WO2018058332A1 - 数据传输方法、装置及设备 - Google Patents

数据传输方法、装置及设备 Download PDF

Info

Publication number
WO2018058332A1
WO2018058332A1 PCT/CN2016/100446 CN2016100446W WO2018058332A1 WO 2018058332 A1 WO2018058332 A1 WO 2018058332A1 CN 2016100446 W CN2016100446 W CN 2016100446W WO 2018058332 A1 WO2018058332 A1 WO 2018058332A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
interference
subcarriers
modulation symbol
determining
Prior art date
Application number
PCT/CN2016/100446
Other languages
English (en)
French (fr)
Inventor
胡文权
花梦
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100446 priority Critical patent/WO2018058332A1/zh
Priority to CN201680089400.1A priority patent/CN109792263B/zh
Publication of WO2018058332A1 publication Critical patent/WO2018058332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method, apparatus, and device.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a guard band may be added to subcarriers with smaller carrier spacing, and no data transmission is performed in the guard band.
  • such a guard band does not well eliminate interference between subcarriers of different carrier spacing.
  • the embodiment of the invention provides a data transmission method, device and device, which are used for reducing interference between subcarriers with different frequency domain neighbors and different carrier spacings.
  • an embodiment of the present invention provides a data transmission method.
  • the carrier spacing is small. Determining, in a first subcarrier, a first type of first subcarrier for transmitting an anti-interference modulation symbol, and determining, according to a modulation symbol carried in the first subcarrier of the second type of the plurality of first subcarriers, the anti-interference Interfering with modulation symbols, and transmitting the anti-interference modulation symbols in the first subcarrier of the first type, so that the first subcarriers of the first type and the first subcarriers of the second type are paired with the second subcarriers
  • the interference is smaller than the interference of the second subcarrier of the second type to the second subcarrier;
  • the second type of first subcarrier is a subcarrier that has interference to the second subcarrier, and the carrier spacing of each subcarrier in the first subcarrier is a first carrier interval, and each subcarrier in the second subcarrier
  • the carrier spacing of the carrier is a second carrier spacing, and the first subcarrier is adjacent to the second subcarrier frequency domain.
  • the first carrier spacing is less than the second carrier spacing.
  • the interference of the first subcarrier of the first type to the second subcarrier may be caused, and the second subclass of the second subcarrier to the second subcarrier The interference of the carrier is cancelled, thereby reducing the interference of the first subcarrier to the second subcarrier.
  • the first type of the first sub-carrier for transmitting the anti-interference modulation symbol may be determined in the first sub-carrier by using the following implementation, specifically: determining the first frequency band, where The first frequency band includes a portion of the first subcarriers of the plurality of first subcarriers; and the set of candidate subcarriers is determined in the portion of the first subcarriers located in the first frequency band, the candidate subcarriers Included in the carrier set, one or more subcarriers, and a frequency interval between a carrier frequency of each subcarrier and a carrier frequency of the second subcarrier is a non-integer multiple of the second carrier interval; One or more subcarriers are determined as the first subcarrier of the first type.
  • the sub-carrier in the first frequency band and the carrier frequency of the second sub-carrier is a non-integer multiple of the second carrier interval, which is a sub-carrier that is idle in the prior art.
  • Sending anti-interference signals in the subcarriers can improve the utilization of frequency resources.
  • the anti-interference modulation symbol may be determined according to a modulation symbol carried in a first type of first subcarrier in the first subcarrier by using a feasible implementation manner, where:
  • the first type of the first subcarrier is located outside the first frequency band, and the frequency interval between the carrier frequency of the reference subcarrier and the carrier frequency of the second subcarrier is a non-integer multiple of the second carrier spacing;
  • the reference subcarrier is N second type first subcarriers that are closest to the first frequency band, where the N is a positive integer greater than or equal to 1.
  • determining the anti-interference modulation symbol according to the modulation symbols carried in the reference subcarrier can improve the anti-interference determination.
  • the efficiency of the modulation symbol since the number of reference subcarriers is smaller than the number of the first subcarriers of the second type, determining the anti-interference modulation symbol according to the modulation symbols carried in the reference subcarrier can improve the anti-interference determination. The efficiency of the modulation symbol.
  • the anti-interference modulation symbol may be determined according to the modulation symbols carried in the reference subcarrier by using two possible implementation manners as follows:
  • the interference complex value of each of the reference subcarriers to the second subcarrier may be obtained, and each of the reference subcarriers is used for the second subcarrier The sum of the interference complex values is determined as the first interference complex value.
  • the first interference complex value I of the reference subcarrier to the second subcarrier may be determined according to the following formula 1:
  • the Q is a modulation symbol carried in the reference subcarrier
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the reference subcarrier and the first The frequency spacing of the carrier frequencies of the two subcarriers.
  • the anti-interference modulation symbol Q may be determined according to the following formula 2:
  • the I is the second interference complex value
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the first subcarrier of the first type and the The frequency interval of the carrier frequency of the second subcarrier.
  • the accuracy of acquiring the first interference complex value corresponding to the modulation symbol carried in the reference subcarrier can be improved by using the foregoing formula 1
  • the anti-interference modulation symbol corresponding to the second interference complex value can be improved by using the foregoing formula 2 Accuracy, which in turn achieves the accuracy of obtaining anti-interference modulation symbols.
  • the weight coefficient may be obtained from high layer signaling or physical layer signaling; the weight coefficient is determined in advance by high layer signaling or physical layer signaling, and is directly obtained from high layer signaling or physical layer signaling when needed. That is, in this way, not only can the accuracy of the obtained weight coefficient be determined, but also the efficiency of obtaining the weight coefficient can be improved.
  • the preset weight coefficient is determined as the weight coefficient; the weight coefficient may be preset in the protocol or the system, so that when the preset weight coefficient needs to be used, the right is directly obtained from the protocol or the system.
  • the value coefficient can be used, thereby improving the efficiency of obtaining the weight coefficient.
  • the weight coefficient ⁇ corresponding to the modulation symbol may be determined according to Equation 3 as follows:
  • the I ref is a unit interference complex value of the reference subcarrier to the second subcarrier
  • the I anti is a unit interference of the first subcarrier of the first type to the second subcarrier. Value.
  • the weight coefficient determined by the above formula 2 is related to the interference complex value of the reference subcarrier to the second subcarrier and the complex complex value of the first type of first subcarrier to the second subcarrier, thereby improving the determining weight coefficient The accuracy.
  • an embodiment of the present invention provides a data transmission apparatus, including a processing module and a sending module, where
  • the processing module is configured to determine, in a plurality of first subcarriers, a first type of first subcarriers for transmitting anti-interference modulation symbols;
  • the processing module is further configured to determine the anti-interference modulation symbol according to a modulation symbol carried in the first subcarrier of the second type of the plurality of first subcarriers, where the first subcarrier of the second type is a pair The second subcarrier has an interfered subcarrier;
  • the sending module is configured to send the anti-interference modulation symbol in the first subcarrier of the first type to cancel interference of the second subcarrier of the second type to the second subcarrier;
  • the carrier spacing of each of the plurality of first subcarriers is a first carrier spacing
  • the carrier spacing of the second subcarrier is a second carrier spacing
  • the plurality of first subcarriers and the first The two subcarriers are adjacent in the frequency domain, and the first carrier spacing is smaller than the second carrier spacing.
  • the processing module is specifically configured to:
  • the first frequency band including a portion of the first subcarriers of the plurality of first subcarriers
  • the frequency spacing of the carrier frequency of the carrier is a non-integer multiple of the second carrier spacing
  • processing module is specifically configured to:
  • the frequency interval is a non-integer multiple of the second carrier spacing
  • the reference subcarrier is N second type first subcarriers that are closest to the first frequency band, where the N is a positive integer greater than or equal to 1.
  • processing module is specifically configured to:
  • processing module is specifically configured to:
  • the Q is a modulation symbol carried in the reference subcarrier
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the reference subcarrier and the first The frequency spacing of the carrier frequencies of the two subcarriers.
  • processing module is specifically configured to:
  • the anti-interference modulation symbol Q is determined according to the following formula 2:
  • the I is the second interference complex value
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the first subcarrier of the first type and the The frequency interval of the carrier frequency of the second subcarrier.
  • the processing module is specifically configured to:
  • processing module is specifically configured to:
  • the anti-interference modulation symbol is determined according to the modulation symbol and a weight coefficient.
  • the processing module is specifically configured to: obtain the weight coefficient from high layer signaling or physical layer signaling;
  • processing module is specifically configured to:
  • the weight coefficient ⁇ corresponding to the modulation symbol is determined according to Equation 3 as follows:
  • the I ref is a unit interference complex value of the reference subcarrier to the second subcarrier
  • the I anti is a unit interference of the first subcarrier of the first type to the second subcarrier. Value.
  • processing module is specifically configured to:
  • the product of the weight coefficient and the modulation symbol carried in the reference subcarrier is determined as the anti-interference modulation symbol.
  • the modulus of the weight coefficient is less than one.
  • the data transmission device in the embodiment of the present invention may perform the technical solution shown in the foregoing method embodiment, and the implementation principle and the beneficial effects are similar, and details are not described herein.
  • an embodiment of the present invention provides a data transmission device, including a processor and a transmitter, where
  • the processor is configured to determine, in a plurality of first subcarriers, a first type of first subcarriers for transmitting anti-interference modulation symbols;
  • the processor is further configured to determine the anti-interference modulation symbol according to a modulation symbol carried in a first type of first subcarriers of the plurality of first subcarriers, where the first type of the first subcarrier is a pair
  • the second subcarrier has an interfered subcarrier
  • the transmitter is configured to send the anti-interference modulation symbol in the first subcarrier of the first type to cancel interference of the second subcarrier of the second type to the second subcarrier;
  • the carrier spacing of each of the plurality of first subcarriers is a first carrier spacing
  • the carrier spacing of the second subcarrier is a second carrier spacing
  • the plurality of first subcarriers and the first The two subcarriers are adjacent in the frequency domain, and the first carrier spacing is smaller than the second carrier spacing.
  • the processor is specifically configured to:
  • the first frequency band including a portion of the first subcarriers of the plurality of first subcarriers
  • the frequency spacing of the carrier frequency of the carrier is a non-integer multiple of the second carrier spacing
  • the processor is specifically configured to:
  • the frequency interval is a non-integer multiple of the second carrier spacing
  • the reference subcarrier is N second type first subcarriers that are closest to the first frequency band, where the N is a positive integer greater than or equal to 1.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the Q is a modulation symbol carried in the reference subcarrier
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the reference subcarrier and the first The frequency spacing of the carrier frequencies of the two subcarriers.
  • the processor is specifically configured to:
  • the anti-interference modulation symbol Q is determined according to the following formula 2:
  • the I is the second interference complex value
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the first subcarrier of the first type and the The frequency interval of the carrier frequency of the second subcarrier.
  • the processor when the N is greater than 1, the processor is specifically configured to:
  • the processor is specifically configured to:
  • the anti-interference modulation symbol is determined according to the modulation symbol and a weight coefficient.
  • the processor is specifically configured to: obtain the weight coefficient from high layer signaling or physical layer signaling;
  • the processor is specifically configured to:
  • the weight coefficient ⁇ corresponding to the modulation symbol is determined according to Equation 3 as follows:
  • the I ref is a unit interference complex value of the reference subcarrier to the second subcarrier
  • the I anti is a unit interference of the first subcarrier of the first type to the second subcarrier. Value.
  • the processor is specifically configured to:
  • the product of the weight coefficient and the modulation symbol carried in the reference subcarrier is determined as the anti-interference modulation symbol.
  • the modulus of the weight coefficient is less than one.
  • the data transmission device in the embodiment of the present invention may perform the technical solution shown in the foregoing method embodiment, and the implementation principle and the beneficial effects are similar, and details are not described herein.
  • the data transmission method, device, and device provided by the embodiment of the present invention first determine the first subcarrier and the second subcarrier that are adjacent to each other in the frequency domain and perform frequency division multiplexing on the first subcarrier and the second subcarrier.
  • a first type of first subcarrier for transmitting an anti-interference modulation symbol determining an anti-interference modulation symbol according to a modulation symbol carried in the first subcarrier of the second subcarrier in the first subcarrier, and in the first subcarrier of the first type Transmitting the anti-interference modulation symbol so that the interference of the first subcarrier of the first type to the second subcarrier can cancel the interference of the second subcarrier of the second type to the second subcarrier, thereby reducing the second subcarrier pair Subcarrier interference.
  • FIG. 1 is a schematic diagram of an application scenario of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of signals of frequency domain adjacent subcarriers with different carrier spacing according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of inter-subcarrier interference of different carrier intervals according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for determining a first subcarrier of a first type according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for determining an anti-interference modulation symbol according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart 1 of a process for determining an anti-interference modulation symbol according to an embodiment of the present invention
  • FIG. 8 is a second schematic flowchart of a process for determining an anti-interference modulation symbol according to an embodiment of the present disclosure
  • FIG. 9A is a schematic diagram of inter-subcarrier interference of different carrier intervals before processing according to an embodiment of the present invention.
  • FIG. 9B is a schematic diagram of inter-subcarrier interference of different carrier intervals after processing according to an embodiment of the present invention.
  • Figure 1
  • FIG. 9C is a schematic diagram 2 of inter-subcarrier interference of different carrier intervals after processing according to an embodiment of the present invention.
  • 9D is a schematic diagram 3 of inter-subcarrier interference of different carrier intervals after processing according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a data transmission device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of a data transmission method according to an embodiment of the present invention.
  • a base station 101 and a plurality of terminal devices 102 are included.
  • both the base station 101 and the terminal device 102 can transmit data through the technical solution shown in this application.
  • subcarriers having different parameters may be transmitted in different carrier frequency bands, and the parameters of the subcarriers may include a carrier interval, a symbol period, and the like.
  • the first subcarrier may be transmitted in the carrier frequency range of 0 kHz to 500 kHz, and the carrier spacing of the first subcarrier may be 15 kHz, that is, the carrier spacing of two adjacent subcarriers in the first subcarrier is 15 kHz;
  • the second subcarrier is transmitted from -30 kHz to -500 kHz, and the carrier spacing of the second subcarrier may be 30 kHz, that is, the carrier spacing of two adjacent subcarriers in the second subcarrier is 30 kHz.
  • the frequency interval refers to the interval of any two subcarriers in the frequency domain;
  • the carrier spacing is a parameter of the subcarrier, and the carrier spacing refers to the frequency interval between two subcarriers adjacent to the frequency domain in one subcarrier. .
  • the subcarriers adjacent to each other in the frequency domain are the first subcarrier and the second subcarrier, respectively, and the carrier spacing of the first subcarrier is ⁇ f 1 , and the carrier spacing of the second subcarrier is M ⁇ f 1 .
  • the carrier frequency of a first subcarrier adjacent to the second subcarrier is (k+1) ⁇ f 1 Hz
  • the signal of the first subcarrier after adding a cyclic prefix CP to one symbol period length thereof is:
  • the signal of the second subcarrier after adding a cyclic prefix CP to one symbol period length thereof is :
  • FIG. 2 is a schematic diagram of signals of frequency domain adjacent subcarriers with different carrier spacing according to an embodiment of the present invention.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • subcarrier 1 subcarriers having a carrier spacing of 15 kHz (hereinafter referred to as subcarrier 1) and subcarriers having a carrier spacing of 30 kHz (hereinafter referred to as subcarrier 2) are adjacent.
  • Subcarrier 1 is transmitted on a frequency greater than 0 KHz
  • subcarrier 2 is transmitted on a frequency less than 0 KHz.
  • FIG. 3 is a schematic diagram of inter-subcarrier interference with different carrier spacing according to an embodiment of the present invention.
  • the carrier frequency is 15 kHz
  • the subcarrier on 45 KHz and the carrier frequency are -30 KHz
  • the carrier frequency is -60 KHz. There is interference on the symbol on the carrier.
  • the subcarrier 1 there is a subcarrier 1 which is a non-integer multiple of the frequency interval of 30 kHz (the carrier spacing of the subcarrier 2) with the subcarrier 2 and can interfere with the subcarrier 2.
  • FIG. 2 only illustrates two subcarriers in the frequency domain adjacent to each other in an exemplary manner.
  • the carrier spacing of adjacent subcarriers in the frequency domain may be other, which is not specifically limited in the present invention.
  • FIG. 2 also illustrates the guard band in the subcarrier 1, in the actual application process, This protective tape can be set according to actual needs.
  • the guard band may be a subcarrier for reducing interference.
  • a part of subcarriers with a small frequency interval between subcarrier 1 and subcarrier 2 is generally determined as a guard band.
  • the carrier frequency is 15 kHz, 45 kHz, and 75 kHz.
  • Carrier 1 is determined to be a guard band, and no data information can be transmitted in this portion of subcarrier 1.
  • the method may include:
  • S401 Determine, in a plurality of first subcarriers, a first type of first subcarrier for transmitting an anti-interference modulation symbol.
  • S402. Determine an anti-interference modulation symbol according to a modulation symbol carried in the first subcarrier of the second type of the plurality of first subcarriers, where the first subcarrier of the second type is a subcarrier that interferes with the second subcarrier.
  • the carrier spacing of each subcarrier in the plurality of first subcarriers is a first carrier spacing
  • the carrier spacing of each subcarrier in the second subcarrier is a second carrier spacing
  • the first subcarrier and the second subcarrier frequency domain Adjacent the first carrier spacing is less than the second carrier spacing.
  • the first subcarrier and the second subcarrier are adjacent to each other in the frequency domain, and there is no other carrier interval between the first subcarrier and the second subcarrier, and the other carrier spacing is separated from the first carrier and The two carrier spacings are different.
  • the execution entity of the embodiment of the present invention may be a terminal device (such as a mobile phone, a computer, etc.) or a base station.
  • the first type for transmitting anti-interference modulation symbols is first determined among the plurality of first subcarriers.
  • One subcarrier since the plurality of first subcarrier middle molecular carriers are not used for data transmission, correspondingly, the first type of first subcarriers may be determined in the first subcarrier that is not used for data transmission.
  • all subcarriers in the first subcarrier that do not perform data transmission may be determined.
  • the first subcarrier of the first type is determined, and a part of the first subcarrier that does not perform data transmission may also be determined as the first subcarrier of the first type.
  • the first type of the first subcarrier is a subcarrier that interferes with the second subcarrier in the first subcarrier.
  • the interference of the first type of the first subcarrier and the second type of the first subcarrier to the second subcarrier is made smaller than the interference of the second type of the first subcarrier to the second subcarrier.
  • the carrier spacing of the first subcarrier is 15 kHz
  • the carrier spacing of the second subcarrier is 30 kHz
  • the first subcarrier and the second subcarrier are adjacent in the frequency domain. It is assumed that 0KHz to 500KHz is used for transmitting the first subcarrier, and -30KHz to -500KHz is used for transmitting the second subcarrier, and the subcarriers with carrier frequencies of 15KHz, 45KHz, and 75KHz in the first subcarrier are not used for data transmission.
  • the first type of first subcarrier for transmitting the anti-interference modulation symbol is first determined in the first subcarrier. Specifically, one or more of the subcarriers with a carrier frequency of 15 kHz, 45 kHz, and 75 kHz may be determined as the first subcarrier of the first type. It is assumed that a subcarrier having a carrier frequency of 15 kHz is determined as the first subcarrier of the first type.
  • the subcarriers with carrier frequencies of 105 KHz, 135 KHz, and 165 KHz in the first subcarrier may be determined as the first subcarrier of the second type. Then, according to the modulation symbols carried in the subcarriers with carrier frequencies of 105KHz, 135KHz and 165KHz, the anti-interference modulation symbols are determined, and the anti-interference modulation symbols are transmitted on the subcarriers with the carrier frequency of 15KHz, so that the carrier frequency is 15KHz.
  • the interference of the carrier to the second subcarrier can cancel the interference of the subcarrier with the carrier frequency of 105KHz, 135KHz and 165KHz to the second subcarrier, thereby reducing the interference of the first subcarrier to the second subcarrier.
  • the data transmission method provided by the embodiment of the invention can reduce the interference of the first subcarrier to the second subcarrier.
  • the first type of first subcarrier used for transmitting the anti-interference modulation symbol may be determined in the first subcarrier by the following feasible implementation manner.
  • S401 specifically, refer to the embodiment shown in FIG. 5.
  • FIG. 5 is a schematic flowchart of a method for determining a first subcarrier of a first type according to an embodiment of the present invention, where Referring to FIG. 5, the method may include:
  • S501 Determine a first frequency band, where the first frequency band includes a part of the first subcarriers of the plurality of first subcarriers.
  • S502. Determine, in a part of the first subcarriers located in the first frequency band, a set of candidate subcarriers, where the selected subcarrier set includes one or more subcarriers, and a carrier frequency of each subcarrier and a carrier frequency of the second subcarrier.
  • the frequency interval is a non-integer multiple of the second carrier spacing.
  • the sub-carrier that does not perform data transmission in the first sub-carrier is included in the first frequency band, where the first frequency band may be a preset bandwidth of the first sub-carrier to one.
  • S503. Determine one or more subcarriers in the set of candidate subcarriers as the first subcarrier of the first type.
  • any one or more subcarriers in the set of candidate subcarriers may be determined as the first subcarrier of the first type.
  • the carrier spacing of the first subcarrier is 15 kHz, 0 kHz to 500 kHz is used for transmitting the first subcarrier, the carrier spacing of the second subcarrier is 30 kHz, and -30 kHz to -500 kHz is used for transmitting the second subcarrier.
  • the first frequency band may be preset in a protocol or a system, so that when it is required to determine the first type of the first subcarrier in the first subcarrier, the first frequency band may be obtained directly in the protocol or the system,
  • the first frequency band is from 0 KHz to 105 KHz.
  • the carrier frequencies of the first subcarriers in the first frequency band are :
  • the carrier frequency of each carrier in the set of selected subcarriers can be determined as follows:
  • any one or more of the candidate subcarrier sets may be determined as the first type of first subcarrier.
  • the first type is first
  • the subcarriers are not used for data transmission, and waste of frequency resources can be avoided by transmitting anti-interference symbols in the first subcarrier of the first type.
  • the anti-interference modulation symbol (S402 in the embodiment shown in FIG. 4) may be determined by the following possible implementation manners. For details, refer to the embodiment shown in FIG. .
  • FIG. 6 is a schematic flowchart of a method for determining an anti-interference modulation symbol according to an embodiment of the present invention. Referring to FIG. 6, the method may include:
  • S602. Determine an anti-interference modulation symbol according to a modulation symbol carried in the reference subcarrier.
  • the second type of first subcarrier is a subcarrier that interferes with the second subcarrier, and since the number of the first subcarriers of the second type is large, in order to improve the determination of the anti-interference modulation symbol.
  • the reference subcarriers may be determined first in the second type of first subcarrier.
  • the frequency interval between the carrier frequency and the carrier frequency of the second subcarrier in the plurality of first subcarriers located in the non-first frequency band may be a non-integer multiple of the second carrier interval, and the first frequency band
  • the nearest N second type first subcarriers are determined as reference subcarriers, where N is a positive integer greater than or equal to one.
  • determining the anti-interference modulation symbols according to the modulation symbols carried in the reference subcarriers can improve the efficiency of determining the anti-interference modulation symbols.
  • the carrier spacing of the first subcarrier is 15 kHz, 0 kHz to 500 kHz is used for transmitting the first subcarrier, the carrier spacing of the second subcarrier is 30 kHz, and -30 kHz to -500 kHz is used for transmitting the second subcarrier. It is further assumed that the first frequency band is 0 kHz to 105 kHz, and correspondingly, the non-first frequency band is 105 kHz to 500 kHz.
  • the frequency between the carrier frequency of the second subcarrier of the second type and the carrier frequency of the second subcarrier in the non-first frequency band is a non-integer multiple of 30 kHz, that is, the carrier frequencies of the first subcarriers of the second type are:
  • the N second type first subcarriers of the second type of the first subcarriers that are closest to the first frequency band may be determined as reference subcarriers, and when N is equal to 3, the carrier frequency may be 135 kHz.
  • the subcarriers of 165 KHz and 195 KHz are determined as reference subcarriers.
  • the anti-interference modulation symbols are determined according to modulation symbols carried in subcarriers with carrier frequencies of 135 KHz, 165 KHz, and 195 KHz.
  • the anti-interference modulation symbol (S602 in the embodiment shown in FIG. 6) can be determined by the following two possible implementation manners. For details, refer to FIG. 7- The embodiment shown in 8.
  • FIG. 7 is a schematic flowchart 1 of a process for determining an anti-interference modulation symbol according to an embodiment of the present invention. Referring to FIG. 7, the method may include:
  • S702. Determine, according to the first interference complex value, a second interference complex value of the first subcarrier of the first type to the second subcarrier, where a modulus of the sum of the first interference complex value and the second interference complex value is smaller than the first interference complex The modulus of the value.
  • the first interference complex value I of the reference subcarrier to the second subcarrier may be determined according to the following formula 1:
  • T 0 is the symbol length of the second subcarrier without the cyclic prefix
  • f is the frequency interval of the carrier frequency of the reference subcarrier and the second subcarrier.
  • the interference complex value of each reference subcarrier to the second subcarrier may be obtained, and the sum of the interference complex values of the reference subcarriers to the second subcarrier is determined as The first interference complex value.
  • the second interference complex value may be determined, so that the modulus of the sum of the first interference complex value and the second interference complex value is smaller than the first interference complex The modulus of the value.
  • the modulus of the sum of the first interference complex value and the second interference complex value is equal to zero.
  • the anti-interference modulation symbol Q can be determined according to the following formula 2:
  • the I is a second interference complex value
  • T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • f is a frequency interval of a carrier frequency of the first subcarrier and the second subcarrier of the first type.
  • the accuracy of acquiring the first interference complex value corresponding to the modulation symbol carried in the reference subcarrier can be improved by using the above formula 1
  • the anti-interference modulation symbol corresponding to the second interference complex value can be improved by using the above formula 2 accuracy.
  • the formula 2 mentioned in this embodiment is essentially obtained from the variant of the formula. The similar technical meanings of the two represent the corresponding relationship between the interference complex value and the symbol of a subcarrier.
  • FIG. 8 is a schematic flowchart 2 of a process for determining an anti-interference modulation symbol according to an embodiment of the present invention. Referring to FIG. 8, the method may include:
  • S802. Determine an anti-interference modulation symbol according to the modulation symbol and the weight coefficient.
  • the weight coefficient is used to indicate a proportional relationship between the modulation symbol and the anti-interference modulation symbol.
  • the anti-interference modulation symbols can be determined based on the modulation symbols and the weight coefficients.
  • the product of the weight coefficient and the modulation symbol carried in the reference subcarrier is determined as the anti-interference modulation symbol.
  • the modulus value of the weight coefficient is less than one.
  • the weight coefficients corresponding to the modulation symbols can be determined by the following three possible implementation manners:
  • a feasible implementation manner obtaining weight coefficients from high layer signaling or physical layer signaling.
  • the terminal device may obtain the weight coefficient from the high layer signaling or the physical layer signaling sent by the base station (for example, broadcasting); when the execution entity is the base station, The base station can obtain the weight coefficient in the high layer signaling or physical layer signaling generated by the base station.
  • the internally generated high layer signaling or physical layer signaling is an indication or primitive generated by a high layer or a physical layer inside the base station to enable the base station to learn the weight coefficient.
  • the weight coefficient when needed, it can be directly obtained from the high layer signaling or the physical layer signaling, so that not only the accuracy of the determined weight coefficient but also the acquisition weight can be improved.
  • the efficiency of the coefficient when the weight coefficient is needed, it can be directly obtained from the high layer signaling or the physical layer signaling, so that not only the accuracy of the determined weight coefficient but also the acquisition weight can be improved.
  • Another possible implementation method is to determine the preset weight coefficient as the weight coefficient.
  • the weight coefficient may be preset in the protocol or the system, so that when the preset weight coefficient needs to be used, it may be directly acquired in the protocol or the system, thereby improving the acquisition of the weight coefficient. effectiveness.
  • the preset weight coefficient may be 0.3, 0.5, or the like.
  • the weight coefficient may be set according to actual needs, such as according to the experience of the person skilled in the art or the actual measurement setting.
  • the weight coefficient is determined according to the interference complex value of the reference subcarrier to the second subcarrier and the interference complex value of the first type of the first subcarrier to the second subcarrier.
  • the weight coefficient ⁇ corresponding to the modulation symbol may be determined according to Equation 3 as follows:
  • I ref is a unit interference complex value of the reference subcarrier to the second subcarrier
  • I anti is a unit interference complex value of the first subcarrier of the first type to the second subcarrier
  • I ref is a complex value of interference of the reference subcarrier to the second subcarrier when the unit modulation symbol is carried in the reference subcarrier
  • I anti is when the unit modulation symbol is carried in the first subcarrier of the first type, The interference complex value of a first subcarrier to a second subcarrier.
  • the unit modulation symbol can be 1.
  • I ref and I anti may be determined according to the above formula 1.
  • the interference coefficient determined by the above formula 3 and the interference complex value of the reference subcarrier to the second subcarrier, and the interference complex value of the first subcarrier of the first type to the second subcarrier Correlation which in turn increases the accuracy of determining the weight coefficient.
  • the carrier spacing of the first subcarrier is 15 KHz
  • the carrier spacing of the second subcarrier is 30 KHz. It is assumed that 0 KHz to 500 KHz is used for transmitting the first subcarrier, and in 0 KHz to 500 KHz, the first frequency band is 0 KHz to 75 KHz, and -30 KHz to -500 KHz is used for transmitting the second subcarrier.
  • the first subcarrier of the first type is determined to be a subcarrier with a carrier frequency of 15 kHz in the first frequency band
  • the reference subcarrier is a subcarrier with a carrier frequency of 105 kHz in the non-first frequency band.
  • the inter-subcarrier interference diagram is as shown in FIG. 9A.
  • FIG. 9A is a schematic diagram of inter-subcarrier interference of different carrier spacings before processing according to an embodiment of the present invention.
  • a subcarrier with a carrier frequency of 105 kHz interferes with a subcarrier with a carrier frequency of -30 kHz, and the interference complex value is approximately 0.08.
  • the anti-interference modulation symbol When it is necessary to determine the anti-interference modulation symbol, obtain the modulation symbol of the reference subcarrier (subcarrier with a carrier frequency of 105 kHz), and assume that the modulation symbol carried on the subcarrier with the carrier frequency of 105 kHz is K, and the determined weight coefficient is ⁇ . Correspondingly, it can be determined that the anti-interference modulation symbol is ⁇ K, Therefore, the anti-interference modulation symbol required to be transmitted on the subcarrier with a carrier frequency of 15 kHz is ⁇ K, and after the anti-interference modulation symbol transmitted by the subcarrier with the carrier frequency of 15 kHz is ⁇ K, the inter-subcarrier interference diagram is as shown in FIG. 9B.
  • FIG. 9B is a schematic diagram 1 of inter-subcarrier interference with different carrier spacings after processing according to an embodiment of the present invention.
  • a carrier frequency of a carrier frequency of 15 kHz is after carrying an anti-interference modulation symbol ( ⁇ K), and the carrier frequency is -
  • ⁇ K anti-interference modulation symbol
  • the carrier frequency is -
  • the interference complex value is about -0.08.
  • a subcarrier with a carrier frequency of 105 kHz has interference to a subcarrier with a carrier frequency of -30 kHz, and a subcarrier with a carrier frequency of 105 kHz may cancel each other with a carrier frequency of -30 kHz.
  • FIG. 9C Schematic diagram of the interference shown.
  • FIG. 9C is a schematic diagram 2 of inter-subcarrier interference with different carrier spacings after processing according to an embodiment of the present invention.
  • subcarriers with a carrier frequency of 105 kHz and subcarriers with a carrier frequency of 15 kHz may be combined into a conbined subroutine of FIG. 9C.
  • the inter-carrier interference diagram is as shown in FIG. 9D:
  • FIG. 9D is a schematic diagram 3 of inter-subcarrier interference with different carrier spacings after processing according to an embodiment of the present invention.
  • interference of a subcarrier with a carrier frequency of 105 KHz on a subcarrier with a carrier frequency of -30 KHz, and a carrier on the carrier After the subcarrier with a frequency of 15 kHz cancels the interference of the subcarrier with a carrier frequency of -30 kHz, the interference to the subcarrier with a carrier frequency of -30 kHz is about zero.
  • FIG. 10 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • the apparatus may include a processing module 11 and a sending module 12, where
  • the processing module 11 is configured to determine, in a plurality of first subcarriers, a first type of first subcarriers for transmitting anti-interference modulation symbols;
  • the processing module 11 is further configured to determine the anti-interference modulation symbol according to a modulation symbol carried in a first type of first subcarriers of the plurality of first subcarriers, where the first type of the first subcarrier is a subcarrier having interference to the second subcarrier;
  • the sending module is configured to send the anti-interference modulation symbol in the first subcarrier of the first type to cancel interference of the second subcarrier of the second type to the second subcarrier;
  • the carrier spacing of each of the plurality of first subcarriers is a first carrier spacing
  • the carrier spacing of the second subcarrier is a second carrier spacing
  • the plurality of first subcarriers and the first Two The subcarriers are adjacent in the frequency domain, and the first carrier spacing is smaller than the second carrier spacing.
  • the data transmission device shown in the embodiment of the present invention may perform the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not described herein.
  • processing module 11 is specifically configured to:
  • the first frequency band including a portion of the first subcarriers of the plurality of first subcarriers
  • the frequency spacing of the carrier frequency of the carrier is a non-integer multiple of the second carrier spacing
  • processing module 11 is specifically configured to:
  • the frequency interval is a non-integer multiple of the second carrier spacing
  • the reference subcarrier is N second type first subcarriers that are closest to the first frequency band, where the N is a positive integer greater than or equal to 1.
  • processing module 11 is specifically configured to:
  • processing module 11 is specifically configured to:
  • the Q is a modulation symbol carried in the reference subcarrier
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the reference subcarrier and the first The frequency spacing of the carrier frequencies of the two subcarriers.
  • processing module 11 is specifically configured to:
  • the anti-interference modulation symbol Q is determined according to the following formula 2:
  • the I is the second interference complex value
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the first subcarrier of the first type and the The frequency interval of the carrier frequency of the second subcarrier.
  • the processing module 11 when the N is greater than 1, the processing module 11 is specifically configured to:
  • processing module 11 is specifically configured to:
  • the anti-interference modulation symbol is determined according to the modulation symbol and a weight coefficient.
  • the processing module 11 is specifically configured to: obtain the weight coefficient from high layer signaling or physical layer signaling;
  • processing module 11 is specifically configured to:
  • the weight coefficient ⁇ corresponding to the modulation symbol is determined according to Equation 3 as follows:
  • the I ref is a unit interference complex value of the reference subcarrier to the second subcarrier
  • the I anti is a unit interference of the first subcarrier of the first type to the second subcarrier. Value.
  • processing module 11 is specifically configured to:
  • the product of the weight coefficient and the modulation symbol carried in the reference subcarrier is determined as the anti-interference modulation symbol.
  • the modulus of the weight coefficient is less than one.
  • the data transmission device shown in the embodiment of the present invention may perform the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not described herein.
  • FIG. 11 is a schematic structural diagram of a data transmission device according to an embodiment of the present invention.
  • the data transmission device may include a processor 21, a transmitter 22, a memory 23, and a communication bus 24, where the memory 23 is used to store a program.
  • the communication bus 24 is for implementing a communication connection between components, and the processor 21 can read a program in the memory 23 and perform a corresponding operation, and the data transmission device can be a base station or a terminal device. among them,
  • the processor 21 is configured to determine, in a plurality of first subcarriers, a first type of first subcarrier for transmitting an anti-interference modulation symbol;
  • the processor 21 is further configured to determine the anti-interference modulation symbol according to a modulation symbol carried in a first type of first subcarriers of the plurality of first subcarriers, where the first type of the first subcarrier is a subcarrier having interference to the second subcarrier;
  • the transmitter 22 is configured to send the anti-interference modulation symbol in the first subcarrier of the first type to cancel interference of the second subcarrier of the second type to the second subcarrier;
  • the carrier spacing of each of the plurality of first subcarriers is a first carrier spacing
  • the carrier spacing of the second subcarrier is a second carrier spacing
  • the plurality of first subcarriers and the first The two subcarriers are adjacent in the frequency domain, and the first carrier spacing is smaller than the second carrier spacing.
  • the data transmission device shown in the embodiment of the present invention may perform the technical solution shown in the foregoing method embodiment, and the implementation principle and the beneficial effects are similar, and details are not described herein.
  • the processor 21 is specifically configured to:
  • the first frequency band including a portion of the first subcarriers of the plurality of first subcarriers
  • the frequency spacing of the carrier frequency of the carrier is a non-integer multiple of the second carrier spacing
  • the processor 21 is specifically configured to:
  • the frequency interval is a non-integer multiple of the second carrier spacing
  • the reference subcarrier is N second type first subcarriers that are closest to the first frequency band, where the N is a positive integer greater than or equal to 1.
  • the processor 21 is specifically configured to:
  • the processor 21 is specifically configured to:
  • the Q is a modulation symbol carried in the reference subcarrier
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the reference subcarrier and the first The frequency spacing of the carrier frequencies of the two subcarriers.
  • the processor 21 is specifically configured to:
  • the anti-interference modulation symbol Q is determined according to the following formula 2:
  • the I is the second interference complex value
  • the T 0 is a symbol length of the second subcarrier without a cyclic prefix
  • the f is the first subcarrier of the first type and the The frequency interval of the carrier frequency of the second subcarrier.
  • the processor 21 when the N is greater than 1, the processor 21 is specifically configured to:
  • the processor 21 is specifically configured to:
  • the anti-interference modulation symbol is determined according to the modulation symbol and a weight coefficient.
  • the processor 21 is specifically configured to: obtain the weight coefficient from high layer signaling or physical layer signaling;
  • the processor 21 is specifically configured to:
  • the weight coefficient ⁇ corresponding to the modulation symbol is determined according to Equation 3 as follows:
  • the I ref is a unit interference complex value of the reference subcarrier to the second subcarrier
  • the I anti is a unit interference of the first subcarrier of the first type to the second subcarrier. Value.
  • the processor 21 is specifically configured to:
  • the product of the weight coefficient and the modulation symbol carried in the reference subcarrier is determined as the anti-interference modulation symbol.
  • the modulus of the weight coefficient is less than one.
  • the data transmission device shown in the embodiment of the present invention may perform the technical solution shown in the foregoing method embodiment, and the implementation principle and the beneficial effects are similar, and details are not described herein.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种数据传输方法、装置及设备,该方法包括:在第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波;根据第一子载波中第二类第一子载波中承载的调制符号,确定抗干扰调制符号;在第一类第一子载波中发送抗干扰调制符号,以使第一类第一子载波和第二类第一子载波对第二子载波的干扰小于第二类第一子载波对第二子载波的干扰;其中,第一子载波中各子载波的载波间隔为第一载波间隔,第二子载波中各子载波的载波间隔为第二载波间隔,第一子载波与第二子载波频域相邻。用于降低频域相邻、载波间隔不同的子载波间的干扰。

Description

数据传输方法、装置及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输方法、装置及设备。
背景技术
目前,在正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)系统信号结构中,在同一传输时间间隔内,不同载波间隔的子载波可以通过频分复用方式使用频率资源。
在实际应用过程中,当传输不同载波间隔的子载波相邻时,不同载波间隔的子载波在同一时间段内,不能够继续保持信号间的正交性,使得不同载波间隔的子载波之间会产生很大的干扰。在现有技术中,为了降低不同载波间隔的子载波之间的干扰,可以在载波间隔较小的子载波中增设保护带,在保护带中不进行数据传输。然而,在现有技术中,这种保护带不能很好地消除不同载波间隔的子载波之间的干扰。
发明内容
本发明实施例提供数据传输方法、装置及设备,用于降低频域相邻、载波间隔不同的子载波之间的干扰。
第一方面,本发明实施例提供一种数据传输方法,当需要在频域相邻、载波间隔不同的第一子载波和第二子载波中进行数据传输时,先在载波间隔较小的多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波,根据所述多个第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,并在所述第一类第一子载波中发送所述抗干扰调制符号,以使所述第一类第一子载波和所述第二类第一子载波对第二子载波的干扰小于所述第二类第一子载波对所述第二子载波的干扰;
其中,所述第二类第一子载波为对第二子载波存在干扰的子载波所述第一子载波中各子载波的载波间隔为第一载波间隔,所述第二子载波中各子载波的载波间隔为第二载波间隔,所述第一子载波与所述第二子载波频域相邻, 第一载波间隔小于第二载波间隔。
在上述过程中,通过在第一类第一子载波中发送抗干扰调制符号,可以使得第一类第一子载波对第二子载波的干扰,对第二类第一子载波对第二子载波的干扰进行抵消,进而降低第一子载波对第二子载波的干扰。
在一种可能的实现方式中,可选的,可以通过如下实现方式在第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波,具体的:确定第一频带,所述第一频带包括所述多个第一子载波中的一部分第一子载波;在位于所述第一频带内的所述一部分第一子载波中确定待选子载波集合,所述待选子载波集合中包括一个或多个子载波,且各子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;将所述待选子载波集合中的一个或多个子载波确定为所述第一类第一子载波。
在该种实现方式中,第一频带中、与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍的子载波为现有技术中空闲的子载波,在该空闲的子载波中发送抗干扰信号可以提高频率资源的利用率。
在另一种可行的实现方式中,可以通过如下可行的实现方式根据所述第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,具体的:
在所述第二类第一子载波中确定参考子载波,根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号。其中,所述第二类第一子载波位于所述第一频带外,所述参考子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;可选的,所述参考子载波是与所述第一频带最近的N个第二类第一子载波,其中,所述N为大于或等于1的正整数。在该种可行的实现方式中,由于参考子载波的个数小于第二类第一子载波的个数,因此,根据参考子载波中承载的调制符号确定抗干扰调制符号,可以提高确定抗干扰调制符号的效率。
可选的,可以通过如下两种可行的实现方式根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号:
一种可行的实现方式:
根据所述参考子载波中承载的调制符号,确定所述参考子载波对所述第二子载波的第一干扰复数值,根据所述第一干扰复数值,确定第一类第一子 载波对所述第二子载波的第二干扰复数值,根据所述第二干扰复数值,确定所述抗干扰调制符号;其中,所述第一干扰复数值和所述第二干扰复数值之和的模值小于第一干扰复数值的模值。
可选的,若参考子载波的个数大于1,则可以获取各所述参考子载波对所述第二子载波的干扰复数值,将各所述参考子载波对所述第二子载波的干扰复数值之和确定为所述第一干扰复数值。
可选的,可以根据如下公式一,确定所述参考子载波对所述第二子载波的第一干扰复数值I:
Figure PCTCN2016100446-appb-000001
其中,所述Q为所述参考子载波中承载的调制符号,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述参考子载波与所述第二子载波的载波频率的频率间隔。
可选的,可以根据如下公式二,确定所述抗干扰调制符号Q:
Figure PCTCN2016100446-appb-000002
其中,所述I为所述第二干扰复数值,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述第一类第一子载波与所述第二子载波的载波频率的频率间隔。
在该种实现方式中,通过上述公式一可以提高获取参考子载波中承载的调制符号对应的第一干扰复数值的准确性,通过上述公式二可以提高第二干扰复数值对应的抗干扰调制符号的准确性,进而实现获取抗干扰调制符号的准确性。
另一种可行的实现方式:
确定所述调制符号对应的权值系数,根据所述调制符号和权值系数,确定所述抗干扰调制符号,可选的,可以将所述权值系数与所述参考子载波中承载的调制符号的乘积确定为所述抗干扰调制符号。
可选的,可以从高层信令或物理层信令获取所述权值系数;由高层信令或物理层信令预先确定权值系数,当需要时直接从高层信令或者物理层信令获取即可,这样,不但可以保证确定得到的权值系数的精确性,还可以提高获取权值系数的效率。
或者,将预设的权值系数确定为所述权值系数;可以在协议或者系统中预设权值系数,这样,当需要使用预设权值系数时,直接从协议或者系统中获取该权值系数即可,进而提高获取权值系数的效率。
或者,根据所述参考子载波对所述第二子载波的干扰复数值和所述第一类第一子载波对所述第二子载波的干扰复数值,确定所述权值系数。该该种实现方式中,可以根据如下根据公式三确定所述调制符号对应的权值系数α:
Figure PCTCN2016100446-appb-000003
其中,所述Iref为所述参考子载波对所述第二子载波的单位干扰复数值,所述Ianti为所述第一类第一子载波对所述第二子载波的单位干扰复数值。
通过上述公式二确定得到的权值系数与参考子载波对第二子载波的干扰复数值和第一类第一子载波对第二子载波的干扰复数值相关,进而可以提高了确定权值系数的精确性。
第二方面,本发明实施例提供一种数据传输装置,包括处理模块和发送模块,其中,
所述处理模块用于,在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波;
所述处理模块还用于,根据所述多个第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,所述第二类第一子载波为对第二子载波存在干扰的子载波;
所述发送模块用于,在所述第一类第一子载波中发送所述抗干扰调制符号,以抵消所述第二类第一子载波对所述第二子载波的干扰;
其中,所述多个第一子载波中各子载波的载波间隔为第一载波间隔,所述第二子载波的载波间隔为第二载波间隔,所述多个第一子载波与所述第二子载波频域相邻,第一载波间隔小于第二载波间隔。
在一种可能的实施方式中,所述处理模块具体用于:
确定第一频带,所述第一频带包括所述多个第一子载波中的一部分第一子载波;
在位于所述第一频带内的所述一部分第一子载波中确定待选子载波集合,所述待选子载波集合中包括一个或多个子载波,且各子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
将所述待选子载波集合中的一个或多个子载波确定为所述第一类第一子载波。
在另一种可能的实施方式中,所述处理模块具体用于:
在所述第二类第一子载波中确定参考子载波,所述第二类第一子载波位于所述第一频带外,所述参考子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述参考子载波是与所述第一频带最近的N个第二类第一子载波,其中,所述N为大于或等于1的正整数。
在另一种可能的实施方式中,所述处理模块具体用于:
根据所述参考子载波中承载的调制符号,确定所述参考子载波对所述第二子载波的第一干扰复数值;
根据所述第一干扰复数值,确定第一类第一子载波对所述第二子载波的第二干扰复数值,所述第一干扰复数值和所述第二干扰复数值之和的模值小于第一干扰复数值的模值;
根据所述第二干扰复数值,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述处理模块具体用于:
根据如下公式一,确定所述参考子载波对所述第二子载波的第一干扰复数值I:
Figure PCTCN2016100446-appb-000004
其中,所述Q为所述参考子载波中承载的调制符号,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述参考子载波与所述第二子载波的载波频率的频率间隔。
在另一种可能的实施方式中,所述处理模块具体用于:
根据如下公式二,确定所述抗干扰调制符号Q:
Figure PCTCN2016100446-appb-000005
其中,所述I为所述第二干扰复数值,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述第一类第一子载波与所述第二子载波的载波频率的频率间隔。
在另一种可能的实施方式中,在所述N大于1时,所述处理模块具体用于:
获取各所述参考子载波对所述第二子载波的干扰复数值;
将各所述参考子载波对所述第二子载波的干扰复数值之和确定为所述第一干扰复数值。
在另一种可能的实施方式中,所述处理模块具体用于:
确定所述调制符号对应的权值系数;
根据所述调制符号和权值系数,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述处理模块具体用于:从高层信令或物理层信令获取所述权值系数;
或者,
将预设的权值系数确定为所述权值系数;
或者,
根据所述参考子载波对所述第二子载波的干扰复数值和所述第一类第一子载波对所述第二子载波的干扰复数值,确定所述权值系数。
在另一种可能的实施方式中,所述处理模块具体用于:
根据如下根据公式三确定所述调制符号对应的权值系数α:
Figure PCTCN2016100446-appb-000006
其中,所述Iref为所述参考子载波对所述第二子载波的单位干扰复数值,所述Ianti为所述第一类第一子载波对所述第二子载波的单位干扰复数值。
在另一种可能的实施方式中,所述处理模块具体用于:
将所述权值系数与所述参考子载波中承载的调制符号的乘积确定为所述抗干扰调制符号。
在另一种可能的实施方式中,所述权值系数的模值小于1。
本发明实施例所述的数据传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
第三方面,本发明实施例提供一种数据传输设备,包括处理器和发送器,其中,
所述处理器用于,在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波;
所述处理器还用于,根据所述多个第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,所述第二类第一子载波为对第二子载波存在干扰的子载波;
所述发送器用于,在所述第一类第一子载波中发送所述抗干扰调制符号,以抵消所述第二类第一子载波对所述第二子载波的干扰;
其中,所述多个第一子载波中各子载波的载波间隔为第一载波间隔,所述第二子载波的载波间隔为第二载波间隔,所述多个第一子载波与所述第二子载波频域相邻,第一载波间隔小于第二载波间隔。
在一种可能的实施方式中,所述处理器具体用于:
确定第一频带,所述第一频带包括所述多个第一子载波中的一部分第一子载波;
在位于所述第一频带内的所述一部分第一子载波中确定待选子载波集合,所述待选子载波集合中包括一个或多个子载波,且各子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
将所述待选子载波集合中的一个或多个子载波确定为所述第一类第一子载波。
在另一种可能的实施方式中,所述处理器具体用于:
在所述第二类第一子载波中确定参考子载波,所述第二类第一子载波位于所述第一频带外,所述参考子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述参考子载波是与所述第一频带最近的N个第二类第一子载波,其中,所述N为大于或等于1的正整数。
在另一种可能的实施方式中,所述处理器具体用于:
根据所述参考子载波中承载的调制符号,确定所述参考子载波对所述第二子载波的第一干扰复数值;
根据所述第一干扰复数值,确定第一类第一子载波对所述第二子载波的第二干扰复数值,所述第一干扰复数值和所述第二干扰复数值之和的模值小于第一干扰复数值的模值;
根据所述第二干扰复数值,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述处理器具体用于:
根据如下公式一,确定所述参考子载波对所述第二子载波的第一干扰复数值I:
Figure PCTCN2016100446-appb-000007
其中,所述Q为所述参考子载波中承载的调制符号,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述参考子载波与所述第二子载波的载波频率的频率间隔。
在另一种可能的实施方式中,所述处理器具体用于:
根据如下公式二,确定所述抗干扰调制符号Q:
Figure PCTCN2016100446-appb-000008
其中,所述I为所述第二干扰复数值,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述第一类第一子载波与所述第二子载波的载波频率的频率间隔。
在另一种可能的实施方式中,在所述N大于1时,所述处理器具体用于:
获取各所述参考子载波对所述第二子载波的干扰复数值;
将各所述参考子载波对所述第二子载波的干扰复数值之和确定为所述第一干扰复数值。
在另一种可能的实施方式中,所述处理器具体用于:
确定所述调制符号对应的权值系数;
根据所述调制符号和权值系数,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述处理器具体用于:从高层信令或物理层信令获取所述权值系数;
或者,
将预设的权值系数确定为所述权值系数;
或者,
根据所述参考子载波对所述第二子载波的干扰复数值和所述第一类第一子载波对所述第二子载波的干扰复数值,确定所述权值系数。
在另一种可能的实施方式中,所述处理器具体用于:
根据如下根据公式三确定所述调制符号对应的权值系数α:
Figure PCTCN2016100446-appb-000009
其中,所述Iref为所述参考子载波对所述第二子载波的单位干扰复数值,所述Ianti为所述第一类第一子载波对所述第二子载波的单位干扰复数值。
在另一种可能的实施方式中,所述处理器具体用于:
将所述权值系数与所述参考子载波中承载的调制符号的乘积确定为所述抗干扰调制符号。
在另一种可能的实施方式中,所述权值系数的模值小于1。
本发明实施例所述的数据传输设备可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
本发明实施例提供的数据传输方法、装置及设备,当需要对频域相邻、载波间隔不同的第一子载波和第二子载波进行频分复用时,先在第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波,根据第一子载波中第二类第一子载波中承载的调制符号,确定抗干扰调制符号,并在第一类第一子载波中发送抗干扰调制符号,以使第一类第一子载波对第二子载波的干扰,可以抵消第二类第一子载波对第二子载波的干扰,进而降低第一子载波对第二子载波的干扰。
附图说明
图1为本发明实施例提供的数据传输方法的应用场景示意图;
图2为本发明实施例提供的不同载波间隔的频域相邻子载波的信号示意图;
图3为本发明实施例提供的不同载波间隔的子载波间干扰示意图;
图4为本发明实施例提供的数据传输方法的流程示意图;
图5为本发明实施例提供的确定第一类第一子载波方法的流程示意图;
图6为本发明实施例提供的确定抗干扰调制符号方法的流程示意图;
图7为本发明实施例提供的确定抗干扰调制符号过程的流程示意图一;
图8为本发明实施例提供的确定抗干扰调制符号过程的流程示意图二;
图9A为本发明实施例提供的处理前不同载波间隔的子载波间干扰示意图;
图9B为本发明实施例提供的处理后不同载波间隔的子载波间干扰示意 图一;
图9C为本发明实施例提供的处理后不同载波间隔的子载波间干扰示意图二;
图9D为本发明实施例提供的处理后不同载波间隔的子载波间干扰示意图三;
图10为本发明实施例提供的数据传输装置的结构示意图;
图11为本发明实施例提供的数据传输设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的数据传输方法的应用场景示意图,请参见图1,包括基站101和多个终端设备102。在基站101和终端设备102进行通信的过程中,基站101和终端设备102均可以通过本申请所示的技术方案,对数据进行传输。
下面对OFDM系统信号结构做简单介绍。在OFDM系统信号结构中,在不同的载波频段可以传输具有不同参数的子载波,子载波的参数可以包括载波间隔、符号周期等。例如,可以在载波频段0KHz至500KHz上传输第一子载波,第一子载波的载波间隔可以为15KHz,即,第一子载波中相邻的两个子载波的载波间隔为15KHz;可以在载波频段-30KHz至-500KHz上传输第二子载波,第二子载波的载波间隔可以为30KHz,即,第二子载波中相邻的两个子载波的载波间隔为30KHz。在本申请中,频率间隔是指任意两个子载波在频域上的间隔;载波间隔为子载波的一种参数,载波间隔是指一种子载波中频域相邻的两个子载波之间的频率间隔。
假设频域相邻的子载波分别为第一子载波和第二子载波,且第一子载波的载波间隔为Δf1,第二子载波的载波间隔为MΔf1。假设与第二子载波相邻的一个第一子载波的载波频率为(k+1)Δf1Hz,则该第一子载波在其一个符号周 期长度加循环前缀CP后的信号为:
Figure PCTCN2016100446-appb-000010
其中,
Figure PCTCN2016100446-appb-000011
表示符号周期;k表示整数值;t表示时间自变量;Tcp表示循环前缀的时间长度。
假设与第一子载波相邻的一个第二子载波的载波频率为(k+1)Δf1+Δf2Hz,则该第二子载波在其一个符号周期长度加循环前缀CP后的信号为:
Figure PCTCN2016100446-appb-000012
显然,在
Figure PCTCN2016100446-appb-000013
内截取
Figure PCTCN2016100446-appb-000014
时间长度的信号,Sk+1+M(t)与Sk+1(t)是正交的;但载波频率为kΔf1的子载波上的符号Sk(t)与载波频率为(k+1+M)Δf1的子载波上的符号Sk+1+M(t)在
Figure PCTCN2016100446-appb-000015
内截取
Figure PCTCN2016100446-appb-000016
时间长度的信号不正交。
下面,通过具体示例,对频域相邻、载波间隔不同的子载波的正交情况进行详细说明。
图2为本发明实施例提供的不同载波间隔的频域相邻子载波的信号示意图,请参见图2,横轴表示时间,纵轴表示频率。由图2可知,在频域中,载波间隔为15KHz的子载波(下文简称子载波1)和载波间隔为30KHz(下文简称子载波2)的子载波相邻。在大于0KHz的频率上传输子载波1,在小于0KHz的频率上传输子载波2。
在同一传输时间间隔内,子载波1和子载波2通过频分复用方式使用频率资源,但是子载波1和子载波2之间不能够继续保持信号间的正交性,使得子载波1和子载波2之间可能会产生干扰。具体的,图3为本发明实施例提供的不同载波间隔的子载波间干扰示意图,请参见图3,载波频率为15KHz,45KHz的子载波上符号与对载波频率为-30KHz,-60KHz的子载波上符号存在干扰。由此可知,在子载波1中,存在与子载波2之间的频率间隔为30KHz(子载波2的载波间隔)的非整数倍的子载波1且能够对子载波2形成干扰。
需要说明的是,图2只是以示例的形式示意频域相邻的两个子载波,当然,频域相邻的子载波的载波间隔还可以为其它,本发明对此不作具体限定。还需要说明的是,图2还示意了子载波1中的保护带,在实际应用过程中, 可以根据实际需要设置该保护带。该保护带可以是用于降低干扰的子载波。为了保证频率资源利用率,通常将子载波1中与子载波2之间的频率间隔较小的部分子载波确定为保护带,如图2所示,将载波频率为15KHz、45KHz、75KHz的子载波1确定为保护带,并可以在该部分子载波1中不传输任何数据信息。
在本申请中,可以在图2基础上进行改进,在保护带中发送用于抵消干扰的调制符号,以实现进一步的降低频域相邻、且载波间隔不同的子载波之间的干扰。下面,通过具体实施例对本申请所示的技术方案进行详细说明。需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图4为本发明实施例提供的数据传输方法的流程示意图,请参见图4,该方法可以包括:
S401、在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波。
S402、根据多个第一子载波中第二类第一子载波中承载的调制符号,确定抗干扰调制符号,第二类第一子载波为对第二子载波存在干扰的子载波。
S403、在第一类第一子载波中发送抗干扰调制符号,以抵消第二类第一子载波对第二子载波的干扰。
其中,该多个第一子载波中各子载波的载波间隔为第一载波间隔,第二子载波中各子载波的载波间隔为第二载波间隔,第一子载波与第二子载波频域相邻,第一载波间隔小于第二载波间隔。其中,第一子载波和第二子载波频域相邻是指,在第一子载波和第二子载波之间不存在其它载波间隔的子载波,该其它载波间隔与第一载波间隔及第二载波间隔不同。
可选的,本发明实施例的执行主体可以为终端设备(例如手机、电脑等)也可以为基站。
在实际应用过程中,当需要在对频域相邻、载波间隔不同的子载波进行频分复用时,先在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波。可选的,由于多个第一子载波中部分子载波不用于进行数据传输,相应的,可以在该部分不用于进行数据传输的第一子载波中确定第一类第一子载波。可选的,可以将第一子载波中所有不进行数据传输的子载波确 定为第一类第一子载波,也可以将第一子载波中部分不进行数据传输的子载波确定为第一类第一子载波。
还需要在多个第一子载波中确定第二类第一子载波。可选的,该第二类第一子载波为第一子载波中对第二子载波存在干扰的子载波。在确定得到第二类第一子载波之后,根据第二类第一子载波中承载的调制符号,确定抗干扰调制符号,并在第一类第一子载波中发送该抗干扰调制符号,以使第一类第一子载波和第二类第一子载波对第二子载波的干扰小于第二类第一子载波对第二子载波的干扰。
下面,通过具体示例,对图4实施例所示的方法进行详细说明。
示例性的,假设第一子载波的载波间隔为15KHz,第二子载波的载波间隔为30KHz,第一子载波和第二子载波在频域相邻。再假设0KHz至500KHz用于传输第一子载波,-30KHz至-500KHz用于传输第二子载波,第一子载波中载波频率为15KHz、45KHz、75KHz的子载波不用于进行数据传输。
当需要对第一子载波和第二子载波进行频分复用时,先在第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波。具体的,可以将载波频率为15KHz、45KHz、75KHz的子载波中的一个或多个确定为第一类第一子载波。假设将载波频率为15KHz的子载波确定为了第一类第一子载波。
由于第一子载波中载波频率为105KHz、135KHz、165KHz的子载波对第二子载波存在干扰,因此,可以将载波频率为105KHz、135KHz、165KHz的子载波确定为第二类第一子载波。然后,根据载波频率为105KHz、135KHz、165KHz的子载波中承载的调制符号,确定抗干扰调制符号,并在载波频率为15KHz的子载波上发送抗干扰调制符号,以使得载波频率为15KHz的子载波对第二子载波的干扰,可以抵消载波频率为105KHz、135KHz、165KHz的子载波对第二子载波的干扰,进而实现降低第一子载波对第二子载波的干扰。
本发明实施例提供的数据传输方法,可以降低第一子载波对第二子载波的干扰。
在图4所示实施例的基础上,可选的,可以通过如下可行的实现方式在第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波(图4所示实施例中的S401),具体的,请参见图5所示的实施例。
图5为本发明实施例提供的确定第一类第一子载波方法的流程示意图, 请参见图5,该方法可以包括:
S501、确定第一频带,该第一频带包括多个第一子载波中的一部分第一子载波。
S502、在位于第一频带内的一部分第一子载波中确定待选子载波集合,待选子载波集合中包括一个或多个子载波,且各子载波的载波频率与第二子载波的载波频率的频率间隔为第二载波间隔的非整数倍。
其中,在所述第一频带中包括第一子载波中不进行数据传输的子载波,该第一频带可以为预设的、第一子载波对一个的带宽。
S503、将待选子载波集合中的一个或多个子载波确定为第一类第一子载波。可选的,可以将待选子载波集合中的任意一个或多个子载波确定为第一类第一子载波。
下面,通过具体示例,对图5实施例所示的方法,进行详细说明。
示例性的,假设第一子载波的载波间隔为15KHz,0KHz至500KHz用于传输第一子载波;第二子载波的载波间隔为30KHz,-30KHz至-500KHz用于传输第二子载波。
可选的,可以在协议或系统中预设该第一频带,这样,当需要在第一子载波中确定第一类第一子载波时,可以直接在协议或系统中获取第一频带,假设第一频带为0KHz至105KHz。
在获取到第一频带之后,根据该第一频带,即0KHz至105KHz内各个第一子载波的载波频率,确定待选子载波集合,由于第一频带中各个第一子载波的载波频率依次为:
0KHz、15KHz、30KHz、45KHz、60KHz、75KHz、90KHz、105KHz。
由于第二子载波的载波频率依次为:
-30KHz、-60KHz、-90KHz、-120KHz等。
可以确定待选子载波集合中各载波的载波频率如下:
15KHz、45KHz、75KHz、105KHz。
在确定得到上述待选载波集合之后,可以将待选子载波集合中的任意一个或多个子载波确定为第一类第一子载波。
在上述过程中,由于确定得到的第一类第一子载波的载波频率与第二子载波的载波频率的频率间隔为第二载波间隔的非整数倍,因此,第一类第一 子载波均不用于进行数据传输,通过在该第一类第一子载波中传输抗干扰符号可以避免浪费频率资源。
在上述任意一个实施例的基础上,可选的,可以通过如下可行的实现方式确定抗干扰调制符号(图4所示实施例中的S402),具体的,请参见图6所示的实施例。
图6为本发明实施例提供的确定抗干扰调制符号方法的流程示意图,请参见图6,该方法可以包括:
S601、在第二类第一子载波中确定参考子载波,第二类第一子载波位于第一频带外,参考子载波的载波频率与第二子载波的载波频率的频率间隔为第二载波间隔的非整数倍。
S602、根据参考子载波中承载的调制符号,确定抗干扰调制符号。
在图6所示的实施例中,第二类第一子载波为对第二子载波存在干扰的子载波,由于第二类第一子载波的数量较多,为了提高确定抗干扰调制符号的效率,可以先在第二类第一子载波中确定参考子载波。可选的,可以将位于非第一频带内的多个第一子载波中、载波频率与第二子载波的载波频率的频率间隔为第二载波间隔的非整数倍的、且与第一频带最近的N个第二类第一子载波确定为参考子载波,其中,N为大于或等于1的正整数。
由于参考子载波的个数通常小于第二类第一子载波的个数,因此,根据参考子载波中承载的调制符号确定抗干扰调制符号,可以提高确定抗干扰调制符号的效率。
示例性的,假设第一子载波的载波间隔为15KHz,0KHz至500KHz用于传输第一子载波;第二子载波的载波间隔为30KHz,-30KHz至-500KHz用于传输第二子载波。再假设第一频带为0KHz至105KHz,相应的,非第一频带为105KHz至500KHz。
由于第二类第一子载波为对第二子载波存在干扰的子载波,因此,非第一频带内的第二类第一子载波的载波频率与第二子载波的载波频率之间的频率间隔为30KHz的非整数倍,即,第二类第一子载波的载波频率分别为:
135KHz、165KHz、195KHz、225KHz、255KHz等。
可以将上述第二类第一子载波中、与第一频带最近的N个第二类第一子载波确定为参考子载波,当N等于3时,则可以将载波频率为135KHz、 165KHz、195KHz的子载波确定为参考子载波。
并根据载波频率为135KHz、165KHz、195KHz的子载波中承载的调制符号,确定抗干扰调制符号。
在图6所示实施例的基础上,可选的,可以通过如下两种可行的实现方式确定抗干扰调制符号(图6所示实施例中的S602),具体的,请参见图7-图8所示的实施例。
图7为本发明实施例提供的确定抗干扰调制符号过程的流程示意图一,请参见图7,该方法可以包括:
S701、根据参考子载波中承载的调制符号,确定参考子载波对第二子载波的第一干扰复数值。
S702、根据第一干扰复数值,确定第一类第一子载波对第二子载波的第二干扰复数值,第一干扰复数值和第二干扰复数值之和的模值小于第一干扰复数值的模值。
S703、根据第二干扰复数值,确定抗干扰调制符号。
在图7所示的实施例中,可选的,可以根据如下公式一确定参考子载波对第二子载波的第一干扰复数值I:
Figure PCTCN2016100446-appb-000017
其中,Q为参考子载波中承载的调制符号,T0为第二子载波的不含循环前缀的符号长度,f为参考子载波与第二子载波的载波频率的频率间隔。
可选的,当参考子载波的个数大于1时,可以获取各参考子载波对第二子载波的干扰复数值,并将各参考子载波对第二子载波的干扰复数值之和确定为第一干扰复数值。
在确定得到参考子载波对第二子载波的第一干扰复数值之后,可以确定第二干扰复数值,以使第一干扰复数值和第二干扰复数值之和的模值小于第一干扰复数值的模值。优选的,第一干扰复数值和第二干扰复数值之和的模值等于0。
在确定得到第二抗干扰复数值之后,可选的,可以根据如下公式二确定抗干扰调制符号Q:
Figure PCTCN2016100446-appb-000018
其中,所述I为第二干扰复数值,T0为第二子载波的不含循环前缀的符号长度,f为第一类第一子载波与第二子载波的载波频率的频率间隔。
在上述过程中,通过上述公式一可以提高获取参考子载波中承载的调制符号对应的第一干扰复数值的准确性,通过上述公式二可以提高获取第二干扰复数值对应的抗干扰调制符号的准确性。本实施例提到的公式二本质上是从公式一变形得到的,二者代表的技术含义的类似的,都反映了一个子载波相应的干扰复数值与符号的对应关系。
图8为本发明实施例提供的确定抗干扰调制符号过程的流程示意图二,请参见图8,该方法可以包括:
S801、确定调制符号对应的权值系数。
S802、根据调制符号和权值系数,确定抗干扰调制符号。
在图8所示的实施例中,该权值系数用于指示调制符号与抗干扰调制符号之间的比例关系。在确定得到权值系数之后,可以根据调制符号和权值系数,确定抗干扰调制符号。可选的,将权值系数与参考子载波中承载的调制符号的乘积确定为抗干扰调制符号。可选的,权值系数的模值小于1。
在图8所示的实施例中,可选的,可以通过如下三种可行的实现方式确定调制符号对应的权值系数:
一种可行的实现方式:从高层信令或物理层信令获取权值系数。
在该种可行的实现方式中,当执行主体为终端设备时,终端设备可以从基站发送(例如广播)的高层信令或物理层信令中获取该权值系数;当执行主体为基站时,基站可以在其内部生成的高层信令或物理层信令中获取该权值系数。该内部生成的高层信令或物理层信令是机上是基站内部的高层或物理层生成的指示信息或原语,用来让基站获知该权值系数。
在该种可行的实现方式中,当需要权值系数时直接从高层信令或者物理层信令获取即可,这样,不但可以保证确定得到的权值系数的精确性,还可以提高获取权值系数的效率。
另一种可行的实现方式:将预设的权值系数确定为权值系数。
在该种可行的实现方式中,可以在协议或者系统中预先设置权值系数,这样,当需要使用预设权值系数时,直接在协议或者系统中获取即可,进而提高获取权值系数的效率。可选的,该预设的权值系数可以为0.3、0.5等。 在实际应用过程中,可以根据实际需要设置该权值系数,如依照本领域技术人员的经验或实际测量设置。
再一种可行的实现方式:根据参考子载波对第二子载波的干扰复数值和第一类第一子载波对第二子载波的干扰复数值,确定权值系数。
在该种可行的实现方式中,可选的,可以根据如下根据公式三确定所述调制符号对应的权值系数α:
Figure PCTCN2016100446-appb-000019
其中,Iref为参考子载波对第二子载波的单位干扰复数值,Ianti为第一类第一子载波对第二子载波的单位干扰复数值。可选的,Iref为在参考子载波中承载单位调制符号时,参考子载波对第二子载波的干扰复数值;Ianti为在第一类第一子载波中承载单位调制符号时,第一类第一子载波对第二子载波的干扰复数值。可选的,单位调制符号可以为1。可选的,可以根据上述公式一确定Iref和Ianti
在该种可行的实现方式中,通过上述公式三确定得到的权值系数与参考子载波对第二子载波的干扰复数值、及第一类第一子载波对第二子载波的干扰复数值相关,进而提高了确定权值系数的精确性。
下面,通过具体示例,对上述方法实施例所示的技术方案进行详细说明。
示例性的,假设第一子载波的载波间隔为15KHz,第二子载波的载波间隔为30KHz。假设0KHz至500KHz用于传输第一子载波,在0KHz至500KHz中,第一频带为0KHz至75KHz,-30KHz至-500KHz用于传输第二子载波。
假设确定得到的第一类第一子载波为第一频带中载波频率为15KHz的子载波,参考子载波为非第一频带中、载波频率为105KHz的子载波。
在载波频率为15KHz的子载波传输抗干扰调制符号之前,子载波间干扰示意图如图9A所示。
图9A为本发明实施例提供的处理前不同载波间隔的子载波间干扰示意图,请参见图9A,载波频率为105KHz的子载波对载波频率为-30KHz的子载波存在干扰,干扰复数值约为0.08。
当需要确定抗干扰调制符号时,获取参考子载波(载波频率为105KHz的子载波)的调制符号,假设载波频率为105KHz的子载波上承载的调制符号为K,确定得到的权值系数为α,相应的,可以确定抗干扰调制符号为αK, 因此,需要在载波频率为15KHz的子载波传输的抗干扰调制符号为αK,在载波频率为15KHz的子载波传输的抗干扰调制符号为αK之后,子载波间干扰示意图如图9B所示。
图9B为本发明实施例提供的处理后不同载波间隔的子载波间干扰示意图一,请参见图9B,载波频率为15KHz的子载波在承载抗干扰调制符号(αK)之后,对载波频率为-30KHz的子载波也存在干扰,干扰复数值约为-0.08。
载波频率为105KHz的子载波对载波频率为-30KHz的子载波存在干扰、与载波频率为105KHz的子载波对载波频率为-30KHz的子载波存在干扰可以相互抵消,具体的,请参见图9C所示的干扰示意图。
图9C为本发明实施例提供的处理后不同载波间隔的子载波间干扰示意图二,请参见图9C,载波频率为105KHz的子载波和载波频率为15KHz的子载波可以合并为图9C中conbined子载波,由图9C可知,conbined子载波对载波频率为-30KHz的子载波的干扰约为零。具体的,载波频率为105KHz的子载波和载波频率为15KHz的子载波对载波频率为-30KHz的子载波的干扰抵消之后,载波间干扰示意图如图9D所示:
图9D为本发明实施例提供的处理后不同载波间隔的子载波间干扰示意图三,请参见图9D,在载波频率为105KHz的子载波对载波频率为-30KHz的子载波的干扰、与在载波频率为15KHz的子载波对载波频率为-30KHz的子载波的干扰进行抵消之后,对载波频率为-30KHz的子载波的干扰约为零。
图10为本发明实施例提供的数据传输装置的结构示意图,请参见图10,该装置可以包括处理模块11和发送模块12,其中,
所述处理模块11用于,在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波;
所述处理模块11还用于,根据所述多个第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,所述第二类第一子载波为对第二子载波存在干扰的子载波;
所述发送模块用于,在所述第一类第一子载波中发送所述抗干扰调制符号,以抵消所述第二类第一子载波对所述第二子载波的干扰;
其中,所述多个第一子载波中各子载波的载波间隔为第一载波间隔,所述第二子载波的载波间隔为第二载波间隔,所述多个第一子载波与所述第二 子载波频域相邻,第一载波间隔小于第二载波间隔。
本发明实施例所示的数据传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述处理模块11具体用于:
确定第一频带,所述第一频带包括所述多个第一子载波中的一部分第一子载波;
在位于所述第一频带内的所述一部分第一子载波中确定待选子载波集合,所述待选子载波集合中包括一个或多个子载波,且各子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
将所述待选子载波集合中的一个或多个子载波确定为所述第一类第一子载波。
在另一种可能的实施方式中,所述处理模块11具体用于:
在所述第二类第一子载波中确定参考子载波,所述第二类第一子载波位于所述第一频带外,所述参考子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述参考子载波是与所述第一频带最近的N个第二类第一子载波,其中,所述N为大于或等于1的正整数。
在另一种可能的实施方式中,所述处理模块11具体用于:
根据所述参考子载波中承载的调制符号,确定所述参考子载波对所述第二子载波的第一干扰复数值;
根据所述第一干扰复数值,确定第一类第一子载波对所述第二子载波的第二干扰复数值,所述第一干扰复数值和所述第二干扰复数值之和的模值小于第一干扰复数值的模值;
根据所述第二干扰复数值,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述处理模块11具体用于:
根据如下公式一,确定所述参考子载波对所述第二子载波的第一干扰复数值I:
Figure PCTCN2016100446-appb-000020
其中,所述Q为所述参考子载波中承载的调制符号,所述T0为所述第二 子载波的不含循环前缀的符号长度,所述f为所述参考子载波与所述第二子载波的载波频率的频率间隔。
在另一种可能的实施方式中,所述处理模块11具体用于:
根据如下公式二,确定所述抗干扰调制符号Q:
Figure PCTCN2016100446-appb-000021
其中,所述I为所述第二干扰复数值,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述第一类第一子载波与所述第二子载波的载波频率的频率间隔。
在另一种可能的实施方式中,在所述N大于1时,所述处理模块11具体用于:
获取各所述参考子载波对所述第二子载波的干扰复数值;
将各所述参考子载波对所述第二子载波的干扰复数值之和确定为所述第一干扰复数值。
在另一种可能的实施方式中,所述处理模块11具体用于:
确定所述调制符号对应的权值系数;
根据所述调制符号和权值系数,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述处理模块11具体用于:从高层信令或物理层信令获取所述权值系数;
或者,
将预设的权值系数确定为所述权值系数;
或者,
根据所述参考子载波对所述第二子载波的干扰复数值和所述第一类第一子载波对所述第二子载波的干扰复数值,确定所述权值系数。
在另一种可能的实施方式中,所述处理模块11具体用于:
根据如下根据公式三确定所述调制符号对应的权值系数α:
Figure PCTCN2016100446-appb-000022
其中,所述Iref为所述参考子载波对所述第二子载波的单位干扰复数值,所述Ianti为所述第一类第一子载波对所述第二子载波的单位干扰复数值。
在另一种可能的实施方式中,所述处理模块11具体用于:
将所述权值系数与所述参考子载波中承载的调制符号的乘积确定为所述抗干扰调制符号。
在另一种可能的实施方式中,所述权值系数的模值小于1。
本发明实施例所示的数据传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图11为本发明实施例提供的数据传输设备的结构示意图,请参见图11,该数据传输设备可以包括处理器21、发送器22、存储器23、以及通信总线24,存储器23用于存储程序,通信总线24用于实现元件之间的通信连接,处理器21可以读取存储器23中的程序,并执行相应的操作,数据传输设备可以是基站或终端设备。其中,
所述处理器21用于,在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波;
所述处理器21还用于,根据所述多个第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,所述第二类第一子载波为对第二子载波存在干扰的子载波;
所述发送器22用于,在所述第一类第一子载波中发送所述抗干扰调制符号,以抵消所述第二类第一子载波对所述第二子载波的干扰;
其中,所述多个第一子载波中各子载波的载波间隔为第一载波间隔,所述第二子载波的载波间隔为第二载波间隔,所述多个第一子载波与所述第二子载波频域相邻,第一载波间隔小于第二载波间隔。
本发明实施例所示的数据传输设备可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述处理器21具体用于:
确定第一频带,所述第一频带包括所述多个第一子载波中的一部分第一子载波;
在位于所述第一频带内的所述一部分第一子载波中确定待选子载波集合,所述待选子载波集合中包括一个或多个子载波,且各子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
将所述待选子载波集合中的一个或多个子载波确定为所述第一类第一子载波。
在另一种可能的实施方式中,所述处理器21具体用于:
在所述第二类第一子载波中确定参考子载波,所述第二类第一子载波位于所述第一频带外,所述参考子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述参考子载波是与所述第一频带最近的N个第二类第一子载波,其中,所述N为大于或等于1的正整数。
在另一种可能的实施方式中,所述处理器21具体用于:
根据所述参考子载波中承载的调制符号,确定所述参考子载波对所述第二子载波的第一干扰复数值;
根据所述第一干扰复数值,确定第一类第一子载波对所述第二子载波的第二干扰复数值,所述第一干扰复数值和所述第二干扰复数值之和的模值小于第一干扰复数值的模值;
根据所述第二干扰复数值,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述处理器21具体用于:
根据如下公式一,确定所述参考子载波对所述第二子载波的第一干扰复数值I:
Figure PCTCN2016100446-appb-000023
其中,所述Q为所述参考子载波中承载的调制符号,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述参考子载波与所述第二子载波的载波频率的频率间隔。
在另一种可能的实施方式中,所述处理器21具体用于:
根据如下公式二,确定所述抗干扰调制符号Q:
Figure PCTCN2016100446-appb-000024
其中,所述I为所述第二干扰复数值,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述第一类第一子载波与所述第二子载波的载波频率的频率间隔。
在另一种可能的实施方式中,在所述N大于1时,所述处理器21具体用于:
获取各所述参考子载波对所述第二子载波的干扰复数值;
将各所述参考子载波对所述第二子载波的干扰复数值之和确定为所述第一干扰复数值。
在另一种可能的实施方式中,所述处理器21具体用于:
确定所述调制符号对应的权值系数;
根据所述调制符号和权值系数,确定所述抗干扰调制符号。
在另一种可能的实施方式中,所述处理器21具体用于:从高层信令或物理层信令获取所述权值系数;
或者,
将预设的权值系数确定为所述权值系数;
或者,
根据所述参考子载波对所述第二子载波的干扰复数值和所述第一类第一子载波对所述第二子载波的干扰复数值,确定所述权值系数。
在另一种可能的实施方式中,所述处理器21具体用于:
根据如下根据公式三确定所述调制符号对应的权值系数α:
Figure PCTCN2016100446-appb-000025
其中,所述Iref为所述参考子载波对所述第二子载波的单位干扰复数值,所述Ianti为所述第一类第一子载波对所述第二子载波的单位干扰复数值。
在另一种可能的实施方式中,所述处理器21具体用于:
将所述权值系数与所述参考子载波中承载的调制符号的乘积确定为所述抗干扰调制符号。
在另一种可能的实施方式中,所述权值系数的模值小于1。
本发明实施例所示的数据传输设备可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明实施例的技术方案, 而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (26)

  1. 一种数据传输方法,其特征在于,包括:
    在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波;
    根据所述多个第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,所述第二类第一子载波为对第二子载波存在干扰的子载波;
    在所述第一类第一子载波中发送所述抗干扰调制符号,以抵消所述第二类第一子载波对所述第二子载波的干扰;
    其中,所述多个第一子载波中各子载波的载波间隔为第一载波间隔,所述第二子载波的载波间隔为第二载波间隔,所述多个第一子载波与所述第二子载波频域相邻,第一载波间隔小于第二载波间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波,包括:
    确定第一频带,所述第一频带包括所述多个第一子载波中的一部分第一子载波;
    在位于所述第一频带内的所述一部分第一子载波中确定待选子载波集合,所述待选子载波集合中包括一个或多个子载波,且各子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
    将所述待选子载波集合中的一个或多个子载波确定为所述第一类第一子载波。
  3. 根据权利要求2所述的方法,其特征在于,根据所述多个第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,包括:
    在所述第二类第一子载波中确定参考子载波,所述第二类第一子载波位于所述第一频带外,所述参考子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
    根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号。
  4. 根据权利要求3所述的方法,其特征在于,所述参考子载波是与所述第一频带最近的N个第二类第一子载波,其中,所述N为大于或等于1的正整数。
  5. 根据权利要求3或4所述的方法,其特征在于,根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号,包括:
    根据所述参考子载波中承载的调制符号,确定所述参考子载波对所述第二子载波的第一干扰复数值;
    根据所述第一干扰复数值,确定第一类第一子载波对所述第二子载波的第二干扰复数值,所述第一干扰复数值和所述第二干扰复数值之和的模值小于第一干扰复数值的模值;
    根据所述第二干扰复数值,确定所述抗干扰调制符号。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述参考子载波中承载的调制符号,确定所述参考子载波对所述第二子载波的第一干扰复数值,包括:
    根据如下公式一,确定所述参考子载波对所述第二子载波的第一干扰复数值I:
    Figure PCTCN2016100446-appb-100001
    其中,所述Q为所述参考子载波中承载的调制符号,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述参考子载波与所述第二子载波的载波频率的频率间隔。
  7. 根据权利要求5所述的方法,其特征在于,根据所述第二干扰复数值,确定所述抗干扰调制符号,包括:
    根据如下公式二,确定所述抗干扰调制符号Q:
    Figure PCTCN2016100446-appb-100002
    其中,所述I为所述第二干扰复数值,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述第一类第一子载波与所述第二子载波的载波频率的频率间隔。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,若所述N大于1,相应的,所述获取所述参考子载波对所述第二子载波的第一干扰复数值,包括:
    获取各所述参考子载波对所述第二子载波的干扰复数值;
    将各所述参考子载波对所述第二子载波的干扰复数值之和确定为所述第 一干扰复数值。
  9. 根据权利要求3或4所述的方法,其特征在于,所述根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号,包括:
    确定所述调制符号对应的权值系数;
    根据所述调制符号和权值系数,确定所述抗干扰调制符号。
  10. 根据权利要求9所述的方法,其特征在于,所述确定所述调制符号对应的权值系数,包括:
    从高层信令或物理层信令获取所述权值系数;
    或者,
    将预设的权值系数确定为所述权值系数;
    或者,
    根据所述参考子载波对所述第二子载波的干扰复数值和所述第一类第一子载波对所述第二子载波的干扰复数值,确定所述权值系数。
  11. 根据权利要求10所述的方法,其特征在于,根据所述参考子载波对所述第二子载波的干扰复数值和所述第一类第一子载波对所述第二子载波的干扰复数值,确定所述权值系数,包括:
    根据如下根据公式三确定所述调制符号对应的权值系数α:
    Figure PCTCN2016100446-appb-100003
    其中,所述Iref为所述参考子载波对所述第二子载波的单位干扰复数值,所述Ianti为所述第一类第一子载波对所述第二子载波的单位干扰复数值。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述根据所述调制符号和权值系数,确定所述抗干扰调制符号,包括:
    将所述权值系数与所述参考子载波中承载的调制符号的乘积确定为所述抗干扰调制符号。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述权值系数的模值小于1。
  14. 一种数据传输装置,其特征在于,包括处理模块和发送模块,其中,
    所述处理模块用于,在多个第一子载波中确定用于发送抗干扰调制符号的第一类第一子载波;
    所述处理模块还用于,根据所述多个第一子载波中第二类第一子载波中承载的调制符号,确定所述抗干扰调制符号,所述第二类第一子载波为对第二子载波存在干扰的子载波;
    所述发送模块用于,在所述第一类第一子载波中发送所述抗干扰调制符号,以抵消所述第二类第一子载波对所述第二子载波的干扰;
    其中,所述多个第一子载波中各子载波的载波间隔为第一载波间隔,所述第二子载波的载波间隔为第二载波间隔,所述多个第一子载波与所述第二子载波频域相邻,第一载波间隔小于第二载波间隔。
  15. 根据权利要求14所述的装置,其特征在于,所述处理模块具体用于:
    确定第一频带,所述第一频带包括所述多个第一子载波中的一部分第一子载波;
    在位于所述第一频带内的所述一部分第一子载波中确定待选子载波集合,所述待选子载波集合中包括一个或多个子载波,且各子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
    将所述待选子载波集合中的一个或多个子载波确定为所述第一类第一子载波。
  16. 根据权利要求15所述的装置,其特征在于,所述处理模块具体用于:
    在所述第二类第一子载波中确定参考子载波,所述第二类第一子载波位于所述第一频带外,所述参考子载波的载波频率与第二子载波的载波频率的频率间隔为所述第二载波间隔的非整数倍;
    根据所述参考子载波中承载的调制符号,确定所述抗干扰调制符号。
  17. 根据权利要求16所述的装置,其特征在于,所述参考子载波是与所述第一频带最近的N个第二类第一子载波,其中,所述N为大于或等于1的正整数。
  18. 根据权利要求16或17所述的装置,其特征在于,所述处理模块具体用于:
    根据所述参考子载波中承载的调制符号,确定所述参考子载波对所述第二子载波的第一干扰复数值;
    根据所述第一干扰复数值,确定第一类第一子载波对所述第二子载波的第二干扰复数值,所述第一干扰复数值和所述第二干扰复数值之和的模值小 于第一干扰复数值的模值;
    根据所述第二干扰复数值,确定所述抗干扰调制符号。
  19. 根据权利要求18所述的装置,其特征在于,所述处理模块具体用于:
    根据如下公式一,确定所述参考子载波对所述第二子载波的第一干扰复数值I:
    Figure PCTCN2016100446-appb-100004
    其中,所述Q为所述参考子载波中承载的调制符号,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述参考子载波与所述第二子载波的载波频率的频率间隔。
  20. 根据权利要求18所述的装置,其特征在于,所述处理模块具体用于:
    根据如下公式二,确定所述抗干扰调制符号Q:
    Figure PCTCN2016100446-appb-100005
    其中,所述I为所述第二干扰复数值,所述T0为所述第二子载波的不含循环前缀的符号长度,所述f为所述第一类第一子载波与所述第二子载波的载波频率的频率间隔。
  21. 根据权利要求17-20任一项所述的装置,其特征在于,在所述N大于1时,所述处理模块具体用于:
    获取各所述参考子载波对所述第二子载波的干扰复数值;
    将各所述参考子载波对所述第二子载波的干扰复数值之和确定为所述第一干扰复数值。
  22. 根据权利要求16或17所述的装置,其特征在于,所述处理模块具体用于:
    确定所述调制符号对应的权值系数;
    根据所述调制符号和权值系数,确定所述抗干扰调制符号。
  23. 根据权利要求22所述的装置,其特征在于,所述处理模块具体用于:从高层信令或物理层信令获取所述权值系数;
    或者,
    将预设的权值系数确定为所述权值系数;
    或者,
    根据所述参考子载波对所述第二子载波的干扰复数值和所述第一类第一子载波对所述第二子载波的干扰复数值,确定所述权值系数。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块具体用于:
    根据如下根据公式三确定所述调制符号对应的权值系数α:
    Figure PCTCN2016100446-appb-100006
    其中,所述Iref为所述参考子载波对所述第二子载波的单位干扰复数值,所述Ianti为所述第一类第一子载波对所述第二子载波的单位干扰复数值。
  25. 根据权利要求22-24任一项所述的装置,其特征在于,所述处理模块具体用于:
    将所述权值系数与所述参考子载波中承载的调制符号的乘积确定为所述抗干扰调制符号。
  26. 根据权利要求22-25任一项所述的装置,其特征在于,所述权值系数的模值小于1。
PCT/CN2016/100446 2016-09-27 2016-09-27 数据传输方法、装置及设备 WO2018058332A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/100446 WO2018058332A1 (zh) 2016-09-27 2016-09-27 数据传输方法、装置及设备
CN201680089400.1A CN109792263B (zh) 2016-09-27 2016-09-27 数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100446 WO2018058332A1 (zh) 2016-09-27 2016-09-27 数据传输方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2018058332A1 true WO2018058332A1 (zh) 2018-04-05

Family

ID=61762408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100446 WO2018058332A1 (zh) 2016-09-27 2016-09-27 数据传输方法、装置及设备

Country Status (2)

Country Link
CN (1) CN109792263B (zh)
WO (1) WO2018058332A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4062613A4 (en) * 2019-11-19 2022-12-28 ZTE Corporation PROCEDURE FOR CONFIGURING PROTECTION SUBSTRATES
CN115549880B (zh) * 2022-09-15 2024-04-12 中国联合网络通信集团有限公司 干扰抑制方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815045A (zh) * 2009-02-23 2010-08-25 财团法人资讯工业策进会 信号传输装置及其传输方法
CN102045287A (zh) * 2009-10-19 2011-05-04 北京三星通信技术研究有限公司 映射和解映射数据的方法、以及发送设备和接收设备
US20110206148A1 (en) * 2009-10-20 2011-08-25 King Fahd University Of Petroleum And Minerals Method for mitigating interference in ofdm communications systems
CN104580058A (zh) * 2015-01-21 2015-04-29 中国科学院自动化研究所 一种ofdm系统子载波间干扰自消除方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159066A (ja) * 2005-12-08 2007-06-21 Sanyo Electric Co Ltd 無線通信装置及び無線通信制御方法
CN101507221B (zh) * 2006-08-21 2013-07-24 皇家飞利浦电子股份有限公司 一种用于消除载波间干扰的传输方法和装置
US8509323B2 (en) * 2006-08-22 2013-08-13 Motorola Mobility Llc Resource allocation including a DC sub-carrier in a wireless communication system
CN101374041B (zh) * 2007-08-21 2012-07-18 中兴通讯股份有限公司 包括不同小区中多ofdm的兼容系统及频谱共享方法
KR101496896B1 (ko) * 2009-02-16 2015-02-27 삼성전자주식회사 대역 확장성을 지원하는 셀룰러 무선통신시스템에서 보호대역이 구성된 하향링크 신호의 송수신 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815045A (zh) * 2009-02-23 2010-08-25 财团法人资讯工业策进会 信号传输装置及其传输方法
CN102045287A (zh) * 2009-10-19 2011-05-04 北京三星通信技术研究有限公司 映射和解映射数据的方法、以及发送设备和接收设备
US20110206148A1 (en) * 2009-10-20 2011-08-25 King Fahd University Of Petroleum And Minerals Method for mitigating interference in ofdm communications systems
CN104580058A (zh) * 2015-01-21 2015-04-29 中国科学院自动化研究所 一种ofdm系统子载波间干扰自消除方法

Also Published As

Publication number Publication date
CN109792263A (zh) 2019-05-21
CN109792263B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
US10944520B2 (en) System and method for common phase error and inter-carrier interference estimation and compensation
JP5536206B2 (ja) 非連続的なリソースクラスタでの基準信号の伝送
US10181923B2 (en) Apparatus and method for generating and using a pilot signal
JP4989656B2 (ja) 干渉信号を制限するようにされたマルチキャリア信号を送信する方法ならびに送信装置、受信方法ならびに受信装置、及び、これらに対応するコンピュータプログラム
JP5302887B2 (ja) キャリア間干渉を相殺する伝送方法及び伝送装置
US20150172019A1 (en) Method and device for transmitting reference signal
TWI646786B (zh) 相位雜訊補償參考信號的傳輸方法、發送設備及接收設備
CN104104623B (zh) 正交频分复用系统中信道估计方法及其装置
WO2017015837A1 (zh) 一种实现数据传输的方法及装置
CN104253680A (zh) 一种fbmc系统中同步信号的发送方法和装置
KR20200050178A (ko) 필터뱅크 다중 반송파 기법을 위한 자원블록간 간섭 제거 방법 및 이를 이용한 장치
JP2016197884A (ja) 通信デバイス上で位相エラーを減らすこと
JP2010154417A (ja) 無線通信システム、無線通信方法、及び無線送受信装置
WO2018058332A1 (zh) 数据传输方法、装置及设备
KR20170069765A (ko) 무선 통신 시스템에서 다중 사용자 수신에 관한 방법 및 장치
US10116407B2 (en) System and method for improving narrowband interference performance
CN108366030A (zh) 一种发送载波信息的方法、基站及终端
CN108737306B (zh) 基于频分复用的通信
CN110392003A (zh) 一种信号接收方法及装置
WO2018058678A1 (zh) 一种信号处理方法及设备
CN113141324B (zh) 信道估计方法及装置
Ramadan et al. Performance improvement of data transmission using a hybrid underwater and terrestrial system
CN107211456A (zh) 数据发送的方法和发射机
KR101282301B1 (ko) 직교 주파수 분할 다중 접속 시스템에서 주파수 옵셋에 의하여 발생하는 채널간 간섭 신호 제거 방법 및 시스템
CN108390837A (zh) 一种lte下行信道估计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917092

Country of ref document: EP

Kind code of ref document: A1