WO2018053659A1 - Reactor, sistema y método para procesar polímeros - Google Patents

Reactor, sistema y método para procesar polímeros Download PDF

Info

Publication number
WO2018053659A1
WO2018053659A1 PCT/CL2016/000055 CL2016000055W WO2018053659A1 WO 2018053659 A1 WO2018053659 A1 WO 2018053659A1 CL 2016000055 W CL2016000055 W CL 2016000055W WO 2018053659 A1 WO2018053659 A1 WO 2018053659A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
unit
air
reactor according
heating
Prior art date
Application number
PCT/CL2016/000055
Other languages
English (en)
French (fr)
Inventor
Sergio Guillermo CORTES VERGARA
Original Assignee
Servicios Industriales Cortes Y Salazar Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicios Industriales Cortes Y Salazar Spa filed Critical Servicios Industriales Cortes Y Salazar Spa
Priority to PCT/CL2016/000055 priority Critical patent/WO2018053659A1/es
Priority to US15/758,830 priority patent/US20200230565A1/en
Priority to EP16781046.4A priority patent/EP3517205A1/en
Publication of WO2018053659A1 publication Critical patent/WO2018053659A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/087Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/09Stirrers characterised by the mounting of the stirrers with respect to the receptacle
    • B01F27/091Stirrers characterised by the mounting of the stirrers with respect to the receptacle with elements co-operating with receptacle wall or bottom, e.g. for scraping the receptacle wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/192Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/21Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
    • B01F27/2122Hollow shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • B01F27/906Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms  with fixed axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/751Discharging by opening a gate, e.g. using discharge paddles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/007Feed or outlet devices as such, e.g. feeding tubes provided with moving parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00858Moving elements
    • B01J2208/00867Moving elements inside the bed, e.g. rotary mixer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00204Sensing a parameter of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means

Definitions

  • the present invention consists of a reactor, system and method for processing various products or materials such as polymers, mainly PET, paint and in general, any type of gummy polymers or elastomers used, for example, to form products such as tires or others, where, through a simple design, high efficiency rates are achieved at low cost.
  • polymers mainly PET, paint and in general, any type of gummy polymers or elastomers used, for example, to form products such as tires or others, where, through a simple design, high efficiency rates are achieved at low cost.
  • reactors are used, for example to recreate specific conditions of pressure, temperature, humidity, etc.
  • This type of devices is widely disclosed in the state of the art, which basically consist of a vertical or horizontal cylinder into which raw material optionally pre-processed from a previous process is introduced. Inside the reactor, the material reacts chemically favored by specific conditions of temperature and pressure, whose operation is often complemented by means that agitate the content inside the reactor. After a predetermined time, the processed material is removed from the reactor and optionally reprocessed to obtain it in the desired form.
  • WO 2007109889 describes a reactor for high temperature and high pressure reactions comprising: an external reactor adapted to withstand a reaction pressure and a reaction temperature, wherein the The external reactor has a sealable reactor cover. It further comprises an internal container within the external reactor for containing a reaction solution and at least one reaction vessel, wherein the inner container is opened to the external reactor so that the reaction pressure of the internal container and the external reactor are substantially equalized and the vapor in the inner container passes to the outer container. It also comprises a steam injector in communication with the inner vessel for heating the reaction solution, an outlet in the outer vessel for exhausting the steam from the external reactor and the inner vessel and an external reactor outlet for draining a liquid contained between the reactor external and the internal container.
  • US 3130015 discloses a pressure tank adapted to contain chemical reactions involving corrosive fluids under conditions of high pressure and temperature comprising: a pressure resistant outer casing having a cylindrical portion and heads with openings in each end of said cylindrical part, wherein said outer shell is circumferentially divided into at least two segments. It also comprises a relatively thin disposable coating resistant to corrosion within said metal housing, which has a pressure resistant reinforcing portion near the head, which also provides a fixation for an external conduit. The pond also has deflectors in the lining and agitation means.
  • reactors such as those described above are their use in recycling processes, developed in the face of constant concern for the use of waste materials, with the effort focused on obtaining products whose quality is close to those obtained when the product is recycled. manufactures with virgin raw material.
  • one of its main applications corresponds to the manufacture of bottles, tires or all kinds of rubbery polymers, where in recent years efforts have been made to promote recirculation and recycling of these products increasingly consumed by people , in order to remove them from the volume of solid waste which has also been increased.
  • US 6048907 discloses an apparatus for the conversion of some recirculated materials into polyester polyols including a reactor vessel having a inner volume, a stirring member rotatably mounted inside the reactor vessel, a rotating device connected to the stirring member and a heater inside the vessel in order to raise the temperature of the inner volume of the reactor by at least 175 ° C.
  • the reactor vessel has an inner wall and an outer wall with a space therebetween.
  • the heater emits a heated fluid through the space between the inner wall and the outer wall.
  • the agitation member includes a tubular member that extends through the interior volume of the container and a plurality of agitation arms.
  • WO 2004063248 proposes a method for solid state polymerization of plastic waste, using a turbo-heater comprising a cylindrical tubular body equipped with a heating jacket and closed at opposite ends by end plates. , equipped with inlet and outlet openings and having a coaxial rotor with vanes fixed rotatably therein.
  • the plastic is heated in an inert atmosphere while flowing in the form of a thin, turbulent, dynamic layer, in contact with the heated stage at at least 200 ° C, obtaining a final material with a higher average intrinsic viscosity. or equal to 0.85 dl / g.
  • the present invention consists of a system for processing various products or materials such as polymers, especially PET, paint and in general any type of rubbery polymers or elastomers that can be found in products such as tires, among others.
  • the system allows the reaction of solid to semi-liquid material thanks to the conditions of temperature and positive pressure that are achieved inside a reactor, which cause the material to remain suspended in the interior of the reactor in a large mass of air, emulating a system in which the force G is tending to zero and thus achieving the initial properties of the products to be processed.
  • the quality of the final product obtained is equivalent to the product in its virgin state.
  • the system of the present invention is composed of a reactor which can be supported by a metallic structure. Said reactor is connected to a heating device composed of a heating unit and an air injection unit.
  • the system comprises an electronic type control unit (PLC), which is configured to control the operation and different parameters of the system at different instants of time, such as the operation of the heating equipment and the air flow supplied to the reactor, in based on the information provided by at least one sensor disposed in the or in any other component of the system.
  • PLC electronic type control unit
  • the system of the present invention further comprises a regeneration unit consisting of a device formed by a chamber connected on the one hand to at least one air outlet of the reactor and on the other to the heating equipment.
  • the regeneration unit is designed to condition the vapors and gases coming from the reactor, transferring carbon atoms and / or other properties before being recirculated to the reactor, thus improving the quality of the final product obtained by the process carried out by the present system.
  • the reactor of the present invention consists of a vertical structure formed by two concentric ferrous ponds which form an air jacket between them].
  • the upper part of the reactor comprises a cover that contains at least one inlet conduit of material regulated by a valve of rocker.
  • At least one chimney for the evacuation of an air flow into the reactor is also configured in the reactor lid, where according to a preferred embodiment of the invention, there are two chimneys where one of them is in communication with the reactor.
  • the regeneration unit to recirculate part of the gases coming from the reactor.
  • the reactor comprises inside the inner tank a stirring unit composed of a vertical axis driven by a rotating motor, wherein said shaft also comprises in different positions a plurality of blades of different type, size and angle to stir the contents inside the reactor .
  • stirring is achieved by this blade configuration homogeneous material inside the reactor in ascending and descending circular direction, which allows to increase the quality of the final product processed.
  • the reactor is connected in its lower part to a discharge element comprising an opening and closing valve connected to a discharge tray to evacuate the material from inside the reactor. It also comprises, in its lower part, an air inlet in connection with the outlet of the heating equipment that allows the air supplied by the heating equipment to enter the reactor.
  • the configuration of the reactor of the present invention allows to generate high pressure conditions inside, at the same time that with its design it is possible to obtain different temperature levels in different areas of the reactor.
  • this design it is possible to parameterize the temperature and pressure conditions inside the reactor, eliminating the need for multiple sensors and complex monitoring equipment.
  • the high temperature and pressure levels obtained in a controlled manner inside the reactor allow minimizing the heat supplied by the heating equipment, achieving an efficient energy consumption.
  • the joint operation of all the parts and elements of the system added to the fact that the materials of the reactor and other components have been carefully selected to allow the opening of the molecules of the processed material and with the favoring of the chemical reactions, achieve that the processed material obtains recovery yields that give it essentially the same properties of the virgin material.
  • the present invention also consists of a method for processing products such as polymers by the system defined above, which comprises the steps of: - Enter the material to be processed to the inner tank of a reactor through at least one material inlet duct.
  • FIG. 1 illustrates a general diagram of the components that make up the system of the present invention.
  • - Figure 2 illustrates a view in longitudinal section of the reactor that is part of the system of the present invention.
  • - Figure 3 illustrates a cross-sectional view of the reactor that is part of the system of the present invention.
  • FIG. 4 illustrates a longitudinal section view of the heating equipment that forms part of the system of the present invention.
  • FIG. 5 illustrates a cross-sectional view of the heating equipment that forms part of the system of the present invention.
  • FIG. 6 illustrates a longitudinal section view of the regeneration unit that forms part of the system of the present invention.
  • a system composed of a reaction tank or reactor 100 which consists of a vertical structure formed by a cylindrical upper section 101 and a conical lower zone 102.
  • Said reactor 100 may be supported by a structure of support 200 which preferably consists of a vertical structure made of steel, which allows to support both the reactor 100 and the product discharge elements from the reactor and other elements such as for example conveyor belts, among others.
  • the reactor 100 is preferably connected in the lower conical zone 102 to a heating equipment 300 by means of an intake pipe 350, wherein said heating equipment 300 is composed of a heating unit 310 and a fuel injection unit.
  • air 320 where the latter preferably consists of a turbo-compressor differential blower of high power and high flow rate, which is driven by an electric motor (not shown).
  • the heating unit 310 consists of a concentric duplex chamber 3 1 1 with a cylindrical shape in which a plurality of electric heaters 3 12 are inserted, as can be seen in Figure 4.
  • the concentric duplex chamber 31 1 comprises an inner chamber 313, an outer chamber 314, an air inlet 3 1 5, an air outlet 316 and a cover 31 7.
  • the air inlet 3 1 5 is connected to the outer chamber 314 and this in turn is in communication with the inner chamber 3 13 at the rear, so that the air entering the heating unit 31 0 coming from the air injection unit flows circularly through the outer chamber 314 and enters gradually down the back towards the inner chamber 313 to flow later towards the air outlet 3 1 6.
  • the electric heaters 312 are arranged, which are preferably of the sword type and as shown in Figure 5, these are distributed in a star configuration, attached to a shaft of heaters 320 of three. branches or in the form of "Y", so that each branch supports a group of heaters ordered in parallel.
  • the heating unit 3 1 0 is composed of 20 to 50 electric heaters 31 2, preferably by a group of 40 heaters distributed in three branches to the interior of the chamber 313.
  • the system comprises a control unit 400 consisting of a programmable logic controller (PLC), configured to control the operation and different system parameters at different time instants defined by a sequencer.
  • PLC programmable logic controller
  • control unit 400 is adapted to control, for example, the operation of the electric heaters 312 of the control unit. heating 3 10, the air flow supplied by the air injection unit 320; the exit of the air through the at least one reactor chimney and the speed of agitation of the material inside the reactor.
  • control unit 400 controls the activation and deactivation of the electric heaters 312 of the heating unit 310 on the basis of the information provided by at least one temperature sensor 318 disposed at the output of air 316, which according to a preferred embodiment, consists of a PT100 probe for measuring the temperature at the outlet of the heating unit 310.
  • the system of the present invention further comprises a regeneration unit 500 consisting of a device formed by a chamber 501 connected to at least one air outlet 100C of the reactor 100.
  • a regeneration unit 500 consisting of a device formed by a chamber 501 connected to at least one air outlet 100C of the reactor 100.
  • the chamber 501 of the regeneration unit has a cylindrical lower section 502 and a conical upper section 503 which opens into an upper outlet 504.
  • the regeneration unit comprises a housing 505 isolated from the chamber 501 comprising an opening 506 for the entry of air from the reactor.
  • the housing 505 further comprises on its upper face perforations (not shown) on which a plurality of cylindrical chimneys 507 of different diameters are formed, located inside the chamber 501.
  • all the components of the regeneration unit are constructed of Carbon Steel.
  • the air coming from the reactor enters the regeneration unit 500 through the opening 506 and accumulates in the housing 505 to subsequently flow into the chamber 501 by means of the cyclical chimneys.
  • This multi chamber configuration and with chimneys of different diameters allow the air to have a suitable residence inside the unit of regeneration 500 to allow the molecules of the air to be enriched with the carbon present in the materials of said unit, which will favor the chemical reactions inside the reactor.
  • the reactor 100 consists of a vertical structure formed by two tanks of concentric carbon steel (100D, 100E) each having a cylindrical upper section 101 and a conical lower section 102 open at its lower end.
  • an air jacket 103 is formed, which has inside it a structure of cells (not shown) made of carbon steel having a diamond-shaped cross section and they have a zigzag pattern along the shirt 103.
  • the reactor 100 or part thereof is covered by a thermal jacket (not shown) which serves to improve the insulation conditions and maintain an optimum temperature inside it.
  • the thermal jacket can be manufactured for example from mineral wool or from any other suitable insulating material.
  • the thermal jacket can cover other components of the system such as, for example, the intake pipe 350.
  • the upper part of the reactor 1 00 comprises a cover 104 formed by a plate attached to the upper edge of the outer pond 100E by means of suitable fastening means.
  • Said lid 1 04 comprises at least one inlet conduit of material 1 10 preferably of cylindrical shape and constructed of aluminum which has an outer conduit portion 1 1 1 with an inverted cone shape and a portion of inner conduit 1 12 which is found inside the 100D indoor pond.
  • At the lower end of said conduit 1 12 a valve of rocker arm 1 13 of stainless steel with a pivot point 1 14 in said lower end of the duct that allows regulating the opening or closing of the valve.
  • the reactor 100 comprises two chimneys 1 15, where one of them is located near one edge of the lid and the other near the center, the latter also being connected to the regeneration unit 500 to recirculate part of the gases that come from inside the inner chamber of the reactor.
  • the chimneys each have a perforated plate at their base that maintains optimum pressure conditions inside the reactor.
  • the chimneys 1 15 comprise in their interior a system of zig-zag locks (not shown) that increase the distance of travel of the gases towards the outlet of the reactor to cool and condense part of said gases and in this way recover the volatile components of the material inside the reactor.
  • the reactor 100 comprises inside the inner tank 100D a stirring unit 120 composed of a vertical axis 1 21 preferably cylindrical and hollow, which is connected at its upper end to an upper support 122 projecting outwardly of the lid 104, preferably at through a stop seal 123, to be driven by a rotary motor (not shown).
  • a stirring unit 120 composed of a vertical axis 1 21 preferably cylindrical and hollow, which is connected at its upper end to an upper support 122 projecting outwardly of the lid 104, preferably at through a stop seal 123, to be driven by a rotary motor (not shown).
  • the lower end of the vertical axis 121 is connected to a lower support 124 which is fixed to the walls of the inner pool 100D by means of a bearing 125.
  • the vertical axis 121 comprises a plurality of main blades 126 fixed to it perpendicularly and distributed along its entire extension. As shown in Figure 3, the main blades 1 26 are vertically aligned with each other, also have different angles to the pond to generate different radii and moments of rotation. Preferably, the main vanes 1 26 are formed by a body with two portions, wherein a first portion 126a closer to the vertical axis 121 forms an angle with respect to this of 10 ° to 30 °, meanwhile a second portion 126b closest to the walls of the reactor forms an angle with the vertical axis of 25 ° to 45 °.
  • the vertical axis 121 comprises in its lower portion a set of secondary vanes 127 joined perpendicular to a sub-axis 128 connected at an angle to the vertical axis 1 21.
  • the reactor 100 is connected in its conical bottom 102 to a discharge element 1 30.
  • Said discharge element comprises an opening and closing valve 131 preferably pneumatically operated and connected to a metal tray 132, preferably aluminum, which it has a perforation so that when said tray is displaced by the opening and closing valve and the perforation is aligned with the lower outlet of the reactor, the material can be discharged by gravity from inside the reactor.
  • a structure of lower vanes 129 connected to the lower support 124, which allow to stir and move the material from the bottom of the reactor towards the upper sections of the same.
  • the air inlet 1 40 in connection with the intake pipe 350 of the heating equipment 300 that allows the entry of the air supplied by said unit towards the outer pond 100E of the reactor 1 00.
  • the air inlet 140 has a preferably square cross section and tangentially connects to the pond, which allows ordering the air molecules to circulate in an enveloping manner to the tank. inside the reactor favoring the reactions that occur in it.
  • the reactor 100 comprises an external support 106 which may consist of a plate that surrounds the entire external diameter of the reactor or part. of it, said support being configured for its connection with the support structure 200.
  • the recovered material to be processed such as for example pre-washed and cut-up containers, enters the inner tank of the reactor 100 through the material inlet conduit 1.
  • the material pushes and opens completely the rocker valve 1 13, to accumulate in the bottom of the reactor until filling approximately 3/4 of its capacity. Once all the material is entered, the rocker valve 1 13 closes.
  • the air injection unit 320 supplies air to the heating unit 310 which heats the air and injects it into the intake channel 350 for its subsequent entry into the reactor via the air inlet 140 of the reactor.
  • the temperature sensor 31 8 provides information to the control unit 400 about the temperature at the outlet of the heating unit 310, which is automatically controlled by the activation and deactivation of the electric heaters 312 of the heating unit 310.
  • the temperature supplied to the reactor inlet ranges between 40 and 60 ° C.
  • the hot air supplied flows through the interior of the jacket 103 of the reactor, heating the walls of the inner tank 100D and therefore the material to be processed.
  • the cell structure disposed inside the jacket 103 allows different temperature levels to be generated in the vertical extension of the reactor, where the speed of the flow of hot air passing through the jacket 103 is regulated by the amount and size of the jacket. the diamond-shaped cells that are arranged inside, providing these a greater restriction to the flow as it rises through the reactor jacket. In this way, the upper part of the reactor is obtained temperatures in the range of 200 to 250 ° C while in the intermediate part the temperatures oscillate in the range of 300 and 400 ° C.
  • This temperature difference is also achieved thanks to other factors such as the great pressure that is reached inside the reactor, the exothermic reactions generated by the processing of the material and the presence of the thermal jacket that surrounds the reactor, preferring to use more insulation in the lower part of the reactor or ignoring insulation in the upper part.
  • the stirring unit 1 20 in combination with the blades (126, 127, 138) acts by stirring the contents inside the reactor by an ascending and descending circular displacement.
  • the pressure inside the reactor is regulated by the perforated plates of chimneys 1 15, which evacuate gases and vapors generated by the process.
  • Part of said gases and vapors are transferred to the regeneration unit 500 through one of the chimneys 1 1 5, being conditioned therein through a determined residence time for the supply of carbon atoms.
  • the gases After passing through the regeneration unit 500, the gases are reinjected into the air injection unit 320 to be then recirculated to the interior of the reactor 100.
  • the material is removed from the bottom of the reactor 100 by means of the opening of the opening and closing valve 131. Once the valve closes, the system is ready to begin a new processing cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

La presente invención consiste en un reactor (100), un sistema y método para el procesamiento de productos tales como polímeros en donde dicho reactor (100) consiste en una estructura vertical conformada por un estanque interior (100D) y un estanque exterior (100E) ferrosos concéntricos abiertos en su extremo inferior, entre los cuales se dispone una camisa (103), en donde dicho reactor ( 100) comprende: una tapa (104) superior; al menos un conducto de entrada de material (110); una válvula de balancín (113) en el al menos un conducto de entrada de material (110); al menos una chimenea (115); una unidad de agitación (120) que comprende un eje vertical (121) en conexión con: una pluralidad de aspas principales (126) fijadas a el de manera perpendicular; un conjunto de aspas secundarias (127) unidas de manera perpendicular a un sub eje (128) conectado en ángulo a dicho eje vertical (121 ); una estructura de aspas inferiores (129); un elemento de descarga (130) que comprende una válvula de apertura y cierre (131) conectada a una bandeja (132); y una entrada de aire (140) ubicada en una de las caras del estanque exterior (100E).

Description

REACTOR, SISTEMA Y MÉTODO PARA PROCESAR POLIMEROS
MEMORIA DESCRI TIVA CAMPO DE LA INVENCION
La presente invención consiste en un reactor, sistema y método para para procesar diversos productos o materiales como polímeros, principalmente PET, pintura y en general, cualquier tipo de polímeros gomosos o elastómeros usados, por ejemplo, para formar productos tales como neumáticos u otros, en donde mediante un diseño simple se logran altos índices de eficiencia a bajo costo.
ANTECEDENTES DE LA INVENCION
La necesidades de los tiempos modernos ha obligado a la industria a intentar buscar soluciones eficientes en todos sus procesos, principalmente en aquellas aplicaciones que requieren de elevados recursos energéticos, recursos que muchas veces tienen un gran impacto ambiental y que en la actualidad son cada vez más caros.
Un ejemplo de dichas necesidades tienen que ver con la reducción de los materiales de desecho para colaborar en el buen uso de las energías y el aprovechamiento de recursos disponibles que involucren bajar costos de operación y a la vez colaborar con el medio ambiente.
En los procesos industriales tales como el reciclaje u en otros de la industria química se utilizan los denominados reactores, por ejemplo para recrear condiciones específicas de presión, temperatura, humedad, etc. Este tipo de dispositivos se divulga ampliamente en estado de la técnica, los cuales básicamente consisten en un cilindro vertical u horizontal dentro del cual se introduce materia prima opcionalmente pre procesada a partir de un proceso anterior. En el interior del reactor el material reacciona químicamente favorecido por condiciones específicas de temperatura y presión, cuya operación es complementada muchas veces con medios que agitan el contenido al interior del reactor. Luego de un tiempo predeterminado, el material procesado es retirado del reactor y opcionalmente vuelto a procesar para obtenerlo en la forma deseada.
Un ejemplo de este tipo de dispositivos es aquel divulgado por el documento WO 2007109889, que describe un reactor para reacciones de alta temperatura y alta presión que comprende: un reactor externo adaptado para resistir una presión de reacción y una temperatura de reacción, en donde el reactor externo tiene una tapa de reactor sellable. Comprende además un recipiente interno dentro del reactor externo para contener una solución de reacción y al menos un recipiente de reacción, en donde el recipiente interno se abre al reactor externo de modo que la presión de reacción del recipiente interno y el reactor externo son sustancialmente igualadas y el vapor en el recipiente interno pasa al recipiente externo. También comprende un inyector de vapor en comunicación con el recipiente interno para calentar la solución de reacción, una salida en el recipiente externo para agotar el vapor del reactor externo y el recipiente interno y una salida de reactor externo para drenar un líquido contenido entre el reactor externo y el recipiente interno. De manera similar, el documento US 3130015 divulga un estanque de presión adaptado para contener reacciones químicas que involucran fluidos corrosivos bajo condiciones de alta presión y temperatura que comprende: una carcasa exterior resistente a la presión que tiene una porción cilindrica y cabezales con aberturas en cada extremo de dicha parte cilindrica, en donde dicha carcasa exterior está circunferencialmente dividida en al menos dos segmentos. Comprende además un revestimiento desechable relativamente fino resistente a la corrosión dentro de dicha carcasa de metal, el cual tiene una porción de refuerzo resistente a la presión cerca del cabezal, la cual además proporciona una fijación para un conducto externo. El estanque además posee deflectores en el revestimiento y medios de agitación.
Una aplicación frecuente de los reactores como los descritos anteriormente es su utilización en los procesos de reciclaje, desarrollados ante la preocupación constante por el uso de materiales de desecho, estando el esfuerzo enfocado en obtener productos cuya calidad se acerque a las obtenidas cuando el producto se fabrica con materia prima virgen.
Por ejemplo, una de sus principales aplicaciones corresponde a la fabricación de botellas, neumáticos o todo tipo de polímeros gomosos, en donde en los últimos años se han hecho esfuerzos para promover la recirculación y el reciclaje de dichos productos cada vez más consumidos por las personas, con el fin de poder removerlos del volumen de desechos sólidos el cual también se ha visto aumentado.
En el estado de la técnica se divulgan algunas soluciones que han intentado hacer frente a esta problemática mediante el uso de reactores, tal como por ejemplo el documento US5597852 que divulga un procedimiento y dispositivo para el reciclado de material sólido de poliéster, en donde el dispositivo comprende un depósito provisto de un mecanismo agitador, en el cual se introduce el componente de reciclado en forma finalmente distribuida a través de un dispositivo transportador y una dosificación volumétrica. En el interior del depósito se introduce aire o gas a través de puntos de alimentación distribuidos sobre la altura del depósito. En la salida dispuesta en el extremo inferior del depósito va instalado un dosifícador del aglomerado, a partir del cual se suministra el material de reciclado así tratado a un reactor de fusión eventualmente con ayuda de un tornillo transportador y una esclusa o extrusor.
También, el documento US 6048907 describe un aparato para la conversión de algunos materiales recirculados en polioles de poliéster que incluye un recipiente reactor que tiene un volumen interior, un miembro de agitación montado de forma giratoria en el interior del recipiente reactor, un dispositivo de rotación conectado al miembro de agitación y un calentador en el interior del recipiente a fin de elevar la temperatura del volumen interior del reactor en al menos 175 °C. El recipiente del reactor tiene una pared interior y una pared exterior con un espacio entre los mismos. El calentador emite un fluido calentado a través del espacio entre la pared interior y la pared exterior. El miembro de agitación incluye un miembro tubular que se extiende a través del volumen interior del recipiente y una pluralidad de brazos de agitación.
Por su parte, el documento WO 2004063248 propone un método para la pol imerización en estado sólido de residuos plásticos, utilizando un turbo-calentador que comprende un cuerpo tubular cilindrico equ ipado con una camisa de calentamiento y cerrado en los extremos opuestos por placas de extremo, equipado con aberturas de entrada y salida y que tiene un rotor coaxial con paletas fijado de manera rotativa dentro del mismo. De esta manera, el plástico es calentado en una atmósfera inerte m ientras fluye en forma de una capa delgada, turbulenta, dinámica, en contacto con la cam isa calentada a al menos 200°C, obteniendo un material final con una viscosidad intrínseca promedio superior o igual a 0,85 dl/g.
Si bien otros dispositivos y procedimiento similares se proponén en el estado del arte con relación al uso de reactores para diversas aplicaciones, se tiene que ninguno de ellos provee una solución que perm ita desarrollar al interior de un reactor las condiciones suficientemente adecuadas de presión y temperatura para llevar a cabo las reacciones químicas que permiten la obtención de productos con altos índices de calidad. Esta desventaja se ve agravada ante la carencia de medios simples pero adecuados y bien estudiados para la regulación y el control de las condiciones al interior del reactor, a fin de favorecer la producción con altos índices de rendimiento, construcción simple y a bajo costo. Por lo tanto, es un objetivo de la presente invención proveer un dispositivo, sistema y procedimiento para la generación de condiciones específicas y adecuadas al interior de un reactor, que permita desarrollar diversas aplicaciones con altos índices de eficiencia, de construcción simple y a bajo costo. Es un objetivo particular de la presente invención, proveer un dispositivo, sistema y procedimiento para el procesamiento de polímeros tales como PET, con altos índices de eficiencia, de baja contaminación, de construcción simple y a bajo costo, particularmente en donde las propiedades del producto obtenido sean iguales o mejores que las propiedades de la materia prima virgen. DESCRIPCIÓN DE LA INVENCION
La presente invención consiste en un sistema para procesar diversos productos o materiales como polímeros, especialmente PET, pintura y en general cualquier tipo de polímeros gomosos o elastómeros que se pueden encontrar en productos tales como neumáticos, entre otros.
Ventajosamente, el sistema permite la reacción de material sólido a semilíquido gracias a las condiciones de temperatura y presión positiva que se logran al interior de un reactor, que hacen que el material se mantenga en suspensión al interior del reactor en una gran masa de aire, emulando un sistema en el cual la fuerza G es tendiente a cero y logrando con ello restablecer las propiedades iniciales de los productos a procesar. Mediante dicho sistema, la calidad del producto final obtenido es equivalente al producto en su estado virgen. El sistema de la presente invención está compuesto por un reactor el cual puede estar soportado por una estructura metálica. Dicho reactor se encuentra conectado a un equipo calefactor compuesto por una unidad de calefacción y una unidad de inyección de aire. El sistema comprende una unidad de control del tipo electrónico (PLC), la cual está configurada para controlar la operación y distintos parámetros del sistema en diferentes instantes de tiempo, tal como el funcionamiento del equipo calefactor y el flujo de aire suministrado al reactor, en base a la información provista por al menos un sensor dispuesto en el o en cualquier otro componente del sistema.
El sistema de la presente invención comprende además una unidad de regeneración que consiste en un equipo conformado por una cámara conectada por un lado a al menos una salida de aire del reactor y por el otro al equipo calefactor. Ventajosamente, la unidad de regeneración está diseñada para acondicionar los vapores y gases provenientes del reactor, transfiriéndole átomos de carbono y/u otras propiedades antes de ser recirculados al reactor, logrando así mejorar la calidad del producto final obtenido por el proceso llevado a cabo por el presente sistema.
El reactor de la presente invención consiste en una estructura vertical conformada por dos estanques ferrosos concéntricos los cuales forman una camisa de aire entre ellos] La parte superior del reactor comprende una tapa que contiene al menos un conducto de entrada de material regulado por una válvula de balancín. En la tapa del reactor también se configura al menos una chimenea para la evacuación de un flujo de aire al interior del reactor, en donde de acuerdo a una modalidad preferida de la invención, se tienen dos chimeneas en donde una de ellas está en comunicación con la unidad de regeneración para recircular parte de los gases que provienen del reactor. El reactor comprende dentro del estanque interior una unidad de agitación compuesta por un eje vertical accionado por un motor rotatorio, en donde dicho eje comprende además en distintas posiciones una pluralidad de aspas de distinto tipo, tamaño y ángulo para agitar el contenido al interior del reactor. Ventajosamente, mediante esta configuración de aspas se logra una agitación homogénea del material al interior del reactor en sentido circular ascendente y descendente, lo cual permite aumentar la cal idad del producto final procesado.
El reactor está conectado en su parte inferior a un elemento de descarga que comprende una válvula de apertura y cierre conectada a una bandeja de descarga para evacuar el material desde el interior del reactor. Además comprende también en su parte inferior una entrada de aire en conexión con la salida del equipo calefactor que permite ingresar al reactor el aire suministrado por el equipo calefactor.
Ventajosamente, la configuración del reactor de la presente invención permite generar condiciones de presión elevadas en su interior, al mismo tiempo que con su diseño se logra obtener distintos niveles de temperatura en distintas zonas del reactor. Mediante dicho diseño es posible parametrizar las condiciones de temperatura y presión al interior del reactor logrando prescindir de múltiples sensores y complejos equipos de monitorización. Al mismo tiempo, los n iveles de temperatura y presión elevados que se obtienen de manera controlada en el interior del reactor permiten minim izar el calor suministrado por el equipo calefactor, logrando un consumo eficiente de energía.
Ventajosamente, la operación conjunta de todas las partes y elementos del sistema sumado al hecho de que los materiales del reactor y de otros componentes han sido seleccionados cuidadosamente para permitir la apertura de las moléculas del material procesado y con el lo favorecer las reacciones químicas, logran que el material procesado obtenga rendimientos de recuperación que le otorgan esencialmente las mismas propiedades del material virgen.
En un segundo aspecto, la presente invención también consiste en un método para procesar productos tales como polímeros mediante el sistema definido anteriormente, el cual comprende las etapas de: - Ingresar el material a procesar al estanque interior de un reactor a través de al menos un conducto de entrada de material.
- Suministrar aire a una entrada de aire del reactor por medio de una unidad de inyección de aire de un equipo calefactor. - Proveer información a una unidad de control por medio de al menos, un sensor de temperatura ubicado en la salida de aire del equipo calefactor para controlar la temperatura suministrado por dicho equipo calefactor.
- Circular el aire sum inistrado a través de una camisa ubicada al interior del reactor.
- Agitar el material al interior del reactor mediante un desplazamiento circular ascendente y descendente de múltiples aspas de una unidad de agitación.
- Regular la presión al interior del reactor mediante la evacuación de gases por al menos una chimenea.
- Dirigir los gases que se evacúan por la al menos una chimenea hacia una unidad de regeneración. - Dirigir los gases acondicionados en la unidad de regeneración hacia la unidad de inyección de aire.
- Abrir una válvula de apertura y cierre ubicada en el fondo del. reactor y retirar el producto procesado.
BREVE DESCRIPCIÓN DE LAS FIGURAS Con el fin de que la presente invención sea más fácilmente entendida, modalidades de la misma serán ahora descritas, a modo de ejemplo únicamente, con referencia a los dibujos acompañados, en los cuales: - La Figura 1 ilustra un diagrama general de los componentes que conforman el sistema de la presente invención.
- La Figura 2 ilustra una vista en corte longitudinal del reactor que forma parte del sistema de la presente invención. - La Figura 3 ilustra una vista en corte transversal del reactor que forma parte del sistema de la presente invención.
- La Figura 4 ilustra una vista en corte longitudinal del equipo calefactor que forma parte del sistema de la presente invención.
- La Figura 5 ilustra una vista en corte transversal del equipo calefactor que forma parte del sistema de la presente invención.
- La Figura 6 ilustra una vista en corte longitudinal de la unidad de regeneración que forma parte del sistema de la presente invención.
DESCRIPCION DETA LL A D A DE LAS FIGURAS
De acuerdo con la Figura 1 , se tiene un sistema compuesto por un estanque de reacción o reactor 100 el cual consiste en una estructura vertical conformado por una sección superior cilindrica 101 y una zona inferior cónica 102. Dicho reactor 100 puede estar soportado por una estructura de soporte 200 que consiste preferentemente en una estructura vertical fabricada de acero, la cual permite sostener tanto al reactor 100 como a los elementos de descarga de productos desde el reactor y otros elementos como por ejemplo cintas transportadoras, entre otros. El reactor 100 se encuentra conectado preferentemente en la zona cónica inferior 102 a un equipo calefactor 300 por medio de una tubería de admisión 350, en donde dicho equipo calefactor 300 está compuesto por una unidad de calefacción 310 y una unidad de inyección de aire 320, donde esta ú ltima consiste preferentemente en un soplador diferencial turbo-compresor de alta potencia y gran caudal, el cual es accionado por un motor eléctrico (no ilustrado).
Por su parte, la unidad de calefacción 310 consiste en una cámara dúplex concéntrica 3 1 1 con forma cilindrica en la cual están insertos una pluralidad de calefactores eléctricos 3 12, tal como se puede observar en la Figura 4.
La cámara dúplex concéntrica 31 1 comprende una cámara interior 313, una cámara exterior 314, una entrada de aire 3 1 5, una salida de aire 316 y una tapa 31 7. La entrada de aire 3 1 5 está conectada con la cámara exterior 314 y esta a su vez está en comunicación con la cámara interior 3 13 por la parte posterior, de modo que el aire que ingresa a la unidad de calefacción 31 0 proveniente de la unidad de inyección de aire fluye circularmente por la cámara exterior 314 e ingresa gradualmente por la parte posterior hacia la cámara interior 313 para fluir posteriormente hacia la salida de aire 3 1 6.
Al interior de la cámara i nterior 31 3 se disponen los calefactores eléctricos 312 los cuales son preferentemente del tipo espada y según como se observa en la Figura 5, estos se encuentran distribuidos en una configuración estrella, unidos a un eje de calefactores 320 de tres ramas o en forma de "Y", de manera que cada rama soporta un grupo de calefactores ordenados paralelamente. De acuerdo a una modalidad preferida de la invención, la unidad de calefacción 3 1 0 está compuesta por 20 a 50 calefactores eléctricos 31 2, preferentemente por un grupo de 40 calefactores distribuidos en tres ramas al interior de la cámara 313.
Siguiendo con la Figura 1 , se tiene que el sistema comprende una unidad de control 400 que consiste en un controlador lógico programable (PLC), configurado para controlar la operación y distintos parámetros del sistema en diferentes instantes de tiempo definidos por un secuenciador.
De acuerdo a una modal idad preferida de la invención, la unidad de control 400 está adaptada para controlar por ejemplo el funcionamiento de los calefactores eléctricos 312 de la unidad de calefacción 3 10, el flujo de aire suministrado por la unidad de inyección de aire 320; la salida del aire por la al menos una chimenea del reactor y la velocidad de agitación del material al interior del reactor.
De acuerdo a una modalidad preferida de la invención, la unidad de control 400 controla la activación y desactivación de los calefactores eléctricos 312 de la unidad de calefacción 310 en base a la información provista por al menos un sensor de temperatura 318 dispuesto en la salida de aire 316, el cual de acuerdo a una modalidad preferida, consiste en una sonda PT100 para medir la temperatura a la sal ida de la unidad de calefacción 310.
Siguiendo con la Figura 1 , se tiene que el sistema de la presente invención comprende además una unidad de regeneración 500 que consiste en un equipo conformado por una cámara 501 conectada con al menos una salida de aire 100C del reactor 100. En dicha cámara 501 se concentran los vapores y se separan los gases que provienen del reactor.
De acuerdo con la Figura 6, la cámara 501 de la unidad de regeneración posee una sección inferior 502 cilindrica y una sección superior 503 cónica que desemboca en una salida superior 504. En su base, la unidad de regeneración comprende un alojamiento 505 aislado de la cámara 501 que comprende una abertura 506 para el ingreso del aire proveniente del reactor. El alojamiento 505 además comprende en su cara superior perforaciones (no ilustradas) sobre las cuales están configuradas una pluralidad de chimeneas cilindricas 507 de diferentes diámetros, ubicadas al interior de la cámara 501. Preferentemente, todos los componentes de la unidad de regeneración están construidos de acero al carbono.
De esta manera, el aire que proviene del reactor ingresa a la unidad de regeneración 500 a través de la abertura 506 y se acumula en el alojamiento 505 para posteriormente fluir hacia la cámara 501 por medio de las chimeneas ci lindricas. Esta configuración multi cámara y con chimeneas de diferentes diámetros perm iten que el aire tenga una residencia adecuada al interior de la unidad de regeneración 500 para permitir que las moléculas del aire se enriquezcan con el carbono presente en los materiales de dicha unidad, lo cual favorecerá las reacciones químicas al interior del reactor.
Una vez que los gases hayan permanecido un tiempo definido al interior de la unidad de regeneración 500, estos egresan de esta a través la salida superior. 504 y son dirigidos hacia la unidad de inyección de aire 320 y posteriormente a la unidad de calefacción 310 para ser recirculados nuevamente hacia el interior del reactor 100.
De acuerdo a la Figura 2, el reactor 100 consiste en una estructura vertical conformada por dos estanques de acero al carbono concéntricos (100D, 100E) que poseen cada uno una sección superior cilindrica 101 y una sección inferior cónica 102 abierta en su extremo inferior. De esta manera, entre ambos estanques (100D, 100E) se forma una camisa 103 de aire, la cual posee en su interior una estructura de celdas (no ilustradas) de acero al carbono que tienen una sección transversal con forma de rombo y que se disponen en zigzag a lo largo de la camisa 103.
Preferentemente, el reactor 100 o parte de este se encuentra recubierto por una chaqueta térmica (no ilustrada) que sirve para mejorar las condiciones de aislación y mantener una temperatura óptima al interior del mismo. La chaqueta térmica puede ser fabricada por ejemplo de lana mineral o de cualquier otro material aislante adecuado. Además, la chaqueta térmica puede recubrir otros componentes del sistema tal como por ejemplo la tubería de admisión 350.
La parte superior del reactor 1 00 comprende una tapa 104 conformada por una plancha unida al borde superior del estanque exterior 100E mediante medios de sujeción adecuados. Dicha tapa 1 04 comprende al menos un conducto de entrada de material 1 10 preferentemente de forma cilindrica y construido de aluminio el cual posee una porción de conducto exterior 1 1 1 con forma de cono invertido y una porción de conducto interior 1 12 que se encuentra dentro del estanque interior 100D. En el extremo inferior de dicho conducto 1 12 se configura una válvula de balancín 1 13 de acero inoxidable con un punto de pivote 1 14 en dicho extremo inferior del conducto que permite regular la apertura o el cierre de la válvula.
De acuerdo a una modalidad preferida de la invención, el reactor 100 comprende dos chimeneas 1 15, en donde una de ellas está ubicada cerca de un borde de la tapa y la otra cerca del centro, esta última estando además conectada con la unidad de regeneración 500 para recircular parte de los gases que provienen del interior de la cámara interior del reactor. Además, las chimeneas poseen cada una en su base una placa perforada que mantiene las condiciones de presión óptimas dentro del reactor. Preferentemente, las chimeneas 1 15 comprenden en su interior un sistema de exclusas en zig-zag (no ilustradas) que aumentan la distancia de recorrido de los gases hacia la salida del reactor para enfriar y condensar parte de dichos gases y de esta manera recuperar los componentes volátiles del material al interior del reactor.
El reactor 100 comprende dentro del estanque interior 100D una unidad de agitación 120 compuesta por un eje vertical 1 21 preferentemente cilindrico y hueco, el cual está conectado por su extremo superior a un soporte superior 122 que sobresale hacia afuera de la tapa 104, preferentemente a través de un sello prensa estopa 123, para ser accionado por un motor rotatorio (no ilustrado). Por su parte, el extremo inferior del eje vertical 121 se encuentra conectado a un soporte inferior 124 que está fijado a las paredes del estanque interior 100D por medio de un rodamiento 125.
El eje vertical 121 comprende una pluralidad de aspas principales 126 fijadas a él de manera perpendicular y distribuidas a lo largo de toda su extensión. Tal como se observa en la figura 3, las aspas principales 1 26 se encuentran alineadas verticalmente entre sí, además poseen distintos ángulos respecto al estanque para generar distintos radios y momentos de giro. Preferentemente, las aspas principales 1 26 están conformadas por un cuerpo con dos porciones, en donde una primera porción 126a más cerca del eje vertical 121 forma un ángulo con respecto a este de 10° a 30°, por su parte una segunda porción 126b más cercana a las paredes del reactor forma un ángulo con el eje vertical de 25° a 45°.
De acuerdo a una modalidad preferida, el eje vertical 121 comprende en su porción inferior un conjunto de aspas secundarias 127 unidas de manera perpendicular a un sub eje 128 conectado en ángulo al eje vertical 1 21 . Mediante dicha configuración se logra desplazar el material ubicado en la parte intermedia de la sección inferior cónica 102 del reactor.
El reactor 100 se encuentra conectado en su parte inferior cónica 102 a un elemento de descarga 1 30. Dicho elemento de descarga comprende una válvula de apertura y cierre 131 preferentemente accionada de manera neumática y conectada a una bandeja 132 metálica, preferentemente de aluminio, que posee una perforación de manera que cuando dicha bandeja es desplazada por la válvula de apertura y cierre y la perforación se alinea con la salida inferior del reactor, el material puede ser descargado por gravedad desde el interior del reactor. Sobre la válvula de apertura y cierre 131 , en el interior del reactor se configura una estructura de aspas inferiores 129 conectadas al soporte inferior 124, las cuales permiten agitar y desplazar el material desde el fondo del reactor hacia las secciones superiores del m ismo.
En la parte inferior del reactor 1 00, preferentemente en una de las caras del estanque exterior se dispone una entrada de aire 1 40 en conexión con la tubería de admisión 350 del equipo calefactor 300 que perm ite la entrada del aire suministrado por dicha unidad hacia el estanque exterior 100E del reactor 1 00. De acuerdo a la Figura 3, la entrada de aire 140 posee una sección transversal preferentemente cuadrada y se conecta tangencialmente al estanque, lo cual perm ite ordenar las moléculas de aire para que circulen de manera envolvente al interior del reactor favoreciendo las reacciones que en el ocurren. Por su parte exterior, el reactor 100 comprende un soporte exterior 106 que puede consistir en una placa que rodea todo el diámetro exterior del reactor o parte. de él, estando dicho soporte configurado para su conexión con la estructura de soporte 200.
De acuerdo a la operación del sistema de la presente invención, se tiene que inicialmente el material recuperado a procesar, como por ejemplo envases usados previamente lavado y trozado ingresa al interior del estanque interior del reactor 100 a través del conducto de entrada de material 1 10. De esta manera, el material empuja y abre completamente la válvula de balancín 1 13, para acumularse en el fondo del reactor hasta llenar aproximadamente 3/4 de su capacidad. Una vez que ingresó todo el material, la válvula de balancín 1 13 se cierra.
Cuando el material a procesar se encuentra al interior del reactor 100, la unidad de inyección de aire 320 suministra aire a la unidad de calefacción 310 la cual caliente el aire y lo inyecta a la vía de admisión 350 para su posterior ingreso al reactor vía la entrada de aire 140 del reactor. Al mismo tiempo, el sensor de temperatura 31 8 le provee información a la unidad de control 400 acerca de la temperatura a la salida de la unidad de calefacción 310, la cual es controlada automáticamente por la activación y desactivación de los calefactores eléctricos 312 de la unidad de calefacción 310. Preferentemente, la temperatura suministrada a la entrada del reactor oscila entre los 40 y 60 °C.
El aire caliente suministrado fluye por el interior de la camisa 103 del reactor calentando las paredes del estanque interior 100D y por tanto el material a procesar. Además, la estructura de celdas dispuesta al interior de la camisa 103 permite generar diferentes niveles de temperatura en la extensión vertical del reactor, en donde la velocidad del flujo de aire caliente que pasa por la camisa 103 es regulada por la cantidad y el tamaño de las celdas con forma de rombo que se disponen en su interior, proporcionando estas una mayor restricción al flujo a medida que este asciende por la camisa del reactor. De esta manera, en la parte superior del reactor se obtienen temperaturas en el rango de los 200 a 250 °C mientras que en la parte intermedia las temperaturas oscilan en el rango de los 300 y 400 °C. Esta diferencia de temperatura se logra también gracias a otros factores tales como la gran presión que se alcanza al interior del reactor, a las reacciones exotérmicas generadas por el procesamiento del material y a la presencia de la chaqueta térmica que envuelve el reactor, prefiriéndose utilizar más aislación en la parte inferior del reactor o prescindiendo de aislación en la parte superior.
Los medios que logran generar esta diferencia de temperatura al interior del reactor en combinación con la unidad de agitación 120, logran que el material al interior del reactor al ser agitado y desplazado longitudinalmente, se enfríe por la parte superior y se evite que permanezca un tiempo prolongado en la parte inferior que está a mayor temperatura y se carbonice.
La unidad de agitación 1 20 en combinación con las aspas (126, 127, 138) actúa agitando el contenido al interior del reactor mediante un desplazamiento circular ascendente y descendente. Al mismo tiempo la presión al interior del reactor es regulada por las placas perforadas de las chimeneas 1 15, las cuales evacúan los gases y vapores generados por el proceso. Parte de dichos gases y vapores son d irigidos a la unidad de regeneración 500 a través de una de las chimeneas 1 1 5, siendo acondicionados en su interior a través de un tiempo de residencia determinado para la provisión de átomos de carbono. Luego de su paso por la unidad de regeneración 500, los gases son reinyectados a la unidad de inyección de aire 320 para ser luego recirculados al interior del reactor 100.
Luego de que el producto es procesado al interior del reactor por un tiempo predeterminado o hasta que se obtenga e l resultado deseado y determinado por el monitoreo manual o automático del sistema, se retira el material desde la parte inferior del reactor 100 por medio de la apertura de la válvula de apertura y cierre 131. Una vez que dicha válvula se cierra, el sistema está listo para comenzar un nuevo ciclo de procesamiento. La descripción anterior ha sido dada solamente a modo de ejemplo y una persona experta en la materia podrá apreciar que se pueden hacer modificaciones sin apartarse del alcance de la presente invención como se define por las reivindicaciones.

Claims

REIVINDICACIONES
1 . Reactor ( 100) para el procesamiento de productos en su interior tales como polímeros, el cual consiste en una estructura vertical conformada por un estanque interior (100D) y un estanque exterior ( 100E) ferrosos concéntricos abiertos en su extremo inferior, entre los cuales se dispone una camisa ( 1 03), CARACTERIZADO porque dicho reactor (100) comprende:
- una tapa (104) superior;
- al menos un conducto de entrada de material (1 10);
- una válvula de balancín ( 1 13) en el al menos un conducto de entrada de material (1 10);
- al menos una chimenea ( 1 1 5);
- una unidad de agitación ( 1 20) que comprende un eje vertical ( 121 ) en conexión con:
• una pluralidad de aspas principales (126) fijadas a él de manera perpendicular;
• un conjunto de aspas secundarias (1 27) unidas de manera perpendicular a un sub eje ( 1 28) conectado en ángulo a dicho eje vertical (121 );
· una estructura de aspas inferiores (129);
- un elemento de desca ga ( 1 30) que comprende una válvula de apertura y cierre (131 ) conectada a una bandeja ( 132);
- una entrada de aire ( 1 40) ubicada en una de las caras del estanque exterior (100E).
2. El reactor según la reivindicación 1 , CARACTERIZADO porque el al menos un conducto de entrada de material (1 10) posee una porción de conducto exterior (1 1 1 ) y una porción de conducto interior (1 12), esta última estando ubicada dentro del estanque interior del reactor ( 100).
3. El reactor según la reivindicación 1 o 2, CARACTERIZADO porque comprende dos chimeneas (1 15), una ubicadas en un extremo de la tapa (104) y la otra cerca del centro de la misma.
4. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque la al menos una chimenea (1 15) comprende en su interior un sistema de exclusas en zigzag.
5. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque la al menos una chimenea (1 1 5) tiene forma cilindrica.
6. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque el eje vertical (121 ) está conectado por su extremo superior a un soporte superior (122) que sobresale hacia afuera de la tapa (104) y porque el extremo inferior del eje vertical (121 ) se encuentra conectado a un soporte inferior (124) fijado a las paredes del estanque interior por medio de un rodamiento (125).
7. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque las aspas principales (126) están desplazadas en un ángulo entre sí y poseen distintos ángulos respecto al reactor (100).
8. El reactor según la reivindicación 6, CARACTERIZADO porque la estructura de aspas inferiores (129) está conectada al soporte inferior (124).
9. El reactor según la reivindicación 6, CARACTERIZADO porque el soporte superior
( 1 22) sobresale hacia afuera de la tapa (104) a través de un sello prensa estopa (123).
1 0. El reactor según cualquiera de las reivindicaciones 6 a 9, CARACTERIZADO porque el soporte superior (122) está conectado con un motor rotatorio.
1 1. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque el eje vertical (121 ) es cilindrico y hueco.
12. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque el elemento de descarga (130) consiste en una porción cilindrica unida al extremo inferior del reactor (100).
1 3. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque la válvula de apertura y cierre (131) corresponde a una válvula neumática.
14. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque los estanques que conforman el reactor (100) poseen una sección superior cilindrica (101 ) y una sección inferior cónica (102).
1 5. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque la camisa (103) posee en su interior una estructura de celdas con forma de rombo y dispuestas en zigzag a lo largo de esta.
16. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque la tapa (104) está conformada por una plancha unida al. borde superior del estanque exterior mediante medios de sujeción.
1 7. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque o parte de este está recubierto por una chaqueta térmica.
1 8. El reactor según cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque comprende un soporte exterior (106) que rodea todo su diámetro exterior o parte de él.
19. Un sistema para el procesamiento de productos en su interior tales como polímeros, CARACTERIZADO porque comprende:
- un reactor (100) como el definido en las reivindicaciones 1 a 18;
- una estructura de soporte (200);
- un equipo calefactor (300) compuesto por una unidad de calefacción (310) y una unidad de inyección de aire (320);
- una unidad de control (400);
- una unidad de regeneración (500) conectada con al menos una salida de aire del reactor (100) y con el equipo calefactor (300).
20. El sistema según la reivindicación 19, CARACTERIZADO porque al menos una chimenea (1 15) del reactor ( 100) está en comunicación con la entrada de la unidad de regeneración (500).
21 . El sistema según la reivindicación 19 o 20, CARACTERIZADO porque la unidad de regeneración (500) comprende una sección inferior (502) cilindrica y una sección superior (503); en su base comprende un alojamiento (505) aislado de una cámara (501 ) y que comprende en su cara superior perforaciones sobre las cuales están configuradas una pluralidad de chimeneas cilindricas (507) de diferentes diámetros, ubicadas al interior de la cámara (501).
22. El sistema según cualquiera de las reivindicaciones 19 a 21, CARACTERIZADO porque la unidad de inyección de aire (320) consiste en un soplador- diferencial turbo-compresor accionado por un motor eléctrico.
23. El sistema según cualquiera de las reivindicaciones 19 a 22, CARACTERIZADO porque la unidad de calefacción (310) consiste en una cámara dúplex concéntrica (31 1) en la cual están insertos una pluralidad de calefactores eléctricos (312) y que comprende una salida de aire con al menos un sensor de temperatura (31 8) configurado en ella.
24. El sistema según la reivindicación 23, CARACTERIZADO porque la cámara dúplex concéntrica (31 1 ) además comprende una cámara interior (313), una cámara exterior (314), una entrada de aire (31 5) y una tapa (3 1 7).
25. El sistema según cualquiera de las reivindicaciones 19 a 24; CARACTERIZADO porque la unidad de control (400) está configurada para controlar la operación y distintos parámetros del sistema en diferentes instantes de tiempo definidos por un secuenciador.
26. El sistema según cualquiera de las reivindicaciones 19 a 25, CARACTERIZADO porque la unidad de control (400) está adaptada para controlar el funcionamiento de los calefactores eléctricos (312) de la unidad de calefacción (310).
27. El sistema según cualquiera de las reivindicaciones 19 a 26, CARACTERIZADO porque la salida del equipo calefactor (300) está conectada a una tubería de admisión (350) en comunicación con una entrada de aire (140) del reactor (100).
28. El sistema según cualquiera de las reivindicaciones 19 a 27, CARACTERIZADO porque la estructura de soporte (200) consiste en una estructura vertical fabricada de acero.
29. Un método para procesar productos tales como polímeros mediante el sistema definido en las reivindicaciones 19 a 28, CARACTERIZADO porque comprende las etapas de:
- intoducir el material a procesar al estanque interior de un reactor (100) a través de al menos un conducto de entrada de material (1 10);
- suministrar aire a una entrada de aire (140) del reactor (100) por medio de una unidad de inyección de aire (320) y una unidad de calefacción (310) de un equipo calefactor (300);
- Proveer información a una unidad de control (400) por medio de al menos un sensor ubicado en una salida de aire (31 6) de la unidad de calefacción (310) para controlar la temperatura y el flujo de aire suministrado por el equipo calefactor (300);
- circular el aire suministrado a través de una camisa (103) ubicada al interior del reactor (100);
- agitar el material al interior del reactor (100) mediante un desplazamiento circular ascendente y descendente de múltiples aspas (126, 127, 129) de una unidad de agitación (120);
- regular la presión al interior del reactor (100) mediante la evacuación de gases por la al menos una chimenea (1 10);
- dirigir los gases que se evacúan por la al menos una chimenea (1 10) hacia una unidad de regeneración (500);
- dirigir los gases acondicionados en la unidad de regeneración (500) hacia la unidad de inyección de aire (320);
- abrir una válvula de apertura y cierre (131 ) ubicada en el fondo del reactor (100) y retirar el producto procesado.
30. El método según la reivindicación 29, CARACTERIZADO porque el material a procesar es previamente pre procesado y dimensionado.
3 1 . El método según la reivindicación 29 o 30, CARACTERIZADO porque el material ingresa al reactor empujando y abriendo completamente la válvula de balancín (1 13).
32. El método según cualquiera de las reivindicaciones 29 a 31 , CARACTERIZADO porque el reactor se llena de material hasta aproximadamente 3/4 de su capacidad.
33. El método según cualquiera de las reivindicaciones 29 a 32, CARACTERIZADO porque una vez que ingresó todo el material al interior del reactor ( 100), la válvula de balancín (1 13) regresa a su posición predefinida.
34. El método según cualquiera de las reivindicaciones 29 a 33, CARACTERIZADO porque la temperatura al interior del reactor (100) es controlada automáticamente por la activación y desactivación de los calefactores de la unidad de calefacción (310).
PCT/CL2016/000055 2016-09-26 2016-09-26 Reactor, sistema y método para procesar polímeros WO2018053659A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CL2016/000055 WO2018053659A1 (es) 2016-09-26 2016-09-26 Reactor, sistema y método para procesar polímeros
US15/758,830 US20200230565A1 (en) 2016-09-26 2016-09-26 Reactor, system and method to process polymers
EP16781046.4A EP3517205A1 (en) 2016-09-26 2016-09-26 Reactor, system and method for processing polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2016/000055 WO2018053659A1 (es) 2016-09-26 2016-09-26 Reactor, sistema y método para procesar polímeros

Publications (1)

Publication Number Publication Date
WO2018053659A1 true WO2018053659A1 (es) 2018-03-29

Family

ID=57130114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2016/000055 WO2018053659A1 (es) 2016-09-26 2016-09-26 Reactor, sistema y método para procesar polímeros

Country Status (3)

Country Link
US (1) US20200230565A1 (es)
EP (1) EP3517205A1 (es)
WO (1) WO2018053659A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108889226A (zh) * 2018-08-14 2018-11-27 安徽和邦纺织科技有限公司 一种用于纤维复合材料的改性剂连续添加装置
CN109046158A (zh) * 2018-09-18 2018-12-21 钱光宝 带回收功能的永磁铁氧体材料加工系统
CN111729631A (zh) * 2020-05-26 2020-10-02 界首市圣通无纺布有限公司 防护口罩用聚合物改性pp粒料高效反应装置
CN117123170A (zh) * 2023-05-25 2023-11-28 连云港华昌生物工程有限公司 一种低损耗的羽毛蛋白提取装置及其使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112808171B (zh) * 2020-12-30 2023-01-31 邓会秋 无泵阀腐蚀性液体的加料系统及工艺
CN112999924A (zh) * 2021-03-31 2021-06-22 珠海市景晟包装材料有限公司 一种封口胶的混料设备
CN115253914B (zh) * 2022-08-22 2023-09-19 江苏优普生物化学科技股份有限公司 一种制备三氟甲基苯胺用的可调节上料机构的反应釜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130015A (en) 1958-10-31 1964-04-21 Mid Century Corp High pressure reactor
JPH0275607A (ja) * 1988-09-12 1990-03-15 Idemitsu Petrochem Co Ltd スチレン系重合体の製造装置及び製造方法
JPH05105769A (ja) * 1991-10-17 1993-04-27 Nkk Corp 回分式高粘度樹脂製造装置
US5597852A (en) 1993-04-30 1997-01-28 Polymer Engineering Gmbh Method and apparatus for reprocessing solid polyester material
US6048907A (en) 1998-09-25 2000-04-11 Peterson; Don Apparatus and method for converting polyethylene terephthalate into polyester polyols
US20010024400A1 (en) * 1997-06-13 2001-09-27 Van Der Wel Peter Gerardus Intensive mixer
WO2004063248A1 (en) 2003-01-15 2004-07-29 Vomm Chemipharma S.R.L. A method for the solid state polymerization of polyethylene terephthalate
WO2007109889A1 (en) 2006-03-27 2007-10-04 Rubreco Inc. Reactor and reactor system for high temperature and high pressure reactions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130015A (en) 1958-10-31 1964-04-21 Mid Century Corp High pressure reactor
JPH0275607A (ja) * 1988-09-12 1990-03-15 Idemitsu Petrochem Co Ltd スチレン系重合体の製造装置及び製造方法
JPH05105769A (ja) * 1991-10-17 1993-04-27 Nkk Corp 回分式高粘度樹脂製造装置
US5597852A (en) 1993-04-30 1997-01-28 Polymer Engineering Gmbh Method and apparatus for reprocessing solid polyester material
US20010024400A1 (en) * 1997-06-13 2001-09-27 Van Der Wel Peter Gerardus Intensive mixer
US6048907A (en) 1998-09-25 2000-04-11 Peterson; Don Apparatus and method for converting polyethylene terephthalate into polyester polyols
WO2004063248A1 (en) 2003-01-15 2004-07-29 Vomm Chemipharma S.R.L. A method for the solid state polymerization of polyethylene terephthalate
WO2007109889A1 (en) 2006-03-27 2007-10-04 Rubreco Inc. Reactor and reactor system for high temperature and high pressure reactions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108889226A (zh) * 2018-08-14 2018-11-27 安徽和邦纺织科技有限公司 一种用于纤维复合材料的改性剂连续添加装置
CN109046158A (zh) * 2018-09-18 2018-12-21 钱光宝 带回收功能的永磁铁氧体材料加工系统
CN109046158B (zh) * 2018-09-18 2020-12-18 东阳市顶峰磁材有限公司 带回收功能的永磁铁氧体材料加工系统
CN111729631A (zh) * 2020-05-26 2020-10-02 界首市圣通无纺布有限公司 防护口罩用聚合物改性pp粒料高效反应装置
CN117123170A (zh) * 2023-05-25 2023-11-28 连云港华昌生物工程有限公司 一种低损耗的羽毛蛋白提取装置及其使用方法
CN117123170B (zh) * 2023-05-25 2024-03-19 连云港华昌生物工程有限公司 一种低损耗的羽毛蛋白提取装置及其使用方法

Also Published As

Publication number Publication date
EP3517205A1 (en) 2019-07-31
US20200230565A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
WO2018053659A1 (es) Reactor, sistema y método para procesar polímeros
PT2311897E (pt) Processo de preparação de poliéster de baixo custo utilizando um reator tubular
US11629322B2 (en) Impeller including one or more turbulators, for a bioreactor system
US10427121B2 (en) Non intrusive agitation system
CN207822980U (zh) 一种水性涂料生产用自动给料装置
CN216458166U (zh) 一种溶解罐的加热装置
CN211800809U (zh) 一种加热反应釜
CN211487645U (zh) 一种节能环保的反应釜
CN210374709U (zh) 一种沥青生产余热回收利用装置
CN204564112U (zh) 酸处理装置
CN207576392U (zh) 一种化工用节能环保反应釜
CN205925754U (zh) 一种油浴锅
CN207745869U (zh) 一种水乳剂农药生产用反应釜
KR101989506B1 (ko) 회전식 집진장치 및 이를 이용한 폐기물 건조 시스템
CN207227107U (zh) 污水处理生物滤池及汽车涂装废水处理系统
CN205684022U (zh) 一种多功能工业反应釜
CN215028911U (zh) 一种聚合硫酸铁加工反应釜
CN205784533U (zh) 辐射管加热转底炉
CN204522981U (zh) 一种带有加热加氧装置的反应釜
EP3826825B1 (en) Treatment of articles
CN220780389U (zh) 一种加热装置
CN215661350U (zh) 一种管帽软化装置
CN208839444U (zh) 一种生产氟化石墨烯的安全型搅拌箱
CN216936055U (zh) 一种工业化工用防爆型反应釜
CN206325541U (zh) 一种化学反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16781046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE