WO2018054460A1 - Verfahren zum betreiben eines von einer brennkraftmaschine angetriebenen fahrzeugs in abhängigkeit von einem abstand zu einem vorausfahrenden fahrzeug - Google Patents

Verfahren zum betreiben eines von einer brennkraftmaschine angetriebenen fahrzeugs in abhängigkeit von einem abstand zu einem vorausfahrenden fahrzeug Download PDF

Info

Publication number
WO2018054460A1
WO2018054460A1 PCT/EP2016/072428 EP2016072428W WO2018054460A1 WO 2018054460 A1 WO2018054460 A1 WO 2018054460A1 EP 2016072428 W EP2016072428 W EP 2016072428W WO 2018054460 A1 WO2018054460 A1 WO 2018054460A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
acceleration
operating parameter
operating
internal combustion
Prior art date
Application number
PCT/EP2016/072428
Other languages
English (en)
French (fr)
Inventor
Doerte Grahle
Matthias Lohmueller
Jan Gerstenberg
Simon Weissenmayer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to PCT/EP2016/072428 priority Critical patent/WO2018054460A1/de
Priority to CN201680041280.8A priority patent/CN108093643B/zh
Publication of WO2018054460A1 publication Critical patent/WO2018054460A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/476Regeneration of particle filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/12Parameters used for control of starting apparatus said parameters being related to the vehicle exterior
    • F02N2200/125Information about other vehicles, traffic lights or traffic congestion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for operating a vehicle driven by an internal combustion engine, wherein a distance to a preceding vehicle is detected, and a computing unit and a computer program for its implementation.
  • the invention provides that while driving the distance to the vehicle in front, in particular continuously, is determined, for example by means of Radar, optically (eg camera) or acoustically (eg ultrasound), so that a future acceleration of one's own vehicle can be predicted taking into account a temporal development of the own acceleration.
  • the operation of the vehicle, in particular of the internal combustion engine and of the drive train, can then be prepared or set up in advance for the predicted acceleration by setting at least one operating parameter of the vehicle as a function of the future acceleration of the vehicle. This allows a low-emission operation. Fuel can be saved, the efficiency is increased.
  • the predicted acceleration is negative, measures for exhaust aftertreatment, such as a NOx storage catalyst regeneration, DPF regeneration (diesel particulate filter) or a heat-up warm phase), not initiated, since these often have an increased power requirement.
  • measures for exhaust aftertreatment such as a NOx storage catalyst regeneration, DPF regeneration (diesel particulate filter) or a heat-up warm phase
  • the engine is stoichiometrically operated with a rich mixture (i.e., lack of air) such that the resulting incomplete combustion gases (e.g., carbon monoxide (CO) and hydrocarbons (HC)) in the NO x storage catalyst react to liberate
  • a rich mixture i.e., lack of air
  • the resulting incomplete combustion gases e.g., carbon monoxide (CO) and hydrocarbons (HC)
  • Nitrogen oxides are available to nitrogen. For this, however, a certain minimum load must be present, eg by fast driving. If, for example, an NOX regeneration is initiated shortly before a deceleration phase in which the vehicle possibly enters a coasting or sailing operation, this must be prematurely terminated. This can lead to the exceeding of pollutant limits. The same applies in principle for all exhaust aftertreatment measures, so that they are preferably not initiated in an impending slowdown. Likewise preferably, an emission-optimized operating point of the internal combustion engine for delayed travel, characterized by low pressure, low temperature and low mass flow of the exhaust gas, is predetermined if the predicted acceleration is negative.
  • At least one switching point of a transmission control unit of an automatic transmission of the drive train is set as the operating parameter of the vehicle, that is switched earlier into a higher gear and later into a lower gear, if the predicted acceleration is negative.
  • automatic transmissions include, for example. conventional automatic transducers, automated manual transmissions, such as dual-clutch transmissions, and continuously variable transmissions (CVT). With this measure, a gearbox that is particularly emission-friendly for a delayed driving operation because it leads to low speeds is set long.
  • At least one operating parameter of the internal combustion engine is predefined such that the exhaust backpressure decreases because no high boost pressure is required in the case of delayed travel.
  • a turbocharger can be controlled so that a turbine geometry is changed accordingly
  • Called wastegate in the exhaust stream is opened. This leads in particular to a CO 2 reduction in the exhaust gas.
  • At least one shift point of a transmission control unit of an automatic transmission of the drive train is set as an operating parameter of the vehicle so that later in a higher gear and earlier in a lower gear is switched.
  • At least one operating parameter of the internal combustion engine is predefined in such a way that the boost pressure increases, since a high boost pressure is required during accelerated driving.
  • a turbocharger can be controlled so that a turbine geometry is changed accordingly (VTG - variable turbine geometry), or that a bypass valve (also
  • Wastegate called) in the exhaust stream is closed. This leads in particular to an avoidance of smoke peaks, ie a short-term increased smoke development during combustion.
  • At least one operating parameter of the internal combustion engine is predefined such that the exhaust gas recirculation ratio decreases, since a low EGR rate results in a higher oxygen content in the air before the intake.
  • a provision for re-acceleration is thus created in order to prevent hydrocarbons, nitrogen oxides and soot formation.
  • a learning algorithm is used for the prediction of the acceleration. This increases the quality of the predicted acceleration.
  • An arithmetic unit according to the invention for example a control unit of a motor vehicle, is, in particular programmatically, adapted to carry out a method according to the invention.
  • Suitable data carriers for providing the computer program are in particular magnetic, optical and electrical memories, such as e.g. Hard drives, flash memory, EEPROMs, DVDs, etc. It is also possible to download a program via computer networks (Internet, intranet, etc.).
  • Figure 1 shows a schematic side view of two vehicles, one of which is operated according to a preferred embodiment of the invention.
  • FIG. 1 shows a schematic side view of a first vehicle 101 driven by an internal combustion engine 120 and a second vehicle 102 traveling ahead of the first vehicle.
  • the first vehicle 101 is operated in accordance with a preferred embodiment of the invention.
  • the determined distance d is transmitted to a computing unit or a control unit 110, which is set up in the program for carrying out a preferred embodiment of the invention.
  • the control unit 1 10 is configured to specify at least one operating parameter of the vehicle 101.
  • the control unit 1 10 is configured to specify at least one operating parameter for the internal combustion engine 120 and at least one operating parameter for an automatic transmission 130 in the drive train of the vehicle 101.
  • the control unit 1 10 receives in particular regularly the respective current distance d and generates a temporal course of the distance.
  • its speed v and its acceleration a (at least as a time derivative of the speed) are known in the vehicle 101 and can be taken into account by the control unit 110.
  • the control unit can predict, for example using a suitable learning algorithm, a future acceleration of the vehicle 101, for example a 5-10 second prevailing acceleration.
  • suitable operating parameters or operating parameters suitable for accelerated driving can then be specified for a delayed trip. Examples of such operating parameters have already been mentioned above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines von einer Brennkraftmaschine (120) angetriebenen Fahrzeugs (101), wobei ein Abstand (d) zu einem vorausfahrenden Fahrzeug (102) bestimmt wird, wobei unter Berücksichtigung einer zeitlichen Entwicklung einer Beschleunigung (a) des Fahrzeugs (101) und einer zeitlichen Entwicklung des Abstands (d) zu dem vorausfahrenden Fahrzeug (102) eine zukünftige Beschleunigung des Fahrzeugs (101) prognostiziert wird, wobei in Abhängigkeit von der zukünftigen Beschleunigung des Fahrzeugs (101) wenigstens ein Betriebsparameter des Fahrzeugs vorgegeben wird.

Description

Beschreibung
Titel
Verfahren zum Betreiben eines von einer Brennkraftmaschine angetriebenen Fahrzeugs in Abhängigkeit von einem Abstand zu einem vorausfahrenden Fahrzeug
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines von einer Brennkraftmaschine angetriebenen Fahrzeugs, wobei ein Abstand zu einem vorausfahrenden Fahrzeug erfasst wird, sowie eine Recheneinheit und ein Computerprogramm zu dessen Durchführung.
Stand der Technik
Gesetzliche Anforderungen an moderne Fahrzeuge hinsichtlich einzuhaltender Emissionsgrenzen werden immer strenger. Insbesondere kann die Einhaltung von Emissionsgrenzen auch während der Fahrt (sog. Real Driving Emissions, RDE) vorgeschrieben sein.
Offenbarung der Erfindung
Erfindungsgemäß werden ein Verfahren zum Betreiben eines von einer Brennkraftmaschine angetriebenen Fahrzeugs, wobei ein Abstand zu einem vorausfahrenden Fahrzeug erfasst wird, sowie eine Recheneinheit und ein Computerprogramm zu dessen Durchführung mit den Merkmalen der unabhängigen Patentansprüche vorgeschlagen. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung.
Die Erfindung sieht vor, dass während der Fahrt der Abstand zum vorausfahrenden Fahrzeug, insbesondere kontinuierlich, bestimmt wird, beispielsweise mittels Radar, optisch (z.B. Kamera) oder akustisch (z.B. Ultraschall), so dass unter Berücksichtigung einer zeitlichen Entwicklung der eigenen Beschleunigung eine zukünftige Beschleunigung des eigenen Fahrzeugs prognostiziert werden kann. Der Betrieb des Fahrzeugs, hier insbesondere der Brennkraftmaschine und des Antriebsstrangs, kann dann schon frühzeitig auf die prognostizierte Beschleunigung vorbereitet bzw. eingerichtet werden, indem in Abhängigkeit von der zukünftigen Beschleunigung des Fahrzeugs wenigstens ein Betriebsparameter des Fahrzeugs vorgegeben wird. Dies ermöglicht einen emissionsarmen Betrieb. Kraftstoff kann eingespart werden, der Wirkungsgrad wird erhöht.
Durch Berücksichtigung der zeitlichen Entwicklung der eigenen Beschleunigung können insbesondere beabsichtigte Abstandsveränderungen, beispielsweise bei einem Überhol- oder Bremsvorgang, welche nicht zu Anpassungen der Betriebsparameter führen sollen, erkannt werden.
Vorzugsweise werden als der wenigstens eine Betriebsparameter des Fahrzeugs wenigstens ein eine Verbrennungsstrategie und/oder wenigstens ein eine Abgasnachbehandlung beeinflussender Betriebsparameter vorgegeben. Zu den eine Verbrennungsstrategie beeinflussenden Betriebsparametern gehören u.a. Einspritzmengen, Einspritzzeitpunkte, Luftmassen, Abgasrückführraten usw. Zu den eine Abgasnachbehandlung beeinflussenden Betriebsparametern gehören u.a. Einspritzmengen, Einspritzzeitpunkte, Luftmassen, Temperaturen im Abgastrakt, Harnstoffeinspritzung usw.
Wird beispielsweise festgestellt, dass sich der Abstand verringert, obwohl die eigene Beschleunigung nicht zugenommen hat, lässt dies den Schluss zu, dass das vorausfahrende Fahrzeug langsamer wird, was wiederum den Schluss zu- lässt, dass auch das eigene Fahrzeug demnächst langsamer werden wird. In der Folge können Betriebsparameter vorgegeben werden, wie sich bei einer verzögerten Fahrt ergeben würden.
Vorzugsweise werden, wenn die prognostizierte Beschleunigung negativ ist, Maßnahmen zur Abgasnachbehandlung, wie eine NOx-Speicherkatalysator- regeneration, DPF-Regeneration (Dieselrußpartikelfilter) oder ein Heat-Up (Auf- wärmphase), nicht eingeleitet, da diese oftmals einen erhöhten Leistungsbedarf haben.
Zur weiteren Reduzierung des Kraftstoffverbrauchs von Brennkraftmaschinen und damit zu einer weiteren Reduzierung des Kohlendioxidausstoßes können diese mit Sauerstoffüberschuss (Magerbetrieb) betrieben werden. Dabei entstehen jedoch andere unerwünschte und schädliche Abgase, wie z.B. Stickoxide (NOx). Zur Abgasreinigung können sogenannte NOx-Speicherkatalysatoren eingesetzt werden, in denen die Stickoxide gespeichert werden. Da diese jedoch nur eine endliche Speicherkapazität haben, müssen sie regelmäßig (z.B. bei
Kraftfahrzeugen ca. alle wenigen Minuten) geleert, d.h. regeneriert werden. Zu diesem Zweck wird die Brennkraftmaschine mit einem fetten Gemisch (d.h. Luftmangel) unterstöchiometrisch betrieben, so dass die dabei entstehenden Gase der unvollständigen Verbrennung (z.B. Kohlenmonoxid (CO) und Kohlenwas- sersstoffe (HC)) im NOx-Speicherkatalysator zur Umsetzung der freiwerdenden
Stickoxide zu Stickstoff zur Verfügung stehen. Hierfür muss jedoch eine gewisse Mindestlast vorliegen, z.B. durch schnelle Fahrt. Wird nun z.B. eine NOX- Regeneration kurz vor einer Verlangsamungsphase, in der das Fahrzeug möglicherweise in einen Schub- oder Segelbetrieb gelangt, eingeleitet, muss diese vorzeitig abgebrochen werden. Dies kann zum Überschreiten von Schadstoffgrenzwerten führen. Ähnliches gilt im Prinzip für alle Abgasnachbehandlungsmaßnahmen, so dass diese bei einer bevorstehenden Verlangsamung vorzugsweise nicht eingeleitet werden. Ebenso vorzugsweise wird ein für verzögerte Fahrt emissionsoptimierter Betriebspunkt der Brennkraftmaschine, charakterisiert durch niedrigen Druck, niedrige Temperatur und geringen Massestrom des Abgases, vorgegeben, wenn die prognostizierte Beschleunigung negativ ist. Gemäß einer bevorzugten Ausführungsform wird wenigstens ein Schaltpunkt eines Getriebesteuergeräts eines automatischen Getriebes des Antriebsstrangs als Betriebsparameter des Fahrzeugs so vorgegeben, dass früher in einen höheren Gang und später in einen niedrigeren Gang geschaltet wird, wenn die prognostizierte Beschleunigung negativ ist. Zu automatischen Getrieben gehören bspw. herkömmliche automatische Wandlergetriebe, automatisierte Schaltgetriebe, wie Doppelkupplungsgetriebe, und stufenlose Getriebe (CVT). Mit dieser Maßnahme wird ein für einen verzögerten Fahrbetrieb besonders emissionsfreundliches weil zu niedrigen Drehzahlen führendes Übersetzungsverhältnis lange eingestellt.
Gemäß einer weiteren bevorzugten Ausführungsform wird, wenn die prognostizierte Beschleunigung negativ ist, wenigstens ein Betriebsparameter der Brennkraftmaschine so vorgebeben, dass der Abgasgegendruck sinkt, da kein hoher Ladedruck bei verzögerter Fahrt nötig ist. Beispielsweise kann ein Turbolader so angesteuert werden, dass eine Turbinengeometrie entsprechend verändert wird
(VTG - Variable Turbinengeometrie), oder dass ein Bypassventil (auch
Wastegate genannt) im Abgasstrom geöffnet wird. Dies führt insbesondere zu einer C02-Reduktion im Abgas.
Gemäß einer weiteren bevorzugten Ausführungsform wird, wenn die prognostizierte Beschleunigung negativ ist, wenigstens ein Betriebsparameter der Brennkraftmaschine so vorgebeben, dass ein Abgasrückführverhältnis (AGR-Rate) steigt, insbesondere bis auf einen stationären Maximalwert, da eine hohe AGR- Rate zu niedrigen Rohemissionen führt. Vorteilhafterweise ist auch kein Vorhalt für eine Wiederbeschleunigung nötig, da eine bevorstehende Beschleunigung im Rahmen der Erfindung frühzeitig ermittelt werden kann.
Wird andererseits beispielsweise festgestellt, dass sich der Abstand zum vorausfahrenden Fahrzeug vergrößert, obwohl die eigene Beschleunigung nicht abgenommen hat, lässt dies den Schluss zu, dass das vorausfahrende Fahrzeug schneller wird, was wiederum den Schluss zulässt, dass auch das eigene Fahrzeug demnächst schneller werden wird. In der Folge können Betriebsparameter vorgegeben werden, wie sich bei einer beschleunigten Fahrt ergeben würden.
Vorzugsweise wird im Falle eines Segelbetriebs des Fahrzeugs dieser beendet, d.h. die Brennkraftmaschine wird nötigenfalls gestartet und es wird eingekuppelt, wenn die prognostizierte Beschleunigung positiv ist. Ebenso vorzugsweise wird ein für beschleunigte Fahrt emissionsoptimierter Betriebspunkt der Brennkraftmaschine, charakterisiert durch einen hohen Massestrom, hohen Sauerstoffgehalt, niedrige Temperatur und hohen Druck am Einlassventil, vorgegeben, wenn die prognostizierte Beschleunigung positiv ist.
Gemäß einer bevorzugten Ausführungsform wird, wenn die prognostizierte Beschleunigung positiv ist, wenigstens ein Schaltpunkt eines Getriebesteuergeräts eines automatischen Getriebes des Antriebsstrangs als Betriebsparameter des Fahrzeugs so vorgegeben, dass später in einen höheren Gang und früher in einen niedrigeren Gang geschaltet wird. Mit dieser Maßnahme wird ein einen beschleunigten Fahrbetrieb besonders unterstützendes Übersetzungsverhältnis lange eingestellt.
Gemäß einer weiteren bevorzugten Ausführungsform wird, wenn die prognostizierte Beschleunigung positiv ist, wenigstens ein Betriebsparameter der Brennkraftmaschine so vorgebeben, dass der Ladedruck steigt, da ein hoher Ladedruck bei beschleunigter Fahrt nötig ist. Beispielsweise kann ein Turbolader so angesteuert werden, dass eine Turbinengeometrie entsprechend verändert wird (VTG - Variable Turbinengeometrie), oder dass ein Bypassventil (auch
Wastegate genannt) im Abgasstrom geschlossen wird. Dies führt insbesondere zu einer Vermeidung von Rauch Peaks, also einer kurzzeitig erhöhten Rauchentwicklung bei der Verbrennung.
Gemäß einer weiteren bevorzugten Ausführungsform wird, wenn die prognostizierte Beschleunigung positiv ist, wenigstens ein Betriebsparameter der Brennkraftmaschine so vorgebeben, dass das Abgasrückführverhältnis sinkt, da eine niedrige AGR-Rate zu einem höheren Sauerstoffanteil in der Luft vor dem Einläse führt. Vorteilhafterweise wird damit ein Vorhalt für eine Wiederbeschleunigung geschaffen, um Kohlenwasserstoffe, Stickoxide und Rußbildung zu verhindern.
Vorzugsweise wird für die Prognose der Beschleunigung ein Lernalgorithmus verwendet. Dies erhöht die Güte der prognostizierten Beschleunigung. Eine erfindungsgemäße Recheneinheit, z.B. ein Steuergerät eines Kraftfahrzeugs, ist, insbesondere programmtechnisch, dazu eingerichtet, ein erfindungsgemäßes Verfahren durchzuführen.
Auch die Implementierung des Verfahrens in Form eines Computerprogramms ist vorteilhaft, da dies besonders geringe Kosten verursacht, insbesondere wenn ein ausführendes Steuergerät noch für weitere Aufgaben genutzt wird und daher ohnehin vorhanden ist. Geeignete Datenträger zur Bereitstellung des Computerprogramms sind insbesondere magnetische, optische und elektrische Speicher, wie z.B. Festplatten, Flash-Speicher, EEPROMs, DVDs u.a.m. Auch ein Download eines Programms über Computernetze (Internet, Intranet usw.) ist möglich.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.
Die Erfindung ist anhand eines Ausführungsbeispiels in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung beschrieben.
Kurze Beschreibung der Zeichnungen
Figur 1 zeigt in einer schematischen Seitenansicht zwei Fahrzeuge, von denen eines gemäß einer bevorzugten Ausführungsform der Erfindung betrieben wird.
Ausführungsform(en) der Erfindung
In Figur 1 sind in einer schematischen Seitenansicht ein erstes von einer Brennkraftmaschine 120 angetriebenes Fahrzeug 101 und ein zweites, dem ersten Fahrzeug vorausfahrendes Fahrzeug 102 dargestellt. Das erste Fahrzeug 101 wird gemäß einer bevorzugten Ausführungsform der Erfindung betrieben.
Dazu weist das erste Fahrzeug 101 eine eine Radareinheit 105 aufweisende Ab- standsbestimmungseinrichtung auf, mit der ein Abstand des ersten Fahrzeugs 101 zu dem zweiten Fahrzeug 102 bestimmt wird. Die Bestimmung kann kontinu- ierlich oder regelmäßig erfolgen, zweckmäßigerweise sind die Abstände zwischen zwei aufeinanderfolgenden Bestimmungszeitpunkten jedoch sehr klein, vorzugsweise höchstens 1 s.
Der bestimmte Abstand d wird an eine Recheneinheit bzw. ein Steuergerät 1 10 übertragen, das programmtechnisch zur Durchführung einer bevorzugten Ausführungsform der Erfindung eingerichtet ist. Das Steuergerät 1 10 ist dazu eingerichtet, wenigstens einen Betriebsparameter des Fahrzeugs 101 vorzugeben. Im gezeigten Beispiel ist das Steuergerät 1 10 dazu eingerichtet, wenigstens einen Betriebsparameter für die Brennkraftmaschine 120 und wenigstens einen Betriebsparameter für ein automatisches Getriebe 130 im Antriebsstrang des Fahrzeugs 101 vorzugeben.
Während des Betriebs erhält das Steuergerät 1 10 insbesondere regelmäßig den jeweils momentanen Abstand d und erzeugt daraus einen zeitlichen Verlauf des Abstands. Gleichzeitig sind im Fahrzeug 101 dessen Geschwindigkeit v und dessen Beschleunigung a (zumindest als zeitliche Ableitung der Geschwindigkeit) bekannt und können vom Steuergerät 1 10 berücksichtigt werden. Aus diesen genannten Daten, d.h. aus der zeitlichen Entwicklung des Abstands d und aus der zeitlichen Entwicklung der Beschleunigung a, kann das Steuergerät beispielsweise unter Verwendung eines geeigneten Lernalgorithmus eine zukünftige, beispielsweise eine in 5-10 Sekunden vorherrschende, Beschleunigung des Fahrzeugs 101 prognostizieren. In Abhängigkeit von der prognostizierten Beschleunigung können dann für eine verzögerte Fahrt geeignete Betriebsparameter oder für eine beschleunigte Fahrt geeignete Betriebsparameter vorgegeben werden. Beispiele für solche Betriebsparameter wurden bereits weiter oben genannt.

Claims

Ansprüche
1 . Verfahren zum Betreiben eines von einer Brennkraftmaschine (120) angetriebenen Fahrzeugs (101 ), wobei ein Abstand (d) zu einem vorausfahrenden Fahrzeug (102) bestimmt wird,
wobei unter Berücksichtigung einer zeitlichen Entwicklung einer Beschleunigung (a) des Fahrzeugs (101 ) und einer zeitlichen Entwicklung des Abstands (d) zu dem vorausfahrenden Fahrzeug (102) eine zukünftige Beschleunigung des Fahrzeugs (101 ) prognostiziert wird,
wobei in Abhängigkeit von der zukünftigen Beschleunigung des Fahrzeugs (101 ) wenigstens ein Betriebsparameter des Fahrzeugs vorgegeben wird.
2. Verfahren nach Anspruch 1 , wobei als der wenigstens eine Betriebsparameter des Fahrzeugs wenigstens ein Betriebsparameter der Brennkraftmaschi- ne vorgegeben wird.
3. Verfahren nach Anspruch 1 oder 2, wobei als der wenigstens eine Betriebsparameter des Fahrzeugs (101 ) wenigstens ein eine Verbrennungsstrategie und/oder wenigstens ein eine Abgasnachbehandlung beeinflussender Betriebsparameter vorgegeben werden.
4. Verfahren nach einem der vorstehenden Ansprüche, wobei als der wenigstens eine Betriebsparameter des Fahrzeugs (101 ) wenigstens ein Betriebsparameter eines Antriebsstrangs des Fahrzeugs (101 ) vorgegeben wird.
5. Verfahren nach einem der vorstehenden Ansprüche, wobei als der wenigstens eine Betriebsparameter des Fahrzeugs (101 ) wenigstens ein Betriebsparameter eines automatischen Getriebes (130) eines Antriebsstrangs des Fahrzeugs (101 ) vorgegeben wird.
6. Verfahren nach Anspruch 5, wobei als der wenigstens eine Betriebsparameter des Fahrzeugs (101 ) ein Schaltpunkt des automatischen Getriebes (130) vorgegeben wird.
7. Verfahren nach einem der vorstehenden Ansprüche, wobei Maßnahmen zur Abgasnachbehandlung nicht eingeleitet werden, wenn die prognostizierte Beschleunigung negativ ist.
8. Verfahren nach einem der vorstehenden Ansprüche, wobei ein für verzögerte Fahrt emissionsoptimierter Betriebspunkt der Brennkraftmaschine (120) vorgegeben wird, wenn die prognostizierte Beschleunigung negativ ist.
9. Verfahren nach einem der vorstehenden Ansprüche, wobei ein für beschleu- nigte Fahrt emissionsoptimierter Betriebspunkt der Brennkraftmaschine
(120) vorgegeben wird, wenn die prognostizierte Beschleunigung positiv ist.
10. Verfahren nach einem der vorstehenden Ansprüche, wobei ein Segelbetrieb des Fahrzeugs (101 ) beendet wird, wenn die prognostizierte Beschleunigung positiv ist.
1 1 . Verfahren nach einem der vorstehenden Ansprüche, wobei der Abstand (d) zu dem vorausfahrenden Fahrzeug (102) mittels Radar, optisch oder akustisch bestimmt wird.
12. Verfahren nach einem der vorstehenden Ansprüche, wobei die zukünftige Beschleunigung des Fahrzeugs (101 ) unter Verwendung eines Lernalgorithmus prognostiziert wird.
13. Recheneinheit (1 10), die dazu eingerichtet ist, ein Verfahren nach einem der vorstehenden Ansprüche durchzuführen.
14. Computerprogramm, das eine Recheneinheit dazu veranlasst, ein Verfahren nach einem der Ansprüche 1 bis 12 durchzuführen, wenn es auf der Recheneinheit ausgeführt wird.
15. Maschinenlesbares Speichermedium mit einem darauf gespeicherten Computerprogramm nach Anspruch 14.
PCT/EP2016/072428 2016-09-21 2016-09-21 Verfahren zum betreiben eines von einer brennkraftmaschine angetriebenen fahrzeugs in abhängigkeit von einem abstand zu einem vorausfahrenden fahrzeug WO2018054460A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2016/072428 WO2018054460A1 (de) 2016-09-21 2016-09-21 Verfahren zum betreiben eines von einer brennkraftmaschine angetriebenen fahrzeugs in abhängigkeit von einem abstand zu einem vorausfahrenden fahrzeug
CN201680041280.8A CN108093643B (zh) 2016-09-21 2016-09-21 用于根据相对于前行的车辆的间距来运行由内燃机驱动的车辆的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/072428 WO2018054460A1 (de) 2016-09-21 2016-09-21 Verfahren zum betreiben eines von einer brennkraftmaschine angetriebenen fahrzeugs in abhängigkeit von einem abstand zu einem vorausfahrenden fahrzeug

Publications (1)

Publication Number Publication Date
WO2018054460A1 true WO2018054460A1 (de) 2018-03-29

Family

ID=57083261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/072428 WO2018054460A1 (de) 2016-09-21 2016-09-21 Verfahren zum betreiben eines von einer brennkraftmaschine angetriebenen fahrzeugs in abhängigkeit von einem abstand zu einem vorausfahrenden fahrzeug

Country Status (2)

Country Link
CN (1) CN108093643B (de)
WO (1) WO2018054460A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049659A1 (de) * 2000-10-07 2002-04-11 Daimler Chrysler Ag Adaptives Regenerationmanagement für Abgasnachbehandlungsanlagen
DE102007053319A1 (de) * 2006-11-13 2008-05-15 Ford Global Technologies, LLC, Dearborn Anpassung von Ansprechen des Motors beruhend auf Verkehrsbedingungen
US20100057361A1 (en) * 2008-08-29 2010-03-04 Toyota Motor Engineering & Manufacturing Na System and method for stochastically predicting the future states of a vehicle
DE102009042309A1 (de) * 2008-10-15 2010-04-29 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur automatischen Motorsteuerung eines Fahrzeugs
DE102009002521A1 (de) * 2009-04-21 2010-10-28 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Fahrzeugs mit einem Segel- bzw. Rollmodus
DE102013018967A1 (de) * 2013-11-12 2015-05-13 Valeo Schalter Und Sensoren Gmbh Verfahren zur Prognose des Fahrweges eines Kraftfahrzeuges und Prognoseeinrichtung
DE102015213250A1 (de) * 2015-07-15 2017-01-19 Robert Bosch Gmbh Verfahren zum Betreiben eines von einer Brennkraftmaschine angetriebenen Fahrzeugs in Abhängigkeit von einem Abstand zu einem vorausfahrenden Fahrzeug

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005048522B4 (de) * 2005-10-07 2016-08-04 Volkswagen Ag Verfahren und Vorrichtung zum Ansteuern eines Automatikgetriebes
EP2085279B1 (de) * 2008-01-29 2011-05-25 Ford Global Technologies, LLC System zur Vorhersage eines Kollisionskurses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049659A1 (de) * 2000-10-07 2002-04-11 Daimler Chrysler Ag Adaptives Regenerationmanagement für Abgasnachbehandlungsanlagen
DE102007053319A1 (de) * 2006-11-13 2008-05-15 Ford Global Technologies, LLC, Dearborn Anpassung von Ansprechen des Motors beruhend auf Verkehrsbedingungen
US20100057361A1 (en) * 2008-08-29 2010-03-04 Toyota Motor Engineering & Manufacturing Na System and method for stochastically predicting the future states of a vehicle
DE102009042309A1 (de) * 2008-10-15 2010-04-29 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur automatischen Motorsteuerung eines Fahrzeugs
DE102009002521A1 (de) * 2009-04-21 2010-10-28 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Fahrzeugs mit einem Segel- bzw. Rollmodus
DE102013018967A1 (de) * 2013-11-12 2015-05-13 Valeo Schalter Und Sensoren Gmbh Verfahren zur Prognose des Fahrweges eines Kraftfahrzeuges und Prognoseeinrichtung
DE102015213250A1 (de) * 2015-07-15 2017-01-19 Robert Bosch Gmbh Verfahren zum Betreiben eines von einer Brennkraftmaschine angetriebenen Fahrzeugs in Abhängigkeit von einem Abstand zu einem vorausfahrenden Fahrzeug

Also Published As

Publication number Publication date
CN108093643A (zh) 2018-05-29
CN108093643B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
DE60203157T2 (de) Abgasemissionssteuerung
DE102016222012B4 (de) Verfahren zum Steuern eines NOx-Speicher-Katalysators
EP4095364B1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine
WO2009112056A1 (de) Zylinderdruckgeführter regenerationsbetrieb und betriebsartenwechsel
DE102011007364A1 (de) Verfahren und Vorrichtung zur Regeneration eines Partikelfilters bei einem Y-Abgassystem
DE10126455B4 (de) Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators
DE102013013063A1 (de) Verfahren zum Betreiben einer Kraftfahrzeugbrennkraftmaschine mit einem Abgaspartikelfilter
DE102011105601B4 (de) Steuersystem zur Regeneration eines Partikelmaterialfilters unter Verwendung eines katalytischen Wandlers als einer Verbrennungseinrichtung
DE102020114342A1 (de) Verfahren zum steuern der regeneration eines partikelfilters, abgassystem zum ausführen desselben und nicht-flüchtiges computerlesbares speichermedium
DE102015213892B4 (de) Verfahren zur LNT-Steuerung mit einem Abstandsregeltempomat
DE202015001630U1 (de) Verbrennungsmotor mit Nachbehandlungsvorrichtung
DE10338628A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasreinigungsanlage
WO2007147720A1 (de) Verfahren zum betreiben einer in einem abgasbereich einer brennkraftmaschine angeordneten abgasreinigungsanlage
DE112013004543T5 (de) Regelung einer Temperatur in einem Abgasnachbehandlungssystem
DE102008064167A1 (de) Regenerieren eines Partikelfilters eines Kraftfahrzeuges
DE102015213250B4 (de) Verfahren zum Betreiben eines von einer Brennkraftmaschine angetriebenen Fahrzeugs in Abhängigkeit von einem Abstand zu einem vorausfahrenden Fahrzeug
DE102019219906A1 (de) Verfahren und Vorrichtung zum Aufheizen eines im Abgastrakt eines Kraftfahrzeugs angeordneten Katalysators mittels geregelter Sekundärluft
DE102016224430B4 (de) Verfahren zur Ermittlung eines Fahrprofils für eine Regeneration einer Abgasnachbehandlungseinrichtung mittels elektrischer Heizung für ein Fahrzeug mit Verbrennungsmotor sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage und Fahrzeug
WO2018054460A1 (de) Verfahren zum betreiben eines von einer brennkraftmaschine angetriebenen fahrzeugs in abhängigkeit von einem abstand zu einem vorausfahrenden fahrzeug
DE102018201487A1 (de) Verfahren und Anordnung zum Kühlen von Abgasnachbehandlungseinrichtungen, Kraftfahrzeug und Computerprogrammprodukt
DE102009014360A1 (de) Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators
DE102019219892A1 (de) Verfahren und Vorrichtung zur Regeneration eines beschichteten Partikelfilters im Abgastrakt eines benzinbetriebenen Kraftfahrzeugs
DE102008000607A1 (de) Verfahren zum Regenerieren einer Abgasnachbehandlungsanlage
DE10164931B4 (de) Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators und Anwendung des Verfahrens
DE102015202904B4 (de) Betriebsverfahren und Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16777569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16777569

Country of ref document: EP

Kind code of ref document: A1