WO2018055705A1 - 超臨界水ガス化システム - Google Patents

超臨界水ガス化システム Download PDF

Info

Publication number
WO2018055705A1
WO2018055705A1 PCT/JP2016/077893 JP2016077893W WO2018055705A1 WO 2018055705 A1 WO2018055705 A1 WO 2018055705A1 JP 2016077893 W JP2016077893 W JP 2016077893W WO 2018055705 A1 WO2018055705 A1 WO 2018055705A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
supercritical water
section
water
tar
Prior art date
Application number
PCT/JP2016/077893
Other languages
English (en)
French (fr)
Inventor
泰孝 和田
博昭 谷川
幸彦 松村
良文 川井
琢史 野口
Original Assignee
中国電力株式会社
国立大学法人広島大学
中電プラント株式会社
株式会社東洋高圧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 国立大学法人広島大学, 中電プラント株式会社, 株式会社東洋高圧 filed Critical 中国電力株式会社
Priority to JP2017506425A priority Critical patent/JP6488364B2/ja
Priority to PCT/JP2016/077893 priority patent/WO2018055705A1/ja
Publication of WO2018055705A1 publication Critical patent/WO2018055705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a supercritical water gasification system and a supercritical water gasification method for generating a fuel gas by decomposing a slurry body prepared by adding water and a catalyst to biomass in a supercritical state.
  • a general biomass gasification system includes a heat exchanger, a heater, a gasification reactor, and the like, and converts organic matter into hydrogen, methane, ethane by hydrolysis reaction with supercritical water with high reactivity. -Gasify to carbon monoxide, carbon dioxide, etc.
  • a heat exchanger is a device that heats a slurry-like slurry body. This slurry body is adjusted by adding and mixing water, activated carbon, etc. with biomass, such as shochu residue, egg-collecting chicken droppings, organic sludge, and organic sewage. In the supercritical water gasification reaction, activated carbon is used as a catalyst.
  • the heater is a device that raises the temperature of the slurry heated by the heat exchanger to a gasification reaction temperature of 600 ° C.
  • the gasification reactor is a device that hydrothermally processes the slurry to gasify the organic matter to produce a supercritical high-temperature fluid. The fluid in the supercritical state is then separated into a gas component and a liquid component in a gas-liquid separator, and the gas component is used as a fuel gas.
  • a viscous fluid derived from glucose such as tar
  • glucose such as tar
  • a viscous fluid derived from glucose such as tar
  • tar a viscous fluid derived from glucose
  • tar a viscous fluid derived from tar
  • the tar adheres and accumulates on the inner wall surface of the heat exchanger or heater pipe, it causes clogging, clogging due to that, or a problem such as a decrease in heat transfer rate.
  • the present inventors have focused on preventing the blockage of the flow path due to the above-described viscous fluid such as tar causing clogging in the piping of a heating device such as a heat exchanger.
  • the present invention has been made in view of the above problems, and decomposes and removes the viscous fluid adhering to the inner wall surface of a pipe of a heating device such as a heat exchanger, and the pipe flow path caused by the clogging with the viscous fluid.
  • a supercritical water gasification system and a supercritical water gasification method that can prevent clogging and a decrease in heat transfer rate and increase equipment utilization by reducing continuous operation time and reduce equipment costs. The purpose is to provide.
  • a supercritical water gasification system is: A gasification reactor for gasifying a slurry body made of a raw material containing biomass with supercritical water, and heating for raising the temperature of the slurry body before being gasified with supercritical water in the gasification reactor
  • a supercritical water gasification system comprising: A piping system for supplying the slurry body to the heating unit and the gasification reactor; A tar adhering section specifying portion for specifying a section in which tar has adhered in the piping system; And an injection device for injecting an oxidizing agent not containing an inorganic substance into the specified section.
  • the tar adhesion section specifying part is A differential pressure measuring unit that measures differential pressures at a plurality of different predetermined positions in the piping system,
  • the section between the adjacent predetermined positions may be specified as a section where tar has adhered. preferable.
  • the supercritical water gasification system is: Switching means for switching the supply to the piping system from the slurry body to water when a section to which tar has adhered is identified by the tar adhesion section identifying section; It is good also as providing the control part which controls the said injection apparatus so that the said oxidizing agent may be supplied to the said area specified by the said injection apparatus after the said piping system is substituted with water.
  • the controller is When it is detected that a predetermined time has elapsed since the supply to the piping system is switched to water, it may be determined that the piping system has been replaced with water.
  • the controller is When it is detected that a predetermined amount has been injected after the supply to the piping system is switched to water, it may be determined that the piping system has been replaced with water.
  • the oxidizing agent is preferably hydrogen peroxide, hypochlorous acid, nitric acid, or ozone.
  • the supercritical water gasification method comprises: A process of gasifying a slurry produced from a raw material containing biomass with supercritical water in a gasification reactor, and heating the slurry before being gasified with supercritical water in the gasification reactor A supercritical water gasification method comprising a step of raising the temperature in a part, In the piping system for supplying the slurry body to the heating unit and the gasification reactor, a section where tar adheres is specified, and an oxidizing agent not containing an inorganic substance is injected into the specified section. To do.
  • the supercritical water gasification method according to the present invention comprises: When a section where tar adheres is identified in the piping system, the supply to the piping system is switched from the slurry body to water, It is preferable that the oxidant is supplied to the specified section after the piping system is replaced with water.
  • the viscous fluid adhering to the inner wall surface of the pipe of the heating device such as a heat exchanger is decomposed and removed, and clogged by the viscous fluid. It is possible to avoid the blockage of the piping channel and the decrease in the heat passage rate due to this, and it is possible to increase the equipment utilization rate and reduce the equipment cost by increasing the continuous operation time.
  • FIG. 1 is a diagram showing a schematic configuration of a supercritical water gasification system 10 described as an embodiment of the present invention.
  • the “supercritical water gasification system” is simply referred to as “gasification system”.
  • a slurry body is prepared from biomass such as shochu residue, egg collection feces, organic sludge, organic sewage and the like as raw materials, and the prepared slurry body is heated. Combustion gas is generated by pressing.
  • the gasification system 10 includes a raw material preparation unit 20, a heat treatment unit 30, and a gas processing unit 40.
  • the raw material preparation unit 20 is a part that prepares a slurry body from biomass.
  • the raw material preparation unit 20 includes a preparation tank 21, a pulverization pump 22, a supply pump 23, and a heat exchanger introduction pump 24.
  • Preparation tank 21 is a container for mixing biomass, water, and activated carbon (a kind of non-metallic catalyst).
  • a mixture as a gasification raw material in which biomass, water and activated carbon are mixed is prepared.
  • porous particles having an average particle diameter of 200 ⁇ m or less are used as the activated carbon.
  • the mixing ratio of biomass, water, and activated carbon is appropriately adjusted according to the type, amount, moisture content, and the like of biomass.
  • the crushing pump 22 is an apparatus for crushing the solid content of the mixture prepared in the preparation tank 21 to obtain a uniform size (preferably an average particle size of 800 ⁇ m or less, more preferably an average particle size of 500 ⁇ m or less). is there. By being processed by the pulverization pump 22, the mixture becomes a slurry-like slurry body.
  • the supply pump 23 supplies the slurry discharged from the crushing pump 22 to the heat exchanger introduction pump 24.
  • the heat exchanger introduction pump 24 pressurizes the slurry body sent from the supply pump 23 and supplies it to the heat treatment unit 30.
  • the slurry body is pressurized to about 22.1 to 38 MPa by the heat exchanger introduction pump 24.
  • the adjustment tank 21 is not shown in the figure, but is formed in a substantially cylindrical shape with an upper opening and a conical lower portion, and a predetermined amount of biomass, water, and nonmetallic catalyst are contained therein. It is preferable that etc. can be stored.
  • a stirring means for stirring the biomass is detachably provided inside the adjustment tank 21, and the biomass, water, and the nonmetallic catalyst are stirred and mixed in the adjustment tank 21 by the stirring means.
  • the mixture mixed in the adjustment tank 21 is fed from the adjustment tank 21 to a crushing pump 22 described later by the head pressure of water or biomass. At this time, the biomass that is so large that it does not deserve to be mixed is difficult to adjust the above-mentioned mixing amount, and is therefore fed to the crushing pump 22 described later without being mixed.
  • the mixture and biomass supplied from the adjustment tank 21 to the inside of the casing (not shown) of the crushing pump 22 via the suction passage (not shown) have a predetermined size. It is crushed. Then, the mixture and biomass crushed by the crushing pump 22 are transferred to the supply pump 23 via a raw material supply pipe (not shown).
  • a crushed raw material tank for storing the gasified raw material crushed to a predetermined size is separately provided, and crushed by the crushing pump 22 in the middle of a raw material supply pipe connecting the crushing pump 22 and the crushed raw material tank.
  • a circulation pipe for returning the mixture and biomass to the adjustment tank 21 is provided, and the mixture and biomass are circulated between the crushing pump 22 and the adjustment tank 21 via the circulation pipe 16 to reduce the particle size of the biomass, and then the crushed raw material tank You may comprise so that it may supply to the supply pump 23 via.
  • a first on-off valve as an outlet valve of the crushing pump 22 is provided in the middle of the circulation pipe, and a second on-off valve as an inlet valve of the crushed raw material tank is provided on the raw material supply pipe on the inlet side of the crushed raw material tank.
  • the heat treatment part 30 is a part that heats and gasifies the slurry body prepared by the raw material preparation part 20.
  • the heat treatment unit 30 includes a heat exchanger 31 as a heating device, a heater 32, and a gasification reactor 33.
  • the heat exchanger 31 is an apparatus for heating the slurry body sent from the raw material preparation unit 20.
  • the heat exchanger 31 is, for example, a double tube heat exchanger including a double tube, and includes a low temperature channel 36 and a high temperature channel 37.
  • the slurry body sent from the raw material preparation unit 20 circulates in the low temperature flow path 36.
  • a supercritical high-temperature fluid hereinafter also referred to as a post-treatment fluid
  • a gasification reactor 33 generated in a gasification reactor 33 described later is introduced into the high-temperature channel 37, and this post-treatment fluid flows. Then, heat is exchanged between the treated fluid flowing in the high temperature channel 37 and the slurry body flowing in the low temperature channel 36.
  • the heater 32 is a device for heating the slurry body sent from the heat exchanger 31.
  • the heater 32 includes a combustion device 32a.
  • the combustion device 32a introduces and burns the combustion gas sent from the gas processing unit 40 into liquefied petroleum gas such as propane gas or air, and heats the slurry body. Thereby, the temperature of the slurry introduced into the heater 32 is raised to, for example, about 600 ° C.
  • the heated slurry body is sent to the gasification reactor 33.
  • the gasification reactor 33 keeps the slurry body sent from the heater 32 in a supercritical state, and keeps it constant at the gasification reaction temperature (temperature at which the slurry body is gasified (gasification is possible)).
  • This is an apparatus for hydrothermally treating an organic substance contained in a slurry body.
  • the gasification reactor 33 includes a combustion device 33a.
  • the combustion device 33a introduces combustion gas sent from the gas processing unit 40 into liquefied petroleum gas, mixes it with air, burns it, and heats the slurry body. Then hydrothermally treat.
  • the slurry body is hydrothermally treated for 1 to 2 minutes under conditions of, for example, 600 ° C. and 25 MPa.
  • the hydrothermally treated slurry body undergoes a gasification reaction and then is sent to the high-temperature channel 37 of the heat exchanger 31 as a post-treatment fluid.
  • Gasification of biomass with supercritical water can be carried out under the conditions of a temperature of 374 ° C. or higher and a pressure of 22.1 MPa or higher using the above-mentioned non-metallic catalyst. It is preferably carried out at a temperature and pressure (in the range of 600 ° C. or higher and 22.1 to 35 MPa) that can suppress and increase the carbon gasification rate.
  • a fuel gas such as hydrogen gas, methane, ethane, or ethylene can be generated.
  • the tar generated at the time of gasification adheres and accumulates on the inner wall surface of the pipe of the heat exchanger or the heater, resulting in clogging, resulting in clogging, In some cases, troubles such as a decrease in the heat transfer rate may occur.
  • the inlet and outlet of the heat exchanger 31 (specifically, the heat exchanger 31 is divided into three sections, each of which is configured by a U-shaped piping system arranged sideways.
  • differential pressure measuring units 34a to 34c are provided for measuring the differential pressure between the inlet and outlet of the intermediate section.
  • differential pressure measuring units 35a and 35b for measuring the differential pressures at the inlet and outlet of the heater 32 and the gasification reactor 33 are provided. That is, a differential pressure measuring unit is provided that measures a differential pressure in a section between predetermined locations adjacent to a plurality of predetermined locations in the piping system that supplies the slurry to the heat exchanger 31 and the heater 32.
  • the tar is included in the section. It is determined that is attached.
  • the injection device 50 is used until a predetermined time or a differential pressure is reduced to a reference value at a position where the measurement result is increased.
  • a tar removing process is performed by injecting an oxidizing agent (for example, hydrogen peroxide, hypochlorous acid, nitric acid, etc.) that does not contain an inorganic substance through the pump 51.
  • an oxidizing agent for example, hydrogen peroxide, hypochlorous acid, nitric acid, etc.
  • the measurement results by the differential pressure measurement units 34a to 34c, 35a, and 35b are observed (SP1: No), and the measurement results increase from the reference value.
  • SP1: Yes the slurry body which is the gasification raw material currently distribute
  • SP3: No the passage of a predetermined time or the flow rate / condition in the gasification system 10 is observed (SP3: No), and when the above-described replacement with pure water is completed (SP3: Yes), the point where the measurement result has increased
  • injection of hydrogen peroxide solution (H 2 O 2 ) supplied from the injection device 50 via the pump 51 is started (SP4).
  • H 2 O 2 hydrogen peroxide solution supplied from the injection device 50 via the pump 51
  • the tar adhesion amount section is specified based on the increase in the differential pressure.
  • the present invention is not limited to this, and the tar adhesion amount section may be specified by, for example, a heat passage rate (dirt coefficient).
  • this embodiment describes the gasification system 10 provided with the heat exchanger 31 as a heating apparatus, this invention is not limited to this, and may not have a heat exchanger depending on the gasification system. Needless to say, it is necessary to raise the temperature to the reaction temperature by some kind of heating device before the gasification raw material is gasified.
  • the above-mentioned tar removal treatment can be performed at a temperature near the gasification operation condition simply by replacing the raw slurry body with pure water while maintaining the state during operation. Therefore, the reactivity of H 2 O 2 is high. Thus, the efficiency of tar removal work can be improved.
  • the time available for gasification increases and the equipment can be used effectively.
  • by injecting H 2 O 2 at a pinpoint into a dirty part it is possible to effectively clean the trouble occurrence part.
  • the chemical solution can be used effectively, the amount of drug to be used can be reduced to a low cost.
  • the gas processing unit 40 is a part that extracts fuel gas from the processed fluid sent from the heat exchanger 31.
  • the gas processing unit 40 includes a cooling mechanism 41, a decompression mechanism 42, a gas-liquid separator 43, and a gas tank 44.
  • the cooling mechanism 41 is a device that cools the processed fluid sent from the heat exchanger 31.
  • the decompression mechanism 42 is a device that decompresses the processed fluid sent from the cooling mechanism 41.
  • the gas-liquid separator 43 cools the processed fluid cooled by the cooling mechanism 41 and decompressed by the decompression mechanism 42, such as wastewater containing at least one of liquid components (solid such as activated carbon and ash, and viscous fluid such as tar). It is a device that separates into a liquid) and a gas component (a gas such as hydrogen or methane). Among these, the liquid component is treated as drainage, and the gas component is sent to the gas tank 44. The details of the gas-liquid separator 43 will be described later.
  • the gas tank 44 is a container for storing the gas (generated gas) separated by the gas-liquid separator 43. A part of the product gas stored in the gas tank 44 is supplied to the heater 32 and the gasification reactor 33 and consumed as fuel gas. In addition, this fuel gas can also be used as a power generation or a power source.
  • the differential pressure measuring units 34a to 34c that measure the differential pressure between the inlet and the outlet across the inlet side and the outlet side of the heat exchanger 31. are provided between the inlet side and the outlet side of the heater 32 and the gasification reactor 33, and differential pressure measuring units 35a and 35b for measuring the differential pressure between the inlet and the outlet are provided.
  • the measurement result by the parts 34a to 34c, 35a, 35b rises from a reference value based on the differential pressure when there is no tar or the like attached, the slurry body circulating in the gasification system 10 is changed to pure water.
  • the hydrogen peroxide solution (oxidant) is injected from the injection device 50 through the pump 51 until the predetermined measurement time or the differential pressure drops to the reference value at the location where the measurement result has increased.
  • a control unit for controlling on / off of the injection device 50 based on the measurement results of the differential pressure measurement units 34a to 34c, 35a, 35b may be further provided.
  • a timer for detecting the passage of time is further provided, and the control unit controls the injection device 50 to be turned off when the timer detects that a predetermined time has elapsed since the injection device 50 was turned on by the timer. It is good to do.
  • the oxidant can be automatically injected and stopped based on the measurement results of the differential pressure measuring units 34a to 34c, 35a, and 35b and the detection of the passage of a predetermined time by the timer.
  • the gas-liquid separator 43 may be provided with two gate valves 43a and 43b as pressure reducing mechanisms in the discharge path. Thereby, even when the inside of the separator body is at a pressure higher than the atmospheric pressure (for example, 0.3 to 0.5 MPa), the internal pressure and the gas component (product gas) are not lost, The liquid component can be discharged efficiently.
  • the atmospheric pressure for example, 0.3 to 0.5 MPa
  • the gasification system 10 may be provided with a power generation device that generates power by using the generated gas (fuel gas) stored in the gas tank 44 as fuel.
  • a power generation device for example, existing devices such as a gas engine (reciprocating engine, rotary engine), a steam turbine, a Stirling engine, and a fuel cell can be widely applied. And by using the fuel gas obtained by this gasification system 10 and generating electricity with a gas engine, electric power and exhaust heat can be obtained, so resource saving of fossil fuels such as coal and oil is achieved. be able to.
  • the gasification system 10 may be provided with a pretreatment device (not shown) for hydrothermally treating hydrous biomass in advance.
  • a pretreatment device not shown
  • the biomass can be decomposed from a high molecular weight to a low molecular weight, the contact efficiency between the biomass treated in the gasification reactor 33 and water or a nonmetallic catalyst is increased, and further generation of tar and the like is further suppressed. And fuel gas can be efficiently generated from biomass.

Abstract

本発明のガス化システム10では、熱交換器31、加熱器32およびガス化反応器33の入口と出口の差圧を測定する差圧測定部34a~34c,35a,35bを設け、これらの測定結果が、タール等の付着のない場合の差圧を基準とする基準値より上昇した場合、ガス化システム10内に流通しているスラリー体を純水に置換した後、前述の測定結果が上昇した箇所に対し、所定時間、所定量または差圧が基準値に低下するまで、注入装置50からポンプ51を介して過酸化水素水(酸化剤)を注入するようにすることで、熱交換器31や加熱器32およびガス化反応器33の配管内壁面に付着した粘性流体を分解除去して、当該粘性流体による目詰まりに起因した配管流路の閉塞や熱通過率の低下を未然に回避できると共に、連続運転時間を増大させることで設備利用率を上げて設備コストを低減することができる。

Description

超臨界水ガス化システム
 本発明は、バイオマスに水および触媒を添加して調整されたスラリー体を、超臨界状態で分解処理して燃料ガスを生成する超臨界水ガス化システムおよび超臨界水ガス化方法に関する。
 近年、含水性バイオマス(焼酎残渣,採卵鶏糞,有機性汚泥,有機性汚水等)を超臨界水でガス化する技術において、バイオマスを超臨界水でガス化する際に得られる生成物の熱を利用して、超臨界水でガス化される含水性バイオマスまたは該バイオマスのスラリー体を加熱する二重管式熱交換器を備えた超臨界水ガス化システムが開発されている(例えば、特許文献1および2参照)。
 ここで、一般的なバイオマスによるガス化システムは、熱交換器・加熱器およびガス化反応器等を含んで構成され、反応性に富む超臨界水による加水分解反応によって有機物を水素・メタン・エタン・一酸化炭素・二酸化炭素等にガス化する。例えば、熱交換器は、スラリー状のスラリー体を加熱する装置である。このスラリー体は、焼酎残渣・採卵鶏糞・有機性汚泥・有機性汚水等のバイオマスに、例えば水および活性炭等を加えて混合することで調整される。なお、超臨界水ガス化反応において、活性炭は触媒として利用される。加熱器は、熱交換器で加熱されたスラリー体をガス化反応温度である600℃まで昇温する装置である。ガス化反応器は、このスラリー体を水熱処理して有機物をガス化し、超臨界状態の高温流体にする装置である。超臨界状態となった流体は、その後、気液分離器において気体成分と、液体成分とに分離され、気体成分が燃料ガスとして利用される。
特開2007-271146号公報 特開2009-242697号公報
 しかしながら、上述のような超臨界水ガス化システムにおいては、ガス化の際、250℃~350℃の温度域においてはグルコース由来の粘性流体(タール等)が発生し、400℃前後の温度域においてはリグニン由来の粘性流体(タール等)が発生する。そして、そのタールが、熱交換器や加熱器の配管内壁面に付着して堆積することで目詰まりや、それに起因した閉塞が生じたり、熱通過率を低下させたりするといったトラブルを生じさせる場合がある。
 そのため、従来では、タール生成を抑制する手法として、グルコース由来タールに対しては昇温速度を向上することが有効とされ、リグニン由来のタールに対してはラジカル捕捉剤を原料に混合したり、加熱途中に高圧注入したりすることが有効であるとされている。
 ところが、これらの手法を用いたとしても、タール生成自体を完全になくすことや、タールを分解することを期待できないため、発生したタールが前記配管内に付着して厚みを増すことを完全に防止することはできない。
 そこで、本発明者等は、上述したタール等の粘性流体が、熱交換器等の加熱装置の配管内において目詰まりを起こすことに起因した流路の閉塞を防止することに着目した。
 本発明は、上記課題に鑑みてなされたものであり、熱交換器等の加熱装置の配管内壁面に付着した粘性流体を分解除去して、当該粘性流体による目詰まりに起因した配管流路の閉塞や熱通過率の低下を未然に回避できると共に、連続運転時間を増大させることで設備利用率を上げて設備コストを低減することができる超臨界水ガス化システムおよび超臨界水ガス化方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る超臨界水ガス化システムは、
 バイオマスを含む原料で生成されたスラリー体を超臨界水でガス化処理するガス化反応器と、前記ガス化反応器で超臨界水によりガス化処理される前に前記スラリー体を昇温する加熱部と、を備える超臨界水ガス化システムであって、
 前記スラリー体を前記加熱部および前記ガス化反応器へと供給するための配管系統と、
 前記配管系統においてタールが付着した区間を特定するタール付着区間特定部と、
 無機物を含まない酸化剤を、前記特定した区間に注入するための注入装置と、を備えることを特徴とする。
 このとき、前記タール付着区間特定部は、
 前記配管系統における異なる複数の所定位置の差圧を測定する差圧測定部を備え、
 該差圧測定部により測定した、隣り合う前記所定位置の間の差圧が基準値以上となった場合に、当該隣り合う所定位置の間の区間を、タールが付着した区間として特定することが好ましい。
 また、本発明に係る超臨界水ガス化システムは、
 前記タール付着区間特定部によりタールが付着した区間が特定された場合に、前記配管系統への供給物を前記スラリー体から水に切り替える切替手段と、
 前記配管系統が水で置換された後、前記注入装置により前記特定された区間へ前記酸化剤を供給するよう前記注入装置を制御する制御部と、を備えることとしてもよい。
 さらに、本発明に係る超臨界水ガス化システムにおいて、
 前記制御部は、
 前記配管系統への供給物が水に切り替えられてから所定時間経過したことを検知すると、前記配管系統が水で置換されたと判定することとしてもよい。
 さらに、本発明に係る超臨界水ガス化システムにおいて、
 前記制御部は、
 前記配管系統への供給物が水に切り替えられてから所定量注入されたことを検知すると、前記配管系統が水で置換されたと判定することとしてもよい。
 さらに、本発明に係る超臨界水ガス化システムにおいて、
 前記酸化剤は、過酸化水素、次亜塩素酸、硝酸、またはオゾンであることが好ましい。
 また、本発明に係る超臨界水ガス化方法は、
 バイオマスを含む原料で生成されたスラリー体をガス化反応器にて超臨界水でガス化処理する工程と、前記ガス化反応器で超臨界水によりガス化処理される前に前記スラリー体を加熱部にて昇温する工程と、を備える超臨界水ガス化方法であって、
 前記スラリー体を前記加熱部および前記ガス化反応器へと供給するための配管系統においてタールが付着した区間を特定し、前記特定した区間に、無機物を含まない酸化剤を注入することを特徴とする。
 さらに、本発明に係る超臨界水ガス化方法は、
 前記配管系統においてタールが付着した区間が特定された場合に、前記配管系統への供給物を前記スラリー体から水に切り替え、
 前記配管系統が水で置換された後、前記特定された区間へ前記酸化剤を供給することが好ましい。
 本発明に係る超臨界水ガス化システムおよび超臨界水ガス化方法によれば、熱交換器等の加熱装置の配管内壁面に付着した粘性流体を分解除去して、当該粘性流体による目詰まりに起因した配管流路の閉塞や熱通過率の低下を未然に回避できると共に、連続運転時間を増大させることで設備利用率を上げて設備コストを低減することができる。
本発明の一実施形態に係る超臨界水ガス化システムの概略構成を示す図である。 本発明の一実施形態として説明するタール除去処置手順を示すフローチャートである。
 以下、本発明に係る超臨界水ガス化システムの実施形態について、添付図面を参照しつつ説明する。なお、本発明は、請求の範囲および明細書全体から読み取ることのできる発明の要旨または思想に反しない範囲で適宜変更可能であり、そのような変更を伴う超臨界水ガス化システムもまた本発明の技術思想に含まれる。
<本発明に係る超臨界水ガス化システムの全体構成>
 図1は、本発明の一実施形態として説明する超臨界水ガス化システム10の概略構成を示す図である。なお、以下の説明においては、「超臨界水ガス化システム」を、単に「ガス化システム」と称す。
 図1に示すように、本発明に係るガス化システム10では、原料である焼酎残渣、採卵鶏糞、有機性汚泥、有機性汚水等のバイオマスからスラリー体を調製し、調製したスラリー体を加熱加圧することにより燃焼ガスを生成する。同図に示すように、ガス化システム10は、原料調製部20と、熱処理部30と、ガス処理部40とを有する。
 原料調製部20は、バイオマスからスラリー体を調製する部分である。この原料調製部20は、調製タンク21と、粉砕ポンプ22と、供給ポンプ23と、熱交換器導入ポンプ24とを備える。
 調製タンク21は、バイオマスと、水と、活性炭(非金属系触媒の一種)を混合するための容器である。この調製タンク21では、バイオマス、水および活性炭が混合されたガス化原料としての混合物が調製される。活性炭は、例えば平均粒径200μm以下の多孔質の粒子を用いる。なお、バイオマスと、水と、活性炭の混合割合は、バイオマスの種類、量、含水率などに応じて適宜調節される。
 粉砕ポンプ22は、調製タンク21で調整された混合物の固形分を破砕し、均一な大きさ(好ましくは平均粒径が800μm以下、より好ましくは平均粒径が500μm以下)にするための装置である。この粉砕ポンプ22で処理されることにより、混合物はスラリー状のスラリー体となる。
 供給ポンプ23は、粉砕ポンプ22から排出されたスラリー体を熱交換器導入ポンプ24に供給する。熱交換器導入ポンプ24は、供給ポンプ23から送られてきたスラリー体を加圧して熱処理部30に供給する。この熱交換器導入ポンプ24により、スラリー体は22.1~38MPa程度まで加圧される。
 ここで、具体的に調整タンク21は、図示省略するが、上部が開口する略円筒状で下部が円錐状に形成されたものであって、内部に所定量のバイオマス、水、非金属系触媒などが貯留可能となっていることが好ましい。また、調整タンク21の内部には、バイオマスを攪拌する攪拌手段が着脱可能に設けられ、この攪拌手段により調整タンク21内でバイオマスと水と非金属系触媒とが攪拌混合されることが好ましい。
 かかる調整タンク21内で混合された混合物は、水またはバイオマスのヘッド圧により、調整タンク21から後述する破砕ポンプ22へ送給される。このとき、バイオマスのうち、大きさが混合するに値しない程大きいものは、上述の混合量の調整が困難であるため、混合されない状態で後述する破砕ポンプ22へ送給される。
 破砕ポンプ22の破砕羽根(不図示)の回転により、調整タンク21から吸込路(不図示)を介して破砕ポンプ22のケーシング内(不図示)に供給される混合物やバイオマスが所定の大きさに破砕される。そして、破砕ポンプ22で破砕された混合物やバイオマスは、原料供給管(不図示)を介して供給ポンプ23に移送される。
 なお、所定の大きさに破砕されたガス化原料を貯留する破砕済原料タンクを別途設けると共に、破砕ポンプ22と破砕済原料タンクとを接続する原料供給管の途中に、破砕ポンプ22で粉砕した混合物やバイオマスを調整タンク21に戻す循環配管を設け、この循環配管16を介して破砕ポンプ22と調整タンク21との間で混合物やバイオマスを循環させ、バイオマスの粒度を下げた後に破砕済原料タンクを介して供給ポンプ23に供給するように構成してもよい。
 このとき、循環配管の途中に破砕ポンプ22の出口弁としての第一開閉弁を設けると共に、破砕済原料タンクの入口側の原料供給管に破砕済原料タンクの入口弁としての第二開閉弁を設け、第一開閉弁を「開」状態とし、第二開閉弁を「閉」状態とすることで、循環配管を介して破砕ポンプ22と調整タンク21との間で混合物やバイオマスを循環させることが可能となる。また、第一開閉弁を「閉」状態とし、第二開閉弁を「開」状態とすることで、粒度を下げた混合物やバイオマスを破砕済原料タンクに供給することが可能となる。
 熱処理部30は、原料調製部20で調製されたスラリー体を加熱し、ガス化する部分である。この熱処理部30は、加熱装置としての熱交換器31と、加熱器32と、ガス化反応器33とを備える。
 熱交換器31は、原料調製部20から送られてきたスラリー体を加熱する装置である。熱交換器31は、例えば、二重管を備える二重管式熱交換器であり、低温流路36と高温流路37を備える。低温流路36には、原料調製部20から送られてきたスラリー体が流通する。一方、高温流路37には、後述するガス化反応器33で生成された超臨界状態の高温流体(以下、処理後流体ともいう)が導入され、この処理後流体が流通する。そして、高温流路37を流れる処理後流体と、低温流路36を流れるスラリー体とが熱交換される。
 加熱器32は、熱交換器31から送られてくるスラリー体を加熱する装置である。加熱器32は燃焼装置32aを備え、燃焼装置32aは、プロパンガス等の液化石油ガスや空気に、ガス処理部40から送られてくる燃焼ガスを導入して燃焼させ、スラリー体を加熱する。これにより、加熱器32に導入されたスラリー体は、例えば約600℃程度までに昇温される。昇温されたスラリー体は、ガス化反応器33に送出される。
 ガス化反応器33は、加熱器32から送られてきたスラリー体を超臨界状態として、ガス化反応温度(スラリー体がガス化する(ガス化が可能となる)温度)で一定に保持し、スラリー体に含まれる有機物を水熱処理する装置である。ガス化反応器33は燃焼装置33aを備え、燃焼装置33aは、液化石油ガスに、ガス処理部40から送られてくる燃焼ガスを導入して空気と混合して燃焼させ、スラリー体を加熱して水熱処理する。この水熱処理においてスラリー体は、例えば600℃、25MPaの条件下で、1~2分間にわたって水熱処理される。水熱処理されたスラリー体はガス化反応が進行したのち、処理後流体として、熱交換器31の高温流路37へ送出される。
 なお、バイオマスの超臨界水によるガス化は、前述の非金属系触媒を利用して、374℃以上の温度、および22.1MPa以上の圧力の条件下で行うことができるが、タールの発生を抑制するとともに炭素ガス化率を高めることができる温度および圧力下(600℃以上、22.1~35MPaの範囲内)で行うことが好ましい。このようにバイオマスを超臨界水で処理することにより、バイオマスを分解し、水素ガス、メタン、エタン、エチレン等の燃料ガスを生成することができる。
 ここで、従来のガス化システムにおいては、ガス化の際に発生するタールが、熱交換器や加熱器の配管内壁面に付着・堆積することで目詰まりや、それに起因した閉塞が生じたり、熱通過率を低下させたりするといったトラブルを生じさせる場合があった。
 そこで、本実施形態の場合、熱交換器31における入口と出口(具体的に、熱交換器31は3つの区間に区画され、各々横向きに配置されたU字状の配管系統で構成されており、それら途中区間の入口と出口)の差圧を測定する差圧測定部34a~34cが設けられている。また、加熱器32およびガス化反応器33のそれぞれの入口と出口の差圧を測定する差圧測定部35a,35bが設けられている。すなわち、熱交換器31および加熱器32にスラリーを供給する配管系統の複数の所定箇所に隣接する所定箇所の間の区間の差圧を測定する差圧測定部が設けられている。そして、差圧測定部34a~34c,35a,35bによって測定された差圧が、タール等の付着のない場合の差圧を基準とする基準値より上昇した区間があった場合、その区間にタールが付着したと判定する。この場合、ガス化システム10内に流通しているスラリー体を純水に置換した後、前述の測定結果が上昇した箇所に対し、所定時間または差圧が基準値に低下するまで、注入装置50からポンプ51を介して無機物を含まない酸化剤(例えば、過酸化水素水、次亜塩素酸、硝酸など)を注入するタール除去処理を実行する。
 具体的に、タール除去処理手順は図2に示すように、各差圧測定部34a~34c,35a,35bによる測定結果を観察し(SP1:No)、当該測定結果が基準値より上昇した場合(SP1:Yes)、ガス化システム10内に流通しているガス化原料であるスラリー体を純水に置換する(SP2)。そして、所定時間の経過もしくはガス化システム10内の流量・条件を観察し(SP3:No)、前述の純水への置換が完了すると(SP3:Yes)、前記測定結果が上昇した箇所に対し、注入装置50からポンプ51を介して供給される過酸化水素水(H)の注入を開始する(SP4)。
 このとき、所定時間の経過もしくは前記差圧を観察し(SP5:No)、当該差圧が基準値まで低下すると(SP5:Yes)、注入装置50からポンプ51を介して供給される過酸化水素水(H)の注入を停止する(SP6)。そして、ガス化システム10内に流通している純水をガス化原料であるスラリー体に置換する(SP7)。
 なお、本実施形態では、タール付着量区間を差圧の上昇に基づいて特定しているが、これに限らず、例えば、熱通過率(汚れ係数)等によって特定してもよい。また、本実施形態では加熱装置として熱交換器31を備えるガス化システム10について述べるが、本発明はこれに限らず、ガス化システムによっては熱交換器を持たない場合もあり、その場合でも、ガス化原料をガス化反応させる前に何らかの加熱装置によって反応温度まで昇温させる必要があることは言うまでもない。
 さらに、上述のタール除去処理は、運転時の状態を保ちつつ、原料スラリー体を純水に置換するだけで、温度はガス化運転条件付近で作業できるので、Hの反応性が高く、タール除去作業の効率化を図ることができる。また、原料スラリー体とHを切り替えるために装置を冷却し停止する必要がないので、ガス化に利用できる時間が増え、機器を有効活用できる。さらに、汚れている部分にピンポイントでHを注入することで、トラブル発生箇所を効果的に洗浄できる。加えて、薬液を有効活用できるので、使用する薬量を少量に抑え、コスト削減を図ることができる。
 ガス処理部40は、熱交換器31から送出された処理後流体から燃料ガスを取り出す部分である。このガス処理部40は、冷却機構41と、減圧機構42と、気液分離器43と、ガスタンク44とを備える。
 冷却機構41は、熱交換器31から送られてきた処理後流体を冷却する装置である。減圧機構42は、冷却機構41から送出された処理後流体を減圧する装置である。気液分離器43は、冷却機構41で冷却され、減圧機構42で減圧された処理後流体を、液体成分(活性炭、灰分などの固体およびタールなどの粘性流体の少なくとも一方を含有する排水などの液体)と、気体成分(水素やメタン等のガス)とに分離する装置である。このうち液体成分は排液として処理され、気体成分はガスタンク44に送られる。なお、気液分離器43の詳細については、後述する。
 ガスタンク44は、気液分離器43で分離した気体(生成ガス)を貯留する容器である。ガスタンク44に貯留された生成ガスの一部は、加熱器32およびガス化反応器33に供給され、燃料ガスとして消費される。なお、この燃料ガスは、発電や動力源として用いることもできる。
 以上、説明したように、本実施形態のガス化システム10では、熱交換器31の入口側と出口側の間に跨って、これら入口と出口の差圧を測定する差圧測定部34a~34cが設けられ、加熱器32およびガス化反応器33の入口側と出口側の間に跨って、これら入口と出口の差圧を測定する差圧測定部35a,35bが設けられ、各差圧測定部34a~34c,35a,35bによる測定結果が、タール等の付着のない場合の差圧を基準とする基準値より上昇した場合、ガス化システム10内に流通しているスラリー体を純水に置換した後、前述の測定結果が上昇した箇所に対し、所定時間または差圧が基準値に低下するまで、注入装置50からポンプ51を介して過酸化水素水(酸化剤)を注入するようにしたので、熱交換器31や加熱器32およびガス化反応器33の配管内壁面に付着した粘性流体を分解除去して、当該粘性流体による目詰まりに起因した配管流路の閉塞や熱通過率の低下を未然に回避できると共に、連続運転時間を増大させることで設備利用率を上げて設備コストを低減することができる。
 また、差圧測定部34a~34c,35a,35bの測定結果に基づいて、注入装置50のオン・オフを制御する制御部(不図示)を更に備えることとしてもよい。さらに、時間の経過を検知するタイマーを更に設け、制御部は、タイマーによって注入装置50がオン状態とされてから所定時間経過したことを検知すると、当該注入装置50をオフ状態とするように制御することとしてもよい。この場合、各差圧測定部34a~34c,35a,35bの測定結果およびタイマーによる所定時間の経過の検知に基づいて、自動で酸化剤の注入・停止を実行することができる。
 また、気液分離器43は、その排出路に減圧機構としての2つのゲート弁43a,43bを設けるようにしてもよい。これにより、分離器本体内が大気圧よりも高い圧力(例えば、0.3~0.5MPa)となっている場合であっても、内部の圧力や気体成分(生成ガス)を逃すことなく、液体成分を効率的に排出できる。
 なお、本実施形態では図示省略しているが、本ガス化システム10に、ガスタンク44に貯えられた生成ガス(燃料ガス)を燃料として利用することで発電する発電装置を備えるようにしてもよい。この場合、発電装置は、例えば、ガスエンジン(レシプロエンジン、ロータリーエンジン)、蒸気タービン、スターリングエンジン、燃料電池などの既存の装置を広く適用できる。そして、本ガス化システム10により得られた燃料ガスを用いて、ガスエンジンによる発電を行うことにより、電力と排熱を得ることができるので、石炭、石油等の化石燃料の省資源化を図ることができる。
 また、本ガス化システム10に予め含水性バイオマスを熱水処理する前処理装置(不図示)を備えるようにしてもよい。この場合、バイオマスを高分子から低分子に分解することができるので、ガス化反応器33において処理されるバイオマスと水や非金属系触媒との接触効率を高め、タール等の発生の更なる抑制が可能となると共に、バイオマスから燃料ガスを効率よく生成できる。
 10…ガス化システム、20…原料調製部、21…調製タンク、22…粉砕ポンプ、23…供給ポンプ、24…熱交換器導入ポンプ、30…熱処理部、31…熱交換器、32…加熱器、32a…燃焼装置、33…ガス化反応器、33a…燃焼装置、36…低温流路、37…高温流路、40…ガス処理部、41…冷却機構、42…減圧機構、43…気液分離器、43a…ゲート弁、43b…ゲート弁、44…ガスタンク、50…注入装置、51…ポンプ
 

Claims (8)

  1.  バイオマスを含む原料で生成されたスラリー体を超臨界水でガス化処理するガス化反応器と、前記ガス化反応器で超臨界水によりガス化処理される前に前記スラリー体を昇温する加熱部と、を備える超臨界水ガス化システムであって、
     前記スラリー体を前記加熱部および前記ガス化反応器へと供給するための配管系統と、
     前記配管系統においてタールが付着した区間を特定するタール付着区間特定部と、
     無機物を含まない酸化剤を、前記特定した区間に注入するための注入装置と、を備える
     ことを特徴とする超臨界水ガス化システム。
  2.  前記タール付着区間特定部は、
     前記配管系統における異なる複数の所定位置の差圧を測定する差圧測定部を備え、
     該差圧測定部により測定した、隣り合う前記所定位置の間の差圧が基準値以上となった場合に、当該隣り合う所定位置の間の区間を、タールが付着した区間として特定する
     ことを特徴とする請求項1に記載の超臨界水ガス化システム。
  3.  前記タール付着区間特定部によりタールが付着した区間が特定された場合に、前記配管系統への供給物を前記スラリー体から水に切り替える切替手段と、
     前記配管系統が水で置換された後、前記注入装置により前記特定された区間へ前記酸化剤を供給するよう前記注入装置を制御する制御部と、を備える
     ことを特徴とする請求項1または2に記載の超臨界水ガス化システム。
  4.  前記制御部は、
     前記配管系統への供給物が水に切り替えられてから所定時間経過したことを検知すると、前記配管系統が水で置換されたと判定する
     ことを特徴とする請求項3に記載の超臨界水ガス化システム。
  5.  前記制御部は、
     前記配管系統への供給物が水に切り替えられてから所定量注入されたことを検知すると、前記配管系統が水で置換されたと判定する
     ことを特徴とする請求項3に記載の超臨界水ガス化システム。
  6.  前記酸化剤は、過酸化水素、次亜塩素酸、硝酸、またはオゾンであることを特徴とする請求項1~5のうち何れか1項に記載の超臨界水ガス化システム。
  7.  バイオマスを含む原料で生成されたスラリー体をガス化反応器にて超臨界水でガス化処理する工程と、前記ガス化反応器で超臨界水によりガス化処理される前に前記スラリー体を加熱部にて昇温する工程と、を備える超臨界水ガス化方法であって、
     前記スラリー体を前記加熱部および前記ガス化反応器へと供給するための配管系統においてタールが付着した区間を特定し、前記特定した区間に、無機物を含まない酸化剤を注入する
     ことを特徴とする超臨界水ガス化方法。
  8.  前記配管系統においてタールが付着した区間が特定された場合に、前記配管系統への供給物を前記スラリー体から水に切り替え、
     前記配管系統が水で置換された後、前記特定された区間へ前記酸化剤を供給する
     ことを特徴とする請求項7に記載の超臨界水ガス化方法。
     
PCT/JP2016/077893 2016-09-21 2016-09-21 超臨界水ガス化システム WO2018055705A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017506425A JP6488364B2 (ja) 2016-09-21 2016-09-21 超臨界水ガス化システム
PCT/JP2016/077893 WO2018055705A1 (ja) 2016-09-21 2016-09-21 超臨界水ガス化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077893 WO2018055705A1 (ja) 2016-09-21 2016-09-21 超臨界水ガス化システム

Publications (1)

Publication Number Publication Date
WO2018055705A1 true WO2018055705A1 (ja) 2018-03-29

Family

ID=61689425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077893 WO2018055705A1 (ja) 2016-09-21 2016-09-21 超臨界水ガス化システム

Country Status (2)

Country Link
JP (1) JP6488364B2 (ja)
WO (1) WO2018055705A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648351B1 (ja) * 2019-04-26 2020-02-14 中国電力株式会社 閉塞物除去方法
CN111187646A (zh) * 2018-11-14 2020-05-22 西安闪光能源科技有限公司 瞬时超临界煤制氢气的方法及装置
JP2021079345A (ja) * 2019-11-20 2021-05-27 清水 幹治 有機物の亜臨界又は超臨界連続処理設備及び方法
CN115180709A (zh) * 2022-07-06 2022-10-14 深圳市华尔信环保科技有限公司 一种采油废水处理及超临界多元热流体发生系统
WO2024023308A1 (fr) * 2022-07-29 2024-02-01 Suez International Procede de traitement de dechets complexes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189588A (ja) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The 超臨界水によるバイオマスガス化システム及びその運転方法
JP2014190753A (ja) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The 配管内の詰まり又は壁面への付着物の付着を迅速に検知する方法及びシステム、並びにこれらの利用
JP2015017197A (ja) * 2013-07-11 2015-01-29 日曹エンジニアリング株式会社 有機廃棄物のガス化方法
WO2016139720A1 (ja) * 2015-03-02 2016-09-09 中国電力株式会社 バイオマス処理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189588A (ja) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The 超臨界水によるバイオマスガス化システム及びその運転方法
JP2014190753A (ja) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The 配管内の詰まり又は壁面への付着物の付着を迅速に検知する方法及びシステム、並びにこれらの利用
JP2015017197A (ja) * 2013-07-11 2015-01-29 日曹エンジニアリング株式会社 有機廃棄物のガス化方法
WO2016139720A1 (ja) * 2015-03-02 2016-09-09 中国電力株式会社 バイオマス処理システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187646A (zh) * 2018-11-14 2020-05-22 西安闪光能源科技有限公司 瞬时超临界煤制氢气的方法及装置
CN111187646B (zh) * 2018-11-14 2021-03-23 西安闪光能源科技有限公司 瞬时超临界煤制氢气的方法及装置
JP6648351B1 (ja) * 2019-04-26 2020-02-14 中国電力株式会社 閉塞物除去方法
WO2020217505A1 (ja) * 2019-04-26 2020-10-29 中国電力株式会社 閉塞物除去方法
JP2021079345A (ja) * 2019-11-20 2021-05-27 清水 幹治 有機物の亜臨界又は超臨界連続処理設備及び方法
CN115180709A (zh) * 2022-07-06 2022-10-14 深圳市华尔信环保科技有限公司 一种采油废水处理及超临界多元热流体发生系统
CN115180709B (zh) * 2022-07-06 2023-08-22 深圳市华尔信环保科技有限公司 一种采油废水处理及超临界多元热流体发生系统
WO2024023308A1 (fr) * 2022-07-29 2024-02-01 Suez International Procede de traitement de dechets complexes
FR3138428A1 (fr) * 2022-07-29 2024-02-02 Suez International Procede de traitement de dechets complexes

Also Published As

Publication number Publication date
JPWO2018055705A1 (ja) 2018-09-27
JP6488364B2 (ja) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6488364B2 (ja) 超臨界水ガス化システム
JP6250293B2 (ja) 超臨界水によるバイオマスガス化システム及びその運転方法
JP5036037B2 (ja) バイオマスガス化発電システム
JP6573261B2 (ja) 超臨界水ガス化システム
JP2009149773A (ja) バイオマスガス化方法、及びバイオマスガス化システム
EP2744877A1 (en) Fuel slurry heating system and method
JP6070906B1 (ja) 超臨界水ガス化システムおよびガス化方法
JP4997546B2 (ja) 超臨界水バイオマスガス化装置及びそれを含むシステム
WO2015132922A1 (ja) 超臨界流体によるガス化装置
JP5859713B1 (ja) バイオマスガス化システムおよびバイオマスガス化方法
JP6057362B1 (ja) 超臨界水ガス化システム
JP2008246343A (ja) バイオマスガス化発電システム
JP6338080B2 (ja) 超臨界水によるバイオマスガス化システム
JP6127215B2 (ja) ガス化システム
JP6066411B2 (ja) 活性炭によるバイオマスの超臨界水ガス化システムの運転方法
JP6163623B1 (ja) 気液分離器およびそれを用いた超臨界水ガス化システム
KR200264187Y1 (ko) 대용량 고농도 오존수 발생 장치
JP2008246341A (ja) 流体供給装置およびそれを備えるシステム
WO2015132923A1 (ja) 超臨界流体によるガス化装置
JP6364645B2 (ja) バイオマス処理システム
JP6020951B1 (ja) ガス化システム、及びガス化システムにおけるガス化方法
JP2006239541A (ja) 湿式酸化分解処理装置およびその触媒洗浄方法
KR102582677B1 (ko) 슬러지 탈수 및 고형물 무배출 시스템
JP6671677B1 (ja) 超臨界水ガス化システム
JP2001252549A (ja) 高温高圧下における有機物酸化処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017506425

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916775

Country of ref document: EP

Kind code of ref document: A1