WO2018053983A1 - 机器人在斜坡平面上直线行驶的判定方法及控制方法 - Google Patents

机器人在斜坡平面上直线行驶的判定方法及控制方法 Download PDF

Info

Publication number
WO2018053983A1
WO2018053983A1 PCT/CN2017/072762 CN2017072762W WO2018053983A1 WO 2018053983 A1 WO2018053983 A1 WO 2018053983A1 CN 2017072762 W CN2017072762 W CN 2017072762W WO 2018053983 A1 WO2018053983 A1 WO 2018053983A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
straight
slope
traveling
travel
Prior art date
Application number
PCT/CN2017/072762
Other languages
English (en)
French (fr)
Inventor
彭芳
周艳荣
徐建荣
Original Assignee
苏州瑞得恩光能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞得恩光能科技有限公司 filed Critical 苏州瑞得恩光能科技有限公司
Priority to EP17852063.1A priority Critical patent/EP3518065B1/en
Priority to US16/335,387 priority patent/US10802500B2/en
Priority to JP2019515992A priority patent/JP6706392B2/ja
Publication of WO2018053983A1 publication Critical patent/WO2018053983A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of robot application, in particular to a method and a control method for a robot to travel straight on a slope plane.
  • a solar panel is a device that converts solar energy directly into electrical energy using photovoltaics that occur under the illumination of semiconductor materials. Solar panels can generate electricity in places where there is sunlight, so solar panels are suitable for a variety of applications, from large power stations to small portable chargers.
  • the working environment of solar panels can only be outdoor, and the biggest problem affecting their work is not the wind and rain, but the dust accumulated all the year round. Dust or other attachments on the solar panel may affect the transmittance of the panel and impede the photoelectric efficiency, which will seriously affect the efficiency of the panel directly acquiring sunlight, reduce the energy absorption and conversion efficiency of the panel, and reduce the power generation efficiency.
  • the solar panel can only be manually and regularly cleaned up. Due to the large area of the solar panel and the large number of panels used by the large power station, the dust will accumulate repeatedly and need to be repeatedly cleaned; therefore, the labor cost is high. The cleaning efficiency is low and the cleaning effect is poor.
  • the cleaning robot is insufficiently powered, cannot travel freely, and has poor cleaning effect; since the tilt angle of the solar panel is generally between 10 and 40 degrees, the existing cleaning robot cannot travel freely on the slope plane, even if it can barely travel, It will run out of power soon.
  • the cleaning robot will slide off the solar panel; because the solar panel is relatively smooth, the existing cleaning robot has a relatively small weight and wheel friction coefficient, and the friction is relatively small, and it is difficult to travel, and it is easy to slip.
  • the cleaning robot cannot travel according to the prescribed route, and the coverage area during travel is small, and it will fall from the edge of the solar panel; the existing cleaning robot is generally set to automatically turn to the obstacle, because there is no obstacle on the solar panel, automatically The cleaning robot that travels can only travel on a single path, and the coverage area during the travel is small, which is inevitable. Will fall from the edge of the solar panel. Even if the path is planned in advance, the existing cleaning robot is easily affected by gravity and panel attachment during traveling, and it is easy to deviate from the path, and it is difficult to ensure straight travel; and the cleaning robot itself cannot detect and cannot travel through the entire panel. Will leave a lot of space that can't be cleaned.
  • the present invention provides a method for determining a linear travel of a robot on a slope plane, comprising the steps of: step S1) establishing a three-dimensional coordinate system on the robot, and defining a forward direction of the robot as a positive direction of the Y-axis a direction perpendicular to the plane of the slope is a Z-axis direction; a plane in which the X-axis and the Y-axis are parallel to the plane of the slope; and step S2) defining a direction of gravity of the robot when the traveling direction is Ts a standard component vector gxs0, gys0, gzs0 in three directions of the three-dimensional coordinate system; step S3) generates a standard direction parameter library; step S4) controls the robot to follow a preset line on the slope plane The path travels straight in either direction Tm; step S5) retrieves standard component vectors gxm0, gym0, gzm0 data corresponding to the direction of travel Tm from the
  • step S6) and step S7) may further include the following steps: step S9) acquiring a real-time traveling direction Tm1 by using a magnetic sensor; and step S10) according to the real-time traveling direction Tm1 to the gravitational acceleration g in the three-dimensional coordinate
  • the real-time sub-vectors gxm1, gym1, gzm1 in three directions are used for correction.
  • step S3) generates a standard direction parameter library, and specifically includes the following steps: step S31) controlling the robot to perform a uniform circular motion along the preset one circular path on the slope plane; step S32) During the circular motion of the robot, at least a set of standard direction parameters are collected and recorded in real time at regular intervals t0; each set of standard direction parameters includes a traveling direction Ts of the robot and a standard component vector gxs0 corresponding to the traveling direction. , gys0, gzs0; and step S33) generating a standard direction parameter library based on at least one set of standard direction parameters.
  • step S31 the angular velocity of the uniform circular motion is 0.1 to 1.0 degrees/second; in step S32), the time interval t0 is 0.1-1.0 seconds; in step S6), the time interval t is 0.1-1.0 seconds.
  • Another object of the present invention is to provide a control method for a robot to travel straight on a slope plane, so as to solve the problem that the prior art robot cannot correct in time after the deviation of the predetermined straight path in the traveling on the slope, and it is difficult to ensure straight traveling. problem.
  • the present invention provides a control method for a robot to travel straight on a slope plane, comprising the following steps: Step S11) determining whether a robot is along the determination method according to the determination manner that the robot travels straight on a slope plane Driving in a preset straight path; if the robot deviates from the preset straight path, step S12) is performed; step S12) controlling the robot to deflect in the Tm direction during running; step S13) controlling the robot in the station Traveling straight along the Tm direction on the slope plane; returning to step S11).
  • Step S12) controlling the robot to deflect in the Tm direction during driving specifically comprising the steps of: step S121) retrieving the actual traveling direction Tn corresponding to the real-time direction parameter in the standard direction parameter library; and calculating in step S122)
  • the robot needs an adjusted yaw direction and a yaw angle; the yaw angle is an angle between the actual traveling direction Tn and the preset traveling direction Tm; step S123) according to the yaw direction and the yaw angle that the robot needs to adjust, The robot is controlled to deflect to the left or to the right.
  • the invention has the advantages of providing a determination method and a control method for a robot to travel straight on a slope plane, and can monitor the traveling direction and the vehicle body posture of the robot in real time, and if the driving path is slightly deviated, the robot can be directly corrected. Direction, returning to the preset direction and continuing straight.
  • the solar panel cleaning robot adopts the determination method and the control method of the invention, so that the robot can travel according to the set optimization path, and the entire space of the panel can be covered without repeated, and the work efficiency is high.
  • FIG. 1 is a schematic view showing the overall appearance of a cleaning robot according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an interior of a cleaning robot according to an embodiment of the present invention.
  • FIG. 3 is a schematic exploded view of a cleaning robot according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the overall structure of a power system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of the power system after removing the crawler casing according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram of a control system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of establishing a three-dimensional coordinate system on a robot according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a driving path of a robot traveling on a rectangular slope by using a first path navigation method
  • FIG. 9 is a schematic diagram of another driving path of the robot traveling on a rectangular slope by using the first path navigation method
  • FIG. 10 is a schematic diagram of a driving path of a robot traveling on a rectangular slope by using a second path navigation method
  • Figure 11 is a schematic view showing another driving path of the robot running on a rectangular slope by the second path navigation method
  • FIG. 12 is a schematic diagram of a driving path of a robot traveling on a rectangular slope by using a third path navigation method
  • FIG. 13 is a schematic diagram of another driving path of the robot running on a rectangular slope by using the third path navigation method
  • FIG. 14 is a schematic diagram of a driving path of a robot traveling on a rectangular slope using a fourth path navigation method
  • Fig. 15 is a schematic view showing another driving path of the robot traveling on a rectangular slope by the fourth path navigation method.
  • a component When a component is described as being “on” another component, the component can be placed directly on the other component; an intermediate component can also be present, the component being placed on the intermediate component, And the intermediate part is placed on another part.
  • a component When a component is described as “mounted to” or “connected to” another component, it can be understood as “directly” or “connected”, or a component is “mounted to” or “connected” through an intermediate component. To “another part.
  • the present embodiment provides a solar panel cleaning robot 100 (hereinafter referred to as a cleaning robot or a robot), including a vehicle body 1, and the vehicle body 1 can be driven on at least one solar panel 200; 1
  • a cleaning device 2, a power system 3, a control system 4, and a power system 5 are provided inside or outside.
  • the cleaning device 2 is configured to clean the solar panel 200 during the traveling of the vehicle body; the power system 3 is used to adjust the traveling direction and the traveling speed of the vehicle body 1 on the solar panel 200, and control the driving, stopping or steering of the vehicle body 1; the control system 4 They are respectively connected to the power system 3 and the cleaning device 2 for issuing various control signals to the power system 3 and the cleaning device 2.
  • the power system 5 is connected to the power system 3, the cleaning device 2, and the control system 4, respectively, for supplying power to the power system 3, the cleaning device 2, and the control system 4.
  • the control system 4 issues at least one travel control command and at least one sweep control command, and the power system 3 according to the travel control command
  • the vehicle body 1 is controlled to travel along a pre-planned path; at the same time, the cleaning device 2 activates the cleaning device 2 according to the cleaning control command to start cleaning the solar panel 200.
  • the control system 4 issues a plurality of travel control commands to the power system 3, such as a correction command, a turning command, a turning command, and the like, thereby commanding the vehicle body 1 to deflect in a straight traveling path.
  • the vehicle body 1 can be driven according to an optimized route planned in advance.
  • the specific navigation method, the calibration method, the method of controlling the turning of the vehicle body or the U-turn (turning head) method are described in detail below.
  • the cleaning device 2 is always in operation.
  • the control system 4 issues a travel control command to stop traveling based on certain operating parameters (such as all planned paths are completed or the power system 5 is insufficient)
  • the vehicle body 1 stops traveling; at the same time, the control system 4 issues a cleaning control command. Turn off the cleaning device 2 and stop cleaning.
  • the power system 3 is disposed at the bottom of the vehicle body 1 to drive the vehicle body 1
  • the travel includes a left front wheel 31, a right front wheel 32, a left rear wheel 33, a right rear wheel 34, a left drive motor 35, a right drive motor 36, and two tracks 37.
  • the left front wheel 31 is mounted on the left side of the front portion of the bottom surface of the vehicle body, and includes a left front wheel hub 311 and a left front wheel axle 312.
  • the left front wheel axle 312 is disposed at the center of the left front hub 311; the right front wheel 32 is mounted at the bottom of the vehicle body.
  • the right side of the front portion includes a right front hub 321 and a right front axle 322, and the right front axle 322 is disposed at the center of the right front hub 321;
  • the left rear wheel 33 is mounted to the left side of the rear of the vehicle body bottom surface, including a left rear hub 331 and a left rear axle 332 (not shown), the left rear hub 331 and the left front hub 311 are disposed on the same straight line, the left rear axle is disposed at the center of the left rear hub 331;
  • the right rear wheel 34 is mounted on the vehicle
  • the right side of the rear portion of the bottom surface of the body includes a right rear hub 341 and a right rear wheel axle (not shown).
  • the right rear hub 341 and the right front hub 321 are disposed on the same straight line; the right rear axle is disposed on the right rear hub 341. Center.
  • the right rear axle is directly coupled or coupled to the left rear axle by a transmission (not shown).
  • the left drive motor 35 and the right drive motor 36 are fixedly coupled to the vehicle body 1 by a fixing device, connected to the power system 5 through at least one wire, and connected to the control system 4 through at least one signal line.
  • the left drive motor 35 is directly connected or connected to the left front axle 312 via a transmission (not shown), and the right drive motor 36 is directly connected or connected to the right front axle 322 via a transmission (not shown).
  • the two crawler belts 37 are each a flexible link, wherein one crawler belt 37 is wrapped around the annular front side wall of the left front hub 311 and the left rear hub 331; the other crawler belt 37 is wrapped around the annular side of the right front hub 321 and the right rear hub 341. Outside the wall.
  • Each crawler belt 37 is provided with a crawler outer casing 371 for protecting the crawler belt and the hub to prevent debris from entering the crawler belt or the hub and affecting the normal running of the vehicle body 1.
  • control system 4 sends at least one travel control signal to the left drive motor 35 and the right drive motor 36 according to the optimized path planned in advance, so that the left drive motor 35 and the right drive motor 36 synchronously adjust the left front wheel 31 and the right front.
  • the rotation speed and the rotation direction of the wheel 32 further adjust the traveling direction and the traveling speed of the vehicle body 1, so that the vehicle body can perform straight-line, calibration, 90-degree turn, U-turn (turning head) and the like.
  • the control system 4 When the vehicle body is required to advance linearly, the control system 4 simultaneously issues a linear travel control command to the left drive motor 35 and the right drive motor 36, and the control command includes the same motor speed (for example, the rotational speeds of the left drive motor and the right drive motor are both 60 rev / min) and the direction of rotation of the drive motor shaft (such as the left drive motor clockwise rotation, the right drive motor counterclockwise rotation), this will drive the left front wheel 31, the right front wheel 32 synchronously forward, left rear wheel 33.
  • the right rear wheel 34 is a driven wheel, and is also rotated forward in synchronization with the left front wheel 31 and the right front wheel 32 under the driving of the crawler belt 37, so that the entire vehicle body 1 advances.
  • the control system 4 When the vehicle body 1 is required to be deflected to the right, the control system 4 simultaneously issues a calibration travel control command to the left drive motor 35 and the right drive motor 36, and the motor speed in the control command received by the left drive motor 35 is higher than that of the right drive motor 36.
  • the motor speed in the received control command is too large, and the difference in the speed depends on the deviation angle that needs to be adjusted. The smaller the deviation angle, the speed The difference is smaller.
  • the motor speed in the control command received by the left drive motor 35 is smaller than the motor speed in the control command received by the right drive motor 36.
  • the control system 4 calculates the rotation speed and the rotation direction of the left drive motor 35 and the right drive motor 36 according to the preset turning radius. If the turning radius is large, the driving direction of the driving motor can be Conversely (one clockwise, one counterclockwise), the left front wheel 31 and the right front wheel 32 rotate synchronously forward, or set to one wheel to stop rotating, thereby achieving the effect of turning in the middle; if the turning radius is small or turning in place
  • the rotation directions of the left driving motor 35 and the right driving motor 36 may be designed to be the same, either clockwise or counterclockwise, such that the left front wheel 31 and the right front wheel 32 will rotate forward and backward.
  • One side of the vehicle body 1 is advanced, and the other side is retracted, thereby forming an effect of turning a small radius or turning in place.
  • the control system 4 calculates the rotational speed and the rotational direction of the left drive motor 35 and the right drive motor 36 according to the magnitude of the preset turning radius.
  • the turning radius is equivalent to half of the width of the vehicle body, and the front wheel on the inside of the turning stops rotating or rotates at a very slow speed (if the U-turn is leftward, the left front wheel stops rotating; When the U-turn is performed right, the right front wheel stops rotating.
  • the vehicle body 1 is first controlled to make a 90 degree turn to the left or right in the original position, and then the vehicle body is controlled to move forward. Driving a body width distance, and finally controlling the car body to make a 90-degree turn to the left or right in the original position, which can realize the U-turn to the left or right, and the U-shaped turn just after driving in the same lane In the adjacent lane, the space in which the robot of the embodiment travels can achieve the effect of no repetition and no dead angle.
  • the power system 3 further includes at least one hub gear teeth 38 uniformly disposed on the outer side surfaces of the left side of the left front hub 311, the left rear hub 331, the right front hub 321, and the right rear hub 341; and at least one crawler inner tooth 372 disposed uniformly The inner side wall surface of the crawler belt 37, the crawler inner teeth 372 are engaged with the hub gear teeth 38, ensuring that the track 37 can be engaged with the two hubs for normal use when the two front wheels 31, 32 are rotated.
  • the power system 3 further includes at least one anti-slip block 373 protruding from the outer side walls of the two crawler belts 37, and the anti-slip blocks 373 can be arranged in an ordered array, evenly distributed over the entire crawler belt. 37 on.
  • the vehicle body 1 of the present embodiment adopts a crawler type structure, and an anti-slip block 373 is attached to the outer wall of the crawler belt in order to increase the friction coefficient, enhance the grip force, and prevent the vehicle body 1 from slipping during travel.
  • At least one anti-slip pattern may be disposed on the crawler belt 37 of the embodiment, and is recessed on the outer side walls of the two crawler belts, and is evenly distributed on the entire crawler belt, and the effect is the same as that of the anti-slip block.
  • the technical effect of the power system 3 is that the crawler and the anti-skid block structure enable the body of the cleaning robot to move freely on the solar panel without slipping; the left and right front wheels are separately driven by the dual motors, and the vehicle body can be The precise travel control allows the vehicle body to flexibly adjust the direction of travel and achieve in-situ turns as needed, maximizing the coverage of the travel path.
  • the control system 4 includes a data collection unit 41, a processor 42, and at least one storage unit 43.
  • the data collecting unit 41 includes a plurality of sensors for collecting at least one operating parameter during the traveling of the vehicle body 1; the processor 42 is connected to the data collecting unit 41, and sends at least one traveling control command to the power system 3 according to the working parameter. At least one cleaning control command is issued to the cleaning device 2 according to the operating parameter.
  • the storage unit 43 is connected to the processor 42 for storing the operating parameters of the vehicle body 1 traveling and other parameters calculated or set in advance.
  • the working parameters include real-time acceleration data of the vehicle body 1, real-time traveling direction data, distance between each distance sensor and the solar panel, and images in front of the vehicle body.
  • Other parameters pre-calculated or set include various work data preset by the staff, such as pre-calculated and planned cleaning robot travel path (optimized path).
  • the staff pre-records the planned optimization path into the control system 4 to provide path navigation for the cleaning robot body.
  • the control system 4 performs calculation and planning according to the optimized path, and will start, when to stop, and when to go straight.
  • Control information such as when driving, when to turn 90 degrees to the left or right, when to turn left or right 90 degrees, and send it to the power system in various control commands to control the vehicle body while traveling. action.
  • the present embodiment provides the following technical solutions.
  • the data acquisition unit 41 includes at least one acceleration sensor 411 for collecting the machine in real time.
  • the acceleration data of the person 100 or the vehicle body 1
  • the acceleration sensor 411 is connected to the processor 42, the acceleration data of the vehicle body 1 is transmitted to the processor 42, and the processor 42 analyzes the dynamic acceleration data, and can analyze the driving process of the vehicle body.
  • the direction of the force and the direction of travel of the middle body is the direction of the force and the direction of travel of the middle body.
  • the processor 42 establishes a three-dimensional coordinate system of the acceleration data of the robot 100 and decomposes the calculation, defines a traveling direction of the robot 100 as a positive direction of the Y-axis, and defines a direction perpendicular to the plane of the slope as a Z-axis direction; the X-axis and the Y-axis The plane in which the shaft lies is parallel to the plane of the slope.
  • the processor issues at least one direction adjustment command to the power system 3, so that the vehicle body 1 returns to its original position. On the straight line route; if there is no deviation, the processor 42 determines that the vehicle body 1 is traveling straight.
  • the magnetic sensor technology may be used to determine that the acceleration sensor finds a deviation from the route, and the determination is again performed, that is, the magnetic sensor secondary determination.
  • the data acquisition unit 41 may further include a magnetic sensor 412 coupled to the processor 42, which measures the magnetic field strength to measure physical parameters such as current, position, direction, and the like.
  • the magnetic sensor 412 is configured to collect the traveling direction data in real time, and compare it with the standard traveling direction preset according to the optimized path data to determine whether the vehicle body is traveling straight or not, so that the vehicle body is traveling straight. More precise.
  • the present embodiment provides a method for determining the straight-line driving of the cleaning robot 100 on the slope plane 300, which may include the following Each step. Since the solar panel is a slope plane, the present determination method can be used to determine whether the solar panel cleaning robot is traveling straight.
  • Step S1 As shown in FIG. 7, a three-dimensional coordinate system is established on the robot, and the traveling direction of the robot is defined as a positive direction of the Y-axis, and a direction perpendicular to the plane of the slope is defined as a Z-axis direction; the X-axis and The plane in which the Y axis is located is parallel to the plane of the slope.
  • Step S2) defines standard deviation vectors g xs0 , g ys0 , g zs0 of the gravitational acceleration g in three directions of the three-dimensional coordinate system when the traveling direction of the robot is Ts.
  • Step S3) generating a standard direction parameter library; specifically comprising the steps of: step S31) controlling the robot to perform a uniform circular motion along a predetermined circular path on the slope plane, and the angular velocity of the uniform circular motion is 0.1 to 1.0 degrees / second; step S32) of the robot in a circular motion, the direction of separation of at least a set of standard parameter every predetermined time t 0 and time acquisition record, the time interval t 0 0.1 to 5.0 seconds;
  • Each set of standard direction parameters includes a traveling direction Ts of the robot and standard component vectors g xs0 , g ys0 , g zs0 corresponding to the traveling direction; and step S33) generating a standard direction parameter library according to at least one set of standard direction parameters .
  • the robot 100 completes a uniform circular motion on the slope plane 300, which takes about 3600 seconds, and collects the traveling direction Ts of the robot every 1 second and the corresponding
  • the acceleration standard is divided into vectors g xs0 , g ys0 , g zs0 , so that 3600 sets of parameters in different directions can be obtained and recorded as 3600 sets of standard direction parameters.
  • Step S4) controlling the robot to travel straight in any direction Tm along the predetermined straight line radial direction on the slope plane.
  • Step S5) Retrieving the standard component vectors g xm0 , g ym0 , g zm0 data corresponding to the traveling direction Tm from the standard direction parameter library.
  • Step S8) determining whether the robot is traveling along a preset straight path; when g xd is equal to 0, determining that the robot travels along a preset straight path, returning to step S6); when g xd is not equal to 0, It is determined that the robot deviates from a preset straight path.
  • determining whether the robot is traveling straight is essentially determining whether the robot has a slight deviation to the left or right with respect to the straight travel route, and therefore only needs to determine the real-time score of the gravitational acceleration g in the X-axis direction.
  • g xd g xm1 -g xm0 is positive or negative is judged to deviate to the left or to the vector difference according to points Deviate to the right.
  • the embodiment further provides another method for determining the straight-line travel of the robot on the slope plane.
  • the step S8) may further include the following steps: step S9) using a magnetic The sensor acquires the real-time traveling direction Tn; step S10) compares the real-time traveling direction Tn with the traveling direction Tm, and if the two agree, the robot is determined to travel along a preset straight path, and returns to step S6); Inconsistent, it is determined that the robot deviates from a preset straight path. In the case where the previous determination of the robot deviates from the straight path, the second determination is made to avoid an accident, so that the judgment result is more accurate.
  • the embodiment provides a linear travel control method for the robot on the slope plane, which may include the following steps.
  • Step S11) determining whether a robot travels along a preset straight path according to the linear traveling determination method of the robot on the slope plane according to steps S1)-S8) or steps S1)-S10) in the foregoing; if the robot deviates The preset straight path is performed in step S12).
  • Step S12) controlling the robot to deflect in the Tm direction during running; specifically comprising the steps of: step S121) retrieving the actual traveling direction Tn corresponding to the real-time direction parameter in the standard direction parameter library; and calculating in step S122)
  • the robot needs an adjusted yaw direction and a yaw angle; the yaw angle is an angle between the actual traveling direction Tn and the preset traveling direction Tm; step S123) according to the yaw direction and the yaw angle that the robot needs to adjust,
  • a direction adjustment command is issued to the power system 3 to control the robot to deflect to the left or to the right.
  • Step S13 controlling the robot to travel straight along the Tm direction on the slope plane; returning to step S11).
  • the determination method that the robot travels straight on the slope plane can quickly judge according to a set of acceleration data (and magnetic sensor data) in a very short time. Whether the vehicle body is traveling straight on the slope; since the acceleration sensor can collect data in real time, a set of data is collected at regular intervals; therefore, the above determination process is also periodically determined once every other time. Whenever the robot (body) is found to be on the slope plane and deviates from the straight line, it can be determined that the robot has deviated.
  • control method for the robot to travel straight on the slope plane is based on the aforementioned linear traveling determination technique of the robot on the slope plane, and after confirming that the robot has deviated, the robot is adjusted for the first time.
  • the direction of travel is such that it returns to the path in the original direction.
  • the determination method of the robot traveling straight on the slope plane is used in conjunction with the control method of the robot traveling straight on the slope plane, thereby ensuring that the cleaning robot does not deviate during straight running, thereby ensuring The cleaning robot can walk through the entire solar panel in the shortest time along the pre-set optimized navigation path, and clean the entire solar panel quickly and well.
  • the optimized navigation path of the robot on a rectangular slope can be easily planned and calculated. How to make the robot can travel along a preset optimized navigation path, this embodiment provides a series of The control scheme and the navigation method, the navigation method refers to a control method that causes the robot to travel along the navigation path.
  • the data collection unit 41 may further include at least one distance sensor 413, including but not limited to an ultrasonic sensor and an optical pulse sensor.
  • the distance sensor 413 is disposed at the outer edge of the robot 100 (vehicle body 1), specifically, at the four corners of the vehicle body 1 (body 11), as shown in FIG. 2, when the robot 100 is on a rectangular slope When traveling, the front end of the distance sensor 413 faces the rectangular slope direction.
  • the distance sensor 413 is connected to the processor 42; the distance data of the distance sensor 413 and the rectangular slope is collected in real time; the processor 42 determines whether the vehicle body 1 is located on the rectangular slope according to the distance data of the distance sensor 413 and the rectangular slope. At the edge or at the corner.
  • the number of distance sensors 413 is four, respectively disposed at four corners of the robot (vehicle body); when only two distance sensors 413 can collect the distance data, the processor 42 determines the robot ( The vehicle body is located at the edge of the rectangular slope 300 and issues at least one steering command (U-turn) to the power system 3; when only one distance sensor collects the distance data, the processor determines that the robot (body) is located At a corner of the rectangular ramp 300, at least one steering command (90 degree turn or U-turn) is issued to the powertrain 3.
  • the four distance sensors 413 can also be respectively disposed in the middle of each side of the vehicle body 1.
  • the processor finds that the distance sensor 413 on one side cannot collect the distance data, it can be judged that the side is located on the rectangular slope. At the edge; if two adjacent sides are located at the edge of the rectangular slope, it can be judged that the vehicle body 1 is located at a certain corner of the solar panel 200.
  • the number of distance sensors 413 may also be eight, which are respectively disposed at four corners of the vehicle body 1 or in the middle of the four sides of the vehicle body 1.
  • the control system 4 may further include a counter 414 for calculating a corner passing by the vehicle body 1 in the slope plane.
  • a counter 414 for calculating a corner passing by the vehicle body 1 in the slope plane.
  • the processor 42 determines that the vehicle body reaches a certain corner, the counter is at the counter. Add one.
  • the processor 42 can clearly know the order (the first few corners) of the corners at which the vehicle body 1 arrives by the technical result fed back by the counter 414.
  • the worker inputs the planned optimization path to the memory of the control system 4 in advance, and the processor sends control commands to the power system 3 according to the navigation path and the real-time position of the robot (vehicle body), including starting, stopping, and going straight.
  • a path navigation method for four types of robots traveling on a rectangular slope is disclosed, and the details thereof are as follows.
  • the solar panel is also a rectangular slope, and the driving path navigation method of the cleaning robot on the solar panel is also applicable to the path navigation method of the robot traveling on a rectangular slope as described below.
  • the path navigation method of the first type of robot traveling on a rectangular slope disclosed in the embodiment includes the following steps: step S101) setting a lower left corner of the rectangular slope as a navigation starting point; and step S102) controlling the robot from the Guide The starting point of the straight line travels to the upper left corner of the rectangular slope; step S103) detecting whether the robot travels to the first corner of the rectangular slope in real time; if the robot does not reach the first corner, returning to step S102); If the robot reaches the first corner, control the robot to turn to the right by 90 degrees; step S104) control the robot to travel straight; step S105) detect in real time whether the robot travels to the second corner of the rectangular slope If the robot does not reach the second corner, return to step S104); if the robot reaches the second corner, control the robot to perform U-turn to the right; step S106) detect whether the robot is traveling in real time.
  • step S107) detecting in real time whether the robot travels to the edge of the rectangular slope if the robot reaches the rectangular slope At an edge; controlling the robot to perform a U-turn to the left; step S108) detecting in real time whether the robot travels to a third corner of the rectangular slope; if the robot does not reach the third corner, controlling the The robot travels straight; if the robot reaches the third corner, detecting whether the robot travels to the fourth corner of the rectangular slope in real time; if the robot does not reach the fourth corner, controlling the robot to travel straight If the robot reaches the fourth corner, controlling the robot to stop traveling; step S109)
  • the robot using the first path navigation method can have many kinds of travel paths on a rectangular slope. Since the length and width of the rectangular slope are different from the length and width of the robot, the length of the robot travel path is also different. The position where the robot stops driving is also different (stop in the lower left or lower right corner). As shown in FIGS. 8 and 9, there are two possible travel paths that the robot 100 travels on the rectangular ramp 300 using the first path navigation method.
  • the traveling method of the second type of robot on the rectangular slope disclosed in the embodiment includes the following steps: step S201) setting a lower right corner of the rectangular slope as a navigation starting point; and step S202) controlling the robot from the navigation Starting point traveling straight to the upper right corner of the rectangular slope; step S203) detecting whether the robot travels to the first corner of the rectangular slope in real time; if the robot does not reach the first corner, returning to step S202); The robot reaches the first corner, controls the robot to turn to the left by 90 degrees; step S204) controls the robot to travel straight; step S205) detects in real time whether the robot travels to the second corner of the rectangular slope; If the robot does not reach the second corner, return to step S204); if the robot reaches the second corner, control the robot to the left Performing U-turn; step S206) detecting whether the robot travels to the third corner of the rectangular slope in real time; if the robot does not reach the third corner, controlling the robot to travel straight; if the robot arrives at the station a third corner,
  • the robot using the second path navigation method can have a variety of travel paths on a rectangular slope. Since the length and width of the rectangular slope are different from the length and width of the robot, the length of the robot travel path is also different. The position where the robot stops driving is also different (stop in the lower left or lower right corner). As shown in FIGS. 10 and 11, there are two possible travel paths that the robot 100 travels on the rectangular ramp 300 using the second path navigation method.
  • the navigation method of the third type of robot on the rectangular slope disclosed in the embodiment includes the following steps: step S301) setting a lower left corner of the rectangular slope as a navigation starting point; and step S302) controlling the robot from the navigation Starting point is straight to the upper left corner of the rectangular slope; step S303) detecting whether the robot travels to the first corner of the rectangular slope in real time; if the robot does not reach the first corner, returning to step S302); The robot reaches the first corner, and controls the robot to perform U-turn to the right; step S304) detects in real time whether the robot travels to the second corner of the rectangular slope; if the robot does not reach the first Two corners, controlling the robot to travel straight; if the robot reaches the second corner, controlling the robot to travel straight, and detecting in real time whether the robot travels to a third corner of the rectangular slope; Not reaching the third corner, controlling the robot to travel straight; if the robot reaches the third corner, controlling the Stopping the driving; step S305) detecting in real time whether the robot travels
  • the robot using the third path navigation method can have a variety of travel paths on a rectangular slope due to the rectangular shape.
  • the length and width of the slope are different from the length and width of the robot. Therefore, the length of the robot's travel path is also different, and the position at which the robot stops traveling is also different (stop in the lower left or lower right corner).
  • Two possible travel paths for the robot 100 to travel on the rectangular ramp 300 using the third path navigation method are shown in FIGS. 12 and 13.
  • the fourth type robot traveling path navigation method on the rectangular slope disclosed in the embodiment includes the following steps: step S401) setting a lower right corner of the rectangular slope as a navigation starting point; and step S402) controlling the robot from the navigation Starting point is straight to the upper right corner of the rectangular slope; step S403) detecting whether the robot travels to the first corner of the rectangular slope in real time; if the robot does not reach the first corner, returning to step S402); The robot reaches the first corner, and controls the robot to perform a U-turn to the left; step S404) detects in real time whether the robot travels to a second corner of the rectangular slope; if the robot does not reach the first Two corners, controlling the robot to travel straight; if the robot reaches the second corner, controlling the robot to travel straight, and detecting in real time whether the robot travels to a third corner of the rectangular slope; Not reaching the third corner, controlling the robot to travel straight; if the robot reaches the third corner, controlling the Stopping the driving; step S405) detecting in real time whether the robot
  • the robot using the fourth path navigation method can have many kinds of travel paths on a rectangular slope. Since the length and width of the rectangular slope are different from the length and width of the robot, the length of the robot travel path is also different. The position where the robot stops driving is also different (stop in the lower left or lower right corner). Two possible travel paths for the robot 100 to travel on the rectangular ramp 300 using the fourth path navigation method are shown in FIGS. 14 and 15.
  • the traveling path navigation method on the rectangular slope determines whether the robot is traveling in a straight line or controls the straight-line driving of the robot.
  • the specific method has been described in detail in the foregoing, and will not be described herein. Controlling the robot to turn 90 degrees to the left or right has been described in detail in the introduction of the previous power system, and will not be described herein.
  • the traveling path navigation method on the rectangular slope detects whether the robot is traveling in real time.
  • the method includes the following steps: Step S1011) A distance sensor 413 is disposed on each of the left front portion, the right front portion, the left rear portion, and the right rear portion of the robot, and the distance sensor 413 is extended. To the outside of the robot, the distance sensor 413 faces the solar panel 200; in step S1012), four distance sensors 413 are sequentially numbered, and the distance sensor 413 is disposed on the left front portion, the right front portion, the left rear portion, and the right rear portion of the robot.
  • step S1013 the robot determines the position of the robot according to the sensor signal acquired at any time; when the robot simultaneously acquires the sensor N3 signal and the sensor N4 signal Determining that the robot reaches an edge of the rectangular slope; when the robot can only acquire the sensor N4 signal, determining that the robot reaches the first corner or the second corner of the rectangular slope; when the robot When only the sensor N3 signal can be acquired, it is determined that the robot reaches the third corner of the rectangular slope or Fourth corner; Step S1014) When it is determined that the robot reaches a corner of the rectangular slope, the counting result of the counter is read to determine the order of the corners (the first few corners).
  • controlling the robot to perform U-turn to the left specifically comprising the following steps: Step S1031) controlling the robot to turn leftward by 90 degrees to the left; Step S1032) The robot travels straight a certain distance, the certain distance is equal to the width of the robot; and step S1033) controls the robot to turn leftward by 90 degrees to the left.
  • controlling the robot to perform U-turn to the right specifically comprising the steps of: step S1041) controlling the robot to turn to the right by 90 degrees; step S1042) The robot travels straight for a certain distance, the certain distance is equal to the width of the robot; and step S1043) controls the robot to turn to the right 90 degrees.
  • the above four kinds of robots travel on a rectangular slope, and the technical effect is that the robot can walk through every corner of the rectangular slope in the shortest time without interruption and without repetition, thereby realizing the comprehensiveness of the rectangular slope. cover.
  • the cleaning robot can use any of the above four navigation methods to walk through every corner of the solar panel in a short time and effectively clean it. Since sewage will be generated during the cleaning process, it may slide down along the solar panel. Therefore, the cleaning effect of the third and fourth navigation methods may be poor, and the first and second navigation methods are preferred.
  • the control system 4 also includes at least one alarm unit 44 coupled to the processor 42, which may be a red light or buzzer disposed outside of the vehicle body.
  • the alarm unit issues an alarm signal, for example, when the power system 5 is insufficient in power, or when the cleaning robot issues a fault, the alarm unit 44 may issue an alarm signal to alert the user. .
  • the data collection unit 41 includes at least one image sensor 415 or a camera connected to the processor 42 and disposed at the front end of the vehicle body 1 (as shown in FIG. 2 and FIG. 3) for collecting the front of the vehicle body 1 during the traveling of the vehicle body 1. Images, which can be stored to the storage unit to facilitate the worker to view the working state of the robot.
  • control system 4 the technical effect of the control system 4 is to provide an optimized path for the various cleaning robots to travel on the solar panel and a control method for the robot to travel straight in the slope plane, ensuring that the robot can walk through the entire space of the solar panel without repeating The cover area is large and will not fall from the edge of the solar panel, which can ensure the cleaning effect and ensure the work efficiency.
  • the solar panel cleaning robot 100 may further include at least one wireless communication unit 45 wirelessly connected to a server 400 for establishing communication between the solar panel cleaning robot 100 and the server 400.
  • the image in front of the vehicle body 1 can be sent to the server 400 in real time, so that the staff can effectively view the cleaning robot in the working process, and effectively solve the problem that the cleaning robot is difficult to monitor the working state of the panel when the solar panel is located at a high place in the prior art.
  • the power system 5 is one or a set of disposable batteries or rechargeable batteries (not shown) disposed in the battery case 51, and the worker is required to periodically remove the cleaning robot from the present embodiment. Remove the solar panel and replace it with battery or charge to make it work.
  • the embodiment provides a solar panel cleaning robot, which can run freely on the solar panel, effectively removes dust and other attachments on the panel, and has good decontamination effect; the cleaning robot of the present invention runs on the solar panel according to the setting The optimized path travels, and can cover the entire space of the panel without repetition, and the work efficiency is high; the cleaning robot of the invention can automatically turn or turn the head according to the program, realize automatic control, and is convenient to operate.

Abstract

一种机器人(100)在斜坡平面(300)上直线行驶的判定方法及控制方法,这种判定及控制方法通过判断重力加速度(g)在X轴方向上的实时分向量(g xm1)与标准分向量(g xm0)是否相同来判断机器人(100)是否偏离既定直线路径,以解决机器人在斜坡平面(300)上行进中与既定直线路径发生偏离后难以发现、不能及时矫正、难以保证直线行驶的技术问题。

Description

机器人在斜坡平面上直线行驶的判定方法及控制方法 技术领域
本发明涉及机器人应用领域,特别涉及一种机器人在斜坡平面上直线行驶的判定方法及控制方法。
背景技术
在化石燃料日趋减少的情况下,作为一种新兴的可再生能源的太阳能已成为人类使用能源的重要组成部分,近十年来,太阳能应用技术在世界各国都得到迅猛发展。太阳能面板是指利用半导体材料在光照条件下发生的光生伏特效应(photovoltaic)将太阳能直接转换为电能的器件。有太阳光的地方就能发电,因此太阳能面板适用于从大型发电站到小型便携式充电器等多种场合,近年来得到飞速发展。
太阳能面板的工作环境只能是户外,影响其工作的最大问题并不是风雨雷电,而是常年累积的灰尘。太阳能面板上附着有灰尘或其它附着物,会影响面板板的透光率,阻碍光电效率,从而会严重影响面板直接获取阳光的效率,降低面板的能量吸收和转换效率,降低发电效率。现有技术的太阳能面板在使用中只能依靠人工定期完成清理工作,由于太阳能面板面积较大、大型电站同时使用的面板较多,而灰尘会反复累积,需要反复清洗;因此人力成本很高、清理效率低、清理效果较差。在很多场合,为了提高空间利用率,太阳能面板都是利用支架设置在高处,这就给清理工作带来更大的难度和风险。很多太阳能面板的用户为了降低清理成本只能选择不清理,这样只能被迫承担灰尘导致的电能损耗。这样,就需要有一个新的自动清理设备,对太阳能面板进行自动清理。
现有技术的清扫机器人一般都只能应用于水平地面上,不能适用于太阳能面板这样的斜坡平面。如果将现有的清扫机器人直接用在太阳能面板上,会导致以下问题。
(1)清扫机器人动力不足、不能自由行进、清扫效果差;由于太阳能面板的倾斜角度一般在10度~40度之间,现有清扫机器人在斜坡平面上不能自由行进,即使能勉强行进,很快就会将电量耗尽。
(2)清扫机器人会从太阳能面板上滑落;由于太阳能面板比较光滑,现有清扫机器人重量和车轮摩擦系数都比较小,摩擦力也比较小,行进困难,很容易滑落。
(3)清扫机器人不能按照规定路线行驶,行进中覆盖面积小,会从太阳能面板边缘处落下;现有清扫机器人一般是设置为遇到障碍物自动转向,由于太阳能面板上没有任何障碍物,自动行驶的清扫机器人只能在单一路径上行进,其行进过程中的覆盖面积小,必然 会从太阳能面板边缘处落下。即使预先规划好路径,现有的清扫机器人在行进中容易受到重力及面板附着物的影响,也会很容易偏离路径,很难保证直线行驶;而且清扫机器人自身无法察觉,不能走遍整个面板,会留下大量清扫不到的空间。
(4)清扫机器人充电困难;由于太阳能面板高度比较高、面积较大,一旦将清扫机器人送上去之后,将其取下会比较困难,现有技术需要人工将清扫机器人搬离现场或人工取出电池,继而对其进行充电,从而不能长时间持续进行现场作业,而且由于很多太阳能面板都是用支架设置在高处,因此其充电操作非常麻烦,浪费大量人力。
(5)清扫机器人工作状态监控困难,由于太阳能面板可能会设置在高处,地面上的工作人员无法对其工作过程做到全程监控,即使清扫机器人发生故障,停止运行或者路线走偏,工作人员也无法及时得知。
发明内容
本发明的目的在于,提供一种机器人在斜坡平面上直线行驶的判定方法,以解决现有技术的机器人在斜坡上行进中既定直线路径发生偏离后难以发现的技术问题。
为解决上述技术问题,本发明提供一种机器人在斜坡平面上直线行驶的判定方法,包括如下步骤:步骤S1)在所述机器人上建立三维坐标系,定义所述机器人行进方向为Y轴正方向,定义垂直于所述斜坡平面的方向为Z轴方向;所述X轴与所述Y轴所处平面与所述斜坡平面平行;步骤S2)定义所述机器人行进方向为Ts时,重力加速度g在所述三维坐标系三个方向上的标准分向量gxs0、gys0、gzs0;步骤S3)生成一标准方向参数库;步骤S4)控制所述机器人在所述斜坡平面上沿着预设的一直线路径向任一方向Tm直线行驶;步骤S5)从所述标准方向参数库中调取对应该行进方向Tm的标准分向量gxm0、gym0、gzm0数据;步骤S6)每隔一定时间间隔t实时采集一组实时方向参数,所述实时方向参数包括重力加速度g在所述三维坐标系三个方向上的实时分向量gxm1、gym1、gzm1;步骤S7)计算重力加速度g在所述X轴方向上的实时分向量与标准分向量的分向量差值gxd=gxm1-gxm0;步骤S8)判定所述机器人是否沿着预设的直线路径行驶;当gxd等于0时,判定所述机器人沿着预设的直线路径行驶,返回步骤S6);当gxd不等于0时,判定所述机器人偏离预设的直线路径。
进一步地,步骤S6)和步骤S7)之间还可以包括如下步骤:步骤S9)利用一磁传感器获取实时行进方向Tm1;步骤S10)根据所述实时行进方向Tm1对重力加速度g在所述三维坐标系三个方向上的实时分向量gxm1、gym1、gzm1做校偏处理。
进一步地,步骤S3)生成一标准方向参数库,具体包括如下步骤:步骤S31)控制所述机器人在所述斜坡平面上沿着预设的一圆环路径做匀速圆周运动;步骤S32)在所述机器人做圆周运动过程中,每隔一定时间间隔t0实时采集并记录至少一组标准方向参数;每一组标准方向参数包括所述机器人的一行进方向Ts及对应该行进方向的标准分向量gxs0、gys0、gzs0;以及步骤S33)根据至少一组标准方向参数生成一标准方向参数库。
进一步地,步骤S31)中,所述匀速圆周运动的角速度为0.1~1.0度/秒;步骤S32)中,所述时间间隔t0为0.1-1.0秒;步骤S6)中,所述时间间隔t为0.1-1.0秒。
本发明的另一个目的在于,提供一种机器人在斜坡平面上直线行驶的控制方法,以解决现有技术的机器人在斜坡上行进中既定直线路径发生偏离后不能及时矫正、难以保证直线行驶的技术问题。
为解决上述技术问题,本发明提供一种机器人在斜坡平面上直线行驶的控制方法,包括如下步骤:步骤S11)根据所述的机器人在斜坡平面上直线行驶的判定方法来判断一机器人是否沿着预设的直线路径行驶;若所述机器人偏离预设的直线路径,执行步骤S12);步骤S12)控制所述机器人在行驶过程中向所述Tm方向偏转;步骤S13)控制所述机器人在所述斜坡平面上沿着Tm方向直线行驶;返回步骤S11)。
步骤S12)控制所述机器人在行驶过程中向所述Tm方向偏转,具体包括如下步骤:步骤S121)在标准方向参数库调取与所述实时方向参数对应的实际行进方向Tn;步骤S122)计算所述机器人需要调整的偏转方向和偏转角度;所述偏转角度为所述实际行进方向Tn与预设行进方向Tm的夹角角度;步骤S123)根据所述机器人需要调整的偏转方向和偏转角度,控制所述机器人向左或向右发生偏转。
本发明优点在于,提供一种机器人在斜坡平面上直线行驶的判定方法和控制方法,可以实时监控机器人的行驶方向及车身姿态,一旦发现行驶路径发生微小的偏离,就可以直接矫正该机器人的行驶方向,使其回到预设方向继续直线行驶。太阳能面板清扫机器人采用本发明的判定方法和控制方法,可以使得机器人按照设定的优化路径行驶,可以不重复地覆盖面板的全部空间,工作效率高。
附图说明
图1为本发明实施例中清扫机器人的整体外观示意图;
图2为本发明实施例中清扫机器人内部的结构示意图;
图3为本发明实施例中清扫机器人的分解结构示意图;
图4为本发明实施例中动力系统整体结构示意图;
图5为本发明实施例中动力系统去除履带外壳后的结构示意图;
图6为本发明实施例中控制系统的结构框图;
图7为本发明实施例中在机器人上建立三维坐标系的示意图;
图8为机器人用第一种路径导航方法在矩形斜坡上行驶的一种行驶路径示意图;
图9为机器人用第一种路径导航方法在矩形斜坡上行驶的另一种行驶路径示意图;
图10为机器人用第二种路径导航方法在矩形斜坡上行驶的一种行驶路径示意图;
图11为机器人用第二种路径导航方法在矩形斜坡上行驶的另一种行驶路径示意图;
图12为机器人用第三种路径导航方法在矩形斜坡上行驶的一种行驶路径示意图;
图13为机器人用第三种路径导航方法在矩形斜坡上行驶的另一种行驶路径示意图;
图14为机器人用第四种路径导航方法在矩形斜坡上行驶的一种行驶路径示意图;
图15为机器人用第四种路径导航方法在矩形斜坡上行驶的另一种行驶路径示意图。
图中部件编号如下:
100太阳能面板清扫机器人/清扫机器人/机器人,300斜坡平面,400服务器;
1车体,2清扫装置,3动力系统,4控制系统,5电力系统;11车身;
31左前轮,32右前轮,33左后轮,34右后轮,35、左驱动电机,36右驱动电机,37履带,38轮毂轮齿;
41数据采集单元,42处理器,43存储单元,44报警单元,45无线通信单元;51电池盒;
311左前轮毂,312左前轮轴,321右前轮毂,322右前轮轴,331左后轮毂,341右后轮毂;
411加速度传感器,412磁传感器,413距离传感器,414计数器,415影像传感器。
具体实施方式
以下参考说明书附图介绍本发明的三个优选实施例,证明本发明可以实施,所述实施例可以向本领域中的技术人员完整介绍本发明,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一部件的尺寸和厚度是任意示出的,本发明并没有限定每个 组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是附图中的方向,只是用来解释和说明本发明,而不是用来限定本发明的保护范围。
当某些部件被描述为“在”另一部件“上”时,所述部件可以直接置于所述另一部件上;也可以存在一中间部件,所述部件置于所述中间部件上,且所述中间部件置于另一部件上。当一个部件被描述为“安装至”或“连接至”另一部件时,二者可以理解为直接“安装”或“连接”,或者一个部件通过一中间部件间接“安装至”、或“连接至”另一个部件。
如图1~图3所示,本实施例提供一种太阳能面板清扫机器人100(以下简称清扫机器人或机器人),包括一车体1,车体1可以在至少一太阳能面板200上行驶;车体1内部或外部设有一清扫装置2、一动力系统3、一控制系统4以及一电力系统5。
清扫装置2用以在车体行进过程中清扫太阳能面板200;动力系统3用以调整车体1在太阳能面板200上的行进方向和行驶速度,控制车体1行驶、停止或转向;控制系统4分别连接至动力系统3及清扫装置2,用以向动力系统3及清扫装置2发出各种控制信号。电力系统5分别连接至动力系统3、清扫装置2、控制系统4,用以为动力系统3、清扫装置2、控制系统4提供电力。
本实施例所述的太阳能面板清扫机器人100在太阳能面板上正常工作中,当电力系统5启动时,控制系统4发出至少一行进控制指令和至少一清扫控制指令,动力系统3根据该行进控制指令,控制车体1沿着一事先规划的路径行驶;同时,清扫装置2根据该清扫控制指令启动清扫装置2,开始清扫太阳能面板200。在车体1行驶过程中,控制系统4对动力系统3发出多个行进控制指令,如校偏指令、转弯指令、调头指令,等等,从而命令车体1在直线行进路线发生偏转的情况下回到原路线上,也即进行校偏处理;或者在一定条件下或一定位置转弯或者进行U字回转(调头),使得车体1可以根据事先规划的优化路径行驶。具体的导航方法、校偏方法、控制车体转弯或进行U字回转(调头)方法,在下文中有详细描述。在整个行驶过程中,无论车体1是何种行进方式,如直行、偏转、校偏、转弯或回转,清扫装置2始终保持工作状态。当控制系统4基于某些工作参数(如事先规划的路径全部走完或者电力系统5电量不足)发出停止行进的行进控制指令时,车体1停止行驶;同时控制系统4发出一清扫控制指令,关闭清扫装置2,停止清扫。
如图4、图5所示,在本实施例中,动力系统3设置于在车体1底部,用以带动车体1 行进,包括一左前轮31、一右前轮32、一左后轮33、一右后轮34、一左驱动电机35、一右驱动电机36及两个履带37。
左前轮31安装在所述车体底面前部的左侧,包括一左前轮毂311及一左前轮轴312,左前轮轴312设置于左前轮毂311中心处;右前轮32安装在所述车体底面前部的右侧,包括一右前轮毂321及一右前轮轴322,右前轮轴322设置于右前轮毂321中心处;左后轮33安装在所述车体底面后部的左侧,包括一左后轮毂331及一左后轮轴332(图未示),左后轮毂331与左前轮毂311设于同一直线上,所述左后轮轴设置于左后轮毂331中心处;右后轮34安装在所述车体底面后部的右侧,包括一右后轮毂341及一右后轮轴(图未示),右后轮毂341与右前轮毂321设于同一直线上;所述右后轮轴设置于右后轮毂341中心处。所述右后轮轴直接连接或通过一传动装置(图未示)连接至所述左后轮轴。左驱动电机35、右驱动电机36通过一固定装置固定连接至车体1上,通过至少一导线连接至电力系统5,通过至少一信号线连接至控制系统4。左驱动电机35直接连接或通过一传动装置(图未示)连接至左前轮轴312,右驱动电机36直接连接或通过一传动装置(图未示)连接至右前轮轴322。两个履带37皆为一柔性链环,其中一履带37包覆在左前轮毂311、左后轮毂331的环形侧壁外部;另一履带37包覆在右前轮毂321、右后轮毂341的环形侧壁外部。每一履带37外部设有一个履带外壳371,用以保护履带及轮毂,防止有杂物进入履带或轮毂中,影响车体1正常行进。
本实施例中,控制系统4根据事先规划的优化路径向左驱动电机35、右驱动电机36发出至少一行进控制信号,使得左驱动电机35、右驱动电机36同步调整左前轮31、右前轮32的转速和旋转方向,进而调整车体1的行进方向和行进速度,使车体实现直行、校偏、90度转弯、U字回转(调头)等动作。
当需要车体直线前进时,控制系统4同时向左驱动电机35、右驱动电机36发出一直线行进控制指令,控制指令中包括相同的电机转速(例如左驱动电机、右驱动电机的转速都是60转/分钟)和驱动电机转轴的转动方向(如左驱动电机顺时针转、右驱动电机逆时针转),这样就会带动左前轮31、右前轮32同步向前转动,左后轮33、右后轮34为从动轮,在履带37的带动下也与左前轮31、右前轮32同步向前转动,使得整个车体1前进。
当需要车体1向右偏转时,控制系统4同时向左驱动电机35、右驱动电机36发出一校偏行进控制指令,左驱动电机35收到的控制指令中的电机转速比右驱动电机36收到的控制指令中的电机转速偏大,转速的差值取决于需要调整的偏差角度,偏差角度越小,转速 差值也就越小。类似地,当需要车体1向左偏转时,左驱动电机35收到的控制指令中的电机转速比右驱动电机36收到的控制指令中的电机转速偏小。当车体1回到原来预设的行进方向后,控制系统4重新再发出直线行进控制指令,左驱动电机35、右驱动电机36的转速再次变为相同,使得车体1继续直线行进。
当需要车体做90度转弯时,控制系统4根据预设转弯半径的大小计算出左驱动电机35、右驱动电机36的转速和转动方向,如果转弯半径较大,其驱动电机的转动方向可以相反(一个顺时针、一个逆时针),左前轮31、右前轮32同步向前转动,或者设置成一个轮停止转动,从而实现行进中转弯的效果;如果转弯半径较小或者原地转弯,左驱动电机35、右驱动电机36的转动方向可以设计为相同,同为顺时针或同为逆时针,这样左前轮31、右前轮32就会一个向前转动、一个向后转动,车体1的一侧前进,另一侧后退,从而形成小半径转弯或原地转弯的效果。
当需要车体进行U字回转(也称为调头)时,需要车体在180度转弯后行驶至与原车道相邻的车道上;此时有一次性回转或者分阶段回转的技术方案。控制系统4根据预设转弯半径的大小计算出左驱动电机35、右驱动电机36的转速和转动方向。在一次性回转的方案中,转弯半径等同于车体宽度的一半,转弯内侧的前轮停止转动或极慢速度向前转动(若向左进行U字回转,则左前轮停止转动;若向右进行U字回转,则右前轮停止转动),转弯外侧的前轮快速向前转动,实现向左或向右的U字回转。分阶段回转的方案中,可以根据具体情况计算处不同的方案,本实施例中优选如下方案:先控制车体1先在原地向左或向右做90度转弯,然后再控制车体向前行驶一个车身宽度的距离,最后再控制车体在原地向左或向右做90度转弯,既可以实现向左或向右的U字回转,而且U字回转后刚好行驶在与前一车道相邻的车道上,从而使得本实施例的机器人行驶过的空间可以实现不重复、无死角的效果。
动力系统3还包括至少一轮毂轮齿38,均匀设置在左前轮毂311、左后轮毂331、右前轮毂321、右后轮毂341的环形侧壁外部表面;以及至少一履带内齿372,均匀设置在履带37的内侧壁表面,履带内齿372与轮毂轮齿38啮合,确保在两个前轮31、32转动时,履带37可以与两个轮毂相配合,得以正常使用。
由于太阳能面板相对比较光滑,而且还有一定的倾斜度,因此清扫机器人车体在行驶过程中容易滑落。为解决这一问题,如图4所示,动力系统3还包括至少一防滑块373,突出于两个履带37的外侧壁,防滑块373可以排列成有序的阵列,平均分布在整条履带37 上。本实施例的车体1采用履带式结构、在履带外壁加装防滑块373,都是为了增大摩擦系数,增强抓地力,防止车体1在行进中滑落。类似地,本实施例的履带37上也可以设置至少一防滑花纹(图未示),下凹于两个履带的外侧壁,平均分布在整条履带上,其效果与防滑块相同。
本实施例中,动力系统3的技术效果在于,采用履带及防滑块结构使得清扫机器人的车体可以在太阳能面板上自由行动而不会滑落;左右前轮用双电机分别驱动,可以对车体的行进状况实现精确控制,使车体可以根据需要更灵活地调整行进方向和实现原地转弯,可以尽量增大行驶路径的覆盖范围。
如图6所示,本实施例中,控制系统4包括一数据采集单元41、一处理器42及至少一存储单元43。数据采集单元41包括多种传感器,用以采集车体1行进过程中的至少一工作参数;处理器42连接至数据采集单元41,根据所述工作参数向动力系统3发出至少一行进控制指令,根据所述工作参数向清扫装置2发出至少一清扫控制指令。存储单元43连接至处理器42,用以存储车体1行进过中的工作参数及预先计算或设置的其他参数。所述工作参数包括车体1的实时加速度数据、实时行进方向数据、每一距离传感器与太阳能面板之间的距离、车体前方的影像等参数。预先计算或设置的其他参数包括工作人员预设的各种工作数据,如预先计算和规划好的清扫机器人行驶路径(优化路径)等。
工作人员预先将规划好的优化路径录入至控制系统4,为清扫机器人车体提供路径导航,控制系统4根据所述优化路径进行运算和规划,并将何时启动、何时停止、何时直线行驶、何时向左或向右90度转弯、何时向左或向右90度进行U字回转等控制信息,以各种控制指令的方式发送给动力系统,以控制车体在行进中的动作。
在车体控制技术中,如何判断车体在斜坡平面上是否直线行驶、如何控制车体在斜坡平面上直线行驶是最基本的问题,如果车体在直线行驶过程中缺乏监管,一旦车体因为某些因素(如路面局部不平、路面上有障碍物等)发生偏转,就会发生越走越偏的现象,在本发明中,会导致机器人偏离既有的导航路径,不能在最短时间内走遍整个斜坡平面。在本实施例中,会导致清扫机器人作业完成后,太阳能面板上还有很多地方没有及时清理干净。
为了解决如何判断本实施例的机器人是否在斜坡上直线行驶的技术问题,本实施例提供了如下技术方案。
在控制系统4中,数据采集单元41包括至少一加速度传感器411,用以实时采集机器 人100(或车体1)的加速度数据;加速度传感器411连接至处理器42,将车体1的加速度数据传送给处理器42,处理器42分析动态加速度数据,可以分析出在车体行驶过程中车体的受力方向及行进方向等。处理器42将机器人100的加速度数据建立三维坐标系并分解计算,定义机器人100行进方向为Y轴正方向,定义垂直于所述斜坡平面的方向为Z轴方向;所述X轴与所述Y轴所处平面与所述斜坡平面平行。根据加速度数据在X轴方向的向量,判断车体1是否有向左或向右偏离,若发生偏离,所述处理器向动力系统3发出至少一方向调整指令,使得车体1回到其原本的直线路线上;若没有偏离,处理器42判定车体1为直线行驶。
进一步地,为了保证直线行驶判断的精确性,除了用加速度传感器判定之外,还可以采用磁传感器技术对加速度传感器判定发现偏离路线的情况,再次进行判定,也就是磁传感器二次判定。为此,在控制系统4中,数据采集单元41还可以包括一磁传感器412,连接至处理器42,磁传感器412以感应磁场强度来测量电流、位置、方向等物理参数。本实施例中,磁传感器412用以实时采集行进方向数据,与根据优化路径数据预先设定的标准行进方向对比后进行判断,以确认车体是否为直线行驶,使得车体是否直线行驶的判断更加精确。
为了解决如何判断本实施例所述的太阳能面板清扫机器人(以下简称机器人)是否为直线行驶的技术问题,本实施例提供了一种清扫机器人100在斜坡平面300上直线行驶判定方法,可以包括如下各个步骤。由于太阳能面板为一斜坡平面,因此本判定方法可以用于判断太阳能面板清扫机器人是否为直线行驶。
步骤S1)如图7所示,在所述机器人上建立三维坐标系,定义所述机器人行进方向为Y轴正方向,定义垂直于所述斜坡平面的方向为Z轴方向;所述X轴与所述Y轴所处平面与所述斜坡平面平行。
步骤S2)定义所述机器人行进方向为Ts时,重力加速度g在所述三维坐标系三个方向上的标准分向量gxs0、gys0、gzs0
步骤S3)生成一标准方向参数库;具体包括如下步骤:步骤S31)控制所述机器人在所述斜坡平面上沿着预设的一圆环路径做匀速圆周运动,所述匀速圆周运动的角速度为0.1~1.0度/秒;步骤S32)在所述机器人做圆周运动过程中,每隔一定时间间隔t0实时采集并记录至少一组标准方向参数,所述时间间隔t0为0.1-5.0秒;每一组标准方向参数包括所述机器人的一行进方向Ts及对应该行进方向的标准分向量gxs0、gys0、gzs0;以及步骤S33) 根据至少一组标准方向参数生成一标准方向参数库。以角速度0.1度/秒,采集时间间隔t0=1秒为例,机器人100在斜坡平面300上完成一次匀速圆周运动,大概需要3600秒,每隔1秒采集一次机器人的行进方向Ts及相应的加速度标准分向量gxs0、gys0、gzs0,这样就可以得到3600组不同方向的参数,将其记录为3600组标准方向参数。
步骤S4)控制所述机器人在所述斜坡平面上沿着预设的一直线路径向任一方向Tm直线行驶。
步骤S5)从所述标准方向参数库中调取对应该行进方向Tm的标准分向量gxm0、gym0、gzm0数据。
步骤S6)每隔一定时间间隔t实时采集一组实时方向参数,所述实时方向参数包括重力加速度g在所述三维坐标系三个方向上的实时分向量gxm1、gym1、gzm1,所述时间间隔t为0.1-1.0秒。
步骤S7)计算重力加速度g在所述X轴方向上的实时分向量与标准分向量的分向量差值gxd=gxm1-gxm0
步骤S8)判定所述机器人是否沿着预设的直线路径行驶;当gxd等于0时,判定所述机器人沿着预设的直线路径行驶,返回步骤S6);当gxd不等于0时,判定所述机器人偏离预设的直线路径。
由于机器人100在斜坡平面300上的重力加速度g是一个定值,当机器人100在斜坡平面300上运行时,行进方向Ts及该方向加速度分向量数据gxs、gys、gzs应该是与标准数据库中的标准方向参数是一致的。在本实施例中,判断机器人是否直线行驶,本质上就是判断机器人是否相对于直线行进路线发生向左或向右的微小偏离,因此只需要判断重力加速度g在所述X轴方向上的实时分向量与标准分向量与是否相同即可,相同就没有偏离,不同就发生偏离,进一步地,可以根据分向量差值gxd=gxm1-gxm0是正数还是负数来判断是向左偏离还是向右偏离。
进一步地,本实施例还提供了另一种机器人在斜坡平面上直线行驶判定方法,在上述步骤S8)判定所述机器人偏离预设的直线路径之后还可以包括如下步骤:步骤S9)利用一磁传感器获取实时行进方向Tn;步骤S10)比对所述实时行进方向Tn与所述行进方向Tm,如果二者一致,判定所述机器人沿着预设的直线路径行驶,返回步骤S6);如果二者不一致,判定所述机器人偏离预设的直线路径。在前次判定机器人偏离直线路径的情况下,对其进行二次判定,以避免出现意外,使得判断结果更加精确。
控制系统4发现机器人行驶路线发生偏移后,必须第一时间将其纠正过来,使得机器人可以尽早回到应有路线,这一过程可以称为校偏处理。为了解决如何控制所述机器人在斜坡平面上直线行驶的技术问题,本实施例提供了一种机器人在斜坡平面上直线行驶控制方法,可以包括如下步骤。
步骤S11)根据前文中步骤S1)-S8)或者步骤S1)-S10)所述的机器人在斜坡平面上直线行驶判定方法来判断一机器人是否沿着预设的直线路径行驶;若所述机器人偏离预设的直线路径,执行步骤S12)。
步骤S12)控制所述机器人在行驶过程中向所述Tm方向偏转;具体包括如下步骤:步骤S121)在标准方向参数库调取与所述实时方向参数对应的实际行进方向Tn;步骤S122)计算所述机器人需要调整的偏转方向和偏转角度;所述偏转角度为所述实际行进方向Tn与预设行进方向Tm的夹角角度;步骤S123)根据所述机器人需要调整的偏转方向和偏转角度,向动力系统3发出一方向调整指令,控制所述机器人向左或向右发生偏转。
步骤S13)控制所述机器人在所述斜坡平面上沿着Tm方向直线行驶;返回步骤S11)。
其中,所述机器人在斜坡平面上直线行驶的判定方法,如步骤S1)-S8),或步骤S1)-S10),可以在极短时间内根据一组加速度数据(及磁传感器数据)快速判断出车体在斜坡上是否直线行驶;由于加速度传感器可以实时采集数据,每隔一段时间就会采集一组数据;因此,上述的判定过程也是每隔一段时间就会定期判定一次。无论何时发现机器人(车体)在斜坡平面上过程中,偏离了直线路线,都可以判定此时机器人发生偏离。
其中,所述机器人在斜坡平面上直线行驶的控制方法,如步骤S11)~步骤S13),是基于前述的机器人在斜坡平面上直线行驶判定技术,当确认机器人发生偏离之后,第一时间调整机器人的行进方向,使其回复到原有方向的路径上来。
在本发明中,所述机器人在斜坡平面上直线行驶的判定方法与所述机器人在斜坡平面上直线行驶的控制方法配合使用,可以确保清扫机器人在直线行驶过程中不会发生偏离,从而可以确保清扫机器人可以沿着预先设定的优化导航路径,在最短时间内走遍整个太阳能面板,又快又好地将整个太阳能面板清扫干净。
根据时间最短、行驶路径最短的原则,机器人在一矩形斜坡上的优化导航路径很容易就可以规划和计算出来,如何使机器人可以沿着预先设定的优化导航路径行驶,本实施例提供一系列的控制方案和导航方法,导航方法是指使得机器人沿着导航路径行驶的控制方法。
在本实施例中,数据采集单元41还可以包括至少一距离传感器413,包括但不限于超声波传感器及光脉冲传感器。距离传感器413设置于机器人100(车体1)外部边缘处,具体地说,可以设置在车体1(车身11)的四个角上,如图2所示,当机器人100在一矩形斜坡上行驶时,距离传感器413前端朝向矩形斜坡方向。距离传感器413连接至处理器42;用以实时采集距离传感器413与矩形斜坡的距离数据;处理器42根据距离传感器413与所述矩形斜坡的距离数据,判断车体1是否位于所述矩形斜坡的边缘处或角落处。
在本实施例中,距离传感器413数目为四个,分别设置于机器人(车体)的四个角落处;当只有两个距离传感器413能采集到所述距离数据时,处理器42判定机器人(车体)位于矩形斜坡300的边缘处,向动力系统3发出至少一转向指令(U字回转);当只有一个距离传感器采集到所述距离数据时,所述处理器判定机器人(车体)位于矩形斜坡300的某一角落处,向动力系统3发出至少一转向指令(90度转弯或U字回转)。四个距离传感器413也可以分别设置于车体1每一侧边的中部,处理器发现某一侧边上的距离传感器413无法采集到距离数据时,就可以判断这一侧边位于矩形斜坡的边缘处;如果有两个相邻的侧边皆位于矩形斜坡边缘处,就可以判断车体1位于太阳能面板200的某一角落处。距离传感器413数目也可以为八个,分别设置于车体1的四个角落处或车体1四个方向侧边的中部。
控制系统4还可以包括一计数器414,用以计算车体1在斜坡平面行驶中经过的角落,在机器人的一次工作中,每当处理器42判断出车体到达某一角落时,就在计数器上加一。处理器42通过计数器414反馈的技术结果可以清楚地知道车体1到达的角落的顺序(第几个角落)。
工作人员预先将规划好的优化路径录入至控制系统4的存储器,所述处理器并根据所述导航路径和机器人(车体)的实时位置向动力系统3发送控制指令,包括启动、停止、直行、向左或向右90度转弯、向左或向右U字回转(转到相邻车道上的180度转弯),以控制车体在行进中按照导航路径行驶。
本实施例中公开四种机器人在矩形斜坡上行驶的路径导航方法,其详细内容详见下文。太阳能面板也是一种矩形斜坡,清扫机器人在太阳能面板上的行驶路径导航方法也适用于下文所述的机器人在矩形斜坡上行驶的路径导航方法。
本实施例中公开的第一种机器人在矩形斜坡上行驶的路径导航方法,包括如下步骤:步骤S101)设定所述矩形斜坡的左下角为导航起点;步骤S102)控制所述机器人从所述导 航起点向所述矩形斜坡的左上角直线行驶;步骤S103)实时检测所述机器人是否行进至所述矩形斜坡的第一角落;若所述机器人未到达所述第一角落,返回步骤S102);若所述机器人到达所述第一角落,控制所述机器人向右转向90度;步骤S104)控制所述机器人直线行驶;步骤S105)实时检测所述机器人是否行进至所述矩形斜坡的第二角落;若所述机器人未到达所述第二角落,返回步骤S104);若所述机器人到达所述第二角落,控制所述机器人向右进行U字回转;步骤S106)实时检测所述机器人是否行进至所述矩形斜坡的第三角落;若所述机器人未到达所述第三角落,控制所述机器人直线行驶;若所述机器人到达所述第三角落,控制所述机器人直线行驶,并实时检测所述机器人是否行进至所述矩形斜坡的第四角落;若所述机器人未到达所述第四角落,控制所述机器人直线行驶;若所述机器人到达所述第四角落,控制所述机器人停止行驶;步骤S107)实时检测所述机器人是否行进至所述矩形斜坡的边缘处,若所述机器人到达所述矩形斜坡的一边缘处;控制所述机器人向左进行U字回转;步骤S108)实时检测所述机器人是否行进至所述矩形斜坡的第三角落;若所述机器人未到达所述第三角落,控制所述机器人直线行驶;若所述机器人到达所述第三角落,实时检测所述机器人是否行进至所述矩形斜坡的第四角落;若所述机器人未到达所述第四角落,控制所述机器人直线行驶;若所述机器人到达所述第四角落,控制所述机器人停止行驶;步骤S109)实时检测所述机器人是否行进至所述矩形斜坡的边缘处,若所述机器人到达所述矩形斜坡的一边缘处;控制所述机器人向右进行U字回转;返回步骤S106)。
采用第一种路径导航方法的机器人在矩形斜坡上的行驶路径可以有很多种,由于矩形斜坡的长度、宽度与机器人长度、宽度的比例各不相同,所以机器人行驶路径的长短也各不相同,机器人停止行驶的位置也各不相同(停在左下角或右下角)。如图8、图9所示为机器人100使用第一种路径导航方法在矩形斜坡300上行驶的两种可能的行驶路径。
本实施例中公开的第二种机器人在矩形斜坡上行驶路径导航方法,包括如下步骤:步骤S201)设定所述矩形斜坡的右下角为导航起点;步骤S202)控制所述机器人从所述导航起点向所述矩形斜坡的右上角直线行驶;步骤S203)实时检测所述机器人是否行进至所述矩形斜坡的第一角落;若所述机器人未到达所述第一角落,返回步骤S202);若所述机器人到达所述第一角落,控制所述机器人向左转向90度;步骤S204)控制所述机器人直线行驶;步骤S205)实时检测所述机器人是否行进至所述矩形斜坡的第二角落;若所述机器人未到达所述第二角落,返回步骤S204);若所述机器人到达所述第二角落,控制所述机器人向左 进行U字回转;步骤S206)实时检测所述机器人是否行进至所述矩形斜坡的第三角落;若所述机器人未到达所述第三角落,控制所述机器人直线行驶;若所述机器人到达所述第三角落,控制所述机器人直线行驶,并实时检测所述机器人是否行进至所述矩形斜坡的第四角落;若所述机器人未到达所述第四角落,控制所述机器人直线行驶;若所述机器人到达所述第四角落,控制所述机器人停止行驶;步骤S209)实时检测所述机器人是否行进至所述矩形斜坡的边缘处,若所述机器人到达所述矩形斜坡的一边缘处;控制所述机器人向右进行U字回转;返回步骤S206)。
采用第二种路径导航方法的机器人在矩形斜坡上的行驶路径可以有很多种,由于矩形斜坡的长度、宽度与机器人长度、宽度的比例各不相同,所以机器人行驶路径的长短也各不相同,机器人停止行驶的位置也各不相同(停在左下角或右下角)。如图10、图11所示为机器人100使用第二种路径导航方法在矩形斜坡300上行驶的两种可能的行驶路径。
本实施例中公开的第三种机器人在矩形斜坡上行驶路径导航方法,包括如下步骤:步骤S301)设定所述矩形斜坡的左下角为导航起点;步骤S302)控制所述机器人从所述导航起点向所述矩形斜坡的左上角直线行驶;步骤S303)实时检测所述机器人是否行进至所述矩形斜坡的第一角落;若所述机器人未到达所述第一角落,返回步骤S302);若所述机器人到达所述第一角落,控制所述机器人向右进行U字回转;步骤S304)实时检测所述机器人是否行进至所述矩形斜坡的第二角落;若所述机器人未到达所述第二角落,控制所述机器人直线行驶;若所述机器人到达所述第二角落,控制所述机器人直线行驶,并实时检测所述机器人是否行进至所述矩形斜坡的第三角落;若所述机器人未到达所述第三角落,控制所述机器人直线行驶;若所述机器人到达所述第三角落,控制所述机器人停止行驶;步骤S305)实时检测所述机器人是否行进至所述矩形斜坡的边缘处,若所述机器人到达所述矩形斜坡的一边缘处;控制所述机器人向左进行U字回转;步骤S306)实时检测所述机器人是否行进至所述矩形斜坡的第二角落;若所述机器人未到达所述第二角落,控制所述机器人直线行驶;若所述机器人到达所述第二角落,控制所述机器人直线行驶,并实时检测所述机器人是否行进至所述矩形斜坡的第三角落;若所述机器人未到达所述第三角落,控制所述机器人直线行驶;若所述机器人到达所述第三角落,控制所述机器人停止行驶;步骤S307)实时检测所述机器人是否行进至所述矩形斜坡的边缘处,若所述机器人到达所述矩形斜坡的一边缘处;控制所述机器人向右进行U字回转;返回步骤S304)。
采用第三种路径导航方法的机器人在矩形斜坡上的行驶路径可以有很多种,由于矩形 斜坡的长度、宽度与机器人长度、宽度的比例各不相同,所以机器人行驶路径的长短也各不相同,机器人停止行驶的位置也各不相同(停在左下角或右下角)。如图12、图13所示为机器人100使用第三种路径导航方法在矩形斜坡300上行驶的两种可能的行驶路径。
本实施例中公开的第四种机器人在矩形斜坡上行驶路径导航方法,包括如下步骤:步骤S401)设定所述矩形斜坡的右下角为导航起点;步骤S402)控制所述机器人从所述导航起点向所述矩形斜坡的右上角直线行驶;步骤S403)实时检测所述机器人是否行进至所述矩形斜坡的第一角落;若所述机器人未到达所述第一角落,返回步骤S402);若所述机器人到达所述第一角落,控制所述机器人向左进行U字回转;步骤S404)实时检测所述机器人是否行进至所述矩形斜坡的第二角落;若所述机器人未到达所述第二角落,控制所述机器人直线行驶;若所述机器人到达所述第二角落,控制所述机器人直线行驶,并实时检测所述机器人是否行进至所述矩形斜坡的第三角落;若所述机器人未到达所述第三角落,控制所述机器人直线行驶;若所述机器人到达所述第三角落,控制所述机器人停止行驶;步骤S405)实时检测所述机器人是否行进至所述矩形斜坡的边缘处,若所述机器人到达所述矩形斜坡的一边缘处;控制所述机器人向右进行U字回转;步骤S406)实时检测所述机器人是否行进至所述矩形斜坡的第二角落;若所述机器人未到达所述第二角落,控制所述机器人直线行驶;若所述机器人到达所述第二角落,控制所述机器人直线行驶,并实时检测所述机器人是否行进至所述矩形斜坡的第三角落;若所述机器人未到达所述第三角落,控制所述机器人直线行驶;若所述机器人到达所述第三角落,控制所述机器人停止行驶;步骤S407)实时检测所述机器人是否行进至所述矩形斜坡的边缘处,若所述机器人到达所述矩形斜坡的一边缘处;控制所述机器人向左进行U字回转;返回步骤S404)。
采用第四种路径导航方法的机器人在矩形斜坡上的行驶路径可以有很多种,由于矩形斜坡的长度、宽度与机器人长度、宽度的比例各不相同,所以机器人行驶路径的长短也各不相同,机器人停止行驶的位置也各不相同(停在左下角或右下角)。如图14、图15所示为机器人100使用第四种路径导航方法在矩形斜坡300上行驶的两种可能的行驶路径。
在上述四种机器人在矩形斜坡上行驶路径导航方法中,判定所述机器人是否为直线行驶,或者控制所述机器人直线行驶,其具体方法在前文中已有详细描述,在此不作赘述。控制所述机器人向左或向右90度转弯,在前文动力系统介绍中已有详细描述,在此不作赘述。
在上述四种机器人在矩形斜坡上行驶路径导航方法中,实时检测所述机器人是否行进 至所述矩形斜坡的一角落或一边缘处,具体包括如下步骤:步骤S1011)在所述机器人的左前部、右前部、左后部及右后部分别设置一距离传感器413,距离传感器413延伸至所述机器人的外部,距离传感器413朝向太阳能面板200;步骤S1012)依次为四个距离传感器413编号,将所述机器人的左前部、右前部、左后部及右后部设置的距离传感器413分别定义为传感器N1、传感器N2、传感器N3及传感器N4;步骤S1013)所述机器人根据任一时刻同时获取的传感器信号判断所述机器人的位置;当所述机器人同时获取传感器N3信号和传感器N4信号时,判定所述机器人到达所述矩形斜坡的一边缘处;当所述机器人只能获取传感器N4信号时,判定所述机器人到达所述矩形斜坡的第一角落或第二角落;当所述机器人只能获取传感器N3信号时,判定所述机器人到达所述矩形斜坡的第三角落或第四角落;步骤S1014)当判定所述机器人到达所述矩形斜坡的一角落,读取计数器的计数结果,以判断该角落的顺序(第几个角落)。
在上述四种机器人在矩形斜坡上行驶路径导航方法中,控制所述机器人向左进行U字回转,具体包括如下步骤:步骤S1031)控制所述机器人原地向左转向90度;步骤S1032)控制所述机器人直线行驶一定距离,所述一定距离等于所述机器人的宽度;以及步骤S1033)控制所述机器人原地向左转向90度。
在上述四种机器人在矩形斜坡上行驶路径导航方法中,控制所述机器人向右进行U字回转,具体包括如下步骤:步骤S1041)控制所述机器人原地向右转向90度;步骤S1042)控制所述机器人直线行驶一定距离,所述一定距离等于所述机器人的宽度;步骤S1043)控制所述机器人原地向右转向90度。
上述四种机器人在矩形斜坡上行驶路径导航方法,其技术效果在于,可以让机器人在最短时间内,无间断、不重复地以最短路径走遍矩形斜坡的每一个角落,实现对矩形斜坡的全面覆盖。在本实施例中,清扫机器人利用上述四种导航方法中的任一种都可以在短时间内走遍太阳能面板的每一个角落,对其进行有效清扫。由于清扫过程中会产生污水,可能会沿着太阳能面板向下滑落,因此,第三种、第四种导航方法的清理效果可能会比较差,优选第一种、第二种导航方法。
控制系统4还包括至少一报警单元44,连接至处理器42,报警单元44可以为设置在车体外部的一红灯或蜂鸣器。当某一工作参数超过设定阈值时,所述报警单元发出报警信号,例如,当电力系统5电力不足时,或者当所述清扫机器人发出故障时,报警单元44都可以发出报警信号以提醒用户。
数据采集单元41包括至少一影像传感器415或摄像头,连接至处理器42,设置于车体1前端(如图2、图3所示),用以采集车体1行进过程中车体1前方的影像,这些影像可以存储至所述存储单元以便于工作人员查看机器人的工作状态。
本实施例中,控制系统4的技术效果在于,提供多种清洁机器人在太阳能面板上行进的优化路径以及机器人在斜坡平面直线行进的控制方法,确保机器人可以不重复地走过太阳能面板的全部空间,覆盖面积大,不会从太阳能面板边缘处落下,既可以保证了清洁效果,又可以保证工作效率。
太阳能面板清扫机器人100还可以包括至少一无线通信单元45,无线连接至一服务器400,用于在太阳能面板清扫机器人100与服务器400之间建立通信。车体1前方的影像可以实时发送至服务器400,以便于工作人员实现清扫机器人在工作进程中的有效查看,有效解决现有技术中太阳能面板位于高处时,清扫机器人在面板上工作状态监控困难的技术问题。
在本实施例中,如图3所示,电力系统5为一个或一组设置在电池盒51内的一次性电池或可充电电池(图未示),需要工作人员定期将所述清扫机器人从太阳能面板上取下,对其进行更换电池处理或充电处理,使其可以继续工作。
实施例提供一种太阳能面板清扫机器人,可以在太阳能面板上自由运行,有效去除面板上的灰尘及其他附着物,去污效果良好;本发明的清扫机器人在太阳能面板上运行过程中,按照设定的优化路径行驶,可以不重复地覆盖面板的全部空间,工作效率高;本发明的清扫机器人可以根据程序自动转弯或调头,实现自动控制,操作方便。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

  1. 一种机器人在斜坡平面上直线行驶的判定方法,包括如下步骤:
    步骤S1)在所述机器人上建立三维坐标系,定义所述机器人行进方向为Y轴正方向,定义垂直于所述斜坡平面的方向为Z轴方向;所述X轴与所述Y轴所处平面与所述斜坡平面平行;
    步骤S2)定义所述机器人行进方向为Ts时,重力加速度g在所述三维坐标系三个方向上的标准分向量gxs0、gys0、gzs0
    步骤S3)生成一标准方向参数库;
    步骤S4)控制所述机器人在所述斜坡平面上沿着预设的一直线路径向任一方向Tm直线行驶;
    步骤S5)从所述标准方向参数库中调取对应该行进方向Tm的标准分向量gxm0、gym0、gzm0数据;
    步骤S6)每隔一定时间间隔t实时采集一组实时方向参数,所述实时方向参数包括重力加速度g在所述三维坐标系三个方向上的实时分向量gxm1、gym1、gzm1
    步骤S7)计算重力加速度g在所述X轴方向上的实时分向量与标准分向量的分向量差值gxd=gxm1-gxm0
    步骤S8)判定所述机器人是否沿着预设的直线路径行驶;当gxd等于0时,判定所述机器人沿着预设的直线路径行驶,返回步骤S6);当gxd不等于0时,判定所述机器人偏离预设的直线路径。
  2. 如权利要求1所述的机器人在斜坡平面上直线行驶的判定方法,其中,步骤S3)生成一标准方向参数库,具体包括如下步骤:
    步骤S31)控制所述机器人在所述斜坡平面上沿着预设的一圆环路径做匀速圆周运动;
    步骤S32)在所述机器人做圆周运动过程中,每隔一定时间间隔t0实时采集并记录至少一组标准方向参数;每一组标准方向参数包括所述机器人的一行进方向Ts及对应该行进方向的标准分向量gxs0、gys0、gzs0;以及
    步骤S33)根据至少一组标准方向参数生成一标准方向参数库。
  3. 如权利要求2所述的机器人在斜坡平面上直线行驶的判定方法,其中,步骤S31)中,所述匀速圆周运动的角速度为0.1~1.0度/秒。
  4. 如权利要求3所述的机器人在斜坡平面上直线行驶的判定方法,其中,步骤S32)中,所述时间间隔t0为0.1~1.0秒。
  5. 如权利要求1所述的机器人在斜坡平面上直线行驶的判定方法,其中,步骤S6)中,所述时间间隔t为0.1~1.0秒。
  6. 如权利要求1所述的机器人在斜坡平面上直线行驶的判定方法,其中,步骤S8)之后还可以包括如下步骤:
    步骤S9)利用一磁传感器获取实时行进方向Tm1;
    步骤S10)比对所述实时行进方向Tm1与所述行进方向Tm,如果二者一致,判定所述机器人沿着预设的直线路径行驶,返回步骤S6);如果二者不一致,判定所述机器人偏离预设的直线路径。
  7. 一种机器人在斜坡平面上直线行驶的控制方法,其中,包括如下步骤:
    步骤S11)根据权利要求1-6中任一项所述的机器人在斜坡平面上直线行驶的判定方法来判断一机器人是否沿着预设的直线路径行驶;若所述机器人偏离预设的直线路径,执行步骤S12);
    步骤S12)控制所述机器人在行驶过程中向所述Tm方向偏转;
    步骤S13)控制所述机器人在所述斜坡平面上沿着Tm方向直线行驶;返回步骤S11)。
  8. 如权利要求7所述的机器人在斜坡平面上直线行驶的控制方法,其中,步骤S12)控制所述机器人在行驶过程中向所述Tm方向偏转,具体包括如下步骤:
    步骤S121)在标准方向参数库调取与所述实时方向参数对应的实际行进方向Tn;
    步骤S122)计算所述机器人需要调整的偏转方向和偏转角度;所述偏转角度为所述实际行进方向Tn与预设行进方向Tm的夹角角度;
    步骤S123)根据所述机器人需要调整的偏转方向和偏转角度,利用PID算法控制所述机器人向左或向右发生偏转。
PCT/CN2017/072762 2016-09-21 2017-01-26 机器人在斜坡平面上直线行驶的判定方法及控制方法 WO2018053983A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17852063.1A EP3518065B1 (en) 2016-09-21 2017-01-26 Determining method and control method for straight running of robot on slope plane
US16/335,387 US10802500B2 (en) 2016-09-21 2017-01-26 Determining method and control method for straight running of robot on slope plane
JP2019515992A JP6706392B2 (ja) 2016-09-21 2017-01-26 斜面上におけるロボットの直線走行の判定方法及び制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610836069.7 2016-09-21
CN201610836069.7A CN106325276B (zh) 2016-09-21 2016-09-21 机器人在斜坡平面上直线行驶的判定方法及控制方法

Publications (1)

Publication Number Publication Date
WO2018053983A1 true WO2018053983A1 (zh) 2018-03-29

Family

ID=57787010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072762 WO2018053983A1 (zh) 2016-09-21 2017-01-26 机器人在斜坡平面上直线行驶的判定方法及控制方法

Country Status (5)

Country Link
US (1) US10802500B2 (zh)
EP (1) EP3518065B1 (zh)
JP (1) JP6706392B2 (zh)
CN (1) CN106325276B (zh)
WO (1) WO2018053983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696916A (zh) * 2019-03-05 2019-04-30 浙江国自机器人技术有限公司 一种清洗机器人转移的方法和设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106325276B (zh) 2016-09-21 2019-06-25 苏州瑞得恩光能科技有限公司 机器人在斜坡平面上直线行驶的判定方法及控制方法
CN107509443B (zh) * 2017-09-05 2020-01-17 惠州市蓝微电子有限公司 一种智能割草机的坡地行驶控制方法及系统
CN107553497B (zh) * 2017-10-20 2023-12-22 苏州瑞得恩光能科技有限公司 太阳能面板清扫机器人的边缘定位装置及其定位方法
KR102106100B1 (ko) * 2018-02-02 2020-05-06 엘지전자 주식회사 이동 로봇
CN108816851B (zh) * 2018-04-27 2020-05-05 中民新科(北京)能源技术研究院有限公司 用于平铺屋顶光伏电站前后排转移的清扫机、系统和方法
CN108827289B (zh) * 2018-04-28 2021-09-07 诺亚机器人科技(上海)有限公司 一种机器人的方位识别方法及系统
US11638939B2 (en) * 2018-11-27 2023-05-02 Steam Tech, Llc Mobile panel cleaner
CN109365462B (zh) * 2018-12-06 2021-06-22 合肥仁洁智能科技有限公司 光伏板清扫机器人及其控制方法
USD938114S1 (en) * 2019-03-22 2021-12-07 Sungrow Power Supply Co., Ltd. Intelligent cleaning robot
CN110125124B (zh) * 2019-05-14 2021-07-20 合肥仁洁智能科技有限公司 光伏清扫机器倾斜姿态检测方法、控制器及光伏清扫机器
WO2021070960A1 (ja) * 2019-10-11 2021-04-15 株式会社未来機械 作業装置
CN111266325B (zh) * 2019-11-22 2022-03-15 深圳怪虫机器人有限公司 一种清洁机器人恒沿长边弓字型清洁路径的方法
CN111561931A (zh) * 2020-05-09 2020-08-21 深圳拓邦股份有限公司 移动机器人的路径规划方法、装置及计算机可读存储介质
CN112093741A (zh) * 2020-09-23 2020-12-18 浙江大学 倾斜面移动机器和多机器人系统及其使用方法
US11899468B2 (en) * 2020-12-22 2024-02-13 Waymo Llc Sensor for flashing light detection
CN112729888B (zh) * 2020-12-29 2023-04-25 杭州鑫企高新技术有限公司 一种智能机器人行走路径平直程度检测系统
CN114211512B (zh) * 2022-02-23 2022-05-13 中铁十二局集团山西建筑构件有限公司 一种隧道衬砌检测攀爬机器人整面回形巡检方法
CN114942635A (zh) 2022-04-30 2022-08-26 苏州瑞得恩光能科技有限公司 一种机器人及其直线行进控制方法、数据处理设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083629A (en) * 1990-03-12 1992-01-28 Industrial Technology Research Institute Walking control method for automatic working vehicle
JPH095104A (ja) * 1995-06-23 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> 移動物体の三次元姿勢角測定法および三次元姿勢角計測装置
CN104155975A (zh) * 2014-06-23 2014-11-19 浙江亚特电器有限公司 一种机器人的控制系统及其控制方法
CN104181925A (zh) * 2014-09-15 2014-12-03 湖南格兰博智能科技有限责任公司 一种自动校准行驶路线的自动地面清洁机器人
CN104644061A (zh) * 2013-11-20 2015-05-27 苏州科沃斯商用机器人有限公司 带有矫正装置的自移动机器人及其矫正方法
CN106182015A (zh) * 2016-09-21 2016-12-07 苏州瑞得恩自动化设备科技有限公司 太阳能面板清扫机器人控制系统
CN106272331A (zh) * 2016-09-21 2017-01-04 苏州瑞得恩自动化设备科技有限公司 机器人在矩形斜坡上行驶的路径导航方法
CN106325276A (zh) * 2016-09-21 2017-01-11 苏州瑞得恩自动化设备科技有限公司 机器人在斜坡平面上直线行驶的判定方法及控制方法
CN106584454A (zh) * 2016-09-21 2017-04-26 苏州瑞得恩光能科技有限公司 一种机器人在矩形斜坡上行驶的路径导航控制方法
CN206154318U (zh) * 2016-09-21 2017-05-10 苏州瑞得恩光能科技有限公司 太阳能面板清扫机器人控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148707A (ja) 1989-11-02 1991-06-25 Ishikawajima Shibaura Kikai Kk 自動走行作業車の操向制御装置
JP2000330638A (ja) 1999-05-25 2000-11-30 Osaka Gas Co Ltd 走行制御方法及び走行体
US8738226B2 (en) * 2011-07-18 2014-05-27 The Boeing Company Holonomic motion vehicle for travel on non-level surfaces
CN103744425B (zh) * 2012-08-23 2017-10-03 苏州宝时得电动工具有限公司 自动工作设备及其控制方法
IN2015DN02484A (zh) * 2012-12-25 2015-09-11 Miraikikai Inc
WO2014129941A1 (en) * 2013-02-20 2014-08-28 Husqvarna Ab A robotic work tool configured for improved turning in a slope, a robotic work tool system, and a method for use in the robot work tool.
CN204044623U (zh) * 2014-06-23 2014-12-24 浙江亚特电器有限公司 一种机器人的控制系统
JP6404348B2 (ja) * 2014-06-25 2018-10-17 株式会社未来機械 自走式ロボット

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083629A (en) * 1990-03-12 1992-01-28 Industrial Technology Research Institute Walking control method for automatic working vehicle
JPH095104A (ja) * 1995-06-23 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> 移動物体の三次元姿勢角測定法および三次元姿勢角計測装置
CN104644061A (zh) * 2013-11-20 2015-05-27 苏州科沃斯商用机器人有限公司 带有矫正装置的自移动机器人及其矫正方法
CN104155975A (zh) * 2014-06-23 2014-11-19 浙江亚特电器有限公司 一种机器人的控制系统及其控制方法
CN104181925A (zh) * 2014-09-15 2014-12-03 湖南格兰博智能科技有限责任公司 一种自动校准行驶路线的自动地面清洁机器人
CN106182015A (zh) * 2016-09-21 2016-12-07 苏州瑞得恩自动化设备科技有限公司 太阳能面板清扫机器人控制系统
CN106272331A (zh) * 2016-09-21 2017-01-04 苏州瑞得恩自动化设备科技有限公司 机器人在矩形斜坡上行驶的路径导航方法
CN106325276A (zh) * 2016-09-21 2017-01-11 苏州瑞得恩自动化设备科技有限公司 机器人在斜坡平面上直线行驶的判定方法及控制方法
CN106584454A (zh) * 2016-09-21 2017-04-26 苏州瑞得恩光能科技有限公司 一种机器人在矩形斜坡上行驶的路径导航控制方法
CN206154318U (zh) * 2016-09-21 2017-05-10 苏州瑞得恩光能科技有限公司 太阳能面板清扫机器人控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696916A (zh) * 2019-03-05 2019-04-30 浙江国自机器人技术有限公司 一种清洗机器人转移的方法和设备

Also Published As

Publication number Publication date
CN106325276B (zh) 2019-06-25
CN106325276A (zh) 2017-01-11
US10802500B2 (en) 2020-10-13
US20200012291A1 (en) 2020-01-09
EP3518065A1 (en) 2019-07-31
JP2019530094A (ja) 2019-10-17
JP6706392B2 (ja) 2020-06-03
EP3518065A4 (en) 2020-05-27
EP3518065B1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2018053983A1 (zh) 机器人在斜坡平面上直线行驶的判定方法及控制方法
WO2018053985A1 (zh) 太阳能面板清扫机器人控制系统
WO2018053984A1 (zh) 机器人在矩形斜坡上行驶的路径导航方法
CN205989678U (zh) 一种无人驾驶的清扫车
WO2018053986A1 (zh) 太阳能面板清扫机器人
CN109725233B (zh) 一种变电站智能巡检系统及其巡检方法
US10955850B2 (en) Working device on inclined surface and cleaning method applied in solar power station
CN102949149B (zh) 机器人吸尘器及其控制方法
CN109571404B (zh) 一种越障机构、越障智能巡检机器人及其变电站越障方法
WO2018053982A1 (zh) 太阳能面板清扫机器人的无线充电系统及无线充电方法
CN109571402B (zh) 一种爬坡机构、爬坡智能巡检机器人及其变电站爬坡方法
CN105425801A (zh) 基于先进路径规划技术的智能清洁机器人及其清洁方法
CN110623606A (zh) 一种清洁机器人及其控制方法
CN103705178A (zh) 机器人清洁器及其控制方法
CN106584454B (zh) 一种机器人在矩形斜坡上行驶的路径导航控制方法
TW202228589A (zh) 一種清潔機器人及其控制方法
CN104181925A (zh) 一种自动校准行驶路线的自动地面清洁机器人
JP6594119B2 (ja) 自律走行装置
JP2018535079A (ja) 液体分配容器及び清掃ロボット
CN106248083B (zh) 一种机器人在矩形斜坡上行驶的路径导航方法
CN106142090B (zh) 机器人在矩形斜坡上行驶的路径导航控制方法
CN108293628A (zh) 自动修草机及自动修草方法
CN202527426U (zh) 管道清洁机器人的自主导航系统
CN112455563A (zh) 一种具有爬杆机构的智能巡检机器人
CN202498547U (zh) 吸尘机器人的自主导航系统

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852063

Country of ref document: EP

Effective date: 20190423