WO2018056238A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2018056238A1
WO2018056238A1 PCT/JP2017/033630 JP2017033630W WO2018056238A1 WO 2018056238 A1 WO2018056238 A1 WO 2018056238A1 JP 2017033630 W JP2017033630 W JP 2017033630W WO 2018056238 A1 WO2018056238 A1 WO 2018056238A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal alignment
bond
bis
polyamic acid
Prior art date
Application number
PCT/JP2017/033630
Other languages
English (en)
French (fr)
Inventor
達也 結城
英之 磯貝
永井 健太郎
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Publication of WO2018056238A1 publication Critical patent/WO2018056238A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent used for manufacturing a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
  • the liquid crystal display element includes a liquid crystal alignment film for aligning liquid crystal molecules.
  • a liquid crystal alignment film for aligning liquid crystal molecules.
  • polyamic acid or polyimide is generally used in order to improve various properties such as heat resistance, mechanical strength, and affinity with liquid crystal.
  • the occurrence of afterimages in the liquid crystal display element is known to be caused by accumulated charges in the liquid crystal cell or caused by the alignment regulating force of the liquid crystal alignment film.
  • the alignment regulating force of the liquid crystal alignment film is important.
  • the present invention has been made in view of the above circumstances, and a liquid crystal alignment agent for obtaining a liquid crystal alignment film excellent in alignment regulating force, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal having the liquid crystal alignment film
  • the main object is to provide a display element.
  • the present inventors have used, as a liquid crystal aligning agent, a polymer obtained using an aromatic tetracarboxylic dianhydride and a diamine having a specific structure. It has been found that the above-mentioned problems can be solved by the inclusion, and the present invention has been completed. Specifically, the present invention provides the following liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element.
  • the gist of the present invention is as follows.
  • the tetracarboxylic dianhydride includes an aromatic tetracarboxylic dianhydride
  • the said diamine contains the compound represented by following formula (1), The liquid crystal aligning agent characterized by the above-mentioned.
  • R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 3 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, or carbamate bond.
  • R 3 is a hydrogen atom or a methyl group
  • A is an alkylene group having 2 to 20 carbon atoms, and —O— may be inserted at one or more positions between carbon-carbon bonds of the alkylene group. good.
  • a liquid crystal display element comprising the liquid crystal alignment film described in 2 above.
  • a liquid crystal display element having excellent afterimage characteristics can be obtained.
  • liquid crystal aligning agent of the present invention will be described in detail.
  • the liquid crystal aligning agent of this invention contains the polymer of at least one of the polyamic acid which is a reaction material of tetracarboxylic dianhydride and diamine, or its imidized polymer.
  • the tetracarboxylic dianhydride includes an aromatic tetracarboxylic dianhydride.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups including at least one carboxyl group bonded to an aromatic ring.
  • the aromatic tetracarboxylic dianhydride is preferably an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups bonded to the same or different aromatic rings.
  • the number of aromatic rings is preferably 1 to 4. In this case, if there is one aromatic ring, an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups bonded to the aromatic ring is preferable. If there are two or more aromatic rings, two carboxyl groups bonded to one aromatic ring are dehydrated in the molecule and two carboxyl groups bonded to other aromatic rings are dehydrated in the molecule.
  • a dianhydride is preferred.
  • tetracarboxylic dianhydride Pyromellitic dianhydride, 1,4-difluoro-pyromellitic dianhydride, 2,5-trifluoromethylpyromellitic dianhydride, trifluoromethylpyromellitic dianhydride, 1,2,5 6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6- Anthracene tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4 '-Biphenyltetracarboxylic dianhydride, 3,3', 4,4'-dipheny
  • pyromellitic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride Anhydrous.
  • aromatic tetracarboxylic dianhydride as described above may be used alone or in combination of two or more.
  • the tetracarboxylic dianhydride may be composed only of an aromatic tetracarboxylic dianhydride, but in addition to the aromatic tetracarboxylic dianhydride, an aliphatic tetracarboxylic acid At least one of a dianhydride or an alicyclic tetracarboxylic dianhydride may be included.
  • Aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups bonded to a chain hydrocarbon structure. However, it is not necessary to be composed only of a chain hydrocarbon structure, and a part thereof may have an alicyclic structure or an aromatic ring structure.
  • the alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups including at least one carboxyl group bonded to the alicyclic structure. However, none of these four carboxyl groups is bonded to the aromatic ring. Moreover, it does not need to be comprised only by the alicyclic structure, You may have a chain hydrocarbon structure and an aromatic ring structure in one part.
  • tetracarboxylic dianhydrides include, for example, 1,2,3,4-butanetetracarboxylic dianhydride as the aliphatic tetracarboxylic dianhydride.
  • alicyclic tetracarboxylic dianhydride examples include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4- Cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexane Tetracarboxylic dianhydride,
  • these aliphatic or alicyclic tetracarboxylic dianhydrides may be used alone or in combination of two or more. .
  • tetracarboxylic dianhydride includes not only aromatic tetracarboxylic dianhydride but also aliphatic or alicyclic tetracarboxylic dianhydride
  • the ratio of aromatic tetracarboxylic dianhydride is tetracarboxylic It is preferably 1 to 99 mol%, more preferably 10 to 90 mol%, still more preferably 20 to 80 mol%, based on the total amount of acid dianhydride.
  • the diamine in the present invention includes a compound represented by the following formula (1) (hereinafter also referred to as a specific diamine). Such specific diamines may be used singly or in combination of two or more.
  • R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 3 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, Or a carbamate bond, and R 3 is a hydrogen atom or a methyl group.
  • A is an alkylene group having 2 to 20 carbon atoms, and —O— may be interposed at one or more positions between carbon-carbon bonds of the alkylene group.
  • R 1 and R 2 are preferably a single bond, —O—, —S—, —NR 12 —, an ester bond or an amide bond, -Is particularly preferred.
  • A preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms from the viewpoint of liquid crystal alignment.
  • the number of —O— which may be sandwiched between carbon-carbon bonds of the alkylene group of A is, for example, 0 to 6, preferably 0 to 3, with the upper limit being one less than the number of carbons of A. The number is more preferably 0 to 1.
  • n is an integer of 2 to 20.
  • n is 2 to 10, more preferably 2 to 6.
  • the structure shown below is more preferable as the structure of —R 1 —AR 2 —.
  • the diamine may be composed only of the specific diamine, but may contain other diamines in addition to the specific diamine.
  • diamines other than the above specific diamines include aliphatic diamines, alicyclic diamines, aromatic diamines, diaminoorganosiloxanes and the like shown below. Specific examples of these are: Examples of the aliphatic diamine include m-xylylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1, 8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane and the like; Examples of alicyclic diamines include 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, bis (4-amin
  • diamines described in the paragraph [0051] on page 17 to the paragraph [0065] on page 22 of International Publication WO2016 / 125871 can be exemplified.
  • the pretilt angle of the liquid crystal can be increased.
  • a diamine other than the specific diamine as described above may be used alone or in combination of two or more.
  • the ratio of the specific diamine is preferably 1 to 99 mol%, more preferably 10 to 90 mol%, based on the total amount of the diamine. More preferred is ⁇ 80 mol%.
  • the imidized polymer in the present invention is a polymer in which an amic acid structure contained in the polyamic acid is dehydrated and closed to form an imide ring or an isoimide ring.
  • the imidized polymer in the present invention may be a completely imidized product in which all of the amic acid structure contained in the polyamic acid is dehydrated and closed, or a partially imidized product in which the amic acid structure remains. .
  • the liquid crystal aligning agent of the present invention contains at least one polymer (hereinafter also referred to as a specific polymer) of the polyamic acid or its imidized polymer as described above.
  • the main synthesis method of the specific diamine in the present invention will be described in detail below.
  • the method demonstrated below is an example, and is not limited to this.
  • the specific diamine in the present invention can be obtained by reducing a dinitro compound and converting a nitro group into an amino group as shown in the following reaction formula.
  • the following reaction formula has described the diamine compound described in the Example as an example.
  • the method for reducing the dinitro compound is not particularly limited, and palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum carbon sulfide, etc. are used as catalysts, and ethyl acetate, toluene, tetrahydrofuran, dioxane, alcohols, etc.
  • Examples of the method include reduction with hydrogen gas, hydrazine, hydrogen chloride and the like in a solvent. You may carry out under pressure using an autoclave etc. as needed.
  • the structure of the substituent that replaces the hydrogen atom in the benzene ring or saturated hydrocarbon part contains an unsaturated bond site, the use of palladium carbon, platinum carbon, etc.
  • the dinitro compound can be obtained by reacting a commercially available biphenyl derivative with nitrobenzene substituted with a leaving group X such as halogen.
  • Preferred leaving groups X include fluorine atom, chlorine atom, bromine atom, iodine atom, tosylate (—OTs), mesylate (—OMs) and the like.
  • the above reaction can be carried out in the presence of a base.
  • the base to be used is not particularly limited as long as it can be synthesized, but inorganic bases such as potassium carbonate, sodium carbonate, cesium carbonate, sodium alkoxide, potassium alkoxide, sodium hydroxide, potassium hydroxide, sodium hydride, pyridine, dimethylaminopyridine , Organic bases such as trimethylamine, triethylamine, and tributylamine.
  • a palladium catalyst such as dibenzylideneacetone palladium or diphenylphosphinoferrocene palladium or a copper catalyst is used in combination, the yield can be improved.
  • the main synthesis method of the polyamic acid which is the specific polymer in the present invention will be described in detail below. In addition, the method demonstrated below is an example, and is not limited to this.
  • the polyamic acid which is a specific polymer in the present invention is obtained by reacting a tetracarboxylic dianhydride containing an aromatic tetracarboxylic dianhydride with a diamine containing a compound represented by the above formula (1). be able to.
  • the ratio of tetracarboxylic dianhydride and diamine used in the polyamic acid synthesis reaction is such that the acid anhydride group of tetracarboxylic dianhydride is 0.5 to 1 per 1 equivalent of amino group of diamine.
  • a ratio of 0.5 equivalent is preferable, and a ratio of 0.8 to 1.2 equivalent is more preferable.
  • the polyamic acid synthesis reaction is preferably carried out in an organic solvent.
  • the reaction temperature at this time is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • the organic solvent is not particularly limited, but specific examples thereof include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, tetra Mention may be made of aprotic polar solvents such as methylurea, hexamethylphosphoric triamide.
  • the amount of organic solvent used (a) is such that the total amount (b) of tetracarboxylic dianhydride and diamine is 0.1 to 50% by weight with respect to the total amount (a + b) of the reaction solution. It is preferable.
  • a reaction solution obtained by dissolving polyamic acid is obtained.
  • This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution, or the isolated polyamic acid was purified. You may use for preparation of a liquid crystal aligning agent.
  • the above reaction solution may be directly subjected to dehydration and cyclization reaction, or may be subjected to dehydration and cyclization reaction after isolating the polyamic acid contained in the reaction solution.
  • the isolated polyamic acid may be purified and then subjected to a dehydration ring closure reaction. Isolation and purification of the polyamic acid can be performed according to a known method.
  • the imidized polymer which is a specific polymer in the present invention can be obtained by dehydrating and ring-closing imidized polyamic acid synthesized as described above.
  • the polyamic acid is preferably dehydrated and closed by heating the polyamic acid, or by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to the solution, and heating if necessary. . Of these, the latter method is preferred.
  • acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used as the dehydrating agent.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid.
  • the dehydration ring closure catalyst for example, tertiary amines such as pyridine, collidine, lutidine, triethylamine and the like can be used.
  • the amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 moles per mole of the dehydrating agent used.
  • Examples of the organic solvent used in the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid.
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C, more preferably 10 to 150 ° C.
  • the reaction time is preferably 1.0 to 120 hours, more preferably 2.0 to 30 hours.
  • reaction solution containing the imidized polymer is obtained.
  • This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution. It may be used for the preparation of a liquid crystal aligning agent or may be used for the preparation of a liquid crystal aligning agent after purifying the isolated imidized polymer. These purification operations can be performed according to known methods.
  • liquid crystal aligning agent of this invention contains the above specific polymers as an essential component, it may contain the other component as needed.
  • other components include polymers other than the specific polymer (also referred to as other polymers), crosslinking agents, adhesion assistants, organic solvents, and the like.
  • Polymers other than the specific polymer impart various properties to the liquid crystal alignment agent of the present invention and the liquid crystal alignment film obtained therefrom, such as the electrical properties of the liquid crystal alignment film, the film strength, and the solution properties of the liquid crystal alignment agent. For the purpose, it can be contained in a liquid crystal aligning agent.
  • the polymer other than the specific polymer include a polyamic acid that is a reaction product of a tetracarboxylic dianhydride that does not include an aromatic tetracarboxylic dianhydride and a diamine that includes the specific diamine, and dehydrating and ring-closing the polyamic acid.
  • polyamic acid that is a reaction product of a diamine not containing a specific diamine and tetracarboxylic dianhydride
  • polyimide formed by dehydrating and ring-closing the polyamic acid, polyamic acid ester, polyester, polyamide, poly Examples thereof include siloxane, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth) acrylate.
  • the liquid crystal aligning agent of the present invention contains a specific polymer and another polymer, the blending ratio of the specific polymer is 5% by mass or more with respect to the total amount of the polymer in the liquid crystal aligning agent. For example, preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 20 to 80% by mass.
  • the crosslinking agent is used in the liquid crystal aligning agent for the purpose of imparting various properties to the liquid crystal aligning film obtained from the liquid crystal aligning agent of the present invention, such as electrical characteristics of the liquid crystal aligning film, film strength, and adhesion to the sealing material. Can be contained.
  • an epoxy group, an isocyanate group, and an oxetane group have at least one substituent selected from the group consisting of a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group, and a lower alkoxyalkyl group in one molecule.
  • Examples thereof include a crosslinkable compound or a crosslinkable compound having two or more polymerizable unsaturated bonds in one molecule.
  • Specific examples include the crosslinking agents shown in paragraphs [0192] to [0232], which are described on pages 44 to 54 of International Publication No. WO2014 / 092126.
  • this invention is not limited to these.
  • the content thereof is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components in the liquid crystal aligning agent.
  • the amount is more preferably 1 to 50 parts by mass, still more preferably 1 to 20 parts by mass.
  • the adhesion assistant is contained in the liquid crystal alignment agent for the purpose of imparting various properties to the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention. be able to.
  • the adhesion assistant include functional silane compounds. Specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and 3-aminopropyldiethoxymethylsilane.
  • the organic solvent can be contained in the liquid crystal aligning agent for the purpose of forming a uniform coating film on the substrate.
  • the organic solvent as an organic solvent for mainly dissolving the polymer component, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N-isopropyl-2 -Pyrrolidone, N-butyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, N- (t-butyl) -2-pyrrolidone, N-pentyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ - Valerolactone, ⁇ -caprolactone 2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-
  • organic solvents Two or more of these organic solvents may be mixed.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, and 1,3-dimethyl-1-imidazolidinone are preferable.
  • an organic solvent to be mixed in order to adjust the evaporation rate of the solvent and the surface tension of the solution and improve the coating property of the liquid crystal aligning agent and the surface smoothness and dimensional accuracy of the coating film for example, ethanol, isopropyl alcohol 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3 -Methyl-2-butanol, neopentyl alcohol, 2-ethyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-2-hexanol, 1 -Heptanol, 2-heptanol, 3-heptanol, 1-octanol 2-octanol, 2-ethyl,
  • organic solvents may be used in combination with one or more of the above organic solvents (mainly organic solvents for dissolving the polymer component).
  • organic solvents mainly organic solvents for dissolving the polymer component.
  • Preferred combinations of organic solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether; N-ethyl-2-pyrrolidone and ethylene glycol monobutyl ether; N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether N-methyl-2-pyrrolidone and ⁇ -butyrolactone and propylene glycol monobutyl ether; N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether; N-methyl-2-pyrrolidone, ⁇ -butyrolactone and 4-hydroxy-4-methyl -2-pentanone and diethylene glycol diethyl ether; N-methyl-2-pyrrolidone, ⁇ -butyrolactone, propylene glycol monobutyl ether and diisopropyl ether; N-methyl- - pyrrolidone and ⁇ - butyrolactone and propylene glyco
  • the content can be suitably selected according to the coating device of a liquid crystal aligning agent, coating conditions, a coating environment, the viscosity of a liquid crystal aligning agent, etc.
  • the amount of the organic solvent in the liquid crystal aligning agent is preferably 90 to 99% by mass
  • the solid content concentration (component other than the organic solvent in the liquid crystal aligning agent) Is preferably 1 to 10% by mass.
  • a solid content concentration of 1.5 to 4.5% by weight is particularly preferable.
  • the solid content concentration is in the range of 3 to 9% by weight and the solution viscosity is in the range of 12 to 50 mPa ⁇ s.
  • the solid content concentration is in the range of 1 to 5% by weight and the solution viscosity is in the range of 3 to 15 mPa ⁇ s.
  • the viscosity of a solution can also be adjusted with the molecular weight of the polymer contained in a liquid crystal aligning agent. The solid content concentration can be adjusted more finely according to the volatility of the organic solvent and the thickness of the liquid crystal alignment film to be obtained.
  • the liquid crystal aligning agent of the present invention includes an imidization accelerator that promotes imidization of polyamic acid, and a dielectric and conductive material for adjusting the dielectric constant and electric resistance of the liquid crystal aligning film. Etc. may be added.
  • the liquid crystal alignment film of this invention is obtained from said liquid crystal aligning agent. If an example of the method of obtaining a liquid crystal aligning film from a liquid crystal aligning agent is given, a liquid crystal aligning agent in the form of a solution is applied to a substrate, dried, and baked on a film obtained by rubbing treatment or photo-alignment treatment. A method of performing an alignment treatment is mentioned.
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as a polyimide substrate, an acrylic substrate, or a polycarbonate substrate may be used. it can.
  • a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process.
  • an opaque object such as a silicon wafer can be used as long as only one substrate is used, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the application method of the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, inkjet method, and the like are common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the solvent is evaporated and baked by a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like.
  • a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent.
  • the thickness of the liquid crystal alignment film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the liquid crystal display device of the present invention is a device in which a liquid crystal cell is prepared by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent, and the liquid crystal cell is used as an element.
  • a liquid crystal display element having a passive matrix structure As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example.
  • an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate under the above conditions.
  • an ultraviolet curable sealing material is disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystals are disposed at predetermined positions on the liquid crystal alignment film surface.
  • the other substrate is bonded and pressure-bonded so that the liquid crystal alignment film faces, and the liquid crystal is spread on the front surface of the liquid crystal alignment film, and then the entire surface of the substrate is irradiated with ultraviolet rays to cure the sealing material. Get a cell.
  • an opening that can be filled with liquid crystal from the outside is provided when a sealing material is disposed at a predetermined location on one substrate.
  • a liquid crystal material is injected into the liquid crystal cell through an opening provided in the sealing material, and then the opening is sealed with an adhesive to obtain a liquid crystal cell.
  • the liquid crystal material may be injected by a vacuum injection method or a method utilizing capillary action in the atmosphere.
  • columnar protrusions are provided on one substrate, spacers are scattered on one substrate, or a sealing material It is preferable to take a means such as mixing a spacer with these or combining them.
  • liquid crystal material examples include nematic liquid crystal and smectic liquid crystal, and among them, nematic liquid crystal is preferable, and either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to the above description as long as the liquid crystal aligning agent of the present invention is used, and may be prepared by other known methods. good.
  • the process for obtaining a liquid crystal display element from a liquid crystal aligning agent is disclosed in many documents, for example, JP-A-2015-135393 (Japanese Patent Publication), page 17 [0074] to page 19 [0081]. Yes.
  • the liquid crystal alignment film of the present invention is not only used as a liquid crystal alignment film for liquid crystal display elements but also a retardation film using polymerizable liquid crystal. It can also be used for liquid crystal alignment films for liquid crystal, liquid crystal alignment films for liquid crystal antennas, and the like.
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • GBL ⁇ -butyrolactone
  • the viscosity of the polyamic acid solution is an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, and a cone rotor TE-1 (1 ° 34 ′, R24 ).
  • DA-4 (2.44 g, 10.0 mmol) was added to a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, and then 27.4 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, CA-1 (2.12 g, 9.7 mmol) was added, 6.7 g of NMP was added, and the mixture was further stirred at 50 ° C. for 18 hours to obtain a polyamic acid solution (PAA- 5) was obtained. The viscosity of this polyamic acid solution at 25 ° C. was 320 mPa ⁇ s.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed on the substrate.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the third-layer pixel electrode is configured by arranging a plurality of U-shaped electrode elements whose central portion is bent, as in the figure described in Japanese Patent Application Laid-Open No. 2014-77845 (Japan Patent Publication). It has a comb-like shape. The width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.
  • a liquid crystal (MLC-3019, manufactured by Merck & Co., Inc.) was vacuum-injected into the empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell. The lower the value of the angle ⁇ of the liquid crystal cell, the better, and the higher the value, the poor.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本発明は、配向規制力に優れた液晶配向膜を得るための液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供する。本発明は、テトラカルボン酸二無水物とジアミンとの反応物であるポリアミック酸、又は該ポリアミック酸のイミド化重合体、から選択される少なくとも一種の重合体を含有し、前記テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物を含むものであり、前記ジアミンは、下記式(1)で表される化合物を含むものであることを特徴とする液晶配向剤に関する。 (式中、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、Rは、水素原子又はメチル基である。Aは炭素数2~20のアルキレン基であり、このアルキレン基の炭素-炭素結合間の一箇所以上に-O-を挟んでいても良い)。

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、液晶表示素子の製造に用いられる液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子に関する。
 液晶表示素子は、液晶分子を配向させるために液晶配向膜を具備する。液晶配向膜の材料としては、耐熱性、機械的強度、液晶との親和性などの各種特性を良好なものとすべく、ポリアミック酸やポリイミドが一般的に使用されている。
 液晶表示素子の高品位化を実現するためには、残像特性を向上させる必要がある。液晶表示素子における残像の発生は、液晶セル内の蓄積電荷に起因するものや液晶配向膜の配向規制力に起因するものなどが知られている。特に、IPS駆動方式やFFS駆動方式などの横電界駆動による液晶表示素子においては、液晶配向膜の配向規制力が重要となる。
 横電界駆動に対して配向規制力が高い液晶配向膜の構造としては、アルキレン構造を持つものやフェニレン構造を持つものが知られている(例えば特許文献1参照)。
国際公開公報WO2004/53583号パンフレット
 本発明は上記事情に鑑みてなされたものであり、配向規制力に優れた液晶配向膜を得るための液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することを主たる目的とする。
 本発明者らは、上記のような従来技術の課題を達成すべく鋭意検討した結果、芳香族テトラカルボン酸二無水物と、特定構造のジアミンとを用いて得られる重合体を液晶配向剤に含有させることにより、上記課題を解決可能であることを見出し、本発明を完成するに至った。具体的には、本発明により以下の液晶配向剤、液晶配向膜、液晶表示素子が提供される。
 本発明の要旨は以下に示す通りである。
1. テトラカルボン酸二無水物とジアミンとの反応物であるポリアミック酸、又は該ポリアミック酸のイミド化重合体、から選択される少なくとも一種の重合体を含有し、
 前記テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物を含むものであり、
 前記ジアミンは、下記式(1)で表される化合物を含むものであることを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000002
 
(式中、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、Rは、水素原子又はメチル基である。Aは炭素数2~20のアルキレン基であり、このアルキレン基の炭素-炭素結合間の一箇所以上に-O-を挟んでいても良い。)
2. 上記1に記載の液晶配向剤により形成された液晶配向膜。
3. 上記2に記載の液晶配向膜を具備する液晶表示素子。
 本発明によって、残像特性に優れた液晶表示素子を得ることができる。
 以下、本発明の液晶配向剤について詳細に説明する。
<ポリアミック酸>
 本発明の液晶配向剤は、テトラカルボン酸二無水物とジアミンとの反応物であるポリアミック酸又はそのイミド化重合体の少なくとも一方の重合体を含有する。
[テトラカルボン酸二無水物]
 本発明における前記テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物を含むことを特徴とする。ここで、芳香族テトラカルボン酸二無水物とは、芳香環に結合する少なくとも1つのカルボキシル基を含めて4つのカルボキシル基が分子内脱水することにより得られる酸二無水物のことである。
 芳香族テトラカルボン酸二無水物として、好ましくは同一の又は異なる芳香環に結合する4つのカルボキシル基が分子内脱水することにより得られる酸二無水物である。芳香環の数は1~4が好ましい。この場合、芳香環が1つであれば、当該芳香環に結合する4つのカルボキシル基が分子内脱水することにより得られる酸二無水物が好ましい。また、芳香環が2つ以上であれば、一の芳香環に結合する2つのカルボキシル基が分子内脱水するとともに他の芳香環に結合する2つのカルボキシル基が分子内脱水することにより得られる酸二無水物が好ましい。
 このようなテトラカルボン酸二無水物の具体例としては、
ピロメリット酸二無水物、1,4-ジフルオロ-ピロメリット酸二無水物、2,5-トリフルオロメチルピロメリット酸二無水物、トリフルオロメチルピロメリット酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-アントラセンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、エチレングリコールジベンゾアートテトラカルボン酸二無水物、ベンゼン-1,4-ジイルビス(1,3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボキシレイト)、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン等を挙げることができる。
 このうち、好ましくはピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物である。
 上記のような芳香族テトラカルボン酸二無水物は、1種単独で又は2種以上の組合せであってもよい。
 本発明において、前記のテトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物のみからなるものであってもよいが、芳香族テトラカルボン酸二無水物に加えて、脂肪族テトラカルボン酸二無水物又は脂環式テトラカルボン酸二無水物の少なくとも一方を含んでいてもよい。
 脂肪族テトラカルボン酸二無水物とは、鎖状炭化水素構造に結合する4つのカルボキシル基が分子内脱水することにより得られる酸二無水物のことである。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 脂環式テトラカルボン酸二無水物とは、脂環式構造に結合する少なくとも1つのカルボキシル基を含めて4つのカルボキシル基が分子内脱水することにより得られる酸二無水物のことである。但し、これら4つのカルボキシル基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 この様なテトラカルボン酸二無水物の具体例として、脂肪族テトラカルボン酸二無水物としては、例えば、1,2,3,4-ブタンテトラカルボン酸二無水物が挙げられる。また、脂環式テトラカルボン酸二無水物としては、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロへキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸二無水物、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸二無水物、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸二無水物、などを挙げることができる。
 上記のような脂肪族又は脂環式テトラカルボン酸二無水物を含む場合、これら脂肪族又は脂環式テトラカルボン酸二無水物は、1種単独で又は2種以上の組合せであってもよい。
 テトラカルボン酸二無水物として、芳香族テトラカルボン酸二無水物だけではなく、脂肪族又は脂環式テトラカルボン酸二無水物を含む場合、芳香族テトラカルボン酸二無水物の比率は、テトラカルボン酸二無水物の全量に対して1~99モル%が好ましく、10~90モル%がより好ましく、20~80モル%が更に好ましい。
[ジアミン]
 本発明における前記ジアミンは、下記式(1)で表される化合物(以下、特定ジアミンともいう)を含むことを特徴とする。このような特定ジアミンは、1種単独で又は2種以上の組合せであってもよい。
Figure JPOXMLDOC01-appb-C000003
 
 上記式(1)において、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、Rは、水素原子又はメチル基である。Aは炭素数2~20のアルキレン基であり、このアルキレン基の炭素-炭素結合間の一箇所以上に-O-を挟んでいても良い。
 上記式(1)において、なかでも、液晶配向性の観点から、R及びRは、単結合、-O-、-S-、-NR12-、エステル結合、アミド結合が好ましく、-O-が特に好ましい。また、Aは、液晶配向性の観点から炭素数2~10が好ましく、より好ましくは炭素数2~6である。
 また、Aのアルキレン基の炭素-炭素結合間に挟んでいても良い-O-の個数は、Aの炭素数より1個少ない場合を上限として、例えば、0~6個、好ましくは0~3個、より好ましくは0~1個である。
 以下に、-R-A-R-の具体的な構造の一例を示すが、これらに限定されるものではない。なお、下記に示す構造中の「*」は、式(1)におけるアミノ基を有するフェニレン又はアミノ基を有するビフェニレンとの結合を表し、nは2~20の整数である。好ましくは、nは2~10、より好ましくは2~6である。
Figure JPOXMLDOC01-appb-C000004
 
中でも、-R-A-R-の構造としては、以下に示す構造がより好ましい。
Figure JPOXMLDOC01-appb-C000005
 
 本発明において、前記のジアミンは、上記の特定ジアミンのみからなるものであってもよいが、上記の特定ジアミンに加えて、他のジアミンを含んでいてもよい。
 上記の特定ジアミン以外のジアミンとしては、例えば、下記に示す脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサンなどを挙げることができる。これらの具体例としては、
脂肪族ジアミンとして、例えばm-キシリレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどを;
脂環式ジアミンとして、例えば1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどを;
芳香族ジアミンとして、例えばp-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカンなどを;
ジアミノオルガノシロキサンとして、例えば、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどを、それぞれ挙げることができる。
 また、芳香族ジアミンとしては、上記のように列挙したもの以外にも、国際公開公報WO2016/125871の17頁段落[0051]~22頁段落[0065]に掲載されるジアミンを挙げることができる。かかるジアミンを用いることで、液晶のプレチルト角を高めることが可能となる。
 上記のような特定ジアミン以外のジアミンは1種単独で又は2種以上の組合せであってもよい。
 また、ジアミンとして、特定ジアミンだけではなく、特定ジアミン以外のジアミンを含む場合、特定ジアミンの比率は、ジアミンの全量に対して1~99モル%が好ましく、10~90モル%がより好ましく、20~80モル%が更に好ましい。
<イミド化重合体>
 本発明におけるイミド化重合体は、前記のポリアミック酸に含まれるアミック酸構造が脱水閉環して、イミド環またはイソイミド環を形成している重合体である。本発明におけるイミド化重合体は、前記のポリアミック酸に含まれるアミック酸構造のすべてが脱水閉環した完全イミド化物であってもよく、アミック酸構造が残存している部分イミド化物であってもよい。
 本発明の液晶配向剤は、上記の如きポリアミック酸又はそのイミド化重合体の少なくとも一方の重合体(以下、特定重合体ともいう)を含有する。
<特定ジアミンの合成方法>
 本発明における特定ジアミンの主な合成法につき以下詳述する。なお、以下で説明した方法は一つの例であり、これに限定されるものではない。
 本発明における特定ジアミンは、下記反応式で示すように、ジニトロ化合物を還元してニトロ基をアミノ基に変換することで得られる。なお、下記反応式は、実施例において記載したジアミン化合物を1つの例として記載している。
Figure JPOXMLDOC01-appb-C000006
 
 ジニトロ化合物を還元する方法は特に制限はなく、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系などの溶媒中、水素ガス、ヒドラジン、塩化水素などによって還元を行う方法が例示できる。必要に応じてオートクレープなどを用いて加圧下で行ってもよい。一方で、ベンゼン環や飽和炭化水素部の水素原子を置換する置換基の構造に不飽和結合部位を含む場合、パラジウムカーボンや白金カーボンなどを用いるとこの不飽和結合部位が還元されてしまい、飽和結合となってしまう恐れがあるため、還元鉄や錫、塩化錫などの遷移金属を触媒として用いた還元条件が好ましい。
 ジニトロ化合物の合成においては、下記反応式に示すように、市販のビフェニル誘導体を、ハロゲンなどの脱離基Xが置換されたニトロベンゼンと反応させることにより、該ジニトロ化合物を得ることができる。好ましい脱離基Xとしてはフッ素原子、塩素原子、臭素原子、ヨウ素原子、トシラート(-OTs)、メシラート(-OMs)などが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 
 上記反応は、塩基存在下にて行なうことができる。用いる塩基は合成可能であれば特に限定はないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、ナトリウムアルコキシド、カリウムアルコキシド、水酸化ナトリウム、水酸化カリウム、水素化ナトリウムなどの無機塩基、ピリジン、ジメチルアミノピリジン、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの有機塩基などが挙げられる。また、場合によっては、ジベンジリデンアセトンパラジウムやジフェニルフォスフィノフェロセンパラジウムのようなパラジウム触媒や銅触媒などを併用すると、収率を向上させることができる。合成のし易さの観点では、炭酸カリウムを用いる方法が好ましいが、この方法以外でも合成は可能であるため、特に合成法は限定されない。
<ポリアミック酸の合成方法>
 本発明における特定重合体であるポリアミック酸の主な合成法につき以下詳述する。なお、以下で説明した方法は一つの例であり、これに限定されるものではない。
 本発明における特定重合体であるポリアミック酸は、芳香族テトラカルボン酸二無水物を含むテトラカルボン酸二無水物と、上記式(1)で表される化合物を含むジアミンとを反応させることにより得ることができる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.5~1.5当量となる割合が好ましく、さらに好ましくは0.8~1.2当量となる割合である。
 ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。
 ここで、有機溶媒としては特に限定されないが、あえてその具体例を示すなら、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミドなどの非プロトン性極性溶媒を挙げることができる。
 有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミンの合計量(b)が、反応溶液の全量(a+b)に対して0.1~50重量%になるような量とすることが好ましい。
 以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリアミック酸を精製したうえで液晶配向剤の調製に供してもよい。ポリアミック酸を脱水閉環してポリイミドとする場合には、上記反応溶液をそのまま脱水閉環反応に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで脱水閉環反応に供してもよく、又は単離したポリアミック酸を精製したうえで脱水閉環反応に供してもよい。ポリアミック酸の単離および精製は公知の方法に従って行うことができる。
<イミド化重合体の合成方法>
 本発明における特定重合体であるイミド化重合体の主な合成法につき以下詳述する。なお、以下で説明した方法は一つの例であり、これに限定されるものではない。
 本発明における特定重合体であるイミド化重合体は、前記の如くして合成されたポリアミック酸を脱水閉環してイミド化することにより得ることができる。
 ポリアミック酸の脱水閉環は、好ましくはポリアミック酸を加熱する方法により、又はポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤および脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。このうち、後者の方法によることが好ましい。
 上記ポリアミック酸の溶液中に脱水剤および脱水閉環触媒を添加する方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01~20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は好ましくは0~180℃であり、より好ましくは10~150℃である。反応時間は好ましくは1.0~120時間であり、より好ましくは2.0~30時間である。
 このようにしてイミド化重合体を含有する反応溶液が得られる。この反応溶液は、これをそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤および脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよく、又は単離したイミド化重合体を精製したうえで液晶配向剤の調製に供してもよい。これらの精製操作は公知の方法に従って行うことができる。
<液晶配向剤>
 本発明の液晶配向剤は、上記の如き特定重合体を必須成分として含有するが、必要に応じてその他の成分を含有していてもよい。かかるその他の成分としては、例えば特定重合体以外の重合体(その他の重合体ともいう)、架橋剤、密着助剤、有機溶媒などを挙げることができる。
[その他の重合体]
 特定重合体以外の重合体は、液晶配向膜の電気特性、膜強度、液晶配向剤の溶液特性など、本発明の液晶配向剤やそこから得られる液晶配向膜に対して様々な特性を付与する目的で、液晶配向剤中に含有させることができる。
 特定重合体以外の重合体としては、例えば芳香族テトラカルボン酸二無水物を含まないテトラカルボン酸二無水物と特定ジアミンを含むジアミンとの反応物であるポリアミック酸、該ポリアミック酸を脱水閉環してなるポリイミド、特定ジアミンを含まないジアミンとテトラカルボン酸二無水物との反応物であるポリアミック酸、該ポリアミック酸を脱水閉環してなるポリイミド、などの他、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。
 なお、本発明の液晶配向剤に特定重合体とその他の重合体とを含有する場合、特定重合体の配合比率は、液晶配向剤中の全重合体量に対して5質量%以上とすることが好ましく、例えば5~95質量%が好ましく、10~90質量%がより好ましく、20~80質量%が更に好ましい。
[架橋剤]
 架橋剤は、液晶配向膜の電気特性、膜強度、シール材との接着性など、本発明の液晶配向剤から得られる液晶配向膜に対して様々な特性を付与する目的で、液晶配向剤中に含有させることができる。
 架橋剤としては、エポキシ基、イソシアネート基、オキセタン基はシクロカーボネート基、ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、又は重合性不飽和結合を1分子中に2個以上有する架橋性化合物などを挙げることができる。具体例として、国際公開公報WO2014/092126の44頁~54頁に掲載される、段落[0192]~[0232]に示される架橋剤が挙げられる。
 なお、下記に特に好ましい架橋剤の例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
 なお、本発明の液晶配向剤に架橋剤を含有する場合、その含有量は、液晶配向剤中のすべての重合体成分100質量部に対して、0.1~100質量部が好ましく、0.1~50質量部がより好ましく、更に好ましくは1~20質量部である。
[密着助剤]
 密着助剤は、液晶配向膜と基板との密着性を向上させる他、本発明の液晶配向剤から得られる液晶配向膜に対して様々な特性を付与する目的で、液晶配向剤中に含有させることができる。
 密着助剤としては、例えば官能性シラン化合物が挙げられる。官能性シラン化合物の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、9-トリメトキシシリル-3,6-ジアザノナン酸メチル、9-トリエトキシシリル-3,6-ジアザノナン酸メチル、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルジエトキシメチルシラン等を挙げることができる。
 なお、本発明の液晶配向剤に密着助剤を含有する場合、その含有量は、重合体の合計100質量部に対して0.01~20質量部が好ましく、より好ましくは0.1~10質量部である。
[有機溶媒]
 有機溶媒は、基板上に均一な塗膜を形成させる目的で、液晶配向剤中に含有させることができる。
 有機溶媒としては、主に重合体成分を溶解させるための有機溶媒として、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-プロピル-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-ブチル-2-ピロリドン、N-イソブチル-2-ピロリドン、N-(t-ブチル)-2-ピロリドン、N-ペンチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、σ-バレロラクトン、ε-カプロラクトン2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N,2-トリメチルプロパンアミド、1,3-ジメチル-1-イミダゾリジノン、などが挙げられる。これらの有機溶媒は2種以上を混合してもよい。
 上記の有機溶媒のなかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、1,3-ジメチル-1-イミダゾリジノン、は好ましい。
 更には、溶媒の蒸発速度や溶液の表面張力を調整し、液晶配向剤の塗布性および塗膜の表面平滑性や寸法精度などを向上させるために混合する有機溶媒として、例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、2-エチル-1-ブタノール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-2-ヘキサノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、2-(メトキシメトキシ)エタノール、2-(ヘキシルオキシ)エタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールプロピルメチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-プロポキシ-2-プロパノール、1-ブトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、1-(ブトキシエトキシ)プロパノール、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン、エチレンカーボネート、プロピレンカーボネート、酢酸メチル、酢酸エチル、酢酸ブチル、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、3-エトキシブチルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、プロピレングリコールモノメチルエーテルアセタート、ジエチレングリコールアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、3-メトキシプロピオン酸、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、乳酸イソアミル、などが挙げられる。これらの有機溶媒は2種以上を混合してもよい。
 これらの有機溶媒は前記の有機溶媒(主に重合体成分を溶解させるための有機溶媒)に加えて1種または2種以上を混合してもよい。
 上記の有機溶媒のなかでも、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールジエチルエーテル、
ジイソプロピルエーテル、2,6-ジメチル-4-ヘプタノール、ジプロピレングリコールジメチルエーテル、は好ましい。
 有機溶媒の好ましい組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル;N-エチル-2-ピロリドンとエチレングリコールモノブチルエーテル;N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル;N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル;N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル;N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル;N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル;N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール;N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、などを挙げることができる。
 なお、本発明の液晶配向剤に有機溶媒を含有する場合、その含有量は液晶配向剤の塗布装置、塗布条件、塗布環境、液晶配向剤の粘度などに応じて適宜選択することができる。例えばスピンコート法、転写印刷法、インクジェット塗布法などで塗布する場合、液晶配向剤に占める有機溶媒の量は90~99質量%が好ましく、固形分濃度(液晶配向剤において、有機溶媒以外の成分が占める割合)としては1~10質量%が好ましい。
 更なる例を示すならば、例えばスピンコート法による場合には固形分濃度1.5~4.5重量%の範囲が特に好ましい。転写印刷法による場合には、固形分濃度を3~9重量%の範囲とし、かつ溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット塗布法による場合には、固形分濃度を1~5重量%の範囲とし、かつ溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。なお、溶液の粘度は、液晶配向剤に含有される重合体の分子量によっても調整することができる。また、固形分濃度は、有機溶媒の揮発性や得ようとする液晶配向膜の厚みなどに応じて、より細かく調整され得る。
 本発明の液晶配向剤は、以上のような成分に加えて、ポリアミック酸のイミド化を促進するイミド化促進剤や、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などを添加してもよい。
<液晶配向膜>
 本発明の液晶配向膜は、上記の液晶配向剤から得られるものである。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、溶液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対してラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板の他に、ポリイミド基板、アクリル基板、ポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50~120℃で1~10分焼成し、その後、150~300℃で、5~120分焼成する条件が挙げられる。
 焼成後の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましく、10~200nmがより好ましい。
<液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成する。
 次いで、液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外線硬化性のシール材を配置し、さらに液晶配向膜面上の所定の数カ所に液晶を配置した後、液晶配向膜が対向するように他方の基板を貼り合わせて圧着することにより液晶を液晶配向膜前面に押し広げた後、基板の全面に紫外線を照射してシール材を硬化することで液晶セルを得る。
 または、基板の上に液晶配向膜を形成した後の工程として、一方の基板上の所定の場所にシール材を配置する際に、外部から液晶を充填可能な開口部を設けておき、液晶を配置しないで基板を貼り合わせた後、シール材に設けた開口部を通じて液晶セル内に液晶材料を注入し、次いで、この開口部を接着剤で封止して液晶セルを得る。液晶材料の注入には、真空注入法でもよいし、大気中で毛細管現象を利用した方法でもよい。
 上記のいずれの方法においても、液晶セル内に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサーを散布するか、シール材にスペーサーを混入するか、又はこれらを組み合わせるなどの手段を取ることが好ましい。
 上記の液晶材料としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
 なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の記載に限定されるものでは無く、その他の公知の手法で作成されたものであっても良い。液晶配向剤から液晶表示素子を得るまでの工程は、例えば特開2015-135393(日本国特許公開公報)の17ページ[0074]~19ページ[0081]などの他、数多くの文献でも開示されている。
 以上は、本発明の液晶配向膜を用いた液晶表示素子について述べたが、本発明の液晶配向膜は、液晶表示素子用の液晶配向膜としてだけでなく、重合性液晶を用いた位相差フィルム用の液晶配向膜や、液晶アンテナ用の液晶配向膜などにも使用することができる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
本実施例及び比較例で使用した化合物の略号、及び特性評価の方法は、以下のとおりである。
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
GBL:γ-ブチロラクトン
Figure JPOXMLDOC01-appb-C000010
 
[ジアミンDA-1の合成方法]
 本実施例で使用したジアミンDA-1は、以下に示す2ステップの経路で合成した。
第1ステップ:4-ニトロ‐4’‐(2-(4-ニトロフェノキシ)エトキシ)-1,1’-ビフェニル(DA-1-1)の合成
Figure JPOXMLDOC01-appb-C000011
 
 4-ヒドロキシ‐4’-ニトロビフェニル(10.0g、46.5mmol)をDMF(40.0g)に溶解し、炭酸カリウム(17.2g、69.7mmol)を加え、β‐ブロモ‐4-ニトロフェネトール(17.2g、69.7mmol)のDMF溶液(40.0g)を80℃で滴下した。
 そのまま80℃で2時間撹拌し、高速液体クロマトグラフィー(以下、HPLCと略す)で原料の消失を確認した。その後、反応液を室温に放冷し、水(500.0g)を加えて析出物をろ過し、水(100.0g)で2回洗浄した。得られたろ物はMeOH(500.0g)で2回洗浄した。析出物をろ過し、50℃で減圧乾燥することで、4-ニトロ‐4’‐(2-(4-ニトロフェノキシ)エトキシ)-1,1’-ビフェニルを得た(白色粉末、収量:17.6g、収率:99%)。
1H NMR (DMSO- d6):δ 8.22-8.29 (m, 4H, C6H4), 7.94 (d, J = 7.2 Hz, 2H, C6H4), 7.79 (d, J = 8.8 Hz, 2H, C6H4), 7.25-7.15 (m, 4H, C6H4)4.54-4.45 (m, 4H, CH2). 13C{1H} NMR (DMSO- d6):δ 164.1, 159.6, 146.6, 146.5, 141.4, 130.7, 129.1, 127.5, 126.4, 124.5, 115.7, 115.6, 67.8, 66.7(each s).
 融点(DSC):193℃
第2ステップ:4’‐(2-(4-アミノフェノキシ)エトキシ)-[1,1’-ビフェニル]-4-アミン(DA-1)の合成
Figure JPOXMLDOC01-appb-C000012
 
 4-ニトロ‐4’‐(2-(4-ニトロフェノキシ)エトキシ)-1,1’-ビフェニル(5.0g、13.1mmol)をテトラヒドロフラン(100.0g)に溶解し、5%パラジウム-炭素(0.1g)を加え、水素雰囲気下、室温で2時間撹拌した。原料の消失をHPLCで確認し、テトラヒドロフラン(800.0g)に溶解し、ろ過により触媒を除去し、ろ液を濃縮した。これをヘプタン(200.0g)で洗浄し、析出した固体をろ過し、乾燥することでDA-1を得た(白色粉末、収量:4.0g、収率:94%)。
1H NMR (DMSO- d6):δ 7.45 (d, J = 8.8 Hz, 2H, C6H4), 7.29 (d, J = 8.8 Hz, 2H, C6H4), 6.97 (d, J = 8.8 Hz, 2H, C6H4), 6.70 (d, J = 8.8 Hz, 2H, C6H4), 6.62 (d, J = 8.8 Hz, 2H, C6H4), 6.52 (d, J = 8.8 Hz, 2H, C6H4), 5.14 (s, 2H, NH2), 4.64 (s, 2H, NH2), 4.24 (br, 2H, CH2), 4.16 (br, 2H, CH2). 13C{1H} NMR (DMSO- d6):δ 157.2, 150.0, 148.2, 143.1, 133.9, 127.7, 126.2, 116.3, 115.9, 115.5, 115.0, 114.4, 67.2, 66.9 (each s).
融点(DSC):156℃
[粘度測定]
 合成例又は比較合成例において、ポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)で測定した。
[合成例1]
 撹拌装置付きおよび窒素導入管付きの50ml四つ口フラスコにDA-1を(3.20g,10mmol)を加えた後、NMP30.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を(2.07g,9.5mmol)加え,NMPを7.7g加えた後、さらに50℃条件下にて12時間攪拌することでポリアミド酸溶液(PAA-1)を得た。このポリアミド酸溶液の25℃における粘度は270mPa・sであった。
[合成例2]
 撹拌装置付きおよび窒素導入管付きの50ml四つ口フラスコにDA-1を(3.20g,10mmol)を加えた後、NMP30.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を(0.87g,4.0mmol)加え, CA-2を(1.08g,5.5mmol)加え,NMPを7.6g加えた後、さらに50℃条件下にて12時間攪拌することでポリアミド酸溶液(PAA-2)を得た。このポリアミド酸溶液の25℃における粘度は245mPa・sであった。
[合成例3]
 撹拌装置付きおよび窒素導入管付きの100ml四つ口フラスコにDA-2を(3.19g,16.0mmol)、DA-3を(0.79g、4.0mmol)加えた後、NMP58.8gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-3を(1.20g,4.0mmol)加え, CA-2を(2.98g,15.2mmol)を加えた後、NMPを14.7g加えた後、さらに室温条件下にて12時間攪拌することでポリアミド酸溶液(PAA-3)を得た。このポリアミド酸溶液の25℃における粘度は153mPa・sであった。
[合成例4]
 合成例1で得られたポリアミック酸溶液(PAA-1)を11.3g分取し、攪拌しながらNMPを9.9g、BCSを7.5g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液を1.4g加え、更に室温で2時間撹拌し液晶配配向剤(Q-1)を得た。
[合成例5]
 合成例2で得られたポリアミック酸溶液(PAA-2)を11.3g分取し、攪拌しながらNMPを9.9g、BCSを7.5g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液を1.4g加え、更に室温で2時間撹拌し液晶配配向剤(Q-2)を得た。
[合成例6]
 合成例1で得られたポリアミック酸溶液(PAA-1)を3.8g分取し、そこに合成例3で得られたポリアミック酸溶液(PAA-3)を14.7g加え、攪拌しながらNMPを16.9g、BCSを12.5g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液を1.9g加え、更に室温で2時間撹拌し液晶配配向剤(Q-3)を得た。
[比較合成例1]
 撹拌装置付きおよび窒素導入管付きの50ml四つ口フラスコにDA-3を(1.98g,10.0mmol)加えた後、NMP23.1gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を(0.87g,4.0mmol)、CA-2を(1.08g,5.5mmol)加え,NMPを5.7g加えた後、さらに50℃条件下にて12時間攪拌することでポリアミド酸溶液(PAA-4)を得た。このポリアミド酸溶液の25℃における粘度は260mPa・sであった。
[比較合成例2]
 撹拌装置付きおよび窒素導入管付きの50ml四つ口フラスコにDA-4を(2.44g,10.0mmol)を加えた後、NMP27.4gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を(2.12g,9.7mmol)加え,NMPを6.7g加えた後、さらに50℃条件下にて18時間攪拌することでポリアミド酸溶液(PAA-5)を得た。このポリアミド酸溶液の25℃における粘度は320mPa・sであった。
[比較合成例3]
 比較合成例1で得られたポリアミック酸溶液(PAA-4)を11.3g分取し、攪拌しながらNMPを9.9g、BCSを7.5g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液を1.4g加え、更に室温で2時間撹拌し液晶配配向剤(Q-4)を得た。
[比較合成例4]
 比較合成例2で得られたポリアミック酸溶液(PAA-5)を3.8g分取し、そこに合成例3で得られたポリアミック酸溶液(PAA-3)を14.7g加え、攪拌しながらNMPを16.9g、BCSを12.5g、3-アミノプロピルトリエトキシシランを1重量%含むNMP溶液を1.9g加え、更に室温で2時間撹拌し液晶配配向剤(Q-5)を得た。
<液晶表示素子の作製>
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、特開2014-77845号公報(日本国特許公開公報)に記載の図と同様、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で20分間焼成して膜厚60nmの塗膜として、各基板上にポリイミド膜を得た。このポリイミド膜上を、所定のラビング方向で、レーヨン布によりラビング(ロール径120mm、回転数500rpm、移動速度30mm/sec、押し込み量0.3mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
 その後、上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶(MLC-3019、メルク社製)を常温で真空注入したのち、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから各評価に使用した。
<液晶配向の安定性評価>
 この液晶セルを用い、60℃の恒温環境下、周波数30Hzで10VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が低いほど良好、高いほど不良として評価した。
<実施例1~3>
 合成例4~6で得られた液晶配向剤を用いて、液晶配向の安定性評価を行った。結果を表1に示す。
<比較例1~3>
 比較合成例3~4で得られた液晶配向剤を用いて、液晶配向の安定性評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 


 

Claims (3)

  1.  テトラカルボン酸二無水物とジアミンとの反応物であるポリアミック酸、又は該ポリアミック酸のイミド化重合体、から選択される少なくとも一種の重合体を含有し、
     前記テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物を含むものであり、
     前記ジアミンは、下記式(1)で表される化合物を含むものであることを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、Rは、水素原子又はメチル基である。Aは炭素数2~20のアルキレン基であり、このアルキレン基の炭素-炭素結合間の一箇所以上に-O-を挟んでいても良い)。
  2.  請求項1に記載の液晶配向剤により形成された、液晶配向膜。
  3.  請求項2に記載の液晶配向膜を具備する、液晶表示素子。


     
PCT/JP2017/033630 2016-09-20 2017-09-19 液晶配向剤、液晶配向膜及び液晶表示素子 WO2018056238A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016183312A JP2019197078A (ja) 2016-09-20 2016-09-20 液晶配向剤、液晶配向膜及び液晶表示素子
JP2016-183312 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056238A1 true WO2018056238A1 (ja) 2018-03-29

Family

ID=61690329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033630 WO2018056238A1 (ja) 2016-09-20 2017-09-19 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (3)

Country Link
JP (1) JP2019197078A (ja)
TW (1) TWI753017B (ja)
WO (1) WO2018056238A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716352A (zh) * 2018-07-12 2020-01-21 香港科技大学 一种用于制备液晶光配向层的组合物及其应用方法
WO2021177113A1 (ja) * 2020-03-06 2021-09-10 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112912446A (zh) * 2018-12-10 2021-06-04 Jsr株式会社 组合物及其用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080033A1 (ja) * 2014-11-19 2016-05-26 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶表示素子、重合体及び化合物
JP2016145957A (ja) * 2015-02-03 2016-08-12 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶素子、重合体、ジアミン及び酸二無水物
WO2016152928A1 (ja) * 2015-03-24 2016-09-29 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2017061575A1 (ja) * 2015-10-07 2017-04-13 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080033A1 (ja) * 2014-11-19 2016-05-26 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶表示素子、重合体及び化合物
JP2016145957A (ja) * 2015-02-03 2016-08-12 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶素子、重合体、ジアミン及び酸二無水物
WO2016152928A1 (ja) * 2015-03-24 2016-09-29 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2017061575A1 (ja) * 2015-10-07 2017-04-13 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716352A (zh) * 2018-07-12 2020-01-21 香港科技大学 一种用于制备液晶光配向层的组合物及其应用方法
WO2021177113A1 (ja) * 2020-03-06 2021-09-10 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN115210638A (zh) * 2020-03-06 2022-10-18 日产化学株式会社 液晶取向剂、液晶取向膜以及液晶显示元件

Also Published As

Publication number Publication date
TW201823310A (zh) 2018-07-01
JP2019197078A (ja) 2019-11-14
TWI753017B (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
JP5729299B2 (ja) ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤
KR101385331B1 (ko) 액정 표시 소자 및 액정 배향제
JP6249197B2 (ja) ジアミン化合物
JP6233309B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP5651953B2 (ja) 液晶配向剤、及び液晶表示素子
JP6478052B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子
JP6635272B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6662306B2 (ja) 液晶配向剤、液晶表示素子及び液晶表示素子の製造方法
KR20160077083A (ko) 액정 배향제, 액정 배향막, 및 액정 배향 소자
KR20160074520A (ko) 열 탈리성기를 갖는 폴리이미드 전구체 및/또는 폴리이미드를 함유하는 액정 배향제
WO2012133820A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
WO2014142168A1 (ja) 光反応性基を有する架橋性化合物を含有する液晶配向剤
JP6217937B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
TWI753017B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP6183616B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN110192148B (zh) 液晶表示元件的制造方法以及液晶表示元件用基板和液晶表示元件组装体
JP6569872B2 (ja) 液晶配向剤、液晶配向膜およびそれを用いた液晶表示素子
WO2020080477A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2022234820A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP