯机振动起主导作用的例如锯刀等直线往复运动部件,所以现有技术中仅基于其往复运动而布置了振动平衡块,没有考虑到其它部件对振动的影响。典型地,现有技术中的一种方案中为往复锯机提供了平衡块,使得该平衡块平行于直线往复运动部件的运动方向、以与该往复运动部件相反的步调进行往复运动;现有技术中的另一种方案为往复锯机提供的平衡块沿与锯机的直线往复运动部件的运动方向相交的方向、以与直线往复运动部件相反的步调进行往复运动。
在这两种现有技术方案中的平衡块仅考虑了直线往复运动部件本身的惯性力和/或惯性力矩,并没有将工具机作为一个整体进行考虑,忽视了工具机内其它运动部件对工具机振动的影响,结果是工具机的振动平衡效果并不理想。尤其在手持式工具机中表现为虽然采用了上述的振动平衡块,但是在手持区域附近仍然产生明显的振动甚至摆动,增加了操作难度、不利地影响了操作精度。
【发明内容】
本发明的目的在于提供一种能够解决现有技术中的前述技术问题的手持式工具机。
为了实现前述目的,本发明提供了一种手持式工具机,所述手持式工具机包括:
作为主要振动源的第一运动部件,所述第一运动部件在第一方向上大致沿直线往复运动;
作为次要振动源的第二运动部件,所述第二运动部件具有与所述第一运动部件不同的运动状态;以及
平衡块,所述平衡块的直线运动方向为与所述第一方向异面的第二方向,并且所述平衡块的运动步调与所述第一运动部件相反。
如此设置的手持式工具机能够有效地提供振动或冲击平衡,有利于增加其操作稳定性、提高作业精度。
可选地,在如前所述的手持式工具机中,所述第一方向和所述第二方向的夹角设置成使得在所述手持式工具机运转时其特定区域的稳定性最优化。
可选地,在如前所述的手持式工具机中,所述特定区域是所述手持式工具机的手握持区域。如此设置的手持式工具机可以使得在运转时其某个特定区域的稳定性最优化;该特定区域例如可以是手握持区域等。
可选地,在如前所述的手持式工具机中,所述手持式工具机还包括所述第一运动部件与所述平衡块之间的联动机构。
可选地,在如前所述的手持式工具机中,所述联动机构为曲柄滑道机构或摆动轴承机构。
可选地,在如前所述的手持式工具机中,所述手持式工具机包括用于引导所述平衡块的运动 方向的导向件。
可选地,在如前所述的手持式工具机中,所述导向件为导槽或导杆。
可选地,在如前所述的手持式工具机中,所述平衡块的两端分别形成有第一滑槽和第二滑槽,所述第一滑槽和所述第二滑槽平行或同线,并且
所述导向件具有平坦的引导面,所述引导面上沿所述第二方向设置有导向销,所述导向销分别接合在所述平衡块的所述第一滑槽和所述第二滑槽内,所述导向销上的止挡件限定所述平衡块贴合所述引导面。
如此设置的手持式工具机中通过简单的结构实现了对平衡块的导向,结构简单、紧凑,并且各部件易于加工、组装,能够相应地降低相关成本。
可选地,在如前所述的手持式工具机中,所述导向件具有用于避免干涉的凹部或通孔。
可选地,在如前所述的手持式工具机中,所述第一方向经过所述第一运动部件的质心,所述第二方向经过所述平衡块的质心。
可选地,在如前所述的手持式工具机中,所述手持式工具机为手持式往复锯机且所述第一运动部件为锯刀或锯刀驱动机构,或者,所述手持式工具机为手持式电锤且所述第一运动部件为锤具或锤具驱动机构。
可选地,在如前所述的手持式工具机中,所述第二运动部件包括齿轮,所述齿轮在平行于第一方向的平面内转动,所述齿轮同时驱动所述第一运动部件和平衡块运动,所述运动状态包括使所述齿轮自身在转动时在非第一方向上具有的惯性力的运动状态。
可选地,在如前所述的手持式工具机中,所述第二运动部件包括齿轮,所述工具机整体的质心和所述第一方向定义有质心平面,所述运动状态包括使所述齿轮自身在转动时在所述质心平面外具有的惯性力的运动状态。
可选地,在如前所述的手持式工具机中,所述第二运动部件还包括受齿轮驱动并在所述质心平面外摆动的伴随运动部件。
可选地,在如前所述的手持式工具机中,所述伴随运动部件为与所述齿轮关联并且周期性地驱动所述第一运动部件向前摆动的摇摆杆件。
可选地,在如前所述的手持式工具机中,所述运动状态还包括使所述齿轮自身转动时具有垂直于齿轮轴翻转的趋势的运动状态。
【附图说明】
参照附图,本发明的公开内容将更加显然。应当了解,这些附图仅用于说明的目的,而并非意在对本发明的保护范围构成限制。图中:
图1以示意性立体图示出了根据本发明的一种实施方式的手持式工具机中的平衡块的布置;
图2以示意性侧视剖面图示出了图1中的布置;
图3以示意性侧视图示出了图1中的布置;
图4以示意性前视图示出了图1中的布置;
图5示出了图1布置中的导向件的示意性前视图;
图6示出了图5中的导向件的示意性侧视图;
图7示出了图1布置中的平衡块的示意性前视图;
图8示出了图7中的平衡块的示意性侧视图;
图9以示意性立体图示出了根据本发明的另一实施方式的手持式工具机中的平衡块的布置;以及
图10、图11和图12示出了根据本发明的手持式工具机中的平衡块所克服的力或力矩产生的振动情况。
【具体实施方式】
下面参照附图详细地说明本发明的具体实施方式。在各附图中,相同的附图标记表示相同或相应的技术特征。
在附图中所示的实施方式中,本申请示例性地结合平衡块在具有锯刀的手持式往复锯机中的应用进行了描述。所属领域的技术人员可以想到,根据本发明的手持式往复锯机中的平衡块将可以应用于各种手持式工具机中,用以平衡其主要由大致直线往复式运动部件、另外还存在具有与该大致直线往复式运动部件不同的运动状态的第二运动部件所导致的振动、抖动、摆动等。“不同的运动状态”可以包括与前述直线往复式运动性质不同、方向不同或者对锯机产生的力或力矩的作用位置不同的任何运动状态。
可以想到,这些手持式工具机可以包括但不限于前述手持式往复锯机以及下文中将提到的手持式电锤等。
图1和图2分别以示意性立体图和侧视剖面图示出了本发明的一种实施方式的手持式工具机中的平衡块的布置。从图1和图2可以基本了解该手持式工具机的振动平衡块的布置。
在该图示实施方式中,平衡块130被应用在具有锯刀112的锯机中。在该锯机中,该平衡块130及锯刀112经由曲柄滑道机构而被驱动。具体地,在该锯机工作时,由具有驱动销122和偏心轮123的齿轮121驱动锯刀驱动机构111和平衡块130,锯刀112和锯刀驱动机构111沿第一方向A作大致直线往复运动进行切割动作,而平衡块130则沿异面的第二方向B以与锯刀112和锯刀驱动机构111相反的步调往复运动。可以了解,本申请中的“异面”表示第一方向A和第二方向B不在同一平面内,二者既不平行也不相交。
在该锯机中,锯刀112和/或锯刀驱动机构111可以被视作为第一运动部件110,而包括齿轮的联动机构则可以被视作为第二运动部件120或其一部分。可见,此处的第一运动部件110、第二运动部件120及平衡块130等分别并非必需是单一构件,也可能是组件。例如,在图中示例中,可以将锯刀驱动机构111和锯刀112的组合作为第一运动部件。此处作为第二运动部件120的联动机构也包括齿轮121(齿轮121上还具有驱动销122和偏心轮123等)、驱动齿轮151、轴承152等。该联动机构将来自电机等动力源的动力提供给锯刀驱动机构111和平衡块130,并驱动它们一起动作。
在锯机运转过程中,锯刀驱动机构111可以带动锯刀112沿第一方向A作大致直线往复运动,锯机中的第二运动部件则具有与锯刀不同的运动状态。例如,联动机构中的各个部件为转动。为了平衡第一运动部件110和包括该联动机构在内的第二运动部件120所产生的振动,本发明使平衡块130沿与第一方向A异面的第二方向B直线往复运动,实现了良好的效果。该第一方向和第二方向可以调整成使得在所述手持式工具机在运转时其某个特定区域的稳定性最优化。可以了解,此处的“特定区域”是所属领域的技术人员根据设计需要可以任意选定的区域,所以是清楚、确定的。该特定区域例如可以是手握持区域100(见图10)等以便于握持。该稳定性的最优化可以通过该特定区域的加速度平均值确定,该参数更确切地体现了振动程度。
图3和图4中更清楚地表明了锯刀驱动机构111与平衡块130的运动方向之间的关系。如图3所示,引导面141可以相对于第一方向A倾斜,二者之间的倾斜夹角为如α所示。在可选的实施方式中,角度α可以为零。但是,当角度α为零时,仍需要保证第二方向B与第一方向A异面,即,第二方向B应该不平行于第一方向A。可以了解,在任何情况下,如图4中所示的第一方向A与第二方向B之间的角度β不能为零,这样平衡块才可以产生图4中左右方向的惯性分力,以平衡工具这个方向的振动。在α和β同时不为零时,平衡块能够平衡手持式工具机在XYZ三个方向上的振动。
为了实现手持式工具机中平衡块130的上述往复运动,可以为其提供有导向件。具体地,在图中示出了用于引导平衡块130的运动方向的导向件140。虽然图中未明确示出,但是所属 领域的技术人员能够想到可以设置有用于引导第一运动部件110的运动方向的另一导向件;在此不予赘述。根据具体情况,导向件140可以不限于图示的结构。例如但不限于,可以通过将平衡块两侧置于导槽中来实现,如图9中所示;也可以采用导杆的形式,使平衡块在导杆上滑动。导向件140可以是固定的;具体地,在手持式工具机中,导向件140可以固定至工具机的机架,或者一体地形成在机架上。
下面详细说明图1和图2实施方式中各部件的具体结构。
可以看出,在图1和图2的示例中,锯刀驱动机构111可以呈长形部件,其末端连接有锯刀112。在锯刀驱动机构111的被驱动部位处可以形成有长圆孔113。长圆孔113可以横向地形成在锯刀驱动机构111上,具有平直的上边和下边以及两侧的弧形端边,其与齿轮121上的驱动销122组成曲柄滑道机构。
在此,该长圆孔113的上边和下边作为工作部分。长圆孔113的高度可以设置成其上边和下边基本上与插接在长圆孔113内的齿轮121上的驱动销122接触。在齿轮121旋转时,驱动销122在齿轮121上转动,并且作用于长圆孔的该上边或下边从而驱动锯刀驱动机构111和锯刀112往复直线运动。在工作过程中,长圆孔113的横向长度使得两个弧形端边总是不受驱动销122的驱动或者不接触驱动销122,因而锯刀驱动机构111和锯刀112不会有横向运动。可以了解,为了更稳定地实现锯刀驱动机构111和锯刀112的直线运动,另外地提供有导向件来引导它们的运动方向是优选的。
从图1中可以看出导向件140为平衡块130的运动提供了导向和支撑。在图5和图6中更清楚地示出了导向件140细节。
如图所示,导向件140可以具有平坦的引导面141。图示示例中,该引导面141可以被对应于联动机构的位置处的凹入表面144划分成两段,分别对应平衡块130上的第一滑槽131a和第二滑槽131b部分。在引导面141的该两段上可以分别设置有两个导向销142a、142b。在手持式工具机的布置中,导向件140被布置成这两个导向销所在的直线作为第二方向B,与锯刀驱动机构111及锯刀112的第一方向A异面。
在图5和图6中示出了适于安装导向销142a、142b的安装孔145。导向销142a、142b可以通过插设在安装孔145内而固定在该导向件140上。导向销142a、142b优选为垂直于引导面141。
在图示实施方式中,导向件140在对应于联动机构的位置处的表面144可以内凹并且与齿轮121的第一端侧及第二端侧平行,以防止与联动机构中的偏心轮123、驱动齿轮151等的端面产生干涉。在该内凹的凹部处形成有用于固定齿轮轴124的安装孔146,以及用于通过轴承152固定驱动齿轮151的安装孔147。可以想到,当齿轮轴124、轴承152等直接固定到机架上时,为了防止干涉,在导向件140下可以形成有供其穿过的通孔。
可以想到,导向件可以采用不同于图示中的结构。例如,当导向件为位于平衡块130两侧处的导向槽时,则其上不需要预留安装孔146、147等,如图9中的示例。齿轮轴124、驱动齿轮151的轴承152等都可以直接固定安装在机架上。
图7和图8示出了平衡块130的细节。如图7中所示,平衡块130的两端可以分别形成有第一滑槽131a和第二滑槽131b,并且第一滑槽131a和第二滑槽131b平行或同线。这些滑槽优选为直滑槽,并且可以是开口槽,分别开口向平衡块130的两端。这种开口槽的设置能够便于平衡块的加工和组装。开口槽处的倒圆角能够便于将导向销装到滑槽内。可以想到,在可选的实施方式中,这些滑槽也可以不设置两端开口。
平衡块130适于贴附在引导面141上并且能够沿其移动。如前所述,以及如图1和图4中所示,引导面141上的导向销142a、142b分别接合在第一滑槽131a和第二滑槽131b内,导向销142a、142b与第一滑槽131a和第二滑槽131b之间能够相对滑移。优选为导向销142a、142b的直径基本上等于或稍大于第一滑槽131a和第二滑槽131b的宽度,从而二者之间的 接合不会过紧或过于松动。导向销142a、142b上还可以设置有止挡件143a、143b,用于限定平衡块130贴合引导面141,防止其意外脱落。在图示实施方式中,止挡件143a、143b为圆形挡片。基于以上,平衡块130被限定成在该引导面141上仅能沿着导向销142a、142b所限定的方向上移动。
关于导向件140上的导向销和平衡块130上的滑槽,还需要指出的是,导向销和滑槽的数量并不必限定为图示中的数量。在生产效率和制造成本允许的情况下,平行设置或沿同一直线设置更多数量的导向销和滑槽反而能够提高平衡块在导向件上移动的稳定性。
如图7和图8中所示,平衡块130上可以还形成有适于偏心轮123驱动的长圆孔132及适于驱动齿轮151穿过的通孔133。通孔133也适于设置成长孔,以免在平衡块130上下移动过程中与驱动齿轮151干涉。长圆孔132基本上横向地形成在平衡块130中,上边和下边是平直的,两端可以分别呈弧形。偏心轮123的直径优选为基本上等于或稍大于长圆孔132的高度,即上边和下边之间的距离。在手持式工具机的运行过程中,偏心轮123能够接合在长圆孔132内,其外周接触长圆孔132的上边或下边从而能够驱使平衡块130往复移动;同时,由于滑槽和导向销的引导,平衡块130的移动方向被限制在第二方向B上。长圆孔132的横向长度足以使得在工作过程中偏心轮123不会驱动甚至不会接触到长圆孔132的两端的弧形边。可以看出,齿轮121通过偏心轮123与平衡块之间实际上也构成了曲柄滑道机构。下面详细描述第一运动部件110与平衡块130之间的联动机构。结合图1至图4可以看出,在图示实施方式中,联动机构可以包括驱动齿轮151、齿轮121等。驱动齿轮151可以通过轴承152安装在导向件140的安装孔147内。驱动齿轮151接合齿轮121并向其提供动力,从而驱动第一运动部件110和平衡块130。齿轮121可以通过齿轮轴124安装在导向件140的安装孔146中。齿轮121的第一端侧可以设置有用于第一运动部件110的、偏心布置的驱动销122,其适于接合在第一运动部件110的长圆孔113内。齿轮121的第二端侧可以设置有用于驱动平衡块130的偏心轮123。
可以看出,该联动机构中的齿轮121、驱动齿轮151等的运动方式为不同于第一运动部件110的转动,也将会引起不期望的振动。可以理解,该联动机构也包括在本发明意义上的第二运动部件120的范畴内。应当理解,本发明中所述的第二运动部件120还可以包括机构或工具机中除第一运动部件110外的其它形式的运动部件,例如但不限于在工具机运转状态下进行着直线运动、转动、摆动等运动的其它部件,它们将也成为部分次要振动源。这些运动部件可能进行着各种各样的复杂运动;与第一运动部件110相比,虽然它们所产生的振动等影响较小,但是其运动规律更加复杂和不可测,导致机构或工具机的抖动、摆动等的平衡难度增大。
在本申请的教示下,所属领域的技术人员可以想到采用其它形式的联动机构。例如,可以使用摆动轴承作为联动机构,考虑到具体的摆动轴承在手持式工具机中的应用是已知的,所以在此不具体描述其结构。根据本发明,可以适当调整手持式工具机中的摆动轴承机构中的导杆的朝向、从而改变平衡块的往复运动的方向。可以想到,摆动轴承将类似地也会成为次要振动源的一部分。
进一步地,在其它的实施方式中,也可以取消联动机构,采用两个不同的动力源分别驱动第一运动部件和平衡块作相反步调的运动;可以理解,这将可能会在生产成本和作业精度方面受限。如前所述,在手持式工具机或具体为本示例的锯机中,主要振动源由第一运动部件110的直线往复运动产生。当锯机运转时,锯刀将相对于锯机进行快速的大致直线往复运动,使得锯机本身强烈振动。相应地,如果该手持式工具机为手持式电锤,则第一运动部件110可以为锤具或锤具驱动机构,其往复运动的冲击力更强。在没有平衡设计的情况下,容易造成手持式电锤大幅的抖动、摆动,严重影响设备的操作。
正是为了平衡前述第一运动部件110和第二运动部件120所导致的振动,所以按图示实施方 式的布置提供了平衡块130。该平衡块130沿与第一方向A异面的第二方向B作往复直线运动,并且平衡块130的运动步调与第一运动部件110相反。此处,“步调相反”意为平衡块和第一运动部件的运动对整个产品的作用趋势是相互抵消的,从而能够基本实现动平衡。它们基本上沿相反的方向运动。具体地图示示例中,即,在所述齿轮121上,驱动销122和偏心轮123沿同一直径位于齿轮121的旋转轴线的不同侧上,可以看出,当驱动销122向上驱动第一运动部件110时,所述偏心轮123向下驱动平衡块130;当驱动销122向下驱动第一运动部件110时,所述偏心轮123向上驱动平衡块130。
可以了解,对于所属领域的技术人员来说,上下文中描述的“大致”直线往复运动是清楚的。首先,在现实中不可能会有绝对的直线往复运动,绝对的直线运动只存在于理想状态下,现实中不可必免地会稍稍偏离直线;其次,在实际设计中,出于功能性的考虑也会使工具头的运动轨迹稍稍偏离直线。通过本申请,所述属领域的技术人员能够了解此处“大致”直线往复运动的意义将包括前述的概念,同时理想情况的往复直线运动将也落入本发明的范围内。可以了解,对于所属领域的技术人员来说,上下文中描述的“第一方向A”和“第二方向B”可以由分别经过第一运动部件的质心和经过平衡块的质心、并且沿相应方向的射线表示。相应的射线将处于异面直线的位置,既不平行、也不相交。
图9以示意性立体图示出了根据本发明的另一实施方式的手持式工具机中的平衡块的布置,其中示出了第一运动部件210、联动机构220、平衡块230及导向件240。可以看出,四个导向件240限定了平衡块230的运动方向。导向件240具有U形导槽,平衡块230的两个侧边被引导在U形导槽内。可见,如前所述,导向件240上不再布置有图1中的实施方式的导向件140上的导向销、安装孔等,平衡块230上也不必设置滑槽等结构。此处的联动机构220也可以由非曲柄滑道机构来替代,例如摆动轴承机构等。
作为一个示例,图10、图11和图12示出了现有技术中尚未被平衡块所平衡的惯性力或惯性力矩。图10中的CM表示工具机整体的质心位置,图中标示出了刀架(第一运动部件110)和平衡块作用在工具机上的惯性力矩R,惯性力矩R使手握持区域100产生Z方向的运动趋势。为了减弱这个运动趋势,根据本发明,应将平衡块沿图3所示的α角度方向倾斜布置。图12中示出了摇摆杆件(第二运动部件)运动时作用在工具机上的惯性力S,惯性力S使手握持区域100产生X方向的运动趋势。为了减弱这个运动趋势,根据本发明,应将平衡块沿图4所示β角度方向倾斜布置。图11中则示出了包括例如齿轮自身转动等的联动机构所造成的工具机手持部分处的摆动趋势T。本发明手持式工具机可以有效地平衡这些不利于减小工具振动的因素,提高了工具机的操作稳定性。
结合图1至4更易于理解齿轮121自身转动所带来惯性力。如图所示,齿轮121可以在平行于第一方向A的平面内转动,同时驱动第一运动部件110和平衡块130运动,该齿轮121的运动状态包括使齿轮121自身在转动时在非第一方向A上具有的惯性力的运动状态。可以了解,工具机整体的质心CM(见图10)和第一方向A定义有质心平面,齿轮121的运动状态可以包括使齿轮121自身在转动时在质心平面外具有的惯性力的运动状态。又例如,第二运动部件120还可以包括受齿轮121驱动并在质心平面外摆动的伴随运动部件;伴随运动部件可以为与齿轮121关联并且周期性地驱动第一运动部件向前摆动的摇摆杆件,见图12。另外,该齿轮121的运动状态还可以包括使齿轮121自身转动时具有垂直于齿轮轴翻转的趋势的运动状态。可以了解,这些运动状态均属于在本发明中能够被平衡块所平衡的运动状态。相比较而言,在现有技术中并不能平衡这些运动状态所造成的振动、摆动、翻转趋势等。
根据以上结合手持式锯机的教示,所述领域的技术人员能够想到将前述平衡块布置应用到其它的手持式工具机中的情况。可以了解,在这种情况下,第一运动部件可以为手持式工具机中相应的工作执行部件,第二动运部件可以包括偏心齿轮、摆动轴承或者摇摆杆件等联动机 构、也同时可以包括任何其它运动部件,而平衡块则用以(至少部分地)同时平衡第一运动部件和第二运动部件所带来的不平衡量。在这种情况下,导向件140应优选地固定至手持式工具机的机架。当手持式工具机为手持式往复锯机时,第一运动部件110可以为锯刀或锯刀驱动机构。当手持式工具机为手持式电锤时,第一运动部件110可以为锤具或锤具驱动机构。本发明的技术范围不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施方式进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (16)

  1. 一种手持式工具机,其特征在于,所述手持式工具机包括:
    作为主要振动源的第一运动部件(110),所述第一运动部件(110)在第一方向(A)上大致沿直线往复运动;
    作为次要振动源的第二运动部件(120),所述第二运动部件(120)具有与所述第一运动部件(110)不同的运动状态;以及
    平衡块(130),所述平衡块(130)的直线运动方向为与所述第一方向(A)异面的第二方向(B),并且所述平衡块(130)的运动步调与所述第一运动部件(110)相反。
  2. 如权利要求1所述的手持式工具机,其中,所述第一方向(A)和所述第二方向(B)的夹角设置成使得在所述手持式工具机运转时其特定区域的稳定性最优化。
  3. 如权利要求2所述的手持式工具机,其中,所述特定区域是所述手持式工具机的手握持区域(100)。
  4. 如权利要求1至3中任一项所述的手持式工具机,其中,所述手持式工具机还包括所述第一运动部件(110)与所述平衡块(130)之间的联动机构。
  5. 如权利要求4所述的手持式工具机,其中,所述联动机构为曲柄滑道机构或摆动轴承机构。
  6. 如权利要求1至3中任一项所述的手持式工具机,其中,所述手持式工具机包括用于引导所述平衡块(130)的运动方向的导向件(140)。
  7. 如权利要求6所述的手持式工具机,其中,所述导向件为导槽或导杆。
  8. 如权利要求6所述的手持式工具机,其中,所述平衡块(130)的两端分别形成有第一滑槽(131a)和第二滑槽(131b),所述第一滑槽(131a)和所述第二滑槽(131b)平行或同线,并且
    所述导向件(140)具有平坦的引导面(141),所述引导面(141)上沿所述第二方向设置有导向销(142a,142b),所述导向销分别接合在所述平衡块(130)的所述第一滑槽(131a)和所述第二滑槽(131b)内,所述导向销(142a,142b)上的止挡件(143a,143b)限定所述平衡块(130)贴合所述引导面(141)。
  9. 如权利要求8所述的手持式工具机,其中,所述导向件(140)具有用于避免干涉的凹部或通孔。
  10. 如前述权利要求中任一项所述的手持式工具机,其中,所述第一方向(A)经过所述第一运动部件(110)的质心,所述第二方向(B)经过所述平衡块(130)的质心。
  11. 如前述权利要求中任一项所述的手持式工具机,其中,所述手持式工具机为手持式往复锯机且所述第一运动部件(110)为锯刀或锯刀驱动机构,或者,所述手持式工具机为手持式电锤且所述第一运动部件(110)为锤具或锤具驱动机构。
  12. 如权利要求1所述的手持式工具机,其中,所述第二运动部件(120)包括齿轮(121),所述齿轮(121)在平行于第一方向(A)的平面内转动,所述齿轮(121)同时驱动所述第一运动部件(110)和平衡块(130)运动,所述运动状态包括使所述齿轮(121)自身在转动时在非第一方向(A)上具有的惯性力的运动状态。
  13. 如权利要求1所述的手持式工具机,其中,所述第二运动部件(120)包括齿轮(121),所述工具机整体的质心(CM)和所述第一方向(A)定义有质心平面,所述运动状态包括使所述齿轮(121)自身在转动时在所述质心平面外具有的惯性力的运动状态。
  14. 如权利要求13所述的手持式工具机,其中,所述第二运动部件(120)还包括受齿轮(121)驱动并在所述质心平面外摆动的伴随运动部件。
  15. 如权利要求14所述的手持式工具机,其中,所述伴随运动部件为与所述齿轮(121)关 联并且周期性地驱动所述第一运动部件向前摆动的摇摆杆件。
  16. 如权利要求12-14中任一项所述的手持式工具机,其中,所述运动状态还包括使所述齿轮(121)自身转动时具有垂直于齿轮轴翻转的趋势的运动状态。
PCT/CN2016/100496 2016-09-28 2016-09-28 手持式工具机 WO2018058349A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/100496 WO2018058349A1 (zh) 2016-09-28 2016-09-28 手持式工具机
US16/336,145 US10828707B2 (en) 2016-09-28 2016-09-28 Handheld machine tool
EP16917104.8A EP3549734B1 (en) 2016-09-28 2016-09-28 Handheld machine tool
CN201680089626.1A CN109843525B (zh) 2016-09-28 2016-09-28 手持式工具机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100496 WO2018058349A1 (zh) 2016-09-28 2016-09-28 手持式工具机

Publications (1)

Publication Number Publication Date
WO2018058349A1 true WO2018058349A1 (zh) 2018-04-05

Family

ID=61762461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100496 WO2018058349A1 (zh) 2016-09-28 2016-09-28 手持式工具机

Country Status (4)

Country Link
US (1) US10828707B2 (zh)
EP (1) EP3549734B1 (zh)
CN (1) CN109843525B (zh)
WO (1) WO2018058349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113103315A (zh) * 2021-03-12 2021-07-13 曾晓赟 一种自动化机械橡胶体平面裁剪设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10828707B2 (en) * 2016-09-28 2020-11-10 Bosch Power Tools (China) Co., Ltd. Handheld machine tool
CN108971628B (zh) * 2017-05-31 2021-02-02 博世电动工具(中国)有限公司 电动工具
CN114309799B (zh) * 2020-09-30 2023-09-19 南京泉峰科技有限公司 往复锯
CN114378364A (zh) * 2020-10-16 2022-04-22 南京泉峰科技有限公司 一种往复锯
DE102021114550B3 (de) 2021-06-07 2022-07-07 Metabowerke Gmbh Angetriebene Handwerkzeugmaschine mit einem Exzenterantrieb
CN114290440A (zh) * 2021-12-25 2022-04-08 山东九沐源木业有限公司 一种家具加工切割用碎屑处理装置
US11826840B1 (en) * 2022-07-21 2023-11-28 Ronald Dennis Autrey Scroll saw with movable arm
CN117283618B (zh) * 2023-11-27 2024-02-02 河南顺为节能科技有限公司 一种聚氨酯保温板生产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860218A (en) * 1996-10-21 1999-01-19 Vinciguerra; Joseph Synchronized reciprocating saw mechanism
CN2671742Y (zh) * 2004-01-12 2005-01-19 苏州宝时得电动工具有限公司 电动刀锯的偏心往复机构
CN101036951A (zh) * 2006-03-15 2007-09-19 百得有限公司 往复锯以及和该往复锯一起使用的定时拔叉和齿轮箱
JP2011115912A (ja) * 2009-12-04 2011-06-16 Hitachi Koki Co Ltd 往復運動工具
CN202556373U (zh) * 2012-03-21 2012-11-28 南京德朔实业有限公司 往复电动工具平衡机构
CN103717337A (zh) * 2011-09-15 2014-04-09 日立工机株式会社 往复式工具

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971132A (en) * 1971-09-17 1976-07-27 Rockwell International Corporation Saber saw
CN1013594B (zh) * 1989-01-03 1991-08-21 全苏矿物机械加科学研究设计院 捣碎纤维材料的方法及其装置
JP2001009632A (ja) * 1999-06-22 2001-01-16 Makita Corp 往復運動機構を用いた電動工具
CN1326844A (zh) * 2000-06-07 2001-12-19 张友民 电动圆锯机
JP3897653B2 (ja) * 2002-07-12 2007-03-28 株式会社マキタ 往復動式電動工具
GB2393934A (en) * 2002-10-07 2004-04-14 Black & Decker Inc A reciprocating saw with two eccentrics
JP4405195B2 (ja) * 2003-08-01 2010-01-27 株式会社マキタ 往復動式電動工具
DE102004022361B4 (de) * 2004-05-06 2007-06-06 Hilti Ag Hubsägewerkzeug
US7814666B2 (en) * 2007-02-13 2010-10-19 Robert Bosch Gmbh Linkage drive mechanism for a reciprocating tool
US8407902B2 (en) * 2008-03-07 2013-04-02 Milwaukee Electric Tool Corporation Reciprocating power tool having a counterbalance device
CN201217102Y (zh) * 2008-06-18 2009-04-08 苏州宝时得电动工具有限公司 往复式动力工具
US8307910B2 (en) * 2010-04-07 2012-11-13 Robert Bosch Gmbh Drive mechanism for a reciprocating tool
US9776263B2 (en) * 2010-07-23 2017-10-03 Milwaukee Electric Tool Corporation Reciprocating saw
US20120192440A1 (en) * 2011-01-27 2012-08-02 Jerabek Jesse J Power tool with reciprocating blade
EP2694260B1 (en) * 2011-04-01 2017-01-18 Milwaukee Electric Tool Corporation Jigsaw
EP2842674A1 (de) * 2013-08-26 2015-03-04 HILTI Aktiengesellschaft Hubsägengetriebe
CN105592964A (zh) * 2013-10-04 2016-05-18 日立工机株式会社 往复动作工具
CN105465271B (zh) * 2014-06-23 2019-02-22 博世电动工具(中国)有限公司 平衡重机构和电动工具
CN204018847U (zh) * 2014-07-16 2014-12-17 宁波耀升工具实业有限公司 马刀锯
US10828707B2 (en) * 2016-09-28 2020-11-10 Bosch Power Tools (China) Co., Ltd. Handheld machine tool
CN108971628B (zh) * 2017-05-31 2021-02-02 博世电动工具(中国)有限公司 电动工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860218A (en) * 1996-10-21 1999-01-19 Vinciguerra; Joseph Synchronized reciprocating saw mechanism
CN2671742Y (zh) * 2004-01-12 2005-01-19 苏州宝时得电动工具有限公司 电动刀锯的偏心往复机构
CN101036951A (zh) * 2006-03-15 2007-09-19 百得有限公司 往复锯以及和该往复锯一起使用的定时拔叉和齿轮箱
JP2011115912A (ja) * 2009-12-04 2011-06-16 Hitachi Koki Co Ltd 往復運動工具
CN103717337A (zh) * 2011-09-15 2014-04-09 日立工机株式会社 往复式工具
CN202556373U (zh) * 2012-03-21 2012-11-28 南京德朔实业有限公司 往复电动工具平衡机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3549734A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113103315A (zh) * 2021-03-12 2021-07-13 曾晓赟 一种自动化机械橡胶体平面裁剪设备

Also Published As

Publication number Publication date
EP3549734A4 (en) 2020-07-01
CN109843525A (zh) 2019-06-04
EP3549734A1 (en) 2019-10-09
CN109843525B (zh) 2021-08-03
US10828707B2 (en) 2020-11-10
US20190224765A1 (en) 2019-07-25
EP3549734B1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2018058349A1 (zh) 手持式工具机
WO2018219184A1 (zh) 电动工具
USRE35258E (en) Counterbalanced reciprocating mechanism
JP4405195B2 (ja) 往復動式電動工具
US9272347B2 (en) Drive mechanism for a reciprocating tool
US9776263B2 (en) Reciprocating saw
US9573207B2 (en) Reciprocating cutting tool
JP2002086402A (ja) 往復動切断工具
JP2004130801A (ja) 往復動鋸
US10850338B2 (en) Electric power tool
EP1582769B1 (en) Vibration damping device for reciprocal driving, and cutting head
CN101602124B (zh) 往复式动力工具
WO2014192455A1 (ja) 往復動切断工具
US10875110B2 (en) Reciprocating saw
JP3897653B2 (ja) 往復動式電動工具
JP5482157B2 (ja) 往復運動工具
CN104416225A (zh) 往复锯
JP6455960B2 (ja) 往復動切断工具
CN216177208U (zh) 一种自平衡往复机构
CN216177205U (zh) 一种往复机构及往复锯
JP6460262B2 (ja) 往復動工具
JP2016087730A (ja) 往復動工具
JP2016087729A (ja) 往復動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016917104

Country of ref document: EP

Effective date: 20190429