WO2018055915A1 - 二次電池制御装置 - Google Patents

二次電池制御装置 Download PDF

Info

Publication number
WO2018055915A1
WO2018055915A1 PCT/JP2017/027609 JP2017027609W WO2018055915A1 WO 2018055915 A1 WO2018055915 A1 WO 2018055915A1 JP 2017027609 W JP2017027609 W JP 2017027609W WO 2018055915 A1 WO2018055915 A1 WO 2018055915A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
control device
deterioration
utilization rate
Prior art date
Application number
PCT/JP2017/027609
Other languages
English (en)
French (fr)
Inventor
将成 織田
鈴木 修一
茂樹 牧野
石津 竹規
亮平 中尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/328,363 priority Critical patent/US11346890B2/en
Priority to CN201780045447.2A priority patent/CN109511281B/zh
Priority to EP17852696.8A priority patent/EP3518372A4/en
Publication of WO2018055915A1 publication Critical patent/WO2018055915A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery control device.
  • Patent Document 1 describes a technique for knowing the state of the charge / discharge curve of the whole positive electrode and the charge / discharge curve of the whole negative electrode inside the secondary battery in a non-destructive manner.
  • the discharge capacity of a battery is determined by member factors such as the amount of effective positive electrode active material, the amount of effective negative electrode active material, and the positional relationship between the positive electrode and the negative electrode. It is expressed as a function with. Based on this function, the deterioration state of each member factor of the secondary battery is estimated.
  • the secondary battery control device includes a deterioration degree calculation unit that calculates a deterioration degree of the secondary battery for each member factor of the secondary battery, and a calculation result of the secondary battery based on a calculation result of the deterioration degree calculation unit.
  • the determination part which determines the member factor which has degraded among member factors, and the control part which changes the operating condition of the said secondary battery according to the said member factor which has deteriorated are provided.
  • the present invention it is possible to extend the life of the secondary battery by performing control according to the deterioration of the secondary battery.
  • (A) is a graph showing a measurement example of the current of the secondary battery
  • (b) is a graph showing a measurement example of the temperature of the secondary battery
  • (c) is a graph showing a measurement example of the voltage of the secondary battery. It is a graph which shows an example of transition of positive electrode utilization factor mp1.
  • (A) is a graph showing a positive electrode utilization rate mp, (b) a negative electrode utilization rate mn, and (c) a negative electrode capacity deviation dn. It is a flowchart which shows the processing operation of a battery control part.
  • the charge / discharge curves of the secondary battery obtained when charging / discharging the secondary battery with a minute current are the charge / discharge curves of the positive electrode alone and the negative electrode alone measured separately. Can be reproduced well by performing the overlay calculation. As parameters used for this calculation, an index is determined regarding the amount of positive electrode active material contributing to charge / discharge, the amount of negative electrode active material contributing to charge / discharge, and the positional relationship between the charge / discharge curves of the positive electrode and the negative electrode.
  • the utilization factor of the positive electrode active material amount is described as the positive electrode utilization factor
  • the utilization factor of the negative electrode active material amount is described as the negative electrode utilization factor
  • the index regarding the positional relationship between the charge and discharge curves of the positive electrode and the negative electrode is described as negative electrode capacity deviation.
  • FIG. 1 is a diagram illustrating a secondary battery system.
  • the secondary battery system includes a secondary battery 10, a detection unit 20, a battery control unit 30, and a host control unit 40.
  • the secondary battery 10 is configured by connecting a plurality of cells in series.
  • FIG. 1 shows an example in which a plurality of cells are connected in series, cells connected in series may be further provided in parallel.
  • the secondary battery 10 is used, for example, as a power source for a vehicle travel motor.
  • the detection unit 20 includes a current detection unit 21 that detects a current flowing through the secondary battery 10, a voltage detection unit 22 that detects the voltage of the secondary battery 10, and a temperature detection unit 23 that detects the temperature of the secondary battery 10. Is provided.
  • the battery control unit 30 includes a timer 31, a calculation unit 32, a determination unit 33, a control unit 34, and a storage unit 35.
  • the battery controller 30 receives the current detected by the current detector 21, the voltage detected by the voltage detector 22, and the temperature detected by the temperature detector 23. Moreover, the battery control part 30 controls the charging / discharging state of the secondary battery 10 according to predetermined operating conditions.
  • the timer 31 is set with a time interval for detecting the current, voltage, and temperature of the secondary battery 10.
  • the calculating part 32 calculates the deterioration degree for every member factor of the secondary battery 10, for example, a positive electrode utilization rate, a negative electrode utilization rate, and negative electrode capacity deviation based on the 1st prediction formula mentioned later.
  • the determination unit 33 determines a member factor of the deteriorated secondary battery 10 based on the calculation result by the calculation unit 32.
  • the control unit 34 changes the operating condition of the secondary battery 10 according to the deteriorated member factor. As the change of the operating condition, for example, the secondary battery 10 is operated at a high voltage, or the upper limit current of the secondary battery 10 is lowered. The control unit 34 controls the charge / discharge state of the secondary battery 10 along the operating conditions.
  • the storage unit 35 stores in advance a function of the usage time of the secondary battery 10 and an ideal deterioration degree as a second prediction formula.
  • This second prediction formula shows a transition of an ideal deterioration degree of the secondary battery 10, and is a function defined in advance according to the usage form of the secondary battery.
  • the host control unit 40 is connected to the battery control unit 30 and instructs the battery control unit 30 to perform a charge / discharge command.
  • FIG. 2 is a graph showing a measurement example of the secondary battery 10 by the detection unit 20.
  • 2A shows current
  • FIG. 2B shows temperature
  • FIG. 2C shows voltage.
  • the horizontal axis of each graph represents time, in which the values measured at time t 1 increments the graph.
  • the current I flowing through the secondary battery 10 is initially 0, and then gradually decreases in the positive direction after flowing rapidly in the positive direction. After that, it flows in the negative direction and gradually approaches zero.
  • the temperature T of the secondary battery 10 slightly increases with time.
  • the voltage V of the secondary battery 10 is initially high, then becomes low, and remains high again.
  • each graph shown to Fig.2 (a), (b), (c) shows an example in order to demonstrate this embodiment, and other measured values may be sufficient as it.
  • These measured values are detected by the current detection unit 21, the voltage detection unit 22, and the temperature detection unit 23 every time t 1 defined by the timer 31 of the battery control unit 30, and the values are sent to the battery control unit 30. It is done.
  • the calculation unit 32 of the battery control unit 30 calculates the positive electrode utilization rate mp1, the negative electrode utilization rate mn1, and the negative electrode capacity deviation dn1 from the following first prediction equations (1) to (3).
  • mp1 f1 (I, V, T, t) (1)
  • mn1 g1 (I, V, T, t) (2)
  • dn1 h1 (I, V, T, t) (3)
  • f1, g1, and h1 are functions having current I, voltage V, temperature T, and time t as variables.
  • the current I, the voltage V, and the temperature T are values detected by the current detection unit 21, the voltage detection unit 22, and the temperature detection unit 23, respectively. From these first prediction formulas (1) to (3), the positive electrode utilization rate mp1, the negative electrode utilization rate mn1, and the negative electrode capacity deviation dn1 for each time t 1 are obtained.
  • Figure 3 is a graph showing an example of changes in the positive electrode utilization mp1 calculated for each time t 1.
  • the horizontal axis of FIG. 3 is time, the time t 2 is the time interval longer than the time t 1.
  • the positive electrode utilization rate mp1 gradually decreases (deteriorates).
  • the graphs showing the transition of the negative electrode utilization rate mn1 and the negative electrode capacity deviation dn1 are omitted, the negative electrode utilization ratio mn1 gradually decreases (deteriorates) over time, and the negative electrode capacity deviation dn1 gradually increases (deteriorates) over time.
  • FIG. 4A shows an example of the transition of the positive electrode utilization rate mp every time t 2
  • FIG. 4B shows an example of the transition of the negative electrode utilization rate mn
  • FIG. 4C shows the negative electrode capacity deviation dn.
  • the ⁇ mark in the figure degradation level at time t 2 interval based on the measured value calculated by the first prediction equation, i.e., the positive electrode utilization mp1, anode utilization mn1, the negative electrode capacity deviation dn1 respectively
  • the solid line in each figure shows the transition of the ideal deterioration degree based on the second prediction formula.
  • the ideal degree of deterioration is defined by the following second prediction equations (4) to (6).
  • mp2 f2 (t) (4)
  • mn2 g2 (t) (5)
  • dn2 h2 (t) (6)
  • f2, g2, and h2 are functions having time t as a variable. From these second prediction equation (4) to (6), the positive electrode utilization mp2 showing an ideal degree of deterioration of every time t 2, anode utilization mn2, negative electrode capacity deviation dn2 is obtained.
  • the second prediction formulas (4) to (6) represent, for example, ideal deterioration transitions that achieve a desired degree of deterioration at time t 3 . However, time t 2 ⁇ time t 3 .
  • the deterioration degree of the positive electrode utilization factor mp1 based on the actual value calculated by the 1st prediction formula will be larger than the deterioration degree of the ideal positive electrode utilization rate mp2 based on a 2nd prediction formula. It has become.
  • the deterioration degree of the negative electrode utilization rate mn1 based on the actual measurement value calculated by the first prediction formula is larger than the ideal deterioration degree of the negative electrode utilization rate mn2 based on the second prediction expression. It has become. Further, as shown in FIG.
  • the deterioration degree of the negative electrode capacity deviation dn1 based on the actual measurement value calculated by the first prediction formula is larger than the ideal deterioration degree of the negative electrode capacity deviation dn2 based on the second prediction expression. It has become.
  • the degree of deterioration based on the actual measurement value calculated by the first prediction formula deviates from the ideal degree of deterioration based on the second prediction formula, for example, the factor of the member that has deteriorated, for example,
  • the operating conditions of the secondary battery 10 are changed according to the positive electrode utilization rate, the negative electrode utilization rate, and the negative electrode capacity deviation.
  • FIG. 5 shows processing operations that the battery control unit 30 periodically executes. A part of the processing operation shown in this flowchart may be performed by the host control unit 40.
  • step S11 of FIG. 5 the state of the secondary battery 10 is detected at time t 1 second intervals. Specifically, if t 1 seconds have passed since the previous detection by the timer 31, the current detection unit 21 detects the current, the voltage detection unit 22 detects the voltage, and the temperature detection unit 23 detects the temperature.
  • the first prediction equation (1) calculates the deterioration degree of than the time t 1 ⁇ (3). Specifically, the positive electrode utilization rate mp1, the negative electrode utilization rate mn1, and the negative electrode capacity deviation dn1 are calculated by the first prediction equations (1) to (3) based on the current, voltage, and temperature detected in step S11. In step S ⁇ b> 12, the deterioration levels calculated at time t 1 second intervals are stored in the storage unit 35.
  • step S13 i ⁇ t 1, it is determined greater than t 2.
  • i is a positive integer. That is, it is determined whether the time t 1 has been calculated i times and the time t 2 has elapsed. If not, the elapsed time t 2, in step S14, the i +1 is updated, the process returns to step S11. If the elapsed time t 2, the process proceeds to step S15.
  • step S15 it calculates the average value of the degrees of deterioration are stored in the storage unit 35 is computed at time t 1 second intervals until the time t 2. That is, average values of the positive electrode utilization rate mp1, the negative electrode utilization rate mn1, and the negative electrode capacity deviation dn1 are calculated.
  • step S16 i is updated to zero.
  • step S17 the determination unit 33 determines whether the difference between the average value of the negative electrode capacity deviation dn1 calculated in step S15 and the negative electrode capacity deviation dn2 calculated in step S16 is greater than a predetermined value D.
  • the example shown in FIG. 4C is a case where the degree of deterioration of the negative electrode capacity deviation dn1 is large.
  • the member that is mainly deteriorated in the secondary battery 10 It is determined that the cause is a negative electrode capacity shift, and the process proceeds to the next step S18.
  • step S18 the control unit 34 controls the secondary battery 10 to operate at a high voltage. Thereby, the deterioration of the negative electrode capacity deviation dn1 is suppressed and the life of the secondary battery 10 is extended. If it is determined in step S17 that the difference between the average value of the negative electrode capacity deviation dn1 and the negative electrode capacity deviation dn2 is not greater than the value D, the process proceeds to step S19.
  • step S19 the determination unit 33 determines whether the difference between the positive electrode usage rate mp2 calculated in step S16 and the average value of the positive electrode usage rate mp1 calculated in step S15 is greater than a predetermined value A.
  • the example shown in FIG. 4A is a case where the degree of deterioration of the positive electrode utilization rate mp1 is large.
  • the secondary battery 10 mainly deteriorates. It is determined that the member factor is the positive electrode utilization rate, and the process proceeds to the next step S20.
  • step S20 the control unit 34 controls the secondary battery 10 to operate with the upper limit current of the secondary battery 10 lowered. Thereby, the lifetime of the secondary battery 10 is extended by suppressing the deterioration of the positive electrode utilization rate mp1. If it is determined in step S19 that the difference between the positive electrode utilization rate mp2 and the average value of the positive electrode utilization rate mp1 is not greater than the value A, the process proceeds to step S21.
  • step S21 the determination unit 33 determines whether the difference between the negative electrode utilization rate mn2 calculated in step S16 and the average value of the negative electrode utilization rate mn1 calculated in step S15 is greater than a predetermined value B.
  • the example shown in FIG. 4B is a case where the degree of deterioration of the negative electrode utilization rate mn1 is large.
  • the secondary battery 10 mainly deteriorates. It is determined that the member factor is the negative electrode utilization rate, and the process proceeds to the next step S22.
  • step S22 the control unit 34 controls the secondary battery 10 to operate with the upper limit current of the secondary battery 10 lowered. Further, the control unit 34 controls the secondary battery 10 to operate at a high voltage. Thereby, deterioration of the negative electrode utilization rate mn1 is suppressed and the life of the secondary battery 10 is extended. If it is determined in step S21 that the difference between the negative electrode utilization rate mn2 and the average value of the negative electrode utilization rate mn1 is not greater than the value B, and if the processing in steps S18, S20, and S22 is completed, the flowchart shown in FIG. Exit.
  • step S15 average values of the positive electrode utilization rate mp1, the negative electrode utilization rate mn1, and the negative electrode capacity deviation dn1 are calculated.
  • steps S17, S19, and S21 these average values, the positive electrode utilization rate mp2, and the negative electrode utilization rate mn2 are calculated.
  • the negative electrode capacity deviation dn2 was compared.
  • the deterioration degree at time t2 is calculated from the first prediction formulas (1) to (3), and this value, the positive electrode utilization rate mp2, the negative electrode utilization rate mn2, and the negative electrode capacity deviation dn2 are calculated. You may compare.
  • the battery control unit 30 calculates a deterioration level of the secondary battery 10 for each member factor of the secondary battery 10, for example, a positive electrode utilization rate, a negative electrode utilization rate, and a negative electrode capacity deviation, and a calculation unit. Based on the calculation result of 32, the determination unit 33 that determines a deteriorated member factor among the member factors of the secondary battery 10, and the operating condition of the secondary battery 10 is changed according to the deteriorated member factor. And a control unit 34. Thereby, it is possible to extend the life of the secondary battery 10 by performing control according to the deterioration of the secondary battery 10.
  • the present invention can be implemented by modifying the embodiment described above as follows.
  • the present invention is not limited to this, and the deviation factor of the positive voltage, the coefficient that is a parameter related to the positive electrode resistance of the secondary battery, the coefficient that is a parameter related to the negative electrode resistance of the secondary battery, and the coefficient related to other resistance components It is good.
  • each The operating conditions may be the staying time ratio in the voltage region, the energization polarity ratio per unit time, the energization time ratio, the pause time ratio, the upper / lower limit voltage, the SOC fluctuation range, the energization time, and the like.
  • the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and a some modification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

二次電池の劣化に応じて二次電池の寿命を延ばすことができなかった。ステップS17では、ステップS15で算出した負極容量ずれdn1の平均値とステップS16で算出した負極容量ずれdn2の差が予め定めた値Dより大きいかを判定する。実測した負極容量ずれdn1の平均値が、理想とする負極容量ずれdn2より大きく、負極容量ずれdn1の劣化が進んでいる場合は、次のステップS18で、二次電池10を高い電圧で稼働するように制御する。これにより、負極容量ずれdn1の劣化を抑制して二次電池10の寿命を延ばす。また、実測した正極利用率mp1の平均値が、理想とする正極利用率mp2より低下して、正極利用率mp1の劣化が進んでいる場合は、ステップS20で、二次電池10の上限電流を下げて二次電池10を稼働するように制御する。これにより、正極利用率mp1の劣化を抑制して二次電池10の寿命を延ばす。

Description

二次電池制御装置
 本発明は、二次電池制御装置に関する。
 近年、二次電池の長寿命化と、寿命を予測する技術開発が求められている。これは、二次電池を車両走行モータの電源として用いる電動車両等において、二次電池の劣化状態を正確に把握し、二次電池劣化による障害が生じる前に二次電池を交換する必要がある為である。
 二次電池の寿命を予測する技術として、特許文献1には、二次電池の内部における正極全体の充放電カーブと負極全体の充放電カーブの状況を非破壊で知る技術が記載されている。この技術によれば、電池の放電容量は、有効正極活物質量、有効負極活物質量、正極と負極の位置関係などの部材要因によって決まり、これらの値は、それぞれ使用期間、温度、電圧などを変数とする関数で表される。この関数に基づいて二次電池の各部材要因の劣化状態を推定している。
特開2009-80093号公報
 上述した、特許文献1に記載の装置では、二次電池の劣化に応じて二次電池の寿命を延ばすことができなかった。
 本発明による二次電池制御装置は、二次電池の劣化度を二次電池の部材要因ごとに算出する劣化度算出部と、前記劣化度算出部の算出結果に基づいて、前記二次電池の部材要因のうちで劣化している部材要因を判定する判定部と、前記劣化している部材要因に応じて前記二次電池の稼働条件を変更する制御部とを備える。
 本発明によれば、二次電池の劣化に応じた制御を行うことで二次電池の長寿命化が可能になる。
二次電池システムを示す図である。 (a)は、二次電池の電流の測定例を、(b)は、二次電池の温度の測定例を、(c)は、二次電池の電圧の測定例を示すグラフである。 正極利用率mp1の推移の一例を示すグラフである。 (a)は、正極利用率mpを、(b)は、負極利用率mnを、(c)は、負極容量ずれdnを示すグラフである。 電池制御部の処理動作を示すフローチャートである。
 本発明の実施形態について、図面を参照して説明する。
 なお、特許文献1に記載のように、微小な電流で二次電池の充放電を行った場合に得られた二次電池の充放電カーブは、別途測定した正極単独および負極単独の充放電カーブの重ね合わせ計算を行うことで良好に再現される。そして、この計算に用いるパラメータとして、充放電に寄与する正極活物質量、充放電に寄与する負極活物質量、正極と負極の充放電カーブの位置関係についての指標を定める。本実施形態では正極活物質量の利用率を正極利用率、負極活物質量の利用率を負極利用率、正極と負極の充放電カーブの位置関係についての指標を負極容量ずれと記述する。
 図1は、二次電池システムを示す図である。二次電池システムは、二次電池10、検出部20、電池制御部30、上位制御部40を備える。
 二次電池10は、複数のセルを直列に接続して構成される。なお、図1では、複数のセルを直列に接続した例で示したが、直列に接続したセルをさらに並列に備えてもよい。この二次電池10は、例えば、車両走行モータの電源として使用される。
 検出部20は、二次電池10に流れる電流を検出する電流検出部21と、二次電池10の電圧を検出する電圧検出部22と、二次電池10の温度を検出する温度検出部23とを備える。
 電池制御部30は、タイマ31と、演算部32と、判定部33と、制御部34と、記憶部35とを備える。電池制御部30には、電流検出部21で検出された電流、電圧検出部22で検出された電圧、温度検出部23で検出された温度が入力される。また、電池制御部30は、所定の稼働条件に従って二次電池10の充放電状態を制御する。
 タイマ31は、二次電池10の電流、電圧、温度を検出する時間間隔が設定される。演算部32は、二次電池10の部材要因ごとの劣化度、例えば、正極利用率、負極利用率、負極容量ずれを後述する第1予測式に基づいて算出する。判定部33は、演算部32による算出結果に基づいて、劣化している二次電池10の部材要因を判定する。
 制御部34は、劣化している部材要因に応じて二次電池10の稼働条件を変更する。稼働条件の変更としては、例えば、二次電池10を高い電圧で稼働したり、二次電池10の上限電流を下げて稼働する。制御部34は、稼働条件に沿って二次電池10の充放電状態を制御する。
 記憶部35は、二次電池10の使用時間と理想的な劣化度の関数を第2予測式として予め記憶している。この第2予測式は二次電池10の理想的な劣化度の推移を示すもので、二次電池の使用形態に合わせて予め定義された関数である。なお、関数に限らず、二次電池10の使用時間と劣化度の関係をテーブルとして予め記憶してもよい。
 上位制御部40は、電池制御部30に接続され、電池制御部30に対して充放電等の指令を指示する。
 図2は、検出部20による二次電池10の測定例をグラフで表したものである。図2(a)は電流を、図2(b)は温度を、図2(c)は電圧を示す。各グラフの横軸は時間を表し、時間t刻みで測定した各値をグラフにしたものである。
 図2(a)に示すように、二次電池10に流れる電流Iは、最初は0であり、その後、プラス方向へ急激に流れた後、徐々に減少している。その後、マイナス方向に流れ、徐々に0に近づいている。
 図2(b)に示すように、二次電池10の温度Tは時間と共に僅かに上昇している。図2(c)に示すように、二次電池10の電圧Vは最初は高く、その後、低くなり、再び高く推移している。なお、図2(a)、(b)、(c)に示す各グラフは本実施形態を説明するために一例を示したものであり、その他の測定値であってもよい。これらの測定値は、電池制御部30のタイマ31で規定される時間t毎に、電流検出部21、電圧検出部22、温度検出部23で検出され、その値は電池制御部30へ送られる。
 電池制御部30の演算部32は、正極利用率mp1、負極利用率mn1、負極容量ずれdn1を以下の第1予測式(1)~(3)より演算する。
  mp1=f1(I,V,T,t)      (1)
  mn1=g1(I,V,T,t)      (2)
  dn1=h1(I,V,T,t)      (3)
 ここで、f1、g1、h1は、電流I、電圧V、温度T、時間tを変数とする関数である。電流I、電圧V、温度Tは、それぞれ、電流検出部21、電圧検出部22、温度検出部23で検出された値である。これらの第1予測式(1)~(3)より、時間t毎の正極利用率mp1、負極利用率mn1、負極容量ずれdn1が求められる。
 図3は、時間t毎に算出された正極利用率mp1の推移の一例を示すグラフである。図3の横軸は時間であり、時間tは時間tよりも長い時間間隔である。この例では、正極利用率mp1が徐々に低下(劣化)していることを示している。負極利用率mn1、負極容量ずれdn1の推移を示すグラフは省略するが、負極利用率mn1は時間の経過と共に徐々に低下(劣化)し、負極容量ずれdn1は時間の経過と共に徐々に上昇(劣化)する。
 図4(a)は、時間t毎の正極利用率mpの推移の一例を、図4(b)は、負極利用率mnの推移の一例を、図4(c)は、負極容量ずれdnの推移の一例を示すグラフである。各図において、各図中の○印は第1予測式で算出された実測値に基づく時間t間隔における劣化度、すなわち、正極利用率mp1、負極利用率mn1、負極容量ずれdn1をそれぞれ示し、各図中の実線は第2予測式に基づく理想的な劣化度の推移を示す。
 理想的な劣化度は以下の第2予測式(4)~(6)により定義されている。
  mp2=f2(t)       (4)
  mn2=g2(t)       (5)
  dn2=h2(t)       (6)
 ここで、f2、g2、h2は、時間tを変数とする関数である。これらの第2予測式(4)~(6)より、時間t毎の理想的な劣化度を示す正極利用率mp2、負極利用率mn2、負極容量ずれdn2が求められる。第2予測式(4)~(6)は、例えば、時間tにおいて所望の劣化度になる理想的な劣化推移を表している。但し、時間t<時間tである。
 図4(a)を参照して説明すると、第1予測式で算出された実測値に基づく正極利用率mp1の劣化度は第2予測式に基づく理想的な正極利用率mp2の劣化度より大きくなっている。また、図4(b)に示すように、第1予測式で算出された実測値に基づく負極利用率mn1の劣化度は第2予測式に基づく理想的な負極利用率mn2の劣化度より大きくなっている。また、図4(c)に示すように、第1予測式で算出された実測値に基づく負極容量ずれdn1の劣化度は第2予測式に基づく理想的な負極容量ずれdn2の劣化度より大きくなっている。本実施形態では、後述するように、第1予測式で算出された実測値に基づく劣化度が第2予測式に基づく理想的な劣化度と乖離した場合に、劣化している部材要因、例えば、正極利用率、負極利用率、負極容量ずれに応じて二次電池10の稼働条件を変更する。
 次に、本実施形態の動作について、図5のフローチャートを参照して説明する。図5のフローチャートは、電池制御部30が定期的に実行する処理動作を示す。なお、このフローチャートに示す処理動作の一部を上位制御部40で行わせてもよい。
 図5のステップS11では、時間t秒間隔で二次電池10の状態を検出する。具体的には、タイマ31により前回の検出からt秒経過していれば、電流検出部21で電流を、電圧検出部22で電圧を、温度検出部23で温度を検出する。
 ステップS12では、第1予測式(1)~(3)より時間tにおける劣化度を算出する。具体的には、ステップS11で検出した電流、電圧、温度を基に第1予測式(1)~(3)により、正極利用率mp1、負極利用率mn1、負極容量ずれdn1を演算する。ステップS12において、時間t秒間隔で演算された各劣化度は記憶部35に保存される。
 ステップS13では、i×tがtより大きいかを判別する。iは正の整数である。
すなわち、時間t秒間隔の演算がi回行われて時間tを経過したかを判別する。時間tを経過していなければ、ステップS14で、iを+1更新し、ステップS11に戻る。時間tを経過していれば、ステップS15へ進む。
 ステップS15では、時間tになるまで時間t秒間隔で演算されて記憶部35に保存された各劣化度の平均値を算出する。すなわち、正極利用率mp1、負極利用率mn1、負極容量ずれdn1の各平均値を算出する。
 ステップS16では、iをゼロに更新する。そして、第2予測式(4)~(6)より時間tにおける劣化度を算出する。具体的には、第2予測式(4)~(6)に基づいて時間tにおける正極利用率mp2、負極利用率mn2、負極容量ずれdn2を演算する。演算された各劣化度は記憶部35に保存される。
 ステップS17では、判定部33により、ステップS15で算出した負極容量ずれdn1の平均値とステップS16で算出した負極容量ずれdn2の差が予め定めた値Dより大きいかを判定する。図4(c)に示す例は、負極容量ずれdn1の劣化度が大きくなっている場合である。このように、実測した負極容量ずれdn1の平均値が、理想とする負極容量ずれdn2より大きく、負極容量ずれdn1の劣化が進んでいる場合は、二次電池10において主に劣化している部材要因が負極容量ずれであると判断し、次のステップS18へ進む。
 ステップS18では、制御部34により、二次電池10を高い電圧で稼働するように制御する。これにより、負極容量ずれdn1の劣化を抑制して二次電池10の寿命を延ばす。ステップS17で、負極容量ずれdn1の平均値と負極容量ずれdn2の差が値Dより大きくないと判定された場合は、ステップS19へ進む。
 ステップS19では、判定部33により、ステップS16で算出した正極利用率mp2とステップS15で算出した正極利用率mp1の平均値との差が予め定めた値Aより大きいかを判定する。図4(a)に示す例は、正極利用率mp1の劣化度が大きくなっている場合である。このように、実測した正極利用率mp1の平均値が、理想とする正極利用率mp2より低下して、正極利用率mp1の劣化が進んでいる場合は、二次電池10において主に劣化している部材要因が正極利用率であると判断し、次のステップS20へ進む。
 ステップS20では、制御部34により、二次電池10の上限電流を下げて二次電池10を稼働するように制御する。これにより、正極利用率mp1の劣化を抑制して二次電池10の寿命を延ばす。ステップS19で、正極利用率mp2と正極利用率mp1の平均値との差が値Aより大きくないと判定された場合は、ステップS21へ進む。
 ステップS21では、判定部33により、ステップS16で算出した負極利用率mn2とステップS15で算出した負極利用率mn1の平均値との差が予め定めた値Bより大きいかを判定する。図4(b)に示す例は、負極利用率mn1の劣化度が大きくなっている場合である。このように、実測した負極利用率mn1の平均値が、理想とする負極利用率mn2より低下して、負極利用率mn1の劣化が進んでいる場合は、二次電池10において主に劣化している部材要因が負極利用率であると判断し、次のステップS22へ進む。
 ステップS22では、制御部34により、二次電池10の上限電流を下げて二次電池10を稼働するように制御する。さらに、制御部34により、二次電池10を高い電圧で稼働するように制御する。これにより、負極利用率mn1の劣化を抑制して二次電池10の寿命を延ばす。ステップS21で、負極利用率mn2と負極利用率mn1の平均値との差が値Bより大きくないと判定された場合、およびステップS18、S20、S22の処理を終了した場合は図5に示すフローチャートを終了する。
 なお、ステップS15で、正極利用率mp1、負極利用率mn1、負極容量ずれdn1の各平均値を算出し、ステップS17、S19、S21で、これらの平均値と正極利用率mp2、負極利用率mn2、負極容量ずれdn2とを比較した。しかし、平均値を算出せずに、第1予測式(1)~(3)より時間t2における劣化度を算出し、この値と正極利用率mp2、負極利用率mn2、負極容量ずれdn2とを比較してもよい。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電池制御部30は、二次電池10の劣化度を二次電池10の部材要因、例えば、正極利用率、負極利用率、負極容量ずれ、ごとに算出する演算部32と、演算部32の算出結果に基づいて、二次電池10の部材要因のうちで劣化している部材要因を判定する判定部33と、劣化している部材要因に応じて二次電池10の稼働条件を変更する制御部34とを備える。これにより、二次電池10の劣化に応じた制御を行うことで二次電池10の長寿命化が可能になる。
(変形例)
 本発明は、以上説明した実施形態を次のように変形して実施することができる。
(1)二次電池の部材要因として、正極利用率、負極利用率、負極容量ずれを例に説明した。しかし、これに限らず、正極電圧のずれ量、二次電池の正極抵抗に関するパラメータである係数、二次電池の負極抵抗に関するパラメータである係数、その他の抵抗成分に関する係数を二次電池の部材要因としてもよい。
(2)二次電池の稼働条件として、二次電池を高い電圧で稼働したり、二次電池の上限電流を下げて二次電池を稼働したりする例を説明した。しかし、これに限らず、開始電圧、終了電圧、最大電圧、最低電圧、環境温度、充電容量、放電容量、単位時間当たりの電気量変動、最大電流、平均電流、下限電流、稼働中心電圧、各電圧領域の滞在時間比率、単位時間当たりの通電極性比率、通電時間比率、休止時間比率、上下限電圧、SOC変動幅、通電時間などを稼働条件としてもよい。
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
10 二次電池
20 検出部
21 電流検出部
22 電圧検出部
23 温度検出部
30 電池制御部
31 タイマ
32 演算部
33 判定部
34 制御部
35 記憶部
40 上位制御部

Claims (7)

  1.  二次電池の劣化度を二次電池の部材要因ごとに算出する劣化度算出部と、
     前記劣化度算出部の算出結果に基づいて、前記二次電池の部材要因のうちで劣化している部材要因を判定する判定部と、
     前記劣化している部材要因に応じて前記二次電池の稼働条件を変更する制御部とを備える二次電池制御装置。
  2.  請求項1に記載の二次電池制御装置であって、
     前記二次電池の部材要因は負極容量ずれを含み、
     前記制御部は、前記劣化している部材要因が前記負極容量ずれである場合に、前記二次電池の稼働条件として、前記二次電池を高い電圧で稼働する二次電池制御装置。
  3.  請求項1または請求項2に記載の二次電池制御装置であって、
     前記二次電池の部材要因は正極利用率を含み、
     前記制御部は、前記劣化している部材要因が前記正極利用率である場合に、前記二次電池の稼働条件である上限電流値を下げて稼働する二次電池制御装置。
  4.  請求項1から請求項3のいずれか一項に記載の二次電池制御装置であって、
     前記二次電池の部材要因は負極利用率を含み、
     前記制御部は、前記劣化している部材要因が前記負極利用率である場合に、前記二次電池の稼働条件として、前記二次電池の上限電流値を下げて稼働し、且つ前記二次電池を高い電圧で稼働する二次電池制御装置。
  5.  請求項1に記載の二次電池制御装置において、
     前記劣化度算出部は、前記二次電池の部材要因ごとに現在の劣化度と予め定義した劣化度との差を算出し、
     前記判定部は、前記現在の劣化度と前記予め定義した劣化度の差が所定値を超えている部材要因を、前記劣化している部材要因と判定する二次電池制御装置。
  6.  請求項5に記載の二次電池制御装置において、
     前記劣化度算出部は、前記現在の劣化度を前記二次電池の使用時間と前記二次電池の電流値、電圧値、温度に基づいて算出する二次電池制御装置。
  7.  請求項5または請求項6に記載の二次電池制御装置において、
     前記劣化度算出部は、前記予め定義した劣化度を前記二次電池の使用時間と劣化度の関数として定義する二次電池制御装置。
PCT/JP2017/027609 2016-09-21 2017-07-31 二次電池制御装置 WO2018055915A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/328,363 US11346890B2 (en) 2016-09-21 2017-07-31 Secondary battery control device
CN201780045447.2A CN109511281B (zh) 2016-09-21 2017-07-31 二次电池控制装置
EP17852696.8A EP3518372A4 (en) 2016-09-21 2017-07-31 DEVICE FOR CONTROLLING A SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016184735A JP6602735B2 (ja) 2016-09-21 2016-09-21 二次電池制御装置
JP2016-184735 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018055915A1 true WO2018055915A1 (ja) 2018-03-29

Family

ID=61689442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027609 WO2018055915A1 (ja) 2016-09-21 2017-07-31 二次電池制御装置

Country Status (5)

Country Link
US (1) US11346890B2 (ja)
EP (1) EP3518372A4 (ja)
JP (1) JP6602735B2 (ja)
CN (1) CN109511281B (ja)
WO (1) WO2018055915A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109821775A (zh) * 2019-01-09 2019-05-31 中兴高能技术有限责任公司 一种筛选电池的方法、终端和存储介质
US11255919B2 (en) * 2019-09-12 2022-02-22 Semiconductor Components Industries, Llc Methods and system for a battery
JP7225153B2 (ja) * 2020-03-13 2023-02-20 株式会社東芝 充放電制御方法、電池搭載機器、管理システム、充放電制御プログラム、管理方法、管理サーバ及び管理プログラム
CN115443416A (zh) 2020-10-27 2022-12-06 株式会社Lg新能源 电池管理设备和电池管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268042A (ja) * 2007-04-23 2008-11-06 Power System:Kk キャパシタ電源の異常判別方法及び異常判別装置
JP2009080093A (ja) 2007-09-07 2009-04-16 Hitachi Vehicle Energy Ltd 二次電池の内部情報検知方法及び装置
JP2013092398A (ja) * 2011-10-24 2013-05-16 Toyota Motor Corp 二次電池の劣化状態判別システム及び劣化状態判別方法。
WO2014046179A1 (ja) * 2012-09-20 2014-03-27 積水化学工業株式会社 蓄電池運転制御装置、蓄電池運転制御方法及びプログラム
JP2014063576A (ja) * 2012-09-20 2014-04-10 Sekisui Chem Co Ltd 蓄電池管理装置、蓄電池管理方法及びプログラム
JP2015026478A (ja) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 制御装置及び制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1933158B1 (en) * 2005-09-16 2018-04-25 The Furukawa Electric Co., Ltd. Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
EP2053414B1 (en) 2007-09-07 2013-07-03 Hitachi Vehicle Energy, Ltd. Method and apparatus for detecting internal information of secondary battery
JP5341823B2 (ja) * 2010-06-07 2013-11-13 トヨタ自動車株式会社 リチウムイオン二次電池の劣化判定システムおよび劣化判定方法
JP5453232B2 (ja) 2010-12-24 2014-03-26 本田技研工業株式会社 電動車両
WO2015019427A1 (ja) 2013-08-07 2015-02-12 株式会社日立製作所 電池システム
US9742042B2 (en) 2013-11-23 2017-08-22 Hrl Laboratories, Llc Voltage protection and health monitoring of batteries with reference electrodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268042A (ja) * 2007-04-23 2008-11-06 Power System:Kk キャパシタ電源の異常判別方法及び異常判別装置
JP2009080093A (ja) 2007-09-07 2009-04-16 Hitachi Vehicle Energy Ltd 二次電池の内部情報検知方法及び装置
JP2013092398A (ja) * 2011-10-24 2013-05-16 Toyota Motor Corp 二次電池の劣化状態判別システム及び劣化状態判別方法。
WO2014046179A1 (ja) * 2012-09-20 2014-03-27 積水化学工業株式会社 蓄電池運転制御装置、蓄電池運転制御方法及びプログラム
JP2014063576A (ja) * 2012-09-20 2014-04-10 Sekisui Chem Co Ltd 蓄電池管理装置、蓄電池管理方法及びプログラム
JP2015026478A (ja) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 制御装置及び制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3518372A4

Also Published As

Publication number Publication date
CN109511281B (zh) 2022-12-13
US20210286014A1 (en) 2021-09-16
JP2018050405A (ja) 2018-03-29
EP3518372A4 (en) 2020-03-11
JP6602735B2 (ja) 2019-11-06
US11346890B2 (en) 2022-05-31
CN109511281A (zh) 2019-03-22
EP3518372A1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
WO2018055915A1 (ja) 二次電池制御装置
JP6208213B2 (ja) 二次電池の充電システム及び方法並びに電池パック
JP5741701B2 (ja) 鉛蓄電池システム
KR101664641B1 (ko) 축전 디바이스 방전 장치
US9793733B2 (en) Method and apparatus for charging rechargeable cells
JP5756566B2 (ja) 充放電制御方法、充放電制御システムおよび充放電制御装置
WO2015129117A1 (ja) 二次電池のsoc推定装置
KR102259967B1 (ko) 배터리 충전관리 장치 및 방법
JP2008182859A (ja) 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置
JP6168043B2 (ja) 調整装置、組電池装置および調整方法
JP2009500787A (ja) 物理モデルに基づく充電可能電池の急速充電方法及び充電器
WO2013121466A1 (ja) 電池システムおよび劣化判別方法
JP5716691B2 (ja) 電池システムおよび非水二次電池の充放電制御方法
JP6867478B2 (ja) 電池制御装置および車両システム
JP6145712B2 (ja) 二次電池の充電システム及び方法並びに電池パック
JP2013074785A (ja) 車両のバッテリー充電制御方法およびその装置
JP7115035B2 (ja) 電池寿命推定装置
CN104600383A (zh) 电池组的电量均衡方法和装置
JP2012100487A (ja) 電力系統安定化装置
JP2018185209A (ja) 蓄電装置
JP5401884B2 (ja) リチウム二次電池の充電制御方法、充電制御装置および車両
CN116368707A (zh) 智能电池管理系统和方法
JP5523516B2 (ja) 充放電制御装置
JP6314820B2 (ja) キャパシタの制御装置及び制御方法
WO2016147326A1 (ja) 蓄電池管理装置、方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852696

Country of ref document: EP

Effective date: 20190423