WO2018053982A1 - 太阳能面板清扫机器人的无线充电系统及无线充电方法 - Google Patents

太阳能面板清扫机器人的无线充电系统及无线充电方法 Download PDF

Info

Publication number
WO2018053982A1
WO2018053982A1 PCT/CN2017/072760 CN2017072760W WO2018053982A1 WO 2018053982 A1 WO2018053982 A1 WO 2018053982A1 CN 2017072760 W CN2017072760 W CN 2017072760W WO 2018053982 A1 WO2018053982 A1 WO 2018053982A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning robot
transmitting
solar panel
coil
receiving
Prior art date
Application number
PCT/CN2017/072760
Other languages
English (en)
French (fr)
Inventor
彭芳
周艳荣
徐建荣
Original Assignee
苏州瑞得恩光能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞得恩光能科技有限公司 filed Critical 苏州瑞得恩光能科技有限公司
Publication of WO2018053982A1 publication Critical patent/WO2018053982A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of cleaning robots, and more particularly to a wireless charging system for a solar panel cleaning robot, and a wireless charging method for a solar panel cleaning robot.
  • a solar panel is a device that converts solar energy directly into electrical energy using photovoltaics that occur under the illumination of semiconductor materials. Solar panels can generate electricity in places where there is sunlight, so solar panels are suitable for a variety of applications, from large power stations to small portable chargers.
  • the working environment of solar panels can only be outdoor, and the biggest problem affecting their work is not the wind and rain, but the dust accumulated all the year round. Dust or other attachments on the solar panel may affect the transmittance of the panel and impede the photoelectric efficiency, which will seriously affect the efficiency of the panel directly acquiring sunlight, reduce the energy absorption and conversion efficiency of the panel, and reduce the power generation efficiency.
  • the solar panel can only be manually and regularly cleaned up. Due to the large area of the solar panel and the large number of panels used by the large power station, the dust will accumulate repeatedly and need to be repeatedly cleaned; therefore, the labor cost is high. The cleaning efficiency is low and the cleaning effect is poor.
  • the cleaning robot is insufficiently powered, cannot travel freely, and has poor cleaning effect; since the tilt angle of the solar panel is generally between 10 and 40 degrees, the existing cleaning robot cannot travel freely on the slope plane, even if it can barely travel, It will run out of power soon.
  • the cleaning robot will slide off the solar panel; because the solar panel is relatively smooth, the existing cleaning robot has a relatively small weight and wheel friction coefficient, and the friction is relatively small, and it is difficult to travel, and it is easy to slip.
  • the cleaning robot cannot travel according to the prescribed route, and the coverage area during travel is small, and it will fall from the edge of the solar panel; the existing cleaning robot is generally set to automatically turn to the obstacle, because there is no obstacle on the solar panel. Obstacle, the automatic cleaning robot can only travel on a single path, and the coverage area during the travel is small, which will inevitably fall from the edge of the solar panel. Even if the path is planned in advance, the existing cleaning robot is easily affected by gravity and panel attachment during traveling, and it is easy to deviate from the path, and it is difficult to ensure straight travel; and the cleaning robot itself cannot detect and cannot travel through the entire panel. Will leave a lot of space that can't be cleaned.
  • An object of the present invention is to provide a solar panel cleaning robot wireless charging system to solve the technical problems of complicated charging operation and high cost of the existing solar panel cleaning robot.
  • the present invention provides a solar panel cleaning robot wireless charging system, comprising: at least one solar panel; a cleaning robot driving or staying on at least one solar panel; and a rechargeable battery disposed in the cleaning robot Internally, for providing power to the cleaning robot; at least one wireless power transmitting device disposed outside the cleaning robot; each wireless power transmitting device includes a transmitting coil, the transmitting coil is connected to a power source; and a wireless a power receiving device disposed at an inner or outer surface of the cleaning robot; the wireless power receiving device includes a receiving coil, the receiving coil being coupled to the rechargeable battery; wherein, when the receiving coil is located at the transmitting coil In the upper direction, the receiving coil and the transmitting coil are electromagnetically inductively coupled or magnetically coupled, and the transmitting coil transmits radio energy to the receiving coil.
  • the transmitting coil is disposed on a lower surface of any solar panel, and/or disposed under a slit or a slit of any two adjacent solar panel joints; the receiving coil is disposed inside the cleaning robot The bottom layer, and/or, is disposed on a lower surface of the bottom of the cleaning robot.
  • the solar panel cleaning robot wireless charging system may further include at least one charging panel, each charging panel being embedded on any solar panel or disposed at an edge of any solar panel; the upper surface of the charging panel and the The upper surface of the solar panel is on the same plane; wherein the transmitting coil is disposed in any of the charging panels, and/or disposed on a lower surface of any of the charging panels.
  • the transmitting coil and the receiving coil are coupled to the transmitting coil, the transmitting coil and the receiving coil The distance is between 1 mm and 40 mm; the medium between the transmitting coil and the receiving coil is made of a non-metal material.
  • the wireless power transmitting device further includes a DC power source for supplying a DC current; an inverter circuit having an input terminal connected to the DC power source, an output end connected to the transmitting coil, and a transmitting end a controller connected to the inverter circuit for controlling an output power of the inverter circuit, wherein the inverter circuit is configured to convert the direct current into an alternating current of a variable frequency and a duty ratio, And outputting the alternating current to the transmitting coil.
  • the DC power supply device is at least one solar energy discharge module; the wireless power transmission device further includes a DC-DC voltage stabilization circuit, the input end of which is connected to the DC power supply, and the output end of which is connected to the input of the inverter circuit
  • the DC-DC voltage stabilizing circuit is configured to perform voltage stabilization processing on the DC current, so that the inverter circuit obtains a stable DC current source; or the DC power source includes an AC power source, Providing an alternating current; and an AC-DC adapter having an input coupled to the alternating current source and an output coupled to an input of the inverter circuit; the AC-DC adapter configured to convert the alternating current to DC.
  • the wireless power receiving device further includes a rectifier circuit having an input terminal connected to the receiving coil for converting an alternating current output by the receiving coil into a direct current; and a DC-DC converting circuit An input terminal is connected to an output end of the rectifier circuit, an output end thereof is connected to the rechargeable battery; a receiving end controller is connected to the DC-DC conversion circuit; and the receiving end controller stores the Calculating an optimal charging voltage of the rechargeable battery according to the charging curve according to the charging curve of the rechargeable battery; wherein the DC-DC converting circuit converts the voltage of the direct current output by the rectifier circuit into the The best charging voltage of the rechargeable battery and charging the rechargeable battery.
  • Another object of the present invention is to provide a solar panel cleaning robot wireless charging system to solve the technical problem of real-time power monitoring of a solar panel cleaning robot during wireless charging.
  • the present invention provides a wireless charging system for a solar panel cleaning robot.
  • the wireless power receiving device further includes a battery information collector connected to the rechargeable battery for collecting the a remaining capacity SOC value of the rechargeable battery; a wireless charging switch having one end connected to the DC-DC conversion circuit, the other end connected to the rechargeable battery or the rectifier circuit; and a battery manager connected at one end thereof Go to the battery information collector to acquire the remaining capacity SOC value of the rechargeable battery in real time; the other end thereof is connected to the wireless charging switch to control the wireless charging switch to be closed or disconnected; wherein, when When the remaining capacity SOC value of the rechargeable battery is less than or equal to a preset power threshold, the battery manager controls the wireless charging switch to be closed; when the remaining capacity SOC value of the rechargeable battery is greater than or equal to a charging capacity threshold The battery manager controls the wireless charging switch to be turned off.
  • Another object of the present invention is to provide a solar panel cleaning robot wireless charging system to solve the problem that the solar panel cleaning robot realizes data communication between the wireless power transmitting device and the wireless power receiving device during wireless charging.
  • the present invention provides a wireless charging system for a solar panel cleaning robot.
  • the wireless power transmitting device includes a transmitting end signal loading unit connected to the transmitting coil; and a transmitting end signal. And a derivation unit connected to the transmitting coil; the wireless power receiving device includes a receiving end signal loading unit connected to the receiving coil; and a receiving end signal deriving unit connected to the receiving coil.
  • the wireless power transmitting device implements carrier communication with the wireless power receiving device; the transmitting end signal loading unit transmits information to the transmitting device
  • the carrier frequency K1 is modulated and loaded into the emission current of the transmitting coil, and the receiving end signal deriving unit demodulates and demodulates the information in the receiving current of the receiving coil with a modulation frequency K1;
  • the receiving end signal carries
  • the information to be transmitted by the input unit is modulated by a carrier frequency K2 and loaded into the receiving current of the receiving coil, and the transmitting end signal deriving unit demodulates and filters the information in the transmitting current of the transmitting coil with a modulation frequency K2.
  • the wireless power transmitting device implements carrier communication with the wireless power receiving device; the transmitting signal loading unit transmits magnetic information to the transmitting device
  • the resonance frequency K3 is a carrier current modulated to the emission current of the transmitting coil of the magnetic resonance, and the receiving end signal deriving unit demodulates and filters the information from the received current of the receiving coil with the magnetic resonance frequency K3 as a carrier.
  • the information to be transmitted by the receiving end signal loading unit is modulated into a receiving current of the magnetic resonance with a magnetic resonance frequency K3, and the transmitting end signal deriving unit demodulates the information by using the magnetic resonance frequency K3 as a carrier And filter and export.
  • Another object of the present invention is to provide a solar panel cleaning robot wireless charging system to solve the technical problem that the solar panel cleaning robot adjusts the charging power in real time according to the real-time power of the rechargeable battery during the wireless charging process.
  • the present invention provides a wireless charging system for a solar panel cleaning robot.
  • the wireless power transmitting device further includes a DC power source for supplying a DC current; and an inverter circuit having an input terminal connected thereto.
  • a transmitting end controller is connected to the transmitting end signal loading unit and the transmitting end signal deriving unit;
  • the wireless power receiving device includes a a receiving end controller, connected to the receiving end signal loading unit, the receiving end signal deriving unit; wherein the receiving end controller stores at least one charging curve of the rechargeable battery, according to the charging Obtaining an optimal charging voltage of the rechargeable battery in real time, calculating an optimal charging power according to the optimal charging voltage, and issuing at least one charging power adjustment command; when the receiving coil and the transmitting coil are electromagnetically coupled
  • the receiving end signal loading unit modulates the charging power adjustment command by a carrier frequency K2 Carrying into the receiving current, the transmitting end signal deriving unit demodulates the charging
  • Another object of the present invention is to provide a wireless charging method for a solar panel cleaning robot to solve the technical problems of complicated charging operation and high cost of the existing solar panel cleaning robot.
  • the present invention provides a wireless charging method for a solar panel cleaning robot, comprising the steps of: step S501) providing at least one wireless power transmitting device inside or below at least one solar panel, the wireless power transmitting device a transmitting coil is disposed; the transmitting coil is disposed on a lower surface of any solar panel, or is disposed in a gap of any two adjacent solar panel connections; and step S502) setting a wireless power in the cleaning robot a receiving device, the wireless power receiving device includes a receiving coil; the receiving coil is disposed on an inner bottom layer of the cleaning robot or a bottom surface of the cleaning robot; and step S503) placing the cleaning robot on the solar panel Normal operation; during the traveling of the cleaning robot, when the receiving coil is located above the transmitting coil, the receiving coil and the transmitting coil are electromagnetically coupled or magnetically coupled; step S504) the transmitting The coil transmits radio energy to the receiving coil for continued Charging the cleaning robot; step S505) determines that the cleaning robot is full charge; if is fully charged,
  • the step S503) specifically includes the following steps: step S5031) the cleaning robot works normally on the solar panel; and in step S5032) the cleaning robot detects whether the receiving coil generates current in real time; if yes, step S5033 is performed. Step S5033) determining whether the cleaning robot needs to be charged; if yes, performing step S5034); step S5034) determining a relative position and a relative distance of the receiving coil and the transmitting coil according to the magnitude of the current in the receiving coil; Step S5035) The cleaning robot adjusts its position such that the receiving coil is located directly above the transmitting coil.
  • the step S5033) specifically includes the following steps: Step S50331) acquiring the remaining capacity SOC value of the rechargeable battery in real time; and step S50332) making the remaining capacity SOC value of the rechargeable battery and a preset power threshold In contrast, if the remaining capacity SOC value of the rechargeable battery is less than a predetermined power threshold, it is determined that the cleaning robot needs to be charged.
  • the step S505) specifically includes the following steps: Step S5051) acquiring the remaining capacity SOC value of the rechargeable battery in real time; and step S5052) setting the remaining capacity SOC value of the rechargeable battery with a preset charging capacity threshold For comparison; if the remaining capacity SOC value of the rechargeable battery is greater than or equal to a preset charging capacity threshold, it is determined that the cleaning robot is fully charged.
  • the present invention provides another wireless charging method for a solar panel cleaning robot, including The following steps: Step S601) embedding at least one charging panel on at least one solar panel; or, providing at least one charging panel at an edge of the at least one solar panel; the upper surface of the charging panel is on the same plane as the upper surface of the solar panel Step S602) providing at least one wireless power transmitting device inside or outside the at least one charging panel, the wireless power transmitting device including a transmitting coil, the transmitting coil is connected to a power source; and the transmitting coil is set to any charging In the panel, or disposed on the upper surface or the lower surface of any charging panel; step S603) providing a wireless power receiving device in the cleaning robot, the wireless power receiving device including a receiving coil; setting the receiving coil a bottom layer of the cleaning robot or a bottom surface of the cleaning robot; step S604) placing the cleaning robot on the solar panel for normal operation; during the cleaning robot traveling, when the receiving coil is located The receiving coil and the transmitting coil when the transmitting
  • the step S604) specifically includes the following steps: step S6041) the cleaning robot works normally on the solar panel; step S6042) the cleaning robot detects whether the receiving coil generates current in real time; if yes, step S6043 Step S6043) determining whether the cleaning robot needs to be charged; if yes, performing step S6044); step S6044) determining a relative position and a relative distance of the receiving coil and the transmitting coil according to the magnitude of the current in the receiving coil; Step S6045) The cleaning robot adjusts its position such that the receiving coil is located directly above the transmitting coil.
  • the step S6043) specifically includes the following steps: step S6041) acquiring the remaining capacity SOC value of the rechargeable battery in real time; step S6042) making the remaining capacity SOC value of the rechargeable battery and a preset power threshold In contrast, if the remaining capacity SOC value of the rechargeable battery is less than a predetermined power threshold, it is determined that the cleaning robot needs to be charged.
  • the step S606) specifically includes the following steps: step S6061) acquiring the remaining capacity SOC value of the rechargeable battery in real time; step S6062) setting the remaining capacity SOC value of the rechargeable battery with a preset charging capacity threshold For comparison; if the remaining capacity SOC value of the rechargeable battery is greater than or equal to a preset charging capacity threshold, it is determined that the cleaning robot is fully charged.
  • An advantage of the present invention is that a plurality of wireless charging and emitting devices are disposed on the upper surface, inside or in the vicinity of the solar panel, and a plurality of wireless charging and receiving devices are disposed inside or below the cleaning robot.
  • the cleaning robot is wirelessly charged by electromagnetic induction coupling or magnetic resonance coupling; automatic control can be realized during the entire charging process, without Manually remove the cleaning robot from the solar panel, so that the cleaning robot can automatically run on the solar panel, automatically charge, Automatic power-off enables automatic continuous operation, which effectively reduces management and maintenance costs.
  • FIG. 1 is a schematic view showing the overall appearance of a cleaning robot according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of the inside of a cleaning robot according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic exploded view of a cleaning robot according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of a cleaning device according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural view of another cleaning device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic view showing the overall structure of a power system according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural view of the power system after removing the crawler casing according to Embodiment 1 of the present invention.
  • Embodiment 8 is a structural block diagram of a control system in Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of establishing a three-dimensional coordinate system on a robot according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic structural diagram of a wireless charging system according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic view showing a state in which a transmitting coil is disposed on a lower surface of a solar panel according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic diagram showing an operation state of a receiving coil coupled to a transmitting coil according to Embodiment 2 of the present invention.
  • FIG. 13 is a schematic view showing a state in which a transmitting coil is disposed under a slit at a junction of two solar panels according to Embodiment 2 of the present invention
  • FIG. 14 is a schematic diagram of another working state when a receiving coil is coupled with a transmitting coil according to Embodiment 2 of the present invention.
  • FIG. 15 is a schematic structural diagram of a wireless power transmitting device according to Embodiment 2 of the present invention.
  • FIG. 16 is another schematic structural diagram of a wireless power transmitting device according to Embodiment 2 of the present invention.
  • FIG. 17 is a schematic structural diagram of a wireless communication system according to Embodiment 2 of the present invention.
  • FIG. 18 is a schematic view showing a state in which a charging panel is embedded in a solar panel according to Embodiment 3 of the present invention.
  • FIG. 19 is a schematic view showing a state in which a charging panel is installed at an edge of a solar panel according to Embodiment 3 of the present invention.
  • 621 receiving coil, 622 rechargeable battery, 623 rectifier circuit, 624DC-DC conversion circuit, 625 receiver controller, 626 battery information collector, 627 wireless charging switch, 628 battery manager;
  • transmitter signal loading unit 632 transmitter signal deriving unit, 633 receiving end signal loading unit, 634 receiving end signal deriving unit;
  • a component When a component is described as being “on” another component, the component can be placed directly on the other component; an intermediate component can also be present, the component being placed on the intermediate component, And the intermediate part is placed on another part.
  • a component When a component is described as “mounted to” or “connected to” another component, it can be understood as “directly” or “connected”, or a component is “mounted to” or “connected” through an intermediate component. To “another part.
  • the present embodiment provides a solar panel cleaning robot 100 (hereinafter referred to as a cleaning robot or a robot), including a vehicle body 1, and the vehicle body 1 can be driven on at least one solar panel 200; 1
  • a cleaning device 2, a power system 3, a control system 4, and a power system 5 are provided inside or outside.
  • the cleaning device 2 is configured to clean the solar panel 200 during the traveling of the vehicle body; the power system 3 is used to adjust the traveling direction and the traveling speed of the vehicle body 1 on the solar panel 200, and control the driving, stopping or steering of the vehicle body 1; the control system 4 They are respectively connected to the power system 3 and the cleaning device 2 for issuing various control signals to the power system 3 and the cleaning device 2.
  • the power system 5 is connected to the power system 3, the cleaning device 2, and the control system 4, respectively, for supplying power to the power system 3, the cleaning device 2, and the control system 4.
  • the control system 4 issues at least one travel control command and at least one sweep control command, and the power system 3 controls the vehicle according to the travel control command.
  • the body 1 travels along a pre-planned path; at the same time, the cleaning device 2 activates the cleaning device 2 according to the cleaning control command to start cleaning the solar panel 200.
  • the control system 4 issues a plurality of travel control commands to the power system 3, such as a correction command, a turning command, a turning command, and the like, thereby commanding the vehicle body 1 to deflect in a straight traveling path.
  • the vehicle body 1 can be driven according to an optimized route planned in advance.
  • the specific navigation method, the calibration method, the method of controlling the turning of the vehicle body or the U-turn (turning head) method are described in detail below.
  • the cleaning device 2 is always in operation.
  • the control system 4 issues a travel control command to stop traveling based on certain operating parameters (such as all planned paths are completed or the power system 5 is insufficient)
  • the vehicle body 1 stops traveling; at the same time, the control system 4 issues a cleaning control command. Turn off the cleaning device 2 and stop cleaning.
  • the cleaning device 2 of the embodiment includes a cleaning motor 21, a roller brush 22 and a transmission mechanism 23.
  • the cleaning motor 21 includes a cleaning motor shaft 211; the roller brush center is provided with a roller driven shaft 221; and the transmission mechanism 23 is simultaneously connected to the cleaning motor shaft 211 and the roller
  • the brush driven shaft 221 and the cleaning motor rotating shaft 211 drive the roller driven shaft 221 to rotate by the transmission mechanism 23.
  • the roller brush 22 is disposed below the front end of the vehicle body 1, and the lower end of the roller brush 22 is directly in contact with the solar panel 200 for cleaning the solar panel 200.
  • the transmission mechanism 23 is a gear set composed of two or more large and small meshing gears for transmitting the power of the cleaning motor shaft 211 to the roller driven shaft 221, and at the same time slowing down the output rotation speed of the cleaning motor 21, thereby being slower.
  • the rotation speed drives the roller 22 to rotate.
  • the transmission mechanism 23 includes a driving gear 231, a driven gear 232, and a double gear 233.
  • the driving gear 231 is disposed on the cleaning motor shaft 211, the cleaning motor shaft 211 is perpendicular to the wheel surface of the driving gear 231, the driven gear 232 is disposed on the roller driven shaft 221, and the roller driven shaft 221 is perpendicular to the driven gear 232.
  • the tread wheel 221 is parallel to the cleaning motor shaft 211.
  • the double gear 233 includes a large ring gear 2331 and a small ring gear 2332 which are integrally formed, the large ring gear 2331 is meshed with the driving gear 231, and the small ring gear 2332 is meshed with the driven gear 232.
  • the cleaning motor 21 is started, the cleaning motor shaft 211 is rotated at a high speed, and after the deceleration processing of the double gear 233, the roller driving shaft 221 drives the roller 22 to rotate at a slow speed, so that the roller brush 22 can clean the solar panel 200.
  • the rotation speed ratio between the cleaning motor shaft 211 and the roller driven shaft 221 depends on the radius ratio of the large ring gear 2331 and the small ring gear 2332.
  • the roller brush 22 is a spiral roller brush, and the spiral roller brush includes at least one spiral blade 222.
  • the spiral blade 222 can be divided into a plurality of flaps 223, and the petals 223 are equidistantly disposed between the blades 22 and the solar panel. 200 full contact, so that the panel part of the car body 1 can be swept. While the vehicle body 1 of the present embodiment is traveling, the roller brush 22 continuously cleans the deposits such as dust on the solar panel 200.
  • the cleaning device 2 further includes a debris baffle 24 fixedly mounted to the side of the roller brush 22, and the roller follower shaft 221 at the center of the roller brush 22 is parallel to the debris baffle 24.
  • the cleaning device 2 (cleaning device) is disposed at the front end of the cleaning robot 100 (ie, the front portion of the vehicle body), and the rear end of the cleaning robot 100 (ie, the rear portion of the vehicle body) includes a body 11 and a debris baffle 24 It is disposed between the cleaning device 2 and the vehicle body 11.
  • the debris baffle 24 can effectively collect dust, trivial, sewage and the like, so as to be easily removed from the surface, and at the same time, the debris can be prevented from entering the cleaning device 2 or the power system 3, in case The damage of various components in the vehicle body 1 is caused.
  • the cleaning device 2 further includes a liquid dispensing container 25, at least one spray head 26, and a furcation conduit 27.
  • the liquid dispensing container 25 (which may be simply referred to as the container 25) is a detachable sealed container for storing water or a detergent solution, and has a liquid discharge port 251 at the bottom thereof; the spray head 26 is disposed on the roller brush 22 Upper or side; each nozzle includes a nozzle facing the direction of the roller brush 22; the branching pipe 27 includes a main pipe and at least one pipe (not shown) communicating with each other; the main pipe 271 is connected to the liquid discharge port; The branch pipe is connected to a nozzle.
  • the branching pipe 27 is preferably a split bifurcation pipe, including one main pipe and two branch pipes, The water or detergent solution in the liquid dispensing container 25 is delivered to the two spray heads 26.
  • the cleaning device 2 further includes a pumping pump 28 connected to the control system 4, which is obtained from the control system 4.
  • the pump control signal is less than one; the pump 28 is disposed on the main pipe 27 as a switch for controlling the liquid discharge container 25 to discharge the liquid, and adjusts the liquid discharge speed according to the pump control signal.
  • the control system 4 issues at least one pump control signal to the pump 28 as needed, activates the pump 28, and adjusts the pumping speed so that the water in the liquid dispensing container 25 or
  • the detergent solution flows out to the spray head 26 via the furcation conduit 27 to form small droplets, which are sprayed toward the roller brush 22 in an emitted manner, so that the sprayed liquid falls as evenly as possible on the roller brush 22, and the rotating roller brush 22 drives the water or cleans.
  • the agent falls on the solar panel, and the panel is cleaned by the roller brush 22, which can effectively enhance the decontamination effect.
  • the control system 4 issues a stop pumping control signal to the water pump 28 to turn off the water pump 28.
  • the technical effect of the cleaning device 2 is that the cleaning operation of the solar panel 200 can be completed while the cleaning robot 100 is traveling, and if necessary, water or detergent can be sprayed on the panel to be processed, which can be better removed. Intractable stains.
  • the cleaning device 2 has a fast cleaning speed and good effect, and does not require manual monitoring or assistance, thereby effectively reducing labor costs.
  • the power system 3 is disposed at the bottom of the vehicle body 1 for driving the vehicle body 1 to travel, including a left front wheel 31, a right front wheel 32, and a left rear.
  • the left front wheel 31 is mounted on the left side of the front portion of the bottom surface of the vehicle body, and includes a left front wheel hub 311 and a left front wheel axle 312.
  • the left front wheel axle 312 is disposed at the center of the left front hub 311; the right front wheel 32 is mounted at the bottom of the vehicle body.
  • the right side of the front portion includes a right front hub 321 and a right front axle 322, and the right front axle 322 is disposed at the center of the right front hub 321;
  • the left rear wheel 33 is mounted to the left side of the rear of the vehicle body bottom surface, including a left rear hub 331 and a left rear axle 332 (not shown), the left rear hub 331 and the left front hub 311 are disposed on the same straight line, the left rear axle is disposed at the center of the left rear hub 331;
  • the right rear wheel 34 is mounted on the vehicle
  • the right side of the rear portion of the bottom surface of the body includes a right rear hub 341 and a right rear wheel axle (not shown).
  • the right rear hub 341 and the right front hub 321 are disposed on the same straight line; the right rear axle is disposed on the right rear hub 341. Center.
  • the right rear axle is directly coupled or coupled to the left rear axle by a transmission (not shown).
  • the left drive motor 35 and the right drive motor 36 are fixedly coupled to the vehicle body 1 by a fixing device, connected to the power system 5 through at least one wire, and connected to the control system 4 through at least one signal line.
  • the left drive motor 35 is directly connected or connected to the left front axle 312 via a transmission (not shown), and the right drive motor 36 is directly connected or connected to the right front axle 322 via a transmission (not shown).
  • the two crawler belts 37 are each a flexible link, wherein one crawler belt 37 is wrapped around the annular front side wall of the left front hub 311 and the left rear hub 331; the other crawler belt 37 is wrapped around the annular side of the right front hub 321 and the right rear hub 341. Outside the wall.
  • Each The crawler belt 37 is provided with a crawler outer casing 371 for protecting the crawler belt and the hub to prevent foreign matter from entering the crawler belt or the hub, thereby affecting the normal running of the vehicle body 1.
  • control system 4 sends at least one travel control signal to the left drive motor 35 and the right drive motor 36 according to the optimized path planned in advance, so that the left drive motor 35 and the right drive motor 36 synchronously adjust the left front wheel 31 and the right front.
  • the rotation speed and the rotation direction of the wheel 32 further adjust the traveling direction and the traveling speed of the vehicle body 1, so that the vehicle body can perform straight-line, calibration, 90-degree turn, U-turn (turning head) and the like.
  • the control system 4 When the vehicle body is required to advance linearly, the control system 4 simultaneously issues a linear travel control command to the left drive motor 35 and the right drive motor 36, and the control command includes the same motor speed (for example, the rotational speeds of the left drive motor and the right drive motor are both 60 rev / min) and the direction of rotation of the drive motor shaft (such as the left drive motor clockwise rotation, the right drive motor counterclockwise rotation), this will drive the left front wheel 31, the right front wheel 32 synchronously forward, left rear wheel 33.
  • the right rear wheel 34 is a driven wheel, and is also rotated forward in synchronization with the left front wheel 31 and the right front wheel 32 under the driving of the crawler belt 37, so that the entire vehicle body 1 advances.
  • the control system 4 When the vehicle body 1 is required to be deflected to the right, the control system 4 simultaneously issues a calibration travel control command to the left drive motor 35 and the right drive motor 36, and the motor speed in the control command received by the left drive motor 35 is higher than that of the right drive motor 36.
  • the motor speed in the received control command is too large, and the difference in the speed depends on the deviation angle that needs to be adjusted. The smaller the deviation angle, the smaller the speed difference.
  • the motor speed in the control command received by the left drive motor 35 is smaller than the motor speed in the control command received by the right drive motor 36.
  • the control system 4 calculates the rotation speed and the rotation direction of the left drive motor 35 and the right drive motor 36 according to the preset turning radius. If the turning radius is large, the driving direction of the driving motor can be Conversely (one clockwise, one counterclockwise), the left front wheel 31 and the right front wheel 32 rotate synchronously forward, or set to one wheel to stop rotating, thereby achieving the effect of turning in the middle; if the turning radius is small or turning in place
  • the rotation directions of the left driving motor 35 and the right driving motor 36 may be designed to be the same, either clockwise or counterclockwise, such that the left front wheel 31 and the right front wheel 32 will rotate forward and backward.
  • One side of the vehicle body 1 is advanced, and the other side is retracted, thereby forming an effect of turning a small radius or turning in place.
  • the control system 4 calculates the rotational speed and the rotational direction of the left drive motor 35 and the right drive motor 36 according to the magnitude of the preset turning radius.
  • the turning radius is equivalent to half of the width of the vehicle body, and the front wheel on the inside of the turning stops rotating or rotates at a very slow speed (if When the U-turn is performed to the left, the left front wheel stops rotating; if the U-turn is turned to the right, the right front wheel stops rotating), and the front wheel on the outside of the turn rotates forward rapidly to realize the U-turn to the left or right.
  • different schemes can be calculated according to the specific situation. In this embodiment, the following scheme is preferred: the vehicle body 1 is first controlled to make a 90 degree turn to the left or right in the original position, and then the vehicle body is controlled to move forward.
  • the power system 3 further includes at least one hub gear teeth 38 uniformly disposed on the outer side surfaces of the left side of the left front hub 311, the left rear hub 331, the right front hub 321, and the right rear hub 341; and at least one crawler inner tooth 372 disposed uniformly The inner side wall surface of the crawler belt 37, the crawler inner teeth 372 are engaged with the hub gear teeth 38, ensuring that the track 37 can be engaged with the two hubs for normal use when the two front wheels 31, 32 are rotated.
  • the technical effect of the power system 3 is that the crawler and the anti-skid block structure enable the body of the cleaning robot to move freely on the solar panel without slipping; the left and right front wheels are separately driven by the dual motors, and the vehicle body can be The precise travel control allows the vehicle body to flexibly adjust the direction of travel and achieve in-situ turns as needed, maximizing the coverage of the travel path.
  • the control system 4 includes a data collection unit 41, a processor 42, and at least one storage unit 43.
  • the data collecting unit 41 includes a plurality of sensors for collecting at least one operating parameter during the traveling of the vehicle body 1; the processor 42 is connected to the data collecting unit 41, and sends at least one traveling control command to the power system 3 according to the working parameter. At least one cleaning control command is issued to the cleaning device 2 according to the operating parameter.
  • the storage unit 43 is connected to the processor 42 for storing the operating parameters of the vehicle body 1 traveling and other parameters calculated or set in advance.
  • the working parameters include real-time acceleration data of the vehicle body 1, real-time traveling direction data, real-time liquid level data of the liquid distribution container, distance between each distance sensor and the solar panel, and images in front of the vehicle body.
  • Other parameters pre-calculated or set include various work data preset by the worker, such as a pre-calculated and planned cleaning robot travel path (optimized path), and a liquid level data alarm threshold in the liquid dispensing container 25 (when the threshold is reached) , alarm unit alarm), liquid level data shutdown threshold (when this threshold is reached, the pump 28 stops running), and so on.
  • the staff pre-records the planned optimization path into the control system 4 to provide path navigation for the cleaning robot body.
  • the control system 4 performs calculation and planning according to the optimized path, and will start, when to stop, and when to go straight.
  • Control information such as when driving, when to turn 90 degrees to the left or right, when to turn left or right 90 degrees, and send it to the power system in various control commands to control the vehicle body while traveling. action.
  • the data collection unit 41 may further include at least one distance sensor 413, including but not limited to an ultrasonic sensor and an optical pulse sensor.
  • the distance sensor 413 is disposed at the outer edge of the robot 100 (vehicle body 1), specifically, at the four corners of the vehicle body 1 (body 11), as shown in FIG. 2, when the robot 100 is on a rectangular slope When traveling, the front end of the distance sensor 413 faces the rectangular slope direction.
  • the distance sensor 413 is connected to the processor 42; the distance data of the distance sensor 413 and the rectangular slope is collected in real time; the processor 42 determines whether the vehicle body 1 is located on the rectangular slope according to the distance data of the distance sensor 413 and the rectangular slope. At the edge or at the corner.
  • the number of distance sensors 413 is four, respectively disposed at four corners of the robot (vehicle body); when only two distance sensors 413 can collect the distance data, the processor 42 determines the robot ( The vehicle body is located at the edge of the rectangular slope 300 and issues at least one steering command (U-turn) to the power system 3; when only one distance sensor collects the distance data, the processor determines that the robot (body) is located At a corner of the rectangular ramp 300, at least one steering command (90 degree turn or U-turn) is issued to the powertrain 3.
  • the four distance sensors 413 can also be respectively disposed in the middle of each side of the vehicle body 1.
  • the processor finds that the distance sensor 413 on one side cannot collect the distance data, it can be judged that the side is located on the rectangular slope. At the edge; if two adjacent sides are located at the edge of the rectangular slope, it can be judged that the vehicle body 1 is located at a certain corner of the solar panel 200.
  • the number of distance sensors 413 may also be eight, which are respectively disposed at four corners of the vehicle body 1 or in the middle of the four sides of the vehicle body 1.
  • the control system 4 may further include a counter 414 for calculating a corner passing by the vehicle body 1 in the slope plane.
  • a counter 414 for calculating a corner passing by the vehicle body 1 in the slope plane.
  • the processor 42 determines that the vehicle body reaches a certain corner, the counter is at the counter. Add one.
  • the processor 42 can clearly know the order (the first few corners) of the corners at which the vehicle body 1 arrives by the technical result fed back by the counter 414.
  • the worker inputs the planned optimization path to the memory of the control system 4 in advance, and the processor sends control commands to the power system 3 according to the navigation path and the real-time position of the robot (vehicle body), including starting, stopping, and going straight.
  • the data collection unit 41 further includes a liquid level sensor 259 coupled to the processor 42 for collecting liquid level data in the liquid dispensing container 25 in real time.
  • the control system 4 can be based on real time in the liquid dispensing container 25.
  • the level data sends at least one pump 28 control signal to the pump 28 to initiate or stop the operation of the pump 28 or to control the liquid discharge rate.
  • the control system 4 can issue a pumping pump 28 deceleration command to control the pumping pump 28 to slow down the pumping speed;
  • the control system 4 can issue a pump 28 stop command to control the pump 28 to stop operating.
  • the control system 4 also includes at least one alarm unit 44 coupled to the processor 42, which may be a red light or buzzer disposed outside of the vehicle body.
  • the alarm unit issues an alarm signal, for example, when the liquid level data in the liquid dispensing container 25 is below a predetermined threshold, or when the power system 5 is insufficiently powered, or When the cleaning robot issues a fault, the alarm unit 44 can issue an alarm signal to alert the user.
  • the data collection unit 41 includes at least one image sensor 415 or a camera connected to the processor 42 and disposed at the front end of the vehicle body 1 (as shown in FIG. 2 and FIG. 3) for collecting the front of the vehicle body 1 during the traveling of the vehicle body 1. Images, which can be stored to the storage unit to facilitate the worker to view the working state of the robot.
  • control system 4 the technical effect of the control system 4 is to provide an optimized path for the various cleaning robots to travel on the solar panel and a control method for the robot to travel straight in the slope plane, ensuring that the robot can walk through the entire space of the solar panel without repeating The cover area is large and will not fall from the edge of the solar panel, which can ensure the cleaning effect and ensure the work efficiency.
  • the solar panel cleaning robot 100 may further include at least one wireless communication unit 45 wirelessly connected to a server 400 for establishing communication between the solar panel cleaning robot 100 and the server 400.
  • the image in front of the vehicle body 1 can be sent to the server 400 in real time, so that the staff can effectively view the cleaning robot in the working process, and effectively solve the problem that the cleaning robot is difficult to monitor the working state of the panel when the solar panel is located at a high place in the prior art.
  • the power system 5 is one or a set of disposable batteries or rechargeable batteries (not shown) disposed in the battery case 51, and the worker is required to periodically remove the cleaning robot from the present embodiment. Remove the solar panel and replace it with battery or charge to make it work.
  • Embodiment 1 provides a solar panel cleaning robot, which can run freely on a solar panel, effectively removes dust and other deposits on the panel, and has a good decontamination effect; the cleaning robot of the present invention runs in a solar panel operation according to the setting The optimized path travels, and the entire space of the panel can be covered without repetition, and the work efficiency is high; the cleaning robot of the invention can automatically turn or turn the head according to the program, realize automatic control, and is convenient to operate.
  • Embodiment 2 is the same as most of the technical solutions of Embodiment 1.
  • the distinguishing technical feature is that Embodiment 2 further includes a solar panel cleaning robot wireless charging system (referred to as a wireless charging system for short), as shown in FIG. 10 to FIG.
  • the wireless charging system 6 includes at least one wireless power transmitting device 61 disposed outside the cleaning robot, and is disposed in the cleaning machine A wireless power receiving device 62 on the inside or outside of the person.
  • Each wireless power transmitting device 61 includes a transmitting coil 611 that is directly or indirectly connected to a power source; the wireless power receiving device 62 includes a receiving coil 621 that is directly or indirectly connected to a rechargeable one.
  • the battery 622 when the receiving coil 612 is located above the transmitting coil 611, the receiving coil 612 and the transmitting coil 611 are electromagnetically inductively coupled or magnetically coupled, and the transmitting coil 611 transmits radio energy to the receiving coil 612.
  • the current wireless charging technology mainly has four basic modes: electromagnetic induction type, magnetic resonance type, radio wave type and electric field coupling type, which are suitable for short-range, medium-short-range and remote power transmission;
  • the electromagnetic induction type and the magnetic resonance type are employed in the present invention, and the electromagnetic induction type is preferred.
  • the most mature and most popular is electromagnetic induction.
  • the fundamental principle is to use the principle of electromagnetic induction. Similar to a transformer, there is a coil at the transmitting end and the receiving end, and the primary coil is connected to a certain frequency of alternating current. Since electromagnetic induction generates a certain current in the secondary coil, energy is transferred from the transmitting end to the receiving end.
  • the wireless power transmitting device 61 may be installed near the solar panel 200, but may not affect the normal operation of the panel.
  • the transmitting coil 611 may be disposed on the lower surface of any of the solar panels 200.
  • the receiving coil 612 may be disposed on the lower surface of the bottom of the cleaning robot 100, and the receiving coil 612 is disposed on the vehicle body 1. Externally, at the bottom of the vehicle body, the distance between the receiving coil 612 and the transmitting coil 611 is as close as possible. In view of the fact that the thickness of the solar panel 200 is relatively small, it is generally only a few centimeters. Therefore, in the present embodiment, the receiving coil 612 can also be disposed on the inner bottom layer of the cleaning robot 100.
  • the transmitting coil 611 can also be disposed under the slot 201 at the junction of any two adjacent solar panels 200. If the slot 201 is relatively large, the transmitting coil 611 can be disposed in the slot 201. As shown in FIG. 14, the receiving coil 612 stays while traveling over the transmitting coil 611, and the receiving coil 612 is coupled to the transmitting coil 611.
  • a certain frequency of alternating current is continuously transmitted on the transmitting coil 611.
  • the transmitting end establishes communication with the receiving end. Due to the effect of electromagnetic induction coupling, a certain frequency of alternating current is also generated in the receiving coil 612.
  • the current is thereby transferred from the wireless power transmitting device 61 to the wireless power receiving device 62.
  • the robot travels to the top of the transmitting coil 611 to establish communication.
  • the receiving coil 612 can be directly above the transmitting coil 611 or near the transmitting coil 611. Wireless charging can be achieved as long as communication is established, when the receiving coil 612 is directly above the transmitting coil 611.
  • the coupling effect is best, the charging efficiency is the highest, and the charging speed is the fastest.
  • the receiving coil 612 needs to be The distance between the transmitting coils 611 is as close as possible.
  • the receiving coil 612 When electromagnetic induction coupling is performed with the transmitting coil 611, the distance between the transmitting coil 611 and the receiving coil 612 is 1 mm to 40 mm, preferably 2 mm, 5 mm, 10 mm, 15 mm, and 20 mm, to ensure stable and efficient charging function, and is easy to install and maintain.
  • the distance between the transmitting coil 611 and the receiving coil 612 refers to the distance between the plane in which the transmitting coil 611 is located and the plane in which the receiving coil 612 is located when the transmitting coil 611 is parallel to the receiving coil 612.
  • the medium existing between the transmitting coil 611 and the receiving coil 612 is a non-metal material
  • the medium between the two includes a solar panel, a robot shell, air, etc.
  • the solar panel material is a standard silicon material and a robot shell.
  • the material is hard plastic (such as polymer resin material).
  • the wireless power transmitting device 61 may include a DC power source 612, an inverter circuit 613, and a transmitting end controller 614.
  • the DC power source 612 is used to supply a DC current; the input end of the inverter circuit 613 is connected to the DC power source 612, and the output end thereof is connected to the transmitting coil 611; the transmitting end controller 614 is connected to the inverter circuit 613 for controlling the output of the inverter circuit 613.
  • the inverter circuit 613 is configured to convert the direct current into an alternating current of a variable frequency and a duty ratio, and output the alternating current to the transmitting coil 611.
  • the DC power supply 612 can be at least one solar power generation module 6121.
  • This embodiment is directly applied to the solar panel 200. Therefore, the solar power generation can be directly used as the DC power supply of the embodiment, because the solar power generation module
  • the DC voltage output of the 6121 is unstable, so the wireless power transmitting device 61 also needs to be provided with a DC-DC voltage stabilizing circuit 6122, the input end of which is connected to the solar power generating module 6121, and the output end thereof is connected to the input end of the inverter circuit 613;
  • the DC-DC voltage stabilizing circuit 6122 is configured to perform voltage stabilization processing on the DC current, so that the inverter circuit 613 obtains a stable DC current source.
  • the DC power source 612 may further include an AC power source 6123 and an AC-DC adapter 6124; the AC power source 6123 is generally a commercial power source for providing an AC current; and an input terminal of the AC-DC adapter 6124 is connected to the AC power source. 6123, whose output is connected to the input of the inverter circuit 613; the AC-DC adapter 6124 is used to convert the alternating current into a stable direct current.
  • the wireless power receiving device 62 further includes a rectifying circuit 623, a DC-DC converting circuit 624, and a receiving end controller 625.
  • the input end of the rectifier circuit 623 is connected to the receiving coil 612 for converting the alternating current outputted by the receiving coil 612 into a direct current; the input of the DC-DC converting circuit 624 is connected to the output of the rectifier circuit 623, and the output thereof is connected to
  • the rechargeable battery 622 is connected to the DC-DC conversion circuit 624; the receiving end controller 625 stores at least one charging curve of the rechargeable battery 622, and is calculated according to the charging curve.
  • the wireless power receiving device 62 further includes a battery information collector 626, a wireless charging switch 627, and a battery manager 628.
  • the battery information collector 626 is connected to the rechargeable battery 622 for collecting the remaining capacity SOC value of the rechargeable battery 622; one end of the wireless charging switch 627 is connected to the DC-DC conversion circuit 624, and the other end thereof is connected to the rechargeable battery 622 or The rectifier circuit 623; one end of the battery manager 628 is connected to the battery information collector 626 to obtain the remaining capacity SOC value of the rechargeable battery 622 in real time; the other end is connected to the wireless charging switch 627 to control the wireless charging switch 627 to be closed or broken.
  • the battery manager 628 controls the wireless charging switch 627 to be closed when the remaining capacity SOC value of the rechargeable battery 622 is less than a predetermined power threshold; when the remaining capacity SOC value of the rechargeable battery 622 is greater than or equal to a charging capacity At the threshold (e.g., 90% or 100%), the battery manager 628 controls the wireless charging switch 627 to open.
  • the battery manager 628 monitors the power of the wireless rechargeable battery at all times. When charging is required, the wireless charging switch 627 is closed. When the charging is completed, the wireless charging switch 627 is turned off.
  • the control system 4 of the cleaning robot 100 is connected to the battery manager 628. When the charging is completed, the control system 4 can issue at least one control command to the cleaning device 2 and the power system 3, activate the cleaning device 2 and the power system 3, and the cleaning robot 100 is installed. The preset path continues to run.
  • the solar panel cleaning robot needs to solve the technical problem that the wireless power transmitting device 61 and the wireless power receiving device 62 implement data communication.
  • the wireless power transmitting device 61 and the wireless power receiving device 62 constitute a wireless communication system 63, wherein the wireless power transmitting device 61 includes a transmitting end signal loading unit 631 connected to the transmitting coil 611; and a transmitting The terminal signal deriving unit 632 is connected to the transmitting coil 611; the wireless power receiving device 62 includes a receiving end signal loading unit 633 connected to the receiving coil 612; and a receiving end signal deriving unit 634 connected to the receiving coil 612.
  • the wireless power transmitting device 61 and the wireless power receiving device 62 implement carrier communication; the transmitting signal loading unit 631 modulates the information to be transmitted with a carrier frequency K1 and then loads and transmits In the emission current of the coil 611, the receiving end signal deriving unit 634 demodulates and demodulates the information in the receiving current of the receiving coil 612 at the modulation frequency K1; the receiving end signal loading unit 633 modulates the information to be transmitted with a carrier frequency K2. In the received current that is later loaded to the receiving coil 612, the transmitting end signal deriving unit 632 demodulates and demodulates the information in the transmitting current of the transmitting coil 611 at a modulation frequency K2.
  • the wireless power transmitting device 61 and the wireless power receiving device 62 implement carrier communication; the transmitting end signal loading unit 631 will transmit the information with the magnetic resonance frequency K3 as The carrier is modulated into the emission current of the transmitting coil 611 of the magnetic resonance, and the receiving end signal deriving unit 634 demodulates and filters the information from the receiving current of the receiving coil 612 with the magnetic resonance frequency K3 as a carrier; the receiving end signal is loaded.
  • the unit 633 modulates the information to be transmitted with the magnetic resonance frequency K3 as a carrier wave into the received current of the magnetic resonance, and the transmitting end signal deriving unit 632 demodulates and filters the information with the magnetic resonance frequency K3 as a carrier.
  • the solar panel cleaning robot needs to solve the technical problem of real-time adjustment of the charging power according to the real-time power of the rechargeable battery 622 in order to improve the power utilization rate, prolong the battery life and ensure the safety of the battery. Therefore, in this embodiment, the transmitting end controller is connected to the transmitting end signal loading unit 631 and the transmitting end signal deriving unit 632; the receiving end controller 625 is connected to the receiving end signal loading unit 633 and the receiving end signal deriving unit 634.
  • the receiving end controller 625 stores at least one charging curve of the rechargeable battery 622, and obtains an optimal charging voltage of the rechargeable battery 622 in real time according to the charging curve, and calculates an optimal charging power according to the optimal charging voltage, and sends out At least one charging power adjustment command; when the receiving coil 612 and the transmitting coil 611 are electromagnetically inductively coupled, the receiving end signal loading unit 633 modulates the charging power adjustment command to a carrier frequency K2 and loads the current into the receiving current.
  • the transmitting end signal deriving unit 632 demodulates the charging power adjustment command in the transmitting current to the transmitting end controller 614 at a modulation frequency K2; or, when the receiving coil 612 and the transmitting coil 611 achieve magnetic resonance
  • the receiving end signal loading unit 633 modulates the charging power adjustment command to the magnetic resonance frequency with the magnetic resonance frequency K3 as a carrier.
  • the transmitting end signal deriving unit 632 demodulates and filters the charging power adjustment command to the transmitting end controller 614 with the magnetic resonance frequency K3 as a carrier; the transmitting end controller 614 is connected to the The inverter circuit adjusts the transmission power of the transmitting coil 611 according to the charging power adjustment command.
  • the receiving end controller 625 detects whether a signal is received in the receiving coil 612 in real time; if a signal is received, the transmitting coil 611 and the receiving coil 612 can be coupled to achieve wireless charging, but this may not be the case. Optimal coupling state.
  • the receiving end controller 625 detects the signal strength in the receiving coil 612 if it receives the signal, and determines the relative position of the receiving coil 612 and the transmitting coil 611 according to the signal strength; the control system 4 issues the relative position of the receiving coil 612 and the transmitting coil 611.
  • At least one position adjustment command controls the cleaning robot to adjust its position such that the receiving coil 612 is directly above the transmitting coil 611, and the vertical projections of the transmitting coil 611 and the receiving coil 612 in the solar panel 200 completely coincide, so that the transmitting coil 611 and the receiving coil 612 can Achieve the best coupling effect.
  • a wireless charging method for a solar panel cleaning robot is further provided to solve the technical problems of complicated charging operation and high maintenance cost of the existing solar panel cleaning robot.
  • the wireless charging method of the solar panel cleaning robot of the embodiment includes the following steps: Step S501) providing at least one wireless power transmitting device inside or below the at least one solar panel, the wireless power transmitting device including a transmitting coil; The coil is disposed on the lower surface of any of the solar panels, or is disposed below the slit of the junction of any two adjacent solar panels or inside the slit; step S502) providing a wireless power receiving device on the inner or outer surface of the cleaning robot, The wireless power receiving device includes a receiving coil; the receiving coil is disposed on the inner bottom layer of the cleaning robot or the lower surface of the cleaning robot bottom; step S503) placing the cleaning robot on the solar panel for normal operation; and the cleaning robot During the traveling, when the receiving coil is located above the transmitting coil, the receiving coil and the transmitting coil are electromagnetically coupled or magnetically coupled; in step S504) the transmitting coil transmits radio energy to the receiving coil to continuously charge the cleaning robot; step S505 ) Battery Manager judgment Whether the cleaning robot is full of electric energy; if the
  • the step S503) specifically includes the following steps: step S5031) the cleaning robot works normally on the solar panel; and in step S5032) the cleaning robot detects whether the receiving coil generates current in real time; if yes, step S5033); step S5033 Determining whether the cleaning robot needs to be charged; if yes, performing step S5034); step S5034) determining the relative position and relative distance of the receiving coil and the transmitting coil according to the magnitude of the current in the receiving coil; and step S5035) the cleaning robot adjusting the position thereof So that the receiving coil is located directly above the transmitting coil.
  • the cleaning robot detects whether the receiving coil generates current in real time, that is, whether there is a transmitting coil coupled to the receiving coil in the vicinity of the cleaning robot (receiving coil). After finding the transmitting coil coupled with the receiving coil in the vicinity, according to the residual power of the rechargeable battery in the cleaning robot, it is judged whether charging is required. If charging is required, the control system controls the cleaning robot to stop running, and starts to clean the rechargeable battery in the robot. Wireless charging.
  • the step S5033) specifically includes the following steps: Step S50331) acquiring the remaining capacity SOC value of the rechargeable battery in real time; and step S50332) making the remaining capacity SOC value of the rechargeable battery and a preset power threshold
  • a predetermined power threshold e.g, 10% or 15% or 25%, etc.
  • the preset power threshold is determined according to the distribution of the transmitting coils near the solar panel, and the preset power threshold is greater than or equal to the amount of power consumed by the cleaning robot to reach the next transmitting coil. If the transmitting coils are evenly distributed, the preset power threshold is greater than or equal to the amount of power consumed by the cleaning robot during one-way operation between any two adjacent transmitting coils.
  • the step S505) specifically includes the following steps: Step S5051) acquiring the rechargeable battery in real time. Remaining capacity SOC value; step S5052) comparing the remaining capacity SOC value of the rechargeable battery with a preset charging capacity threshold; if the remaining capacity SOC value of the rechargeable battery is greater than or equal to a preset charging capacity threshold (For example, 95% or 100%), it is judged that the cleaning robot is fully charged and the charging is stopped.
  • the control system of the cleaning robot activates the power system and the cleaning device to control the cleaning robot to continue working.
  • An advantage of this embodiment is that a plurality of wireless charging and emitting devices are disposed on the upper surface, the inside or the vicinity of the solar panel, and a plurality of wireless charging and receiving devices are disposed inside or below the cleaning robot.
  • the cleaning robot is wirelessly charged by electromagnetic induction coupling or magnetic resonance coupling; the entire charging process can be automatically controlled without manual
  • the cleaning robot is removed from the solar panel, so that the cleaning robot can automatically run, automatically charge, and automatically power off the solar panel, which can realize automatic continuous operation and effectively reduce management and maintenance costs.
  • Some solar panels may be provided with metal materials inside or at the edges.
  • the transmitting coils 611 are disposed on the lower surface of any of the solar panels 200 or on any two adjacent solar panels 200. Below the slot 201 in the joint or in the slot 201, when the two coils are electromagnetically inductively coupled, the component is heated and damaged. At this time, the technical solution of the embodiment 2 is not suitable, and a new technical solution is required to make the wireless The charging system can work.
  • Embodiment 3 provides a solar panel cleaning robot wireless charging system.
  • Most of the technical solutions are the same as those in Embodiment 2, and the technical feature is that it may further include at least one charging.
  • the charging panel 500 is embedded on any solar panel 200 or disposed at the edge of any solar panel 200; the upper surface of the charging panel 500 is on the same plane as the upper surface of the solar panel 200, and the charging panel 500 is made of a non-metal material. production.
  • the charging panel 500 is embedded in any of the solar panels 200, which means that a special space is reserved for the solar panel processing to be embedded in the charging panel 500, and the upper surface of the embedded charging panel 500 is embedded. It is flush with the upper surface of the solar panel 200 and is located on the same plane.
  • the charging panel 500 is disposed at the edge of the solar panel 200 , which means that when the solar panel is processed, the charging panel 500 is mounted on the edge of several sides of the solar panel, and the upper surface of the charging panel 500 and the solar panel The upper surface of 200 is flush and lies on the same plane.
  • the transmitting coil 611 may be disposed in any of the charging panels 500, or may be disposed on the lower surface of any of the charging panels, instead of being disposed on the lower surface of any of the solar panels or at the junction of any two adjacent solar panels. Inside.
  • Embodiment 3 provides another wireless charging method for a solar panel cleaning robot, comprising the steps of: step S601) embedding at least one charging panel on at least one solar panel; and/or at least one solar panel At least one charging panel is disposed at an edge; the upper surface of the charging panel is on the same plane as the upper surface of the solar panel; and step S602) at least one wireless power transmitting device is disposed inside or outside the at least one charging panel, and the wireless power transmitting device includes a transmitting coil, the transmitting coil is connected to a power source; the transmitting coil is disposed in any charging panel, or is disposed on an upper surface or a lower surface of any charging panel; step S603) is inside the cleaning robot or a wireless power receiving device is disposed on the outer surface, the wireless power receiving device includes a receiving coil; the receiving coil 612 is disposed on the bottom layer of the cleaning robot or the bottom surface of the cleaning robot; and step S604) placing the cleaning robot in the solar energy Normal operation on the panel; travel
  • the step S604) specifically includes the following steps: step S6041) the cleaning robot works normally on the solar panel; step S6042) the cleaning robot detects whether the receiving coil generates current in real time; if yes, step S6043); step S6043 Determining whether the cleaning robot needs to be charged; if yes, performing step S6044); step S6044) determining the relative position and relative distance of the receiving coil and the transmitting coil according to the magnitude of the current in the receiving coil; and step S6045) the cleaning robot adjusting the position thereof So that the receiving coil is located directly above the transmitting coil.
  • the cleaning robot detects whether the receiving coil generates current in real time, that is, whether there is a transmitting coil coupled to the receiving coil in the vicinity of the cleaning robot (receiving coil). After finding the transmitting coil coupled with the receiving coil in the vicinity, according to the residual power of the rechargeable battery in the cleaning robot, it is judged whether charging is required. If charging is required, the control system controls the cleaning robot to stop running, and starts to clean the rechargeable battery in the robot. Wireless charging.
  • the step S6043) specifically includes the following steps: step S60431) real-time acquisition of the remaining capacity SOC value of the rechargeable battery; step S60432) making the remaining capacity SOC value of the rechargeable battery and a preset power threshold
  • a predetermined power threshold e.g, 10% or 15% or 25%, etc.
  • the preset power threshold is determined according to the distribution of the transmitting coils near the solar panel, and the preset power threshold is greater than or equal to the amount of power consumed by the cleaning robot to reach the next transmitting coil. If the transmitting coils are evenly distributed, the preset power threshold is greater than or equal to the cleaning robot. It means the amount of electricity consumed during one-way operation between two adjacent transmitting coils.
  • the step S606) specifically includes the following steps: step S6061) acquiring the remaining capacity SOC value of the rechargeable battery in real time; and step S6062) setting the remaining capacity SOC value of the rechargeable battery 622 with a preset charging capacity.
  • the threshold is compared; if the remaining capacity SOC value of the rechargeable battery 622 is greater than or equal to a preset charging capacity threshold (eg, 95% or 100%), it is determined that the cleaning robot is full and stops charging.
  • the control system of the cleaning robot activates the power system and the cleaning device to control the cleaning robot to continue working.
  • the advantage of this embodiment is that a charging panel is independently disposed on the same plane as the solar panel; even if a metal material exists on the solar panel, the receiving coil and the transmitting coil can be electromagnetically coupled or magnetically coupled, thereby achieving Wireless charging of the robot.
  • the entire charging process can be automatically controlled without the need to manually remove the cleaning robot from the solar panel, so that the cleaning robot can automatically run, automatically charge, and automatically power off the solar panel, which can realize automatic continuous operation, effectively reducing management and maintenance costs. .

Abstract

本发明提供一种太阳能面板清扫机器人无线充电系统及无线充电方法,无线充电系统包括至少一太阳能面板、一清扫机器人、一可充电电池、至少一无线电力发射装置以及一无线电力接收装置。

Description

太阳能面板清扫机器人的无线充电系统及无线充电方法 技术领域
本发明涉及清扫机器人领域,特别涉及一种用于太阳能面板清扫机器人的无线充电系统,以及一种用于太阳能面板清扫机器人的无线充电方法。
背景技术
在化石燃料日趋减少的情况下,作为一种新兴的可再生能源的太阳能已成为人类使用能源的重要组成部分,近十年来,太阳能应用技术在世界各国都得到迅猛发展。太阳能面板是指利用半导体材料在光照条件下发生的光生伏特效应(photovoltaic)将太阳能直接转换为电能的器件。有太阳光的地方就能发电,因此太阳能面板适用于从大型发电站到小型便携式充电器等多种场合,近年来得到飞速发展。
太阳能面板的工作环境只能是户外,影响其工作的最大问题并不是风雨雷电,而是常年累积的灰尘。太阳能面板上附着有灰尘或其它附着物,会影响面板板的透光率,阻碍光电效率,从而会严重影响面板直接获取阳光的效率,降低面板的能量吸收和转换效率,降低发电效率。现有技术的太阳能面板在使用中只能依靠人工定期完成清理工作,由于太阳能面板面积较大、大型电站同时使用的面板较多,而灰尘会反复累积,需要反复清洗;因此人力成本很高、清理效率低、清理效果较差。在很多场合,为了提高空间利用率,太阳能面板都是利用支架设置在高处,这就给清理工作带来更大的难度和风险。很多太阳能面板的用户为了降低清理成本只能选择不清理,这样只能被迫承担灰尘导致的电能损耗。这样,就需要有一个新的自动清理设备,对太阳能面板进行自动清理。
现有技术的清扫机器人一般都只能应用于水平地面上,不能适用于太阳能面板这样的斜坡平面。如果将现有的清扫机器人直接用在太阳能面板上,会导致以下问题。
(1)清扫机器人动力不足、不能自由行进、清扫效果差;由于太阳能面板的倾斜角度一般在10度~40度之间,现有清扫机器人在斜坡平面上不能自由行进,即使能勉强行进,很快就会将电量耗尽。
(2)清扫机器人会从太阳能面板上滑落;由于太阳能面板比较光滑,现有清扫机器人重量和车轮摩擦系数都比较小,摩擦力也比较小,行进困难,很容易滑落。
(3)清扫机器人不能按照规定路线行驶,行进中覆盖面积小,会从太阳能面板边缘处落下;现有清扫机器人一般是设置为遇到障碍物自动转向,由于太阳能面板上没有任何障 碍物,自动行驶的清扫机器人只能在单一路径上行进,其行进过程中的覆盖面积小,必然会从太阳能面板边缘处落下。即使预先规划好路径,现有的清扫机器人在行进中容易受到重力及面板附着物的影响,也会很容易偏离路径,很难保证直线行驶;而且清扫机器人自身无法察觉,不能走遍整个面板,会留下大量清扫不到的空间。
(4)清扫机器人充电困难;由于太阳能面板高度比较高、面积较大,一旦将清扫机器人送上去之后,将其取下会比较困难,现有技术需要人工将清扫机器人搬离现场或人工取出电池,继而对其进行充电,从而不能长时间持续进行现场作业,而且由于很多太阳能面板都是用支架设置在高处,因此其充电操作非常麻烦,浪费大量人力。
(5)清扫机器人工作状态监控困难,由于太阳能面板可能会设置在高处,地面上的工作人员无法对其工作过程做到全程监控,即使清扫机器人发生故障,停止运行或者路线走偏,工作人员也无法及时得知。
发明内容
本发明的一个目的在于,提供一种太阳能面板清扫机器人无线充电系统,以解决现有的太阳能面板清扫机器人存在的充电操作复杂、成本较高等技术问题。
为解决上述问题,本发明提供一种太阳能面板清扫机器人无线充电系统,包括:至少一太阳能面板;一清扫机器人,在至少一太阳能面板上行驶或停留;一可充电电池,设置在所述清扫机器人内部,用于为所述清扫机器人提供动力;至少一无线电力发射装置,设置在所述清扫机器人外部;每一无线电力发射装置包括一发射线圈,所述发射线圈连接至一电源;以及一无线电力接收装置,设置在所述清扫机器人内部或外表面;所述无线电力接收装置包括一接收线圈,所述接收线圈连接至所述可充电电池;其中,当所述接收线圈位于所述发射线圈上方时,所述接收线圈与所述发射线圈实现电磁感应耦合或磁共振耦合,所述发射线圈将无线电能传输至所述接收线圈。
进一步地,所述发射线圈设置于任一太阳能面板的下表面,和/或,设置于任意两块相邻太阳能面板连接处的缝隙下方或缝隙内;所述接收线圈设置于所述清扫机器人内部底层,和/或,设置于所述清扫机器人底部下表面。
进一步地,所述太阳能面板清扫机器人无线充电系统还可以包括至少一充电面板,每一充电面板嵌入至任一太阳能面板上或设置于任一太阳能面板边缘处;所述充电面板上表面与所述太阳能面板上表面位于同一平面上;其中,所述发射线圈设置于任一充电面板内,和/或,设置于任一充电面板的下表面。
进一步地,当所述接收线圈与所述发射线圈耦合时,所述发射线圈与所述接收线圈的 距离为1mm~40mm;所述发射线圈与所述接收线圈之间的介质皆为非金属材质。
进一步地,所述无线电力发射装置还包括一直流电源,用于提供直流电流;一逆变电路,其输入端连接至所述直流电源,其输出端连接至所述发射线圈;以及一发射端控制器,连接至所述逆变电路,用于控制所述逆变电路的输出功率;其中,所述逆变电路用于将所述直流电流转换为可变频率和占空比的交流电流,并将所述交流电流输出给所述发射线圈。
所述直流电源为至少一太阳能放电模组;所述无线电力发射装置还包括一DC-DC稳压电路,其输入端连接至所述直流电源,其输出端连接至所述逆变电路的输入端;其中,所述DC-DC稳压电路用以对所述直流电流进行稳压处理,使得所述逆变电路获得稳定的直流电流源;或者,所述直流电源包括一交流电源,用以提供交流电流;以及一AC-DC适配器,其输入端连接至所述交流电源,其输出端连接至所述逆变电路的输入端;所述AC-DC适配器用于将所述交流电流转换为直流电流。
进一步地,所述无线电力接收装置还包括一整流电路,其输入端连接至所述接收线圈,用于将所述接收线圈输出的交流电流转换成直流电流;以及一DC-DC转换电路,其输入端连接至所述整流电路的输出端,其输出端连接至所述可充电电池;一接收端控制器,连接至所述DC-DC转换电路;所述接收端控制器内存储有所述可充电电池的至少一充电曲线,根据所述充电曲线计算所述可充电电池的最佳充电电压;其中,所述DC-DC转换电路将所述整流电路输出的直流电流的电压转换成所述可充电电池的最佳充电电压,并为所述可充电电池充电。
本发明的另一目的在于,提供一种太阳能面板清扫机器人无线充电系统,以解决太阳能面板清扫机器人在无线充电过程中对实时电量监控的技术问题。
为解决上述技术问题,本发明提供一种太阳能面板清扫机器人的无线充电系统,进一步地,所述无线电力接收装置还包括一电池信息采集器,连接至所述可充电电池,用于采集所述可充电电池的剩余容量SOC值;一无线充电开关,其一端连接至所述DC-DC转换电路,其另一端连接至所述可充电电池或所述整流电路;一电池管理器,其一端连接至所述电池信息采集器,以实时获取所述可充电电池的剩余容量SOC值;其另一端连接至所述无线充电开关,以控制所述无线充电开关闭合或断开;其中,当所述可充电电池的剩余容量SOC值小于或等于一预设的电量阈值时,所述电池管理器控制所述无线充电开关闭合;当所述可充电电池的剩余容量SOC值大于或等于一充电容量阈值时,所述电池管理器控制所述无线充电开关断开。
本发明的另一目的在于,提供一种太阳能面板清扫机器人无线充电系统,以解决太阳能面板清扫机器人在无线充电过程中,无线电力发射装置与无线电力接收装置实现数据通信 的技术问题。
为解决上述技术问题,本发明提供一种太阳能面板清扫机器人的无线充电系统,进一步地,所述无线电力发射装置包括一发射端信号载入单元,连接至所述发射线圈;及一发射端信号导出单元,连接至所述发射线圈;所述无线电力接收装置包括一接收端信号载入单元,连接至所述接收线圈;及一接收端信号导出单元,连接至所述接收线圈。
进一步地,当所述接收线圈与所述发射线圈实现电磁感应耦合时,所述无线电力发射装置与所述无线电力接收装置实现载波通信;所述发射端信号载入单元将要发射的信息以一载波频率K1调制后加载至所述发射线圈的发射电流中,所述接收端信号导出单元以调制频率K1将所述接收线圈的接收电流中的信息解调后滤波导出;所述接收端信号载入单元将要发射的信息以一载波频率K2调制后加载至所述接收线圈的接收电流中,所述发射端信号导出单元以调制频率K2将所述发射线圈的发射电流中的信息解调后滤波导出。
进一步地,当所述接收线圈与所述发射线圈实现磁共振耦合时,所述无线电力发射装置与所述无线电力接收装置实现载波通信;所述发射端信号载入单元将要发射的信息以磁共振频率K3为载波调制到磁共振的所述发射线圈的发射电流中,所述接收端信号导出单元从所述接收线圈的接收电流中以磁共振频率K3为载波将所述信息解调并滤波导出;所述接收端信号载入单元将要发射的信息以磁共振频率K3为载波调制到磁共振的接收电流中,所述发送端信号导出单元以磁共振频率K3为载波将所述信息解调并滤波导出。
本发明的另一目的在于,提供一种太阳能面板清扫机器人无线充电系统,以解决太阳能面板清扫机器人在无线充电过程中,根据可充电电池的实时电量对充电功率进行实时调整的技术问题。
为解决上述技术问题,本发明提供一种太阳能面板清扫机器人的无线充电系统,进一步地,所述无线电力发射装置还包括一直流电源,用于提供直流电流;一逆变电路,其输入端连接至所述直流电源,其输出端连接至所述发射线圈;以及一发射端控制器,连接至所述发射端信号载入单元、所述发射端信号导出单元;所述无线电力接收装置包括一接收端控制器,连接至所述接收端信号载入单元、所述接收端信号导出单元;其中,所述接收端控制器内存储有所述可充电电池的至少一充电曲线,根据所述充电曲线实时获取所述可充电电池的最佳充电电压,根据所述最佳充电电压计算最佳充电功率,发出至少一充电功率调整指令;当所述接收线圈与所述发射线圈实现电磁感应耦合时,所述接收端信号载入单元将所述充电功率调整指令以一载波频率K2调制后加载至所述接收电流中,所述发射端信号导出单元以调制频率K2将所述发射电流中的所述充电功率调整指令解调后滤波导出至所述发射端控制器;或者,当所述接收线圈与所述发射线圈实现磁共振耦合时,所述接收 端信号载入单元将所述充电功率调整指令以磁共振频率K3为载波调制到磁共振的接收电流中,所述发送端信号导出单元以磁共振频率K3为载波将所述充电功率调整指令解调并滤波导出至所述发射端控制器;所述发射端控制器连接至所述逆变电路,根据所述充电功率调整指令调节所述发射线圈的发射功率。
本发明的另一目的在于,提供一种太阳能面板清扫机器人的无线充电方法,以解决现有的太阳能面板清扫机器人存在的充电操作复杂、成本较高等技术问题。
为解决上述技术问题,本发明提供一种太阳能面板清扫机器人的无线充电方法,包括如下步骤:步骤S501)在至少一太阳能面板内部或其下方设置至少一无线电力发射装置,所述无线电力发射装置包括一发射线圈;将所述发射线圈设置于任一太阳能面板的下表面,或者,设置于任意两块相邻太阳能面板连接处的缝隙内;步骤S502)在所述清扫机器人内设置一无线电力接收装置,所述无线电力接收装置包括一接收线圈;将所述接收线圈设置在所述清扫机器人内部底层或所述清扫机器人底部下表面;步骤S503)将所述清扫机器人放置在所述太阳能面板上正常作业;在所述清扫机器人行进过程中,当所述接收线圈位于所述发射线圈上方时,所述接收线圈与所述发射线圈实现电磁感应耦合或磁共振耦合;步骤S504)所述发射线圈将无线电能传输至所述接收线圈,持续为所述清扫机器人充电;步骤S505)判断所述清扫机器人电量是否充满;若电量已充满,停止充电;返回步骤S503)。其中,所述步骤S503)具体包括如下步骤:步骤S5031)所述清扫机器人在所述太阳能面板上正常作业;步骤S5032)所述清扫机器人实时检测所述接收线圈是否产生电流;若是,执行步骤S5033);步骤S5033)判断所述清扫机器人是否需要充电;若是,执行步骤S5034);步骤S5034)根据所述接收线圈中电流的大小判断所述接收线圈与所述发射线圈的相对位置和相对距离;步骤S5035)所述清扫机器人调整其位置,使得所述接收线圈位于所述发射线圈正上方。
其中,所述步骤S5033)具体包括如下步骤:步骤S50331)实时获取所述可充电电池的剩余容量SOC值;步骤S50332)将所述可充电电池的剩余容量SOC值与一预设的电量阈值作对比;若所述可充电电池的剩余容量SOC值小于一预设的电量阈值时,判断所述清扫机器人需要充电。
其中,所述步骤S505)具体包括如下步骤:步骤S5051)实时获取所述可充电电池的剩余容量SOC值;步骤S5052)将所述可充电电池的剩余容量SOC值与一预设的充电容量阈值作对比;若所述可充电电池的剩余容量SOC值大于或等于预设的充电容量阈值时,判断所述清扫机器人电量已充满。
为解决上述技术问题,本发明提供另一种太阳能面板清扫机器人的无线充电方法,包括 如下步骤:步骤S601)在至少一太阳能面板上嵌入至少一充电面板;或者,在至少一太阳能面板边缘处设置至少一充电面板;所述充电面板上表面与所述太阳能面板上表面位于同一平面上;步骤S602)在至少一充电面板内部或外部设置至少一无线电力发射装置,所述无线电力发射装置包括一发射线圈,所述发射线圈连接至一电源;将所述发射线圈设置于任一充电面板内,或者,设置于任一充电面板上表面或下表面;步骤S603)在所述清扫机器人内设置一无线电力接收装置,所述无线电力接收装置包括一接收线圈;将所述接收线圈设置在所述清扫机器人内部底层或所述清扫机器人底部下表面;步骤S604)将所述清扫机器人放置在所述太阳能面板上正常作业;在所述清扫机器人行进过程中,当所述接收线圈位于所述发射线圈上方时,所述接收线圈与所述发射线圈实现电磁感应耦合或磁共振耦合;步骤S605)所述发射线圈将无线电能传输至所述接收线圈,持续为所述清扫机器人充电;步骤S606)判断所述清扫机器人电量是否充满;若电量已充满,停止充电;返回步骤S604)。
其中,所述步骤S604)具体包括如下步骤:步骤S6041)所述清扫机器人在所述太阳能面板上正常作业;步骤S6042)所述清扫机器人实时检测所述接收线圈是否产生电流;若是,执行步骤S6043);步骤S6043)判断所述清扫机器人是否需要充电;若是,执行步骤S6044);步骤S6044)根据所述接收线圈中电流的大小判断所述接收线圈与所述发射线圈的相对位置和相对距离;步骤S6045)所述清扫机器人调整其位置,使得所述接收线圈位于所述发射线圈正上方。
其中,所述步骤S6043)具体包括如下步骤:步骤S6041)实时获取所述可充电电池的剩余容量SOC值;步骤S6042)将所述可充电电池的剩余容量SOC值与一预设的电量阈值作对比;若所述可充电电池的剩余容量SOC值小于一预设的电量阈值时,判断所述清扫机器人需要充电。
其中,所述步骤S606)具体包括如下步骤:步骤S6061)实时获取所述可充电电池的剩余容量SOC值;步骤S6062)将所述可充电电池的剩余容量SOC值与一预设的充电容量阈值作对比;若所述可充电电池的剩余容量SOC值大于或等于预设的充电容量阈值时,判断所述清扫机器人电量已充满。
本发明优点在于,在太阳能面板上表面、内部或者附近设置多个无线充电发射装置,在清扫机器人内部或下表面设置多个无线充电接收装置。在清扫机器人在太阳能面板上作业过程中,当清扫机器人行驶至无线充电发射装置上方时,利用电磁感应耦合方式或磁共振耦合方式对清扫机器人进行无线充电;在整个充电过程可以实现自动控制,无需人工将清扫机器人从太阳能面板上取下,使得清扫机器人可以在太阳能面板上自动运行、自动充电、 自动断电,可以实现自动持续作业,有效降低管理及维护成本。
附图说明
图1为本发明实施例1中清扫机器人的整体外观示意图;
图2为本发明实施例1中清扫机器人内部的结构示意图;
图3为本发明实施例1中清扫机器人的分解结构示意图;
图4为本发明实施例1中一种清扫装置的结构示意图;
图5为本发明实施例1的另一种清扫装置的结构示意图;
图6为本发明实施例1中动力系统整体结构示意图;
图7为本发明实施例1中动力系统去除履带外壳后的结构示意图;
图8为本发明实施例1中控制系统的结构框图;
图9为本发明实施例1中在机器人上建立三维坐标系的示意图;
图10为本发明实施例2中无线充电系统的结构示意图;
图11为本发明实施例2中发射线圈设置于太阳能面板下表面的状态示意图;
图12为本发明实施例2中接收线圈与发射线圈耦合时的一种工作状态示意图;
图13为本发明实施例2中发射线圈设置于两个太阳能面板连接处的缝隙下方的状态示意图;
图14为本发明实施例2中接收线圈与发射线圈耦合时的另一种工作状态示意图;
图15为本发明实施例2中无线电力发射装置的一种结构示意图;
图16为本发明实施例2中无线电力发射装置的另一种结构示意图;
图17为本发明实施例2中无线通信系统的结构示意图;
图18为本发明实施例3中充电面板嵌入至太阳能面板上的状态示意图;
图19为本发明实施例3中充电面板安装在太阳能面板边缘处的状态示意图。
图中部件编号如下:
100太阳能面板清扫机器人/清扫机器人/机器人,200太阳能面板,300斜坡平面,400服务器,500充电面板;
1车体,2清扫装置,3动力系统,4控制系统,5电力系统,6无线充电系统;11车身;
21清扫电机,22滚刷,23传动机构,24杂物挡板,25液体分发容器,26喷头,27分叉管道,28抽水泵;
31左前轮,32右前轮,33左后轮,34右后轮,35、左驱动电机,36右驱动电机,37 履带,38轮毂轮齿,39履带张紧装置;
41数据采集单元,42处理器,43存储单元,44报警单元,45无线通信单元;51电池盒;
61无线电力发射装置,62无线电力接收装置,63无线通信系统;
201太阳能面板连接处的缝隙;
211清扫电机转轴,221滚刷从动轴,231主动齿轮,232从动齿轮,233双联齿轮;
311左前轮毂,312左前轮轴,321右前轮毂,322右前轮轴,331左后轮毂,341右后轮毂;
411加速度传感器,412磁传感器,413距离传感器,414计数器,415影像传感器;
611发射线圈,612直流电源,613逆变电路,614发射端控制器;
621接收线圈,622可充电电池,623整流电路,624DC-DC转换电路,625接收端控制器,626电池信息采集器,627无线充电开关,628电池管理器;
631发射端信号载入单元,632发射端信号导出单元,633接收端信号载入单元,634接收端信号导出单元;
2331大齿圈,2332小齿圈;
6121太阳能发电模组,6122DC-DC稳压电路,6123交流电源,6124AC-DC适配器。
具体实施方式
以下参考说明书附图介绍本发明的三个优选实施例,证明本发明可以实施,所述实施例可以向本领域中的技术人员完整介绍本发明,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一部件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是附图中的方向,只是用来解释和说明本发明,而不是用来限定本发明的保护范围。
当某些部件被描述为“在”另一部件“上”时,所述部件可以直接置于所述另一部件上;也可以存在一中间部件,所述部件置于所述中间部件上,且所述中间部件置于另一部件上。 当一个部件被描述为“安装至”或“连接至”另一部件时,二者可以理解为直接“安装”或“连接”,或者一个部件通过一中间部件间接“安装至”、或“连接至”另一个部件。
实施例1
如图1~图3所示,本实施例提供一种太阳能面板清扫机器人100(以下简称清扫机器人或机器人),包括一车体1,车体1可以在至少一太阳能面板200上行驶;车体1内部或外部设有一清扫装置2、一动力系统3、一控制系统4以及一电力系统5。
清扫装置2用以在车体行进过程中清扫太阳能面板200;动力系统3用以调整车体1在太阳能面板200上的行进方向和行驶速度,控制车体1行驶、停止或转向;控制系统4分别连接至动力系统3及清扫装置2,用以向动力系统3及清扫装置2发出各种控制信号。电力系统5分别连接至动力系统3、清扫装置2、控制系统4,用以为动力系统3、清扫装置2、控制系统4提供电力。
本实施例太阳能面板清扫机器人100在太阳能面板上正常工作中,当电力系统5启动时,控制系统4发出至少一行进控制指令和至少一清扫控制指令,动力系统3根据该行进控制指令,控制车体1沿着一事先规划的路径行驶;同时,清扫装置2根据该清扫控制指令启动清扫装置2,开始清扫太阳能面板200。在车体1行驶过程中,控制系统4对动力系统3发出多个行进控制指令,如校偏指令、转弯指令、调头指令,等等,从而命令车体1在直线行进路线发生偏转的情况下回到原路线上,也即进行校偏处理;或者在一定条件下或一定位置转弯或者进行U字回转(调头),使得车体1可以根据事先规划的优化路径行驶。具体的导航方法、校偏方法、控制车体转弯或进行U字回转(调头)方法,在下文中有详细描述。在整个行驶过程中,无论车体1是何种行进方式,如直行、偏转、校偏、转弯或回转,清扫装置2始终保持工作状态。当控制系统4基于某些工作参数(如事先规划的路径全部走完或者电力系统5电量不足)发出停止行进的行进控制指令时,车体1停止行驶;同时控制系统4发出一清扫控制指令,关闭清扫装置2,停止清扫。
如图4所示,本实施例所述的清扫装置2,包括一清扫电机21、一滚刷22及一传动机构23。
如图4、图5所示,本实施例中,清扫电机21包括一清扫电机转轴211;所述滚刷中心设有一滚刷从动轴221;传动机构23同时连接至清扫电机转轴211及滚刷从动轴221,清扫电机转轴211通过传动机构23带动滚刷从动轴221转动。滚刷22设置于车体1前端的下方,滚刷22下端直接与太阳能面板200相接触,用以清扫太阳能面板200。
传动机构23为两个以上彼此啮合的大小齿轮组成的齿轮组,用以将清扫电机转轴211的动力传送至滚刷从动轴221,同时使清扫电机21的输出转速减慢,进而以较慢的转速带动滚刷22转动。本实施例中,传动机构23包括一主动齿轮231、一从动齿轮232以及一双联齿轮233。主动齿轮231设置于清扫电机转轴211上,清扫电机转轴211垂直于主动齿轮231的轮面;从动齿轮232设置于滚刷从动轴221上,滚刷从动轴221垂直于从动齿轮232的轮面;滚刷从动轴221平行于清扫电机转轴211。双联齿轮233包括一体化制成的一大齿圈2331及一小齿圈2332,大齿圈2331与主动齿轮231啮合,小齿圈2332与从动齿轮232啮合。当清扫电机21启动时,清扫电机转轴211高速转动,经由双联齿轮233的减速处理后,滚刷从动轴221以较慢速度带动滚刷22转动,从而使得滚刷22可以清扫太阳能面板200。其中,清扫电机转轴211与滚刷从动轴221的转速比,取决于大齿圈2331与小齿圈2332的半径比。
滚刷22为螺旋式滚刷,螺旋式滚刷包括至少一螺旋叶片222,螺旋叶片222可以分成多个片状叶瓣223,叶瓣223之间等距设置,可以使得滚刷22与太阳能面板200全面接触,使得车体1行驶过的面板部分都可以被清扫到。本实施例的车体1在行进中,滚刷22持续清扫太阳能面板200上的灰尘等附着物。
如图5所示,清扫装置2还包括一杂物挡板24,固定安装至滚刷22的侧面,滚刷22中心的滚刷从动轴221与杂物挡板24平行。如图2所示,清扫装置2(清扫装置)设置于清扫机器人100的前端(即车体前部),清扫机器人100后端(即车体后部)包括一车身11,杂物挡板24设置于清扫装置2与车身11之间。在清扫过程中,杂物挡板24能有效将灰尘、琐屑、污水等杂物集中在一起,便于将其从面上清除,同时可以阻止杂物进入清扫装置2或动力系统3内,以防造成车体1内各个部件的损毁。
如图5所示,清扫装置2还包括一液体分发容器25、至少一喷头26以及一分叉管道27。
如图5所示,液体分发容器25(可简称为容器25)为可拆卸的密封容器,用以存储有水或清洁剂溶液,其底部设有一排液口251;喷头26设置于滚刷22上方或侧方;每一喷头包括一喷嘴,喷嘴正对滚刷22方向;分叉管道27包括彼此连通的一主管及至少一支管(图未示);主管271连通至排液口;每一支管连通至一喷头。本实施例中,优选两个喷头,分别设置于滚刷22两端,其喷嘴正对滚刷22;分叉管道27优选一分二式分叉管道,包括一根主管及二根支管,将液体分发容器25中的水或清洁剂溶液传送至两个喷头26。
如图5所示,清扫装置2还包括一抽水泵28,连接至控制系统4,从控制系统4获取至 少一抽水泵控制信号;抽水泵28设置于主管27上,作为控制液体分发容器25排放液体的开关,根据所述抽水泵控制信号调整液体排放速度。
本实施例中,在滚刷22清扫太阳能面板过程中,控制系统4根据需要发出至少一抽水泵控制信号给抽水泵28,启动抽水泵28并调节抽水速度,使得液体分发容器25内的水或清洁剂溶液经由分叉管道27流出至喷头26,形成小液滴,呈发射状向滚刷22喷洒,使得喷洒后的液体尽量均匀落在滚刷22上,转动的滚刷22带动水或清洁剂落在太阳能面板上,同时利用滚刷22对面板进行清理,可以有效增强去污效果。当液体分发容器25内的液体余量不足或电力系统的电力不足时,或者当清扫工作量完成后,控制系统4发出一停止抽水控制信号给抽水泵28,以关闭抽水泵28。
本实施例中,清扫装置2的技术效果在于,可以在清扫机器人100行进中完成太阳能面板200的清扫工作,如有必要还可以在待处理的面板上喷洒水或清洁剂,可以更好地清除顽固性污渍。清扫装置2的清扫速度快、效果好,无需人工监控或辅助,可以有效降低人力成本。
如图6、图7所示,在本实施例中,动力系统3设置于在车体1底部,用以带动车体1行进,包括一左前轮31、一右前轮32、一左后轮33、一右后轮34、一左驱动电机35、一右驱动电机36及两个履带37。
左前轮31安装在所述车体底面前部的左侧,包括一左前轮毂311及一左前轮轴312,左前轮轴312设置于左前轮毂311中心处;右前轮32安装在所述车体底面前部的右侧,包括一右前轮毂321及一右前轮轴322,右前轮轴322设置于右前轮毂321中心处;左后轮33安装在所述车体底面后部的左侧,包括一左后轮毂331及一左后轮轴332(图未示),左后轮毂331与左前轮毂311设于同一直线上,所述左后轮轴设置于左后轮毂331中心处;右后轮34安装在所述车体底面后部的右侧,包括一右后轮毂341及一右后轮轴(图未示),右后轮毂341与右前轮毂321设于同一直线上;所述右后轮轴设置于右后轮毂341中心处。所述右后轮轴直接连接或通过一传动装置(图未示)连接至所述左后轮轴。左驱动电机35、右驱动电机36通过一固定装置固定连接至车体1上,通过至少一导线连接至电力系统5,通过至少一信号线连接至控制系统4。左驱动电机35直接连接或通过一传动装置(图未示)连接至左前轮轴312,右驱动电机36直接连接或通过一传动装置(图未示)连接至右前轮轴322。两个履带37皆为一柔性链环,其中一履带37包覆在左前轮毂311、左后轮毂331的环形侧壁外部;另一履带37包覆在右前轮毂321、右后轮毂341的环形侧壁外部。每一 履带37外部设有一个履带外壳371,用以保护履带及轮毂,防止有杂物进入履带或轮毂中,影响车体1正常行进。
本实施例中,控制系统4根据事先规划的优化路径向左驱动电机35、右驱动电机36发出至少一行进控制信号,使得左驱动电机35、右驱动电机36同步调整左前轮31、右前轮32的转速和旋转方向,进而调整车体1的行进方向和行进速度,使车体实现直行、校偏、90度转弯、U字回转(调头)等动作。
当需要车体直线前进时,控制系统4同时向左驱动电机35、右驱动电机36发出一直线行进控制指令,控制指令中包括相同的电机转速(例如左驱动电机、右驱动电机的转速都是60转/分钟)和驱动电机转轴的转动方向(如左驱动电机顺时针转、右驱动电机逆时针转),这样就会带动左前轮31、右前轮32同步向前转动,左后轮33、右后轮34为从动轮,在履带37的带动下也与左前轮31、右前轮32同步向前转动,使得整个车体1前进。
当需要车体1向右偏转时,控制系统4同时向左驱动电机35、右驱动电机36发出一校偏行进控制指令,左驱动电机35收到的控制指令中的电机转速比右驱动电机36收到的控制指令中的电机转速偏大,转速的差值取决于需要调整的偏差角度,偏差角度越小,转速差值也就越小。类似地,当需要车体1向左偏转时,左驱动电机35收到的控制指令中的电机转速比右驱动电机36收到的控制指令中的电机转速偏小。当车体1回到原来预设的行进方向后,控制系统4重新再发出直线行进控制指令,左驱动电机35、右驱动电机36的转速再次变为相同,使得车体1继续直线行进。
当需要车体做90度转弯时,控制系统4根据预设转弯半径的大小计算出左驱动电机35、右驱动电机36的转速和转动方向,如果转弯半径较大,其驱动电机的转动方向可以相反(一个顺时针、一个逆时针),左前轮31、右前轮32同步向前转动,或者设置成一个轮停止转动,从而实现行进中转弯的效果;如果转弯半径较小或者原地转弯,左驱动电机35、右驱动电机36的转动方向可以设计为相同,同为顺时针或同为逆时针,这样左前轮31、右前轮32就会一个向前转动、一个向后转动,车体1的一侧前进,另一侧后退,从而形成小半径转弯或原地转弯的效果。
当需要车体进行U字回转(也称为调头)时,需要车体在180度转弯后行驶至与原车道相邻的车道上;此时有一次性回转或者分阶段回转的技术方案。控制系统4根据预设转弯半径的大小计算出左驱动电机35、右驱动电机36的转速和转动方向。在一次性回转的方案中,转弯半径等同于车体宽度的一半,转弯内侧的前轮停止转动或极慢速度向前转动(若 向左进行U字回转,则左前轮停止转动;若向右进行U字回转,则右前轮停止转动),转弯外侧的前轮快速向前转动,实现向左或向右的U字回转。分阶段回转的方案中,可以根据具体情况计算处不同的方案,本实施例中优选如下方案:先控制车体1先在原地向左或向右做90度转弯,然后再控制车体向前行驶一个车身宽度的距离,最后再控制车体在原地向左或向右做90度转弯,既可以实现向左或向右的U字回转,而且U字回转后刚好行驶在与前一车道相邻的车道上,从而使得本实施例的机器人行驶过的空间可以实现不重复、无死角的效果。
动力系统3还包括至少一轮毂轮齿38,均匀设置在左前轮毂311、左后轮毂331、右前轮毂321、右后轮毂341的环形侧壁外部表面;以及至少一履带内齿372,均匀设置在履带37的内侧壁表面,履带内齿372与轮毂轮齿38啮合,确保在两个前轮31、32转动时,履带37可以与两个轮毂相配合,得以正常使用。
本实施例中,动力系统3的技术效果在于,采用履带及防滑块结构使得清扫机器人的车体可以在太阳能面板上自由行动而不会滑落;左右前轮用双电机分别驱动,可以对车体的行进状况实现精确控制,使车体可以根据需要更灵活地调整行进方向和实现原地转弯,可以尽量增大行驶路径的覆盖范围。
如图8所示,本实施例中,控制系统4包括一数据采集单元41、一处理器42及至少一存储单元43。数据采集单元41包括多种传感器,用以采集车体1行进过程中的至少一工作参数;处理器42连接至数据采集单元41,根据所述工作参数向动力系统3发出至少一行进控制指令,根据所述工作参数向清扫装置2发出至少一清扫控制指令。存储单元43连接至处理器42,用以存储车体1行进过中的工作参数及预先计算或设置的其他参数。所述工作参数包括车体1的实时加速度数据、实时行进方向数据、液体分发容器实时液位数据、每一距离传感器与太阳能面板之间的距离、车体前方的影像等参数。预先计算或设置的其他参数包括工作人员预设的各种工作数据,如预先计算和规划好的清扫机器人行驶路径(优化路径),液体分发容器25内的液位数据报警阈值(达到此阈值时,报警单元报警)、液位数据停工阈值(达到此阈值时,抽水泵28停止运行),等等。
工作人员预先将规划好的优化路径录入至控制系统4,为清扫机器人车体提供路径导航,控制系统4根据所述优化路径进行运算和规划,并将何时启动、何时停止、何时直线行驶、何时向左或向右90度转弯、何时向左或向右90度进行U字回转等控制信息,以各种控制指令的方式发送给动力系统,以控制车体在行进中的动作。
在本实施例中,数据采集单元41还可以包括至少一距离传感器413,包括但不限于超声波传感器及光脉冲传感器。距离传感器413设置于机器人100(车体1)外部边缘处,具体地说,可以设置在车体1(车身11)的四个角上,如图2所示,当机器人100在一矩形斜坡上行驶时,距离传感器413前端朝向矩形斜坡方向。距离传感器413连接至处理器42;用以实时采集距离传感器413与矩形斜坡的距离数据;处理器42根据距离传感器413与所述矩形斜坡的距离数据,判断车体1是否位于所述矩形斜坡的边缘处或角落处。
在本实施例中,距离传感器413数目为四个,分别设置于机器人(车体)的四个角落处;当只有两个距离传感器413能采集到所述距离数据时,处理器42判定机器人(车体)位于矩形斜坡300的边缘处,向动力系统3发出至少一转向指令(U字回转);当只有一个距离传感器采集到所述距离数据时,所述处理器判定机器人(车体)位于矩形斜坡300的某一角落处,向动力系统3发出至少一转向指令(90度转弯或U字回转)。四个距离传感器413也可以分别设置于车体1每一侧边的中部,处理器发现某一侧边上的距离传感器413无法采集到距离数据时,就可以判断这一侧边位于矩形斜坡的边缘处;如果有两个相邻的侧边皆位于矩形斜坡边缘处,就可以判断车体1位于太阳能面板200的某一角落处。距离传感器413数目也可以为八个,分别设置于车体1的四个角落处或车体1四个方向侧边的中部。
控制系统4还可以包括一计数器414,用以计算车体1在斜坡平面行驶中经过的角落,在机器人的一次工作中,每当处理器42判断出车体到达某一角落时,就在计数器上加一。处理器42通过计数器414反馈的技术结果可以清楚地知道车体1到达的角落的顺序(第几个角落)。
工作人员预先将规划好的优化路径录入至控制系统4的存储器,所述处理器并根据所述导航路径和机器人(车体)的实时位置向动力系统3发送控制指令,包括启动、停止、直行、向左或向右90度转弯、向左或向右U字回转(转到相邻车道上的180度转弯),以控制车体在行进中按照导航路径行驶。
数据采集单元41还包括一液位传感器259,连接至处理器42,用于实时采集液体分发容器25中的液位数据,在清扫装置工作中,控制系统4可以根据液体分发容器25内的实时液位数据向抽水泵28发送至少一抽水泵28控制信号以启动或停止抽水泵28的运行,或者控制液体排放速度。例如,当液体分发容器25内的实时液位数据降低到一预设阈值时,控制系统4可以发出一抽水泵28减速指令,控制抽水泵28减慢抽水速度;当液体分发容 器25内的实时液位数据降低到最低点时,或者,当控制系统4发出一车体停止指令时,控制系统4可以发出一抽水泵28停止指令,控制抽水泵28停止运行。
控制系统4还包括至少一报警单元44,连接至处理器42,报警单元44可以为设置在车体外部的一红灯或蜂鸣器。当某一工作参数超过设定阈值时,所述报警单元发出报警信号,例如,当液体分发容器25中的液位数据低于某一预设阈值时,或者当电力系统5电力不足时,或者当所述清扫机器人发出故障时,报警单元44都可以发出报警信号以提醒用户。
数据采集单元41包括至少一影像传感器415或摄像头,连接至处理器42,设置于车体1前端(如图2、图3所示),用以采集车体1行进过程中车体1前方的影像,这些影像可以存储至所述存储单元以便于工作人员查看机器人的工作状态。
本实施例中,控制系统4的技术效果在于,提供多种清洁机器人在太阳能面板上行进的优化路径以及机器人在斜坡平面直线行进的控制方法,确保机器人可以不重复地走过太阳能面板的全部空间,覆盖面积大,不会从太阳能面板边缘处落下,既可以保证了清洁效果,又可以保证工作效率。
太阳能面板清扫机器人100还可以包括至少一无线通信单元45,无线连接至一服务器400,用于在太阳能面板清扫机器人100与服务器400之间建立通信。车体1前方的影像可以实时发送至服务器400,以便于工作人员实现清扫机器人在工作进程中的有效查看,有效解决现有技术中太阳能面板位于高处时,清扫机器人在面板上工作状态监控困难的技术问题。
在本实施例中,如图3所示,电力系统5为一个或一组设置在电池盒51内的一次性电池或可充电电池(图未示),需要工作人员定期将所述清扫机器人从太阳能面板上取下,对其进行更换电池处理或充电处理,使其可以继续工作。
实施例1提供一种太阳能面板清扫机器人,可以在太阳能面板上自由运行,有效去除面板上的灰尘及其他附着物,去污效果良好;本发明的清扫机器人在太阳能面板上运行过程中,按照设定的优化路径行驶,可以不重复地覆盖面板的全部空间,工作效率高;本发明的清扫机器人可以根据程序自动转弯或调头,实现自动控制,操作方便。
实施例2
实施例2与实施例1大部分技术方案相同,其区别技术特征在于,实施例2还包括一种太阳能面板清扫机器人无线充电系统(可简称无线充电系统),如图10~图12所示,无线充电系统6包括设置在清扫机器人外部的至少一无线电力发射装置61,及设置在清扫机器 人内部或外表面的一无线电力接收装置62。
每一无线电力发射装置61包括一发射线圈611,发射线圈611直接地或间接地连接至一电源;无线电力接收装置62包括一接收线圈621,接收线圈621直接地或间接地连接至一可充电电池622;当接收线圈612位于发射线圈611上方时,接收线圈612与发射线圈611实现电磁感应耦合或磁共振耦合,发射线圈611将无线电能传输至接收线圈612。
从具体的技术原理及解决方案来说,目前无线充电技术主要有电磁感应式、磁共振式、无线电波式、电场耦合式四种基本方式,分别适用于近程、中短程与远程电力传送;本发明中采用的是电磁感应式和磁共振式,优选电磁感应式。在无线充电领域,目前最成熟、最普遍的是电磁感应式,其根本原理是利用电磁感应原理,类似于变压器,在发射端和接收端各有一个线圈,初级线圈上通一定频率的交流电,由于电磁感应在次级线圈中产生一定的电流,从而将能量从发射端转移到接收端。
本实施例中,为了保证太阳能面板的能量转化效率,无线电力发射装置61可以安装在太阳能面板200附近,但是不能影响面板的正常工作。如图11所示,发射线圈611可以设置于任一太阳能面板200的下表面,如图12所示,接收线圈612可以设置于清扫机器人100底部的下表面,接收线圈612安置于车体1的外部,在车体的最下方,使得接收线圈612与发射线圈611距离尽量拉近。鉴于太阳能面板200的厚度比较薄,一般只有几厘米,因此,本实施例中,接收线圈612也可以设置于清扫机器人100内部底层。
如图13所示,发射线圈611还可以设置于任意两块相邻太阳能面板200连接处的缝隙201下方,如果缝隙201比较大,发射线圈611可以设置于缝隙201内。如图14所示,接收线圈612在行驶至发射线圈611上方时停留,接收线圈612与发射线圈611耦合。
在发射线圈611上持续通有一定频率的交流电,当机器人行驶至发射线圈611上方时,发射端与接收端建立通信,由于电磁感应耦合的效果,在接收线圈612中也会产生一定频率的交流电流,从而将能量从无线电力发射装置61转移到无线电力接收装置62。机器人行驶至发射线圈611上方建立通信,接收线圈612可以在发射线圈611正上方,也可以在发射线圈611正上方附近,只要建立通信就可以实现无线充电,当接收线圈612位于发射线圈611正上方时,耦合效果最好,充电效率最高、充电速度最快。
电磁感应式无线充电技术的不足之处在于,电能传输的有效距离比较近,只能在数毫米至数厘米之间可以稳定高效地传输能量,因此在本实施例中,需要使得接收线圈612与发射线圈611之间的距离尽可能最近。当接收线圈612位于发射线圈611上方、接收线圈612 与发射线圈611实现电磁感应耦合时,发射线圈611与接收线圈612的距离为1mm~40mm,优选2mm、5mm、10mm、15mm及20mm,以确保可以稳定高效地实现充电功能,便于安装和维护。发射线圈611与接收线圈612的距离是指,当发射线圈611与接收线圈612平行时,发射线圈611所在平面与接收线圈612所在平面的距离。在本实施例中,发射线圈611与接收线圈612之间存在的介质皆为非金属材质,二者之间的介质包括太阳能面板、机器人外壳、空气等,太阳能面板材质为标准硅材料、机器人外壳材质为硬质塑料(如高分子树脂材料)。太阳能面板内部、任意两块相邻太阳能面板连接处(如边框等)也不能有金属材料,当接收线圈612与发射线圈611实现电磁感应耦合时,一旦电磁场内存在金属,就会导致部件发热损毁,因此接收线圈612、发射线圈611附近不能存在金属。
如图10所示,无线电力发射装置61可以包括一直流电源612、一逆变电路613以及一发射端控制器614。直流电源612用于提供直流电流;逆变电路613输入端连接直流电源612,其输出端连接至发射线圈611;发射端控制器614连接至逆变电路613,用于控制逆变电路613的输出功率;逆变电路613用于将所述直流电流转换为可变频率和占空比的交流电流,并将所述交流电流输出给发射线圈611。
如图15所示,直流电源612可以为至少一太阳能发电模组6121,本实施例是直接应用于太阳能面板200的,因此太阳能发电后可以直接作为本实施例的直流电源,由于太阳能发电模组6121输出的直流电压不稳定,因此无线电力发射装置61还需要设置一DC-DC稳压电路6122,其输入端连接至太阳能发电模组6121,其输出端连接至逆变电路613的输入端;其中,DC-DC稳压电路6122用以对所述直流电流进行稳压处理,使得逆变电路613获得稳定的直流电流源。
如图16所示,直流电源612还可以包括一交流电源6123以及一AC-DC适配器6124;交流电源6123一般为市电,用以提供交流电流;AC-DC适配器6124的输入端连接至交流电源6123,其输出端连接至逆变电路613的输入端;AC-DC适配器6124用于将所述交流电流转换为稳定的直流电流。
如图10所示,无线电力接收装置62还包括一整流电路623、一DC-DC转换电路624以及一接收端控制器625。整流电路623的输入端连接至接收线圈612,用于将接收线圈612输出的交流电流转换成直流电流;DC-DC转换电路624的输入端连接至整流电路623的输出端,其输出端连接至可充电电池622;接收端控制器625连接至DC-DC转换电路624;接收端控制器625内存储有可充电电池622的至少一充电曲线,根据充电曲线计算可充电 电池622的最佳充电电压;其中,DC-DC转换电路624将整流电路623输出的直流电流的电压转换成可充电电池的最佳充电电压,并为可充电电池充电。
如图10所示,无线电力接收装置62还包括一电池信息采集器626,一无线充电开关627以及一电池管理器628。
电池信息采集器626连接至可充电电池622,用于采集可充电电池622的剩余容量SOC值;无线充电开关627的一端连接至DC-DC转换电路624,其另一端连接至可充电电池622或整流电路623;电池管理器628的一端连接至电池信息采集器626,以实时获取可充电电池622的剩余容量SOC值;其另一端连接至无线充电开关627,以控制无线充电开关627闭合或断开;其中,当可充电电池622的剩余容量SOC值小于一预设的电量阈值时,电池管理器628控制无线充电开关627闭合;当可充电电池622的剩余容量SOC值大于或等于一充电容量阈值(如90%或100%)时,电池管理器628控制无线充电开关627断开。电池管理器628时刻监控无线充电电池的电量,需要充电时,无线充电开关627闭合,当充电完成后,无线充电开关627断开。清扫机器人100的控制系统4连接至电池管理器628,当充电完成后,控制系统4可以向清扫装置2和动力系统3发出至少一控制指令,启动清扫装置2和动力系统3,清扫机器人100安装预先设定的路径继续运行。
太阳能面板清扫机器人在无线充电过程中,需要解决无线电力发射装置61与无线电力接收装置62实现数据通信的技术问题。
如图17所示,无线电力发射装置61与无线电力接收装置62组成一无线通信系统63,其中,无线电力发射装置61包括一发射端信号载入单元631,连接至发射线圈611;及一发射端信号导出单元632,连接至发射线圈611;无线电力接收装置62包括一接收端信号载入单元633,连接至接收线圈612;及一接收端信号导出单元634,连接至接收线圈612。
当接收线圈612与发射线圈611实现电磁感应耦合时,无线电力发射装置61与无线电力接收装置62实现载波通信;发射端信号载入单元631将要发射的信息以一载波频率K1调制后加载至发射线圈611的发射电流中,接收端信号导出单元634以调制频率K1将接收线圈612的接收电流中的信息解调后滤波导出;接收端信号载入单元633将要发射的信息以一载波频率K2调制后加载至接收线圈612的接收电流中,发射端信号导出单元632以调制频率K2将发射线圈611的发射电流中的信息解调后滤波导出。
当接收线圈612与发射线圈611实现磁共振耦合时,无线电力发射装置61与无线电力接收装置62实现载波通信;发射端信号载入单元631将要发射的信息以磁共振频率K3为 载波调制到磁共振的发射线圈611的发射电流中,接收端信号导出单元634从接收线圈612的接收电流中以磁共振频率K3为载波将所述信息解调并滤波导出;接收端信号载入单元633将要发射的信息以磁共振频率K3为载波调制到磁共振的接收电流中,发射端信号导出单元632以磁共振频率K3为载波将所述信息解调并滤波导出。
太阳能面板清扫机器人在无线充电过程中,为了提高电能利用率、延长电池使用寿命及保障电池安全,需要解决根据可充电电池622的实时电量对充电功率进行实时调整的技术问题。为此,本实施例中,发射端控制器连接至发射端信号载入单元631、发射端信号导出单元632;接收端控制器625连接至接收端信号载入单元633、接收端信号导出单元634;接收端控制器625内存储有可充电电池622的至少一充电曲线,根据所述充电曲线实时获取可充电电池622的最佳充电电压,根据所述最佳充电电压计算最佳充电功率,发出至少一充电功率调整指令;当接收线圈612与发射线圈611实现电磁感应耦合时,接收端信号载入单元633将所述充电功率调整指令以一载波频率K2调制后加载至所述接收电流中,发射端信号导出单元632以调制频率K2将所述发射电流中的所述充电功率调整指令解调后滤波导出至所述发射端控制器614;或者,当接收线圈612与发射线圈611实现磁共振耦合时,接收端信号载入单元633将所述充电功率调整指令以磁共振频率K3为载波调制到磁共振的接收电流中,发射端信号导出单元632以磁共振频率K3为载波将所述充电功率调整指令解调并滤波导出至所述发射端控制器614;所述发射端控制器614连接至所述逆变电路,根据所述充电功率调整指令调节发射线圈611的发射功率。
太阳能面板清扫机器人在无线充电过程中,为了提高电能利用率、提高无线充电效率,需要解决如何使发射线圈611和接收线圈612可以达到最佳耦合效果的技术问题。
在本实施例中,接收端控制器625实时检测接收线圈612中是否收到信号;若收到信号,发射线圈611和接收线圈612可以实现耦合,可以实现无线充电的效果,但此时可能并非最佳耦合状态。接收端控制器625若收到信号,检测接收线圈612中信号强度,并根据信号强度判断接收线圈612与发射线圈611的相对位置;控制系统4根据接收线圈612与发射线圈611的相对位置,发出至少一位置调整指令,控制清扫机器人调整其位置,使得接收线圈612位于发射线圈611正上方,发射线圈611、接收线圈612在太阳能面板200的垂直投影完全重合,使发射线圈611和接收线圈612可以达到最佳耦合效果。
本实施例中,还提供一种太阳能面板清扫机器人的无线充电方法,以解决现有的太阳能面板清扫机器人存在的充电操作复杂、维护成本较高等技术问题。
本实施例所述的太阳能面板清扫机器人的无线充电方法,包括如下步骤:步骤S501)在至少一太阳能面板内部或其下方设置至少一无线电力发射装置,无线电力发射装置包括一发射线圈;将发射线圈设置于任一太阳能面板的下表面,或者,设置于任意两块相邻太阳能面板连接处的缝隙下方或缝隙内部;步骤S502)在所述清扫机器人内部或外表面设置一无线电力接收装置,无线电力接收装置包括一接收线圈;将接收线圈设置在所述清扫机器人内部底层或所述清扫机器人底部下表面;步骤S503)将所述清扫机器人放置在太阳能面板上正常作业;在所述清扫机器人行进过程中,当接收线圈位于发射线圈上方时,接收线圈与发射线圈实现电磁感应耦合或磁共振耦合;步骤S504)发射线圈将无线电能传输至接收线圈,持续为所述清扫机器人充电;步骤S505)电池管理器判断所述清扫机器人电量是否充满;若电量已充满,停止充电;返回步骤S503),清扫机器人继续在太阳能面板上正常作业。
其中,所述步骤S503)具体包括如下步骤:步骤S5031)所述清扫机器人在太阳能面板上正常作业;步骤S5032)所述清扫机器人实时检测接收线圈是否产生电流;若是,执行步骤S5033);步骤S5033)判断所述清扫机器人是否需要充电;若是,执行步骤S5034);步骤S5034)根据接收线圈中电流的大小判断接收线圈与发射线圈的相对位置和相对距离;步骤S5035)所述清扫机器人调整其位置,使得接收线圈位于发射线圈正上方。清扫机器人在太阳能面板上正常作业过程中,实时检测接收线圈是否产生电流,也就是时刻检测清扫机器人(接收线圈)附近是否存在与接收线圈耦合的发射线圈。当发现附近存在与接收线圈耦合的发射线圈之后,根据清扫机器人内可充电电池的残余电量,判断是否需要充电,如果需要充电,控制系统控制清扫机器人停止运行,开始为清扫机器人内可充电电池进行无线充电。
其中,所述步骤S5033)具体包括如下步骤:步骤S50331)实时获取所述可充电电池的剩余容量SOC值;步骤S50332)将所述可充电电池的剩余容量SOC值与一预设的电量阈值作对比;若所述可充电电池的剩余容量SOC值小于一预设的电量阈值(如10%或15%或25%,等等)时,判断所述清扫机器人需要充电。预设电量阈值是根据太阳能面板附近发射线圈的分布情况来确定的,预设电量阈值要大于或等于清扫机器人到达下一个发射线圈消耗的电量。如果发射线圈是平均分布的,预设电量阈值要大于或等于清扫机器人在任意两个相邻发射线圈之间单程运行时消耗的电量。
其中,所述步骤S505)具体包括如下步骤:步骤S5051)实时获取所述可充电电池的 剩余容量SOC值;步骤S5052)将所述可充电电池的剩余容量SOC值与一预设的充电容量阈值作对比;若所述可充电电池的剩余容量SOC值大于或等于预设的充电容量阈值(如95%或100%)时,判断所述清扫机器人电量已充满,停止充电。清扫机器人的控制系统启动动力系统和清扫装置,控制所述清扫机器人继续工作。
本实施例优点在于,在太阳能面板上表面、内部或者附近设置多个无线充电发射装置,在清扫机器人内部或下表面设置多个无线充电接收装置。在清扫机器人在太阳能面板上作业过程中,当清扫机器人行驶至无线充电发射装置上方时,利用电磁感应耦合方式或磁共振耦合方式对清扫机器人进行无线充电;整个充电过程可以实现自动控制,无需人工将清扫机器人从太阳能面板上取下,使得清扫机器人可以在太阳能面板上自动运行、自动充电、自动断电,可以实现自动持续作业,有效降低管理及维护成本。
实施例3
有些太阳能面板内部或边缘处可能会设置有金属材料,这样,如果使用实施例2的技术方案,将发射线圈611设置于任一太阳能面板200的下表面或者设置于任意两块相邻太阳能面板200连接处的缝隙201下方或缝隙201内,在两个线圈实现电磁感应耦合时,就会导致部件发热损毁,此时,实施例2的技术方案不合适,需要有一个新的技术方案,使得无线充电系统可以工作。
为了解决上述问题,如图18、图19所示,实施例3提供一种太阳能面板清扫机器人无线充电系统,大部分技术方案与实施例2相同,其区别技术特征在于,还可以包括至少一充电面板500,每一充电面板500嵌入至任一太阳能面板200上或设置于任一太阳能面板200边缘处;充电面板500上表面与太阳能面板200上表面位于同一平面上,充电面板500为非金属材质制成。
如图18所示,充电面板500嵌入至任一太阳能面板200上,是指在太阳能面板加工制作时,专门留出一特定的空间,用以嵌入充电面板500,嵌入后的充电面板500上表面与太阳能面板200上表面平齐,位于同一平面上。
如图19所示,充电面板500设置于太阳能面板200边缘处,是指在太阳能面板加工制作时,在太阳能面板的几条边的边缘处安装充电面板500,该充电面板500上表面与太阳能面板200上表面平齐,位于同一平面上。
发射线圈611可以设置于任一充电面板500内,也可以设置于任一充电面板的下表面,而不是设置于任一太阳能面板的下表面或者设置于任意两块相邻太阳能面板连接处的缝隙 内。
为解决上述技术问题,实施例3提供另一种太阳能面板清扫机器人的无线充电方法,包括如下步骤:步骤S601)在至少一太阳能面板上嵌入至少一充电面板;和/或,在至少一太阳能面板边缘处设置至少一充电面板;所述充电面板上表面与太阳能面板上表面位于同一平面上;步骤S602)在至少一充电面板内部或外部设置至少一无线电力发射装置,所述无线电力发射装置包括一发射线圈,所述发射线圈连接至一电源;将所述发射线圈设置于任一充电面板内,或者,设置于任一充电面板上表面或下表面;步骤S603)在所述清扫机器人内部或外表面设置一无线电力接收装置,无线电力接收装置包括一接收线圈;将接收线圈612设置在所述清扫机器人内部底层或所述清扫机器人底部下表面;步骤S604)将所述清扫机器人放置在太阳能面板上正常作业;在所述清扫机器人行进过程中,当接收线圈位于发射线圈上方时,接收线圈与发射线圈实现电磁感应耦合或磁共振耦合;步骤S605)发射线圈将无线电能传输至接收线圈,持续为所述清扫机器人充电;步骤S606)判断所述清扫机器人电量是否充满;若电量已充满,停止充电;返回步骤S604)。
其中,所述步骤S604)具体包括如下步骤:步骤S6041)所述清扫机器人在太阳能面板上正常作业;步骤S6042)所述清扫机器人实时检测接收线圈是否产生电流;若是,执行步骤S6043);步骤S6043)判断所述清扫机器人是否需要充电;若是,执行步骤S6044);步骤S6044)根据接收线圈中电流的大小判断接收线圈与发射线圈的相对位置和相对距离;步骤S6045)所述清扫机器人调整其位置,使得接收线圈位于发射线圈正上方。清扫机器人在太阳能面板上正常作业过程中,实时检测接收线圈是否产生电流,也就是时刻检测清扫机器人(接收线圈)附近是否存在与接收线圈耦合的发射线圈。当发现附近存在与接收线圈耦合的发射线圈之后,根据清扫机器人内可充电电池的残余电量,判断是否需要充电,如果需要充电,控制系统控制清扫机器人停止运行,开始为清扫机器人内可充电电池进行无线充电。
其中,所述步骤S6043)具体包括如下步骤:步骤S60431)实时获取所述可充电电池的剩余容量SOC值;步骤S60432)将所述可充电电池的剩余容量SOC值与一预设的电量阈值作对比;若所述可充电电池的剩余容量SOC值小于一预设的电量阈值(如10%或15%或25%,等等)时,判断所述清扫机器人需要充电。预设电量阈值是根据太阳能面板附近发射线圈的分布情况来确定的,预设电量阈值要大于或等于清扫机器人到达下一个发射线圈消耗的电量。如果发射线圈是平均分布的,预设电量阈值要大于或等于清扫机器人在任 意两个相邻发射线圈之间单程运行时消耗的电量。
其中,所述步骤S606)具体包括如下步骤:步骤S6061)实时获取所述可充电电池的剩余容量SOC值;步骤S6062)将所述可充电电池622的剩余容量SOC值与一预设的充电容量阈值作对比;若所述可充电电池622的剩余容量SOC值大于或等于预设的充电容量阈值(如95%或100%)时,判断所述清扫机器人电量已充满,停止充电。清扫机器人的控制系统启动动力系统和清扫装置,控制所述清扫机器人继续工作。
本实施例优点在于,独立设置一充电面板,与太阳能面板位于同一平面上;即使在太阳能面板上存在金属材料,也可以使得接收线圈与发射线圈可以实现电磁感应耦合或磁共振耦合,进而实现对机器人的无线充电。整个充电过程可以实现自动控制,无需人工将清扫机器人从太阳能面板上取下,使得清扫机器人可以在太阳能面板上自动运行、自动充电、自动断电,可以实现自动持续作业,有效降低管理及维护成本。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (28)

  1. 一种太阳能面板清扫机器人的无线充电系统,包括:
    至少一太阳能面板;
    一清扫机器人,在至少一太阳能面板上行驶或停留;
    一可充电电池,设置在所述清扫机器人内部,用于为所述清扫机器人提供动力;
    至少一无线电力发射装置,设置在所述清扫机器人外部;每一无线电力发射装置包括一发射线圈,所述发射线圈连接至一电源;以及
    一无线电力接收装置,设置在所述清扫机器人内部或外表面;所述无线电力接收装置包括一接收线圈,所述接收线圈连接至所述可充电电池;
    其中,当所述接收线圈位于所述发射线圈上方时,所述接收线圈与所述发射线圈实现电磁感应耦合或磁共振耦合,所述发射线圈将无线电能传输至所述接收线圈。
  2. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,所述发射线圈设置于任一太阳能面板的下表面;或者,所述发射线圈设置于任意两块相邻太阳能面板连接处的缝隙下方或缝隙内。
  3. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,所述接收线圈设置于所述清扫机器人内部底层;或者,所述接收线圈设置于所述清扫机器人底部下表面。
  4. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,所述太阳能面板清扫机器人的无线充电系统还包括至少一充电面板;
    每一充电面板嵌入至任一太阳能面板上或设置于任一太阳能面板边缘处;
    所述充电面板上表面与所述太阳能面板上表面位于同一平面上;
    其中,所述发射线圈设置于任一充电面板内,或者,设置于任一充电面板的下表面。
  5. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,当所述接收线圈与所述发射线圈耦合时,所述发射线圈与所述接收线圈的距离为1mm~40mm;所述发射线圈与所述接收线圈之间的介质皆为非金属材质。
  6. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,所述无线电力发射装置还包括:
    一直流电源,用于提供直流电流;
    一逆变电路,其输入端连接至所述直流电源,其输出端连接至所述发射线圈;以及,
    一发射端控制器,连接至所述逆变电路,用于控制所述逆变电路的输出功率;
    其中,所述逆变电路用于将所述直流电流转换为可变频率和占空比的交流电流,并将所述交流电流输出给所述发射线圈。
  7. 权利要求6所述的太阳能面板清扫机器人的无线充电系统,其中,所述直流电源为至少一太阳能放电模组;
    所述无线电力发射装置还包括:
    一DC-DC稳压电路,其输入端连接至所述直流电源,其输出端连接至所述逆变电路的输入端;其中,所述DC-DC稳压电路用以对所述直流电流进行稳压处理,使得所述逆变电路获得稳定的直流电流源。
  8. 权利要求6所述的太阳能面板清扫机器人的无线充电系统,其中,
    所述直流电源包括:
    一交流电源,用以提供交流电流;以及,
    一AC-DC适配器,其输入端连接至所述交流电源,其输出端连接至所述逆变电路的输入端;所述AC-DC适配器用于将所述交流电流转换为直流电流。
  9. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,所述无线电力接收装置还包括:
    一整流电路,其输入端连接至所述接收线圈,用于将所述接收线圈输出的交流电流转换成直流电流;
    一DC-DC转换电路,其输入端连接至所述整流电路的输出端,其输出端连接至所述可充电电池;以及,
    一接收端控制器,连接至所述DC-DC转换电路;所述接收端控制器内存储有所述可充电电池的至少一充电曲线,根据所述充电曲线计算所述可充电电池的最佳充电电压;
    其中,所述DC-DC转换电路将所述整流电路输出的直流电流的电压转换成所述可充电电池的最佳充电电压,并为所述可充电电池充电。
  10. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,
    所述无线电力接收装置还包括:
    一电池信息采集器,连接至所述可充电电池,用于采集所述可充电电池的剩余容量SOC值;
    一无线充电开关,其一端连接至所述DC-DC转换电路,其另一端连接至所述可充电电池或所述整流电路;以及
    一电池管理器,其一端连接至所述电池信息采集器,以实时获取所述可充电电池的剩余容量SOC值;其另一端连接至所述无线充电开关,以控制所述无线充电开关闭合或断开;
    其中,当所述可充电电池的剩余容量SOC值小于或等于一预设的电量阈值时,所述电池管理器控制所述无线充电开关闭合;当所述可充电电池的剩余容量SOC值大于或等于一充电容量阈值时,所述电池管理器控制所述无线充电开关断开。
  11. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,
    所述无线电力发射装置包括:
    一发射端信号载入单元,连接至所述发射线圈;以及,
    一发射端信号导出单元,连接至所述发射线圈。
  12. 权利要求1所述的太阳能面板清扫机器人的无线充电系统,其中,
    所述无线电力接收装置包括
    一接收端信号载入单元,连接至所述接收线圈;以及,
    一接收端信号导出单元,连接至所述接收线圈。
  13. 权利要求12所述的太阳能面板清扫机器人的无线充电系统,其中,
    当所述接收线圈与所述发射线圈实现电磁感应耦合时,所述无线电力发射装置与所述无线电力接收装置实现载波通信;
    所述发射端信号载入单元将要发射的信息以一载波频率K1调制后加载至所述发射线圈的发射电流中,所述接收端信号导出单元以调制频率K1将所述接收线圈的接收电流中的信息解调后滤波导出;
    所述接收端信号载入单元将要发射的信息以一载波频率K2调制后加载至所述接收线圈的接收电流中,所述发射端信号导出单元以调制频率K2将所述发射线圈的发射电流中的信息解调后滤波导出。
  14. 权利要求13所述的太阳能面板清扫机器人的无线充电系统,其中,
    所述无线电力发射装置还包括:
    一直流电源,用于提供直流电流;
    一逆变电路,其输入端连接至所述直流电源,其输出端连接至所述发射线圈;以及
    一发射端控制器,连接至所述发射端信号载入单元、所述发射端信号导出单元;
    所述无线电力接收装置包括:
    一接收端控制器,连接至所述接收端信号载入单元、所述接收端信号导出单元;
    其中,所述接收端控制器内存储有所述可充电电池的至少一充电曲线,根据所述充电曲线实时获取所述可充电电池的最佳充电电压,根据所述最佳充电电压计算最佳充电功率,发出至少一充电功率调整指令;所述发射端控制器连接至所述逆变电路,根据所述充电功率调整指令调节所述发射线圈的发射功率。
  15. 权利要求14所述的太阳能面板清扫机器人的无线充电系统,其中,当所述接收线圈与所述发射线圈实现电磁感应耦合时,所述接收端信号载入单元将所述充电功率调整指令以一载波频率K2调制后加载至所述接收电流中,所述发射端信号导出单元以调制频率K2将所述发 射电流中的所述充电功率调整指令解调后滤波导出至所述发射端控制器。
  16. 权利要求14所述的太阳能面板清扫机器人的无线充电系统,其中,当所述接收线圈与所述发射线圈实现磁共振耦合时,所述接收端信号载入单元将所述充电功率调整指令以磁共振频率K3为载波调制到磁共振的接收电流中,所述发送端信号导出单元以磁共振频率K3为载波将所述充电功率调整指令解调并滤波导出至所述发射端控制器。
  17. 权利要求12所述的太阳能面板清扫机器人的无线充电系统,其中,
    当所述接收线圈与所述发射线圈实现磁共振耦合时,所述无线电力发射装置与所述无线电力接收装置实现载波通信;
    所述发射端信号载入单元将要发射的信息以磁共振频率K3为载波调制到磁共振的所述发射线圈的发射电流中,所述接收端信号导出单元从所述接收线圈的接收电流中以磁共振频率K3为载波将所述信息解调并滤波导出;
    所述接收端信号载入单元将要发射的信息以磁共振频率K3为载波调制到磁共振的接收电流中,所述发送端信号导出单元以磁共振频率K3为载波将所述信息解调并滤波导出。
  18. 权利要求17所述的太阳能面板清扫机器人的无线充电系统,其中,
    所述无线电力发射装置还包括
    一直流电源,用于提供直流电流;
    一逆变电路,其输入端连接至所述直流电源,其输出端连接至所述发射线圈;以及
    一发射端控制器,连接至所述发射端信号载入单元、所述发射端信号导出单元;
    所述无线电力接收装置包括
    一接收端控制器,连接至所述接收端信号载入单元、所述接收端信号导出单元;
    其中,所述接收端控制器内存储有所述可充电电池的至少一充电曲线,根据所述充电曲线实时获取所述可充电电池的最佳充电电压,根据所述最佳充电电压计算最佳充电功率,发出至少一充电功率调整指令;所述发射端控制器连接至所述逆变电路,根据所述充电功率调整指令调节所述发射线圈的发射功率。
  19. 权利要求18所述的太阳能面板清扫机器人的无线充电系统,其中,
    当所述接收线圈与所述发射线圈实现电磁感应耦合时,所述接收端信号载入单元将所述充电功率调整指令以一载波频率K2调制后加载至所述接收电流中,所述发射端信号导出单元以调制频率K2将所述发射电流中的所述充电功率调整指令解调后滤波导出至所述发射端控制器。
  20. 权利要求18所述的太阳能面板清扫机器人的无线充电系统,其中,
    当所述接收线圈与所述发射线圈实现磁共振耦合时,所述接收端信号载入单元将所述充电功 率调整指令以磁共振频率K3为载波调制到磁共振的接收电流中,所述发送端信号导出单元以磁共振频率K3为载波将所述充电功率调整指令解调并滤波导出至所述发射端控制器。
  21. 一种太阳能面板清扫机器人的无线充电方法,其中,包括如下步骤:
    在至少一太阳能面板内部或其下方设置至少一无线电力发射装置,包括一发射线圈;将所述发射线圈设置于任一太阳能面板的下表面,或者,设置于任意两块相邻太阳能面板连接处的缝隙下方或缝隙内;
    在所述清扫机器人内设置一无线电力接收装置,包括一接收线圈;将所述接收线圈设置在所述清扫机器人内部底层或所述清扫机器人底部下表面;
    所述清扫机器人被放置在所述太阳能面板上正常作业;在所述清扫机器人行进过程中,当所述接收线圈位于所述发射线圈上方时,所述接收线圈与所述发射线圈实现电磁感应耦合或磁共振耦合;
    所述发射线圈将无线电能传输至所述接收线圈,持续为所述清扫机器人充电;
    判断所述清扫机器人电量是否充满;若电量已充满,停止充电,所述清扫机器人在所述太阳能面板上正常作业。
  22. 权利要求21所述的太阳能面板清扫机器人的无线充电方法,其中,所述清扫机器人被放置在所述太阳能面板上正常作业的步骤,具体包括如下步骤:
    实时检测所述接收线圈是否产生电流;若是,执行下一步骤;
    判断所述清扫机器人是否需要充电;若是,执行下一步骤;
    根据所述接收线圈中电流的大小判断所述接收线圈与所述发射线圈的相对位置和相对距离;所述清扫机器人调整其位置,使得所述接收线圈位于所述发射线圈正上方。
  23. 权利要求22所述的太阳能面板清扫机器人的无线充电方法,其中,所述判断所述清扫机器人是否需要充电的步骤,具体包括如下步骤:
    实时获取所述可充电电池的剩余容量SOC值;以及
    将所述可充电电池的剩余容量SOC值与一预设的电量阈值作对比;若所述可充电电池的剩余容量SOC值小于一预设的电量阈值时,判断所述清扫机器人需要充电。
  24. 权利要求21所述的太阳能面板清扫机器人的无线充电方法,其中,所述判断所述清扫机器人电量是否充满的步骤,具体包括如下步骤:
    实时获取所述可充电电池的剩余容量SOC值;
    将所述可充电电池的剩余容量SOC值与一预设的充电容量阈值作对比;若所述可充电电池的剩余容量SOC值大于或等于预设的充电容量阈值时,判断所述清扫机器人电量已充满。
  25. 一种太阳能面板清扫机器人的无线充电方法,其中,包括如下步骤:
    在至少一太阳能面板上嵌入至少一充电面板;或者,在至少一太阳能面板边缘处设置至少一充电面板;所述充电面板上表面与所述太阳能面板上表面位于同一平面上;
    在至少一充电面板内部或外部设置至少一无线电力发射装置,所述无线电力发射装置包括一发射线圈,所述发射线圈连接至一电源;将所述发射线圈设置于任一充电面板内,或者,设置于任一充电面板上表面或下表面;
    在所述清扫机器人内设置一无线电力接收装置,所述无线电力接收装置包括一接收线圈;将所述接收线圈设置在所述清扫机器人内部底层或所述清扫机器人底部下表面;
    所述清扫机器人被放置在所述太阳能面板上正常作业;在所述清扫机器人行进过程中,当所述接收线圈位于所述发射线圈上方时,所述接收线圈与所述发射线圈实现电磁感应耦合或磁共振耦合,所述发射线圈将无线电能传输至所述接收线圈,持续为所述清扫机器人充电;
    判断所述清扫机器人电量是否充满;若电量已充满,停止充电;所述清扫机器人在所述太阳能面板上正常作业。
  26. 权利要求25所述的太阳能面板清扫机器人的无线充电方法,其中,所述清扫机器人被放置在所述太阳能面板上正常作业的步骤,具体包括如下步骤:
    所述清扫机器人实时检测所述接收线圈是否产生电流;若是,执行下一步骤;
    判断所述清扫机器人是否需要充电;若是,执行下一步骤;
    根据所述接收线圈中电流的大小判断所述接收线圈与所述发射线圈的相对位置和相对距离;所述清扫机器人调整其位置,使得所述接收线圈位于所述发射线圈正上方。
  27. 权利要求26所述的太阳能面板清扫机器人的无线充电方法,其中,所述判断所述清扫机器人是否需要充电的步骤,具体包括如下步骤:
    实时获取所述可充电电池的剩余容量SOC值;
    将所述可充电电池的剩余容量SOC值与一预设的电量阈值作对比;若所述可充电电池的剩余容量SOC值小于一预设的电量阈值时,判断所述清扫机器人需要充电。
  28. 权利要求25所述的太阳能面板清扫机器人的无线充电方法,其中,所述判断所述清扫机器人电量是否充满的步骤,具体包括如下步骤:
    实时获取所述可充电电池的剩余容量SOC值;
    将所述可充电电池的剩余容量SOC值与一预设的充电容量阈值作对比;若所述可充电电池的剩余容量SOC值大于或等于预设的充电容量阈值时,判断所述清扫机器人电量已充满。
PCT/CN2017/072760 2016-09-21 2017-01-26 太阳能面板清扫机器人的无线充电系统及无线充电方法 WO2018053982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610835953.9 2016-09-21
CN201610835953.9A CN106208276A (zh) 2016-09-21 2016-09-21 太阳能面板清扫机器人的无线充电系统及无线充电方法

Publications (1)

Publication Number Publication Date
WO2018053982A1 true WO2018053982A1 (zh) 2018-03-29

Family

ID=58067123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072760 WO2018053982A1 (zh) 2016-09-21 2017-01-26 太阳能面板清扫机器人的无线充电系统及无线充电方法

Country Status (2)

Country Link
CN (1) CN106208276A (zh)
WO (1) WO2018053982A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011393A (zh) * 2019-04-22 2019-07-12 佛山职业技术学院 一种基于光伏运维的无线充电控制方法及其系统
CN110138073A (zh) * 2018-07-06 2019-08-16 洛阳视距智能科技有限公司 电力巡检机器人用太阳能在线自主混合充电装置及方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208276A (zh) * 2016-09-21 2016-12-07 苏州瑞得恩自动化设备科技有限公司 太阳能面板清扫机器人的无线充电系统及无线充电方法
CN106788206B (zh) * 2016-12-29 2019-04-23 湖南创动智能科技有限公司 一种光伏电池板的清洁装置的电量管理方法及系统
CN108268032A (zh) * 2016-12-30 2018-07-10 北京天诚同创电气有限公司 光伏组件清洁装置的控制方法及控制装置
US10498288B2 (en) * 2017-01-26 2019-12-03 Evermore United S.A. Waterless cleaning system and method for solar trackers using an autonomous robot
US10797636B2 (en) 2017-01-26 2020-10-06 Evermore United S.A. Waterless cleaning system and method for solar trackers using an autonomous robot
US11201583B2 (en) 2017-01-26 2021-12-14 Evermore United S.A. Waterless cleaning system and method for solar trackers using an autonomous robot
US11357512B2 (en) 2017-05-12 2022-06-14 Robert Fishel Mechanism and device for left atrial appendage occlusion with electrical isolation
CN108855999A (zh) * 2017-05-12 2018-11-23 中惠创智无线供电技术有限公司 一种无线充电系统发射线圈平面异物检测处理装置
CN108405383B (zh) * 2018-01-24 2023-08-08 青海大学 一种太阳能电池板有轨清洁装置
CN108803417A (zh) * 2018-06-12 2018-11-13 芜湖乐创电子科技有限公司 一种太阳能自充式小区道路清洁机器人控制系统
CN109245256A (zh) * 2018-10-08 2019-01-18 深圳市优瑞新科技有限公司 一种智能马桶遥控板无线充电装置
CN111835229A (zh) * 2019-04-16 2020-10-27 湖南早晨纳米机器人有限公司 一种纳米发动机
CN111753695B (zh) * 2020-06-17 2023-10-13 上海宜硕网络科技有限公司 一种模拟机器人充电返回路线的方法、装置和电子设备
CN112165177A (zh) * 2020-11-06 2021-01-01 珠海格力电器股份有限公司 冰箱
CN113245332B (zh) * 2021-05-17 2022-07-12 海宁科茂微电网技术有限公司 一种光伏组件清扫机器人无线充电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111285A (ja) * 2001-09-28 2003-04-11 Sharp Corp 充電システム及びそれを備えた電気掃除機
CN103053089A (zh) * 2010-07-06 2013-04-17 Lg电子株式会社 自动清扫机的充电系统
CN205489727U (zh) * 2016-04-08 2016-08-17 三峡大学 一种玻璃幕墙机器人的无线充电器
CN106208276A (zh) * 2016-09-21 2016-12-07 苏州瑞得恩自动化设备科技有限公司 太阳能面板清扫机器人的无线充电系统及无线充电方法
CN106269624A (zh) * 2016-09-21 2017-01-04 苏州瑞得恩自动化设备科技有限公司 太阳能面板清扫机器人
CN206164131U (zh) * 2016-09-21 2017-05-10 苏州瑞得恩光能科技有限公司 太阳能面板清扫机器人的无线充电系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101164090B1 (ko) * 2009-04-28 2012-07-12 성균관대학교산학협력단 태양광을 이용한 레일식 빌딩 창문 미화 시스템
CN102130477A (zh) * 2010-01-14 2011-07-20 昆盈企业股份有限公司 无线充电装置及其充电方法
CN102651568A (zh) * 2011-02-28 2012-08-29 上海工程技术大学 一种无线充电装置
US9509166B2 (en) * 2011-05-16 2016-11-29 Samsung Electronics Co., Ltd. Apparatus and method for wireless power transmission
EP2867997B1 (en) * 2012-06-29 2016-12-28 Koninklijke Philips N.V. Wireless inductive power transfer
CN104158305B (zh) * 2014-07-30 2017-01-25 华南理工大学 基于自适应磁耦合谐振匹配的能量与信息同步传输系统
CN205105157U (zh) * 2015-09-08 2016-03-23 宁夏瑞翼天成自动化科技有限公司 一种用于光伏电站的清洁装置
CN205407372U (zh) * 2016-03-02 2016-07-27 杭州品联科技有限公司 用于清洗机器人的充电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111285A (ja) * 2001-09-28 2003-04-11 Sharp Corp 充電システム及びそれを備えた電気掃除機
CN103053089A (zh) * 2010-07-06 2013-04-17 Lg电子株式会社 自动清扫机的充电系统
CN205489727U (zh) * 2016-04-08 2016-08-17 三峡大学 一种玻璃幕墙机器人的无线充电器
CN106208276A (zh) * 2016-09-21 2016-12-07 苏州瑞得恩自动化设备科技有限公司 太阳能面板清扫机器人的无线充电系统及无线充电方法
CN106269624A (zh) * 2016-09-21 2017-01-04 苏州瑞得恩自动化设备科技有限公司 太阳能面板清扫机器人
CN206164131U (zh) * 2016-09-21 2017-05-10 苏州瑞得恩光能科技有限公司 太阳能面板清扫机器人的无线充电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138073A (zh) * 2018-07-06 2019-08-16 洛阳视距智能科技有限公司 电力巡检机器人用太阳能在线自主混合充电装置及方法
CN110138073B (zh) * 2018-07-06 2024-03-26 洛阳视距智能科技有限公司 电力巡检机器人用太阳能在线自主混合充电装置及方法
CN110011393A (zh) * 2019-04-22 2019-07-12 佛山职业技术学院 一种基于光伏运维的无线充电控制方法及其系统

Also Published As

Publication number Publication date
CN106208276A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018053982A1 (zh) 太阳能面板清扫机器人的无线充电系统及无线充电方法
WO2018053986A1 (zh) 太阳能面板清扫机器人
US10985612B2 (en) Power supplies for pool and spa equipment
CN205989678U (zh) 一种无人驾驶的清扫车
WO2018053985A1 (zh) 太阳能面板清扫机器人控制系统
CN101375781B (zh) 地面处理系统及地面处理装置与充电座的对接方法
WO2018053980A1 (zh) 履带张紧装置及履带式行进装置
WO2018053981A1 (zh) 液体分发容器及清扫机器人
CN104539033A (zh) 一种电动汽车自调整无线充电系统及方法
CN105291112A (zh) 一种巡逻机器人
CN109317432A (zh) 光伏组件智能清洁机器人
WO2018053984A1 (zh) 机器人在矩形斜坡上行驶的路径导航方法
CN107414857A (zh) 一种综合性的智能家居服务机器人
JP2019217206A (ja) 電気掃除装置
CN103858732A (zh) 一种节能型卷盘式喷灌机
CN105249886A (zh) 一种多功能清洁装置
CN211726666U (zh) 基于负压吸附的光伏板清洁机器人
CN205930308U (zh) 一种新型搬运车
CN209948766U (zh) 一种巡检机器人无线充电系统
CN206164131U (zh) 太阳能面板清扫机器人的无线充电系统
KR102131949B1 (ko) Ict를 기반으로 한 태양광 자동 충전식 세륜기
CN206423354U (zh) 养鸡场智能喂食车
CN113731901A (zh) 一种车载移动式配电设施除尘装置
CN104068797A (zh) 直流充电自动吸尘器
CN217451124U (zh) 一种光伏玻璃表面清洁装置

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852062

Country of ref document: EP

Kind code of ref document: A1