WO2018054275A1 - 一种可扩导管鞘和介入器械输送装置 - Google Patents

一种可扩导管鞘和介入器械输送装置 Download PDF

Info

Publication number
WO2018054275A1
WO2018054275A1 PCT/CN2017/102199 CN2017102199W WO2018054275A1 WO 2018054275 A1 WO2018054275 A1 WO 2018054275A1 CN 2017102199 W CN2017102199 W CN 2017102199W WO 2018054275 A1 WO2018054275 A1 WO 2018054275A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter sheath
wall
tube wall
sheath
expandable catheter
Prior art date
Application number
PCT/CN2017/102199
Other languages
English (en)
French (fr)
Inventor
王建安
曾敏
Original Assignee
杭州启明医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州启明医疗器械有限公司 filed Critical 杭州启明医疗器械有限公司
Publication of WO2018054275A1 publication Critical patent/WO2018054275A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M2025/0024Expandable catheters or sheaths

Definitions

  • the present invention relates to the field of interventional instruments, and in particular to a catheter sheath and an interventional instrument delivery device using the catheter sheath.
  • the existing interventional instrument delivery sheath 1 is an elongated structure as a whole.
  • the portion of the loading section 2 of the delivery sheath is the largest diameter section, and the diameter is generally ⁇ 6 mm ( 18Fr) diameter ⁇ 8.7mm (26Fr), in the prior art, in order to allow the delivery sheath 1 to pass, the inner diameter of the entire catheter sheath should be slightly larger than the outer diameter of the delivery sheath loading section 2, that is, the minimum inner diameter of the catheter The size must also be larger than the thickest diameter through which the delivery sheath passes, such that the catheter sheath outer diameter is relatively thick.
  • the outer diameter of the catheter sheath is fixed, so it cannot cover the diameter of the inferior lumen of all patients and the aortic vessels with calcification of the vessel wall, especially in the lower luminal vessels of patients in China and other Asian countries. If it is too small, it will not be able to adapt to the inability to place the catheter sheath, which will reduce the protection of the patient's blood vessels at the puncture site; even some elderly patients have calcification of the aortic vessels, and the placement of a large diameter catheter sheath may cause the calcified plate to fall off. And the catheter sheath is first placed in the blood vessel, and finally The evacuated device has a long time in the blood vessel. If the large diameter dilatation of the blood vessel for a long time is likely to cause vasospasm, it threatens to increase the chance of surgical complications.
  • the invention provides a catheter sheath having a specific cross-sectional shape, and the predetermined diameter is small.
  • the outer wall of the tube wall is elastically synchronized with the outer dimension of the interventional device to change the shape (ie, the cross-sectional area).
  • the small-diameter catheter sheath not only facilitates the penetration of finer blood vessels to accommodate more patients, but also applies to patients with calcification in the aortic vessels, avoids calcification of the plate to form thrombus, reduces the risk of surgery, and reduces the number of blood vessels. Continue to expand and reduce the onset of illness.
  • An expandable catheter sheath comprising a tube wall, the tube wall being a coil wall structure having a coiled cross section, the tube wall having a swollen state of unfolding a corresponding portion of the wall structure and a predetermined self-recovering structure of the wall structure Type status.
  • the expanded state of the tube wall means that when the sheath tube passes through the tube wall, the tube wall is subjected to an external force and elastically deforms and expands.
  • the predetermined state of the pipe wall refers to an initial state when the pipe wall is unstressed, or is restored to an initial state when it is not subjected to force or a state close to the initial state after being canceled by an external force.
  • the tube wall returns to an initial state when it is not stressed or a state close to the initial state.
  • the wall elasticity is sufficiently good, the wall can be restored to the initial state after the external force is removed, or the pipe wall is slightly expanded relative to the initial state to return to the initial state. Therefore, whether the tube wall can be restored to a predetermined state after passing through the sheath tube depends on the choice of the material of the tube wall.
  • the proximal end refers to the end adjacent to the lesion
  • the distal end refers to the end away from the lesion.
  • the wall of the tube, the end near the lesion (the end away from the handle), called the proximal end; and away from the lesion, the end near the handle is called the distal end.
  • the prior art delivery sheath is generally elongated and generally only has a large partial diameter (such as a loading section for loading an interventional instrument).
  • a large partial diameter such as a loading section for loading an interventional instrument.
  • the catheter sheath of the prior art needs to be selected.
  • the inner diameter can be determined by the local maximum diameter of the delivery sheath (and the delivery system)
  • the non-loading segment is often very thin), ie the catheter sheath is relatively thick, which makes the catheter sheath unable to accommodate patients with fine vessels.
  • the catheter sheath according to the present invention adopts a circumferentially extending wall structure and has a predetermined shape, so it should be understood that the material itself has a certain elasticity or at least deforms and can be restored to the catheter sheath after the external force is removed.
  • the wall of the catheter sheath of the present invention can be partially or completely changed between the expanded state and the predetermined state by its own elasticity, so that the predetermined diameter of the catheter sheath can be made very thin, and the inner diameter can be smaller than the delivery sheath
  • the tube has a large local maximum diameter.
  • the wall of the tube only expands corresponding to the large diameter position where the interventional instrument is located. Once the interventional instrument passes, the wall structure is restored, so that the catheter sheath can be inserted into the thin blood vessel in its predetermined state, only in the The short-term expansion and thickening of the position of the interventional instrument will minimize the expansion deformation and stimulation of the blood vessel.
  • the tube wall is an elastic material that is switchable between a swollen state and a predetermined type.
  • the material of the pipe wall is selected from the group consisting of HDPE or Pebax; in order to ensure that the pipe wall can be self-recovering after the external force is removed, and maintaining a certain strength and compliance, the pipe wall preferably has a thickness of 0.2 to 0.5 mm.
  • the outer diameter of the tube wall in the predetermined state is 4 to 9 mm. Further preferably 5-6 mm.
  • a suitable outer diameter allows the catheter sheath to be applied to finer blood vessels and will also be more compliant and passable.
  • the wall of the predetermined type is wound more than one circumference, and the portion beyond 360 degrees overlaps with the portion within 360 degrees.
  • the overlapping portions Since the delivery sheath is required to self-recover the predetermined state of the wall structure through the rear tube wall, the overlapping portions have smooth contact faces, that is, there is no shape or member that interferes with each other.
  • the same cross section of the predetermined type of tube wall extends from the starting side to the end side of the winding by more than 360 degrees in the circumferential direction, and the portions of the tube wall extending over 360 degrees overlap each other.
  • the tube wall in the expanded state is wound by 360 degrees or more. This ensures that the internal delivery sheath and the interventional instrument are not exposed.
  • a significant difference from the existing catheter sheath is that the existing catheter sheath can be viewed as being wound 360 degrees, i.e., exactly one week, and the wall of the existing catheter sheath is closed in the circumferential direction and the cross-sectional shape does not change.
  • the catheter sheaths of the present invention are not closed in the circumferential direction, although partially overlapping each other. This is also the reason why the wall structure can be unfolded. When extending in the circumferential direction, it can be along a smooth curved path or a meandering structure, for example, extending along the wave or sawtooth path in the circumferential direction, which will make the catheter sheath cross section. The shape change is more flexible. Of course, when other forms are used, the loss of compliance of the tube wall in the radial direction cannot be ignored.
  • the degree of winding of the pipe wall is the corresponding central angle.
  • the specific degree can be based on two states. The change in diameter is calculated so that the wall of the tube has sufficient circumference to enclose the passage of the interventional instrument.
  • the wall of the predetermined type is wound by 720 degrees or less.
  • the wound wall structure is joined by a flexible envelope film on the starting and trailing sides of the circumferential winding.
  • the wall of the tube releases the corresponding wall structure of the wall in the expanded state and maintains the closure of the catheter sheath through the flexible envelope.
  • the flexible envelope film should have a slightly lower stiffness relative to other portions of the tube wall, i.e., more easily curved or folded in the circumferential direction to form a detour structure.
  • At least a portion of the flexible envelope film is in the intermediate layer of the overlapping portion of the tube wall.
  • the thickness of the wall of the tube wall may be uniform or non-uniform, for example, for better storage of the flexible envelope film, a relatively thin tube may be disposed on the starting side and the end side of the tube wall.
  • the wall is provided with a relatively thick wall in the middle of the tube wall.
  • the flexible envelope film can be regarded as a circumferentially rounded portion, and the meandering portion between the starting side and the trailing side is unfolded in the expanded state of the tube wall and is in the intermediate layer of the overlapping portion of the tube wall.
  • the inner and outer sides of the tube wall can be kept smooth and flat, such as the movement of the delivery sheath.
  • the flexible envelope film is provided with a crease line at the turning point.
  • the crease line can be processed by heat setting, and the corner will be more flat in the predetermined state.
  • the function of the flexible envelope film is to connect the starting side and the end side of the wall structure to form a closed channel, which further improves the safety.
  • the flexible envelope film is to be folded or twisted when the pipe wall is switched, so the wall thickness And the stiffness is lower than the tube wall itself.
  • the flexible envelope film may be made of a material such as PTFE and has a wall thickness of 0.1 to 1 mm. It is preferably 0.25-0.5 mm.
  • the flexible envelope film is a circumferentially closed tubular structure
  • the flexible envelope tubular structure has a section length greater than a wall length of the tube wall section
  • the tube wall is fixedly attached to the outer wall of the flexible envelope film.
  • the flexible envelope film itself is a tubular structure, which can avoid the tearing of the joint between the tube wall and the flexible envelope film, the partial deflection of the flexible envelope film, and the storage in the tube wall. Inside the lap joint.
  • the distal end of the catheter sheath (the end that is remote from the patient's lesion when in use) is sheathed with an elastic sleeve. It is possible to prevent blood (or body fluid) from escaping from the gap of the overlapping portion of the tube wall.
  • the distal end of the catheter sheath is coupled to the sheath handle and the attachment portion is wrapped by the elastomeric sheath.
  • the elastic sleeve has an axial length of 5 to 50 cm.
  • the elastic sleeve is made of elastic nylon and has a thickness of 0.1-0.2mm.
  • the winding wall structure is connected to the outer side and the last side of the circumferential winding by a flexible envelope film, and an elastic sleeve is disposed on the outer side of the tube wall to provide double protection against blood. Or body fluids escape.
  • the tube wall and the portion of the flexible envelope that is in contact with the delivery sheath have a smooth surface that can be reduced
  • the friction of the movement of the sheath can be selected in terms of the wall of the tube and the material of the sleeve itself.
  • the proximal end of the catheter sheath (the end near the patient's lesion in use) is a cuff structure.
  • extrusion molding can be employed for the tube wall, and the wall of the predetermined state can be obtained by heat treatment.
  • the wall of the tube can be extruded first, and then the flexible envelope film is welded to the corresponding position, and then heat treated and shaped. It is also possible to extrude the double-walled structure of the tube wall and the flexible envelope film at once, and then heat-treat the shape.
  • the outer portion of the tube wall is provided with a sheath for restraining the tube wall in a predetermined state, and the sleeve is expanded in a state in which the tube wall is in an expanded state.
  • the sleeve extends axially along the tube wall from the proximal end of the tube wall, and the extended portion is a cuff structure.
  • the collar may also extend axially along the wall of the tube to the proximal end of the elastomeric sleeve or the distal end of the elastomeric sleeve or within the elastomeric sleeve or only a portion of the wall of the tube.
  • the sheath further improves the smoothness of the outer circumference of the catheter sheath, and is combined with the cuff structure to facilitate guiding penetration into the blood vessel.
  • the winding wall structure has a chamfered structure on the end side of the circumferential winding.
  • the present invention performs chamfering treatment at the portion, and in order to avoid the chamfer angle, the flexible envelope is provided when the flexible envelope film is provided.
  • the film extends axially toward the proximal end of the tube wall, it does not extend to the end of the tube wall, but avoids the chamfered portion.
  • the present invention also provides an interventional instrument delivery device comprising a handle and a catheter sheath coupled to the handle by a joint, the catheter sheath being a catheter sheath of the present invention.
  • the catheter sheath of the present invention adopts a wound structure, which can realize local expansion and restoration, in a predetermined type
  • the smaller outer diameter in the state facilitates penetration into thinner blood vessels, which is more applicable and eliminates safety hazards.
  • FIG. 1 is a schematic view showing the cooperation of a catheter sheath and a delivery sheath tube loaded with a prosthetic valve in the prior art
  • FIG. 2 is a schematic structural view of a catheter sheath (with a joint) according to the present invention
  • Figure 3 is a schematic view showing the structure of the catheter sheath of Figure 2 after wrapping the elastic sleeve;
  • Figure 4 is a schematic view showing the structure of the partially expanded and expanded wall structure of the catheter sheath of Figure 3;
  • Figure 5 is a schematic view showing the structure of the catheter sheath of Figure 4 after changing the swollen portion
  • Figure 6 is a schematic view showing the structure of the catheter sheath of Figure 5 after changing the swollen portion
  • Figure 7 is a schematic view of the interventional instrument completely after passing through the catheter sheath
  • Figure 8 is a schematic cross-sectional view showing the catheter sheath of the present invention (in a predetermined state);
  • Figure 9 is a schematic cross-sectional view showing the catheter sheath of Figure 8 expanded
  • Figure 10 is a schematic cross-sectional view showing the change of the winding angle of the catheter sheath of the present invention.
  • Figure 11 is a schematic cross-sectional view showing a flexible envelope film provided in the catheter sheath of the present invention.
  • Figure 12 is a schematic cross-sectional view showing the flexible envelope film of the present invention as a whole tubular shape
  • Figure 13 is a schematic cross-sectional view showing the structure of the catheter sheath inflated and expanded in Figure 12;
  • Figure 14 is a schematic view of the end of the tube wall of the catheter sheath, in which the tube wall has not been enclosed;
  • Figure 15 is a schematic view of the wall of Figure 14 after being enclosed;
  • Figure 16 is a schematic view of the bundle of tubes wrapped around the wall.
  • the tube wall 4 of the catheter sheath is a wound wall structure having a coiled cross section, and the tube wall 4 has a swollen state in which the wall portion of the corresponding portion is unfolded and a predetermined state in which the wall structure is restored.
  • the outer diameter of the catheter sheath is 5 mm (15 Fr) and the inner diameter is 4 mm.
  • the inner diameter can reach 8 mm (24 Fr) in the expanded state, and the sheath can be transported through the corresponding diameter.
  • the distal end of the catheter sheath is fitted with a joint 5 that cooperates with the delivery device, and the junction of the catheter sheath and the joint 5 is wrapped by the elastic sleeve 6. It is possible to prevent blood (or body fluid) from escaping from the gap of the overlapping portion of the tube wall.
  • the elastic sleeve is made of elastic nylon and has a thickness of 0.1-0.2 mm.
  • the wall structure begins to spirally extend from the starting side to the end side, and the end side boundary of the starting side can extend axially along the catheter sheath or spirally around the catheter sheath axis.
  • the end side boundary 7 is Straight and extending axially along the catheter sheath.
  • the interventional instrument travels from right to left, and the inside of the tube wall is squeezed through the passage, so that the wall structure of the tube wall is unfolded correspondingly, and the pressure-receiving portion 8 is transferred into the inflated state.
  • the wall material of the tube is selected from the group consisting of HDPE or Pebax, etc., in order to ensure that the tube wall can be self-recovering and maintain a certain strength and compliance, the thickness of the tube wall is 0.5 mm.
  • the overhanging portion 11 and the non-overlapping portion 12 overlap each other, and the overhanging portion 11 is wrapped around the outer periphery of the portion 12, forming a complete passageway inside the tube wall.
  • Figure 9 is a schematic cross-sectional view of the catheter sheath when it is inflated when the instrument 18 is implanted.
  • the wall of the tube in the expanded state is wound by 360 degrees or more, that is, the overlapped overlapping region 13 is still present.
  • overlapping overlapping area 13 is enlarged, and the degree of winding of the tube wall is the corresponding central angle.
  • the excess portion 11 and the non-overlapping portion 12 overlap each other, they are not relatively fixed, and they can slide relative to each other to form a gap, so that blood or body fluid may enter and exit the tube wall, in order to be in different states. Both can form a closed passage for the interventional instrument, and the present invention provides another embodiment for closing the wall of the tube by providing a flexible envelope film on the starting and trailing sides of the tube wall.
  • the starting side 9 and the trailing side 10 of the tube wall winding are connected by a flexible envelope film 14.
  • the flexible envelope primarily acts as a radial support that binds the implanted device against exposure and prevents blood or body fluids from escaping the wall.
  • the flexible envelope film 14 is to be folded or twisted when the tube wall is switched, so the wall thickness and rigidity are lower than the tube wall itself.
  • the flexible envelope film 14 of the present embodiment is made of PTFE material and has a wall thickness of 0.25-0.5 mm.
  • the flexible envelope film 14 can maintain the closure of the catheter sheath, and the flexible envelope film 14 can be fixed to the tube wall by welding or the like.
  • the flexible envelope film 14 In order to receive the flexible envelope film 14, the flexible envelope film 14 is in the intermediate layer of the overlapping portion of the tube wall.
  • the flexible envelope film 14 can extend a section in the circumferential direction, i.e., without the lumen of the entire tube wall of 360.
  • the flexible envelope film 14 In the predetermined state, the flexible envelope film 14 is stretched on the starting side of the tube wall winding 9
  • the flexible envelope 14 functions to close the gap formed between the initial side 9 and the end side 10 to prevent blood or body fluid from entering and leaving the tube wall. Therefore, the fixed point of the flexible envelope film 14 and the tube wall is not strictly required on the starting side 9 and the end side 10, and may be appropriately adjusted.
  • the flexible envelope film 14 is a circumferentially closed tubular structure, the tube wall is fixedly attached to the outer wall of the flexible envelope film 14, and a part of the flexible envelope film 14 is a meandering portion 15, The meandering portion 15 is between the starting side 9 and the trailing side 10 of the tube wall.
  • the turning portion 16 of the winding portion 15 and the turning portion 17 are provided with crease lines, and the crease lines can be processed by heat setting processing. In the predetermined type state, the crease line can make the turning portion of the winding portion more flat.
  • the detour portion 15 is deployed in the expanded state of the tube wall to allow for a greater deformation range of the tube wall.
  • the embodiment further provides an interventional instrument delivery device (omitted from the drawing) comprising a handle and a catheter sheath connected to the handle by a joint, the wall of the catheter sheath being selected from the manner of FIG.
  • an interventional instrument delivery device (omitted from the drawing) comprising a handle and a catheter sheath connected to the handle by a joint, the wall of the catheter sheath being selected from the manner of FIG.
  • the winding wall structure is wound on the end side in the circumferential direction, and is a chamfered structure 19 near the proximal end of the pipe wall 4.
  • the corner portion on the end side is easily turned up, and the present invention performs chamfering treatment at this portion to facilitate penetration into the blood vessel and avoid blocking of the tilting.
  • the outer portion of the tube wall 4 is provided with a sheath for defining the tube wall 4 in a predetermined state, and the sleeve is expanded in the expanded state of the tube wall.
  • the sleeve extends axially along the tube wall from the proximal end of the tube wall, and the extended portion is the cuff structure 20.
  • the sleeve further improves the smoothness of the outer circumference of the catheter sheath, and is combined with the cuff structure to facilitate guiding penetration into the blood vessel.
  • the tube wall material used in this embodiment has better elastic compliance, and the expansion of the tube wall in the expanded state is radial expansion, which does not cause damage to the blood vessel, and does not cause rupture or dissection of the blood vessel. When the large diameter portion of the delivery sheath passes, the catheter sheath is restored.

Abstract

一种可扩导管鞘和介入器械输送装置。可扩导管鞘包括管壁(4),管壁(4)为卷壁结构,横截面为盘绕形,管壁(4)具有展开相应部位卷壁结构的受胀状态以及自行恢复卷绕结构的预定型状态。该导管鞘具有特定的截面形状,在输送介入器械时,仅在介入器械经过的位置上依据介入器械的外部尺寸而改变截面积,介入器械通过后,靠自身弹性可恢复至原预定型的状态,有利于穿入较细的血管,避免钙化板块脱落,降低手术风险。

Description

一种可扩导管鞘和介入器械输送装置 技术领域
本发明涉及介入器械技术领域,尤其涉及一种导管鞘以及应用该导管鞘的介入器械输送装置。
背景技术
随着血管腔内介入治疗在世界范围内的广泛应用,其并发症也日益显现。以介入主动脉瓣膜和肺动脉瓣膜置换手术为例,由于在手术过程中,需要经股动脉或者股静脉穿刺,然后经股动脉或者股静脉输送装载有瓣膜的输送鞘管,此时需要在下腔血管开口处先置入一导管鞘,以保护下腔血管。由于当前主动脉瓣膜或者肺动脉瓣输送鞘管的尺寸在16F-24F之间,直接输送鞘管,很容易导致血管夹层,甚至血管断裂的问题。
参见图1,现有的介入器械输送鞘管1整体上为细长结构,上载介入器械(例如人造瓣膜)后,输送鞘管的装载段2的部位为直径最大段,一般情况直径≥6mm(18Fr)直径≤8.7mm(26Fr),现有技术中,导管鞘3为了容许输送鞘管1通过,整个导管鞘的内径需均略大于输送鞘管装载段2的外径,即使得导管最小内径尺寸也必须大于输送鞘通过的最粗直径,使得导管鞘外廓直径通体较粗。
现有技术中,导管鞘的外径都是固定的,因此不能覆盖所有病人的下腔血管直径和血管管壁有钙化的主动脉血管,尤其是中国和其他亚洲国家的病人下腔血管变得狭小,若因此无法适应无法放置导管鞘,将减少病人在穿刺处对血管的保护;甚至有些高龄病人的主动脉血管有钙化,置入大直径导管鞘有可能导致钙化板块脱落。且导管鞘是最早放入血管内,最后 撤出的器械,在血管内时间较长,若长时间大直径扩张血管容易造成血管痉挛,威胁增加手术并发症几率。
发明内容
本发明提供一种导管鞘,管壁具有特定的截面形状,预定型直径小,在介入器材通过时,其管壁外廓尺寸弹性同步于穿过的介入器材外部尺寸而改变形状(即截面积),小直径导管鞘不仅有利于穿入较细的血管适应更多的患者范围,而且也适用于主动脉血管有钙化患者,避免钙化板块脱落形成血栓,降低手术风险,还能减少对血管的持续扩张力,减少病发症。
一种可扩的导管鞘,包括管壁,所述管壁为卷壁结构,横截面为盘绕形,所述管壁具有展开相应部位卷壁结构的受胀状态以及自行恢复卷壁结构的预定型状态。
在本发明中,管壁的受胀状态,是指输送鞘管途经管壁时,管壁受外力的作用,发生弹性形变而膨胀。在本发明中,管壁的预定型状态,是指管壁未受力时的初始状态,或经外部力撤销后,恢复至未受力时的初始状态或接近于初始状态的状态。例如:当输送鞘管经过管壁后,管壁恢复至未受力时的初始状态或接近于初始状态的状态。当管壁弹性足够好时,外力撤销后,管壁可恢复至初始状态,或者管壁相对于初始状态,略微膨胀,恢复至接近初始状态。因而,管壁经输送鞘管途经后,能否恢复至预定型状态,这取决于管壁材质的选择。
在本发明中,近端是指靠近病灶的一端,远端是指远离病灶的一端。比如管壁,靠近病灶的一端(远离手柄的一端),称为近端;而远离病灶,靠近手柄的一端称为远端。
现有的输送鞘管整体上为细长结构,通常仅局部直径较大(如装载介入器械的装载段),现有技术的导管鞘为了容许输送鞘管通过,配套导管鞘的选择需以其内径能够通过输送鞘管的局部最大直径为准(而输送系统 非装载段往往非常细),即导管鞘通体较粗,这使得导管鞘无法适应较细血管的患者。
本发明涉及的导管鞘采用沿周向延伸的卷壁结构且具有预定型状态,因此应理解为其材料本身具备一定的弹性或至少可发生形变且在外力撤消后可恢复至导管鞘未受力时的预定型状态,本发明导管鞘的管壁可以依靠自身弹性局部/全部在受胀状态和预定型状态之间变换,因此导管鞘预定型直径可以做的很细,其内径可以小于输送鞘管局部最大直径尺寸很多。
使用时管壁仅对应于介入器械所处的大直径位置上展开,一旦介入器械通过,卷壁结构随即复原,这样一来,导管鞘就能以其预定型状态插入较细的血管,仅仅在介入器械行经的位置上做短暂的展开变粗,将对血管的扩张变形以及刺激降到最小。
所述管壁为能够在受胀状态和预定型状态之间切换的弹性材料。例如管壁的材质选自HDPE或Pebax等;为了保证管壁在外力撤消后能够自主复原,且保持一定的强度和顺应性,作为优选,所述管壁的厚度为0.2~0.5mm。
作为优选,预定型状态的管壁外径为4~9mm。进一步优选5-6mm。
适宜的外径,容许导管鞘适用于更细的血管,也会获得更加的柔顺和通过性。
为了包覆并形成输送鞘管的通道,作为优选,预定型状态的管壁卷绕大于一个圆周,超出360度圆周部分与360度内的部分相互叠搭。
由于要求输送鞘管通过后管壁自行恢复卷壁结构的预定型状态,因此相互搭接部位具有光滑的接触面,即不存在相互阻挡影响复原的形状或构件。
即预定型状态管壁的同一处横截面上,从卷绕的起始侧至末尾侧在周向上延伸大于360度,管壁延伸360度以上的部位相互叠置搭接。
作为进一步优选,受胀状态的管壁卷绕大于等于360度。这样可以保证内部的输送鞘管以及介入器械不外露。
与现有导管鞘的明显区别是,现有导管鞘可视为卷绕360度,即恰好一周,另外现有导管鞘的管壁在周向上是封闭的,截面形状也不会改变。
本发明的导管鞘在周向上尽管局部相互叠置,但并非是封闭的。这也是卷壁结构可以展开的原因,另沿周向延伸的时候,可以使沿光滑的曲线路径,也可以带有迂回结构,例如沿波浪或锯齿路径在周向延伸,这样会使得导管鞘截面形状的变化上更加灵活,当然,选用其他形式时,也不能忽视管壁在径向上顺应性的丧失。
管壁卷绕的度数即所对应的圆心角,度数越大,管壁的容许变化程度越大,但卷绕过多也会造成展开阻力过大等负面影响,具体度数可以根据两种状态的直径变化计算得到,即管壁要有足够的周长来围成介入器械的通道。
作为优选,预定型状态的管壁卷绕小于等于720度。
为了在不同状态下,均可以形成介入器械的封闭通道,作为优选,所述卷壁结构在周向上卷绕的起始侧和末尾侧通过柔性包络膜连接。
管壁在受胀状态下释放相应部位的卷壁结构并通过柔性包络膜保持导管鞘的封闭。柔性包络膜相对于管壁的其它部位应具有稍低的刚度,即更加容易在周向上弯曲或折叠,形成给迂回结构。
为了收纳柔性包络膜,所述柔性包络膜的至少一部分处在管壁搭接部分的中间层。
作为优选,在本发明中,管壁的通体厚度可以均匀,也可以不均匀,例如为了更好的收纳柔性包络膜,在管壁的起始侧和末尾侧可以设置为相对较薄的管壁,而在管壁的中间部分设置相对较厚的管壁。
由于柔性包络膜是连接在起始侧和末尾侧之间,因此在管壁延伸的路 径上,柔性包络膜可视为在周向上的迂回部位,起始侧和末尾侧之间的迂回部位在管壁受胀状态下展开且处在管壁搭接部分的中间层。这样管壁的内外两侧都可以保持光滑平整,例如输送鞘管的移动。
作为优选,所述柔性包络膜的转折处设有折痕线。折痕线可以通过热定型处理加工,在预定型状态下,转折处会更加平整。
柔性包络膜的作用是将卷壁结构的起始侧和末尾侧连接起来,形成封闭通道,进一步提高安全性,柔性包络膜由于在管壁切换状态时要打折或扭动,因此壁厚以及刚度比管壁本身要低。
柔性包络膜可以采用PTFE等材料,壁厚为0.1-1mm。优选0.25-0.5mm。
作为进一步的优选,所述柔性包络膜为周向封闭的管状结构,所述柔性包络膜管状结构截面周长大于管壁截面的壁长,管壁固定贴覆在柔性包络膜的外壁。
为了进一步提高安全性以及加工方便等因素,柔性包络膜本身即为管状结构,这样可以避免管壁与柔性包络膜连接部位被撕裂,柔性包络膜的局部打折迂回,收纳在管壁的搭接部分内。
作为优选,导管鞘的远端(使用时远离患者病灶的一端)外周包裹有弹性套。可以防止血液(或体液)从管壁搭接部分的缝隙处外逸。作为优选,导管鞘的远端与鞘柄连接,连接部由所述弹性套包裹。
所述弹性套的轴向长度为5~50cm。
弹性套的材质为弹性尼龙,厚度为0.1-0.2mm。
作为本发明的较佳实施方式,卷壁结构在周向上卷绕的起始侧和末尾侧通过柔性包络膜连接的同时,在管壁的外部套设弹性套,起到双重保护,防止血液或体液外逸。
管壁以及柔性包络膜与输送鞘管接触的部位具有光滑表面,可以减小 输送鞘管移动的摩擦力,就管壁以及弹性套自身材料而言,可以选用现有技术。
为了便于引导导管鞘插入血管,导管鞘的近端(使用时靠近患者病灶的一端)为收口结构。
本发明的导管鞘在加工时,针对管壁可以采用挤出成型,再通过热处理获得预定型状态的管壁。
若还设有柔性包络膜,可以采用先挤出管壁,再将柔性包络膜焊接在相应的位置,而后热处理定型。也可以一次性挤出管壁和柔性包络膜这种双层结构,而后热处理定型。
作为优选,所述管壁的外部包有用于将管壁限定在预定型状态的束套,且该束套在管壁受胀状态下涨裂。
作为优选,所述束套沿管壁轴向延伸出管壁近端,延伸出的部位为收口结构。所述束套还可沿管壁轴向延伸至弹性套近端或弹性套远端或弹性套内或仅覆盖管壁的一部分。
束套进一步提高导管鞘外周的光滑性,结合收口结构,便于引导穿入血管。
作为优选,所述卷壁结构在周向上卷绕的末尾侧上,在临近管壁近端处为切角结构。
作为卷绕结构,末尾侧的角部容易翻翘,影响穿入血管以及在血管中行进,因此本发明在该部位做切角处理,为了避让切角,在设置柔性包络膜时,柔性包络膜沿管壁轴向朝近端延伸时,并没有延伸至管壁的端头,而是避让切角部位。
本发明还提供一种介入器械输送装置,包括手柄以及通过接头与所述手柄相连的导管鞘,所述导管鞘为本发明所述的导管鞘。
本发明导管鞘采用卷绕式结构,可实现局部扩展以及复原,在预定型 状态下具有较小的外径利于穿入较细的血管,适用范围更广,消除了安全隐患。
附图说明
图1为现有技术中导管鞘以及装载有人造瓣膜的输送鞘管的配合示意图;
图2为本发明导管鞘(带接头)的结构示意图;
图3为图2的导管鞘包裹弹性套后的结构示意图;
图4为图3的导管鞘局部受胀展开卷壁结构的结构示意图;
图5为图4的导管鞘改变受胀部位后的结构示意图;
图6为图5的导管鞘改变受胀部位后的结构示意图;
图7为介入器械完全穿过导管鞘后的示意图;
图8为本发明导管鞘(预定型状态下)截面示意图;
图9为图8的导管鞘受胀展开的截面示意图;
图10为本发明导管鞘改变卷绕角度的截面示意图;
图11为本发明导管鞘中设有柔性包络膜的截面示意图;
图12为本发明柔性包络膜为整体管状的的截面示意图;
图13为图12的导管鞘受胀展开卷壁结构的截面示意图。
图14为导管鞘的管壁端部示意图,图中管壁尚未合围;
图15为图14中的管壁合围后的示意图;
图16为管壁外包有束套的示意图。
具体实施方式
实施例1
参见图2,本实施例中,导管鞘的管壁4为卷壁结构,横截面为盘绕形,管壁4具有展开相应部位卷壁结构的受胀状态以及恢复卷壁结构的预定型状态。
预定型状态下,导管鞘外径为5mm(15Fr),内径4mm。在受胀状态下内径可达8mm(24Fr),能够通过相应的直径输送鞘管。
参见图3,导管鞘的远端安装有与输送装置配合的接头5,导管鞘与接头5的连接处被弹性套6包裹。可以防止血液(或体液)从管壁搭接部分的缝隙处外逸。弹性套选用弹性尼龙,厚度为0.1-0.2mm。
在周向上,卷壁结构由起始侧开始螺旋延伸,直至末尾侧,起始侧的末尾侧边界可沿导管鞘轴向延伸或绕导管鞘轴线螺旋延伸,图3中可见末尾侧边界7为直线且沿导管鞘轴向延伸。采用螺旋线时,可使导管鞘弯曲时的受力分布更均匀些。
结合图4~图7,介入器械由右向左穿行,经过之处会挤压管壁内侧,使得管壁的卷壁结构相应展开,受压部位8即转入受胀状态。
介入器械100穿过后,由于管壁4自身的弹性会自行复原,回到初始的预定型状态。
本实施例中管壁材质选自HDPE或Pebax等,为了保证管壁能够自主复原,且保持一定的强度和顺应性,管壁的厚度为0.5mm。
参见图8,为未植入器械时,处于预定型状态(初始状态时)下导管鞘的截面示意图,为了包覆并形成输送鞘管的通道,预定型状态的管壁卷绕大于360度,即从卷绕的起始侧9至末尾侧10在周向上延伸大于360度,超出360度部分与未超出360度的部分相叠。
图8中可见,超出部分11与未超出部分12相互搭接,超出部分11包裹在未超出部分12的外周,管壁内部形成完整的通道。
图9为植入器械18时,导管鞘受胀时的截面示意图。为了避免受胀状态下输送鞘管以及植入器械不外露,图9可见,受胀状态下的管壁卷绕大于等于360度,即仍有重叠搭接区域13。
图10中即重叠搭接区域13加大,管壁卷绕的度数即所对应的圆心角 越大进一步加大为540度,其展开后会获得更大的内径,容许通过更粗的介入器械。
实施例2
如图8所示,尽管超出部分11与未超出部分12相互搭接,但并非相对固定,它们之间可相对滑动,形成间隙,使得血液或体液有可能进出管壁,为了在不同状态下,均可以形成介入器械的封闭通道,本发明提供了另一种实施方式,通过在管壁的起始侧和末尾侧设置柔性包络膜的形式,封闭管壁。
图11中,管壁卷绕的起始侧9和末尾侧10通过柔性包络膜14连接。柔性包络膜主要起到一个径向的支撑力,束缚植入器械,防止其外露,同时还可阻止血液或体液溢出管壁。
柔性包络膜14由于在管壁切换状态时要打折或扭动,因此壁厚以及刚度比管壁本身要低。本实施例柔性包络膜14采用PTFE材料,壁厚为0.25-0.5mm。
管壁无论出于何种状态,柔性包络膜14均可以保持导管鞘的封闭,柔性包络膜14可以通过焊接等方式与管壁相固定。
为了收纳柔性包络膜14,柔性包络膜14处在管壁搭接部分的中间层。柔性包络膜14在周向上可以延伸一段,即并没有360的包络整个管壁的的内腔,在预定型状态下,柔性包络膜14绷紧在管壁卷绕的起始侧9和末尾侧10之间,柔性包络膜14的作用是封闭起始侧9和末尾侧10之间形成的间隙,防止血液或体液有进出管壁。因此柔性包络膜14与管壁的固定点并不严格要求在起始侧9和末尾侧10,也可以适当调整。
图12中,作为另一实施方式,柔性包络膜14为周向封闭的管状结构,管壁固定贴覆在柔性包络膜14的外壁,柔性包络膜14的其中一部分为迂回部分15,迂回部分15处在管壁的起始侧9和末尾侧10之间。
迂回部位15的转折处16以及转折处17设有折痕线,折痕线可以通过热定型处理加工,在预定型状态下,折痕线可使得迂回部位的转折处更加平整。
参见图13,迂回部位15在管壁受胀状态下展开,可以容许管壁具有更大的形变范围。
本实施例还提供一种介入器械输送装置(图中省略),包括手柄以及通过接头与手柄相连的导管鞘,该导管鞘的管壁选用图12中的方式。
参见图14,图15,卷壁结构在周向上卷绕的末尾侧上,在临近管壁4近端处为切角结构19。作为卷绕结构,末尾侧的角部容易翻翘,本发明在该部位做切角处理,以利于穿入血管,避免翻翘的阻挡。
参见图16,管壁4的外部包有用于将管壁4限定在预定型状态的束套,且该束套在管壁受胀状态下涨裂。束套沿管壁轴向延伸出管壁近端,延伸出的部位为收口结构20。束套进一步提高了导管鞘外周的光滑性,结合收口结构,便于引导穿入血管。本实施例采用的管壁材料具有较好的弹性的顺应性,受胀状态下管壁的扩张是径向扩张,对血管不会造成伤害,不会产生血管破裂或夹层。当输送鞘管的大径部位通过后,导管鞘完好的复原。

Claims (17)

  1. 一种可扩的导管鞘,包括管壁,其特征在于,所述管壁为卷壁结构,横截面为盘绕形,所述管壁具有展开相应部位卷壁结构的受胀状态以及自行恢复卷壁结构的预定型状态。
  2. 如权利要求1所述的可扩的导管鞘,其特征在于,所述管壁为能够在受胀状态和预定型状态之间自主切换的弹性材料。
  3. 如权利要求2所述的可扩的导管鞘,其特征在于,预定型状态的管壁外径为4-9mm。
  4. 如权利要求1所述的可扩的导管鞘,其特征在于,预定型状态的管壁卷绕大于一个圆周,超出360度圆周部分与360度内的部分相互叠搭。
  5. 如权利要求4所述的可扩的导管鞘,其特征在于,相互叠搭部位具有光滑的接触面。
  6. 如权利要求5所述的可扩的导管鞘,其特征在于,预定型状态的管壁卷绕小于720度。
  7. 如权利要求1~6任一项所述的可扩的导管鞘,其特征在于,所述卷壁结构在周向上卷绕的起始侧和末尾侧通过柔性包络膜连接。
  8. 如权利要求7所述的可扩的导管鞘,其特征在于,所述柔性包络膜的转折处设有折痕线。
  9. 如权利要求7所述的可扩的导管鞘,其特征在于,柔性包络膜壁厚为0.1-1mm。
  10. 如权利要求7所述的可扩的导管鞘,其特征在于,所述柔性包络膜为周向封闭的管状结构,所述柔性包络膜管状结构截面周长大于所述管壁截面的壁长,管壁固定贴覆在柔性包络膜的外壁。
  11. 如权利要求7所述的可扩的导管鞘,其特征在于,管壁的远端外周包裹有弹性套。
  12. 如权利要求11所述的可扩的导管鞘,其特征在于,管壁的远端与鞘柄连接,连接部由所述弹性套包裹。
  13. 如权利要求11所述的可扩的导管鞘,其特征在于,所述弹性套的轴向长度为5~50cm。
  14. 如权利要求1所述的可扩的导管鞘,其特征在于,所述管壁的外部包有用于将管壁限定在预定型状态的束套,且该束套在管壁受胀状态下涨裂。
  15. 如权利要求4所述的可扩的导管鞘,其特征在于,所述束套沿管壁轴向延伸出管壁近端,延伸出的部位为收口结构。
  16. 如权利要求1所述的可扩的导管鞘,其特征在于,所述卷壁结构在周向上卷绕的末尾侧上,在临近管壁近端处为切角结构。
  17. 一种介入器械输送装置,包括手柄以及通过接头与所述手柄相连的导管鞘,其特征在于,所述导管鞘为权利要求1~16任一项所述的可扩的导管鞘。
PCT/CN2017/102199 2016-09-23 2017-09-19 一种可扩导管鞘和介入器械输送装置 WO2018054275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610845799.3A CN106473839B (zh) 2016-09-23 2016-09-23 一种可扩导管鞘和介入器械输送装置
CNCN201610845799.3 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018054275A1 true WO2018054275A1 (zh) 2018-03-29

Family

ID=58267589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102199 WO2018054275A1 (zh) 2016-09-23 2017-09-19 一种可扩导管鞘和介入器械输送装置

Country Status (2)

Country Link
CN (1) CN106473839B (zh)
WO (1) WO2018054275A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200030572A1 (en) * 2018-07-25 2020-01-30 Edwards Lifesciences Corporation Methods of making an expandable sheath
WO2021173745A1 (en) * 2020-02-27 2021-09-02 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device in to a body

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106473839B (zh) * 2016-09-23 2019-04-19 杭州启明医疗器械股份有限公司 一种可扩导管鞘和介入器械输送装置
US10639152B2 (en) * 2017-06-21 2020-05-05 Edwards Lifesciences Corporation Expandable sheath and methods of using the same
JP7246517B2 (ja) * 2020-04-30 2023-03-27 上海英諾偉医療器械有限公司 シース管及び手術部品
CN112568945B (zh) * 2020-12-03 2022-01-11 首都医科大学附属北京安贞医院 一种管径可调型且显示管径大小的输尿管软镜导入鞘
CN112642044B (zh) * 2021-01-07 2023-08-25 上海翰凌医疗器械有限公司 一种扩张管及血管鞘
CN113456190A (zh) * 2021-07-30 2021-10-01 北京迈迪斯医疗技术有限公司 穿刺器械
CN116251289B (zh) * 2022-10-25 2023-12-01 心擎医疗(苏州)股份有限公司 导管泵及折叠导管泵的泵头的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921479A (en) * 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
US5176659A (en) * 1991-02-28 1993-01-05 Mario Mancini Expandable intravenous catheter and method of using
EP0948946A1 (en) * 1994-08-12 1999-10-13 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal protheses
US20100324490A1 (en) * 2009-06-23 2010-12-23 N.G.C. Medical S.P.A. Variable diameter tubular structure for a biomedical use
US20120095296A1 (en) * 2010-10-19 2012-04-19 Warsaw Orthopedic Expandable Spinal Access Instruments and Methods of Use
US8690936B2 (en) * 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
US20140121629A1 (en) * 2012-10-26 2014-05-01 Medtronic, Inc. Elastic Introducer Sheath
CA2902125A1 (en) * 2014-09-12 2016-03-12 Simon Furnish An expandable introducer sheath
CN106473839A (zh) * 2016-09-23 2017-03-08 杭州启明医疗器械有限公司 一种可扩导管鞘和介入器械输送装置
CN206372159U (zh) * 2016-09-23 2017-08-04 杭州启明医疗器械有限公司 一种可扩导管鞘和介入器械输送装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8513702D0 (en) * 1985-05-30 1985-07-03 Gill S S Expansible trocar
US4793359A (en) * 1987-04-24 1988-12-27 Gv Medical, Inc. Centering balloon structure for transluminal angioplasty catheter
DE4018525C2 (de) * 1990-06-09 1994-05-05 Kaltenbach Martin Katheter mit einem aufweitbaren Bereich
US5688246A (en) * 1991-04-19 1997-11-18 Biotime, Inc. Microcannula
CN2863015Y (zh) * 2004-11-24 2007-01-31 深圳市先健科技股份有限公司 主动脉术中支架及其输送系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921479A (en) * 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
US5176659A (en) * 1991-02-28 1993-01-05 Mario Mancini Expandable intravenous catheter and method of using
EP0948946A1 (en) * 1994-08-12 1999-10-13 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal protheses
US8690936B2 (en) * 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
US20100324490A1 (en) * 2009-06-23 2010-12-23 N.G.C. Medical S.P.A. Variable diameter tubular structure for a biomedical use
US20120095296A1 (en) * 2010-10-19 2012-04-19 Warsaw Orthopedic Expandable Spinal Access Instruments and Methods of Use
US20140121629A1 (en) * 2012-10-26 2014-05-01 Medtronic, Inc. Elastic Introducer Sheath
CA2902125A1 (en) * 2014-09-12 2016-03-12 Simon Furnish An expandable introducer sheath
CN106473839A (zh) * 2016-09-23 2017-03-08 杭州启明医疗器械有限公司 一种可扩导管鞘和介入器械输送装置
CN206372159U (zh) * 2016-09-23 2017-08-04 杭州启明医疗器械有限公司 一种可扩导管鞘和介入器械输送装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200030572A1 (en) * 2018-07-25 2020-01-30 Edwards Lifesciences Corporation Methods of making an expandable sheath
WO2020023294A1 (en) * 2018-07-25 2020-01-30 Edwards Lifesciences Corporation Methods of making an expandable sheath
CN112469549A (zh) * 2018-07-25 2021-03-09 爱德华兹生命科学公司 制备可扩张鞘的方法
US11786695B2 (en) 2018-07-25 2023-10-17 Edwards Lifesciences Corporation Methods of making an expandable sheath
EP4279114A3 (en) * 2018-07-25 2024-02-21 Edwards Lifesciences Corporation Methods of making an expandable sheath
WO2021173745A1 (en) * 2020-02-27 2021-09-02 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device in to a body

Also Published As

Publication number Publication date
CN106473839B (zh) 2019-04-19
CN106473839A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2018054275A1 (zh) 一种可扩导管鞘和介入器械输送装置
US11911537B2 (en) Length extensible implantable device and methods for making such devices
CN106344208B (zh) 在可扩张装置的腔内部署中使用的外部可转向纤维
EP1366732B1 (en) Stent delivery system having a fixed guide wire
US6702802B1 (en) Catheters with improved transition
BR112019027338A2 (pt) bainha expansível e métodos de uso da mesma
EP1348404A1 (en) Stent delivery system with a fixed guide wire
US9789284B2 (en) Urinary catheter assembly and method
BRPI0917920B1 (pt) Expansão direcional de dispositivos intraluminais
JP2022508478A (ja) 調整可能なシースデバイス
US10905577B2 (en) Stent delivery system
US20230063969A1 (en) Flow control valve
JP7465095B2 (ja) カテーテル進入部位を被覆するステント設計
JP6415541B2 (ja) ステントデリバリーシステム及び内視鏡システム
CN206372159U (zh) 一种可扩导管鞘和介入器械输送装置
CN212416639U (zh) 可扩张导管及可扩张导管鞘
WO2022044488A1 (ja) チューブステント
CN113577519A (zh) 可扩张导管及可扩张导管鞘
MXPA97007886A (en) Stenosis implant supply device (stent) with arrollamie membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852343

Country of ref document: EP

Kind code of ref document: A1