WO2018052028A1 - Compound, resin, composition, and pattern formation method - Google Patents

Compound, resin, composition, and pattern formation method Download PDF

Info

Publication number
WO2018052028A1
WO2018052028A1 PCT/JP2017/033071 JP2017033071W WO2018052028A1 WO 2018052028 A1 WO2018052028 A1 WO 2018052028A1 JP 2017033071 W JP2017033071 W JP 2017033071W WO 2018052028 A1 WO2018052028 A1 WO 2018052028A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
integer
independently
formula
Prior art date
Application number
PCT/JP2017/033071
Other languages
French (fr)
Japanese (ja)
Inventor
越後 雅敏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2018539754A priority Critical patent/JP7445382B2/en
Priority to KR1020197007287A priority patent/KR20190053187A/en
Priority to CN201780056312.6A priority patent/CN109715592A/en
Publication of WO2018052028A1 publication Critical patent/WO2018052028A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/205Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing only six-membered aromatic rings as cyclic parts with unsaturation outside the rings
    • C07C39/21Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing only six-membered aromatic rings as cyclic parts with unsaturation outside the rings with at least one hydroxy group on a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/202Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a naphthalene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/205Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing only six-membered aromatic rings as cyclic parts with unsaturation outside the rings
    • C07C39/225Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing only six-membered aromatic rings as cyclic parts with unsaturation outside the rings with at least one hydroxy group on a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a compound having a specific structure, a resin, and a composition containing these.
  • the present invention also relates to a pattern forming method using the composition.
  • the molecular weight is as large as about 10,000 to 100,000, and the molecular weight distribution is wide, resulting in roughness on the pattern surface, making it difficult to control the pattern size, and limiting the miniaturization.
  • various low molecular weight resist materials have been proposed so far in order to provide resist patterns with higher resolution. Since the low molecular weight resist material has a small molecular size, it is expected to provide a resist pattern with high resolution and low roughness.
  • an alkali development type negative radiation sensitive composition for example, see Patent Document 1 and Patent Document 2 using a low molecular weight polynuclear polyphenol compound as a main component
  • a low molecular weight resist material having high heat resistance As candidates, an alkali development negative radiation-sensitive composition using a low molecular weight cyclic polyphenol compound as a main component (see, for example, Patent Document 3 and Non-Patent Document 1) has also been proposed.
  • Non-Patent Document 2 a polyphenol compound as a base compound for a resist material can impart high heat resistance despite its low molecular weight, and is useful for improving the resolution and roughness of a resist pattern (for example, Non-Patent Document 2). reference).
  • the present inventors have so far developed a resist composition containing a compound having a specific structure and an organic solvent as a material excellent in etching resistance, soluble in a solvent and applicable to a wet process (for example, Patent Document 4). See).
  • a terminal layer is removed by applying a predetermined energy as a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist.
  • a material for forming a lower layer film for a multilayer resist process which contains at least a resin component having a substituent that generates a sulfonic acid residue and a solvent (see, for example, Patent Document 5).
  • resist underlayer film materials containing a polymer having a specific repeating unit have been proposed as a material for realizing a resist underlayer film for lithography having a lower dry etching rate selectivity than resist (for example, Patent Documents). 6). Furthermore, in order to realize a resist underlayer film for lithography having a low dry etching rate selection ratio compared with a semiconductor substrate, a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group are copolymerized. A resist underlayer film material containing a polymer is proposed (see, for example, Patent Document 7).
  • an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
  • the present inventors have a composition for forming an underlayer film for lithography containing a compound having a specific structure and an organic solvent as a material having excellent etching resistance, high heat resistance, soluble in a solvent and applicable to a wet process.
  • the thing (for example, refer patent document 8) is proposed.
  • a silicon nitride film formation method for example, Patent Document 9
  • a silicon nitride film CVD formation method for example, Patent Document 10.
  • an intermediate layer material for a three-layer process a material containing a silsesquioxane-based silicon compound is known (see, for example, Patent Documents 11 and 12).
  • compositions for optical members have been proposed. However, none of them has a combination of heat resistance, transparency and refractive index at a high level, and the development of new materials is required.
  • the present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is to form a photoresist and a lower layer film for photoresist that can be applied with a wet process and have excellent heat resistance, solubility, and etching resistance. It is an object of the present invention to provide compounds, resins, and compositions useful for the purpose.
  • the present inventors have found that the problems of the prior art can be solved by a compound or resin having a specific structure, and have completed the present invention. It was. That is, the present invention is as follows. [1] The compound represented by following formula (0).
  • R Y is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • R Z is an N-valent group having 1 to 60 carbon atoms or a single bond
  • R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T is a hydroxyl group, and R T At least one of these is an alkenyl group having 2 to 30 carbon atoms, X represents an oxygen atom, a sulfur atom, a single bond or no bridge, m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 2 to 9 or at least two of m is an integer of 1 to 9, N is an integer of 1 to 4, where, when N is an integer of 2 or more, the structural formulas in N [] may be the same or different, Each r is independently an integer of 0-2.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A is a hydroxyl group.
  • at least one of R 2A is an alkenyl group having 2 to 30 carbon atoms, n A has the same meaning as N above.
  • n A is an integer of 2 or more
  • the structural formulas in n A [] may be the same or different
  • X A represents an oxygen atom, a sulfur atom, a single bond or no bridge
  • m 2A is each independently an integer from 0 to 7, provided that at least one m 2A is an integer from 2 to 7 or at least two m 2A is an integer from 1 to 7
  • q A is each independently 0 or 1.
  • the compound according to [2], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
  • R 0 , R 1 , R 4 , R 5 , n, p 2 to p 5 , m 4 and m 5 are as defined above.
  • R 6 to R 7 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • R 0 , R 1 , R 6 , R 7 , R 10 , R 11 , n, p 2 to p 5 , m 6 and m 7 are as defined above.
  • R 8 to R 9 have the same meanings as R 6 to R 7
  • R 12 to R 13 have the same meanings as R 10 to R 11
  • m 8 and m 9 are each independently an integer of 0 to 8, provided that m 6 , m 7 , m 8 and m 9 are not 0 at the same time.
  • [6] The compound according to [3], wherein the compound represented by the formula (2) is a compound represented by the following formula (2-1).
  • R 0A , R 1A , n A , q A and X A are as defined above
  • R 3A each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • R 4A is each independently a hydrogen atom; m 6A is each independently an integer of 0 to 5.
  • L is a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may have a substituent, and 6 to 6 carbon atoms which may have a substituent.
  • R 30 arylene group, an alkoxylene group having 1 to 30 carbon atoms which may have a substituent, or a single bond, wherein the alkylene group, the arylene group and the alkoxylene group are an ether bond, a ketone bond or an ester May contain bonds, R 0 has the same meaning as R Y , R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond, R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A is a hydroxyl group, and R 2A At least one of these is an alkenyl group having 2 to 30 carbon atoms, n A has the same meaning as N above.
  • n A is an integer of 2 or more
  • the structural formulas in n A [] may be the same or different
  • X A represents an oxygen atom, a sulfur atom, a single bond or no bridge
  • m 2A is each independently an integer from 0 to 7, provided that at least one m 2A is an integer from 2 to 7 or at least two m 2A is an integer from 1 to 7
  • q A is each independently 0 or 1.
  • R Y ′ is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • R Z ′ is an N-valent group having 1 to 60 carbon atoms or a single bond
  • R T ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T ′ has 2 to 30 carbon atoms.
  • An alkenyloxy group of X ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge, m ′ is each independently an integer of 0 to 9, wherein at least one of m ′ is an integer of 1 to 9, N ′ is an integer of 1 to 4, where, when N ′ is an integer of 2 or more, the structural formulas in N ′ [] may be the same or different, r ′ is independently an integer of 0 to 2.
  • R 0 ′ has the same meaning as R Y ′
  • R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond
  • R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent
  • the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2 ′ to R 5 ′
  • One is an
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms.
  • An alkenyloxy group of n A ′ has the same meaning as N above.
  • n A ′ is an integer of 2 or more
  • the structural formulas in n A ′ [] may be the same or different
  • X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge
  • m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7
  • q A ′ is independently 0 or 1.
  • R 0 ′ , R 1 ′ , R 4 ′ , R 5 ′ , n, p 2 ′ to p 5 ′ , m 4 ′ and m 5 ′ are as defined above.
  • R 6 ′ to R 7 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An optionally substituted alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein R 10 ′ to R 11 ′ are each independently A hydrogen atom or an alkenyl group having 2 to 30 carbon atoms,
  • at least one of R 10 ′ to R 11 ′ is an alkenyl group having 2 to 30 carbon atoms
  • m 6 ′ and m 7 ′ are each independently an integer of 0 to 7, provided that m 4 ′ , m 5 ′ , m 6 ′ and m 7 ′ cannot be 0 at the same time.
  • each R 4A ′ is independently a hydrogen atom or a carbon number
  • L represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may have a substituent, and a carbon number which may have a substituent.
  • R 0 ′ has the same meaning as R Y ′
  • R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond
  • R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent
  • the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2 ′ to R 5 ′ One is an alkenyloxy
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms.
  • An alkenyloxy group of n A ′ has the same meaning as N above.
  • n A ′ is an integer of 2 or more
  • the structural formulas in n A ′ [] may be the same or different
  • X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge
  • m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7
  • q A ′ is independently 0 or 1.
  • the crosslinking agent is at least one selected from the group consisting of phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanate compounds, and azide compounds.
  • the crosslinking accelerator is at least one selected from the group consisting of amines, imidazoles, organic phosphines, and Lewis acids.
  • a composition according to 1. [31] The composition according to any one of [19] to [30], wherein the content of the radical polymerization initiator is 0.05 to 25% by mass of the total mass of the solid component. [32] The composition according to any one of [19] to [31], which is used for forming a film for lithography. [33] The composition according to any one of [19] to [31], which is used for forming a permanent resist film.
  • a method of forming a resist pattern comprising: forming a photoresist layer on a substrate using the composition described in [32]; and irradiating a predetermined region of the photoresist layer with radiation and developing.
  • a lower layer film is formed on a substrate using the composition described in [32], and at least one photoresist layer is formed on the lower layer film, and then a predetermined region of the photoresist layer is irradiated with radiation.
  • a resist pattern forming method including a step of developing.
  • a lower layer film is formed on a substrate using the composition described in [32], an intermediate layer film is formed on the lower layer film using a resist intermediate layer film material, and at least one layer is formed on the intermediate layer film.
  • the compound and resin according to the present invention are highly soluble in a safe solvent, and have good heat resistance and etching resistance. Moreover, the resist composition containing the compound and / or resin according to the present invention gives a good resist pattern shape.
  • the present embodiment a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described.
  • the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
  • the compound, resin, and composition containing the compound in the present embodiment can be applied to a wet process, and are useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance.
  • the composition in the present embodiment uses a compound or resin having a specific structure with high heat resistance and solvent solubility, deterioration of the film during high-temperature baking is suppressed, and etching resistance against oxygen plasma etching and the like
  • an excellent resist and lower layer film can be formed.
  • the adhesion with the resist layer is also excellent, so that an excellent resist pattern can be formed.
  • the refractive index is high and coloring due to a wide range of heat treatments from low to high temperatures is suppressed, it is also useful as various optical forming compositions.
  • R Y is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • R Z is an N-valent group having 1 to 60 carbon atoms or a single bond
  • R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T is a hydroxyl group, and R At least one of T is an alkenyl group having 2 to 30 carbon atoms, X represents an oxygen atom, a sulfur atom, a single bond or no bridge, m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 2 to 9 or at least two of m is an integer of 1 to 9, N is an integer of 1 to 4, where, when N is an integer of 2 or more, the structural formulas in N [] may be the same or different, Each r is independently an integer of 0-2. )
  • R Y is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • the alkyl group a linear, branched or cyclic alkyl group can be used.
  • R Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, excellent heat resistance and solvent solubility can be imparted.
  • R Z is an N-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded through R Z.
  • N is an integer of 1 to 4, and when N is an integer of 2 or more, the structural formulas in N [] may be the same or different.
  • Examples of the N-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the N-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of RT is a hydroxyl group, and at least one Is an alkenyl group having 2 to 30 carbon atoms.
  • the alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
  • X represents an oxygen atom, a sulfur atom or no bridge, and when X is an oxygen atom or a sulfur atom, it tends to develop high heat resistance, and is more preferably an oxygen atom.
  • X is preferably non-crosslinked from the viewpoint of solubility.
  • M is each independently an integer of 0 to 9, and at least two of m are integers of 1 to 9, or at least two of m are integers of 1 to 9.
  • Each r is independently an integer of 0-2.
  • the numerical range of m described above is determined according to the ring structure determined by r.
  • the compound (0) in the present embodiment is preferably a compound represented by the following formula (1) from the viewpoints of heat resistance and solvent solubility.
  • R 0 has the same meaning as R Y described above, and is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R 0 is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, heat resistance is relatively high and solvent solubility is improved.
  • R 0 is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or a carbon number from the viewpoint of suppressing oxidative decomposition to suppress coloring of the compound and improving heat resistance and solvent solubility. A 6-30 aryl group is preferred.
  • R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded via R 1 .
  • R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • n is an integer of 1 to 4.
  • p 2 to p 5 are each independently synonymous with r and are integers of 0 to 2.
  • the alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
  • An alkanepropyl group having 2 to 60 carbon atoms, and when n 4, an alkanetetrayl group having 3 to 60 carbon atoms.
  • Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent group may have an aromatic group having 6 to 60 carbon atoms.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the compound represented by the above formula (1) has a relatively low molecular weight but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
  • the resist formation composition for lithography containing the compound represented by said Formula (1) may give a favorable resist pattern shape. it can.
  • the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened.
  • the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics.
  • it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
  • the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts.
  • the compound which has quaternary carbon from a viewpoint which suppresses oxidative decomposition of a compound, suppresses coloring, and improves heat resistance and solvent solubility is preferable.
  • Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compound represented by the above formula (1) is more preferably a compound represented by the following formula (1-1) from the viewpoint of easy crosslinking and solubility in an organic solvent. (1-1)
  • R 0 , R 1 , R 4 , R 5 , n, p 2 to p 5 , m 4 and m 5 are as defined above, R 6 to R 7 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the compound represented by the above formula (1-1) is more preferably a compound represented by the following formula (1-2) from the viewpoint of further crosslinking and solubility in an organic solvent. .
  • R 0 , R 1 , R 6 , R 7 , R 10 , R 11 , n, p 2 to p 5 , m 6 and m 7 are as defined above
  • R 8 to R 9 have the same meanings as R 6 to R 7 above
  • R 12 to R 13 have the same meanings as R 10 to R 11 above
  • m 8 and m 9 are each independently an integer of 0 to 8.
  • m 6 , m 7 , m 8 and m 9 are not 0 at the same time.
  • the compound represented by the above formula (1-1) is more preferably a compound represented by the following formula (1a) from the viewpoint of feedability of raw materials.
  • R 0 to R 5 , m 2 to m 5 and n have the same meaning as described in the above formula (1).
  • the compound represented by the above formula (1a) is more preferably a compound represented by the following formula (1b) from the viewpoint of solubility in an organic solvent.
  • R 0 , R 1 , R 4 , R 5 , m 4 , m 5 and n are as defined in the above formula (1), and R 6 , R 7 , R 10 , R 11 , m 6 and m 7 have the same meaning as described in the above formula (1-1).
  • the compound represented by the above formula (1b) is more preferably a compound represented by the following formula (1c) from the viewpoint of solubility in an organic solvent.
  • R 0 , R 1 , R 6 to R 13 , m 6 to m 9 and n are as defined in the above formula (1-2).
  • X is the same as those described in the above formula (0)
  • R T ' has the same meaning as R T described by the above formula (0)
  • R T' at least one hydroxyl group of
  • at least one of R T ′ is an alkenyl group having 2 to 30 carbon atoms.
  • m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 2 to 9 or at least two of m is an integer of 1 to 9.
  • R 2 , R 3 , R 4 and R 5 have the same meaning as described in the above formula (1), and at least one of R 2 , R 3 , R 4 and R 5 is a hydroxyl group, At least one of R 2 , R 3 , R 4 and R 5 is an alkenyl group having 2 to 30 carbon atoms.
  • m 2 and m 3 are each independently an integer of 0 to 8
  • m 4 and m 5 are each independently an integer of 0 to 9.
  • m 2 , m 3 , m 4 , and m 5 are not 0 simultaneously.
  • the compound represented by the above formula (1) is very preferably a compound represented by the following formulas (BiF-1) to (BiF-5) from the viewpoint of further solubility in an organic solvent.
  • R 6 ′ to R 9 ′ each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms which may have a substituent, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol
  • at least one of R 6 ′ to R 9 ′ is an alkenyl group having 2 to 30 carbon atoms
  • R 10 to R 13 have the same meaning as described in the above formula (1c).
  • R Y ′ is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • R Z ′ is an N-valent group having 1 to 60 carbon atoms or a single bond
  • R T ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T ′ has 2 to 30 carbon atoms.
  • An alkenyloxy group of X ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge
  • m ′ is each independently an integer of 0 to 9, wherein at least one of m ′ is an integer of 1 to 9,
  • N ′ is an integer of 1 to 4, where, when N ′ is an integer of 2 or more, the structural formulas in N ′ [] may be the same or different
  • r ′ is independently an integer of 0 to 2.
  • R Y ′ is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • the alkyl group a linear, branched or cyclic alkyl group can be used.
  • R Y ′ is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, excellent heat resistance and solvent solubility can be imparted. .
  • R Z ′ is an N-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded through this R Z ′ .
  • N ′ is an integer of 1 to 4.
  • N′-valent group examples include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the N′-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • R T ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T ′ is 2 to 30 carbon atoms.
  • R T ′ is 2 to 30 carbon atoms.
  • the alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
  • X ′ represents an oxygen atom, a sulfur atom or no bridge, and when X ′ is an oxygen atom or a sulfur atom, it is preferable because it tends to exhibit high heat resistance, and more preferably an oxygen atom. . X ′ is preferably non-crosslinked from the viewpoint of solubility.
  • M ′ is independently an integer of 0 to 9, and at least one of m ′ is an integer of 1 to 9.
  • r ′ is each independently an integer of 0 to 2.
  • the numerical range of m ′ described above is determined according to the ring structure determined by r ′.
  • the compound (0-A) in the present embodiment is preferably a compound represented by the following formula (1-A) from the viewpoint of heat resistance and solvent solubility.
  • R 0 ′ has the same meaning as R Y ′ above;
  • R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond,
  • R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent,
  • An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol A group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2 ′ to R 5 ′ One is
  • the alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
  • Represents an alkanepropyl group having 2 to 60 carbon atoms, and when n ′ 4, an alkanetetrayl group having 3 to 60 carbon atoms.
  • Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent group may have an aromatic group having 6 to 60 carbon atoms.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the compound represented by the above formula (1-A) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
  • a resist forming composition for lithography containing a compound represented by the above formula (1-A) gives a good resist pattern shape. be able to.
  • the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened.
  • the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics.
  • it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
  • the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts.
  • the compound which has quaternary carbon from a viewpoint which suppresses oxidative decomposition of a compound, suppresses coloring, and improves heat resistance and solvent solubility is preferable.
  • Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compound represented by the above formula (1-A) is more preferably a compound represented by the following formula (1-1-A) from the viewpoint of easy crosslinking and solubility in an organic solvent.
  • R 0 ′ , R 1 ′ , R 4 ′ , R 5 ′ , n, p 2 ′ to p 5 ′ , m 4 ′ and m 5 ′ are as defined above.
  • R 6 ′ to R 7 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An alkenyl group having 2 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group
  • R 10 ′ to R 11 ′ are each independently a hydrogen atom or an alkenyl group having 2 to 30 carbon atoms
  • at least one of R 10 ′ to R 11 ′ is an alkenyl group having 2 to 30 carbon atoms
  • m 6 ′ and m 7 ′ are each independently an integer of 0 to 7, provided that m 4 ′ , m 5 ′ , m 6 ′ and m 7 ′ cannot be 0 at the same time.
  • the compound represented by the above formula (1-1-A) is a compound represented by the following formula (1-2-A) from the viewpoint of further ease of crosslinking and solubility in an organic solvent. More preferably.
  • R 10 , R 11 , R 12 , and R 13 have the same meanings as described in the above formula (1-2), and R 10 to R 13 are each independently a hydrogen atom.
  • X is the same as those described in the above formula (0)
  • R Y ', R Z' are as defined R Y, R Z described by the above formula (0).
  • each R 4A is independently a hydrogen atom.
  • R 0 ′ , R 1 ′ , R 6 ′ , R 7 ′ , R 10 ′ , R 11 ′ , n ′, p 2 ′ to p 5 ′ , m 6 ′ and m 7 ' is synonymous with the above
  • R 8 ′ to R 9 ′ have the same meanings as R 6 ′ to R 7 ′
  • R 12 ′ to R 13 ′ have the same meanings as R 10 ′ to R 11 ′
  • m 8 ′ and m 9 ′ are each independently an integer of 0 to 8, provided that m 6 ′ , m 7 ′ , m 8 ′ and m 9 ′ are not 0 at the same time.
  • the compound represented by the above formula (1-1-A) is more preferably a compound represented by the following formula (1a-A) from the viewpoint of feedability of raw materials.
  • R 0 ′ to R 5 ′ , m 2 ′ to m 5 ′ and n ′ have the same meaning as described in the above formula (1).
  • the compound represented by the above formula (1a-A) is more preferably a compound represented by the following formula (1b-A) from the viewpoint of solubility in an organic solvent.
  • R 0 ′ , R 1 ′ , R 4 ′ , R 5 ′ , m 4 ′ , m 5 ′ and n ′ are as defined in the above formula (1-A)
  • R 6 ′ , R 7 ′ , R 10 ′ , R 11 ′ , m 6 ′ and m 7 ′ have the same meanings as described in the above formula (1-1-A).
  • the compound represented by the above formula (1b-A) is more preferably a compound represented by the following formula (1c-A) from the viewpoint of solubility in an organic solvent.
  • R 0 ′ , R 1 ′ , R 6 ′ to R 13 ′ , m 6 ′ to m 9 ′ and n ′ are as described in the above formula (1-2-A). It is synonymous.
  • the compound represented by the formula (1-A) is a compound represented by the following formulas (BiF-1-A) to (BiF-5-A) from the viewpoint of further solubility in an organic solvent. Is very particularly preferred.
  • R 0 , R 1 and n have the same meanings as described in the above formula (1-1), and R 10 ′ and R 11 ′ represent R 10 and R described in the above formula (1-1).
  • 11 and R 4 ′ and R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 6 carbon atoms which may have a substituent.
  • aryl groups an optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, A carboxylic acid group, a thiol group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, and R 10 ′ and R 11 ′. Are each independently a hydrogen atom.
  • n 4 ′ and m 5 ′ are integers of 0 to 8
  • m 10 ′ and m 11 ′ are integers of 1 to 9
  • m 4 ′ + m 10 ′ and m 4 ′ + m 11 ′ are independent of each other. It is an integer from 1 to 9.
  • R 0 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, phenyl group, naphthyl group , Anthracene group, pyrenyl group, biphenyl group and heptacene group.
  • R 4 ′ and R 5 ′ are, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group , Naphthyl group, anthracene group, pyrenyl group, biphenyl group, heptacene group, vinyl group
  • R 0 , R 4 ′ , and R 5 ′ includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2),
  • R 16 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms, A bivalent aryl group having 6 to 30 carbon atoms or a divalent alkenyl group having 2 to 30 carbon atoms.
  • R 16 is, for example, a methylene group, ethylene group, propene group, butene group, pentene group, hexene group, heptene group, octene group, nonene group, decene group, undecene group, dodecene group, triacontene group, cyclopropene group, Cyclobutene group, cyclopentene group, cyclohexene group, cycloheptene group, cyclooctene group, cyclononene group, cyclodecene group, cycloundecene group, cyclododecene group, cyclotriacontene group, divalent norbornyl group, divalent adamantyl group, divalent Phenyl group, divalent naphthyl group, divalent anthracene group, divalent pyrene group, divalent biphenyl group, divalent heptacene group, divalent
  • R 16 includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2), and each R 14 independently represents a linear, branched or cyclic alkyl having 1 to 30 carbon atoms.
  • m 14 ′ is an integer from 0 to 4
  • m 14 is an integer from 0 to 5.
  • R 14 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl.
  • cyclopentyl group cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group .
  • R 14 includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 0 , R 4 ′ , R 5 ′ , m 4 ′ , m 5 ′ , m 10 ′ , and m 11 ′ are as defined above, and R 1 ′ is a group having 1 to 60 carbon atoms. is there.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2), and each R 14 independently represents a linear, branched or cyclic alkyl having 1 to 30 carbon atoms.
  • m 14 is an integer of 0 to 5; 14 ′ is an integer from 0 to 4, and m 14 ′′ is an integer from 0 to 3.
  • R 14 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl.
  • cyclopentyl group cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group .
  • R 14 includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2),
  • R 15 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group.
  • R 15 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl.
  • cyclopentyl group cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group .
  • R 15 includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2).
  • the above compound is more preferably a compound represented below from the viewpoint of availability of raw materials.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2).
  • the compound represented by the above formula is more preferably a compound represented by the following structure from the viewpoint of etching resistance.
  • R 0A is synonymous with the above formula R Y
  • R 1A ′ is synonymous with R Z
  • R 10 to R 13 are synonymous with those explained in the above formula (1-2).
  • R 14 each independently represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms, or 1 to 30 carbon atoms.
  • m 14 ′ is an integer of 0 to 4.
  • R 14 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl.
  • cyclopentyl group cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group.
  • R 14 includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2),
  • R 15 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group.
  • R 15 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl.
  • cyclopentyl group cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group.
  • R 15 includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2),
  • R 16 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms, A bivalent aryl group having 6 to 30 carbon atoms or a divalent alkenyl group having 2 to 30 carbon atoms.
  • R 16 is, for example, a methylene group, ethylene group, propene group, butene group, pentene group, hexene group, heptene group, octene group, nonene group, decene group, undecene group, dodecene group, triacontene group, cyclopropene group, Cyclobutene group, cyclopentene group, cyclohexene group, cycloheptene group, cyclooctene group, cyclononene group, cyclodecene group, cycloundecene group, cyclododecene group, cyclotriacontene group, divalent norbornyl group, divalent adamantyl group, divalent Examples include a phenyl group, a divalent naphthyl group, a divalent anthracene group, a divalent heptacene group, a divalent vinyl group,
  • R 16 includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2), and each R 14 independently represents a linear, branched or cyclic alkyl having 1 to 30 carbon atoms.
  • R 14 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl.
  • cyclopentyl group cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group.
  • R 14 includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2).
  • the compound represented by the above formula is preferably a compound having a dibenzoxanthene skeleton from the viewpoint of heat resistance, and more preferably represented by the following structure from the viewpoint of raw material availability.
  • R 0A is synonymous with the above formula R Y
  • R 1A ′ is synonymous with R Z
  • R 10 to R 13 are synonymous with those explained in the above formula (1-2).
  • the compound represented by the above formula is preferably a compound having a xanthene skeleton from the viewpoint of heat resistance.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2), and R 14 , R 15 , R 16 , m 14 and m 14 ′ have the same meanings as described above.
  • Method for producing compound represented by formula (0) and method for producing compound represented by formula (0-A) The compound represented by the formula (0) and the compound represented by the formula (0-A) in this embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
  • the production method of the compound represented by the formula (0) and the production method of the compound represented by the formula (0-A) are referred to as the production method of the compound represented by the formula (1) and the formula (1-A).
  • polyphenol compounds are obtained by polycondensation reaction of biphenols, binaphthols or bianthraceneol with corresponding ketones under an acid catalyst under normal pressure, followed by at least one phenolic property of the polyphenol compounds.
  • a compound represented by the formula (1-A) is obtained.
  • the compound represented by the formula (1-A) can be heated to cause the Claisen transition to obtain the compound represented by the formula (1).
  • the timing for introducing the allyl group may be introduced before or after the condensation reaction or after the production of the resin described later.
  • biphenols examples include, but are not limited to, biphenol, methyl biphenol, methoxy binaphthol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use biphenol from the viewpoint of stable supply of raw materials.
  • binaphthols examples include, but are not limited to, binaphthol, methyl binaphthol, methoxy binaphthol, and the like. These can be used alone or in combination of two or more. Among these, it is more preferable to use binaphthol from the viewpoint of increasing the carbon atom concentration and improving the heat resistance.
  • ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid,
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is more preferably used from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction between the ketones to be used and biphenols, binaphthols, or bianthracenediol proceeds, and can be appropriately selected from known ones.
  • Examples of the reaction solvent include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these reaction solvents used can be appropriately set according to the types of raw materials and catalysts to be used, reaction conditions, and the like, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw materials. A range is preferable.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • reaction temperature is preferable, and specifically, a range of 60 to 200 ° C. is preferable.
  • the reaction method can be appropriately selected from known methods, and is not particularly limited. However, the reaction method is a method in which biphenols, binaphthols or bianthracenediol, ketones, and a catalyst are charged all together, or biphenols and binaphthols. Or the method of dripping a bianthracenediol, aldehydes, or ketones in catalyst presence is mentioned.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted. As a result, the target compound can be isolated.
  • Preferable reaction conditions are 1 mol to excess of biphenols, binaphthols or bianthracenediol and 0.001 to 1 mol of acid catalyst with respect to 1 mol of ketones, and 50 to 150 ° C. at normal pressure. For about 20 minutes to 100 hours.
  • the target product can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the resulting solid is filtered and dried, followed by column chromatography.
  • the product represented by the above formula (1), which is the target product can be obtained by separating and purifying the product from the by-product, distilling off the solvent, filtering and drying.
  • a method for introducing an allyl group into at least one phenolic hydroxyl group of a polyphenol compound is also known.
  • an allyl group can be introduced into at least one phenolic hydroxyl group of the compound as follows.
  • a compound for introducing an allyl group can be synthesized or easily obtained by a known method, and examples thereof include allyl chloride, allyl bromide, and allyl iodide, but are not particularly limited thereto.
  • the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like.
  • the reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary.
  • a compound in which the hydrogen atom of the hydroxy group is substituted with an allyl group can be obtained.
  • the allyl group introduced into the phenolic hydroxyl group can be transferred by Claisen transition by heating.
  • an allyl group reacts in the presence of a radical or an acid / alkali, and the solubility in an acid, alkali or organic solvent used in a coating solvent or a developer changes.
  • the group substituted with the allyl group preferably has a property of causing a chain reaction in the presence of a radical or an acid / alkali in order to enable pattern formation with higher sensitivity and higher resolution.
  • composition used for forming a film for lithography or forming an optical component.
  • a resin obtained using the compound represented by the above formula (0) as a monomer can also be used as a composition.
  • the resin is obtained, for example, by reacting a compound represented by the above formula (0) with a compound having a crosslinking reactivity.
  • a resin obtained using the compound represented by the formula (0) as a monomer and a resin obtained using the compound represented by the formula (1) as a monomer will be described as examples.
  • Examples of the resin obtained using the compound represented by the above formula (1) as a monomer include those having a structure represented by the following formula (3). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (3).
  • L has an optionally substituted alkylene group having 1 to 30 carbon atoms, an optionally substituted arylene group having 6 to 30 carbon atoms, and a substituent.
  • the alkylene group, the arylene group, and the alkoxylene group may include an ether bond, a ketone bond, or an ester bond.
  • the alkylene group and the alkoxylene group may be linear, branched or cyclic groups.
  • R 0 , R 1 , R 2 to R 5 , m 2 and m 3 , m 4 and m 5 , p 2 to p 5 , and n are as defined in the above formula (1).
  • m 2 , m 3 , m 4 and m 5 are not 0 simultaneously, and at least one of m 2 , m 3 , m 4 and m 5 is an integer of 2 to 8, 2 to 9, or m 2 , M 3 , m 4 and m 5 are each an integer of 1 to 8 or 1 to 9.
  • At least one of R 2 to R 5 is a hydroxyl group, and at least one of R 2 to R 5 is an alkenyl group having 2 to 30 carbon atoms.
  • composition used for forming a film for lithography or forming an optical part.
  • a resin obtained using the compound represented by the above formula (0-A) as a monomer can also be used as a composition.
  • the resin is obtained, for example, by reacting a compound represented by the above formula (0-A) with a compound having a crosslinking reaction.
  • Examples of the resin obtained using the compound represented by the above formula (0-A) as a monomer include those having a structure represented by the following formula (3-A). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (3-A).
  • L is a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may have a substituent, or a carbon number which may have a substituent 6
  • the alkylene group, the arylene group and the alkoxylene group may be an ether bond, a ketone bond or May contain an ester bond
  • R 0 ′ has the same meaning as R Y ′ above
  • R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond
  • R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether
  • the resin in the present embodiment is obtained by reacting the compound represented by the above formula (0) and the compound represented by the formula (0-A) with a compound having a crosslinking reactivity.
  • a compound having a crosslinking reactivity known compounds are not particularly limited as long as the compound represented by the above formula (0) and the compound represented by the formula (0-A) can be oligomerized or polymerized. Can be used.
  • the resin having the structure represented by the above formula (3) and the resin having the structure represented by the resin formula (3-A) include, for example, a compound represented by the above formula (0) and a formula ( Examples thereof include resins obtained by novolakization of a resin having a structure represented by 0-A) by a condensation reaction with an aldehyde and / or ketone which is a compound having crosslinking reactivity.
  • examples of the aldehyde used for novolak conversion of the compound represented by the above formula (0) and the compound represented by the above formula (0-A) include formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, Propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, furfural, etc.
  • ketones include the above ketones. Among these, formaldehyde is more preferable.
  • these aldehydes and / or ketones can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde and / or ketone used is not particularly limited, but it is 0. 1 mol per 1 mol of the compound represented by the above formula (0) and the compound represented by the above formula (0-A). The amount is preferably 2 to 5 mol, more preferably 0.5 to 2 mol.
  • an acid catalyst may be used.
  • the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
  • As such an acid catalyst inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid However, it is not particularly limited to these.
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that However, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene In the case of a copolymerization reaction with a compound having a nonconjugated double bond such as limonene, aldehydes are not necessarily required.
  • a reaction solvent can be used.
  • the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the types of raw materials and catalysts to be used, and further the reaction conditions, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reactive raw materials. It is preferable that Furthermore, the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • the reaction method can be appropriately selected from known methods and is not particularly limited.
  • the reaction method is not particularly limited, but includes a compound represented by the above formula (0), a compound represented by the above formula (0-A), an aldehyde, and / Or a method of charging ketones and catalyst in a batch, a compound represented by the above formula (0) and a compound represented by the above formula (0-A), an aldehyde and / or a ketone in the presence of the catalyst.
  • a compound represented by the above formula (0) and a compound represented by the above formula (0-A) an aldehyde and / or a ketone in the presence of the catalyst.
  • the way to go is mentioned.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
  • the novolak resin as the target product can be isolated.
  • the resin having the structure represented by the above formula (3) and the resin having the structure represented by the formula (3-A) are the compound represented by the above formula (0) and the above formula (0-A).
  • the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
  • the resin having the structure represented by the above formula (3) and the resin having the structure represented by the formula (3-A) were copolymerized with a polymerizable monomer in addition to the above-described other phenols. It may be a thing.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
  • the resin having the structure represented by the above formula (3) and the resin having the structure represented by the formula (3-A) are represented by the compound represented by the above formula (0) and the formula (0-A).
  • the molecular weight of the resin having the structure represented by the formula (3) and the resin having the structure represented by the formula (3-A) is not particularly limited, but the weight average molecular weight (Mw) in terms of polystyrene is 500 to 30000. And more preferably 750 to 20000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin having the structure represented by the above formula (3) and the resin having the structure represented by the formula (3-A) It is preferable that (weight average molecular weight Mw / number average molecular weight Mn) is in the range of 1.2-7. In addition, said Mw and Mn can be calculated
  • the resin having the structure represented by the above formula (3) and the resin having the structure represented by the above formula (3-A) have solubility in a solvent from the viewpoint of easier application of a wet process. It is preferable that it is high. More specifically, when 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) is used as a solvent, the solubility in the solvent is preferably 10% by mass or more.
  • the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”.
  • the solubility of the resin in PGMEA is “10 mass% or more”, and when it is not dissolved, it is “less than 10 mass%”.
  • the compound represented by the formula (0) in the present embodiment is preferably a compound represented by the following formula (2) from the viewpoints of heat resistance and solvent solubility.
  • R 0A has the same meaning as R Y above, and is a hydrogen atom.
  • R 1A is an n A valent group having 1 to 30 carbon atoms or a single bond
  • R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2A is a hydroxyl group, and R 2A At least one of these is an alkenyl group having 2 to 30 carbon atoms.
  • n A has the same meaning as N above, and is an integer of 1 to 4, where, in formula (2), when n A is an integer of 2 or more, the structural formulas in n A [] are the same. It may or may not be.
  • X A each independently represents an oxygen atom, a sulfur atom, a single bond or no bridge.
  • X A because there is a tendency to exhibit excellent heat resistance, it is preferable that an oxygen atom or a sulfur atom, more preferably oxygen atom.
  • X A in terms of solubility, it is preferable that the non-crosslinked.
  • m 2A is each independently an integer of 0 to 7. However, at least one m 2A is an integer of 2 to 7, or at least two m 2A is an integer of 1 to 7.
  • q A is each independently 0 or 1.
  • An alkanepropyl group having 2 to 60 carbon atoms, and when n 4, an alkanetetrayl group having 3 to 60 carbon atoms.
  • Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent group may have an aromatic group having 6 to 60 carbon atoms.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the compound represented by the above formula (2) has a relatively low molecular weight, but has high heat resistance due to the rigidity of the structure, and thus can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
  • the resist formation composition for lithography containing the compound represented by said Formula (2) may give a favorable resist pattern shape. it can.
  • the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened.
  • the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics.
  • it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
  • the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts.
  • a compound having a quaternary carbon is preferable from the viewpoint of suppressing oxidative decomposition of the compound, suppressing coloring, and improving heat resistance and solvent solubility.
  • Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compound represented by the above formula (2) is more preferably a compound represented by the following formula (2-1) from the viewpoint of easy crosslinking and solubility in an organic solvent.
  • R 0A , R 1A , n A , q A and X A have the same meaning as described in the above formula (2).
  • R 3A is an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, and an optionally substituted carbon. These are an alkenyl group, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, which may be the same or different in the same naphthalene ring or benzene ring.
  • at least one of R 3A is an alkenyl group having 2 to 30 carbon atoms
  • R 4A is each independently a hydrogen atom
  • m 6A is each independently an integer of 0 to 5.
  • R 4A is an acid dissociable group. It is.
  • R At least one of 4A is a hydrogen atom.
  • the compound (0-A) in the present embodiment is preferably a compound represented by the following formula (2-A) from the viewpoint of heat resistance and solvent solubility.
  • R 0A ′ has the same meaning as R Y ′ above, R 1A ′ is an n A valent group having 1 to 30 carbon atoms or a single bond, Each R 2A ′ independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms.
  • An alkenyloxy group of n A ′ has the same meaning as N described above.
  • n A ′ is an integer of 2 or more
  • the structural formulas in n A ′ [] may be the same or different
  • X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge
  • m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7
  • q A ′ is independently 0 or 1.
  • the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent group may have an aromatic group having 6 to 60 carbon atoms.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the compound represented by the above formula (2-A) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
  • a resist forming composition for lithography containing a compound represented by the above formula (2-A) gives a good resist pattern shape. be able to.
  • the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened.
  • the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics.
  • it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
  • the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts.
  • a compound having a quaternary carbon is preferable from the viewpoint of suppressing oxidative decomposition of the compound, suppressing coloring, and improving heat resistance and solvent solubility.
  • Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compound represented by the above formula (2-A) is more preferably a compound represented by the following formula (2-1-A) from the viewpoint of easy crosslinking and solubility in an organic solvent.
  • R 0A ′ , R 1A ′ , n A ′ , q A ′ and X A ′ are as defined in the above formula (2-A);
  • R 3A ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • each R 4A ′ is independently a hydrogen atom or a carbon number
  • R 4A ′ is an acid. It is a dissociable group.
  • R 4A ′ is a hydrogen atom.
  • the compound represented by the above formula (2-1-A) is more preferably a compound represented by the following formula (2a-A) from the viewpoint of feedability of raw materials.
  • the compound represented by the above formula (2-1-A) is more preferably a compound represented by the following formula (2b-A) from the viewpoint of solubility in an organic solvent.
  • the compound represented by the above formula (2-1-A) is more preferably a compound represented by the following formula (2c-A) from the viewpoint of solubility in an organic solvent.
  • the compound represented by the above formula (2-A) has the following formulas (BisN-1-A) to (BisN-4-A), (XBiN-1-A) from the viewpoint of solubility in an organic solvent.
  • a compound represented by (XBiN-3-A) is extremely preferable.
  • the compound represented by the formula (2) and the compound represented by the formula (2-A) in this embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
  • a polyphenol compound is obtained by polycondensation reaction of biphenols, binaphthols or bianthraceneol with a corresponding ketone under an acid catalyst under normal pressure, followed by at least one phenolic property of the polyphenol compound.
  • a compound represented by the formula (2-A) is obtained.
  • the compound represented by the formula (2-A) is heated to cause the Claisen transition to obtain the compound represented by the formula (2).
  • These reactions can be performed under pressure as necessary.
  • the timing for introducing the allyl group may be introduced before or after the condensation reaction or after the production of the resin described later.
  • the naphthols are not particularly limited, and examples thereof include naphthol, methyl naphthol, methoxy naphthol, naphthalene diol, and the like.
  • naphthalene diol is preferably used from the viewpoint that a xanthene structure can be easily formed. .
  • the phenols are not particularly limited, and examples thereof include phenol, methylphenol, methoxybenzene, catechol, resorcinol, hydroquinone, and trimethylhydroquinone.
  • ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • the acid catalyst can be appropriately selected from known inorganic acids and organic acids.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and hydrofluoric acid; oxalic acid, formic acid, p-toluenesulfone
  • Organic acids such as acids, methanesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid
  • Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride
  • Solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid can be mentioned.
  • hydrochloric acid or sulfuric acid from the viewpoint of production such as availability and ease
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction between the ketones to be used and naphthols proceeds.
  • water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, or a mixed solvent thereof can be used.
  • the amount of the reaction solvent is not particularly limited and is, for example, in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • the reaction temperature is not particularly limited and can be appropriately selected according to the reactivity of the reaction raw material, but is preferably in the range of 10 to 200 ° C. From the viewpoint of synthesizing the compound represented by the formula (2) in the present embodiment with good selectivity, the temperature is preferably lower and more preferably in the range of 10 to 60 ° C.
  • the reaction method is not particularly limited, and examples thereof include a method in which naphthols, aldehydes or ketones, and a catalyst are charged all at once, and a method in which naphthols, aldehydes, or ketones are dropped in the presence of a catalyst.
  • the temperature of the reaction kettle can be raised to 130-230 ° C., and volatile matter can be removed at about 1-50 mmHg. .
  • the amount of the raw material is not particularly limited. For example, 2 mol to an excess amount of naphthols and 0.001 to 1 mol of acid catalyst are used with respect to 1 mol of ketones, and 20 to 60 ° C. at normal pressure. For about 20 minutes to 100 hours.
  • the target product is isolated by a known method.
  • the method for isolating the target product is not particularly limited.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, and after cooling to room temperature, the product is separated by filtration.
  • the product can be filtered and dried, and then separated and purified from by-products by column chromatography, followed by solvent distillation, filtration and drying to isolate the target compound.
  • a method for introducing an allyl group into at least one phenolic hydroxyl group of a polyphenol compound is also known.
  • an allyl group can be introduced into at least one phenolic hydroxyl group of the compound as follows.
  • a compound for introducing an allyl group can be synthesized or easily obtained by a known method, and examples thereof include allyl chloride, allyl bromide, and allyl iodide, but are not particularly limited thereto.
  • the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like.
  • the reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary.
  • a compound in which the hydrogen atom of the hydroxy group is substituted with an allyl group can be obtained.
  • an allyl group reacts in the presence of a radical or an acid / alkali, and the solubility in an acid, alkali or organic solvent used in a coating solvent or a developer changes.
  • the group substituted with the allyl group preferably has a property of causing a chain reaction in the presence of a radical or an acid / alkali in order to enable pattern formation with higher sensitivity and higher resolution.
  • the allyl group introduced into the phenolic hydroxyl group can be transferred by Claisen transition by heating.
  • the compound represented by the above formula (2) can be used as it is as a film forming composition for lithography or a composition used for forming an optical component.
  • a resin obtained using the compound represented by the above formula (2) as a monomer can be used as a composition.
  • the resin is obtained, for example, by reacting a compound represented by the above formula (2) with a compound having crosslinking reactivity.
  • Examples of the resin obtained using the compound represented by the above formula (2) as a monomer include those having a structure represented by the following formula (4). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (4).
  • L is a linear or branched alkylene group having 1 to 30 carbon atoms or a single bond.
  • R 0A , R 1A , R 2A , m 2A , n A , q A and X A are synonymous with those in the above formula (2), However, when n A is an integer of 2 or more, the structural formulas in n A [] may be the same or different, and at least one m 2A is an integer of 2 to 6 or at least 2 m 2A is an integer of 1 to 6, at least one of R 2A is a hydroxyl group, and at least one of R 2A is an alkenyl group having 2 to 30 carbon atoms.
  • the compound represented by the above formula (2-A) can be used as it is as a film forming composition for lithography or a composition used for forming an optical component.
  • a resin obtained using the compound represented by the above formula (2-A) as a monomer can be used as a composition.
  • the resin is obtained, for example, by reacting a compound represented by the above formula (2-A) with a compound having a crosslinking reaction.
  • Examples of the resin obtained using the compound represented by the formula (2-A) as a monomer include those having a structure represented by the following formula (4-A). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (4-A).
  • L ′ is a linear or branched alkylene group having 1 to 30 carbon atoms or a single bond
  • R 0A ′ has the same meaning as R Y ′ above
  • R 1A ′ is an n A valent group having 1 to 30 carbon atoms or a single bond
  • Each R 2A ′ independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms.
  • An alkenyloxy group of n A ′ has the same meaning as N described above.
  • n A ′ is an integer of 2 or more
  • the structural formulas in n A ′ [] may be the same or different
  • X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge
  • m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7
  • q A ′ is independently 0 or 1.
  • the resin in the present embodiment can be obtained by reacting the compound represented by the above formula (2) and the compound represented by the formula (2-A) with a compound having crosslinking reactivity.
  • a compound having crosslinking reactivity known compounds are not particularly limited as long as the compound represented by the above formula (2) and the compound represented by the formula (2-A) can be oligomerized or polymerized. Can be used.
  • the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) include, for example, the compound represented by the above formula (2) and the formula (2) Examples thereof include a resin obtained by novolakizing the compound represented by -A) by a condensation reaction with an aldehyde and / or a ketone having a crosslinking reactivity.
  • examples of the aldehyde used when the compound represented by the above formula (2) and the compound represented by the formula (2-A) are novolakized include, for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propyl
  • examples include aldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural.
  • ketones include the above ketones. Among these, formaldehyde is more preferable.
  • these aldehydes and / or ketones can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde and / or ketone used is not particularly limited, but is 0.2 0.2 per mol of the compound represented by the formula (2) and the compound represented by the formula (2-A). It is preferably ⁇ 5 mol, more preferably 0.5 to 2 mol.
  • an acid catalyst In the condensation reaction of the compound represented by the above formula (2) and the compound represented by the formula (2-A) with an aldehyde and / or a ketone, an acid catalyst can be used.
  • the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
  • As such an acid catalyst inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid However, it is not particularly limited to these.
  • an organic acid or a solid acid is preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that However, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene In the case of a copolymerization reaction with a compound having a nonconjugated double bond such as limonene, aldehydes are not necessarily required.
  • reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the types of raw materials and catalysts to be used, and further the reaction conditions, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reactive raw materials. It is preferable that Furthermore, the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • the reaction method can be appropriately selected from known methods, and is not particularly limited.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
  • the novolak resin as the target product can be isolated.
  • the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) are the compounds represented by the above formula (2) and the formula (2-A).
  • a homopolymer of the compound represented by formula (1) may be used, but a copolymer with other phenols may also be used.
  • the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
  • the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) were copolymerized with a polymerizable monomer in addition to the above-described other phenols. It may be a thing.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
  • the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) are represented by the compound represented by the above formula (2) and the formula (2).
  • a copolymer represented by the above formula (2) and a compound represented by the formula (2) above, even if it is a binary or more (for example, 2-4 quaternary) copolymer of It may be a ternary or higher (for example, ternary to quaternary) copolymer of the above-described phenols and the above-mentioned copolymerization monomer.
  • the molecular weight of the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is 500. It is preferably ⁇ 30000, more preferably 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A)
  • the weight average molecular weight Mw / number average molecular weight Mn is preferably in the range of 1.2-7. In addition, said Mw and Mn can be calculated
  • the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) have high solubility in a solvent from the viewpoint of easier application of a wet process. It is preferable. More specifically, when 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) is used as a solvent, the solubility in the solvent is preferably 10% by mass or more.
  • the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”.
  • the solubility of the resin in PGMEA is “10 mass% or more”, and when it is not dissolved, it is “less than 10 mass%”.
  • the method for purifying the compound and / or resin in the present embodiment includes a compound represented by the above formula (0), a resin obtained using the compound represented by the above formula (0) as a monomer, and the above formula (0-A).
  • a resin obtained by using the compound represented by the above formula (0-A) as a monomer more specifically a compound represented by the above formula (1), represented by the above formula (1)
  • a resin obtained using the compound represented by the above formula (1-A) as a monomer, a compound represented by the above formula (2-A), and a compound represented by the above formula (2-A) can be obtained as a monomer.
  • the solvent used in the step of obtaining the solution (S) includes a solvent that is not arbitrarily miscible with water.
  • the resin includes the compound represented by the formula (1) and / or the compound represented by the formula (2) and the compound represented by the formula (1-A) and / or the formula (2).
  • a resin obtained by a reaction between a compound represented by -A) and a compound having a crosslinking reactivity is preferable.
  • the content of various metals that can be contained as impurities in the compound or resin having the specific structure described above can be reduced. More specifically, in the purification method of the present embodiment, the compound and / or the resin is dissolved in an organic solvent that is arbitrarily immiscible with water to obtain a solution (S), and the solution (S) is further obtained.
  • the extraction treatment can be performed in contact with an acidic aqueous solution. Thereby, after transferring the metal content contained in the solution (S) to the aqueous phase, the organic phase and the aqueous phase can be separated to obtain a compound and / or resin having a reduced metal content.
  • the compounds and / or resins used in the purification method of this embodiment may be used alone or in combination of two or more.
  • the said compound and resin may contain various surfactant, various crosslinking agents, various acid generators, various stabilizers, etc.
  • the solvent that is not arbitrarily miscible with water used in the purification method of the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable, and specifically, solubility in water at room temperature. Is less than 30%, more preferably less than 20%, and even more preferably less than 10%.
  • the amount of the organic solvent used is preferably 1 to 100 times by mass with respect to the total amount of the compound to be used and the resin.
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate and ethyl acetate are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone and propylene glycol monomethyl ether acetate are more preferable, and methyl More preferred are isobutyl ketone and ethyl acetate. Methyl isobutyl ketone, ethyl acetate, etc.
  • solvents are removed when the solvent is industrially distilled off or dried because the above compound and the resin containing the compound as a constituent component have a relatively high saturation solubility and a relatively low boiling point. It is possible to reduce the load in the process.
  • These solvents can be used alone or in combination of two or more.
  • the acidic aqueous solution used in the purification method of the present embodiment is appropriately selected from aqueous solutions in which generally known organic compounds or inorganic compounds are dissolved in water.
  • the acidic aqueous solution include, but are not limited to, for example, a mineral acid aqueous solution in which a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid is dissolved in water; acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid
  • acidic aqueous solutions can be used alone or in combination of two or more.
  • one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid,
  • One or more organic acid aqueous solutions selected from the group consisting of tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid are preferred, and sulfuric acid, nitric acid, acetic acid, oxalic acid,
  • An aqueous solution of carboxylic acid such as tartaric acid and citric acid is more preferable
  • an aqueous solution of sulfuric acid, succinic acid, tartaric acid and citric acid is more preferable
  • the water used here is preferably water having a low metal content, such as ion-exchanged water, in accordance with the purpose of the purification method of the present embodiment.
  • the pH of the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the influence on the compound and the resin.
  • the pH of the acidic aqueous solution is usually about 0 to 5, preferably about 0 to 3.
  • the amount of the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but is used from the viewpoint of reducing the number of extractions for metal removal and ensuring operability in consideration of the total liquid amount. It is preferable to adjust the amount. From the above viewpoint, the amount of the acidic aqueous solution used is preferably 10 to 200% by mass, and more preferably 20 to 100% by mass with respect to 100% by mass of the solution (S).
  • the metal component can be extracted from the compound or the resin in the solution (S) by bringing the acidic aqueous solution into contact with the solution (S).
  • the solution (S) further includes an organic solvent that is arbitrarily mixed with water.
  • the solution (S) contains an organic solvent that is arbitrarily miscible with water, the amount of the compound and / or resin charged can be increased, the liquid separation property is improved, and purification is performed with high pot efficiency.
  • the method of adding an organic solvent arbitrarily mixed with water is not particularly limited, for example, a method of adding to a solution containing an organic solvent in advance, a method of adding to a water or acidic aqueous solution in advance, a solution containing an organic solvent and water or an acidic aqueous solution. Any of the methods of adding after contacting may be used. Among these, the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of the operation and the ease of management of the charged amount.
  • the organic solvent arbitrarily mixed with water used in the purification method of the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the amount of the organic solvent arbitrarily mixed with water is not particularly limited as long as the solution phase and the aqueous phase are separated from each other, but is 0.1 to 100 times by mass with respect to the total amount of the compound and the resin to be used. It is preferably 0.1 to 50 times by mass, more preferably 0.1 to 20 times by mass.
  • organic solvent arbitrarily mixed with water used in the purification method of the present embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane; alcohols such as methanol, ethanol and isopropanol Ketones such as acetone and N-methylpyrrolidone; aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether Can be mentioned.
  • ethers such as tetrahydrofuran and 1,3-dioxolane
  • alcohols such as methanol, ethanol and isopropanol Ketones such as acetone and N-methylpyrrolidone
  • aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl
  • N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
  • Each of these solvents can be used alone or in combination of two or more.
  • the temperature at the time of the extraction treatment is usually 20 to 90 ° C, preferably 30 to 80 ° C.
  • the extraction operation is performed, for example, by mixing well by stirring and then allowing to stand. Thereby, the metal part contained in solution (S) transfers to an aqueous phase. Moreover, the acidity of a solution falls by this operation and the quality change of a compound and / or resin can be suppressed.
  • the solution phase is recovered by decantation or the like.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solvent-containing solution phase and the aqueous phase.
  • the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the solution phase containing the compound or the resin is further brought into contact with water to extract impurities in the compound or the resin (second extraction).
  • second extraction Specifically, for example, after performing the extraction treatment using an acidic aqueous solution, the solution phase containing the compound and / or resin and solvent extracted and recovered from the aqueous solution is further subjected to extraction treatment with water. It is preferable.
  • the extraction treatment with water is not particularly limited, and can be performed, for example, by thoroughly mixing the solution phase and water by stirring or the like and then allowing the obtained mixed solution to stand. Since the mixed solution after standing is separated into a solution phase containing a compound and / or a resin and a solvent and an aqueous phase, the solution phase can be recovered by decantation or the like.
  • the water used here is preferably water having a low metal content, for example, ion-exchanged water, in accordance with the purpose of the present embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as in the case of the contact process with the acidic aqueous solution.
  • the water that can be mixed into the solution containing the compound and / or resin and solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, a solvent can be added to the above solution to adjust the concentration of the compound and / or resin to an arbitrary concentration.
  • the method for isolating the compound and / or resin from the solution containing the obtained compound and / or resin and solvent is not particularly limited, and known methods such as removal under reduced pressure, separation by reprecipitation, and combinations thereof. Can be done. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
  • the film-forming composition for lithography in the present embodiment is a compound represented by the above formula (0), a resin obtained using the compound represented by the above formula (0) as a monomer, and the above formula (0-A). And a resin obtained by using a compound represented by the above formula (0-A) as a monomer, more specifically a compound represented by the above formula (1), a compound represented by the above formula (1) Resin obtained as monomer, compound represented by the above formula (2), resin obtained by using compound represented by the above formula (2) as monomer, compound represented by the above formula (1-A), above formula A resin obtained by using a compound represented by (1-A) as a monomer, a compound represented by the above formula (2-A), and a resin obtained by using a compound represented by the above formula (2-A) as a monomer. Contains one or more selected from the group consisting of
  • composition of the present embodiment can be a film forming composition for lithography or an optical component forming composition.
  • the film-forming composition for lithography (hereinafter also referred to as “resist composition”) for chemically amplified resist applications in the present embodiment is represented by the compound represented by the above formula (0) and the above formula (0).
  • a resin represented by the above formula (1-A) a resin obtained by using the compound represented by the above formula (1-A) as a monomer, a compound represented by the above formula (2-A), and the above Selected from the group consisting of formula (2-A) One or more containing a resist substrate.
  • composition (resist composition) in this embodiment preferably contains a solvent.
  • the solvent include, but are not limited to, ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, and ethylene glycol mono-n-butyl ether acetate.
  • Ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono -Propylene glycol such as n-butyl ether acetate Monoalkyl ether acetates; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether; methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, n-amyl lactate, etc.
  • PGMEA propylene glycol monomethyl ether acetate
  • PGMEA propylene glycol monoethyl ether acetate
  • Lactate esters aliphatic carboxylic acid esters such as methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate; Methyl propionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl A
  • Other esters such as tate, butyl 3-methoxy-3-methylpropionate, butyl 3-methoxy-3-methylbutyrate, methyl acetoacetate, methyl pyruvate, ethyl pyruvate; aromatic hydrocarbons such as toluene, xylene Ketones such as 2-h
  • the solvent used in this embodiment is preferably a safe solvent, more preferably at least one selected from PGMEA, PGME, CHN, CPN, 2-heptanone, anisole, butyl acetate, ethyl propionate and ethyl lactate.
  • a seed more preferably at least one selected from PGMEA, PGME and CHN.
  • the amount of the solid component and the amount of the solvent are not particularly limited, but 1 to 80% by weight of the solid component and 20 to 99% of the solvent with respect to 100% by weight of the total amount of the solid component and the solvent.
  • the solid component is preferably 1 to 50% by mass, more preferably 1 to 50% by mass of the solid component and 50 to 99% by mass of the solvent, further preferably 2 to 40% by mass of the solid component and 60 to 98% by mass of the solvent, and particularly preferably solid
  • the component is 2 to 10% by mass and the solvent is 90 to 98% by mass.
  • composition (resist composition) of the present embodiment is selected from the group consisting of an acid generator (C), a crosslinking agent (G), an acid diffusion controller (E), and other components (F) as other solid components. You may further contain at least 1 type chosen.
  • solid component refers to a component other than a solvent.
  • the acid generator (C), the crosslinking agent (G), the acid diffusion controller (E) and other components (F), known ones can be used, and are not particularly limited. Those described in Japanese Patent No. / 024778 are preferable.
  • the content of the compound and / or resin used as the resist base material is not particularly limited, but the total mass of the solid component (resist base material, acid generator (C), crosslinking agent (G ), Acid diffusion controller (E) and other components (F) and the like, and the total amount of solid components including the optionally used components, the same shall apply hereinafter)).
  • the amount is preferably 55 to 90% by mass, more preferably 60 to 80% by mass, and particularly preferably 60 to 70% by mass.
  • the resist composition in the present embodiment includes, as necessary, other than the resist base material, the acid generator (C), the cross-linking agent (G), and the acid diffusion controller (E) as long as the object of the present invention is not impaired.
  • a dissolution accelerator As a component, a dissolution accelerator, a dissolution control agent, a sensitizer, a surfactant, an organic carboxylic acid or a phosphorus oxo acid or a derivative thereof, a heat and / or photocuring catalyst, a polymerization inhibitor, a flame retardant, a filler, Coupling agents, thermosetting resins, photocurable resins, dyes, pigments, thickeners, lubricants, antifoaming agents, leveling agents, UV absorbers, surfactants, colorants, nonionic surfactants, etc.
  • another component (F) may be called arbitrary component (F).
  • a resist base material hereinafter also referred to as “component (A)”
  • an acid generator C
  • a crosslinking agent G
  • an acid diffusion controller E
  • an optional component The content of F (component (A) / acid generator (C) / crosslinking agent (G) / acid diffusion controller (E) / optional component (F)) is mass% based on solids, Preferably 50 to 99.4 / 0.001 to 49 / 0.5 to 49 / 0.001 to 49/0 to 49, More preferably 55 to 90/1 to 40 / 0.5 to 40 / 0.01 to 10/0 to 5, More preferably 60 to 80/3 to 30/1 to 30 / 0.01 to 5/0 to 1, Particularly preferred is 60 to 70/10 to 25/2 to 20 / 0.01 to 3/0.
  • the blending ratio of each component is selected from each range so that the sum is 100% by mass. When the blending ratio of each component is within the above range, the performance such as sensitivity, resolution, develop
  • the resist composition of this embodiment is usually prepared by dissolving each component in a solvent at the time of use to make a uniform solution, and then filtering with a filter having a pore size of about 0.2 ⁇ m, for example, as necessary.
  • the resist composition of the present embodiment can contain other resins other than the resin of the present embodiment as long as the object of the present invention is not impaired.
  • Other resins are not particularly limited.
  • novolak resins polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and acrylic acid, vinyl alcohol, or vinylphenol as monomer units. Examples thereof include polymers or derivatives thereof.
  • the content of other resins is not particularly limited and is appropriately adjusted according to the type of component (A) to be used, but is preferably 30 parts by mass or less with respect to 100 parts by mass of component (A). More preferably, it is 10 mass parts or less, More preferably, it is 5 mass parts or less, Most preferably, it is 0 mass part.
  • An amorphous film can be formed by spin coating using the resist composition of the present embodiment.
  • the resist composition of this embodiment can be applied to a general semiconductor manufacturing process.
  • the type of resin obtained using these as monomers and / or the type of developer used either a positive resist pattern or a negative resist pattern is used. Can be made separately.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment with respect to the developer at 23 ° C. is preferably 5 ⁇ / sec or less, and 0.05 to 5 ⁇ / It is more preferable that it is sec, and it is more preferable that it is 0.0005 to 5 cm / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. for a predetermined time, and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method.
  • a portion exposed to radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray of an amorphous film formed by spin-coating the resist composition of this embodiment is applied to a developer at 23 ° C.
  • the dissolution rate is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
  • the amorphous film formed by spin-coating the resist composition of this embodiment is exposed to a developing solution at 23 ° C. at a portion exposed by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray.
  • the dissolution rate is preferably 5 kg / sec or less, more preferably 0.05 to 5 kg / sec, and further preferably 0.0005 to 5 kg / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved.
  • the component (A) contained in the film forming composition for lithography for non-chemically amplified resist application of the present embodiment is a diazonaphthoquinone photoactive compound (B) described later.
  • a positive resist base material that is easily soluble in a developer by irradiating g-line, h-line, i-line, KrF excimer laser, ArF excimer laser, extreme ultraviolet light, electron beam or X-ray. Useful as.
  • G-line, h-line, i-line, KrF excimer laser, ArF excimer laser, extreme ultraviolet light, electron beam or X-ray does not change the property of component (A) greatly, but diazonaphthoquinone photoactivity is hardly soluble in the developer. Since the compound (B) changes to a readily soluble compound, a resist pattern can be formed by a development process.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is a compound having a relatively low molecular weight, the roughness of the resulting resist pattern is very small.
  • at least one selected from the group consisting of R 0 to R 5 is preferably a group containing an iodine atom, and in the formula (2), R 0A , R 1A and It is preferable that at least one selected from the group consisting of R 2A is a group containing an iodine atom.
  • the radiation-sensitive composition increases the ability to absorb radiation such as electron beams, extreme ultraviolet rays (EUV), and X-rays. This is preferable because the sensitivity can be increased.
  • EUV extreme ultraviolet rays
  • the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • the upper limit of the glass transition temperature of a component (A) is not specifically limited, For example, it is 400 degreeC.
  • the semiconductor lithography process has heat resistance capable of maintaining the pattern shape and tends to improve performance such as high resolution.
  • the crystallization calorific value obtained by differential scanning calorimetric analysis of the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably less than 20 J / g.
  • the (crystallization temperature) ⁇ (glass transition temperature) is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C. or higher, and particularly preferably 130 ° C. or higher.
  • crystallization heat generation amount is less than 20 J / g, or (crystallization temperature) ⁇ (glass transition temperature) is in the above range, an amorphous film can be easily formed by spin-coating the radiation-sensitive composition, and the resist Therefore, it is likely that the film forming property required for the above can be maintained for a long period of time and the resolution can be improved.
  • the crystallization heat generation amount, the crystallization temperature, and the glass transition temperature can be obtained by differential scanning calorimetry using DSC / TA-50WS manufactured by Shimadzu Corporation.
  • About 10 mg of a sample is put into an aluminum non-sealed container and heated to a melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (50 mL / min).
  • the temperature is raised again to the melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (30 mL / min). Further, after rapid cooling, the temperature is increased again to 400 ° C.
  • the temperature at the midpoint of the step difference of the baseline that has changed in a step shape is the glass transition temperature (Tg), and the temperature of the exothermic peak that appears thereafter is the crystallization temperature.
  • Tg glass transition temperature
  • the calorific value is obtained from the area of the region surrounded by the exothermic peak and the baseline, and is defined as the crystallization calorific value.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is 100 or less, preferably 120 ° C. or less, more preferably 130 ° C. or less, further preferably 140 ° C. or less, and particularly preferably 150 ° C. or less under normal pressure. It is preferable that sublimability is low. Low sublimation means that, in thermogravimetric analysis, the weight loss when held at a predetermined temperature for 10 minutes is 10% or less, preferably 5% or less, more preferably 3% or less, even more preferably 1% or less, particularly preferably Indicates 0.1% or less. Since the sublimation property is low, it is possible to prevent exposure apparatus from being contaminated by outgas during exposure. In addition, a good pattern shape can be obtained with low roughness.
  • Component (A) contained in the radiation-sensitive composition of the present embodiment is propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), cyclopentanone (CPN), 2-heptanone Selected from the group consisting of anisole, butyl acetate, ethyl propionate and ethyl lactate and exhibiting the highest solubility in component (A) at 23 ° C., preferably 1% by mass or more, more preferably Dissolves in an amount of 5% by mass or more, more preferably 10% by mass or more.
  • it is selected from the group consisting of PGMEA, PGME, and CHN, and (A) a solvent that exhibits the highest solubility in the resist base material, at 23 ° C., 20% by mass or more, and particularly preferably PGMEA On the other hand, 20 mass% or more dissolves at 23 ° C.
  • the diazonaphthoquinone photoactive compound (B) contained in the radiation-sensitive composition of the present embodiment is a diazonaphthoquinone substance containing a polymeric and non-polymeric diazonaphthoquinone photoactive compound.
  • a photosensitive component photosensitive agent
  • one or more kinds can be arbitrarily selected and used without any particular limitation.
  • the component (B) a compound obtained by reacting naphthoquinone diazide sulfonic acid chloride, benzoquinone diazide sulfonic acid chloride and the like with a low molecular compound or a high molecular compound having a functional group capable of condensation reaction with these acid chlorides.
  • the functional group capable of condensing with acid chloride is not particularly limited, and examples thereof include a hydroxyl group and an amino group, and a hydroxyl group is particularly preferable.
  • the compound that can be condensed with an acid chloride containing a hydroxyl group is not particularly limited, and examples thereof include hydroquinone, resorcin, 2,4-dihydroxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone.
  • 2,4,4'-trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2', 3,4,6 ' Hydroxybenzophenones such as pentahydroxybenzophenone; hydroxyphenylalkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) propane 4, 4 ′, 3 ′′, 4 ′′ -tetrahydroxy-3, 5, Hydroxytriphenylmethane such as 3 ′, 5′-tetramethyltriphenylmethane, 4, 4 ′, 2 ′′, 3 ′′, 4 ′′ -pentahydroxy-3, 5, 3 ′, 5′-tetramethyltriphenylmethane And the like.
  • hydroxyphenylalkanes such as bis (2,4-dihydroxyphenyl) methane
  • acid chlorides such as naphthoquinone diazide sulfonic acid chloride and benzoquinone diazide sulfonic acid chloride include 1,2-naphthoquinone diazide-5-sulfonyl chloride, 1,2-naphthoquinone diazide-4-sulfonyl chloride, and the like. Can be mentioned.
  • the radiation-sensitive composition of the present embodiment is prepared by, for example, dissolving each component in a solvent at the time of use to obtain a uniform solution, and then filtering by, for example, a filter having a pore size of about 0.2 ⁇ m as necessary. It is preferred that
  • An amorphous film can be formed by spin coating using the radiation-sensitive composition of the present embodiment. Moreover, the radiation sensitive composition of this embodiment can be applied to a general semiconductor manufacturing process. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be created.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment at 23 ° C. with respect to the developing solution is preferably 5 ⁇ / sec or less, and 0.05 to More preferably, it is 5 ⁇ / sec, and further preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developer at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ ⁇ / sec or more, it is easily dissolved in a developer and suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution for a predetermined time at 23 ° C., and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method. .
  • the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to
  • the dissolution rate of the exposed portion after heating at 500 ° C. in the developer at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably 10 to 10000 ⁇ / sec, and even more preferably 100 to 1000 ⁇ / sec.
  • the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist.
  • the dissolution rate is 10,000 kg / sec or less, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
  • the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to
  • the dissolution rate of the exposed portion after heating at 500 ° C. with respect to the developer at 23 ° C. is preferably 5 K / sec or less, more preferably from 0.05 to 5 K / sec, more preferably from 0.0005 to More preferably, it is 5 kg / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist.
  • the resolution may be improved. This is because an unexposed portion that dissolves in a developer due to a change in solubility before and after exposure of the compound represented by the above formulas (1) and (2) and / or a resin containing the compound as a constituent component, and a developer This is presumably because the contrast at the interface with the exposed portion that does not dissolve in the substrate increases. In addition, LER reduction and defect reduction effects are also seen.
  • the content of the component (A) is arbitrarily selected from the total mass of the solid component (component (A), diazonaphthoquinone photoactive compound (B), and other components (D)).
  • the total of solid components used, the same shall apply hereinafter) is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably 25 to 75%. % By mass.
  • the content of the component (A) is within the above range, the radiation-sensitive composition of the present embodiment tends to obtain a pattern with high sensitivity and small roughness.
  • the content of the diazonaphthoquinone photoactive compound (B) is the total mass of the solid components (component (A), diazonaphthoquinone photoactive compound (B) and other components (D). Etc.), preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably Is 25 to 75% by mass.
  • the radiation-sensitive composition of the present embodiment tends to obtain a highly sensitive and small roughness pattern.
  • an acid generator, a cross-linkage, and a component other than the component (A) and the diazonaphthoquinone photoactive compound (B) are included as necessary, as long as the object of the present invention is not impaired.
  • Agent acid diffusion controller, dissolution accelerator, dissolution controller, sensitizer, surfactant, organic carboxylic acid or phosphorus oxo acid or derivative thereof, heat and / or photocuring catalyst, polymerization inhibitor, flame retardant, Fillers, coupling agents, thermosetting resins, photocurable resins, dyes, pigments, thickeners, lubricants, antifoaming agents, leveling agents, UV absorbers, surfactants, colorants, nonionic surfactants 1 type, or 2 or more types can be added.
  • another component (D) may be called arbitrary component (D).
  • the blending ratio of each component is mass% based on the solid component, Preferably 1 to 99/99 to 1/0 to 98, More preferably 5 to 95/95 to 5/0 to 49, More preferably, 10 to 90/90 to 10/0 to 10, Even more preferably, 20-80 / 80-20 / 0-5, Particularly preferred is 25 to 75/75 to 25/0.
  • the blending ratio of each component is selected from each range so that the sum is 100% by mass. When the blending ratio of each component of the radiation-sensitive composition of the present embodiment is in the above range, it tends to be excellent in performance such as sensitivity and resolution in addition to roughness.
  • the radiation-sensitive composition of the present embodiment may contain other resins as long as the object of the present invention is not impaired.
  • other resins include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and polymers containing acrylic acid, vinyl alcohol, or vinyl phenol as monomer units or These derivatives are mentioned.
  • the blending amount of these resins is appropriately adjusted according to the type of component (A) used, but is preferably 30 parts by mass or less, more preferably 10 parts per 100 parts by mass of component (A). It is not more than part by mass, more preferably not more than 5 parts by mass, particularly preferably 0 part by mass.
  • a resist pattern is formed by forming a photoresist layer on a substrate using the resist composition or radiation-sensitive composition of the present embodiment described above, and then applying radiation to a predetermined region of the photoresist layer. And developing. More specifically, a step of forming a resist film on a substrate using the resist composition or radiation-sensitive composition of the present embodiment described above, a step of exposing the formed resist film, and developing the resist film And a step of forming a resist pattern.
  • the resist pattern in this embodiment can also be formed as an upper layer resist in a multilayer process.
  • the method for forming the resist pattern is not particularly limited, and examples thereof include the following methods.
  • a resist film is formed by applying a resist composition or a radiation sensitive composition on a conventionally known substrate by a coating means such as spin coating, cast coating, roll coating or the like.
  • the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed. More specifically, a silicon substrate, a metal substrate such as copper, chromium, iron, and aluminum, a glass substrate, and the like can be given. Examples of the wiring pattern material include copper, aluminum, nickel, and gold. Further, if necessary, an inorganic and / or organic film may be provided on the substrate.
  • inorganic BARC inorganic antireflection film
  • organic BARC organic antireflection film
  • Surface treatment with hexamethylene disilazane or the like may be performed on the substrate.
  • the substrate coated with the resist composition or radiation-sensitive composition is heated.
  • the heating conditions vary depending on the composition of the resist composition or radiation-sensitive composition, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C. Heating is preferred because the adhesion of the resist to the substrate tends to be improved.
  • the resist film is exposed to a desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam.
  • the exposure conditions and the like are appropriately selected according to the composition of the resist composition or the radiation sensitive composition.
  • the heating conditions vary depending on the composition of the resist composition or the radiation-sensitive composition, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C.
  • a predetermined resist pattern is formed by developing the exposed resist film with a developer.
  • a solubility parameter (SP value) for the compound obtained by using the compound represented by the formula (1) or (2) or the compound represented by the formula (1) or (2) as a monomer is used. It is preferable to select a solvent close to), and polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, etc., hydrocarbon solvents or alkaline aqueous solutions can be used.
  • ketone solvent examples include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methyl ethyl ketone.
  • ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3 -Ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate and the like.
  • the alcohol solvent examples include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol (2-propanol), n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, triethylene Glycol monoethyl ether, glycol monoethyl ether and methoxymethyl butanol.
  • Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n-oc
  • ether solvent examples include dioxane, tetrahydrofuran and the like in addition to the glycol ether solvent.
  • amide solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like. Can be mentioned.
  • hydrocarbon solvent examples include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
  • the water content of the developer as a whole is preferably less than 70% by mass, more preferably less than 50% by mass, and less than 30% by mass. More preferably, it is still more preferable that it is less than 10 mass%, and it is especially preferable not to contain water
  • alkaline aqueous solution examples include alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
  • alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
  • the developer is at least selected from a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether solvent from the viewpoint of improving resist performance such as resist pattern resolution and roughness.
  • a developer containing one solvent is preferred.
  • the vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and even more preferably 2 kPa or less at 20 ° C.
  • the vapor pressure of the developing solution is 5 kPa or less, evaporation of the developing solution on the substrate or in the developing cup is suppressed, temperature uniformity in the wafer surface is improved, and as a result, dimensional uniformity in the wafer surface is good. It tends to become.
  • Examples of specific developers having a vapor pressure of 5 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutylketone, cyclohexanone, methyl Ketone solvents such as cyclohexanone, phenylacetone, methyl isobutyl ketone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypro Pionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, butyl formate, propyl formate, ethyl lactate, butyl lactate, milk Ester solvent
  • ether solvents such as tetrahydrofuran; N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide amide solvents; toluene, xylene and other aromatic hydrocarbon solvents; Aliphatic hydrocarbon solvents such as octane and decane are listed.
  • Examples of specific developers having a vapor pressure of 2 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutylketone, cyclohexanone, methyl Ketone solvents such as cyclohexanone and phenylacetone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, 3 -Ester solvents such as methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate, propyl lactate; n-butyl alcohol alcohol solvents such as sec-
  • the surfactant is not particularly limited, and for example, ionic or nonionic fluorine-based and / or silicon-based surfactants can be used.
  • fluorine and / or silicon surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developer.
  • a development method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) ) Etc.
  • the time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • a step of stopping development may be performed while substituting with another solvent.
  • the rinsing liquid used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution or water containing a general organic solvent can be used.
  • a rinsing liquid containing at least one organic solvent selected from hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents.
  • a cleaning step is performed using a rinse solution containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, and amide solvents.
  • a cleaning step is performed using a rinse solution containing an alcohol solvent or an ester solvent. Even more preferably, after the development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after the development, a washing step is performed using a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms.
  • the time for rinsing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • examples of the monohydric alcohol used in the rinsing step after development include linear, branched, and cyclic monohydric alcohols, and specifically, 1-butanol, 2-butanol, 3-methyl- 1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2- Heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like can be used.
  • Particularly preferable monohydric alcohols having 5 or more carbon atoms include 1-hexanol, 2-hexanol, 4 -Methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol, etc. It is.
  • a plurality of the above components may be mixed, or may be used by mixing with an organic solvent other than the above.
  • the water content in the rinsing liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. When the water content in the rinsing liquid is 10% by mass or less, better development characteristics tend to be obtained.
  • the vapor pressure of the rinsing liquid used after development is preferably 0.05 kPa or more and 5 kPa or less at 20 ° C., more preferably 0.1 kPa or more and 5 kPa or less, and 0.12 kPa or more and 3 kPa or less. Is more preferable.
  • the vapor pressure of the rinsing liquid is 0.05 kPa or more and 5 kPa or less, the temperature uniformity in the wafer surface is further improved, and further, the swelling due to the penetration of the rinsing liquid is further suppressed, and the dimension in the wafer surface is uniform. Tend to be better.
  • An appropriate amount of a surfactant can be added to the rinse solution.
  • the developed wafer is cleaned using a rinsing solution containing the organic solvent.
  • the cleaning method is not particularly limited. For example, a method of continuously applying a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a bath filled with the rinsing liquid for a certain period of time. A method (dip method), a method of spraying a rinsing liquid onto the substrate surface (spray method), etc. can be applied. Among them, a cleaning process is performed by a spin coating method, and the substrate is rotated at a rotational speed of 2000 rpm to 4000 rpm after cleaning. It is preferable to remove the rinse liquid from the substrate.
  • the pattern wiring board is obtained by etching.
  • the etching can be performed by a known method such as dry etching using plasma gas and wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like.
  • plating after forming the resist pattern.
  • Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating.
  • the residual resist pattern after etching can be stripped with an organic solvent.
  • organic solvent include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), EL (ethyl lactate) and the like.
  • peeling method include a dipping method and a spray method.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
  • the wiring board in this embodiment can also be formed by a method of depositing a metal in a vacuum after forming a resist pattern and then dissolving the resist pattern with a solution, that is, a lift-off method.
  • the film forming composition for lithography for use in the lower layer film in the present embodiment includes a compound represented by the above formula (0) and a compound represented by the above formula (0).
  • a resin obtained by using the compound represented by the above formula (0-A) a resin obtained by using the compound represented by the above formula (0-A) as a monomer, more specifically the above formula (1) From the group consisting of a compound represented by the above formula, a resin obtained by using the compound represented by formula (1) as a monomer, a compound represented by formula (2) and a resin obtained by using the compound represented by formula (2) as a monomer. Contains at least one selected material.
  • the above substance is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, and more preferably 50 to 100%, based on the total mass of the solid component, from the viewpoints of coatability and quality stability. More preferably, it is 100% by weight, and particularly preferably 100% by weight.
  • the underlayer film forming material of this embodiment can be applied to a wet process and has excellent heat resistance and etching resistance. Furthermore, since the lower layer film forming material of the present embodiment uses the above-mentioned substances, it is possible to form a lower layer film that suppresses deterioration of the film during high-temperature baking and has excellent etching resistance against oxygen plasma etching and the like. . Furthermore, since the lower layer film forming material of this embodiment is also excellent in adhesion to the resist layer, an excellent resist pattern can be obtained. In addition, the lower layer film forming material of the present embodiment may include a known lower layer film forming material for lithography and the like as long as the effects of the present invention are not impaired.
  • the lower layer film forming material in the present embodiment may contain a solvent.
  • a solvent used for the lower layer film forming material a known one can be appropriately used as long as it can dissolve at least the above-described substances.
  • the solvent include, but are not limited to, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate and methyl acetate Ester solvents such as ethyl acetate, butyl acetate, isoamyl acetate, ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol, 1-ethoxy-2-propanol; toluene, xylene And aromatic hydrocarbons such as anisole. These solvents can be used alone or in combination of two or more.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and
  • cyclohexanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate and anisole are particularly preferable from the viewpoint of safety.
  • the content of the solvent is not particularly limited, but from the viewpoint of solubility and film formation, it is preferably 100 to 10000 parts by mass, and 200 to 5000 parts by mass with respect to 100 parts by mass of the total mass of the solid components. More preferred is 200 to 1000 parts by mass.
  • the lower layer film-forming material in the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing. Although it does not specifically limit as a crosslinking agent, For example, what was described in the international publication 2013/024779 can be used.
  • crosslinking agent examples include, for example, phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, acrylate compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanates. Examples thereof include, but are not limited to, compounds and azide compounds.
  • crosslinking agents can be used alone or in combination of two or more. Among these, a benzoxazine compound, an epoxy compound, or a cyanate compound is preferable, and a benzoxazine compound is more preferable from the viewpoint of improving etching resistance.
  • phenol compound known compounds can be used.
  • phenols include phenols, alkylphenols such as cresols and xylenols, polyhydric phenols such as hydroquinone, polycyclic phenols such as naphthols and naphthalenediols, and bisphenols such as bisphenol A and bisphenol F.
  • polyfunctional phenol compounds such as phenol novolac and phenol aralkyl resin.
  • aralkyl type phenol resins are preferable from the viewpoint of heat resistance and solubility.
  • epoxy compounds can be used as the epoxy compound, and the epoxy compound is selected from those having two or more epoxy groups in one molecule.
  • the epoxy compound is selected from those having two or more epoxy groups in one molecule.
  • epoxy resins may be used alone or in combination of two or more. From the viewpoint of heat resistance and solubility, an epoxy resin that is solid at room temperature such as an epoxy resin obtained from phenol aralkyl resins or biphenyl aralkyl resins is preferable.
  • the cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and known compounds can be used.
  • a preferred cyanate compound one having a structure in which a hydroxyl group of a compound having two or more hydroxyl groups in one molecule is substituted with a cyanate group can be mentioned.
  • the cyanate compound preferably has an aromatic group, and a cyanate compound having a structure in which the cyanate group is directly connected to the aromatic group can be suitably used.
  • cyanate compounds include bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol E, phenol novolac resin, cresol novolac resin, dicyclopentadiene novolac resin, tetramethylbisphenol F, bisphenol A novolac resin, bromine.
  • Bisphenol A brominated phenol novolak resin, trifunctional phenol, tetrafunctional phenol, naphthalene type phenol, biphenyl type phenol, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, dicyclopentadiene aralkyl resin, alicyclic phenol, phosphorus
  • cyanate compounds may be used alone or in combination of two or more.
  • the cyanate compound described above may be in any form of a monomer, an oligomer, and a resin.
  • amino compound examples include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3 , 3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl Sulfide, 3,3′-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene
  • Alicyclic amines such as heptane, 3 (4), 8 (9) -bis (aminomethyl) tricyclo [5.2.1.02,6] decane, 1,3-bisaminomethylcyclohexane, isophoronediamine , Ethylenediamine, hexamethylenediamine Octamethylene diamine, decamethylene diamine, diethylene triamine, aliphatic amines such as triethylenetetramine, and the like.
  • benzoxazine compound examples include Pd-type benzoxazine obtained from bifunctional diamines and monofunctional phenols, and Fa-type benzoxazine obtained from monofunctional diamines and bifunctional phenols. It is done.
  • the melamine compound include, for example, hexamethylol melamine, hexamethoxymethyl melamine, a compound obtained by methoxymethylating 1 to 6 methylol groups of hexamethylol melamine or a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl.
  • examples thereof include compounds in which 1 to 6 methylol groups of melamine and hexamethylolmelamine are acyloxymethylated, or a mixture thereof.
  • the guanamine compound include, for example, tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine And compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated, or a mixture thereof.
  • glycoluril compound examples include, for example, tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, a compound in which 1 to 4 methylol groups of tetramethylolglycoluril are methoxymethylated, or a mixture thereof, Examples thereof include compounds in which 1 to 4 methylol groups of tetramethylol glycoluril are acyloxymethylated, or mixtures thereof.
  • urea compound examples include, for example, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated or a mixture thereof, tetramethoxyethyl urea, and the like.
  • a crosslinking agent having at least one allyl group may be used from the viewpoint of improving the crosslinkability.
  • Specific examples of the crosslinking agent having at least one allyl group include 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2 -Bis (3-allyl-4-hydroxyphenyl) propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4-hydroxyphenyl) ) Allylphenols such as ether, 2,2-bis (3-allyl-4-cyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3 -Allyl-4-cyanatophenyl) propane, bis (3-allyl-4-cyanatosiphenyl) sulfone, bis (3-allyl-4-cyanatophenyl) sulfide, bis (3- Examples
  • the content of the crosslinking agent in the lower layer film-forming material is not particularly limited, but is preferably 0.1 to 50% by mass, more preferably 5 to 50% by mass, and still more preferably 10%, based on the total mass of the solid component. ⁇ 40% by weight.
  • Crosslinking accelerator In the lower layer film forming material of the present embodiment, a crosslinking accelerator for accelerating the crosslinking and curing reaction can be used as necessary.
  • the crosslinking accelerator is not particularly limited as long as it promotes crosslinking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These crosslinking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
  • crosslinking accelerator examples include, but are not limited to, for example, 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylamino).
  • Tertiary amines such as methyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, 2,4,5- Imidazoles such as triphenylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium tetraphenylborate, teto Tetraphenyl such as phenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate, etc., 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmorpholine /
  • the content of the crosslinking accelerator is preferably 0.1 to 10% by mass of the total mass of the solid component, and more preferably 0.1 to 5% by mass from the viewpoint of ease of control and economy. More preferably 0.1 to 3% by mass
  • a radical polymerization initiator can be blended as necessary.
  • the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization with light or a thermal polymerization initiator that initiates radical polymerization with heat.
  • the radical polymerization initiator can be, for example, at least one selected from the group consisting of ketone photopolymerization initiators, organic peroxide polymerization initiators, and azo polymerization initiators.
  • Such a radical polymerization initiator is not particularly limited, and those conventionally used can be appropriately employed.
  • 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylpropionamidine) dihydrochloride, 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] Dihydride chloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropionamidine] dihydrochloride 2,2′-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2′-azo
  • the content of the radical polymerization initiator may be a stoichiometrically required amount, but is preferably 0.05 to 25% by mass, and preferably 0.1 to 10% by mass based on the total mass of the solid component. % Is more preferable.
  • the content of the radical polymerization initiator is 0.05% by mass or more, there is a tendency that curing can be prevented from being insufficient.
  • the content of the radical polymerization initiator is 25% by mass or less. In such a case, the long-term storage stability of the lower layer film-forming material at room temperature tends to be prevented from being impaired.
  • the lower layer film-forming material in the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting the crosslinking reaction by heat.
  • an acid generator those that generate an acid by thermal decomposition, those that generate an acid by light irradiation, and the like are known, and any of them can be used.
  • an acid generator what was described in the international publication 2013/024779 can be used, for example.
  • the content of the acid generator in the lower layer film-forming material is not particularly limited, but is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass based on the total mass of the solid component. .
  • the acid generation amount tends to increase and the crosslinking reaction tends to be enhanced, and the occurrence of the mixing phenomenon with the resist layer tends to be suppressed.
  • the lower layer film-forming material in the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
  • the basic compound serves as a quencher for the acid to prevent a slight amount of acid generated from the acid generator from causing the crosslinking reaction to proceed.
  • a basic compound is not particularly limited, and examples thereof include those described in International Publication No. 2013/024779.
  • the content of the basic compound in the lower layer film-forming material is not particularly limited, but is preferably 0.001 to 2% by mass, more preferably 0.01 to 1% by mass, based on the total mass of the solid component. .
  • the lower layer film forming material in the present embodiment may contain other resins and / or compounds for the purpose of imparting curability by heat or light and controlling the absorbance.
  • Such other resins and / or compounds include: naphthol resins, xylene resins, naphthol modified resins, phenol modified resins of naphthalene resins; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, dimethacrylate, trimethacrylate, tetra Resins containing no heteroaromatic ring such as methacrylate, vinylnaphthalene, naphthalene rings such as polyacenaphthylene, biphenyl rings such as phenanthrenequinone and fluorene, heterocycles having heteroatoms such as thiophene, indene, etc .; rosin resins; Examples thereof include resins or compounds containing an alicyclic structure such as cyclodextr, cyclodext
  • the lower layer film-forming material in the present embodiment may contain a known additive.
  • Known additives include, but are not limited to, for example, heat and / or photocuring catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, and pigments. , Thickeners, lubricants, antifoaming agents, leveling agents, ultraviolet absorbers, surfactants, colorants, nonionic surfactants, and the like.
  • the lower layer film for lithography in the present embodiment is formed from the lower layer film forming material described above.
  • a lower layer film is formed on a substrate using the composition, and at least one photoresist layer is formed on the lower layer film.
  • a step of performing development by irradiating a predetermined region with radiation More specifically, a step (A-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and a step of forming at least one photoresist layer on the lower layer film ( A-2) and a step (A-3) of performing development by irradiating a predetermined region of the photoresist layer with radiation after the step (A-2).
  • the lower layer film is formed on the substrate using the composition, the intermediate layer film is formed on the lower layer film using the resist intermediate layer film material, and the intermediate layer is formed.
  • the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Forming a pattern.
  • a step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and a resist intermediate layer material containing silicon atoms on the lower layer film are used.
  • a step (B-4) of irradiating a predetermined region of the photoresist layer and developing to form a resist pattern and after the step (B-4), the intermediate layer film using the resist pattern as a mask Etching the lower layer film using the obtained intermediate layer film pattern as an etching mask, and etching the substrate using the obtained lower layer film pattern as an etching mask to form a pattern on the substrate (B-5) It has a.
  • the formation method of the lower layer film for lithography in the present embodiment is not particularly limited as long as it is formed from the lower layer film forming material of the present embodiment, and a known method can be applied.
  • a known method can be applied.
  • the lower layer film material of the present embodiment is crosslinked by a known method. And cured to form the lower layer film for lithography of the present embodiment.
  • the crosslinking method include methods such as thermosetting and photocuring.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C.
  • the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected according to the required performance, and is not particularly limited, but is usually preferably about 30 to 20000 nm, and more preferably 50 to 15000 nm.
  • a silicon-containing resist layer thereon in the case of a two-layer process, a silicon-containing resist layer thereon, or a single-layer resist made of normal hydrocarbon, and in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon. It is preferable to prepare a single-layer resist layer that does not contain silicon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
  • a silicon-containing resist layer or a single layer resist made of ordinary hydrocarbon can be formed on the lower layer film.
  • a silicon-containing intermediate layer can be formed on the lower layer film, and a single-layer resist layer not containing silicon can be formed on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
  • a silicon-containing resist material for a two-layer process from the viewpoint of oxygen gas etching resistance, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • a silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer With an effect as an antireflection film, reflection tends to be effectively suppressed.
  • the k value increases and the substrate reflection tends to increase, but the reflection is suppressed in the intermediate layer.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a polysilsesquide crosslinked with an acid or heat in which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Oxane is preferably used.
  • an intermediate layer formed by a chemical vapor deposition (CVD) method can also be used.
  • the intermediate layer produced by the CVD method and having a high effect as an antireflection film is not limited to the following, for example, a SiON film is known.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
  • the lower layer film in this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film has excellent etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
  • the resist pattern formed by the above-described method is one in which pattern collapse is suppressed by the lower layer film. Therefore, by using the lower layer film in the present embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is suitable.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 , or H 2 gas may be added.
  • gas etching can be performed using only CO, CO 2 , NH 3 , N 2 , NO 2 , and H 2 gas without using oxygen gas.
  • the latter gas is preferably used for side wall protection for preventing undercut of the pattern side wall.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same one as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask.
  • the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, but for example, a method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7) can be used.
  • a photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
  • BARC organic antireflection film
  • a polysilsesquioxane-based intermediate layer is also preferably used.
  • the resist intermediate layer film By providing the resist intermediate layer film with an effect as an antireflection film, reflection tends to be effectively suppressed.
  • Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are described, for example, in JP-A-2007-226170 (Patent Document 8) and JP-A-2007-226204 (Patent Document 9). Can be used.
  • Etching of the next substrate can also be performed by a conventional method.
  • the substrate is SiO2 or SiN
  • etching mainly using a chlorofluorocarbon gas and if p-Si, Al, or W is chlorine or bromine gas, Etching mainly composed of can be performed.
  • p-Si, Al, or W is chlorine or bromine gas
  • Etching mainly composed of can be performed.
  • the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
  • the lower layer film in the present embodiment has a feature that the etching resistance of the substrate is excellent.
  • known substrates can be appropriately selected and used, and are not particularly limited. Examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. It is done.
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various Low-k films and stoppers thereof such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, and Al—Si. A film etc.
  • the thing of a different material from a base material (support body) is used normally.
  • the thickness of the substrate to be processed or the film to be processed is not particularly limited, but it is usually preferably about 50 to 10000 nm, more preferably 75 to 5000 nm.
  • the resist permanent film which can also produce a resist permanent film
  • the permanent film include a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an adhesive layer between an integrated circuit element and a circuit board, and a thin film display protective film for a thin display. Examples include a liquid crystal color filter protective film, a black matrix, and a spacer.
  • a permanent film made of the above composition has excellent heat resistance and moisture resistance, and also has a very excellent advantage of less contamination due to sublimation components.
  • a display material is a material having high sensitivity, high heat resistance, and moisture absorption reliability with little image quality deterioration due to important contamination.
  • the above-mentioned film-forming composition for lithography and the composition for permanent resist film can be prepared by blending the above components and mixing them using a stirrer or the like. Further, when the resist underlayer film composition or resist permanent film composition contains a filler or a pigment, it is adjusted by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three-roll mill. I can do it.
  • a dispersing device such as a dissolver, a homogenizer, or a three-roll mill. I can do it.
  • Carbon concentration and oxygen concentration Carbon concentration and oxygen concentration (mass%) were measured by organic elemental analysis using the following apparatus. Apparatus: CHN coder MT-6 (manufactured by Yanaco Analytical Co., Ltd.)
  • the molecular weight of the compound was measured by LC-MS analysis using Water's Acquity UPLC / MALDI-Synapt HDMS. Moreover, the gel permeation chromatography (GPC) analysis was performed on the following conditions, and the polystyrene conversion weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw / Mn) were calculated
  • Apparatus Shodex GPC-101 (manufactured by Showa Denko KK) Column: KF-80M x 3 Eluent: THF 1mL / min Temperature: 40 ° C
  • the obtained compound (Al—BiN-1) was measured to have a molecular weight of 546 by the method described above.
  • the obtained compound had a thermal decomposition temperature of 370 ° C. and a glass transition temperature of 90 ° C., and was confirmed to have high heat resistance.
  • the obtained compound (Al-BiN-1) was subjected to NMR measurement under the above-described measurement conditions.
  • the obtained compound (AlOH-BiN-1) was measured to have a molecular weight of 546 by the method described above.
  • the resulting compound had a thermal decomposition temperature of 370 ° C. and a glass transition temperature of 100 ° C., confirming that it had high heat resistance.
  • the obtained compound (AlOH-BiN-1) was subjected to NMR measurement under the above-described measurement conditions. As a result, the following peak was found, and it had a chemical structure of the following formula (AlOH-BiN-1). confirmed.
  • the reaction was performed in the same manner as in Synthesis Example 1-2 except that Al-BiP-1 was used instead of Al-BiN-1, and the following formula (AlOH 0.9 g of the target compound represented by -BiP-1) was obtained.
  • the obtained compound (AlOH-BiP-1) was measured to have a molecular weight of 710 by the method described above.
  • the resulting compound had a thermal decomposition temperature of 385 ° C. and a glass transition temperature of 190 ° C., confirming that it had high heat resistance.
  • the obtained compound (AlOH-BiP-1) was subjected to NMR measurement under the above-mentioned measurement conditions.
  • the obtained resin (R1-BiP-1) had Mn: 1875, Mw: 3550, and Mw / Mn: 1.89.
  • the obtained resin (R2-BiP-2) had Mn: 1682, Mw: 2910, and Mw / Mn: 1.73.
  • the obtained resin (Al-R1-BiP-1) had Mn: 2299, Mw: 3982, and Mw / Mn: 1.73.
  • the obtained resin (AlOH-R1-BiP-1) had Mn: 2216, Mw: 3845, and Mw / Mn: 1.73.
  • the obtained resin (Al-R2-BiP-1) had Mn: 2630, Mw: 4682, and Mw / Mn: 1.78.
  • the obtained resin (AlOH-R2-BiP-1) was Mn: 2712, Mw: 4641, and Mw / Mn: 1.71.
  • ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a diluent solvent was added to the reaction solution, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were performed, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin. The molecular weight of the obtained dimethylnaphthalene formaldehyde was Mn: 562.
  • a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared.
  • This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid under a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was raised to 220 ° C. and reacted for 2 hours.
  • the obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17.
  • the carbon concentration was 89.1% by mass, and the oxygen concentration was 4.5% by mass.
  • Examples 1-1 to 17-2, Comparative Example 1 The solubility of the compounds and resins of Synthesis Examples 1-1 to 17-2 and the resin CR-1 of Synthesis Comparative Example 1 were evaluated. The results are shown in Table 6 below.
  • materials for forming a lower layer film for lithography having the composition shown in Table 1 were prepared.
  • these lower-layer film forming materials for lithography were spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare 200 nm-thick underlayer films. The following were used about the acid generator, the crosslinking agent, and the organic solvent.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDDPI) manufactured by Midori Chemical Co., Ltd.
  • Crosslinking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent propylene glycol monomethyl ether acetate acetate (PGMEA)
  • materials for forming a lower layer film for lithography having the compositions shown in Table 7 below were prepared.
  • these lower layer film forming materials for lithography are spin-coated on a silicon substrate, and then baked at 110 ° C. for 60 seconds to remove the solvent of the coating film. Then, an integrated exposure amount of 600 mJ is obtained with a high-pressure mercury lamp. / cm 2, and is cured by irradiation time of 20 seconds to produce each an underlying film having a thickness of 200 nm.
  • the photo acid generator, the crosslinking agent and the organic solvent described in Table 76 were used.
  • Photo acid generator WPA Pure Chemicals WPAG-336 (diphenyl-4-methylphenylsulfonium trifluoromethanesulfonate) ⁇
  • Crosslinking agent Diallyl bisphenol A cyanate manufactured by Mitsubishi Gas Chemical (DABPA-CN) Konishi Chemical Industry Diallylbisphenol A (BPA-CA) Benzoxazine (BF-BXZ) manufactured by Konishi Chemical Industries Nippon Kayaku Biphenyl Aralkyl Epoxy Resin (NC-3000-L) ⁇
  • Organic solvent Propylene glycol monomethyl ether acetate acetate (PGMEA)
  • the structure of the crosslinking agent is shown by the following formula.
  • n is an integer of 1 to 4.
  • Etching device RIE-10NR manufactured by Samco International Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • Etching resistance was evaluated according to the following procedure. First, a novolak underlayer film was produced under the same conditions as in Example 1-1, except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (Al-BisN-1). Then, the above-described etching test was performed on this novolac lower layer film, and the etching rate at that time was measured. Next, the above-described etching test was similarly performed on the lower layer films of Examples 1-1 to 17-2, 1-1A to 17-2A and Comparative Example 1, and the etching rate at that time was measured. Then, the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak underlayer film.
  • Etching rate is less than ⁇ 10% compared to the novolac lower layer film
  • B Etching rate from ⁇ 10% to + 5% compared to the novolac lower layer film
  • C Etching rate is more than + 5% compared to the novolak underlayer
  • each solution of an underlayer film forming material for lithography containing Al—BiN-1, Al—BiP-1, AlOH—BiN-1, or AlOH—BiP-1 is applied onto a 300 nm-thick SiO 2 substrate. Then, by baking at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds, a lower layer film having a thickness of 70 nm was formed. On this lower layer film, an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 140 nm-thick photoresist layer.
  • the compound of the formula (11) is 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, azobisisobutyronitrile. 0.38 g was dissolved in 80 mL of tetrahydrofuran to obtain a reaction solution. This reaction solution was polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane. The resulting resin thus obtained was coagulated and purified, and the resulting white powder was filtered and obtained by drying overnight at 40 ° C. under reduced pressure.
  • the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide (A positive resist pattern was obtained by developing with an aqueous solution of TMAH for 60 seconds.
  • ELIONX electron beam drawing apparatus
  • ELS-7500 ELS-7500, 50 keV
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH 2.38 mass% tetramethylammonium hydroxide
  • the shapes and defects of the obtained 55 nm L / S (1: 1) and 80 nm L / S (1: 1) resist patterns were observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd.
  • S-4800 electron microscope
  • the resist pattern was evaluated as “good” when the pattern was not collapsed and the rectangularity was good, and “bad”.
  • the minimum line width with no pattern collapse and good rectangularity was used as an evaluation index as “resolution”.
  • the minimum electron beam energy amount capable of drawing a good pattern shape was set as “sensitivity” and used as an evaluation index.
  • Table 8 The evaluation results are shown in Table 8.
  • Examples 42 to 45> The solution of the material for forming a lower layer film for lithography of Examples 1-1 to 2-2 was applied on a SiO 2 substrate having a film thickness of 300 nm and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds. An underlayer film of 80 nm was formed. On this lower layer film, a silicon-containing intermediate layer material was applied and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a thickness of 35 nm. Further, the ArF resist solution was applied on the intermediate layer film and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer. As the silicon-containing intermediate layer material, the silicon atom-containing polymer obtained below was used.
  • the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide.
  • ELIONX electron beam lithography apparatus
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH tetramethylammonium hydroxide
  • optical component-forming compositions were prepared with the formulations shown in Table 9 below.
  • the following were used for the acid generator, the acid crosslinking agent, the acid diffusion inhibitor, and the solvent.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDDPI) manufactured by Midori Chemical Co., Ltd.
  • Crosslinking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether acetate acetate (PGMEA)
  • PMEA Propylene glycol monomethyl ether acetate acetate
  • the optical component-forming composition in a uniform state was spin-coated on a clean silicon wafer, and then pre-baked (PB) in an oven at 110 ° C. to form an optical component-forming film having a thickness of 1 ⁇ m.
  • the prepared optical component-forming composition was evaluated as “A” when the film formation was good and “C” when the formed film had defects.
  • a uniform optical component-forming composition was spin-coated on a clean silicon wafer, and then PB was performed in an oven at 110 ° C. to form a film having a thickness of 1 ⁇ m.
  • a resist composition was prepared with the formulation shown in Table 10 below.
  • the following were used for the acid generator, the acid crosslinking agent, the acid diffusion inhibitor, and the solvent.
  • Acid generator Triphenylphosphonium trifluoromethanesulfonate manufactured by Midori Kagaku Co., Ltd.
  • Crosslinking agent Nicalak MX270 manufactured by Sanwa Chemical Co., Ltd.
  • Acid diffusion inhibitor Trioctylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether (PGME) manufactured by Tokyo Chemical Industry Co., Ltd.
  • the line and space was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technology Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Sensitivity was expressed as the minimum amount of energy per unit area necessary for obtaining a pattern, and was evaluated according to the following.
  • the obtained pattern shape is transferred to an SEM (Scanning Electron Microscope). And evaluated according to the following.
  • C When a non-rectangular pattern is obtained
  • the compound and resin according to the present invention are highly soluble in a safe solvent, have good heat resistance and etching resistance, and the resist composition according to the present invention gives a good resist pattern shape.
  • a wet process can be applied, and a compound, a resin, and a film forming composition for lithography useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance can be realized.
  • this film-forming composition for lithography uses a compound or resin having a specific structure that has high heat resistance and high solvent solubility, deterioration of the film during high-temperature baking is suppressed, oxygen plasma etching, etc. It is possible to form a resist and an underlayer film that are also excellent in etching resistance to. Furthermore, when the lower layer film is formed, the adhesion with the resist layer is also excellent, so that an excellent resist pattern can be formed.
  • the refractive index is high and the coloring is suppressed by low-temperature to high-temperature treatment, it is useful as a composition for forming various optical parts.
  • the present invention provides, for example, an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for a printed wiring board, an electrical laminate mounted on an electrical device / electronic device / industrial device, etc. ⁇ Matrix resin for prepregs, built-up laminate materials, resin for fiber reinforced plastics, sealing resin for liquid crystal display panels, paints, various coating agents, adhesives, and coatings for semiconductors installed in electronic equipment and industrial equipment
  • resin for semiconductor resist resin for forming lower layer film, film and sheet, plastic lens (prism lens, lenticular lens, micro lens, Fresnel lens, viewing angle control lens, contrast enhancement lens, etc.)
  • Retardation film electromagnetic shielding film, prism, optical fiber, flexible Solder resist printed wiring, plating resist, multilayer printed wiring boards interlayer insulating film, the optical component such as a photosensitive optical waveguide, it is widely and effectively available.
  • the present invention has industrial applicability in the fields of lithography resist, lithography underlayer film, multilayer resist underlayer film and optical components.

Abstract

The present invention provides a compound that is represented by formula (0). (In formula (0), RY is a C1-30 alkyl group or a C6-30 aryl group; RZ is a C1-60 N-valent group or a single bond; each RT is independently an optionally substituted C1-30 alkyl group, an optionally substituted C6-30 aryl group, an optionally substituted C2-30 alkenyl group, an optionally substituted C1-30 alkoxy group, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group, the alkyl group, the aryl group, the alkenyl group, and the alkoxy group optionally including an ether linkage, a ketone linkage, or an ester linkage, at least one RT being a hydroxyl group, and at least one RT being a C2-30 alkenyl group; X is an oxygen atom, a sulfur atom, a single bond, or the absence of a crosslink; each m is independently an integer from 0 to 9, at least one being an integer from 2 to 9 or at least two being integers from 1 to 9; N is an integer from 1 to 4, the structures inside the N [ ] being the same or different when N is 2 or greater; and each r is independently an integer from 0 to 2.)

Description

化合物、樹脂、組成物及びパターン形成方法Compound, resin, composition and pattern forming method
 本発明は、特定の構造を有する化合物、樹脂及びこれらを含有する組成物に関する。また、該組成物を用いるパターン形成方法に関する。 The present invention relates to a compound having a specific structure, a resin, and a composition containing these. The present invention also relates to a pattern forming method using the composition.
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。また、レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されており、極端紫外光(EUV、13.5nm)の導入も見込まれている。 In the manufacture of semiconductor devices, microfabrication by lithography using a photoresist material is performed. In recent years, further miniaturization by pattern rules has been demanded as LSI is highly integrated and increased in speed. The light source for lithography used for resist pattern formation has been shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm), and extreme ultraviolet light (EUV, 13.5 nm) has been introduced. Is also expected.
 しかしながら、従来の高分子系レジスト材料を用いるリソグラフィーでは、その分子量が1万~10万程度と大きく、分子量分布も広いため、パターン表面にラフネスが生じパターン寸法の制御が困難となり、微細化に限界がある。そこで、これまでに、より解像性の高いレジストパターンを与えるために、種々の低分子量レジスト材料が提案されている。低分子量レジスト材料は分子サイズが小さいことから、解像性が高く、ラフネスが小さいレジストパターンを与えることが期待される。 However, in lithography using a conventional polymer resist material, the molecular weight is as large as about 10,000 to 100,000, and the molecular weight distribution is wide, resulting in roughness on the pattern surface, making it difficult to control the pattern size, and limiting the miniaturization. There is. Thus, various low molecular weight resist materials have been proposed so far in order to provide resist patterns with higher resolution. Since the low molecular weight resist material has a small molecular size, it is expected to provide a resist pattern with high resolution and low roughness.
 現在、このような低分子系レジスト材料として、様々なものが知られている。例えば、低分子量多核ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献1及び特許文献2参照)が提案されており、高耐熱性を有する低分子量レジスト材料の候補として、低分子量環状ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献3及び非特許文献1参照)も提案されている。また、レジスト材料のベース化合物として、ポリフェノール化合物が、低分子量ながら高耐熱性を付与でき、レジストパターンの解像性やラフネスの改善に有用であることが知られている(例えば、非特許文献2参照)。 At present, various kinds of low-molecular resist materials are known. For example, an alkali development type negative radiation sensitive composition (for example, see Patent Document 1 and Patent Document 2) using a low molecular weight polynuclear polyphenol compound as a main component has been proposed, and a low molecular weight resist material having high heat resistance. As candidates, an alkali development negative radiation-sensitive composition using a low molecular weight cyclic polyphenol compound as a main component (see, for example, Patent Document 3 and Non-Patent Document 1) has also been proposed. Further, it is known that a polyphenol compound as a base compound for a resist material can impart high heat resistance despite its low molecular weight, and is useful for improving the resolution and roughness of a resist pattern (for example, Non-Patent Document 2). reference).
 本発明者らは、これまでに、エッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するレジスト組成物(例えば、特許文献4参照)を提案している。 The present inventors have so far developed a resist composition containing a compound having a specific structure and an organic solvent as a material excellent in etching resistance, soluble in a solvent and applicable to a wet process (for example, Patent Document 4). See).
 また、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になっている。 Further, as the resist pattern is further miniaturized, a problem of resolution or a problem that the resist pattern collapses after development occurs, so that a thinner resist is desired. However, simply thinning the resist makes it difficult to obtain a resist pattern film thickness sufficient for substrate processing. Therefore, not only a resist pattern but also a process for producing a resist underlayer film between the resist and a semiconductor substrate to be processed and providing this resist underlayer film with a function as a mask during substrate processing is required.
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と、溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献5参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献6参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献7参照)。 Currently, various types of resist underlayer films for such processes are known. For example, unlike a conventional resist underlayer film having a high etching rate, a terminal layer is removed by applying a predetermined energy as a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist. A material for forming a lower layer film for a multilayer resist process has been proposed, which contains at least a resin component having a substituent that generates a sulfonic acid residue and a solvent (see, for example, Patent Document 5). Also, resist underlayer film materials containing a polymer having a specific repeating unit have been proposed as a material for realizing a resist underlayer film for lithography having a lower dry etching rate selectivity than resist (for example, Patent Documents). 6). Furthermore, in order to realize a resist underlayer film for lithography having a low dry etching rate selection ratio compared with a semiconductor substrate, a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group are copolymerized. A resist underlayer film material containing a polymer is proposed (see, for example, Patent Document 7).
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガス等を原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。 On the other hand, as a material having high etching resistance in this kind of resist underlayer film, an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known. However, from the viewpoint of the process, a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
 また、本発明者らは、エッチング耐性に優れるとともに、耐熱性が高く、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(例えば、特許文献8参照)を提案している。 In addition, the present inventors have a composition for forming an underlayer film for lithography containing a compound having a specific structure and an organic solvent as a material having excellent etching resistance, high heat resistance, soluble in a solvent and applicable to a wet process. The thing (for example, refer patent document 8) is proposed.
 さらに、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献9参照)や、シリコン窒化膜のCVD形成方法(例えば、特許文献10参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献11及び12参照)。 Furthermore, regarding the formation method of the intermediate layer used in the formation of the resist underlayer film in the three-layer process, for example, a silicon nitride film formation method (see, for example, Patent Document 9) or a silicon nitride film CVD formation method (for example, Patent Document 10) is known. As an intermediate layer material for a three-layer process, a material containing a silsesquioxane-based silicon compound is known (see, for example, Patent Documents 11 and 12).
 光学部品形成組成物としても様々なものが提案されており、例えば、アクリル系樹脂(例えば、特許文献13~14参照)や、アリル基で誘導された特定の構造を有するポリフェノール(例えば、特許文献15参照)が提案されている。 Various optical component forming compositions have been proposed, such as acrylic resins (see, for example, Patent Documents 13 to 14) and polyphenols having a specific structure derived from an allyl group (for example, Patent Documents). 15) is proposed.
特開2005-326838号公報JP 2005-326838 A 特開2008-145539号公報JP 2008-145539 A 特開2009-173623号公報JP 2009-173623 A 国際公開第2013/024778号International Publication No. 2013/024778 特開2004-177668号公報JP 2004-177668 A 特開2004-271838号公報JP 2004-271838 A 特開2005-250434号公報JP 2005-250434 A 国際公開第2013/024779号International Publication No. 2013/024779 特開2002-334869号公報JP 2002-334869 A 国際公開第2004/066377号International Publication No. 2004/066377 特開2007-226170号公報JP 2007-226170 A 特開2007-226204号公報JP 2007-226204 A 特開2010-138393号公報JP 2010-138393 A 特開2015-174877号公報Japanese Patent Laying-Open No. 2015-174877 国際公開第2014/123005号International Publication No. 2014/123005
 上述したように、従来、数多くのレジスト用途向けリソグラフィー用膜形成組成物及び下層膜用途向けリソグラフィー用膜形成組成物が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い次元で両立させたものはなく、新たな材料の開発が求められている。 As described above, many lithographic film-forming compositions for resist applications and lithographic film-forming compositions for underlayer films have been proposed, but wet processes such as spin coating and screen printing are applicable. In addition to having high solvent solubility, there is nothing that combines heat resistance and etching resistance at a high level, and development of new materials is required.
 また、従来、数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。 In the past, many compositions for optical members have been proposed. However, none of them has a combination of heat resistance, transparency and refractive index at a high level, and the development of new materials is required.
 本発明は、上記従来技術の課題を鑑みてなされたものであり、その目的は、湿式プロセスが適用可能であり、耐熱性、溶解性及びエッチング耐性に優れるフォトレジスト及びフォトレジスト用下層膜を形成するために有用な化合物、樹脂、及び組成物を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is to form a photoresist and a lower layer film for photoresist that can be applied with a wet process and have excellent heat resistance, solubility, and etching resistance. It is an object of the present invention to provide compounds, resins, and compositions useful for the purpose.
 本発明者らは、上記従来技術の課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂により、上記従来技術の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 下記式(0)で表される、化合物。
Figure JPOXMLDOC01-appb-C000017
(0)
(式(0)中、Rは、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
 Rは、炭素数1~60のN価の基又は単結合であり、
 Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは水酸基であり、またRの少なくとも1つは炭素数2~30のアルケニル基であり、
 Xは、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは2~9の整数又はmの少なくとも2つは1~9の整数であり、
 Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
 rは、各々独立して0~2の整数である。)
[2]
 前記式(0)で表される化合物が、下記式(1)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000018
(1)
(式(1)中、Rは、前記Rと同義であり、
 Rは、炭素数1~60のn価の基又は単結合であり、
 R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは少なくとも1つは水酸基であり、またR~Rの少なくとも1つは炭素数2~30のアルケニル基であり、
 m及びmは、各々独立して、0~8の整数であり、
 m及びmは、各々独立して、0~9の整数であり、
 但し、m、m、m及びmは同時に0になることはなく、m、m、m及びmの少なくとも1つは2~8若しくは2~9の整数又はm、m、m及びmの少なくとも2つは1~8若しくは1~9の整数であり、
 nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
 p~pは、各々独立して、前記rと同義である。)
[3]
 前記式(0)で表される化合物が、下記式(2)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000019
(2)
(式(2)中、R0Aは、前記Rと同義であり、
 R1Aは、炭素数1~30のn価の基又は単結合であり、
 R2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは少なくとも1つは水酸基であり、またR2Aの少なくとも1つは炭素数2~30のアルケニル基であり、
 nは、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
 Xは、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 m2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは2~7の整数又は少なくとも2つのm2Aは1~7の整数であり、
 qは、各々独立して、0又は1である。)
[4]
 前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000020
(1-1)
(式(1-1)中、R、R、R、R、n、p~p、m及びmは、前記と同義であり、
 R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R~Rの少なくとも1つは炭素数2~30のアルケニル基であり、
 R10~R11は、各々独立して、水素原子であり、
 m及びmは、各々独立して、0~7の整数であり、但し、m、m、m及びmは同時に0になることはない。)
[5]
 前記式(1-1)で表される化合物が、下記式(1-2)で表される化合物である、[4]に記載の化合物。
Figure JPOXMLDOC01-appb-C000021
(1-2)
(式(1-2)中、R、R、R、R、R10、R11、n、p~p、m及びmは、前記と同義であり、
 R~Rは、前記R~Rと同義であり、
 R12~R13は、前記R10~R11と同義であり、
 m及びmは、各々独立して、0~8の整数であり、但し、m、m、m及びmは同時に0になることはない。)
[6]
 前記式(2)で表される化合物が、下記式(2-1)で表される化合物である、[3]に記載の化合物。
Figure JPOXMLDOC01-appb-C000022
(2-1)
(式(2-1)中、R0A、R1A、n、q及びX、は、前記と同義であり、
 R3Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R3Aの少なくとも1つは炭素数2~30のアルケニル基であり、
 R4Aは、各々独立して、水素原子であり、
 m6Aは、各々独立して、0~5の整数である。)
[7]
 [1]に記載の化合物をモノマーとして得られる、樹脂。
[8]
 下記式(3)で表される構造を有する、[7]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000023
(3)
(式(3)中、Lは、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基及び前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 Rは、前記Rと同義であり、
 Rは、炭素数1~60のn価の基又は単結合であり、
 R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは水酸基であり、またR~Rの少なくとも1つは炭素数2~30のアルケニル基であり、
 m及びmは、各々独立して、0~8の整数であり、
 m及びmは、各々独立して、0~9の整数であり、但し、m、m、m及びmは同時に0になることはなく、m、m、m及びmの少なくとも1つは2~8若しくは2~9の整数又はm、m、m及びmの少なくとも2つは1~8若しくは1~9の整数である。)
[9]
 下記式(4)で表される構造を有する、[7]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000024
(4)
(式(4)中、Lは、炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
 R0Aは、前記Rと同義であり、
 R1Aは、炭素数1~30のn価の基又は単結合であり、
 R2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは水酸基であり、またR2Aの少なくとも1つは炭素数2~30のアルケニル基であり、
 nは、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
 Xは、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 m2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは2~7の整数又は少なくとも2つのm2Aは1~7の整数であり、
 qは、各々独立して、0又は1である。)
[10]
 下記式(0-A)で表される、化合物。
Figure JPOXMLDOC01-appb-C000025
(0-A)
(式(0-A)中、RY’は、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
 RZ’は、炭素数1~60のN価の基又は単結合であり、
 RT’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、RT’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 X’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 m’は、各々独立して0~9の整数であり、ここで、m’の少なくとも1つは1~9の整数であり、
 N’は、1~4の整数であり、ここで、N’が2以上の整数の場合、N’個の[ ]内の構造式は同一であっても異なっていてもよく、
 r’は、各々独立して0~2の整数である。)
[11]
 前記式(0-A)で表される化合物が、下記式(1-A)で表される化合物である、[10]に記載の化合物。
Figure JPOXMLDOC01-appb-C000026
(1-A)
(式(1-A)中、R0’は、前記RY’と同義であり、
 R1’は、炭素数1~60のn価の基又は単結合であり、
 R2’~R5’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2’~R5’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 m2’及びm3’は、各々独立して、0~8の整数であり、
 m4’及びm5’は、各々独立して、0~9の整数であり、但し、m2’、m3’、m4’及びm5’は同時に0になることはなく、
 n’は前記N’と同義であり、ここで、n’が2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
 p2’~p5’は、前記rと同義である。)
[12]
 前記式(0-A)で表される化合物が、下記式(2-A)で表される化合物である、[10]に記載の化合物。
Figure JPOXMLDOC01-appb-C000027
(2-A)
(式(2-A)中、R0A’は、前記RY’と同義であり、
 R1A’は、炭素数1~30のn価の基又は単結合であり、
 R2A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2A’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 nA’は、前記Nと同義であり、ここで、nA’が2以上の整数の場合、nA’個の[ ]内の構造式は同一であっても異なっていてもよく、
 XA’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 m2A’は、各々独立して、0~7の整数であり、但し、少なくとも1つのm2A’は1~7の整数であり、
 qA’は、各々独立して、0又は1である。)
[13]
 前記式(1-A)で表される化合物が、下記式(1-1-A)で表される化合物である、[11]に記載の化合物。
Figure JPOXMLDOC01-appb-C000028
(1-1-A)
(式(1-1-A)中、R0’、R1’、R4’、R5’、n、p2’~p5’、m4’及びm5’は、前記と同義であり、
 R6’~R7’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R10’~R11’は、各々独立して、水素原子又は炭素数2~30のアルケニル基であり、
 ここで、R10’~R11’の少なくとも1つは炭素数2~30のアルケニル基であり、
 m6’及びm7’は、各々独立して、0~7の整数であり、但し、m4’、m5’、m6’及びm7’は同時に0になることはない。)
[14]
 前記式(1-1-A)で表される化合物が、下記式(1-2-A)で表される化合物である、[13]に記載の化合物。
Figure JPOXMLDOC01-appb-C000029
(1-2-A)
(式(1-2-A)中、R0’、R1’、R6’、R7’、R10’、R11’、n’、p2’~p5’、m6’及びm7’は、前記と同義であり、
 R8’~R9’は、前記R6’~R7’と同義であり、
 R12’~R13’は、前記R10’~R11’と同義であり、
 m8’及びm9’は、各々独立して、0~8の整数であり、但し、m6’、m7’、m8’及びm9’は同時に0になることはない。)
[15]
 前記式(2-A)で表される化合物が、下記式(2-1-A)で表される化合物である、[12]に記載の化合物。
Figure JPOXMLDOC01-appb-C000030
(2-1-A)
(式(2-1-A)中、R0A’、R1A’、nA’、qA’及びXA’、は、前記と同義であり、
 R3A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R4A’は、各々独立して、水素原子又は炭素数2~30のアルケニル基であり、ここで、R4A’の少なくとも1つは炭素数2~30のアルケニル基であり、
 m6A’は、各々独立して、0~5の整数である。)
[16]
 [10]に記載の化合物をモノマーとして得られる、樹脂。
[17]
 下記式(3-A)で表される構造を有する、[16]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000031
(3-A)
(式(3-A)中、Lは、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基及び前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 R0’は、前記RY’と同義であり、
 R1’は、炭素数1~60のn価の基又は単結合であり、
 R2’~R5’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2’~R5’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 m2’及びm3’は、各々独立して、0~8の整数であり、
 m4’及びm5’は、各々独立して、0~9の整数であり、但し、m2’、m3’、m4’及びm5’は同時に0になることはない。)
[18]
 下記式(4-A)で表される構造を有する、[16]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000032
(4-A)
(式(4-A)中、L’は、炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
 R0A’は、前記RY’と同義であり、
 R1A’は、炭素数1~30のn価の基又は単結合であり、
 R2A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2A’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 nA’は、前記Nと同義であり、ここで、nA’が2以上の整数の場合、nA’個の[ ]内の構造式は同一であっても異なっていてもよく、
 XA’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 m2A’は、各々独立して、0~7の整数であり、但し、少なくとも1つのm2A’は1~7の整数であり、
 qA’は、各々独立して、0又は1である。)
[19]
 [1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂、並びに[10]~[15]のいずれかに記載の化合物及び[16]~[18]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。
[20]
 溶媒をさらに含有する、[19]に記載の組成物。
[21]
 酸発生剤をさらに含有する、[19]又は[20]に記載の組成物。
[22]
 架橋剤をさらに含有する、[19]~[21]のいずれか1項に記載の組成物。
[23]
 前記架橋剤が、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、[22]に記載の組成物。
[24]
 前記架橋剤が、少なくとも1つのアリル基を有する、[22]又は[23]に記載の組成物。
[25]
 前記架橋剤の含有量が、固形成分の全質量の0.1~50質量%である、[22]~[24]のいずれか一項に記載の組成物。
[26]
 架橋促進剤をさらに含有する、[22]~[25]のいずれかに記載の組成物。
[27]
 前記架橋促進剤が、アミン類、イミダゾール類、有機ホスフィン類、及びルイス酸からなる群より選ばれる少なくとも1種である、[26]に記載の組成物。
[28]
 前記架橋促進剤の含有量が、固形成分の全質量の0.1~5質量%である、[26]又は[27]に記載の組成物。
[29]
 ラジカル重合開始剤をさらに含有する、[19]~[28]のいずれかに記載の組成物。
[30]
 前記ラジカル重合開始剤が、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種である、[19]~[29]のいずれかに記載の組成物。
[31]
 前記ラジカル重合開始剤の含有量が、固形成分の全質量の0.05~25質量%である、[19]~[30]のいずれかに記載の組成物。
[32]
 リソグラフィー用膜形成に用いられる、[19]~[31]のいずれかに記載の組成物。
[33]
 レジスト永久膜形成に用いられる、[19]~[31]のいずれかに記載の組成物。
[34]
 光学部品形成に用いられる、[19]~[31]のいずれかに記載の組成物。
[35]
 [32]に記載の組成物を用いて基板上にフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[36]
 [32]に記載の組成物を用いて基板上に下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[37]
 [32]に記載の組成物を用いて基板上に下層膜を形成し、前記下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
 前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む、回路パターン形成方法。
As a result of intensive studies in order to solve the problems of the prior art, the present inventors have found that the problems of the prior art can be solved by a compound or resin having a specific structure, and have completed the present invention. It was.
That is, the present invention is as follows.
[1]
The compound represented by following formula (0).
Figure JPOXMLDOC01-appb-C000017
(0)
(In the formula (0), R Y is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms,
R Z is an N-valent group having 1 to 60 carbon atoms or a single bond,
R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T is a hydroxyl group, and R T At least one of these is an alkenyl group having 2 to 30 carbon atoms,
X represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 2 to 9 or at least two of m is an integer of 1 to 9,
N is an integer of 1 to 4, where, when N is an integer of 2 or more, the structural formulas in N [] may be the same or different,
Each r is independently an integer of 0-2. )
[2]
The compound according to [1], wherein the compound represented by the formula (0) is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000018
(1)
(In Formula (1), R 0 has the same meaning as R Y ,
R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond,
R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or A hydroxyl group, and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2 to R 5 is at least One is a hydroxyl group, and at least one of R 2 to R 5 is an alkenyl group having 2 to 30 carbon atoms;
m 2 and m 3 are each independently an integer of 0 to 8,
m 4 and m 5 are each independently an integer of 0 to 9,
However, m 2 , m 3 , m 4 and m 5 are not 0 simultaneously, and at least one of m 2 , m 3 , m 4 and m 5 is an integer of 2 to 8, 2 to 9, or m 2 , M 3 , m 4 and m 5 are integers from 1 to 8 or 1 to 9,
n is synonymous with the above N, and here, when n is an integer of 2 or more, the structural formulas in the n [] may be the same or different,
p 2 to p 5 are each independently the same as r. )
[3]
The compound according to [1], wherein the compound represented by the formula (0) is a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000019
(2)
(In Formula (2), R 0A has the same meaning as R Y ,
R 1A is an n A valent group having 1 to 30 carbon atoms or a single bond,
R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A is a hydroxyl group. And at least one of R 2A is an alkenyl group having 2 to 30 carbon atoms,
n A has the same meaning as N above. Here, when n A is an integer of 2 or more, the structural formulas in n A [] may be the same or different,
X A represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m 2A is each independently an integer from 0 to 7, provided that at least one m 2A is an integer from 2 to 7 or at least two m 2A is an integer from 1 to 7;
q A is each independently 0 or 1. )
[4]
The compound according to [2], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000020
(1-1)
(In the formula (1-1), R 0 , R 1 , R 4 , R 5 , n, p 2 to p 5 , m 4 and m 5 are as defined above.
R 6 to R 7 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein at least one of R 6 to R 7 has 2 carbon atoms -30 alkenyl groups,
R 10 to R 11 are each independently a hydrogen atom,
m 6 and m 7 are each independently an integer of 0 to 7, provided that m 4 , m 5 , m 6 and m 7 are not 0 at the same time. )
[5]
The compound according to [4], wherein the compound represented by the formula (1-1) is a compound represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000021
(1-2)
(In the formula (1-2), R 0 , R 1 , R 6 , R 7 , R 10 , R 11 , n, p 2 to p 5 , m 6 and m 7 are as defined above.
R 8 to R 9 have the same meanings as R 6 to R 7 ,
R 12 to R 13 have the same meanings as R 10 to R 11 ,
m 8 and m 9 are each independently an integer of 0 to 8, provided that m 6 , m 7 , m 8 and m 9 are not 0 at the same time. )
[6]
The compound according to [3], wherein the compound represented by the formula (2) is a compound represented by the following formula (2-1).
Figure JPOXMLDOC01-appb-C000022
(2-1)
(In the formula (2-1), R 0A , R 1A , n A , q A and X A are as defined above,
R 3A each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. And an alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein at least one of R 3A is an alkenyl group having 2 to 30 carbon atoms. Yes,
R 4A is each independently a hydrogen atom;
m 6A is each independently an integer of 0 to 5. )
[7]
A resin obtained by using the compound according to [1] as a monomer.
[8]
Resin as described in [7] which has a structure represented by following formula (3).
Figure JPOXMLDOC01-appb-C000023
(3)
(In Formula (3), L is a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may have a substituent, and 6 to 6 carbon atoms which may have a substituent. 30 arylene group, an alkoxylene group having 1 to 30 carbon atoms which may have a substituent, or a single bond, wherein the alkylene group, the arylene group and the alkoxylene group are an ether bond, a ketone bond or an ester May contain bonds,
R 0 has the same meaning as R Y ,
R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond,
R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or A hydroxyl group, and the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2 to R 5 is a hydroxyl group And at least one of R 2 to R 5 is an alkenyl group having 2 to 30 carbon atoms,
m 2 and m 3 are each independently an integer of 0 to 8,
m 4 and m 5 are each independently an integer of 0 to 9, provided that m 2 , m 3 , m 4 and m 5 are not 0 at the same time, and m 2 , m 3 , m 4 And at least one of m 5 is an integer of 2 to 8 or 2 to 9, or at least two of m 2 , m 3 , m 4 and m 5 are an integer of 1 to 8 or 1 to 9. )
[9]
Resin as described in [7] which has a structure represented by following formula (4).
Figure JPOXMLDOC01-appb-C000024
(4)
(In the formula (4), L is a linear or branched alkylene group having 1 to 30 carbon atoms or a single bond,
R 0A has the same meaning as R Y ,
R 1A is an n A valent group having 1 to 30 carbon atoms or a single bond,
R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A is a hydroxyl group, and R 2A At least one of these is an alkenyl group having 2 to 30 carbon atoms,
n A has the same meaning as N above. Here, when n A is an integer of 2 or more, the structural formulas in n A [] may be the same or different,
X A represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m 2A is each independently an integer from 0 to 7, provided that at least one m 2A is an integer from 2 to 7 or at least two m 2A is an integer from 1 to 7;
q A is each independently 0 or 1. )
[10]
A compound represented by the following formula (0-A).
Figure JPOXMLDOC01-appb-C000025
(0-A)
(In the formula (0-A), R Y ′ is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms,
R Z ′ is an N-valent group having 1 to 60 carbon atoms or a single bond,
R T ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. And the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T ′ has 2 to 30 carbon atoms. An alkenyloxy group of
X ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m ′ is each independently an integer of 0 to 9, wherein at least one of m ′ is an integer of 1 to 9,
N ′ is an integer of 1 to 4, where, when N ′ is an integer of 2 or more, the structural formulas in N ′ [] may be the same or different,
r ′ is independently an integer of 0 to 2. )
[11]
The compound according to [10], wherein the compound represented by the formula (0-A) is a compound represented by the following formula (1-A).
Figure JPOXMLDOC01-appb-C000026
(1-A)
(In the formula (1-A), R 0 ′ has the same meaning as R Y ′ ,
R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond,
R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol A group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2 ′ to R 5 ′ One is an alkenyloxy group having 2 to 30 carbon atoms,
m 2 ′ and m 3 ′ are each independently an integer of 0 to 8,
m 4 ′ and m 5 ′ are each independently an integer of 0 to 9, provided that m 2 ′ , m 3 ′ , m 4 ′ and m 5 ′ are not 0 at the same time,
n ′ has the same meaning as N ′, and when n ′ is an integer of 2 or more, the structural formulas in n [] may be the same or different,
p 2 ′ to p 5 ′ have the same meaning as r. )
[12]
The compound according to [10], wherein the compound represented by the formula (0-A) is a compound represented by the following formula (2-A).
Figure JPOXMLDOC01-appb-C000027
(2-A)
(In the formula (2-A), R 0A ′ has the same meaning as R Y ′ ,
R 1A ′ is an n A valent group having 1 to 30 carbon atoms or a single bond,
Each R 2A ′ independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. And the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms. An alkenyloxy group of
n A ′ has the same meaning as N above. Here, when n A ′ is an integer of 2 or more, the structural formulas in n A ′ [] may be the same or different,
X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7;
q A ′ is independently 0 or 1. )
[13]
The compound according to [11], wherein the compound represented by the formula (1-A) is a compound represented by the following formula (1-1-A).
Figure JPOXMLDOC01-appb-C000028
(1-1-A)
(In the formula (1-1-A), R 0 ′ , R 1 ′ , R 4 ′ , R 5 ′ , n, p 2 ′ to p 5 ′ , m 4 ′ and m 5 ′ are as defined above. Yes,
R 6 ′ to R 7 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An optionally substituted alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein R 10 ′ to R 11 ′ are each independently A hydrogen atom or an alkenyl group having 2 to 30 carbon atoms,
Here, at least one of R 10 ′ to R 11 ′ is an alkenyl group having 2 to 30 carbon atoms,
m 6 ′ and m 7 ′ are each independently an integer of 0 to 7, provided that m 4 ′ , m 5 ′ , m 6 ′ and m 7 ′ cannot be 0 at the same time. )
[14]
The compound according to [13], wherein the compound represented by the formula (1-1-A) is a compound represented by the following formula (1-2-A).
Figure JPOXMLDOC01-appb-C000029
(1-2-A)
(In the formula (1-2-A), R 0 ′ , R 1 ′ , R 6 ′ , R 7 ′ , R 10 ′ , R 11 ′ , n ′, p 2 ′ to p 5 ′ , m 6 ′ and m 7 ′ is as defined above,
R 8 ′ to R 9 ′ have the same meanings as R 6 ′ to R 7 ′ ,
R 12 ′ to R 13 ′ have the same meanings as R 10 ′ to R 11 ′ ,
m 8 ′ and m 9 ′ are each independently an integer of 0 to 8, provided that m 6 ′ , m 7 ′ , m 8 ′ and m 9 ′ are not 0 at the same time. )
[15]
The compound according to [12], wherein the compound represented by the formula (2-A) is a compound represented by the following formula (2-1-A).
Figure JPOXMLDOC01-appb-C000030
(2-1-A)
(In the formula (2-1-A), R 0A ′ , R 1A ′ , n A ′ , q A ′ and X A ′ are as defined above,
R 3A ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. Which may be an alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein each R 4A ′ is independently a hydrogen atom or a carbon number An alkenyl group having 2 to 30 carbon atoms, wherein at least one of R 4A ′ is an alkenyl group having 2 to 30 carbon atoms,
m 6A ′ is each independently an integer of 0 to 5. )
[16]
Resin obtained by using the compound as described in [10] as a monomer.
[17]
The resin according to [16], which has a structure represented by the following formula (3-A).
Figure JPOXMLDOC01-appb-C000031
(3-A)
(In the formula (3-A), L represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may have a substituent, and a carbon number which may have a substituent. An arylene group having 6 to 30 carbon atoms, an alkoxylene group having 1 to 30 carbon atoms which may have a substituent, or a single bond, and the alkylene group, the arylene group and the alkoxylene group may be an ether bond or a ketone bond. Or it may contain an ester bond,
R 0 ′ has the same meaning as R Y ′
R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond,
R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol A group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2 ′ to R 5 ′ One is an alkenyloxy group having 2 to 30 carbon atoms,
m 2 ′ and m 3 ′ are each independently an integer of 0 to 8,
m 4 ′ and m 5 ′ are each independently an integer of 0 to 9, provided that m 2 ′ , m 3 ′ , m 4 ′ and m 5 ′ are not 0 at the same time. )
[18]
The resin according to [16], which has a structure represented by the following formula (4-A).
Figure JPOXMLDOC01-appb-C000032
(4-A)
(In the formula (4-A), L ′ is a linear or branched alkylene group having 1 to 30 carbon atoms or a single bond,
R 0A ′ has the same meaning as R Y ′ ,
R 1A ′ is an n A valent group having 1 to 30 carbon atoms or a single bond,
Each R 2A ′ independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. And the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms. An alkenyloxy group of
n A ′ has the same meaning as N above. Here, when n A ′ is an integer of 2 or more, the structural formulas in n A ′ [] may be the same or different,
X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7;
q A ′ is independently 0 or 1. )
[19]
The compound according to any one of [1] to [6], the resin according to any one of [7] to [9], the compound according to any one of [10] to [15], and [16] to The composition containing 1 or more types chosen from the group which consists of resin in any one of [18].
[20]
The composition according to [19], further comprising a solvent.
[21]
The composition according to [19] or [20], further comprising an acid generator.
[22]
The composition according to any one of [19] to [21], further comprising a crosslinking agent.
[23]
The crosslinking agent is at least one selected from the group consisting of phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanate compounds, and azide compounds. [22] The composition according to [22].
[24]
The composition according to [22] or [23], wherein the crosslinking agent has at least one allyl group.
[25]
The composition according to any one of [22] to [24], wherein the content of the crosslinking agent is 0.1 to 50% by mass of the total mass of the solid component.
[26]
The composition according to any one of [22] to [25], further comprising a crosslinking accelerator.
[27]
The composition according to [26], wherein the crosslinking accelerator is at least one selected from the group consisting of amines, imidazoles, organic phosphines, and Lewis acids.
[28]
The composition according to [26] or [27], wherein the content of the crosslinking accelerator is 0.1 to 5% by mass of the total mass of the solid component.
[29]
The composition according to any one of [19] to [28], further comprising a radical polymerization initiator.
[30]
Any one of [19] to [29], wherein the radical polymerization initiator is at least one selected from the group consisting of a ketone photopolymerization initiator, an organic peroxide polymerization initiator, and an azo polymerization initiator. A composition according to 1.
[31]
The composition according to any one of [19] to [30], wherein the content of the radical polymerization initiator is 0.05 to 25% by mass of the total mass of the solid component.
[32]
The composition according to any one of [19] to [31], which is used for forming a film for lithography.
[33]
The composition according to any one of [19] to [31], which is used for forming a permanent resist film.
[34]
The composition according to any one of [19] to [31], which is used for forming an optical component.
[35]
A method of forming a resist pattern, comprising: forming a photoresist layer on a substrate using the composition described in [32]; and irradiating a predetermined region of the photoresist layer with radiation and developing.
[36]
A lower layer film is formed on a substrate using the composition described in [32], and at least one photoresist layer is formed on the lower layer film, and then a predetermined region of the photoresist layer is irradiated with radiation. And a resist pattern forming method including a step of developing.
[37]
A lower layer film is formed on a substrate using the composition described in [32], an intermediate layer film is formed on the lower layer film using a resist intermediate layer film material, and at least one layer is formed on the intermediate layer film. Forming a photoresist layer of
Irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern;
Etching the intermediate layer film using the resist pattern as a mask, etching the lower layer film using the obtained intermediate layer film pattern as an etching mask, and etching the substrate using the obtained lower layer film pattern as an etching mask. Forming a pattern; and a circuit pattern forming method.
 本発明に係る化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好である。また、本発明に係る化合物及び/又は樹脂を含むレジスト組成物は、良好なレジストパターン形状を与える。 The compound and resin according to the present invention are highly soluble in a safe solvent, and have good heat resistance and etching resistance. Moreover, the resist composition containing the compound and / or resin according to the present invention gives a good resist pattern shape.
 以下、本発明を実施するための形態(以下「本実施形態」ともいう。)について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。 Hereinafter, a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described. In addition, the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
 本実施形態における化合物、樹脂、及びそれを含む組成物は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用である。また、本実施形態における組成物は、耐熱性及び溶媒溶解性の高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。加えて、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
 さらには、屈折率が高く、また低温から高温までの広範囲の熱処理による着色が抑制されることから、各種光学形成組成物としても有用である。
The compound, resin, and composition containing the compound in the present embodiment can be applied to a wet process, and are useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance. In addition, since the composition in the present embodiment uses a compound or resin having a specific structure with high heat resistance and solvent solubility, deterioration of the film during high-temperature baking is suppressed, and etching resistance against oxygen plasma etching and the like In addition, an excellent resist and lower layer film can be formed. In addition, when the lower layer film is formed, the adhesion with the resist layer is also excellent, so that an excellent resist pattern can be formed.
Furthermore, since the refractive index is high and coloring due to a wide range of heat treatments from low to high temperatures is suppressed, it is also useful as various optical forming compositions.
[式(0)で表される化合物]
 本実施形態における化合物は、下記式(0)で表される。
[Compound represented by Formula (0)]
The compound in this embodiment is represented by the following formula (0).
Figure JPOXMLDOC01-appb-C000033
(0)
Figure JPOXMLDOC01-appb-C000033
(0)
(式(0)中、Rは、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
 Rは、炭素数1~60のN価の基又は単結合であり、
 Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基、及び上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは水酸基であり、またRの少なくとも1つは炭素数2~30のアルケニル基であり、
 Xは、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは2~9の整数又はmの少なくとも2つは1~9の整数であり、
 Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
 rは、各々独立して0~2の整数である。)
(In the formula (0), R Y is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms,
R Z is an N-valent group having 1 to 60 carbon atoms or a single bond,
R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T is a hydroxyl group, and R At least one of T is an alkenyl group having 2 to 30 carbon atoms,
X represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 2 to 9 or at least two of m is an integer of 1 to 9,
N is an integer of 1 to 4, where, when N is an integer of 2 or more, the structural formulas in N [] may be the same or different,
Each r is independently an integer of 0-2. )
 Rは、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。アルキル基は、直鎖状、分岐状若しくは環状のアルキル基を用いることができる。Rが、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であることにより、優れた耐熱性及び溶媒溶解性を付与することができる。 R Y is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. As the alkyl group, a linear, branched or cyclic alkyl group can be used. When R Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, excellent heat resistance and solvent solubility can be imparted.
 Rは炭素数1~60のN価の基又は単結合であり、このRを介して各々の芳香環が結合している。Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。なお、上記N価の基とは、N=1のときには、炭素数1~60のアルキル基、N=2のときには、炭素数1~30のアルキレン基、N=3のときには、炭素数2~60のアルカンプロパイル基、N=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記N価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記N価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。 R Z is an N-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded through R Z. N is an integer of 1 to 4, and when N is an integer of 2 or more, the structural formulas in N [] may be the same or different. The N-valent group is an alkyl group having 1 to 60 carbon atoms when N = 1, an alkylene group having 1 to 30 carbon atoms when N = 2, and a carbon number of 2 to 2 when N = 3. 60 alkanepropyl group, and when N = 4, it represents an alkanetetrayl group having 3 to 60 carbon atoms. Examples of the N-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group. The N-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
 Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、RTの少なくとも1つは水酸基であり、また少なくとも1つは炭素数2~30のアルケニル基である。なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。 R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, and a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of RT is a hydroxyl group, and at least one Is an alkenyl group having 2 to 30 carbon atoms. The alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
 Xは、酸素原子、硫黄原子又は無架橋であることを示し、Xが酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。また、mは、各々独立して0~9の整数であり、mの少なくとも2つは1~9の整数又はmの少なくとも2つは1~9の整数である。 X represents an oxygen atom, a sulfur atom or no bridge, and when X is an oxygen atom or a sulfur atom, it tends to develop high heat resistance, and is more preferably an oxygen atom. X is preferably non-crosslinked from the viewpoint of solubility. M is each independently an integer of 0 to 9, and at least two of m are integers of 1 to 9, or at least two of m are integers of 1 to 9.
 式(0)中、ナフタレン構造で示される部位は、r=0の場合には単環構造であり、r=1の場合には二環構造であり、r=2の場合には三環構造となる。rは、各々独立して0~2の整数である。上述のmは、rで決定される環構造に応じてその数値範囲が決定される。 In the formula (0), the site represented by the naphthalene structure is a monocyclic structure when r = 0, a bicyclic structure when r = 1, and a tricyclic structure when r = 2. It becomes. Each r is independently an integer of 0-2. The numerical range of m described above is determined according to the ring structure determined by r.
[式(1)で表される化合物]
本実施形態における化合物(0)は、耐熱性及び溶媒溶解性の観点から、下記式(1)で表される化合物であることが好ましい。
[Compound represented by Formula (1)]
The compound (0) in the present embodiment is preferably a compound represented by the following formula (1) from the viewpoints of heat resistance and solvent solubility.
Figure JPOXMLDOC01-appb-C000034
(1)
Figure JPOXMLDOC01-appb-C000034
(1)
 上記(1)式中、Rは上記Rと同義であり、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。Rが、水素原子、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基である場合、耐熱性が比較的高くなり、溶媒溶解性が向上する傾向にある。また、Rは、酸化分解を抑制して化合物の着色を抑え、耐熱性及び溶媒溶解性を向上させる観点から、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であることが好ましい。
 Rは炭素数1~60のn価の基又は単結合であり、Rを介して各々の芳香環が結合している。
 R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基及び上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは水酸基であり、またR~Rの少なくとも1つは炭素数2~30のアルケニル基である。
 m及びmは、各々独立して、0~8の整数であり、m及びmは、各々独立して、0~9の整数である。但し、m、m、m及びmは同時に0になることはなく、m、m、m及びmの少なくとも1つは2~8若しくは2~9の整数又はm、m、m及びmの少なくとも2つは1~8若しくは1~9の整数である。
 nは1~4の整数である。ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
 p~pは各々独立して上記rと同義であり、0~2の整数である。
In the above formula (1), R 0 has the same meaning as R Y described above, and is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. When R 0 is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, heat resistance is relatively high and solvent solubility is improved. Tend to. R 0 is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or a carbon number from the viewpoint of suppressing oxidative decomposition to suppress coloring of the compound and improving heat resistance and solvent solubility. A 6-30 aryl group is preferred.
R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded via R 1 .
R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or A hydroxyl group, and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2 to R 5 is a hydroxyl group And at least one of R 2 to R 5 is an alkenyl group having 2 to 30 carbon atoms.
m 2 and m 3 are each independently an integer of 0 to 8, and m 4 and m 5 are each independently an integer of 0 to 9. However, m 2 , m 3 , m 4 and m 5 are not 0 simultaneously, and at least one of m 2 , m 3 , m 4 and m 5 is an integer of 2 to 8, 2 to 9, or m 2 , M 3 , m 4 and m 5 are each an integer of 1 to 8 or 1 to 9.
n is an integer of 1 to 4. Here, when n is an integer of 2 or more, the structural formulas in the n [] may be the same or different.
p 2 to p 5 are each independently synonymous with r and are integers of 0 to 2.
 なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。 The alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
 なお、上記n価の基とは、n=1の場合は、炭素数1~60のアルキル基、n=2の場合は、炭素数1~30のアルキレン基、n=3の場合は、炭素数2~60のアルカンプロパイル基、n=4の場合は、炭素数3~60のアルカンテトライル基を示す。上記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記n価の基は、炭素数6~60の芳香族基を有していてもよい。 The n-valent group is an alkyl group having 1 to 60 carbon atoms when n = 1, an alkylene group having 1 to 30 carbon atoms when n = 2, and a carbon atom when n = 3. An alkanepropyl group having 2 to 60 carbon atoms, and when n = 4, an alkanetetrayl group having 3 to 60 carbon atoms. Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group. The n-valent group may have an aromatic group having 6 to 60 carbon atoms.
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。 The n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
 上記式(1)で表される化合物は、比較的低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に用いられる。 The compound represented by the above formula (1) has a relatively low molecular weight but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
 また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、上記式(1)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。 Moreover, since the solubility with respect to a safe solvent is high, and heat resistance and etching resistance are favorable, the resist formation composition for lithography containing the compound represented by said Formula (1) may give a favorable resist pattern shape. it can.
 さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、比較的高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。 Furthermore, since the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened. As a result, the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics. Moreover, since it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
 さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも、化合物の酸化分解を抑制して着色を抑え、耐熱性及び溶媒溶解性を向上させる観点から、4級炭素を有する化合物が好ましい。光学部品としては、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。 Furthermore, since the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts. Especially, the compound which has quaternary carbon from a viewpoint which suppresses oxidative decomposition of a compound, suppresses coloring, and improves heat resistance and solvent solubility is preferable. Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
 上記式(1)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-1)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000035
(1-1)
The compound represented by the above formula (1) is more preferably a compound represented by the following formula (1-1) from the viewpoint of easy crosslinking and solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000035
(1-1)
 式(1-1)中、
 R、R、R、R、n、p~p、m及びmは、上記と同義であり、
 R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R~Rの少なくとも1つは炭素数2~30のアルケニル基であり、
 R10~R11は、各々独立して、水素原子であり、
 m及びmは、各々独立して0~7の整数であり、但し、m、m、m及びmは同時に0になることはない。
In formula (1-1),
R 0 , R 1 , R 4 , R 5 , n, p 2 to p 5 , m 4 and m 5 are as defined above,
R 6 to R 7 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein at least one of R 6 to R 7 has 2 carbon atoms -30 alkenyl groups,
R 10 to R 11 are each independently a hydrogen atom,
m 6 and m 7 are each independently an integer of 0 to 7, provided that m 4 , m 5 , m 6 and m 7 are not 0 at the same time.
 また、上記式(1-1)で表される化合物は、さらなる架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-2)で表される化合物であることがさらに好ましい。 Further, the compound represented by the above formula (1-1) is more preferably a compound represented by the following formula (1-2) from the viewpoint of further crosslinking and solubility in an organic solvent. .
Figure JPOXMLDOC01-appb-C000036
(1-2)
Figure JPOXMLDOC01-appb-C000036
(1-2)
 式(1-2)中、
 R、R、R、R、R10、R11、n、p~p、m及びmは、上記と同義であり、
 R~Rは、上記R~Rと同義であり、
 R12~R13は、上記R10~R11と同義であり、
 m及びmは、各々独立して、0~8の整数である。但し、m、m、m及びmは同時に0になることはない。
In formula (1-2),
R 0 , R 1 , R 6 , R 7 , R 10 , R 11 , n, p 2 to p 5 , m 6 and m 7 are as defined above,
R 8 to R 9 have the same meanings as R 6 to R 7 above,
R 12 to R 13 have the same meanings as R 10 to R 11 above,
m 8 and m 9 are each independently an integer of 0 to 8. However, m 6 , m 7 , m 8 and m 9 are not 0 at the same time.
 また、上記式(1-1)で表される化合物は、原料の供給性の観点から、下記式(1a)で表される化合物であることもより好ましい。 In addition, the compound represented by the above formula (1-1) is more preferably a compound represented by the following formula (1a) from the viewpoint of feedability of raw materials.
Figure JPOXMLDOC01-appb-C000037
(1a)
Figure JPOXMLDOC01-appb-C000037
(1a)
 上記式(1a)中、R~R、m~m及びnは、上記式(1)で説明したものと同義である。 In the above formula (1a), R 0 to R 5 , m 2 to m 5 and n have the same meaning as described in the above formula (1).
 上記式(1a)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1b)で表される化合物であることがさらに好ましい。 The compound represented by the above formula (1a) is more preferably a compound represented by the following formula (1b) from the viewpoint of solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000038
(1b)
Figure JPOXMLDOC01-appb-C000038
(1b)
 上記式(1b)中、R、R、R、R、m、m及びnは上記式(1)で説明したものと同義であり、R、R、R10、R11、m及びmは上記式(1-1)で説明したものと同義である。 In the above formula (1b), R 0 , R 1 , R 4 , R 5 , m 4 , m 5 and n are as defined in the above formula (1), and R 6 , R 7 , R 10 , R 11 , m 6 and m 7 have the same meaning as described in the above formula (1-1).
 上記式(1b)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1c)で表される化合物であることがよりさらに好ましい。 The compound represented by the above formula (1b) is more preferably a compound represented by the following formula (1c) from the viewpoint of solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000039
(1c)
Figure JPOXMLDOC01-appb-C000039
(1c)
 上記式(1c)中、R、R、R~R13、m~m及びnは上記式(1-2)で説明したものと同義である。 In the above formula (1c), R 0 , R 1 , R 6 to R 13 , m 6 to m 9 and n are as defined in the above formula (1-2).
 上記式(0)で表される化合物の具体例を以下に例示するが、式(0)で表される化合物は、ここで列挙した具体例に限定されるものではない。 Specific examples of the compound represented by the above formula (0) are illustrated below, but the compound represented by the formula (0) is not limited to the specific examples listed here.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 上記式中、Xは、上記式(0)で説明したものと同義であり、RT’は上記式(0)で説明したRTと同義であり、RT’の少なくとも1つは水酸基であり、またRT’の少なくとも1つは炭素数2~30のアルケニル基である。mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは2~9の整数又はmの少なくとも2つは1~9の整数である。 In the above formulas, X is the same as those described in the above formula (0), R T 'has the same meaning as R T described by the above formula (0), R T' at least one hydroxyl group of And at least one of R T ′ is an alkenyl group having 2 to 30 carbon atoms. m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 2 to 9 or at least two of m is an integer of 1 to 9.
 以下に、上記式(1)で表される化合物の具体例を例示するが、ここで列挙した限りではない。 Hereinafter, specific examples of the compound represented by the above formula (1) are exemplified, but the examples are not limited thereto.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 上記式中、R、R、R、Rは上記式(1)で説明したものと同義であり、R、R、R、Rの少なくとも1つは水酸基であり、またR、R、R、Rの少なくとも1つは炭素数2~30のアルケニル基である。m及びmは各ヶ独立して0~8の整数であり、m及びmは各ヶ独立して0~9の整数である。但し、m、m、m、mが同時に0となることはない。 In the above formula, R 2 , R 3 , R 4 and R 5 have the same meaning as described in the above formula (1), and at least one of R 2 , R 3 , R 4 and R 5 is a hydroxyl group, At least one of R 2 , R 3 , R 4 and R 5 is an alkenyl group having 2 to 30 carbon atoms. m 2 and m 3 are each independently an integer of 0 to 8, and m 4 and m 5 are each independently an integer of 0 to 9. However, m 2 , m 3 , m 4 , and m 5 are not 0 simultaneously.
 上記式(1)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BiF-1)~(BiF-5)で表される化合物であることが極めて好ましい。 The compound represented by the above formula (1) is very preferably a compound represented by the following formulas (BiF-1) to (BiF-5) from the viewpoint of further solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000057
(BiF-1)
Figure JPOXMLDOC01-appb-C000057
(BiF-1)
Figure JPOXMLDOC01-appb-C000058
(BiF-2)
Figure JPOXMLDOC01-appb-C000058
(BiF-2)
Figure JPOXMLDOC01-appb-C000059
(BiF-3)
Figure JPOXMLDOC01-appb-C000059
(BiF-3)
Figure JPOXMLDOC01-appb-C000060
(BiF-4)
Figure JPOXMLDOC01-appb-C000060
(BiF-4)
Figure JPOXMLDOC01-appb-C000061
(BiF-5)
Figure JPOXMLDOC01-appb-C000061
(BiF-5)
 上記式(BiF-1)~(BiF-5)中、R6’~R9’は、各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R6’~R9’の少なくとも1つは炭素数2~30のアルケニル基であり、R10~R13は上記式(1c)で説明したものと同義である。 In the above formulas (BiF-1) to (BiF-5), R 6 ′ to R 9 ′ each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms which may have a substituent, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol Wherein at least one of R 6 ′ to R 9 ′ is an alkenyl group having 2 to 30 carbon atoms, and R 10 to R 13 have the same meaning as described in the above formula (1c).
[式(0-A)で表される化合物]
 また本実施形態における化合物は、下記式(0-A)で表される。
[Compound represented by Formula (0-A)]
The compound in this embodiment is represented by the following formula (0-A).
Figure JPOXMLDOC01-appb-C000062
(0-A)
(式(0-A)中、RY’は、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
 RZ’は、炭素数1~60のN価の基又は単結合であり、
 RT’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基及び上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、RT’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 X’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 m’は、各々独立して0~9の整数であり、ここで、m’の少なくとも1つは1~9の整数であり、
 N’は、1~4の整数であり、ここで、N’が2以上の整数の場合、N’個の[ ]内の構造式は同一であっても異なっていてもよく、
 r’は、各々独立して0~2の整数である。)
Figure JPOXMLDOC01-appb-C000062
(0-A)
(In the formula (0-A), R Y ′ is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms,
R Z ′ is an N-valent group having 1 to 60 carbon atoms or a single bond,
R T ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. And the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T ′ has 2 to 30 carbon atoms. An alkenyloxy group of
X ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m ′ is each independently an integer of 0 to 9, wherein at least one of m ′ is an integer of 1 to 9,
N ′ is an integer of 1 to 4, where, when N ′ is an integer of 2 or more, the structural formulas in N ′ [] may be the same or different,
r ′ is independently an integer of 0 to 2. )
 RY’は、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。アルキル基は、直鎖状、分岐状若しくは環状のアルキル基を用いることができる。RY’が、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であることにより、優れた耐熱性及び溶媒溶解性を付与することができる。 R Y ′ is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. As the alkyl group, a linear, branched or cyclic alkyl group can be used. When R Y ′ is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, excellent heat resistance and solvent solubility can be imparted. .
 RZ’は炭素数1~60のN価の基又は単結合であり、このRZ’を介して各々の芳香環が結合している。N’は、1~4の整数であり、N’が2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。なお、上記N’価の基とは、N’=1のときには、炭素数1~60のアルキル基、N’=2のときには、炭素数1~30のアルキレン基、N’=3のときには、炭素数2~60のアルカンプロパイル基、N’=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記N’価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記N’価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。 R Z ′ is an N-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded through this R Z ′ . N ′ is an integer of 1 to 4. When N ′ is an integer of 2 or more, the structural formulas in N [] may be the same or different. The N′-valent group is an alkyl group having 1 to 60 carbon atoms when N ′ = 1, an alkylene group having 1 to 30 carbon atoms when N ′ = 2, and when N ′ = 3, An alkanepropyl group having 2 to 60 carbon atoms, and when N ′ = 4, an alkanetetrayl group having 3 to 60 carbon atoms. Examples of the N′-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group. The N′-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
 RT’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、RT’の少なくとも1つは炭素数2~30のアルケニルオキシ基である。なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。 R T ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, and a hydroxyl group. The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T ′ is 2 to 30 carbon atoms. Of the alkenyloxy group. The alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
 X’は、酸素原子、硫黄原子又は無架橋であることを示し、X’が酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。X’は、溶解性の観点からは、無架橋であることが好ましい。また、m’は、各々独立して0~9の整数であり、m’の少なくとも1つは1~9の整数である。 X ′ represents an oxygen atom, a sulfur atom or no bridge, and when X ′ is an oxygen atom or a sulfur atom, it is preferable because it tends to exhibit high heat resistance, and more preferably an oxygen atom. . X ′ is preferably non-crosslinked from the viewpoint of solubility. M ′ is independently an integer of 0 to 9, and at least one of m ′ is an integer of 1 to 9.
 式(0)中、ナフタレン構造で示される部位は、r’=0の場合には単環構造であり、r’=1の場合には二環構造であり、r’=2の場合には三環構造となる。r’は、各々独立して0~2の整数である。上述のm’は、r’で決定される環構造に応じてその数値範囲が決定される。 In formula (0), the site represented by the naphthalene structure is a monocyclic structure when r ′ = 0, a bicyclic structure when r ′ = 1, and a moiety when r ′ = 2. It becomes a tricyclic structure. r ′ is each independently an integer of 0 to 2. The numerical range of m ′ described above is determined according to the ring structure determined by r ′.
[式(1-A)で表される化合物]
 本実施形態における化合物(0-A)は、耐熱性及び溶媒溶解性の観点から、下記式(1-A)で表される化合物であることが好ましい。
[Compound represented by formula (1-A)]
The compound (0-A) in the present embodiment is preferably a compound represented by the following formula (1-A) from the viewpoint of heat resistance and solvent solubility.
Figure JPOXMLDOC01-appb-C000063
(1-A)
(式(1-A)中、R0’は、上記RY’と同義であり、
 R1’は、炭素数1~60のn価の基又は単結合であり、
 R2’~R5’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基及び上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2’~R5’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 m2’及びm3’は、各々独立して、0~8の整数であり、
 m4’及びm5’は、各々独立して、0~9の整数であり、但し、m2’、m3’、m4’及びm5’は同時に0になることはなく、
 n’は上記N’と同義であり、ここで、n’が2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
 p2’~p5’は、上記rと同義である。)
Figure JPOXMLDOC01-appb-C000063
(1-A)
(In Formula (1-A), R 0 ′ has the same meaning as R Y ′ above;
R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond,
R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol A group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2 ′ to R 5 ′ One is an alkenyloxy group having 2 to 30 carbon atoms,
m 2 ′ and m 3 ′ are each independently an integer of 0 to 8,
m 4 ′ and m 5 ′ are each independently an integer of 0 to 9, provided that m 2 ′ , m 3 ′ , m 4 ′ and m 5 ′ are not 0 at the same time,
n ′ has the same meaning as N ′ above. Here, when n ′ is an integer of 2 or more, the structural formulas in n [] may be the same or different,
p 2 ′ to p 5 ′ have the same meaning as r above. )
 なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。 The alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
 なお、上記n’価の基とは、n=1の場合は、炭素数1~60のアルキル基、n’=2の場合は、炭素数1~30のアルキレン基、n’=3の場合は、炭素数2~60のアルカンプロパイル基、n’=4の場合は、炭素数3~60のアルカンテトライル基を示す。上記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記n価の基は、炭素数6~60の芳香族基を有していてもよい。 The n′-valent group is an alkyl group having 1 to 60 carbon atoms when n = 1, an alkylene group having 1 to 30 carbon atoms when n ′ = 2, and a case where n ′ = 3. Represents an alkanepropyl group having 2 to 60 carbon atoms, and when n ′ = 4, an alkanetetrayl group having 3 to 60 carbon atoms. Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group. The n-valent group may have an aromatic group having 6 to 60 carbon atoms.
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。 The n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
 上記式(1-A)で表される化合物は、比較的低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に用いられる。 The compound represented by the above formula (1-A) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
 また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、上記式(1-A)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。 In addition, since it has high solubility in a safe solvent and has good heat resistance and etching resistance, a resist forming composition for lithography containing a compound represented by the above formula (1-A) gives a good resist pattern shape. be able to.
 さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、比較的高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。 Furthermore, since the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened. As a result, the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics. Moreover, since it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
 さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも、化合物の酸化分解を抑制して着色を抑え、耐熱性及び溶媒溶解性を向上させる観点から、4級炭素を有する化合物が好ましい。光学部品としては、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。 Furthermore, since the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts. Especially, the compound which has quaternary carbon from a viewpoint which suppresses oxidative decomposition of a compound, suppresses coloring, and improves heat resistance and solvent solubility is preferable. Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
 上記式(1-A)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-1-A)で表される化合物であることがより好ましい。 The compound represented by the above formula (1-A) is more preferably a compound represented by the following formula (1-1-A) from the viewpoint of easy crosslinking and solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000064
(1-1-A)
式(1-1-A)中、R0’、R1’、R4’、R5’、n、p2’~p5’、m4’及びm5’は、上記と同義であり、
 R6’~R7’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、
ここで、R10’~R11’は、各々独立して、水素原子又は炭素数2~30のアルケニル基であり、
 ここで、R10’~R11’の少なくとも1つは炭素数2~30のアルケニル基であり、
 m6’及びm7’は、各々独立して、0~7の整数であり、但し、m4’、m5’、m6’及びm7’は同時に0になることはない。
Figure JPOXMLDOC01-appb-C000064
(1-1-A)
In formula (1-1-A), R 0 ′ , R 1 ′ , R 4 ′ , R 5 ′ , n, p 2 ′ to p 5 ′ , m 4 ′ and m 5 ′ are as defined above. ,
R 6 ′ to R 7 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An alkenyl group having 2 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group,
Here, R 10 ′ to R 11 ′ are each independently a hydrogen atom or an alkenyl group having 2 to 30 carbon atoms,
Here, at least one of R 10 ′ to R 11 ′ is an alkenyl group having 2 to 30 carbon atoms,
m 6 ′ and m 7 ′ are each independently an integer of 0 to 7, provided that m 4 ′ , m 5 ′ , m 6 ′ and m 7 ′ cannot be 0 at the same time.
 また、上記式(1-1-A)で表される化合物は、さらなる架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-2-A)で表される化合物であることがさらに好ましい。 In addition, the compound represented by the above formula (1-1-A) is a compound represented by the following formula (1-2-A) from the viewpoint of further ease of crosslinking and solubility in an organic solvent. More preferably.
 上記式(1-2)で表される化合物の具体例を、さらに以下に例示するが、ここで列挙した限りではない。 Specific examples of the compound represented by the above formula (1-2) are further exemplified below, but not limited thereto.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
上記化合物中、R10、R11、R12、R13は上記式(1-2)で説明したものと同義であり、R10~R13は各々独立して、水素原子である。 In the above compounds, R 10 , R 11 , R 12 , and R 13 have the same meanings as described in the above formula (1-2), and R 10 to R 13 are each independently a hydrogen atom.
 上記式(2-1)で表される化合物の具体例を、さらに以下に例示するが、ここで列挙した限りではない。 Specific examples of the compound represented by the above formula (2-1) are further exemplified below, but not limited thereto.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 上記式中、Xは、上記式(0)で説明したものと同義であり、RY’、Z’は上記式(0)で説明したRY、Zと同義である。さらに、R4Aは、各々独立して、水素原子である。 In the above formulas, X is the same as those described in the above formula (0), R Y ', R Z' are as defined R Y, R Z described by the above formula (0). Further, each R 4A is independently a hydrogen atom.
Figure JPOXMLDOC01-appb-C000084
(1-2-A)
Figure JPOXMLDOC01-appb-C000084
(1-2-A)
 式(1-2-A)中、R0’、R1’、R6’、R7’、R10’、R11’、n’、p2’~p5’、m6’及びm7’は、上記と同義であり、
 R8’~R9’は、上記R6’~R7’と同義であり、
 R12’~R13’は、上記R10’~R11’と同義であり、
 m8’及びm9’は、各々独立して、0~8の整数であり、但し、m6’、m7’、m8’及びm9’は同時に0になることはない。
In the formula (1-2-A), R 0 ′ , R 1 ′ , R 6 ′ , R 7 ′ , R 10 ′ , R 11 ′ , n ′, p 2 ′ to p 5 ′ , m 6 ′ and m 7 ' is synonymous with the above,
R 8 ′ to R 9 ′ have the same meanings as R 6 ′ to R 7 ′ ,
R 12 ′ to R 13 ′ have the same meanings as R 10 ′ to R 11 ′ ,
m 8 ′ and m 9 ′ are each independently an integer of 0 to 8, provided that m 6 ′ , m 7 ′ , m 8 ′ and m 9 ′ are not 0 at the same time.
 また、上記式(1-1-A)で表される化合物は、原料の供給性の観点から、下記式(1a-A)で表される化合物であることもさらに好ましい。 In addition, the compound represented by the above formula (1-1-A) is more preferably a compound represented by the following formula (1a-A) from the viewpoint of feedability of raw materials.
Figure JPOXMLDOC01-appb-C000085
(1a-A)
Figure JPOXMLDOC01-appb-C000085
(1a-A)
 上記式(1a-A)中、R0’~R5’、m2’~m5’及びn’は、上記式(1)で説明したものと同義である。 In the above formula (1a-A), R 0 ′ to R 5 ′ , m 2 ′ to m 5 ′ and n ′ have the same meaning as described in the above formula (1).
 上記式(1a-A)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1b-A)で表される化合物であることがよりさらに好ましい。 The compound represented by the above formula (1a-A) is more preferably a compound represented by the following formula (1b-A) from the viewpoint of solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000086
(1b-A)
Figure JPOXMLDOC01-appb-C000086
(1b-A)
 上記式(1b)中、R0’、R1’、R4’、R5’、m4’、m5’及びn’は上記式(1-A)で説明したものと同義であり、R6’、R7’、R10’、R11’、m6’ 及びm7’は上記式(1-1-A)で説明したものと同義である。 In the above formula (1b), R 0 ′ , R 1 ′ , R 4 ′ , R 5 ′ , m 4 ′ , m 5 ′ and n ′ are as defined in the above formula (1-A), R 6 ′ , R 7 ′ , R 10 ′ , R 11 ′ , m 6 ′ and m 7 ′ have the same meanings as described in the above formula (1-1-A).
 上記式(1b-A)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1c-A)で表される化合物であることがさらにより好ましい。 The compound represented by the above formula (1b-A) is more preferably a compound represented by the following formula (1c-A) from the viewpoint of solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000087
(1c-A)
Figure JPOXMLDOC01-appb-C000087
(1c-A)
 上記式(1c-A)中、R0’、R1’、R6’~R13’、m6’~m9’ 及びn’は上記式(1-2-A)で説明したものと同義である。 In the above formula (1c-A), R 0 ′ , R 1 ′ , R 6 ′ to R 13 ′ , m 6 ′ to m 9 ′ and n ′ are as described in the above formula (1-2-A). It is synonymous.
 上記式(1-A)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BiF-1-A)~(BiF-5-A)で表される化合物であることが極めて特に好ましい。
Figure JPOXMLDOC01-appb-C000088
(BiF-1-A)
Figure JPOXMLDOC01-appb-C000089
(BiF-2-A)
Figure JPOXMLDOC01-appb-C000090
(BiF-3-A)
The compound represented by the formula (1-A) is a compound represented by the following formulas (BiF-1-A) to (BiF-5-A) from the viewpoint of further solubility in an organic solvent. Is very particularly preferred.
Figure JPOXMLDOC01-appb-C000088
(BiF-1-A)
Figure JPOXMLDOC01-appb-C000089
(BiF-2-A)
Figure JPOXMLDOC01-appb-C000090
(BiF-3-A)
Figure JPOXMLDOC01-appb-C000091
(BiF-4-A)
Figure JPOXMLDOC01-appb-C000091
(BiF-4-A)
Figure JPOXMLDOC01-appb-C000092
(BiF-5-A)
Figure JPOXMLDOC01-appb-C000092
(BiF-5-A)
Figure JPOXMLDOC01-appb-C000093
(BiF-1)
Figure JPOXMLDOC01-appb-C000093
(BiF-1)
Figure JPOXMLDOC01-appb-C000094
(BiF-2)
Figure JPOXMLDOC01-appb-C000094
(BiF-2)
Figure JPOXMLDOC01-appb-C000095
(BiF-3)
Figure JPOXMLDOC01-appb-C000095
(BiF-3)
Figure JPOXMLDOC01-appb-C000096
(BiF-4)
Figure JPOXMLDOC01-appb-C000096
(BiF-4)
Figure JPOXMLDOC01-appb-C000097
(BiF-5)
Figure JPOXMLDOC01-appb-C000097
(BiF-5)
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 上記式中、R、R、nは上記式(1-1)で説明したものと同義であり、R10’及びR11’は上記式(1-1)で説明したR10及びR11と同義であり、R4’及びR5’は各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合またはエステル結合を含んでいてもよく、R10’及びR11’は各々独立して水素原子である。m4’及びm5’は、0~8の整数であり、m10’及びm11’は1~9の整数であり、m4’+m10’及びm4’+m11’は各々独立して1~9の整数である。 In the above formula, R 0 , R 1 and n have the same meanings as described in the above formula (1-1), and R 10 ′ and R 11 ′ represent R 10 and R described in the above formula (1-1). 11 and R 4 ′ and R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 6 carbon atoms which may have a substituent. 30 aryl groups, an optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, A carboxylic acid group, a thiol group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, and R 10 ′ and R 11 ′. Are each independently a hydrogen atom. m 4 ′ and m 5 ′ are integers of 0 to 8, m 10 ′ and m 11 ′ are integers of 1 to 9, and m 4 ′ + m 10 ′ and m 4 ′ + m 11 ′ are independent of each other. It is an integer from 1 to 9.
 Rは、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基が挙げられる。 R 0 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, phenyl group, naphthyl group , Anthracene group, pyrenyl group, biphenyl group and heptacene group.
 R4’及びR5’は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。 R 4 ′ and R 5 ′ are, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group , Naphthyl group, anthracene group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, A thiol group is mentioned.
 上記R、R4’、R5’の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 0 , R 4 ′ , and R 5 ′ includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 上記式中、R10~R13は上記式(1-2)で説明したものと同義であり、R16は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、炭素数6~30の2価のアリール基、又は炭素数2~30の2価のアルケニル基である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2), R 16 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms, A bivalent aryl group having 6 to 30 carbon atoms or a divalent alkenyl group having 2 to 30 carbon atoms.
 R16は、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボルニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセン基、2価のピレン基、2価のビフェニル基、2価のヘプタセン基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。 R 16 is, for example, a methylene group, ethylene group, propene group, butene group, pentene group, hexene group, heptene group, octene group, nonene group, decene group, undecene group, dodecene group, triacontene group, cyclopropene group, Cyclobutene group, cyclopentene group, cyclohexene group, cycloheptene group, cyclooctene group, cyclononene group, cyclodecene group, cycloundecene group, cyclododecene group, cyclotriacontene group, divalent norbornyl group, divalent adamantyl group, divalent Phenyl group, divalent naphthyl group, divalent anthracene group, divalent pyrene group, divalent biphenyl group, divalent heptacene group, divalent vinyl group, divalent allyl group, divalent triaconate Nyl group is mentioned.
 上記R16の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 16 includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 上記式中、R10~R13は上記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数である。m14’は0~4の整数であり、m14は0~5の整数である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2), and each R 14 independently represents a linear, branched or cyclic alkyl having 1 to 30 carbon atoms. A group, an aryl group having 6 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group, and m 14 is an integer of 0 to 5. m 14 ′ is an integer from 0 to 4, and m 14 is an integer from 0 to 5.
 R14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。 R 14 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl. Group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group .
 上記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 14 includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 上記式中、R、R4’、R5’、m4’、m5’、m10’、m11’は上記と同義であり、R1’は、炭素数1~60の基である。 In the above formula, R 0 , R 4 ′ , R 5 ′ , m 4 ′ , m 5 ′ , m 10 ′ , and m 11 ′ are as defined above, and R 1 ′ is a group having 1 to 60 carbon atoms. is there.
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 上記式中、R10~R13は上記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数であり、m14’は0~4の整数であり、m14’’は0~3の整数である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2), and each R 14 independently represents a linear, branched or cyclic alkyl having 1 to 30 carbon atoms. A group, an aryl group having 6 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group, m 14 is an integer of 0 to 5; 14 ′ is an integer from 0 to 4, and m 14 ″ is an integer from 0 to 3.
 R14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。 R 14 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl. Group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group .
 上記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 14 includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 上記式中、R10~R13は上記式(1-2)で説明したものと同義であり、R15は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2), R 15 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group.
 R15は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。 R 15 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl. Group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group .
 上記R15の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 15 includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
 上記式中、R10~R13は上記式(1-2)で説明したものと同義である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2).
 上記化合物は、原料の入手性の観点から、より好ましくは以下に表される化合物である。 The above compound is more preferably a compound represented below from the viewpoint of availability of raw materials.
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
 上記式中、R10~R13は上記式(1-2)で説明したものと同義である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2).
 さらに上記式で表される化合物は、エッチング耐性の観点から以下の構造で表される化合物であることがより好ましい。 Further, the compound represented by the above formula is more preferably a compound represented by the following structure from the viewpoint of etching resistance.
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
 上記式中、R0Aは上記式Rと同義であり、R1A’はRと同義であり、R10~R13は、上記式(1-2)で説明したものと同義である。R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14’は0~4の整数である。 In the above formula, R 0A is synonymous with the above formula R Y , R 1A ′ is synonymous with R Z , and R 10 to R 13 are synonymous with those explained in the above formula (1-2). R 14 each independently represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms, or 1 to 30 carbon atoms. An alkoxy group, a halogen atom, and a thiol group, and m 14 ′ is an integer of 0 to 4.
 R14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。 R 14 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl. Group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group.
 上記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 14 includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
 上記式中、R10~R13は上記式(1-2)で説明したものと同義であり、R15は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2), R 15 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group.
 R15は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。 R 15 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl. Group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group.
 上記R15の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 15 includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
 上記式中、R10~R13は上記式(1-2)で説明したものと同義であり、R16は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、炭素数6~30の2価のアリール基、又は炭素数2~30の2価のアルケニル基である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2), R 16 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms, A bivalent aryl group having 6 to 30 carbon atoms or a divalent alkenyl group having 2 to 30 carbon atoms.
 R16は、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセン基、2価のヘプタセン基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。 R 16 is, for example, a methylene group, ethylene group, propene group, butene group, pentene group, hexene group, heptene group, octene group, nonene group, decene group, undecene group, dodecene group, triacontene group, cyclopropene group, Cyclobutene group, cyclopentene group, cyclohexene group, cycloheptene group, cyclooctene group, cyclononene group, cyclodecene group, cycloundecene group, cyclododecene group, cyclotriacontene group, divalent norbornyl group, divalent adamantyl group, divalent Examples include a phenyl group, a divalent naphthyl group, a divalent anthracene group, a divalent heptacene group, a divalent vinyl group, a divalent allyl group, and a divalent triacontenyl group.
 上記R16の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 16 includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
 上記式中、R10~R13は上記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2), and each R 14 independently represents a linear, branched or cyclic alkyl having 1 to 30 carbon atoms. A group, an aryl group having 6 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group, and m 14 is an integer of 0 to 5.
 R14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。 R 14 is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, cyclobutyl. Group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, anthracene Group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethoxy group, triacontoxy group, fluorine atom, chlorine atom, bromine atom, iodine atom, thiol group.
 上記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。 Each example of R 14 includes an isomer. For example, the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000174
 上記式中、R10~R13は上記式(1-2)で説明したものと同義である。 In the above formula, R 10 to R 13 have the same meanings as described in the above formula (1-2).
 上記式で表される化合物は、ジベンゾキサンテン骨格を有する化合物であることが耐熱性の観点から好ましく、原料入手性の観点から以下の構造で表されることがより好ましい。 The compound represented by the above formula is preferably a compound having a dibenzoxanthene skeleton from the viewpoint of heat resistance, and more preferably represented by the following structure from the viewpoint of raw material availability.
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000175
 上記式中、R0Aは上記式Rと同義であり、R1A’はRと同義であり、R10~R13は、上記式(1-2)で説明したものと同義である。 In the above formula, R 0A is synonymous with the above formula R Y , R 1A ′ is synonymous with R Z , and R 10 to R 13 are synonymous with those explained in the above formula (1-2).
 上記式で表される化合物は、キサンテン骨格を有する化合物であることが耐熱性の観点から好ましい。 The compound represented by the above formula is preferably a compound having a xanthene skeleton from the viewpoint of heat resistance.
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000219
 上記式中、R10~R13は上記式(1-2)で説明したものと同義であり、R14、R15、R16、m14、m14‘は上記と同義である。 In the above formulas, R 10 to R 13 have the same meanings as described in the above formula (1-2), and R 14 , R 15 , R 16 , m 14 and m 14 ′ have the same meanings as described above.
[式(0)で表される化合物の製造方法及び式(0-A)で表される化合物の製造方法]
 本実施形態における式(0)で表される化合物及び式(0-A)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。以下、式(0)で表される化合物の製造方法及び式(0-A)で表される化合物の製造方法を、式(1)で表される化合物の製造方法及び式(1-A)で表される化合物の製造方法を例に説明する。
 例えば、常圧下、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させることによりポリフェノール化合物を得て、続いて、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、アリル基を導入し式(1-A)で表される化合物が得られる。
その後、式(1-A)で表される化合物を加熱することによりクライゼン転移をさせて、式(1)で表される化合物を得ることができる。
これらの反応は、必要に応じて、加圧下で行うこともできる。
[Method for producing compound represented by formula (0) and method for producing compound represented by formula (0-A)]
The compound represented by the formula (0) and the compound represented by the formula (0-A) in this embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited. Hereinafter, the production method of the compound represented by the formula (0) and the production method of the compound represented by the formula (0-A) are referred to as the production method of the compound represented by the formula (1) and the formula (1-A). The production method of the compound represented by
For example, polyphenol compounds are obtained by polycondensation reaction of biphenols, binaphthols or bianthraceneol with corresponding ketones under an acid catalyst under normal pressure, followed by at least one phenolic property of the polyphenol compounds. By introducing an allyl group into the hydroxyl group, a compound represented by the formula (1-A) is obtained.
Thereafter, the compound represented by the formula (1-A) can be heated to cause the Claisen transition to obtain the compound represented by the formula (1).
These reactions can be performed under pressure as necessary.
 アリル基を導入するタイミングは、縮合反応の前段階、後段階又は後述する樹脂の製造を行なった後に導入してもよい。 The timing for introducing the allyl group may be introduced before or after the condensation reaction or after the production of the resin described later.
 上記ビフェノール類としては、例えば、ビフェノール、メチルビフェノール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中でも、原料の安定供給性の観点から、ビフェノールを用いることがより好ましい。 Examples of the biphenols include, but are not limited to, biphenol, methyl biphenol, methoxy binaphthol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use biphenol from the viewpoint of stable supply of raw materials.
 上記ビナフトール類としては、例えば、ビナフトール、メチルビナフトール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、炭素原子濃度を上げ、耐熱性を向上させる観点から、ビナフトールを用いることがより好ましい。 Examples of the binaphthols include, but are not limited to, binaphthol, methyl binaphthol, methoxy binaphthol, and the like. These can be used alone or in combination of two or more. Among these, it is more preferable to use binaphthol from the viewpoint of increasing the carbon atom concentration and improving the heat resistance.
 上記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、高い耐熱性を付与する観点から、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが好ましく、エッチング耐性を向上させる観点から、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることがより好ましい。
 ケトン類としては、高い耐熱性及び高いエッチング耐性を兼備するという観点から、芳香族を有するケトンを用いることが好ましい。
Examples of the ketones include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene. , Triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, etc. Not particularly limited to . These can be used alone or in combination of two or more. Among these, from the viewpoint of imparting high heat resistance, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene, It is preferable to use triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, etching resistance From the viewpoint of improving , Diacetylbenzene, triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl Is more preferable.
As the ketones, it is preferable to use aromatic ketones from the viewpoint of having both high heat resistance and high etching resistance.
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることがより好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。 The acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited. As such an acid catalyst, inorganic acids and organic acids are widely known. For example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid However, it is not particularly limited to these. Among these, an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is more preferably used from the viewpoint of production such as availability and ease of handling. In addition, about an acid catalyst, 1 type can be used individually or in combination of 2 or more types. Further, the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるケトン類と、ビフェノール類、ビナフトール類又はビアントラセンジオールとの反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができる。反応溶媒としては、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。 In the above reaction, a reaction solvent may be used. The reaction solvent is not particularly limited as long as the reaction between the ketones to be used and biphenols, binaphthols, or bianthracenediol proceeds, and can be appropriately selected from known ones. Examples of the reaction solvent include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof. In addition, a solvent can be used individually by 1 type or in combination of 2 or more types.
 また、これらの反応溶媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。 The amount of these reaction solvents used can be appropriately set according to the types of raw materials and catalysts to be used, reaction conditions, and the like, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw materials. A range is preferable. Furthermore, the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
 ポリフェノール化合物を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、ビフェノール類、ビナフトール類又はビアントラセンジオール、ケトン類、触媒を一括で仕込む方法や、ビフェノール類、ビナフトール類又はビアントラセンジオールやアルデヒド類又はケトン類を触媒存在下で滴下していく方法が挙げられる。重縮合反応終了後、得られた化合物の単離は、常法に従って行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を単離することができる。 In order to obtain a polyphenol compound, a higher reaction temperature is preferable, and specifically, a range of 60 to 200 ° C. is preferable. The reaction method can be appropriately selected from known methods, and is not particularly limited. However, the reaction method is a method in which biphenols, binaphthols or bianthracenediol, ketones, and a catalyst are charged all together, or biphenols and binaphthols. Or the method of dripping a bianthracenediol, aldehydes, or ketones in catalyst presence is mentioned. After completion of the polycondensation reaction, the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted. As a result, the target compound can be isolated.
 好ましい反応条件としては、ケトン類1モルに対し、ビフェノール類、ビナフトール類又はビアントラセンジオールを1モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることが挙げられる。 Preferable reaction conditions are 1 mol to excess of biphenols, binaphthols or bianthracenediol and 0.001 to 1 mol of acid catalyst with respect to 1 mol of ketones, and 50 to 150 ° C. at normal pressure. For about 20 minutes to 100 hours.
 反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトグラフにより副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である上記式(1)で表される化合物を得ることができる。 After completion of the reaction, the target product can be isolated by a known method. For example, the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the resulting solid is filtered and dried, followed by column chromatography. The product represented by the above formula (1), which is the target product, can be obtained by separating and purifying the product from the by-product, distilling off the solvent, filtering and drying.
 また、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、アリル基を導入する方法も公知である。
 例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基にアリル基を導入することができる。
A method for introducing an allyl group into at least one phenolic hydroxyl group of a polyphenol compound is also known.
For example, an allyl group can be introduced into at least one phenolic hydroxyl group of the compound as follows.
 アリル基を導入するための化合物は、公知の方法で合成若しくは容易に入手でき、例えば、塩化アリル、臭化アリル、ヨウ化アリルが挙げられるが、これらに特に限定はされない。 A compound for introducing an allyl group can be synthesized or easily obtained by a known method, and examples thereof include allyl chloride, allyl bromide, and allyl iodide, but are not particularly limited thereto.
 まず、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、ヒドロキシ基の水素原子がアリル基で置換された化合物を得ることができる。 First, the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like. Subsequently, the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like. The reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary. By drying, a compound in which the hydrogen atom of the hydroxy group is substituted with an allyl group can be obtained.
 その後、加温することにより、フェノール性水酸基に導入されたアリル基をクライゼン転移により転移することができる。 Thereafter, the allyl group introduced into the phenolic hydroxyl group can be transferred by Claisen transition by heating.
 本実施形態において、アリル基は、ラジカル又は酸/アルカリの存在下で反応し、塗布溶媒や現像液に使用される酸、アルカリ又は有機溶媒に対する溶解性が変化する。上記アリル基で置換された基は、更に高感度・高解像度なパターン形成を可能にするために、ラジカル又は酸/アルカリの存在下で連鎖的に反応を起こす性質を有することが好ましい。 In this embodiment, an allyl group reacts in the presence of a radical or an acid / alkali, and the solubility in an acid, alkali or organic solvent used in a coating solvent or a developer changes. The group substituted with the allyl group preferably has a property of causing a chain reaction in the presence of a radical or an acid / alkali in order to enable pattern formation with higher sensitivity and higher resolution.
[式(0)で表される化合物をモノマーとして得られる樹脂]
 上記式(0)で表される化合物は、リソグラフィー用膜形成や光学部品形成に用いられる組成物(以下、単に「組成物」ともいう。)として、そのまま使用することができる。また、上記式(0)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することもできる。樹脂は、例えば、上記式(0)で表される化合物と架橋反応性のある化合物とを反応させて得られる。以下、式(0)で表される化合物をモノマーとして得られる樹脂を、式(1)で表される化合物をモノマーとして得られる樹脂を例に説明する。
[Resin obtained by using compound represented by formula (0) as monomer]
The compound represented by the above formula (0) can be used as it is as a composition (hereinafter also simply referred to as “composition”) used for forming a film for lithography or forming an optical component. A resin obtained using the compound represented by the above formula (0) as a monomer can also be used as a composition. The resin is obtained, for example, by reacting a compound represented by the above formula (0) with a compound having a crosslinking reactivity. Hereinafter, a resin obtained using the compound represented by the formula (0) as a monomer and a resin obtained using the compound represented by the formula (1) as a monomer will be described as examples.
 上記式(1)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(3)で表される構造を有するものが挙げられる。すなわち、本実施形態における組成物は、下記式(3)で表される構造を有する樹脂を含有するものであってもよい。 Examples of the resin obtained using the compound represented by the above formula (1) as a monomer include those having a structure represented by the following formula (3). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000220
(3)
Figure JPOXMLDOC01-appb-C000220
(3)
 式(3)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、上記アルキレン基、上記アリーレン基及び上記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。また、上記アルキレン基、上記アルコキシレン基は、直鎖状、分岐状若しくは環状の基であってもよい。
 R、R、R~R、m及びm、m及びm、p~p、nは上記式(1)におけるものと同義である。但し、m、m、m及びmは同時に0になることはなく、m、m、m及びmの少なくとも1つは2~8若しくは2~9の整数又はm、m、m及びmの少なくとも2つは1~8若しくは1~9の整数である。
 R~Rの少なくとも1つは水酸基であり、またR~Rの少なくとも1つは炭素数2~30のアルケニル基である。
In formula (3), L has an optionally substituted alkylene group having 1 to 30 carbon atoms, an optionally substituted arylene group having 6 to 30 carbon atoms, and a substituent. The alkylene group, the arylene group, and the alkoxylene group may include an ether bond, a ketone bond, or an ester bond. The alkylene group and the alkoxylene group may be linear, branched or cyclic groups.
R 0 , R 1 , R 2 to R 5 , m 2 and m 3 , m 4 and m 5 , p 2 to p 5 , and n are as defined in the above formula (1). However, m 2 , m 3 , m 4 and m 5 are not 0 simultaneously, and at least one of m 2 , m 3 , m 4 and m 5 is an integer of 2 to 8, 2 to 9, or m 2 , M 3 , m 4 and m 5 are each an integer of 1 to 8 or 1 to 9.
At least one of R 2 to R 5 is a hydroxyl group, and at least one of R 2 to R 5 is an alkenyl group having 2 to 30 carbon atoms.
[式(0-A)で表される化合物をモノマーとして得られる樹脂]
 上記式(0-A)で表される化合物は、リソグラフィー用膜形成や光学部品形成に用いられる組成物(以下、単に「組成物」ともいう。)として、そのまま使用することができる。また、上記式(0-A)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することもできる。樹脂は、例えば、上記式(0-A)で表される化合物と架橋反応性のある化合物とを反応させて得られる。
[Resin obtained by using a compound represented by the formula (0-A) as a monomer]
The compound represented by the above formula (0-A) can be used as it is as a composition (hereinafter also simply referred to as “composition”) used for forming a film for lithography or forming an optical part. In addition, a resin obtained using the compound represented by the above formula (0-A) as a monomer can also be used as a composition. The resin is obtained, for example, by reacting a compound represented by the above formula (0-A) with a compound having a crosslinking reaction.
 上記式(0-A)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(3-A)で表される構造を有するものが挙げられる。すなわち、本実施形態における組成物は、下記式(3-A)で表される構造を有する樹脂を含有するものであってもよい。 Examples of the resin obtained using the compound represented by the above formula (0-A) as a monomer include those having a structure represented by the following formula (3-A). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (3-A).
Figure JPOXMLDOC01-appb-C000221
(3-A)
Figure JPOXMLDOC01-appb-C000221
(3-A)
 式(3-A)中、Lは、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、上記アルキレン基、上記アリーレン基及び上記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 R0’は、上記RY’と同義であり、
 R1’は、炭素数1~60のn価の基又は単結合であり、
 R2’~R5’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2’~R5’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 m2’及びm3’は、各々独立して、0~8の整数であり、
 m4’及びm5’は、各々独立して、0~9の整数であり、但し、m2’、m3’、m4’及びm5’は同時に0になることはない。
In the formula (3-A), L is a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may have a substituent, or a carbon number which may have a substituent 6 Is an arylene group having 1 to 30 carbon atoms, an alkoxylene group having 1 to 30 carbon atoms which may have a substituent, or a single bond. The alkylene group, the arylene group and the alkoxylene group may be an ether bond, a ketone bond or May contain an ester bond,
R 0 ′ has the same meaning as R Y ′ above,
R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond,
R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol A group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2 ′ to R 5 ′ One is an alkenyloxy group having 2 to 30 carbon atoms,
m 2 ′ and m 3 ′ are each independently an integer of 0 to 8,
m 4 ′ and m 5 ′ are each independently an integer of 0 to 9, provided that m 2 ′ , m 3 ′ , m 4 ′ and m 5 ′ are not 0 at the same time.
[式(0)で表される化合物をモノマーとして得られる樹脂の製造方法及び式(0-A)で表される化合物をモノマーとして得られる樹脂の製造方法]
 本実施形態における樹脂は、上記式(0)で表される化合物及び式(0-A)で表される化合物を、架橋反応性のある化合物と反応させることにより得られる。架橋反応性のある化合物としては、上記式(0)で表される化合物及び式(0-A)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
[Method for producing resin obtained by using compound represented by formula (0) as monomer and method for producing resin obtained by using compound represented by formula (0-A)]
The resin in the present embodiment is obtained by reacting the compound represented by the above formula (0) and the compound represented by the formula (0-A) with a compound having a crosslinking reactivity. As the compound having crosslinking reactivity, known compounds are not particularly limited as long as the compound represented by the above formula (0) and the compound represented by the formula (0-A) can be oligomerized or polymerized. Can be used. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
 上記式(3)で表される構造を有する樹脂及び樹脂式(3-A)で表される構造を有する樹脂の具体例としては、例えば、上記式(0)で表される化合物及び式(0-A)で表される構造を有する樹脂を、架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。 Specific examples of the resin having the structure represented by the above formula (3) and the resin having the structure represented by the resin formula (3-A) include, for example, a compound represented by the above formula (0) and a formula ( Examples thereof include resins obtained by novolakization of a resin having a structure represented by 0-A) by a condensation reaction with an aldehyde and / or ketone which is a compound having crosslinking reactivity.
 ここで、上記式(0)で表される化合物及び上記式(0-A)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、上記ケトン類が挙げられる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、上記式(0)で表される化合物及び上記式(0-A)で表される化合物1モルに対して、0.2~5モルであることが好ましく、より好ましくは0.5~2モルである。 Here, examples of the aldehyde used for novolak conversion of the compound represented by the above formula (0) and the compound represented by the above formula (0-A) include formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, Propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, furfural, etc. However, it is not particularly limited to these. Examples of ketones include the above ketones. Among these, formaldehyde is more preferable. In addition, these aldehydes and / or ketones can be used individually by 1 type or in combination of 2 or more types. In addition, the amount of the aldehyde and / or ketone used is not particularly limited, but it is 0. 1 mol per 1 mol of the compound represented by the above formula (0) and the compound represented by the above formula (0-A). The amount is preferably 2 to 5 mol, more preferably 0.5 to 2 mol.
 上記式(0)で表される化合物及び上記式(0-A)で表される化合物とアルデヒド及び/又はケトンとの縮合反応においては、酸触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。 In the condensation reaction of the compound represented by the above formula (0) and the compound represented by the above formula (0-A) with an aldehyde and / or a ketone, an acid catalyst may be used. The acid catalyst used here can be appropriately selected from known ones and is not particularly limited. As such an acid catalyst, inorganic acids and organic acids are widely known. For example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid However, it is not particularly limited to these. Among these, an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as availability and ease of handling. In addition, about an acid catalyst, 1 type can be used individually or in combination of 2 or more types.
 また、酸触媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。 Further, the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that However, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, α-pinene, β-pinene In the case of a copolymerization reaction with a compound having a nonconjugated double bond such as limonene, aldehydes are not necessarily required.
 上記式(0)で表される化合物とアルデヒド及び/又はケトンとの縮合反応においては、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。 In the condensation reaction between the compound represented by the above formula (0) and the aldehyde and / or ketone, a reaction solvent can be used. The reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned. In addition, a solvent can be used individually by 1 type or in combination of 2 or more types.
 また、これらの溶媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(0)で表される化合物及び上記式(0-A)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、上記式(0)で表される化合物及び上記式(0-A)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法が挙げられる。 Further, the amount of these solvents used can be appropriately set according to the types of raw materials and catalysts to be used, and further the reaction conditions, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reactive raw materials. It is preferable that Furthermore, the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C. The reaction method can be appropriately selected from known methods and is not particularly limited. However, the reaction method is not particularly limited, but includes a compound represented by the above formula (0), a compound represented by the above formula (0-A), an aldehyde, and / Or a method of charging ketones and catalyst in a batch, a compound represented by the above formula (0) and a compound represented by the above formula (0-A), an aldehyde and / or a ketone in the presence of the catalyst. The way to go is mentioned.
 重縮合反応終了後、得られた化合物の単離は、常法に従って行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を単離することができる。 After completion of the polycondensation reaction, the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted. As a result, the novolak resin as the target product can be isolated.
 ここで、上記式(3)で表される構造を有する樹脂及び式(3-A)で表される構造を有する樹脂は、上記式(0)で表される化合物及び上記式(0-A)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。 Here, the resin having the structure represented by the above formula (3) and the resin having the structure represented by the formula (3-A) are the compound represented by the above formula (0) and the above formula (0-A). ) May be a homopolymer of the compound represented by (II), or may be a copolymer with other phenols. Examples of the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
 また、上記式(3)で表される構造を有する樹脂及び式(3-A)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、上記式(3)で表される構造を有する樹脂及び式(3-A)で表される構造を有する樹脂は、上記式(0)で表される化合物及び式(0-A)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(0)で表される化合物及び式(0-A)で表される構造を有する樹脂と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(0)で表される化合物及び式(0-A)で表される構造を有する樹脂と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。 Further, the resin having the structure represented by the above formula (3) and the resin having the structure represented by the formula (3-A) were copolymerized with a polymerizable monomer in addition to the above-described other phenols. It may be a thing. Examples of the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene. , Norbornadiene, vinylnorbornaene, pinene, limonene and the like, but are not particularly limited thereto. The resin having the structure represented by the above formula (3) and the resin having the structure represented by the formula (3-A) are represented by the compound represented by the above formula (0) and the formula (0-A). Even a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above-described phenols with the compound represented by the above formula (0) and the formula (0-A) Even a binary or more (for example, 2-4 quaternary) copolymer of a resin having a structure represented by the above-described copolymerization monomer and the compound represented by the above formula (0) and the formula (0- It may be a ternary or more (for example, ternary to quaternary) copolymer of the resin having the structure represented by A), the above-described phenols, and the above-mentioned copolymerization monomer.
 上記式(3)で表される構造を有する樹脂及び式(3-A)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30000であることが好ましく、より好ましくは750~20000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記式(3)で表される構造を有する樹脂及び式(3-A)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内であることが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により求めることができる。 The molecular weight of the resin having the structure represented by the formula (3) and the resin having the structure represented by the formula (3-A) is not particularly limited, but the weight average molecular weight (Mw) in terms of polystyrene is 500 to 30000. And more preferably 750 to 20000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin having the structure represented by the above formula (3) and the resin having the structure represented by the formula (3-A) It is preferable that (weight average molecular weight Mw / number average molecular weight Mn) is in the range of 1.2-7. In addition, said Mw and Mn can be calculated | required by the method as described in the Example mentioned later.
 上記式(3)で表される構造を有する樹脂及び上記式(3-A)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記樹脂10gがPGMEA90gに対して溶解する場合は、上記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。 The resin having the structure represented by the above formula (3) and the resin having the structure represented by the above formula (3-A) have solubility in a solvent from the viewpoint of easier application of a wet process. It is preferable that it is high. More specifically, when 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) is used as a solvent, the solubility in the solvent is preferably 10% by mass or more. Here, the solubility in PGM and / or PGMEA is defined as “resin mass ÷ (resin mass + solvent mass) × 100 (mass%)”. For example, when 10 g of the resin is dissolved in 90 g of PGMEA, the solubility of the resin in PGMEA is “10 mass% or more”, and when it is not dissolved, it is “less than 10 mass%”.
[式(2)で表される化合物]
 本実施形態における式(0)で表される化合物は、耐熱性及び溶媒溶解性の観点から、下記式(2)で表される化合物であることが好ましい。
[Compound represented by Formula (2)]
The compound represented by the formula (0) in the present embodiment is preferably a compound represented by the following formula (2) from the viewpoints of heat resistance and solvent solubility.
Figure JPOXMLDOC01-appb-C000222
(2)
Figure JPOXMLDOC01-appb-C000222
(2)
 式(2)中、R0Aは上記Rと同義であり、水素原子である。
 R1Aは、炭素数1~30のn価の基又は単結合であり、
 R2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基及び上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは水酸基であり、またR2Aの少なくとも1つは炭素数2~30のアルケニル基である。
 nは上記Nと同義であり、1~4の整数であり、ここで、式(2)中、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
 Xは、各々独立して、酸素原子、硫黄原子、単結合又は無架橋であることを示す。ここで、Xは、優れた耐熱性を発現する傾向にあるため、酸素原子又は硫黄原子であることが好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。
 m2Aは、各々独立して、0~7の整数である。但し、少なくとも1つのm2Aは2~7の整数又は少なくとも2つのm2Aは1~7の整数である。
 qは、各々独立して、0又は1である。
In Formula (2), R 0A has the same meaning as R Y above, and is a hydrogen atom.
R 1A is an n A valent group having 1 to 30 carbon atoms or a single bond,
R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2A is a hydroxyl group, and R 2A At least one of these is an alkenyl group having 2 to 30 carbon atoms.
n A has the same meaning as N above, and is an integer of 1 to 4, where, in formula (2), when n A is an integer of 2 or more, the structural formulas in n A [] are the same. It may or may not be.
X A each independently represents an oxygen atom, a sulfur atom, a single bond or no bridge. Here, X A, because there is a tendency to exhibit excellent heat resistance, it is preferable that an oxygen atom or a sulfur atom, more preferably oxygen atom. X A, in terms of solubility, it is preferable that the non-crosslinked.
m 2A is each independently an integer of 0 to 7. However, at least one m 2A is an integer of 2 to 7, or at least two m 2A is an integer of 1 to 7.
q A is each independently 0 or 1.
 なお、上記n価の基とは、n=1の場合は、炭素数1~60のアルキル基、n=2の場合は、炭素数1~30のアルキレン基、n=3の場合は、炭素数2~60のアルカンプロパイル基、n=4の場合は、炭素数3~60のアルカンテトライル基を示す。上記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記n価の基は、炭素数6~60の芳香族基を有していてもよい。 The n-valent group is an alkyl group having 1 to 60 carbon atoms when n = 1, an alkylene group having 1 to 30 carbon atoms when n = 2, and a carbon atom when n = 3. An alkanepropyl group having 2 to 60 carbon atoms, and when n = 4, an alkanetetrayl group having 3 to 60 carbon atoms. Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group. The n-valent group may have an aromatic group having 6 to 60 carbon atoms.
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。 The n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~30の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。 The n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
 上記式(2)で表される化合物は、比較的低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に用いられる。 The compound represented by the above formula (2) has a relatively low molecular weight, but has high heat resistance due to the rigidity of the structure, and thus can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
 また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好でありため、上記式(2)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。 Moreover, since the solubility with respect to a safe solvent is high, and heat resistance and etching resistance are favorable, the resist formation composition for lithography containing the compound represented by said Formula (2) may give a favorable resist pattern shape. it can.
 さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、比較的高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。 Furthermore, since the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened. As a result, the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics. Moreover, since it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
 さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも、化合物の酸化分解を抑制し着色を抑え、耐熱性及び溶媒溶解性を向上させる観点から、4級炭素を有する化合物が好ましい。光学部品としては、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。 Furthermore, since the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts. Among these, a compound having a quaternary carbon is preferable from the viewpoint of suppressing oxidative decomposition of the compound, suppressing coloring, and improving heat resistance and solvent solubility. Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
 上記式(2)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(2-1)で表される化合物であることがより好ましい。 The compound represented by the above formula (2) is more preferably a compound represented by the following formula (2-1) from the viewpoint of easy crosslinking and solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000223
(2-1)
Figure JPOXMLDOC01-appb-C000223
(2-1)
 式(2-1)中、R0A、R1A、n、q及びXは、上記式(2)で説明したものと同義である。
 R3Aは、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、同一のナフタレン環又はベンゼン環において同一であっても異なっていてもよい。ここで、R3Aの少なくとも1つは炭素数2~30のアルケニル基であり、
 R4Aは、各々独立して、水素原子であり、
 m6Aは、各々独立して、0~5の整数である。
In the formula (2-1), R 0A , R 1A , n A , q A and X A have the same meaning as described in the above formula (2).
R 3A is an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, and an optionally substituted carbon. These are an alkenyl group, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, which may be the same or different in the same naphthalene ring or benzene ring. Here, at least one of R 3A is an alkenyl group having 2 to 30 carbon atoms,
R 4A is each independently a hydrogen atom;
m 6A is each independently an integer of 0 to 5.
 上記式(2-1)で表される化合物を、アルカリ現像ポジ型レジスト用又は有機現像ネガ型レジスト用リソグラフィー用膜形成組成物として使用する場合は、R4Aの少なくとも1つは酸解離性基である。一方、式(2-1)で表される化合物を、アルカリ現像ネガ型レジスト用リソグラフィー用膜形成組成物、下層膜用リソグラフィー用膜形成組成物又は光学部品形成組成物として使用する場合は、R4Aの少なくとも1つは水素原子である。 When the compound represented by the formula (2-1) is used as a film forming composition for lithography for an alkali development positive resist or an organic development negative resist, at least one of R 4A is an acid dissociable group. It is. On the other hand, when the compound represented by the formula (2-1) is used as a lithographic film-forming composition for an alkali development negative resist, a lithographic film-forming composition for an underlayer film, or an optical component-forming composition, R At least one of 4A is a hydrogen atom.
[式(2-A)で表される化合物]
 本実施形態における化合物(0-A)は、耐熱性及び溶媒溶解性の観点から、下記式(2-A)で表される化合物であることが好ましい。
[Compound represented by Formula (2-A)]
The compound (0-A) in the present embodiment is preferably a compound represented by the following formula (2-A) from the viewpoint of heat resistance and solvent solubility.
Figure JPOXMLDOC01-appb-C000224
(2-A)
(式(2-A)中、R0A’は、上記RY’と同義であり、
 R1A’は、炭素数1~30のn価の基又は単結合であり、
 R2A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基及び上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2A’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 nA’は、上記Nと同義であり、ここで、nA’が2以上の整数の場合、nA’個の[ ]内の構造式は同一であっても異なっていてもよく、
 XA’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 m2A’は、各々独立して、0~7の整数であり、但し、少なくとも1つのm2A’は1~7の整数であり、
 qA’は、各々独立して、0又は1である。)
Figure JPOXMLDOC01-appb-C000224
(2-A)
(In Formula (2-A), R 0A ′ has the same meaning as R Y ′ above,
R 1A ′ is an n A valent group having 1 to 30 carbon atoms or a single bond,
Each R 2A ′ independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms. An alkenyloxy group of
n A ′ has the same meaning as N described above. Here, when n A ′ is an integer of 2 or more, the structural formulas in n A ′ [] may be the same or different,
X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7;
q A ′ is independently 0 or 1. )
 なお、上記n’価の基とは、n’=1の場合は、炭素数1~60のアルキル基、n’=2の場合は、炭素数1~30のアルキレン基、n’=3の場合は、炭素数2~60のアルカンプロパイル基、n’=4の場合は、炭素数3~60のアルカンテトライル基を示す。上記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記n価の基は、炭素数6~60の芳香族基を有していてもよい。 The n′-valent group is an alkyl group having 1 to 60 carbon atoms when n ′ = 1, an alkylene group having 1 to 30 carbon atoms when n ′ = 2, and an n ′ = 3 group. In this case, an alkanepropyl group having 2 to 60 carbon atoms, and when n ′ = 4, an alkanetetrayl group having 3 to 60 carbon atoms is shown. Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group. The n-valent group may have an aromatic group having 6 to 60 carbon atoms.
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。 The n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~30の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。 The n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
 上記式(2-A)で表される化合物は、比較的低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に用いられる。 The compound represented by the above formula (2-A) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
 また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好でありため、上記式(2-A)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。 In addition, since it has high solubility in a safe solvent, and has good heat resistance and etching resistance, a resist forming composition for lithography containing a compound represented by the above formula (2-A) gives a good resist pattern shape. be able to.
 さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、比較的高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。 Furthermore, since the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened. As a result, the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics. Moreover, since it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
 さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも、化合物の酸化分解を抑制し着色を抑え、耐熱性及び溶媒溶解性を向上させる観点から、4級炭素を有する化合物が好ましい。光学部品としては、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。 Furthermore, since the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts. Among these, a compound having a quaternary carbon is preferable from the viewpoint of suppressing oxidative decomposition of the compound, suppressing coloring, and improving heat resistance and solvent solubility. Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
 上記式(2-A)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(2-1-A)で表される化合物であることがより好ましい。 The compound represented by the above formula (2-A) is more preferably a compound represented by the following formula (2-1-A) from the viewpoint of easy crosslinking and solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000225
(2-1-A)
(式(2-1-A)中、R0A’、R1A’、nA’、qA’及びXA’、は、上記式(2-A)におけるものと同義であり、
 R3A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R4A’は、各々独立して、水素原子又は炭素数2~30のアルケニル基であり、ここで、R4A’の少なくとも1つは炭素数2~30のアルケニル基であり、
 m6A’は、各々独立して、0~5の整数である。)
Figure JPOXMLDOC01-appb-C000225
(2-1-A)
(In the formula (2-1-A), R 0A ′ , R 1A ′ , n A ′ , q A ′ and X A ′ are as defined in the above formula (2-A);
R 3A ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. Which may be an alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein each R 4A ′ is independently a hydrogen atom or a carbon number An alkenyl group having 2 to 30 carbon atoms, wherein at least one of R 4A ′ is an alkenyl group having 2 to 30 carbon atoms,
m 6A ′ is each independently an integer of 0 to 5. )
 上記式(2-1-A)で表される化合物を、アルカリ現像ポジ型レジスト用又は有機現像ネガ型レジスト用リソグラフィー用膜形成組成物として使用する場合は、R4A’の少なくとも1つは酸解離性基である。一方、式(2-1-A)で表される化合物を、アルカリ現像ネガ型レジスト用リソグラフィー用膜形成組成物、下層膜用リソグラフィー用膜形成組成物又は光学部品形成組成物として使用する場合は、R4A’の少なくとも1つは水素原子である。 When the compound represented by the above formula (2-1-A) is used as a lithographic film forming composition for an alkali development positive resist or an organic development negative resist, at least one of R 4A ′ is an acid. It is a dissociable group. On the other hand, when the compound represented by the formula (2-1-A) is used as a lithography film forming composition for an alkali development negative resist, a lithography film forming composition for an underlayer film, or an optical component forming composition , R 4A ′ is a hydrogen atom.
 また、上記式(2-1-A)で表される化合物は、原料の供給性の観点から、下記式(2a-A)で表される化合物であることがさらに好ましい。 Further, the compound represented by the above formula (2-1-A) is more preferably a compound represented by the following formula (2a-A) from the viewpoint of feedability of raw materials.
Figure JPOXMLDOC01-appb-C000226
(2a-A)
Figure JPOXMLDOC01-appb-C000226
(2a-A)
 上記式(2a-A)中、XA’、R0A’~R2A’、m2A’及びnA’は、上記式(2-A)で説明したものと同義である。 In the above formula (2a-A), X A ′ , R 0A ′ to R 2A ′ , m 2A ′ and n A ′ have the same meaning as described in the above formula (2-A).
 また、上記式(2-1-A)で表される化合物は、有機溶媒への溶解性の観点から、下記式(2b-A)で表される化合物であることもさらに好ましい。 The compound represented by the above formula (2-1-A) is more preferably a compound represented by the following formula (2b-A) from the viewpoint of solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000227
(2b-A)
Figure JPOXMLDOC01-appb-C000227
(2b-A)
 上記式(2b-A)中、XA’、R0A’、R1A’、R3A’、R4A’、m6A’及びnA’は、上記式(2-1-A)で説明したものと同義である。 In the above formula (2b-A), X A ′ , R 0A ′ , R 1A ′ , R 3A ′ , R 4A ′ , m 6A ′ and n A ′ are as described in the above formula (2-1-A). Synonymous with things.
 また、上記式(2-1-A)で表される化合物は、有機溶媒への溶解性の観点から、下記式(2c-A)で表される化合物であることもさらに好ましい。 Further, the compound represented by the above formula (2-1-A) is more preferably a compound represented by the following formula (2c-A) from the viewpoint of solubility in an organic solvent.
Figure JPOXMLDOC01-appb-C000228
(2c-A)
Figure JPOXMLDOC01-appb-C000228
(2c-A)
 上記式(2c-A)中、XA’、R0A’、R1A’、R3A’、R4A’、m6A’及びnA’は、上記式(2-1-A)で説明したものと同義である。 In the above formula (2c-A), X A ′ , R 0A ′ , R 1A ′ , R 3A ′ , R 4A ′ , m 6A ′ and n A ′ are as described in the above formula (2-1-A). Synonymous with things.
 上記式(2-A)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BisN-1-A)~(BisN-4-A)、(XBiN-1-A)~(XBiN-3-A)で表される化合物であることが極めて好ましい。
Figure JPOXMLDOC01-appb-C000229
(BiN-1-A)
Figure JPOXMLDOC01-appb-C000230
(BiN-2-A)
Figure JPOXMLDOC01-appb-C000231
(BiN-3-A)
Figure JPOXMLDOC01-appb-C000232
(BiN-4-A)
Figure JPOXMLDOC01-appb-C000233
(XBiN-1-A)
Figure JPOXMLDOC01-appb-C000234
(XBiN-2-A)
Figure JPOXMLDOC01-appb-C000235
(XBiN-3-A)
The compound represented by the above formula (2-A) has the following formulas (BisN-1-A) to (BisN-4-A), (XBiN-1-A) from the viewpoint of solubility in an organic solvent. A compound represented by (XBiN-3-A) is extremely preferable.
Figure JPOXMLDOC01-appb-C000229
(BiN-1-A)
Figure JPOXMLDOC01-appb-C000230
(BiN-2-A)
Figure JPOXMLDOC01-appb-C000231
(BiN-3-A)
Figure JPOXMLDOC01-appb-C000232
(BiN-4-A)
Figure JPOXMLDOC01-appb-C000233
(XBiN-1-A)
Figure JPOXMLDOC01-appb-C000234
(XBiN-2-A)
Figure JPOXMLDOC01-appb-C000235
(XBiN-3-A)
[式(2)で表される化合物の製造方法及び式(2-A)で表される化合物の製造方法]
 本実施形態における式(2)で表される化合物及び式(2-A)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。
 例えば、常圧下、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させることによりポリフェノール化合物を得て、続いて、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、アリル基を導入し式(2-A)で表される化合物が得られる。その後、式(2-A)で表される化合物を加熱することによりクライゼン転移をさせて、式(2)で表される化合物を得ることができる。これらの反応は、必要に応じて、加圧下で行うこともできる。
[Method for producing compound represented by formula (2) and method for producing compound represented by formula (2-A)]
The compound represented by the formula (2) and the compound represented by the formula (2-A) in this embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
For example, a polyphenol compound is obtained by polycondensation reaction of biphenols, binaphthols or bianthraceneol with a corresponding ketone under an acid catalyst under normal pressure, followed by at least one phenolic property of the polyphenol compound. By introducing an allyl group into the hydroxyl group, a compound represented by the formula (2-A) is obtained. Thereafter, the compound represented by the formula (2-A) is heated to cause the Claisen transition to obtain the compound represented by the formula (2). These reactions can be performed under pressure as necessary.
 アリル基を導入するタイミングは、縮合反応の前段階、後段階又は後述する樹脂の製造を行なった後に導入してもよい。 The timing for introducing the allyl group may be introduced before or after the condensation reaction or after the production of the resin described later.
 上記ナフトール類としては、特に限定されず、例えば、ナフトール、メチルナフトール、メトキシナフトール、ナフタレンジオール等が挙げられ、中でも、キサンテン構造を容易に作ることができるという観点から、ナフタレンジオールを用いることが好ましい。 The naphthols are not particularly limited, and examples thereof include naphthol, methyl naphthol, methoxy naphthol, naphthalene diol, and the like. Among these, naphthalene diol is preferably used from the viewpoint that a xanthene structure can be easily formed. .
 上記フェノール類としては、特に限定されず、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン、トリメチルハイドロキノン等が挙げられる。 The phenols are not particularly limited, and examples thereof include phenol, methylphenol, methoxybenzene, catechol, resorcinol, hydroquinone, and trimethylhydroquinone.
 上記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、高い耐熱性を付与する観点から、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが好ましく、エッチング耐性を向上させる観点から、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることがより好ましい。
 ケトン類としては、高い耐熱性及び高いエッチング耐性を兼備するという観点から、芳香環を有するケトンを用いることが好ましい。
Examples of the ketones include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene. , Triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, etc. Not particularly limited to . These can be used alone or in combination of two or more. Among these, from the viewpoint of imparting high heat resistance, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene, It is preferable to use triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, etching resistance From the viewpoint of improving , Diacetylbenzene, triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl Is more preferable.
As the ketones, it is preferable to use a ketone having an aromatic ring from the viewpoint of having both high heat resistance and high etching resistance.
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。酸触媒としては、周知の無機酸、有機酸より適宜選択することができ、例えば、塩酸、硫酸、リン酸、臭化水素酸、ふっ酸等の無機酸;シュウ酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸が挙げられる。これらの中でも、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。 The acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited. The acid catalyst can be appropriately selected from known inorganic acids and organic acids. For example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and hydrofluoric acid; oxalic acid, formic acid, p-toluenesulfone Organic acids such as acids, methanesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride; or Solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid can be mentioned. Among these, it is preferable to use hydrochloric acid or sulfuric acid from the viewpoint of production such as availability and ease of handling. About an acid catalyst, 1 type can be used individually or in combination of 2 or more types.
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるケトン類とナフトール類等との反応が進行すれば特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒を用いることができる。反応溶媒の量は、特に限定されず、例えば、反応原料100質量部に対して0~2000質量部の範囲である。 In the above reaction, a reaction solvent may be used. The reaction solvent is not particularly limited as long as the reaction between the ketones to be used and naphthols proceeds. For example, water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, or a mixed solvent thereof can be used. The amount of the reaction solvent is not particularly limited and is, for example, in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
 反応温度は、特に限定されず、反応原料の反応性に応じて適宜選択することができるが、10~200℃の範囲であることが好ましい。本実施形態における式(2)で表される化合物を選択性良く合成する観点からは、温度が低い方が好ましく、10~60℃の範囲であることがより好ましい。 The reaction temperature is not particularly limited and can be appropriately selected according to the reactivity of the reaction raw material, but is preferably in the range of 10 to 200 ° C. From the viewpoint of synthesizing the compound represented by the formula (2) in the present embodiment with good selectivity, the temperature is preferably lower and more preferably in the range of 10 to 60 ° C.
 反応方法は、特に限定されないが、例えば、ナフトール類等、アルデヒド類又はケトン類、触媒を一括で仕込む方法や、触媒存在下ナフトール類やアルデヒド類又はケトン類を滴下していく方法が挙げられる。重縮合反応終了後、系内に存在する未反応原料、触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去することもできる。 The reaction method is not particularly limited, and examples thereof include a method in which naphthols, aldehydes or ketones, and a catalyst are charged all at once, and a method in which naphthols, aldehydes, or ketones are dropped in the presence of a catalyst. After the polycondensation reaction, in order to remove unreacted raw materials, catalysts, etc. existing in the system, the temperature of the reaction kettle can be raised to 130-230 ° C., and volatile matter can be removed at about 1-50 mmHg. .
 原料の量は、特に限定されないが、例えば、ケトン類1モルに対し、ナフトール類等を2モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、20~60℃で20分~100時間程度反応させることが好ましい。 The amount of the raw material is not particularly limited. For example, 2 mol to an excess amount of naphthols and 0.001 to 1 mol of acid catalyst are used with respect to 1 mol of ketones, and 20 to 60 ° C. at normal pressure. For about 20 minutes to 100 hours.
 反応終了後、公知の方法により目的物を単離する。目的物の単離方法は、特に限定されず、例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離し、得られた固形物を濾過し、乾燥させた後、カラムクロマトグラフにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的化合物を単離する方法が挙げられる。 After completion of the reaction, the target product is isolated by a known method. The method for isolating the target product is not particularly limited. For example, the reaction solution is concentrated, pure water is added to precipitate the reaction product, and after cooling to room temperature, the product is separated by filtration. The product can be filtered and dried, and then separated and purified from by-products by column chromatography, followed by solvent distillation, filtration and drying to isolate the target compound.
 また、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、アリル基を導入する方法も公知である。
 例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基にアリル基を導入することができる。
A method for introducing an allyl group into at least one phenolic hydroxyl group of a polyphenol compound is also known.
For example, an allyl group can be introduced into at least one phenolic hydroxyl group of the compound as follows.
 アリル基を導入するための化合物は、公知の方法で合成若しくは容易に入手でき、例えば、塩化アリル、臭化アリル、ヨウ化アリルが挙げられるが、これらに特に限定はされない。 A compound for introducing an allyl group can be synthesized or easily obtained by a known method, and examples thereof include allyl chloride, allyl bromide, and allyl iodide, but are not particularly limited thereto.
 まず、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、ヒドロキシ基の水素原子がアリル基で置換された化合物を得ることができる。 First, the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like. Subsequently, the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like. The reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary. By drying, a compound in which the hydrogen atom of the hydroxy group is substituted with an allyl group can be obtained.
 本実施形態において、アリル基は、ラジカル又は酸/アルカリの存在下で反応し、塗布溶媒や現像液に使用される酸、アルカリ又は有機溶媒に対する溶解性が変化する。上記アリル基で置換された基は、更に高感度・高解像度なパターン形成を可能にするために、ラジカル又は酸/アルカリの存在下で連鎖的に反応を起こす性質を有することが好ましい。 In this embodiment, an allyl group reacts in the presence of a radical or an acid / alkali, and the solubility in an acid, alkali or organic solvent used in a coating solvent or a developer changes. The group substituted with the allyl group preferably has a property of causing a chain reaction in the presence of a radical or an acid / alkali in order to enable pattern formation with higher sensitivity and higher resolution.
 その後、加温することにより、フェノール性水酸基に導入されたアリル基をクライゼン転移により転移することができる。 Thereafter, the allyl group introduced into the phenolic hydroxyl group can be transferred by Claisen transition by heating.
[式(2)で表される化合物をモノマーとして得られる樹脂]
 上記式(2)で表される化合物は、リソグラフィー用膜形成組成物や光学部品形成に用いられる組成物として、そのまま使用することができる。また、上記式(2)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することができる。樹脂は、例えば、上記式(2)で表される化合物と架橋反応性のある化合物とを反応させて得られる。
[Resin obtained using monomer represented by formula (2)]
The compound represented by the above formula (2) can be used as it is as a film forming composition for lithography or a composition used for forming an optical component. In addition, a resin obtained using the compound represented by the above formula (2) as a monomer can be used as a composition. The resin is obtained, for example, by reacting a compound represented by the above formula (2) with a compound having crosslinking reactivity.
 上記式(2)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(4)で表される構造を有するものが挙げられる。すなわち、本実施形態における組成物は、下記式(4)で表される構造を有する樹脂を含有するものであってもよい。 Examples of the resin obtained using the compound represented by the above formula (2) as a monomer include those having a structure represented by the following formula (4). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000236
(4)
Figure JPOXMLDOC01-appb-C000236
(4)
 式(4)中、Lは、炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合である。
 R0A、R1A、R2A、m2A、n、q及びXは上記式(2)におけるものと同義であり、
 但し、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、少なくとも1つのm2Aは2~6の整数又は少なくとも2つのm2Aは1~6の整数であり、R2Aの少なくとも1つは水酸基であり、またR2Aの少なくとも1つは炭素数2~30のアルケニル基である。
In the formula (4), L is a linear or branched alkylene group having 1 to 30 carbon atoms or a single bond.
R 0A , R 1A , R 2A , m 2A , n A , q A and X A are synonymous with those in the above formula (2),
However, when n A is an integer of 2 or more, the structural formulas in n A [] may be the same or different, and at least one m 2A is an integer of 2 to 6 or at least 2 m 2A is an integer of 1 to 6, at least one of R 2A is a hydroxyl group, and at least one of R 2A is an alkenyl group having 2 to 30 carbon atoms.
[式(2-A)で表される化合物をモノマーとして得られる樹脂]
 上記式(2-A)で表される化合物は、リソグラフィー用膜形成組成物や光学部品形成に用いられる組成物として、そのまま使用することができる。また、上記式(2-A)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することができる。樹脂は、例えば、上記式(2-A)で表される化合物と架橋反応性のある化合物とを反応させて得られる。
 上記式(2-A)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(4-A)で表される構造を有するものが挙げられる。すなわち、本実施形態における組成物は、下記式(4-A)で表される構造を有する樹脂を含有するものであってもよい。
[Resin obtained by using a compound represented by the formula (2-A) as a monomer]
The compound represented by the above formula (2-A) can be used as it is as a film forming composition for lithography or a composition used for forming an optical component. In addition, a resin obtained using the compound represented by the above formula (2-A) as a monomer can be used as a composition. The resin is obtained, for example, by reacting a compound represented by the above formula (2-A) with a compound having a crosslinking reaction.
Examples of the resin obtained using the compound represented by the formula (2-A) as a monomer include those having a structure represented by the following formula (4-A). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (4-A).
Figure JPOXMLDOC01-appb-C000237
(4-A)
Figure JPOXMLDOC01-appb-C000237
(4-A)
 (式(4-A)中、L’は、炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
 R0A’は、上記RY’と同義であり、
 R1A’は、炭素数1~30のn価の基又は単結合であり、
 R2A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基及び上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2A’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
 nA’は、上記Nと同義であり、ここで、nA’が2以上の整数の場合、nA’個の[ ]内の構造式は同一であっても異なっていてもよく、
 XA’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
 m2A’は、各々独立して、0~7の整数であり、但し、少なくとも1つのm2A’は1~7の整数であり、
 qA’は、各々独立して、0又は1である。)
(In the formula (4-A), L ′ is a linear or branched alkylene group having 1 to 30 carbon atoms or a single bond,
R 0A ′ has the same meaning as R Y ′ above,
R 1A ′ is an n A valent group having 1 to 30 carbon atoms or a single bond,
Each R 2A ′ independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms. An alkenyloxy group of
n A ′ has the same meaning as N described above. Here, when n A ′ is an integer of 2 or more, the structural formulas in n A ′ [] may be the same or different,
X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7;
q A ′ is independently 0 or 1. )
[式(2)で表される化合物をモノマーとして得られる樹脂の製造方法及び式(2-A)で表される化合物をモノマーとして得られる樹脂の製造方法]
 本実施形態における樹脂は、上記式(2)で表される化合物及び式(2-A)で表される化合物を、架橋反応性のある化合物と反応させることにより得られる。架橋反応性のある化合物としては、上記式(2)で表される化合物及び式(2-A)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
[Method for producing resin obtained by using compound represented by formula (2) as monomer and method for producing resin obtained by using compound represented by formula (2-A)]
The resin in the present embodiment can be obtained by reacting the compound represented by the above formula (2) and the compound represented by the formula (2-A) with a compound having crosslinking reactivity. As the compound having a crosslinking reactivity, known compounds are not particularly limited as long as the compound represented by the above formula (2) and the compound represented by the formula (2-A) can be oligomerized or polymerized. Can be used. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
 上記式(4)で表される構造を有する樹脂及び式(4-A)で表される構造を有する樹脂の具体例としては、例えば、上記式(2)で表される化合物及び式(2-A)で表される化合物を、架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。 Specific examples of the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) include, for example, the compound represented by the above formula (2) and the formula (2) Examples thereof include a resin obtained by novolakizing the compound represented by -A) by a condensation reaction with an aldehyde and / or a ketone having a crosslinking reactivity.
 ここで、上記式(2)で表される化合物及び式(2-A)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、上記ケトン類が挙げられる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、上記式(2)で表される化合物及び式(2-A)で表される化合物1モルに対して、0.2~5モルであることが好ましく、より好ましくは0.5~2モルである。 Here, examples of the aldehyde used when the compound represented by the above formula (2) and the compound represented by the formula (2-A) are novolakized include, for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propyl Examples include aldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural. However, it is not particularly limited to these. Examples of ketones include the above ketones. Among these, formaldehyde is more preferable. In addition, these aldehydes and / or ketones can be used individually by 1 type or in combination of 2 or more types. Further, the amount of the aldehyde and / or ketone used is not particularly limited, but is 0.2 0.2 per mol of the compound represented by the formula (2) and the compound represented by the formula (2-A). It is preferably ˜5 mol, more preferably 0.5 to 2 mol.
 上記式(2)で表される化合物及び式(2-A)で表される化合物とアルデヒド及び/又はケトンとの縮合反応においては、酸触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸又は固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。 In the condensation reaction of the compound represented by the above formula (2) and the compound represented by the formula (2-A) with an aldehyde and / or a ketone, an acid catalyst can be used. The acid catalyst used here can be appropriately selected from known ones and is not particularly limited. As such an acid catalyst, inorganic acids and organic acids are widely known. For example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid However, it is not particularly limited to these. Among these, an organic acid or a solid acid is preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as availability and ease of handling. In addition, about an acid catalyst, 1 type can be used individually or in combination of 2 or more types.
 また、酸触媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。 Further, the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that However, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, α-pinene, β-pinene In the case of a copolymerization reaction with a compound having a nonconjugated double bond such as limonene, aldehydes are not necessarily required.
 上記式(2)で表される化合物及び式(2-A)で表される化合物とケトンとの縮合反応においては、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。 In the condensation reaction of the compound represented by the above formula (2) and the compound represented by the formula (2-A) with a ketone, a reaction solvent can also be used. The reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned. In addition, a solvent can be used individually by 1 type or in combination of 2 or more types.
 また、これらの溶媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(2)で表される化合物及び式(2-A)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、上記式(2)で表される化合物及び式(2-A)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法が挙げられる。 Further, the amount of these solvents used can be appropriately set according to the types of raw materials and catalysts to be used, and further the reaction conditions, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reactive raw materials. It is preferable that Furthermore, the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C. The reaction method can be appropriately selected from known methods, and is not particularly limited. However, the compound represented by the above formula (2), the compound represented by the formula (2-A), an aldehyde and / or Alternatively, a method of charging ketones and a catalyst at once, a compound represented by the above formula (2), a compound represented by the formula (2-A), an aldehyde and / or a ketone are dropped in the presence of the catalyst. A method is mentioned.
 重縮合反応終了後、得られた化合物の単離は、常法に従って行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を単離することができる。 After completion of the polycondensation reaction, the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted. As a result, the novolak resin as the target product can be isolated.
 ここで、上記式(4)で表される構造を有する樹脂及び式(4-A)で表される構造を有する樹脂は、上記式(2)で表される化合物及び式(2-A)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。 Here, the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) are the compounds represented by the above formula (2) and the formula (2-A). A homopolymer of the compound represented by formula (1) may be used, but a copolymer with other phenols may also be used. Examples of the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
 また、上記式(4)で表される構造を有する樹脂及び式(4-A)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、上記式(4)で表される構造を有する樹脂及び式(4-A)で表される構造を有する樹脂は、上記式(2)で表される化合物及び式(2)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(2)で表される化合物及び式(2)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(2)で表される化合物及び式(2)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。 Further, the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) were copolymerized with a polymerizable monomer in addition to the above-described other phenols. It may be a thing. Examples of the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene. , Norbornadiene, vinylnorbornaene, pinene, limonene and the like, but are not particularly limited thereto. The resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) are represented by the compound represented by the above formula (2) and the formula (2). A compound represented by the above formula (2) and a compound represented by the formula (2), even if it is a binary or more (for example, 2-4 quaternary) copolymer of the above compound and the above-mentioned phenols And a copolymer represented by the above formula (2) and a compound represented by the formula (2) above, even if it is a binary or more (for example, 2-4 quaternary) copolymer of It may be a ternary or higher (for example, ternary to quaternary) copolymer of the above-described phenols and the above-mentioned copolymerization monomer.
 なお、上記式(4)で表される構造を有する樹脂及び式(4-A)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30000であることが好ましく、より好ましくは750~20000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記式(4)で表される構造を有する樹脂及び式(4-A)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内であることが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により求めることができる。 The molecular weight of the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is 500. It is preferably ˜30000, more preferably 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) The weight average molecular weight Mw / number average molecular weight Mn is preferably in the range of 1.2-7. In addition, said Mw and Mn can be calculated | required by the method as described in the Example mentioned later.
 上記式(4)で表される構造を有する樹脂及び式(4-A)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記樹脂10gがPGMEA90gに対して溶解する場合は、上記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。 The resin having the structure represented by the above formula (4) and the resin having the structure represented by the formula (4-A) have high solubility in a solvent from the viewpoint of easier application of a wet process. It is preferable. More specifically, when 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) is used as a solvent, the solubility in the solvent is preferably 10% by mass or more. Here, the solubility in PGM and / or PGMEA is defined as “resin mass ÷ (resin mass + solvent mass) × 100 (mass%)”. For example, when 10 g of the resin is dissolved in 90 g of PGMEA, the solubility of the resin in PGMEA is “10 mass% or more”, and when it is not dissolved, it is “less than 10 mass%”.
[化合物及び/又は樹脂の精製方法]
 本実施形態における化合物及び/又は樹脂の精製方法は、上記式(0)で表される化合物、上記式(0)で表される化合物をモノマーとして得られる樹脂、上記式(0-A)で表される化合物、及び上記式(0-A)で表される化合物をモノマーとして得られる樹脂、より具体的には上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物、及び上記式(2)で表される化合物をモノマーとして得られる樹脂、上記式(1-A)で表される化合物、上記式(1-A)で表される化合物をモノマーとして得られる樹脂、上記式(2-A)で表される化合物、及び上記式(2-A)で表される化合物をモノマーとして得られる樹脂から選ばれる1種以上を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、上記化合物及び/又は上記樹脂中の不純物を抽出する工程(第一抽出工程)とを含み、上記溶液(S)を得る工程で用いる溶媒が、水と任意に混和しない溶媒を含む。
[Method of purifying compound and / or resin]
The method for purifying the compound and / or resin in the present embodiment includes a compound represented by the above formula (0), a resin obtained using the compound represented by the above formula (0) as a monomer, and the above formula (0-A). And a resin obtained by using the compound represented by the above formula (0-A) as a monomer, more specifically a compound represented by the above formula (1), represented by the above formula (1) A resin obtained using the compound as a monomer, a compound represented by the above formula (2), a resin obtained using the compound represented by the above formula (2) as a monomer, a compound represented by the above formula (1-A), A resin obtained using the compound represented by the above formula (1-A) as a monomer, a compound represented by the above formula (2-A), and a compound represented by the above formula (2-A) can be obtained as a monomer. 1 or more types selected from resins are dissolved in a solvent A step of obtaining a solution (S), a step of bringing the obtained solution (S) into contact with an acidic aqueous solution and extracting impurities in the compound and / or the resin (first extraction step), The solvent used in the step of obtaining the solution (S) includes a solvent that is not arbitrarily miscible with water.
 第一抽出工程において、上記樹脂は、上記式(1)で表される化合物及び/又は式(2)で表される化合物及び式(1-A)で表される化合物及び/又は式(2-A)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂であることが好ましい。本実施形態の精製方法によれば、上述した特定の構造を有する化合物又は樹脂に不純物として含まれ得る種々の金属の含有量を低減することができる。
 より詳細には、本実施形態の精製方法においては、上記化合物及び/又は上記樹脂を、水と任意に混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、上記溶液(S)に含まれる金属分を水相に移行させた後、有機相と水相とを分離して金属含有量の低減された化合物及び/又は樹脂を得ることができる。
In the first extraction step, the resin includes the compound represented by the formula (1) and / or the compound represented by the formula (2) and the compound represented by the formula (1-A) and / or the formula (2). A resin obtained by a reaction between a compound represented by -A) and a compound having a crosslinking reactivity is preferable. According to the purification method of the present embodiment, the content of various metals that can be contained as impurities in the compound or resin having the specific structure described above can be reduced.
More specifically, in the purification method of the present embodiment, the compound and / or the resin is dissolved in an organic solvent that is arbitrarily immiscible with water to obtain a solution (S), and the solution (S) is further obtained. The extraction treatment can be performed in contact with an acidic aqueous solution. Thereby, after transferring the metal content contained in the solution (S) to the aqueous phase, the organic phase and the aqueous phase can be separated to obtain a compound and / or resin having a reduced metal content.
 本実施形態の精製方法で使用する化合物及び/又は樹脂は、単独で用いてもよく、2種以上混合して用いることもできる。また、上記化合物や樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有していてもよい。 The compounds and / or resins used in the purification method of this embodiment may be used alone or in combination of two or more. Moreover, the said compound and resin may contain various surfactant, various crosslinking agents, various acid generators, various stabilizers, etc.
 本実施形態の精製方法において使用される水と任意に混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満、より好ましくは20%未満、さらに好ましくは10%未満である有機溶媒である。当該有機溶媒の使用量は、使用する化合物と樹脂の合計量に対して、1~100質量倍であることが好ましい。 The solvent that is not arbitrarily miscible with water used in the purification method of the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable, and specifically, solubility in water at room temperature. Is less than 30%, more preferably less than 20%, and even more preferably less than 10%. The amount of the organic solvent used is preferably 1 to 100 times by mass with respect to the total amount of the compound to be used and the resin.
 水と任意に混和しない溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類;酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチルが好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、上記化合物及び該化合物を構成成分として含む樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。 Specific examples of solvents that are not arbitrarily miscible with water include, but are not limited to, ethers such as diethyl ether and diisopropyl ether; esters such as ethyl acetate, n-butyl acetate and isoamyl acetate, methyl ethyl ketone and methyl isobutyl Ketones such as ketone, ethyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone; ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl Glycol ether acetates such as ether acetate; Aliphatic hydrocarbons such as n-hexane and n-heptane; Aromatic hydrocarbons such as toluene and xylene Methylene chloride, halogenated hydrocarbons such as chloroform and the like. Among these, toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate and ethyl acetate are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone and propylene glycol monomethyl ether acetate are more preferable, and methyl More preferred are isobutyl ketone and ethyl acetate. Methyl isobutyl ketone, ethyl acetate, etc. are removed when the solvent is industrially distilled off or dried because the above compound and the resin containing the compound as a constituent component have a relatively high saturation solubility and a relatively low boiling point. It is possible to reduce the load in the process. These solvents can be used alone or in combination of two or more.
 本実施形態の精製方法において使用される酸性水溶液としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。酸性水溶液としては、以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた鉱酸水溶液;酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた有機酸水溶液が挙げられる。これらの酸性水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これらの酸性水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は、金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施形態の精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。 The acidic aqueous solution used in the purification method of the present embodiment is appropriately selected from aqueous solutions in which generally known organic compounds or inorganic compounds are dissolved in water. Examples of the acidic aqueous solution include, but are not limited to, for example, a mineral acid aqueous solution in which a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid is dissolved in water; acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid An organic acid aqueous solution in which an organic acid such as maleic acid, tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid or the like is dissolved in water. These acidic aqueous solutions can be used alone or in combination of two or more. Among these acidic aqueous solutions, one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, One or more organic acid aqueous solutions selected from the group consisting of tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid are preferred, and sulfuric acid, nitric acid, acetic acid, oxalic acid, An aqueous solution of carboxylic acid such as tartaric acid and citric acid is more preferable, an aqueous solution of sulfuric acid, succinic acid, tartaric acid and citric acid is more preferable, and an aqueous solution of succinic acid is more preferable. It is considered that polyvalent carboxylic acids such as oxalic acid, tartaric acid, and citric acid tend to be able to remove metals more effectively because they coordinate to metal ions and produce a chelate effect. The water used here is preferably water having a low metal content, such as ion-exchanged water, in accordance with the purpose of the purification method of the present embodiment.
 本実施形態の精製方法において使用する酸性水溶液のpHは、特に限定されないが、上記化合物や樹脂への影響を考慮して、水溶液の酸性度を調整することが好ましい。酸性水溶液のpHは、通常0~5程度であり、好ましくはpH0~3程度である。 The pH of the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the influence on the compound and the resin. The pH of the acidic aqueous solution is usually about 0 to 5, preferably about 0 to 3.
 本実施形態の精製方法において使用する酸性水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点、及び全体の液量を考慮して操作性を確保する観点から、使用量を調整することが好ましい。上記観点から、酸性水溶液の使用量は、上記溶液(S)100質量%に対して、好ましくは10~200質量%であり、より好ましくは20~100質量%である。 The amount of the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but is used from the viewpoint of reducing the number of extractions for metal removal and ensuring operability in consideration of the total liquid amount. It is preferable to adjust the amount. From the above viewpoint, the amount of the acidic aqueous solution used is preferably 10 to 200% by mass, and more preferably 20 to 100% by mass with respect to 100% by mass of the solution (S).
 本実施形態の精製方法においては、上記酸性水溶液と、上記溶液(S)とを接触させることにより、溶液(S)中の上記化合物又は上記樹脂から金属分を抽出することができる。 In the purification method of the present embodiment, the metal component can be extracted from the compound or the resin in the solution (S) by bringing the acidic aqueous solution into contact with the solution (S).
 本実施形態の精製方法においては、上記溶液(S)が、水と任意に混和する有機溶媒をさらに含むことが好ましい。溶液(S)が水と任意に混和する有機溶媒を含む場合、上記化合物及び/又は樹脂の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されず、例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性水溶液に加える方法、有機溶媒を含む溶液と水又は酸性水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、操作の作業性や仕込み量の管理のし易さの観点から、予め有機溶媒を含む溶液に加える方法が好ましい。 In the purification method of the present embodiment, it is preferable that the solution (S) further includes an organic solvent that is arbitrarily mixed with water. When the solution (S) contains an organic solvent that is arbitrarily miscible with water, the amount of the compound and / or resin charged can be increased, the liquid separation property is improved, and purification is performed with high pot efficiency. There is a tendency to be able to. The method of adding an organic solvent arbitrarily mixed with water is not particularly limited, for example, a method of adding to a solution containing an organic solvent in advance, a method of adding to a water or acidic aqueous solution in advance, a solution containing an organic solvent and water or an acidic aqueous solution. Any of the methods of adding after contacting may be used. Among these, the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of the operation and the ease of management of the charged amount.
 本実施形態の精製方法において使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する化合物と樹脂の合計量に対して、0.1~100質量倍であることが好ましく、0.1~50質量倍であることがより好ましく、0.1~20質量倍であることがさらに好ましい。 The organic solvent arbitrarily mixed with water used in the purification method of the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable. The amount of the organic solvent arbitrarily mixed with water is not particularly limited as long as the solution phase and the aqueous phase are separated from each other, but is 0.1 to 100 times by mass with respect to the total amount of the compound and the resin to be used. It is preferably 0.1 to 50 times by mass, more preferably 0.1 to 20 times by mass.
 本実施形態の精製方法において使用される水と任意に混和する有機溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N-メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、2種以上を混合して用いることもできる。 Specific examples of the organic solvent arbitrarily mixed with water used in the purification method of the present embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane; alcohols such as methanol, ethanol and isopropanol Ketones such as acetone and N-methylpyrrolidone; aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether Can be mentioned. Among these, N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable. Each of these solvents can be used alone or in combination of two or more.
 抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等によりよく混合させた後、静置することにより行われる。これにより、溶液(S)中に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、化合物及び/又は樹脂の変質を抑制することができる。 The temperature at the time of the extraction treatment is usually 20 to 90 ° C, preferably 30 to 80 ° C. The extraction operation is performed, for example, by mixing well by stirring and then allowing to stand. Thereby, the metal part contained in solution (S) transfers to an aqueous phase. Moreover, the acidity of a solution falls by this operation and the quality change of a compound and / or resin can be suppressed.
 上記混合溶液は静置により、化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するので、デカンテーション等により、溶液相を回収する。静置する時間は特に限定されないが、溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでも構わないが、混合、静置、分離という操作を複数回繰り返して行うことも有効である。 Since the above mixed solution is allowed to stand to separate into a solution phase containing a compound and / or a resin and a solvent and an aqueous phase, the solution phase is recovered by decantation or the like. The standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solvent-containing solution phase and the aqueous phase. Usually, the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer. Further, the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
 本実施形態の精製方法においては、上記第一抽出工程後、上記化合物又は上記樹脂を含む溶液相を、さらに水に接触させて、上記化合物又は上記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された化合物及び/又は樹脂と溶媒を含む溶液相を、さらに水による抽出処理に供することが好ましい。この水による抽出処理は、特に限定されないが、例えば、上記溶液相と水とを、撹拌等によりよく混合させた後、得られた混合溶液を静置することにより行うことができる。当該静置後の混合溶液は、化合物及び/又は樹脂と溶媒とを含む溶液相と水相とに分離するので、デカンテーション等により溶液相を回収することができる。 In the purification method of the present embodiment, after the first extraction step, the solution phase containing the compound or the resin is further brought into contact with water to extract impurities in the compound or the resin (second extraction). Step). Specifically, for example, after performing the extraction treatment using an acidic aqueous solution, the solution phase containing the compound and / or resin and solvent extracted and recovered from the aqueous solution is further subjected to extraction treatment with water. It is preferable. The extraction treatment with water is not particularly limited, and can be performed, for example, by thoroughly mixing the solution phase and water by stirring or the like and then allowing the obtained mixed solution to stand. Since the mixed solution after standing is separated into a solution phase containing a compound and / or a resin and a solvent and an aqueous phase, the solution phase can be recovered by decantation or the like.
 また、ここで用いる水は、本実施の形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでも構わないが、混合、静置、分離という操作を複数回繰り返して行うことも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性水溶液との接触処理の場合と同様で構わない。 Further, the water used here is preferably water having a low metal content, for example, ion-exchanged water, in accordance with the purpose of the present embodiment. The extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as in the case of the contact process with the acidic aqueous solution.
 こうして得られた化合物及び/又は樹脂と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により上記溶液に溶媒を加え、化合物及び/又は樹脂の濃度を任意の濃度に調整することができる。 The water that can be mixed into the solution containing the compound and / or resin and solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, a solvent can be added to the above solution to adjust the concentration of the compound and / or resin to an arbitrary concentration.
 得られた化合物及び/又は樹脂と溶媒とを含む溶液から、化合物及び/又は樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。 The method for isolating the compound and / or resin from the solution containing the obtained compound and / or resin and solvent is not particularly limited, and known methods such as removal under reduced pressure, separation by reprecipitation, and combinations thereof. Can be done. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
[組成物]
 本実施形態におけるリソグラフィー用膜形成組成物は、上記式(0)で表される化合物、上記式(0)で表される化合物をモノマーとして得られる樹脂、上記式(0-A)で表される化合物、及び上記式(0-A)で表される化合物をモノマーとして得られる樹脂、より具体的には上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物、及び上記式(2)で表される化合物をモノマーとして得られる樹脂、上記式(1-A)で表される化合物、上記式(1-A)で表される化合物をモノマーとして得られる樹脂、上記式(2-A)で表される化合物、及び上記式(2-A)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上を含有する。
[Composition]
The film-forming composition for lithography in the present embodiment is a compound represented by the above formula (0), a resin obtained using the compound represented by the above formula (0) as a monomer, and the above formula (0-A). And a resin obtained by using a compound represented by the above formula (0-A) as a monomer, more specifically a compound represented by the above formula (1), a compound represented by the above formula (1) Resin obtained as monomer, compound represented by the above formula (2), resin obtained by using compound represented by the above formula (2) as monomer, compound represented by the above formula (1-A), above formula A resin obtained by using a compound represented by (1-A) as a monomer, a compound represented by the above formula (2-A), and a resin obtained by using a compound represented by the above formula (2-A) as a monomer. Contains one or more selected from the group consisting of
 本実施形態の組成物は、リソグラフィー用膜形成組成物や光学部品形成組成物であることができる。 The composition of the present embodiment can be a film forming composition for lithography or an optical component forming composition.
[化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
 本実施形態における化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「レジスト組成物」ともいう。)は、上記式(0)で表される化合物、上記式(0)で表される化合物をモノマーとして得られる樹脂、上記式(0-A)で表される化合物、及び上記式(0-A)で表される化合物をモノマーとして得られる樹脂、より具体的には上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物、及び上記式(2)で表される化合物をモノマーとして得られる樹脂、上記式(1-A)で表される化合物、上記式(1-A)で表される化合物をモノマーとして得られる樹脂、上記式(2-A)で表される化合物、及び上記式(2-A)からなる群より選ばれる1種以上をレジスト基材として含有する。
[Film-forming composition for lithography for chemically amplified resist applications]
The film-forming composition for lithography (hereinafter also referred to as “resist composition”) for chemically amplified resist applications in the present embodiment is represented by the compound represented by the above formula (0) and the above formula (0). Resin obtained by using a compound as a monomer, a compound represented by the above formula (0-A), a resin obtained by using a compound represented by the above formula (0-A) as a monomer, more specifically the above formula (1 ), A resin obtained using the compound represented by the above formula (1) as a monomer, a compound represented by the above formula (2), and a compound represented by the above formula (2) as a monomer. A resin represented by the above formula (1-A), a resin obtained by using the compound represented by the above formula (1-A) as a monomer, a compound represented by the above formula (2-A), and the above Selected from the group consisting of formula (2-A) One or more containing a resist substrate.
 また、本実施形態における組成物(レジスト組成物)は、溶媒を含有することが好ましい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができるが、これらに特に限定はされない。これらの溶媒は、単独で用いても、2種以上を併用してもよい。 Further, the composition (resist composition) in this embodiment preferably contains a solvent. Examples of the solvent include, but are not limited to, ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, and ethylene glycol mono-n-butyl ether acetate. Ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono -Propylene glycol such as n-butyl ether acetate Monoalkyl ether acetates; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether; methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, n-amyl lactate, etc. Lactate esters; aliphatic carboxylic acid esters such as methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate; Methyl propionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl A Other esters such as tate, butyl 3-methoxy-3-methylpropionate, butyl 3-methoxy-3-methylbutyrate, methyl acetoacetate, methyl pyruvate, ethyl pyruvate; aromatic hydrocarbons such as toluene, xylene Ketones such as 2-heptanone, 3-heptanone, 4-heptanone, cyclopentanone (CPN), cyclohexanone (CHN); N, N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide, N -Amides such as methylpyrrolidone; lactones such as γ-lactone can be mentioned, but there is no particular limitation thereto. These solvents may be used alone or in combination of two or more.
 本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。 The solvent used in this embodiment is preferably a safe solvent, more preferably at least one selected from PGMEA, PGME, CHN, CPN, 2-heptanone, anisole, butyl acetate, ethyl propionate and ethyl lactate. A seed, more preferably at least one selected from PGMEA, PGME and CHN.
 本実施形態において、固形成分の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。 In this embodiment, the amount of the solid component and the amount of the solvent are not particularly limited, but 1 to 80% by weight of the solid component and 20 to 99% of the solvent with respect to 100% by weight of the total amount of the solid component and the solvent. The solid component is preferably 1 to 50% by mass, more preferably 1 to 50% by mass of the solid component and 50 to 99% by mass of the solvent, further preferably 2 to 40% by mass of the solid component and 60 to 98% by mass of the solvent, and particularly preferably solid The component is 2 to 10% by mass and the solvent is 90 to 98% by mass.
 本実施形態の組成物(レジスト組成物)は、他の固形成分として、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種をさらに含有してもよい。なお、本明細書において「固形成分」とは溶媒以外の成分をいう。 The composition (resist composition) of the present embodiment is selected from the group consisting of an acid generator (C), a crosslinking agent (G), an acid diffusion controller (E), and other components (F) as other solid components. You may further contain at least 1 type chosen. In the present specification, “solid component” refers to a component other than a solvent.
 ここで、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)については公知のものが使用でき、特に限定されないが、例えば、国際公開第2013/024778号に記載されているものが好ましい。 Here, as the acid generator (C), the crosslinking agent (G), the acid diffusion controller (E) and other components (F), known ones can be used, and are not particularly limited. Those described in Japanese Patent No. / 024778 are preferable.
[各成分の配合割合]
 本実施形態のレジスト組成物において、レジスト基材として用いる化合物及び/又は樹脂の含有量は、特に限定されないが、固形成分の全質量(レジスト基材、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)等の任意に使用される成分を含む固形成分の総和、以下同様。)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、さらに好ましくは60~80質量%、特に好ましくは60~70質量%である。レジスト基材として用いる化合物及び/又は樹脂の含有量が上記範囲である場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる傾向にある。
 なお、レジスト基材として化合物と樹脂の両方を含有する場合、上記含有量は、両成分の合計量である。
[Combination ratio of each component]
In the resist composition of the present embodiment, the content of the compound and / or resin used as the resist base material is not particularly limited, but the total mass of the solid component (resist base material, acid generator (C), crosslinking agent (G ), Acid diffusion controller (E) and other components (F) and the like, and the total amount of solid components including the optionally used components, the same shall apply hereinafter)). The amount is preferably 55 to 90% by mass, more preferably 60 to 80% by mass, and particularly preferably 60 to 70% by mass. When the content of the compound and / or resin used as the resist base is in the above range, the resolution is further improved and the line edge roughness (LER) tends to be further reduced.
In addition, when containing both a compound and resin as a resist base material, the said content is a total amount of both components.
[その他の成分(F)]
 本実施形態におけるレジスト組成物には、本発明の目的を阻害しない範囲で、必要に応じて、レジスト基材、酸発生剤(C)、架橋剤(G)及び酸拡散制御剤(E)以外の成分として、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を、1種又は2種以上添加することができる。なお、本明細書において、その他の成分(F)を任意成分(F)ということがある。
[Other components (F)]
The resist composition in the present embodiment includes, as necessary, other than the resist base material, the acid generator (C), the cross-linking agent (G), and the acid diffusion controller (E) as long as the object of the present invention is not impaired. As a component, a dissolution accelerator, a dissolution control agent, a sensitizer, a surfactant, an organic carboxylic acid or a phosphorus oxo acid or a derivative thereof, a heat and / or photocuring catalyst, a polymerization inhibitor, a flame retardant, a filler, Coupling agents, thermosetting resins, photocurable resins, dyes, pigments, thickeners, lubricants, antifoaming agents, leveling agents, UV absorbers, surfactants, colorants, nonionic surfactants, etc. One or more additives can be added. In addition, in this specification, another component (F) may be called arbitrary component (F).
 本実施形態のレジスト組成物において、レジスト基材(以下、「成分(A)」ともいう。)、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量(成分(A)/酸発生剤(C)/架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、固形物基準の質量%で、
 好ましくは50~99.4/0.001~49/0.5~49/0.001~49/0~49、
 より好ましくは55~90/1~40/0.5~40/0.01~10/0~5、
 さらに好ましくは60~80/3~30/1~30/0.01~5/0~1、
 特に好ましくは60~70/10~25/2~20/0.01~3/0、である。
 各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。各成分の配合割合が上記範囲である場合、感度、解像度、現像性等の性能に優れる傾向にある。
In the resist composition of this embodiment, a resist base material (hereinafter also referred to as “component (A)”), an acid generator (C), a crosslinking agent (G), an acid diffusion controller (E), an optional component ( The content of F) (component (A) / acid generator (C) / crosslinking agent (G) / acid diffusion controller (E) / optional component (F)) is mass% based on solids,
Preferably 50 to 99.4 / 0.001 to 49 / 0.5 to 49 / 0.001 to 49/0 to 49,
More preferably 55 to 90/1 to 40 / 0.5 to 40 / 0.01 to 10/0 to 5,
More preferably 60 to 80/3 to 30/1 to 30 / 0.01 to 5/0 to 1,
Particularly preferred is 60 to 70/10 to 25/2 to 20 / 0.01 to 3/0.
The blending ratio of each component is selected from each range so that the sum is 100% by mass. When the blending ratio of each component is within the above range, the performance such as sensitivity, resolution, developability and the like tends to be excellent.
 本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。 The resist composition of this embodiment is usually prepared by dissolving each component in a solvent at the time of use to make a uniform solution, and then filtering with a filter having a pore size of about 0.2 μm, for example, as necessary. The
 本実施形態のレジスト組成物は、本発明の目的を阻害しない範囲で、本実施形態の樹脂以外のその他の樹脂を含むことができる。その他の樹脂としては、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体或いはこれらの誘導体等が挙げられる。その他の樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。 The resist composition of the present embodiment can contain other resins other than the resin of the present embodiment as long as the object of the present invention is not impaired. Other resins are not particularly limited. For example, novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and acrylic acid, vinyl alcohol, or vinylphenol as monomer units. Examples thereof include polymers or derivatives thereof. The content of other resins is not particularly limited and is appropriately adjusted according to the type of component (A) to be used, but is preferably 30 parts by mass or less with respect to 100 parts by mass of component (A). More preferably, it is 10 mass parts or less, More preferably, it is 5 mass parts or less, Most preferably, it is 0 mass part.
[レジスト組成物の物性等]
 本実施形態のレジスト組成物を用いて、スピンコートによりアモルファス膜を形成することができる。また、本実施形態のレジスト組成物は、一般的な半導体製造プロセスに適用することができる。上記式(1)及び/又は式(2)で表される化合物、これらをモノマーとして得られる樹脂の種類及び/又は用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
[Physical properties of resist composition]
An amorphous film can be formed by spin coating using the resist composition of the present embodiment. Moreover, the resist composition of this embodiment can be applied to a general semiconductor manufacturing process. Depending on the compound represented by the above formula (1) and / or formula (2), the type of resin obtained using these as monomers and / or the type of developer used, either a positive resist pattern or a negative resist pattern is used. Can be made separately.
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合がある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果もみられる。 In the case of a positive resist pattern, the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment with respect to the developer at 23 ° C. is preferably 5 Å / sec or less, and 0.05 to 5 Å / It is more preferable that it is sec, and it is more preferable that it is 0.0005 to 5 cm / sec. When the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved. This is due to the change in the solubility of the compound represented by the above formulas (1) and (2) and / or the resin containing the compound as a constituent component before and after the exposure, and in the developer, It is presumed that the contrast at the interface with the unexposed portion that does not dissolve increases. In addition, LER reduction and defect reduction effects are also seen.
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。 In the case of a negative resist pattern, the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 Å / sec or more. When the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist. In addition, when the dissolution rate is 10 Å / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定して決定することできる。 The dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. for a predetermined time, and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method.
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。 In the case of a positive resist pattern, a portion exposed to radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray of an amorphous film formed by spin-coating the resist composition of this embodiment is applied to a developer at 23 ° C. The dissolution rate is preferably 10 Å / sec or more. When the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist. In addition, when the dissolution rate is 10 Å / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるためと推測される。またLERの低減、ディフェクトの低減効果もみられる。 In the case of a negative resist pattern, the amorphous film formed by spin-coating the resist composition of this embodiment is exposed to a developing solution at 23 ° C. at a portion exposed by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray. The dissolution rate is preferably 5 kg / sec or less, more preferably 0.05 to 5 kg / sec, and further preferably 0.0005 to 5 kg / sec. When the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved. This is because an unexposed portion that dissolves in a developer due to a change in solubility before and after exposure of the compound represented by the above formulas (1) and (2) and / or a resin containing the compound as a constituent component, and a developer This is presumably because the contrast at the interface with the exposed portion that does not dissolve in the substrate increases. In addition, LER reduction and defect reduction effects are also seen.
[非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
 本実施形態の非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「感放射線性組成物」ともいう。)に含有させる成分(A)は、後述するジアゾナフトキノン光活性化合物(B)と併用し、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化するため、現像工程によってレジストパターンを作ることが可能となる。
[Film-forming composition for lithography for non-chemically amplified resist applications]
The component (A) contained in the film forming composition for lithography for non-chemically amplified resist application of the present embodiment (hereinafter also referred to as “radiation sensitive composition”) is a diazonaphthoquinone photoactive compound (B) described later. In addition, a positive resist base material that is easily soluble in a developer by irradiating g-line, h-line, i-line, KrF excimer laser, ArF excimer laser, extreme ultraviolet light, electron beam or X-ray. Useful as. G-line, h-line, i-line, KrF excimer laser, ArF excimer laser, extreme ultraviolet light, electron beam or X-ray does not change the property of component (A) greatly, but diazonaphthoquinone photoactivity is hardly soluble in the developer. Since the compound (B) changes to a readily soluble compound, a resist pattern can be formed by a development process.
 本実施形態の感放射線性組成物に含有させる成分(A)は、比較的低分子量の化合物であることから、得られるレジストパターンのラフネスは非常に小さい。また、上記式(1)中、R~Rからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましく、また、上記式(2)中、R0A、R1A及びR2Aからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましい。本実施形態の感放射線性組成物は、ヨウ素原子を含む基を有する成分(A)を適用した場合、電子線、極端紫外線(EUV)、X線等の放射線に対する吸収能を増加させ、その結果、感度を高めることが可能となるため好ましい。 Since the component (A) contained in the radiation-sensitive composition of the present embodiment is a compound having a relatively low molecular weight, the roughness of the resulting resist pattern is very small. In the formula (1), at least one selected from the group consisting of R 0 to R 5 is preferably a group containing an iodine atom, and in the formula (2), R 0A , R 1A and It is preferable that at least one selected from the group consisting of R 2A is a group containing an iodine atom. When the component (A) having a group containing an iodine atom is applied to the radiation-sensitive composition of the present embodiment, the radiation-sensitive composition increases the ability to absorb radiation such as electron beams, extreme ultraviolet rays (EUV), and X-rays. This is preferable because the sensitivity can be increased.
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、400℃である。成分(A)のガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度等の性能が向上する傾向にある。 The glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher. . Although the upper limit of the glass transition temperature of a component (A) is not specifically limited, For example, it is 400 degreeC. When the glass transition temperature of the component (A) is within the above range, the semiconductor lithography process has heat resistance capable of maintaining the pattern shape and tends to improve performance such as high resolution.
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は、好ましくは20J/g未満である。また、(結晶化温度)-(ガラス転移温度)は、好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることによりアモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性を向上することができる傾向にある。 The crystallization calorific value obtained by differential scanning calorimetric analysis of the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably less than 20 J / g. The (crystallization temperature) − (glass transition temperature) is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C. or higher, and particularly preferably 130 ° C. or higher. When the crystallization heat generation amount is less than 20 J / g, or (crystallization temperature) − (glass transition temperature) is in the above range, an amorphous film can be easily formed by spin-coating the radiation-sensitive composition, and the resist Therefore, it is likely that the film forming property required for the above can be maintained for a long period of time and the resolution can be improved.
 本実施形態において、上記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。 In this embodiment, the crystallization heat generation amount, the crystallization temperature, and the glass transition temperature can be obtained by differential scanning calorimetry using DSC / TA-50WS manufactured by Shimadzu Corporation. About 10 mg of a sample is put into an aluminum non-sealed container and heated to a melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (50 mL / min). After the rapid cooling, the temperature is raised again to the melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (30 mL / min). Further, after rapid cooling, the temperature is increased again to 400 ° C. at a rate of temperature increase of 20 ° C./min in a nitrogen gas stream (30 mL / min). The temperature at the midpoint of the step difference of the baseline that has changed in a step shape (where the specific heat has changed to half) is the glass transition temperature (Tg), and the temperature of the exothermic peak that appears thereafter is the crystallization temperature. The calorific value is obtained from the area of the region surrounded by the exothermic peak and the baseline, and is defined as the crystallization calorific value.
 本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。 The component (A) contained in the radiation-sensitive composition of the present embodiment is 100 or less, preferably 120 ° C. or less, more preferably 130 ° C. or less, further preferably 140 ° C. or less, and particularly preferably 150 ° C. or less under normal pressure. It is preferable that sublimability is low. Low sublimation means that, in thermogravimetric analysis, the weight loss when held at a predetermined temperature for 10 minutes is 10% or less, preferably 5% or less, more preferably 3% or less, even more preferably 1% or less, particularly preferably Indicates 0.1% or less. Since the sublimation property is low, it is possible to prevent exposure apparatus from being contaminated by outgas during exposure. In addition, a good pattern shape can be obtained with low roughness.
 本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルからなる群から選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上溶解する。特に好ましくは、PGMEA、PGME、CHNからなる群から選ばれ、かつ、(A)レジスト基材に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が容易となる。 Component (A) contained in the radiation-sensitive composition of the present embodiment is propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), cyclopentanone (CPN), 2-heptanone Selected from the group consisting of anisole, butyl acetate, ethyl propionate and ethyl lactate and exhibiting the highest solubility in component (A) at 23 ° C., preferably 1% by mass or more, more preferably Dissolves in an amount of 5% by mass or more, more preferably 10% by mass or more. Particularly preferably, it is selected from the group consisting of PGMEA, PGME, and CHN, and (A) a solvent that exhibits the highest solubility in the resist base material, at 23 ° C., 20% by mass or more, and particularly preferably PGMEA On the other hand, 20 mass% or more dissolves at 23 ° C. By satisfying the above conditions, the use in the semiconductor manufacturing process in actual production becomes easy.
[ジアゾナフトキノン光活性化合物(B)]
 本実施形態の感放射線性組成物に含有させるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含むジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に制限なく、1種又は2種以上を任意に選択して用いることができる。
[Diazonaphthoquinone Photoactive Compound (B)]
The diazonaphthoquinone photoactive compound (B) contained in the radiation-sensitive composition of the present embodiment is a diazonaphthoquinone substance containing a polymeric and non-polymeric diazonaphthoquinone photoactive compound. Generally, in a positive resist composition, As long as it is used as a photosensitive component (photosensitive agent), one or more kinds can be arbitrarily selected and used without any particular limitation.
 成分(B)としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られる化合物が好ましい。ここで、酸クロライドと縮合可能な官能基としては、特に限定されず、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されず、例えば、ハイドロキノン、レゾルシン、2、4-ジヒドロキシベンゾフェノン、2、3、4-トリヒドロキシベンゾフェノン、2、4、6-トリヒドロキシベンゾフェノン、2、4、4’-トリヒドロキシベンゾフェノン、2、3、4、4’-テトラヒドロキシベンゾフェノン、2、2’、4、4’-テトラヒドロキシベンゾフェノン、2、2’、3、4、6’-ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類;ビス(2、4-ジヒドロキシフェニル)メタン、ビス(2、3、4-トリヒドロキシフェニル)メタン、ビス(2、4-ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類;4、4’、3”、4”-テトラヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン、4、4’、2”、3”、4”-ペンタヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類等を挙げることができる。
 また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等の酸クロライドとしては、例えば、1、2-ナフトキノンジアジド-5-スルフォニルクロライド、1、2-ナフトキノンジアジド-4-スルフォニルクロライド等が好ましいものとして挙げられる。
As the component (B), a compound obtained by reacting naphthoquinone diazide sulfonic acid chloride, benzoquinone diazide sulfonic acid chloride and the like with a low molecular compound or a high molecular compound having a functional group capable of condensation reaction with these acid chlorides. preferable. Here, the functional group capable of condensing with acid chloride is not particularly limited, and examples thereof include a hydroxyl group and an amino group, and a hydroxyl group is particularly preferable. The compound that can be condensed with an acid chloride containing a hydroxyl group is not particularly limited, and examples thereof include hydroquinone, resorcin, 2,4-dihydroxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone. 2,4,4'-trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2', 3,4,6 ' Hydroxybenzophenones such as pentahydroxybenzophenone; hydroxyphenylalkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) propane 4, 4 ′, 3 ″, 4 ″ -tetrahydroxy-3, 5, Hydroxytriphenylmethane such as 3 ′, 5′-tetramethyltriphenylmethane, 4, 4 ′, 2 ″, 3 ″, 4 ″ -pentahydroxy-3, 5, 3 ′, 5′-tetramethyltriphenylmethane And the like.
Examples of acid chlorides such as naphthoquinone diazide sulfonic acid chloride and benzoquinone diazide sulfonic acid chloride include 1,2-naphthoquinone diazide-5-sulfonyl chloride, 1,2-naphthoquinone diazide-4-sulfonyl chloride, and the like. Can be mentioned.
 本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。 The radiation-sensitive composition of the present embodiment is prepared by, for example, dissolving each component in a solvent at the time of use to obtain a uniform solution, and then filtering by, for example, a filter having a pore size of about 0.2 μm as necessary. It is preferred that
[感放射線性組成物の特性]
 本実施形態の感放射線性組成物を用いて、スピンコートによりアモルファス膜を形成することができる。また、本実施形態の感放射線性組成物は、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
[Characteristics of radiation-sensitive composition]
An amorphous film can be formed by spin coating using the radiation-sensitive composition of the present embodiment. Moreover, the radiation sensitive composition of this embodiment can be applied to a general semiconductor manufacturing process. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be created.
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合がある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果もみられる。 In the case of a positive resist pattern, the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment at 23 ° C. with respect to the developing solution is preferably 5 Å / sec or less, and 0.05 to More preferably, it is 5 Å / sec, and further preferably 0.0005 to 5 Å / sec. When the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved. This is due to the change in the solubility of the compound represented by the above formulas (1) and (2) and / or the resin containing the compound as a constituent component before and after the exposure, and in the developer, It is presumed that the contrast at the interface with the unexposed portion that does not dissolve increases. In addition, LER reduction and defect reduction effects are also seen.
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。 In the case of a negative resist pattern, the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developer at 23 ° C. is preferably 10 Å / sec or more. When the dissolution rate is 10 当 該 / sec or more, it is easily dissolved in a developer and suitable for a resist. In addition, when the dissolution rate is 10 Å / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定して決定することができる。 The dissolution rate can be determined by immersing the amorphous film in a developing solution for a predetermined time at 23 ° C., and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method. .
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上が好ましく、10~10000Å/secがより好ましく、100~1000Å/secがさらに好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10000Å/sec以下である場合、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。 In the case of a positive resist pattern, the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to The dissolution rate of the exposed portion after heating at 500 ° C. in the developer at 23 ° C. is preferably 10 Å / sec or more, more preferably 10 to 10000 Å / sec, and even more preferably 100 to 1000 Å / sec. When the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist. In addition, when the dissolution rate is 10,000 kg / sec or less, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるためと推測される。またLERの低減、ディフェクトの低減効果もみられる。 In the case of a negative resist pattern, the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to The dissolution rate of the exposed portion after heating at 500 ° C. with respect to the developer at 23 ° C. is preferably 5 K / sec or less, more preferably from 0.05 to 5 K / sec, more preferably from 0.0005 to More preferably, it is 5 kg / sec. When the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved. This is because an unexposed portion that dissolves in a developer due to a change in solubility before and after exposure of the compound represented by the above formulas (1) and (2) and / or a resin containing the compound as a constituent component, and a developer This is presumably because the contrast at the interface with the exposed portion that does not dissolve in the substrate increases. In addition, LER reduction and defect reduction effects are also seen.
[各成分の配合割合]
 本実施形態の感放射線性組成物において、成分(A)の含有量は、固形成分の全質量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、成分(A)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
[Combination ratio of each component]
In the radiation-sensitive composition of the present embodiment, the content of the component (A) is arbitrarily selected from the total mass of the solid component (component (A), diazonaphthoquinone photoactive compound (B), and other components (D)). The total of solid components used, the same shall apply hereinafter) is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably 25 to 75%. % By mass. When the content of the component (A) is within the above range, the radiation-sensitive composition of the present embodiment tends to obtain a pattern with high sensitivity and small roughness.
 本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分の全質量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施の形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。 In the radiation-sensitive composition of this embodiment, the content of the diazonaphthoquinone photoactive compound (B) is the total mass of the solid components (component (A), diazonaphthoquinone photoactive compound (B) and other components (D). Etc.), preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably Is 25 to 75% by mass. When the content of the diazonaphthoquinone photoactive compound (B) is within the above range, the radiation-sensitive composition of the present embodiment tends to obtain a highly sensitive and small roughness pattern.
[その他の成分(D)]
 本実施形態の感放射線性組成物には、本発明の目的を阻害しない範囲で、必要に応じて、成分(A)及びジアゾナフトキノン光活性化合物(B)以外の成分として、酸発生剤、架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(D)を任意成分(D)ということがある。
[Other components (D)]
In the radiation-sensitive composition of the present embodiment, an acid generator, a cross-linkage, and a component other than the component (A) and the diazonaphthoquinone photoactive compound (B) are included as necessary, as long as the object of the present invention is not impaired. Agent, acid diffusion controller, dissolution accelerator, dissolution controller, sensitizer, surfactant, organic carboxylic acid or phosphorus oxo acid or derivative thereof, heat and / or photocuring catalyst, polymerization inhibitor, flame retardant, Fillers, coupling agents, thermosetting resins, photocurable resins, dyes, pigments, thickeners, lubricants, antifoaming agents, leveling agents, UV absorbers, surfactants, colorants, nonionic surfactants 1 type, or 2 or more types can be added. In addition, in this specification, another component (D) may be called arbitrary component (D).
 本実施形態の感放射線性組成物において、各成分の配合割合(成分(A)/ジアゾナフトキノン光活性化合物(B)/任意成分(D))は、固形成分基準の質量%で、
 好ましくは1~99/99~1/0~98、
 より好ましくは5~95/95~5/0~49、
 さらに好ましくは10~90/90~10/0~10、
 さらにより好ましくは20~80/80~20/0~5、
 特に好ましくは25~75/75~25/0、である。
 各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物の各成分の配合割合が上記範囲である場合、ラフネスに加え、感度、解像度等の性能に優れる傾向にある。
In the radiation-sensitive composition of the present embodiment, the blending ratio of each component (component (A) / diazonaphthoquinone photoactive compound (B) / arbitrary component (D)) is mass% based on the solid component,
Preferably 1 to 99/99 to 1/0 to 98,
More preferably 5 to 95/95 to 5/0 to 49,
More preferably, 10 to 90/90 to 10/0 to 10,
Even more preferably, 20-80 / 80-20 / 0-5,
Particularly preferred is 25 to 75/75 to 25/0.
The blending ratio of each component is selected from each range so that the sum is 100% by mass. When the blending ratio of each component of the radiation-sensitive composition of the present embodiment is in the above range, it tends to be excellent in performance such as sensitivity and resolution in addition to roughness.
 本実施形態の感放射線性組成物は、本発明の目的を阻害しない範囲で、その他の樹脂を含んでもよい。このようなその他の樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体或いはこれらの誘導体等が挙げられる。これらの樹脂の配合量は、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。 The radiation-sensitive composition of the present embodiment may contain other resins as long as the object of the present invention is not impaired. Examples of such other resins include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and polymers containing acrylic acid, vinyl alcohol, or vinyl phenol as monomer units or These derivatives are mentioned. The blending amount of these resins is appropriately adjusted according to the type of component (A) used, but is preferably 30 parts by mass or less, more preferably 10 parts per 100 parts by mass of component (A). It is not more than part by mass, more preferably not more than 5 parts by mass, particularly preferably 0 part by mass.
[レジストパターンの形成方法]
 本実施形態におけるレジストパターンの形成方法は、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にフォトレジスト層を形成した後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。より詳しくは、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にレジスト膜を形成する工程と、形成されたレジスト膜を露光する工程と、上記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは、多層プロセスにおける上層レジストとして形成することもできる。
[Method of forming resist pattern]
In the present embodiment, a resist pattern is formed by forming a photoresist layer on a substrate using the resist composition or radiation-sensitive composition of the present embodiment described above, and then applying radiation to a predetermined region of the photoresist layer. And developing. More specifically, a step of forming a resist film on a substrate using the resist composition or radiation-sensitive composition of the present embodiment described above, a step of exposing the formed resist film, and developing the resist film And a step of forming a resist pattern. The resist pattern in this embodiment can also be formed as an upper layer resist in a multilayer process.
 レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上にレジスト組成物又は感放射線性組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等が挙げられる。より具体的には、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば、銅、アルミニウム、ニッケル、金等が挙げられる。また、必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。基板上にはヘキサメチレンジシラザン等による表面処理を行ってもよい。 The method for forming the resist pattern is not particularly limited, and examples thereof include the following methods. First, a resist film is formed by applying a resist composition or a radiation sensitive composition on a conventionally known substrate by a coating means such as spin coating, cast coating, roll coating or the like. The conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed. More specifically, a silicon substrate, a metal substrate such as copper, chromium, iron, and aluminum, a glass substrate, and the like can be given. Examples of the wiring pattern material include copper, aluminum, nickel, and gold. Further, if necessary, an inorganic and / or organic film may be provided on the substrate. An inorganic antireflection film (inorganic BARC) is an example of the inorganic film. Examples of the organic film include an organic antireflection film (organic BARC). Surface treatment with hexamethylene disilazane or the like may be performed on the substrate.
 次に、必要に応じて、レジスト組成物又は感放射線性組成物を塗布した基板を加熱する。加熱条件は、レジスト組成物又は感放射線組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する傾向にあるため好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物又は感放射線性組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱することが好ましい。加熱条件は、レジスト組成物又は感放射線性組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。 Next, if necessary, the substrate coated with the resist composition or radiation-sensitive composition is heated. The heating conditions vary depending on the composition of the resist composition or radiation-sensitive composition, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C. Heating is preferred because the adhesion of the resist to the substrate tends to be improved. Next, the resist film is exposed to a desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam. The exposure conditions and the like are appropriately selected according to the composition of the resist composition or the radiation sensitive composition. In the present embodiment, it is preferable to heat after radiation irradiation in order to stably form a high-precision fine pattern in exposure. The heating conditions vary depending on the composition of the resist composition or the radiation-sensitive composition, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C.
 次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。現像液としては、使用する式(1)若しくは式(2)で表される化合物又は式(1)若しくは式(2)で表される化合物をモノマーとして得られる樹脂に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤又はアルカリ水溶液を用いることができる。 Next, a predetermined resist pattern is formed by developing the exposed resist film with a developer. As the developer, a solubility parameter (SP value) for the compound obtained by using the compound represented by the formula (1) or (2) or the compound represented by the formula (1) or (2) as a monomer is used. It is preferable to select a solvent close to), and polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, etc., hydrocarbon solvents or alkaline aqueous solutions can be used.
 ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等が挙げられる。 Examples of the ketone solvent include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methyl ethyl ketone. Methyl isobutyl ketone, acetyl acetone, acetonyl acetone, ionone, diacetyl alcohol, acetyl carbinol, acetophenone, methyl naphthyl ketone, isophorone, propylene carbonate and the like.
 エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等が挙げられる。 Examples of ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3 -Ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate and the like.
 アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール(2-プロパノール)、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤等が挙げられる。 Examples of the alcohol solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol (2-propanol), n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, triethylene Glycol monoethyl ether, glycol monoethyl ether and methoxymethyl butanol.
 エーテル系溶剤としては、例えば、上記グリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン等が挙げられる。 Examples of the ether solvent include dioxane, tetrahydrofuran and the like in addition to the glycol ether solvent.
 アミド系溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。 Examples of amide solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like. Can be mentioned.
 炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。 Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
 上記溶剤は、複数混合してもよいし、性能を有する範囲内で、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するという観点からは、現像液全体としての含水率が70質量%未満であることが好ましく、50質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、10質量%未満であることがさらにより好ましく、実質的に水分を含有しないことが特に好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であることが好ましく、50質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましく、90質量%以上100質量%以下であることがさらにより好ましく、95質量%以上100質量%以下であることが特に好ましい。 A plurality of the above-mentioned solvents may be mixed, or may be used by mixing with a solvent other than the above or water within the range having performance. However, from the viewpoint that the effects of the present invention are sufficiently achieved, the water content of the developer as a whole is preferably less than 70% by mass, more preferably less than 50% by mass, and less than 30% by mass. More preferably, it is still more preferable that it is less than 10 mass%, and it is especially preferable not to contain water | moisture content substantially. That is, the content of the organic solvent with respect to the developer is preferably 30% by mass or more and 100% by mass or less, more preferably 50% by mass or more and 100% by mass or less, based on the total amount of the developer. It is more preferable that the content is from 100% by mass to 100% by mass, even more preferable from 90% by mass to 100% by mass, and particularly preferable from 95% by mass to 100% by mass.
 アルカリ水溶液としては、例えば、モノ-、ジ-或いはトリアルキルアミン類、モノ-、ジ-或いはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物が挙げられる。 Examples of the alkaline aqueous solution include alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
 特に、現像液としては、レジストパターンの解像性やラフネス等のレジスト性能を改善するという観点から、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種の溶剤を含有する現像液が好ましい。 In particular, the developer is at least selected from a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether solvent from the viewpoint of improving resist performance such as resist pattern resolution and roughness. A developer containing one solvent is preferred.
 現像液の蒸気圧は、20℃において、5kPa以下であることが好ましく、3kPa以下であることがより好ましく、2kPa以下であることがさらに好ましい。現像液の蒸気圧が5kPa以下である場合、現像液の基板上或いは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する傾向にある。 The vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and even more preferably 2 kPa or less at 20 ° C. When the vapor pressure of the developing solution is 5 kPa or less, evaporation of the developing solution on the substrate or in the developing cup is suppressed, temperature uniformity in the wafer surface is improved, and as a result, dimensional uniformity in the wafer surface is good. It tends to become.
 20℃において5kPa以下の蒸気圧を有する具体的な現像液の例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;テトラヒドロフラン等のエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。 Examples of specific developers having a vapor pressure of 5 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutylketone, cyclohexanone, methyl Ketone solvents such as cyclohexanone, phenylacetone, methyl isobutyl ketone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypro Pionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, butyl formate, propyl formate, ethyl lactate, butyl lactate, milk Ester solvents such as propyl; n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, 4-methyl-2-pentanol, n-heptyl Alcohol solvents such as alcohol, n-octyl alcohol and n-decanol; glycol solvents such as ethylene glycol, diethylene glycol and triethylene glycol; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl Ether, diethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methoxymethylbutanol, etc. Recall ether solvents; ether solvents such as tetrahydrofuran; N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide amide solvents; toluene, xylene and other aromatic hydrocarbon solvents; Aliphatic hydrocarbon solvents such as octane and decane are listed.
 20℃において2kPa以下の蒸気圧を有する具体的な現像液の例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤、キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。 Examples of specific developers having a vapor pressure of 2 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutylketone, cyclohexanone, methyl Ketone solvents such as cyclohexanone and phenylacetone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, 3 -Ester solvents such as methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate, propyl lactate; n-butyl alcohol alcohol solvents such as sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol; ethylene glycol, diethylene glycol Glycol solvents such as triethylene glycol; glycol ethers such as ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methoxymethyl butanol Solvents: N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethyl Formamide amide solvents, aromatic hydrocarbon solvents such as xylene; octane include aliphatic hydrocarbon solvents decane.
 現像液には、必要に応じて界面活性剤を適当量添加することができる。界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤としては、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書に記載された界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、好ましくは、フッ素系界面活性剤又はシリコン系界面活性剤である。 An appropriate amount of a surfactant can be added to the developer as necessary. The surfactant is not particularly limited, and for example, ionic or nonionic fluorine-based and / or silicon-based surfactants can be used. Examples of these fluorine and / or silicon surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950. JP-A-63-334540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, US Pat. No. 5,405,720 No. 5,360,692, No. 5,529,881, No. 5,296,330, No. 5,543,098, No. 5,576,143, No. 5,294,511, No. 5,824,451. Preferably, it is a nonionic surfactant. Although it does not specifically limit as a nonionic surfactant, Preferably, they are a fluorine-type surfactant or a silicon-type surfactant.
 界面活性剤の使用量は、現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、さらに好ましくは0.01~0.5質量%である。 The amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developer.
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出し続ける方法(ダイナミックディスペンス法)等を適用することができる。パターンの現像を行なう時間としては、特に制限はないが、好ましくは10秒~90秒である。 As a development method, for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) ) Etc. can be applied. The time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
 また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。 In addition, after the step of developing, a step of stopping development may be performed while substituting with another solvent.
 現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。 After the development, it is preferable to include a step of washing with a rinse solution containing an organic solvent.
 現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。上記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらに好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間としては、特に制限はないが、好ましくは10秒~90秒である。 The rinsing liquid used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution or water containing a general organic solvent can be used. As the rinsing liquid, it is preferable to use a rinsing liquid containing at least one organic solvent selected from hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents. . More preferably, after the development, a cleaning step is performed using a rinse solution containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, and amide solvents. More preferably, after the development, a cleaning step is performed using a rinse solution containing an alcohol solvent or an ester solvent. Even more preferably, after the development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after the development, a washing step is performed using a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms. The time for rinsing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
 ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、4-メチル-2-ペンタノール、1-ヘプタノール、1-オクタノール、2-ヘキサノール、シクロペンタノール、2-ヘプタノール、2-オクタノール、3-ヘキサノール、3-ヘプタノール、3-オクタノール、4-オクタノール等を用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノール等が挙げられる。 Here, examples of the monohydric alcohol used in the rinsing step after development include linear, branched, and cyclic monohydric alcohols, and specifically, 1-butanol, 2-butanol, 3-methyl- 1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2- Heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like can be used. Particularly preferable monohydric alcohols having 5 or more carbon atoms include 1-hexanol, 2-hexanol, 4 -Methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol, etc. It is.
 上記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。 A plurality of the above components may be mixed, or may be used by mixing with an organic solvent other than the above.
 リンス液中の含水率は、10質量%以下であることが好ましく、より好ましくは5質量%以下であり、さらに好ましくは3質量%以下である。リンス液中の含水率を10質量%以下にすることで、より良好な現像特性を得ることができる傾向にある。 The water content in the rinsing liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. When the water content in the rinsing liquid is 10% by mass or less, better development characteristics tend to be obtained.
 現像後に用いるリンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下であることが好ましく、0.1kPa以上、5kPa以下であることがより好ましく、0.12kPa以上、3kPa以下であることがさらに好ましい。リンス液の蒸気圧が0.05kPa以上、5kPa以下である場合、ウェハ面内の温度均一性がより向上し、さらにはリンス液の浸透に起因した膨潤がより抑制され、ウェハ面内の寸法均一性がより良化する傾向にある。 The vapor pressure of the rinsing liquid used after development is preferably 0.05 kPa or more and 5 kPa or less at 20 ° C., more preferably 0.1 kPa or more and 5 kPa or less, and 0.12 kPa or more and 3 kPa or less. Is more preferable. When the vapor pressure of the rinsing liquid is 0.05 kPa or more and 5 kPa or less, the temperature uniformity in the wafer surface is further improved, and further, the swelling due to the penetration of the rinsing liquid is further suppressed, and the dimension in the wafer surface is uniform. Tend to be better.
 リンス液には、界面活性剤を適当量添加して使用することもできる。 An appropriate amount of a surfactant can be added to the rinse solution.
 リンス工程においては、現像を行ったウェハを上記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、例えば、一定速度で回転している基板上にリンス液を塗出し続ける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等を適用することができ、中でも、回転塗布方法により洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。 In the rinsing step, the developed wafer is cleaned using a rinsing solution containing the organic solvent. The cleaning method is not particularly limited. For example, a method of continuously applying a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a bath filled with the rinsing liquid for a certain period of time. A method (dip method), a method of spraying a rinsing liquid onto the substrate surface (spray method), etc. can be applied. Among them, a cleaning process is performed by a spin coating method, and the substrate is rotated at a rotational speed of 2000 rpm to 4000 rpm after cleaning. It is preferable to remove the rinse liquid from the substrate.
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチング等公知の方法で行うことができる。 After forming the resist pattern, the pattern wiring board is obtained by etching. The etching can be performed by a known method such as dry etching using plasma gas and wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like.
 レジストパターンを形成した後、めっきを行うこともできる。めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっき等が挙げられる。 It is also possible to perform plating after forming the resist pattern. Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating.
 エッチング後の残存レジストパターンは有機溶剤で剥離することができる。有機溶剤としては、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、EL(乳酸エチル)等が挙げられる。剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。 The residual resist pattern after etching can be stripped with an organic solvent. Examples of the organic solvent include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), EL (ethyl lactate) and the like. Examples of the peeling method include a dipping method and a spray method. The wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
 本実施形態における配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。 The wiring board in this embodiment can also be formed by a method of depositing a metal in a vacuum after forming a resist pattern and then dissolving the resist pattern with a solution, that is, a lift-off method.
[下層膜用途向けリソグラフィー用膜形成組成物]
 本実施形態における下層膜用途向けリソグラフィー用膜形成組成物(以下、「下層膜形成材料」ともいう。)は、上記式(0)で表される化合物、上記式(0)で表される化合物をモノマーとして得られる樹脂、上記式(0-A)で表される化合物、及び上記式(0-A)で表される化合物をモノマーとして得られる樹脂、より具体的には上記式(1)表される化合物、上記式(1)表される化合物をモノマーとして得られる樹脂、式(2)で表される化合物及び式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる少なくとも1種の物質を含有する。本実施形態において上記物質は塗布性及び品質安定性の点から、固形成分の全質量中、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
[Film-forming composition for lithography for lower layer applications]
The film forming composition for lithography for use in the lower layer film in the present embodiment (hereinafter also referred to as “lower layer film forming material”) includes a compound represented by the above formula (0) and a compound represented by the above formula (0). , A resin obtained by using the compound represented by the above formula (0-A), a resin obtained by using the compound represented by the above formula (0-A) as a monomer, more specifically the above formula (1) From the group consisting of a compound represented by the above formula, a resin obtained by using the compound represented by formula (1) as a monomer, a compound represented by formula (2) and a resin obtained by using the compound represented by formula (2) as a monomer. Contains at least one selected material. In the present embodiment, the above substance is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, and more preferably 50 to 100%, based on the total mass of the solid component, from the viewpoints of coatability and quality stability. More preferably, it is 100% by weight, and particularly preferably 100% by weight.
 本実施形態の下層膜形成材料は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態の下層膜形成材料は、上記物質を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態の下層膜形成材料は、レジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態の下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。 The underlayer film forming material of this embodiment can be applied to a wet process and has excellent heat resistance and etching resistance. Furthermore, since the lower layer film forming material of the present embodiment uses the above-mentioned substances, it is possible to form a lower layer film that suppresses deterioration of the film during high-temperature baking and has excellent etching resistance against oxygen plasma etching and the like. . Furthermore, since the lower layer film forming material of this embodiment is also excellent in adhesion to the resist layer, an excellent resist pattern can be obtained. In addition, the lower layer film forming material of the present embodiment may include a known lower layer film forming material for lithography and the like as long as the effects of the present invention are not impaired.
[溶媒]
 本実施形態における下層膜形成材料は、溶媒を含有してもよい。下層膜形成材料に用いられる溶媒としては、上述した物質が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
[solvent]
The lower layer film forming material in the present embodiment may contain a solvent. As a solvent used for the lower layer film forming material, a known one can be appropriately used as long as it can dissolve at least the above-described substances.
 溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。 Specific examples of the solvent include, but are not limited to, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate and methyl acetate Ester solvents such as ethyl acetate, butyl acetate, isoamyl acetate, ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol, 1-ethoxy-2-propanol; toluene, xylene And aromatic hydrocarbons such as anisole. These solvents can be used alone or in combination of two or more.
 上記溶媒の中でも、安全性の観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。 Among the above solvents, cyclohexanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate and anisole are particularly preferable from the viewpoint of safety.
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、固形成分の全質量100質量部に対して、100~10000質量部であることが好ましく、200~5000質量部であることがより好ましく、200~1000質量部であることがさらに好ましい。 The content of the solvent is not particularly limited, but from the viewpoint of solubility and film formation, it is preferably 100 to 10000 parts by mass, and 200 to 5000 parts by mass with respect to 100 parts by mass of the total mass of the solid components. More preferred is 200 to 1000 parts by mass.
[架橋剤]
 本実施形態における下層膜形成材料は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。架橋剤としては特に限定されないが、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
[Crosslinking agent]
The lower layer film-forming material in the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing. Although it does not specifically limit as a crosslinking agent, For example, what was described in the international publication 2013/024779 can be used.
 本実施形態で使用可能な架橋剤の具体例としては、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられるが、これらに特に限定されない。これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。 Specific examples of the crosslinking agent that can be used in this embodiment include, for example, phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, acrylate compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanates. Examples thereof include, but are not limited to, compounds and azide compounds. These crosslinking agents can be used alone or in combination of two or more. Among these, a benzoxazine compound, an epoxy compound, or a cyanate compound is preferable, and a benzoxazine compound is more preferable from the viewpoint of improving etching resistance.
 上記フェノール化合物としては、公知のものが使用できる。例えば、フェノール類としては、フェノールの他、クレゾール類、キシレノール類等のアルキルフェノール類、ヒドロキノン等の多価フェノール類、ナフトール類、ナフタレンジオール類等の多環フェノール類、ビスフェノールA、ビスフェノールF等のビスフェノール類、あるいはフェノールノボラック、フェノールアラルキル樹脂等の多官能性フェノール化合物等が挙げられる。中でも、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が好ましい。 As the phenol compound, known compounds can be used. Examples of phenols include phenols, alkylphenols such as cresols and xylenols, polyhydric phenols such as hydroquinone, polycyclic phenols such as naphthols and naphthalenediols, and bisphenols such as bisphenol A and bisphenol F. Or polyfunctional phenol compounds such as phenol novolac and phenol aralkyl resin. Among these, aralkyl type phenol resins are preferable from the viewpoint of heat resistance and solubility.
 上記エポキシ化合物としては、公知のものが使用でき、1分子中にエポキシ基を2個以上有するもの中から選択される。例えば、ビスフェノールA、ビスフェノールF、3,3’,5,5’-テトラメチル-ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、2,2’
-ビフェノール、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェノール、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から合成されるフェノールアラルキル樹脂類のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から合成されるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は、単独でもよいし、2種以上を併用してもよい。好ましくは、耐熱性と溶解性という点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂である。
Known epoxy compounds can be used as the epoxy compound, and the epoxy compound is selected from those having two or more epoxy groups in one molecule. For example, bisphenol A, bisphenol F, 3,3 ′, 5,5′-tetramethyl-bisphenol F, bisphenol S, fluorene bisphenol, 2,2 ′
-Biphenol, epoxidized dihydric phenols such as 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxybiphenol, resorcin, naphthalenediols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether, Phenolic aralkyls synthesized from epoxidized products of phenols with 3 or more valences such as phenol novolak and o-cresol novolak, epoxidized products of co-condensation resin of dicyclopentadiene and phenol, phenols and paraxylylene dichloride Examples include epoxidized products of fats, epoxidized products of biphenyl aralkyl type phenol resins synthesized from phenols and bischloromethylbiphenyl, epoxidized products of naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride, etc. . These epoxy resins may be used alone or in combination of two or more. From the viewpoint of heat resistance and solubility, an epoxy resin that is solid at room temperature such as an epoxy resin obtained from phenol aralkyl resins or biphenyl aralkyl resins is preferable.
 上記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。これらのシアネート化合物は、単独でまたは2種以上を適宜組み合わせて使用してもよい。また、上記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。 The cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and known compounds can be used. In the present embodiment, as a preferred cyanate compound, one having a structure in which a hydroxyl group of a compound having two or more hydroxyl groups in one molecule is substituted with a cyanate group can be mentioned. Further, the cyanate compound preferably has an aromatic group, and a cyanate compound having a structure in which the cyanate group is directly connected to the aromatic group can be suitably used. Examples of such cyanate compounds include bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol E, phenol novolac resin, cresol novolac resin, dicyclopentadiene novolac resin, tetramethylbisphenol F, bisphenol A novolac resin, bromine. Bisphenol A, brominated phenol novolak resin, trifunctional phenol, tetrafunctional phenol, naphthalene type phenol, biphenyl type phenol, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, dicyclopentadiene aralkyl resin, alicyclic phenol, phosphorus The thing of the structure which substituted hydroxyl groups, such as containing phenol, by the cyanate group is mentioned. These cyanate compounds may be used alone or in combination of two or more. The cyanate compound described above may be in any form of a monomer, an oligomer, and a resin.
 上記アミノ化合物としては、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、O-トリジン、m-トリジン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4-アミノフェニル-4-アミノベンゾエート、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール等が例示される。さらに、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル等の芳香族アミン類、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジメチルージアミノジシクロヘキシルメタン、テトラメチルージアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環式アミン類、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類等が挙げられる。 Examples of the amino compound include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3 , 3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl Sulfide, 3,3′-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminopheno B) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) Phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-Aminophenoxy) phenyl] ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-chlorophenyl) fluorene, 9,9-bis (4-amino-3) -Fluorophenyl) fluorene, O-tolidine, m-tolidine, 4,4'-diaminobenzanilide, 2,2'-bis (trifluoromethyl)- , 4'-diamino biphenyl, 4-aminophenyl-4-amino benzoate, 2- (4-aminophenyl) -6-amino-benzoxazole and the like. Further, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl Sulfone, 3,3′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-Aminophenoxy) phenyl] propane, 4,4′-bis (4-aminopheno) A) Aromatic amines such as biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether Diaminocyclohexane, diaminodicyclohexylmethane, dimethyl-diaminodicyclohexylmethane, tetramethyl-diaminodicyclohexylmethane, diaminodicyclohexylpropane, diaminobicyclo [2.2.1] heptane, bis (aminomethyl) -bicyclo [2.2.1]. ] Alicyclic amines such as heptane, 3 (4), 8 (9) -bis (aminomethyl) tricyclo [5.2.1.02,6] decane, 1,3-bisaminomethylcyclohexane, isophoronediamine , Ethylenediamine, hexamethylenediamine Octamethylene diamine, decamethylene diamine, diethylene triamine, aliphatic amines such as triethylenetetramine, and the like.
 上記ベンゾオキサジン化合物としては、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジン、単官能性ジアミン類と二官能性フェノール類から得られるF-a型ベンゾオキサジン等が挙げられる。 Examples of the benzoxazine compound include Pd-type benzoxazine obtained from bifunctional diamines and monofunctional phenols, and Fa-type benzoxazine obtained from monofunctional diamines and bifunctional phenols. It is done.
 上記メラミン化合物の具体例としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。 Specific examples of the melamine compound include, for example, hexamethylol melamine, hexamethoxymethyl melamine, a compound obtained by methoxymethylating 1 to 6 methylol groups of hexamethylol melamine or a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl. Examples thereof include compounds in which 1 to 6 methylol groups of melamine and hexamethylolmelamine are acyloxymethylated, or a mixture thereof.
 上記グアナミン化合物の具体例としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。 Specific examples of the guanamine compound include, for example, tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine And compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated, or a mixture thereof.
 上記グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。 Specific examples of the glycoluril compound include, for example, tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, a compound in which 1 to 4 methylol groups of tetramethylolglycoluril are methoxymethylated, or a mixture thereof, Examples thereof include compounds in which 1 to 4 methylol groups of tetramethylol glycoluril are acyloxymethylated, or mixtures thereof.
 上記ウレア化合物の具体例としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。 Specific examples of the urea compound include, for example, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated or a mixture thereof, tetramethoxyethyl urea, and the like.
 また、本実施形態において、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。少なくとも1つのアリル基を有する架橋剤の具体例としては、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、ビス(3-アリル-4-シアナトシフェニル)スルホン、ビス(3-アリル-4-シアナトフェニル)スルフィド、ビス(3-アリル-4-シアナトフェニル)エ-テル等のアリルシアネート類、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、トリアリルイソシアヌレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールアリルエーテル等が挙げられるが、これら例示されたものに限定されるものではない。これらは単独でも、2種類以上の混合物であってもよい。これらの中でも、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい。 In this embodiment, a crosslinking agent having at least one allyl group may be used from the viewpoint of improving the crosslinkability. Specific examples of the crosslinking agent having at least one allyl group include 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2 -Bis (3-allyl-4-hydroxyphenyl) propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4-hydroxyphenyl) ) Allylphenols such as ether, 2,2-bis (3-allyl-4-cyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3 -Allyl-4-cyanatophenyl) propane, bis (3-allyl-4-cyanatosiphenyl) sulfone, bis (3-allyl-4-cyanatophenyl) sulfide, bis (3- Examples include allyl cyanates such as (ryl-4-cyanatophenyl) ether, diallyl phthalate, diallyl isophthalate, diallyl terephthalate, triallyl isocyanurate, trimethylolpropane diallyl ether, pentaerythritol allyl ether, and the like. It is not limited to what was done. These may be used alone or as a mixture of two or more. Among these, 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3-allyl-4-hydroxyphenyl) Allylphenols such as propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4-hydroxyphenyl) ether are preferred. .
 下層膜形成材料中の架橋剤の含有量は、特に限定されないが、固形成分の全質量の0.1~50質量%であることが好ましく、より好ましくは5~50質量%、さらに好ましくは10~40質量%である。架橋剤の含有量を上記範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。 The content of the crosslinking agent in the lower layer film-forming material is not particularly limited, but is preferably 0.1 to 50% by mass, more preferably 5 to 50% by mass, and still more preferably 10%, based on the total mass of the solid component. ~ 40% by weight. By making the content of the crosslinking agent in the above range, the occurrence of the mixing phenomenon with the resist layer tends to be suppressed, the antireflection effect is enhanced, and the film forming property after crosslinking tends to be enhanced. .
[架橋促進剤]
 本実施形態の下層膜形成材料には、必要に応じて架橋、硬化反応を促進させるための架橋促進剤を用いることができる。
[Crosslinking accelerator]
In the lower layer film forming material of the present embodiment, a crosslinking accelerator for accelerating the crosslinking and curing reaction can be used as necessary.
 上記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。 The crosslinking accelerator is not particularly limited as long as it promotes crosslinking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These crosslinking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
 上記架橋促進剤としては、以下に限定されないが、例えば、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾール、2,4,5-トリフェニルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。 Examples of the crosslinking accelerator include, but are not limited to, for example, 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylamino). Tertiary amines such as methyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, 2,4,5- Imidazoles such as triphenylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium tetraphenylborate, teto Tetraphenyl such as phenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate, etc., 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmorpholine / tetraphenylborate, etc. Examples thereof include boron salts.
 架橋促進剤の含有量としては、好ましくは固形成分の全質量の0.1~10質量%であり、より好ましくは、制御のし易さ及び経済性の観点から0.1~5質量%であり、さらに好ましくは0.1~3質量%である The content of the crosslinking accelerator is preferably 0.1 to 10% by mass of the total mass of the solid component, and more preferably 0.1 to 5% by mass from the viewpoint of ease of control and economy. More preferably 0.1 to 3% by mass
[ラジカル重合開始剤]
 本実施形態の下層膜形成材料には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。ラジカル重合開始剤としては、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種とすることができる。
[Radical polymerization initiator]
In the lower layer film forming material of the present embodiment, a radical polymerization initiator can be blended as necessary. The radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization with light or a thermal polymerization initiator that initiates radical polymerization with heat. The radical polymerization initiator can be, for example, at least one selected from the group consisting of ketone photopolymerization initiators, organic peroxide polymerization initiators, and azo polymerization initiators.
 このようなラジカル重合開始剤としては、特に制限されず、従来用いられているものを適宜採用することができる。例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のケトン系光重合開始剤、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等の有機過酸化物系重合開始剤が挙げられる。 Such a radical polymerization initiator is not particularly limited, and those conventionally used can be appropriately employed. For example, 1-hydroxycyclohexyl phenyl ketone, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2 -Methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methylpropan-1-one, 2 , 4,6-Trimethylbenzoyl-diphenyl-phosphine oxide, ketone photopolymerization initiators such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide Oxide, methyl acetoacetate Oxide, acetyl acetate peroxide, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -cyclohexane, 1,1-bis ( t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, 1 , 1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t-butylperoxy) butane, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, p -Menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutylhydride Peroxide, cumene hydroperoxide, t-hexyl hydroperoxide, t-butyl hydroperoxide, α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2 , 5-bis (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, Isobutyryl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic acid peroxide, m-toluoylbenzoyl peroxide, benzoyl peroxide, di-n -Propylpa Oxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxyethyl peroxydicarbonate, di-2-ethoxyhexyl peroxydicarbonate, di-3- Methoxybutyl peroxydicarbonate, di-s-butylperoxydicarbonate, di (3-methyl-3-methoxybutyl) peroxydicarbonate, α, α'-bis (neodecanoylperoxy) diisopropylbenzene, kumi Luperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-Butylperoxyneodeca Ate, t-hexyl peroxypivalate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexanoate, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2- Ethyl hexanoate, t-hexyl peroxyisopropyl monocarbonate, t-butyl peroxyisobutyrate, t-butyl peroxymalate, t-butyl peroxy-3,5,5-trimethylhexanoate, t -Butyl peroxylaurate, t-butyl peroxyisopropyl monocarbonate, t- Butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxyacetate, t-butyl peroxy-m-toluyl benzoate, t-butyl peroxybenzoate, bis (t-butylperoxy) isophthalate, 2,5- Dimethyl-2,5-bis (m-toluylperoxy) hexane, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxyallyl monocarbonate, Organic peroxide polymerization initiators such as t-butyltrimethylsilyl peroxide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 2,3-dimethyl-2,3-diphenylbutane Is mentioned.
 また、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2´-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等のアゾ系重合開始剤も挙げられる。本実施形態におけるラジカル重合開始剤としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylpropionamidine) dihydrochloride, 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] Dihydride chloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropionamidine] dihydrochloride 2,2′-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2′-azobis [2-methyl-N- (2-propenyl) propionamidine] dihydrochloride, 2, , 2'-azobis [N- (2-hydroxyethyl) -2-methylpropionamidine] dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (4,5,6,7-tetrahydro-1H-1,3- Diazepin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane ] Dihydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- [1- (2-Hydroxyethyl) -2-imidazolin-2-yl] propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [2- Methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], 2,2′-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propion Amido], 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis (2-methylpropionamide), 2,2 -Azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane), dimethyl-2,2-azobis (2-methylpropionate), 4,4'-azobis (4 Examples thereof also include azo polymerization initiators such as -cyanopentanoic acid) and 2,2'-azobis [2- (hydroxymethyl) propionitrile]. As the radical polymerization initiator in the present embodiment, one of these may be used alone, or two or more may be used in combination, or other known polymerization initiators may be used in further combination.
 上記ラジカル重合開始剤の含有量としては、化学量論的に必要な量であればよいが、固形成分の全質量の0.05~25質量%であることが好ましく、0.1~10質量%であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量%以上である場合には、硬化が不十分となることを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量%以下である場合には、下層膜形成材料の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。 The content of the radical polymerization initiator may be a stoichiometrically required amount, but is preferably 0.05 to 25% by mass, and preferably 0.1 to 10% by mass based on the total mass of the solid component. % Is more preferable. When the content of the radical polymerization initiator is 0.05% by mass or more, there is a tendency that curing can be prevented from being insufficient. On the other hand, the content of the radical polymerization initiator is 25% by mass or less. In such a case, the long-term storage stability of the lower layer film-forming material at room temperature tends to be prevented from being impaired.
[酸発生剤]
 本実施形態における下層膜形成材料は、熱による架橋反応をさらに促進させる等の観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するもの等が知られているが、いずれも使用することができる。酸発生剤としては、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
[Acid generator]
The lower layer film-forming material in the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting the crosslinking reaction by heat. As the acid generator, those that generate an acid by thermal decomposition, those that generate an acid by light irradiation, and the like are known, and any of them can be used. As an acid generator, what was described in the international publication 2013/024779 can be used, for example.
 下層膜形成材料中の酸発生剤の含有量は、特に限定されないが、固形成分の全質量の0.1~50質量%であることが好ましく、より好ましくは0.5~40質量%である。酸発生剤の含有量を上記範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。 The content of the acid generator in the lower layer film-forming material is not particularly limited, but is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass based on the total mass of the solid component. . By setting the content of the acid generator in the above range, the acid generation amount tends to increase and the crosslinking reaction tends to be enhanced, and the occurrence of the mixing phenomenon with the resist layer tends to be suppressed.
[塩基性化合物]
 本実施形態における下層膜形成材料は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
[Basic compounds]
The lower layer film-forming material in the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
 塩基性化合物は、酸発生剤から微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものが挙げられる。 The basic compound serves as a quencher for the acid to prevent a slight amount of acid generated from the acid generator from causing the crosslinking reaction to proceed. Such a basic compound is not particularly limited, and examples thereof include those described in International Publication No. 2013/024779.
 下層膜形成材料中の塩基性化合物の含有量は、特に限定されないが、固形成分の全質量の0.001~2質量%であることが好ましく、より好ましくは0.01~1質量%である。塩基性化合物の含有量を上記範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。 The content of the basic compound in the lower layer film-forming material is not particularly limited, but is preferably 0.001 to 2% by mass, more preferably 0.01 to 1% by mass, based on the total mass of the solid component. . By making content of a basic compound into the said range, it exists in the tendency for storage stability to be improved, without impairing a crosslinking reaction too much.
[その他の添加剤]
 また、本実施形態における下層膜形成材料は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂;ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態における下層膜形成材料は、公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[Other additives]
Moreover, the lower layer film forming material in the present embodiment may contain other resins and / or compounds for the purpose of imparting curability by heat or light and controlling the absorbance. Such other resins and / or compounds include: naphthol resins, xylene resins, naphthol modified resins, phenol modified resins of naphthalene resins; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, dimethacrylate, trimethacrylate, tetra Resins containing no heteroaromatic ring such as methacrylate, vinylnaphthalene, naphthalene rings such as polyacenaphthylene, biphenyl rings such as phenanthrenequinone and fluorene, heterocycles having heteroatoms such as thiophene, indene, etc .; rosin resins; Examples thereof include resins or compounds containing an alicyclic structure such as cyclodextrin, adamantane (poly) ol, tricyclodecane (poly) ol, and derivatives thereof, but are not particularly limited thereto. Furthermore, the lower layer film-forming material in the present embodiment may contain a known additive. Known additives include, but are not limited to, for example, heat and / or photocuring catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, and pigments. , Thickeners, lubricants, antifoaming agents, leveling agents, ultraviolet absorbers, surfactants, colorants, nonionic surfactants, and the like.
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
 本実施形態におけるリソグラフィー用下層膜は、上述した下層膜形成材料から形成される。
[Liquid lower layer film and multilayer resist pattern forming method]
The lower layer film for lithography in the present embodiment is formed from the lower layer film forming material described above.
 また、本実施形態のレジストパターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、上記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(A-1)と、上記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、上記(A-2)工程の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。 Further, in the resist pattern forming method of the present embodiment, a lower layer film is formed on a substrate using the composition, and at least one photoresist layer is formed on the lower layer film. And a step of performing development by irradiating a predetermined region with radiation. More specifically, a step (A-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and a step of forming at least one photoresist layer on the lower layer film ( A-2) and a step (A-3) of performing development by irradiating a predetermined region of the photoresist layer with radiation after the step (A-2).
 さらに、本実施形態の回路パターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、上記下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、上記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
 上記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
 上記レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程を含む。
Furthermore, in the circuit pattern forming method of the present embodiment, the lower layer film is formed on the substrate using the composition, the intermediate layer film is formed on the lower layer film using the resist intermediate layer film material, and the intermediate layer is formed. Forming at least one photoresist layer on the film;
Irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern;
The intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Forming a pattern.
 より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(B-1)と、上記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、上記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、上記工程(B-3)の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、上記工程(B-4)の後、上記レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。 More specifically, a step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and a resist intermediate layer material containing silicon atoms on the lower layer film are used. After the step (B-2) of forming the intermediate layer film, the step (B-3) of forming at least one photoresist layer on the intermediate layer film, and the step (B-3), A step (B-4) of irradiating a predetermined region of the photoresist layer and developing to form a resist pattern, and after the step (B-4), the intermediate layer film using the resist pattern as a mask Etching the lower layer film using the obtained intermediate layer film pattern as an etching mask, and etching the substrate using the obtained lower layer film pattern as an etching mask to form a pattern on the substrate (B-5) It has a.
 本実施形態におけるリソグラフィー用下層膜は、本実施形態の下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態の下層膜材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法等で基板上に付与した後、有機溶媒を揮発させるなどして除去した後、公知の方法で架橋、硬化させて、本実施形態のリソグラフィー用下層膜を形成することができる。架橋方法としては、熱硬化、光硬化等の手法が挙げられる。 The formation method of the lower layer film for lithography in the present embodiment is not particularly limited as long as it is formed from the lower layer film forming material of the present embodiment, and a known method can be applied. For example, after applying the lower layer film material of the present embodiment on a substrate by a known coating method such as spin coating or screen printing or a printing method, and removing the organic solvent by volatilizing the organic solvent, the lower layer film material is crosslinked by a known method. And cured to form the lower layer film for lithography of the present embodiment. Examples of the crosslinking method include methods such as thermosetting and photocuring.
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークを施すことが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20000nm程度であることが好ましく、より好ましくは50~15000nmである。 During the formation of the lower layer film, it is preferable to perform baking in order to suppress the occurrence of the mixing phenomenon with the upper layer resist and promote the crosslinking reaction. In this case, the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C. Also, the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds. The thickness of the lower layer film can be appropriately selected according to the required performance, and is not particularly limited, but is usually preferably about 30 to 20000 nm, and more preferably 50 to 15000 nm.
 下層膜を作製した後、2層プロセスの場合は、その上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。 After the formation of the lower layer film, in the case of a two-layer process, a silicon-containing resist layer thereon, or a single-layer resist made of normal hydrocarbon, and in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon. It is preferable to prepare a single-layer resist layer that does not contain silicon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
 基板上に下層膜を作製した後、2層プロセスの場合は、その下層膜上に珪素含有レジスト層或いは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合は、その下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。 After the lower layer film is formed on the substrate, in the case of the two-layer process, a silicon-containing resist layer or a single layer resist made of ordinary hydrocarbon can be formed on the lower layer film. In the case of a three-layer process, a silicon-containing intermediate layer can be formed on the lower layer film, and a single-layer resist layer not containing silicon can be formed on the silicon-containing intermediate layer. In these cases, the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。 As a silicon-containing resist material for a two-layer process, from the viewpoint of oxygen gas etching resistance, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used. Here, as the silicon atom-containing polymer, a known polymer used in this type of resist material can be used.
 3層プロセス用の珪素含有中間層としては、ポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果を有する中間層としては、以下に限定されないが、193nm露光用としては、フェニル基又は珪素-珪素結合を有する吸光基が導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。 As the silicon-containing intermediate layer for the three-layer process, a polysilsesquioxane-based intermediate layer is preferably used. By providing the intermediate layer with an effect as an antireflection film, reflection tends to be effectively suppressed. For example, in a 193 nm exposure process, if a material containing many aromatic groups and high substrate etching resistance is used as the lower layer film, the k value increases and the substrate reflection tends to increase, but the reflection is suppressed in the intermediate layer. Thus, the substrate reflection can be reduced to 0.5% or less. The intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a polysilsesquide crosslinked with an acid or heat in which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Oxane is preferably used.
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した、反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによって中間層を形成する方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型、ネガ型のどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。 In addition, an intermediate layer formed by a chemical vapor deposition (CVD) method can also be used. Although the intermediate layer produced by the CVD method and having a high effect as an antireflection film is not limited to the following, for example, a SiON film is known. In general, it is simpler and more cost-effective to form the intermediate layer by a wet process such as spin coating or screen printing than by CVD. The upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
 さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。 Furthermore, the lower layer film in this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film has excellent etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法等で塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。 In the case of forming a resist layer from the photoresist material, a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film. Further, after the resist material is applied by spin coating or the like, prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds. Then, according to a conventional method, a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development. The thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。 Further, the exposure light may be appropriately selected and used according to the photoresist material to be used. In general, high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
 上述した方法により形成されるレジストパターンは、下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。 The resist pattern formed by the above-described method is one in which pattern collapse is suppressed by the lower layer film. Therefore, by using the lower layer film in the present embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Ar等の不活性ガスや、CO、CO、NH、SO、N、NO、Hガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO、Hガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。 Next, etching is performed using the obtained resist pattern as a mask. Gas etching is preferably used as the etching of the lower layer film in the two-layer process. As gas etching, etching using oxygen gas is suitable. In addition to oxygen gas, an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 , or H 2 gas may be added. Further, gas etching can be performed using only CO, CO 2 , NH 3 , N 2 , NO 2 , and H 2 gas without using oxygen gas. In particular, the latter gas is preferably used for side wall protection for preventing undercut of the pattern side wall.
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。 On the other hand, gas etching is also preferably used for etching the intermediate layer in the three-layer process. As the gas etching, the same one as described in the above two-layer process can be applied. In particular, the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask. Thereafter, as described above, the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。 Here, when an inorganic hard mask intermediate layer film is formed as an intermediate layer, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film (SiON film) is formed by a CVD method, an ALD method, or the like. The method for forming the nitride film is not limited to the following, but for example, a method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7) can be used. A photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
 中間層としては、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(特許文献8)、特開2007-226204号(特許文献9)に記載されたものを用いることができる。 As the intermediate layer, a polysilsesquioxane-based intermediate layer is also preferably used. By providing the resist intermediate layer film with an effect as an antireflection film, reflection tends to be effectively suppressed. Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are described, for example, in JP-A-2007-226170 (Patent Document 8) and JP-A-2007-226204 (Patent Document 9). Can be used.
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。 Etching of the next substrate can also be performed by a conventional method. For example, if the substrate is SiO2 or SiN, etching mainly using a chlorofluorocarbon gas, and if p-Si, Al, or W is chlorine or bromine gas, Etching mainly composed of can be performed. When the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing. On the other hand, when the substrate is etched with a chlorine-based or bromine-based gas, the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
 本実施形態における下層膜は、基板のエッチング耐性に優れるという特徴を有する。なお、基板としては、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等、種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10000nm程度であることが好ましく、より好ましくは75~5000nmである。 The lower layer film in the present embodiment has a feature that the etching resistance of the substrate is excellent. As the substrate, known substrates can be appropriately selected and used, and are not particularly limited. Examples thereof include Si, α-Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. It is done. The substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various Low-k films and stoppers thereof such as Si, SiO 2 , SiON, SiN, p-Si, α-Si, W, W-Si, Al, Cu, and Al—Si. A film etc. are mentioned, The thing of a different material from a base material (support body) is used normally. The thickness of the substrate to be processed or the film to be processed is not particularly limited, but it is usually preferably about 50 to 10000 nm, more preferably 75 to 5000 nm.
[レジスト永久膜]
 なお、上記組成物を用いてレジスト永久膜を作製することもできる、上記組成物を塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、半導体デバイス関係では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサーなどが挙げられる。特に、上記組成物からなる永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
[Resist permanent film]
In addition, the resist permanent film which can also produce a resist permanent film | membrane using the said composition is formed in the final product after forming a resist pattern as needed. It is suitable as. Specific examples of the permanent film include a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an adhesive layer between an integrated circuit element and a circuit board, and a thin film display protective film for a thin display. Examples include a liquid crystal color filter protective film, a black matrix, and a spacer. In particular, a permanent film made of the above composition has excellent heat resistance and moisture resistance, and also has a very excellent advantage of less contamination due to sublimation components. In particular, a display material is a material having high sensitivity, high heat resistance, and moisture absorption reliability with little image quality deterioration due to important contamination.
 上記組成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤などの各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。 When the above composition is used for resist permanent film applications, in addition to the curing agent, other additives such as other resins, surfactants and dyes, fillers, crosslinking agents, and dissolution accelerators are added as necessary. By dissolving in an organic solvent, a resist permanent film composition can be obtained.
 上記リソグラフィー用膜形成組成物やレジスト永久膜用組成物は上記各成分を配合し、攪拌機等を用いて混合することにより調整できる。また、上記レジスト下層膜用組成物やレジスト永久膜用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散あるいは混合して調整することが出来る。 The above-mentioned film-forming composition for lithography and the composition for permanent resist film can be prepared by blending the above components and mixing them using a stirrer or the like. Further, when the resist underlayer film composition or resist permanent film composition contains a filler or a pigment, it is adjusted by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three-roll mill. I can do it.
 以下、本実施形態を合成例、合成実施例、実施例及び比較例によりさらに詳細に説明するが、本実施形態は、これらの例によってなんら限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to synthesis examples, synthesis examples, examples, and comparative examples, but the present embodiment is not limited to these examples.
(炭素濃度及び酸素濃度)
 下記装置を用いて有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
 装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
(Carbon concentration and oxygen concentration)
Carbon concentration and oxygen concentration (mass%) were measured by organic elemental analysis using the following apparatus.
Apparatus: CHN coder MT-6 (manufactured by Yanaco Analytical Co., Ltd.)
(分子量)
 化合物の分子量は、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて、LC-MS分析により測定した。
 また、以下の条件でゲル浸透クロマトグラフィー(GPC)分析を行い、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
(Molecular weight)
The molecular weight of the compound was measured by LC-MS analysis using Water's Acquity UPLC / MALDI-Synapt HDMS.
Moreover, the gel permeation chromatography (GPC) analysis was performed on the following conditions, and the polystyrene conversion weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw / Mn) were calculated | required.
Apparatus: Shodex GPC-101 (manufactured by Showa Denko KK)
Column: KF-80M x 3
Eluent: THF 1mL / min
Temperature: 40 ° C
(溶解性)
 23℃にて、化合物をプロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、乳酸エチル(EL)、メチルアミルケトン(MAK)又はテトラメチルウレア(TMU)に対して3重量%又は10質量%溶液になるよう溶解させ、1週間後の結果を以下の基準で評価した。
 評価S:10質量%溶液でいずれかの溶媒で析出物がないことを目視により確認した
 評価A:3重量%溶液でいずれかの溶媒で析出物がないことを目視により確認した
 評価C:全ての溶媒で析出物があることを目視により確認した
(Solubility)
At 23 ° C., 3% by weight or 10% by weight solution of the compound with respect to propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), ethyl lactate (EL), methyl amyl ketone (MAK) or tetramethyl urea (TMU) The results after 1 week were evaluated according to the following criteria.
Evaluation S: Visually confirmed that there was no precipitate with any solvent in a 10% by mass solution Evaluation A: Visually confirmed that there was no precipitate with any solvent in a 3% by weight solution Evaluation C: All The presence of precipitates in the solvent was confirmed visually.
[化合物の構造]
 化合物の構造は、Bruker社製「Advance600II spectrometer」を用いて、以下の条件で、1H-NMR測定を行い、確認した。
  周波数:400MHz
  溶媒:d6-DMSO
  内部標準:TMS
  測定温度:23℃
[Structure of compound]
The structure of the compound was confirmed by 1H-NMR measurement under the following conditions using “Advanced600II spectrometer” manufactured by Bruker.
Frequency: 400MHz
Solvent: d6-DMSO
Internal standard: TMS
Measurement temperature: 23 ° C
<合成例1> BiN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、2-ナフトール(シグマ-アルドリッチ社製試薬)10g(69.0mmol)を120℃で溶融後、硫酸0.27gを仕込み、4-アセチルビフェニル(シグマ-アルドリッチ社製試薬)2.7g(13.8mmol)を加えて、内容物を120℃で6時間撹拌して反応を行って反応液を得た。次に反応液にN-メチル-2-ピロリドン(関東化学株式会社製)100mL、純水50mLを加えたあと、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。
 得られた溶液を、カラムクロマトによる分離後、下記式(BiN-1)で表される目的化合物(BiN-1)が1.0g得られた。
 得られた化合物(BiN-1)について、上述の方法により分子量を測定した結果、466であった。
 得られた化合物(BiN-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiN-1)の化学構造を有することを確認した。
 δ(ppm)9.69(2H,O-H)、7.01~7.67(21H,Ph-H)、2.28(3H,C-H)
<Synthesis Example 1> Synthesis of BiN-1 In a container with an internal volume of 300 mL equipped with a stirrer, a condenser tube and a burette, 10 g (69.0 mmol) of 2-naphthol (reagent manufactured by Sigma-Aldrich) was melted at 120 ° C. 0.27 g of sulfuric acid was added, 2.7 g (13.8 mmol) of 4-acetylbiphenyl (Sigma-Aldrich reagent) was added, and the contents were stirred at 120 ° C. for 6 hours to carry out the reaction to obtain a reaction solution. It was. Next, 100 mL of N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Inc.) and 50 mL of pure water were added to the reaction solution, followed by extraction with ethyl acetate. Next, pure water was added to separate the solution until neutrality, followed by concentration to obtain a solution.
After separation of the resulting solution by column chromatography, 1.0 g of the target compound (BiN-1) represented by the following formula (BiN-1) was obtained.
The obtained compound (BiN-1) was measured to have a molecular weight of 466 by the method described above.
The obtained compound (BiN-1) was subjected to NMR measurement under the above-described measurement conditions. As a result, the following peaks were found and confirmed to have a chemical structure of the following formula (BiN-1).
δ (ppm) 9.69 (2H, OH), 7.01 to 7.67 (21H, Ph—H), 2.28 (3H, C—H)
Figure JPOXMLDOC01-appb-C000238
(BiN-1)
Figure JPOXMLDOC01-appb-C000238
(BiN-1)
<合成例2> BiP-1の合成
 2-ナフトールの代わりに、2,2’-ビフェノールを使用する以外は合成例1と同様に反応させ、下記式(BiP-1)で表される目的化合物が0.1g得られた。
 得られた化合物(BiP-1)について、上述の方法により分子量を測定した結果、466であった。
 得られた化合物(BiP-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiP-1)の化学構造を有することを確認した。
 δ(ppm)9.40(4H,O-H)、6.80~7.80(23H,Ph-H)、2.25(3H,C-H)
<Synthesis Example 2> Synthesis of BiP-1 The target compound represented by the following formula (BiP-1) was reacted in the same manner as in Synthesis Example 1 except that 2,2′-biphenol was used instead of 2-naphthol. 0.1 g was obtained.
The obtained compound (BiP-1) was measured to have a molecular weight of 466 by the method described above.
The obtained compound (BiP-1) was subjected to NMR measurement under the above-described measurement conditions. As a result, the following peaks were found and confirmed to have a chemical structure of the following formula (BiP-1).
δ (ppm) 9.40 (4H, OH), 6.80-7.80 (23H, Ph-H), 2.25 (3H, C—H)
Figure JPOXMLDOC01-appb-C000239
(BiP-1)
Figure JPOXMLDOC01-appb-C000239
(BiP-1)
<合成実施例1-1> Al-BiN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に上記式(BiN-1)で表される化合物9.8g(21mmol)と炭酸カリウム6.2g(45mmol)とを100mLのアセトンに加えた液を仕込み、さらに臭化アリル5.4(45mmol)g及び10-クラウン-6を2.0g加えて、得られた反応液を還流下で7時間撹拌して反応を行なった。次に反応液から固形分をろ過で除去し、氷浴で冷却し、反応液を濃縮し固形物を析出させた。析出した固形物をろ過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式(Al-BiN-1)で表される目的化合物3.8gを得た。
 得られた化合物(Al-BiN-1)について、上述の方法により分子量を測定した結果、546であった。
 得られた化合物の熱分解温度は370℃、ガラス転移温度は90℃であり、高耐熱性を有することが確認できた。
 得られた化合物(Al-BiN-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(Al-BiN-1)の化学構造を有することを確認した。
 δ(ppm)6.98~7.60(25H,Ph-H)、5.90(2H,-CH=CH2)、4.90(4H,-CH=CH2)、3.80(4H,-CH2-)、2.25(3H,C-H)
<Synthesis Example 1-1> 9.8 g (21 mmol) of the compound represented by the above formula (BiN-1) and carbonic acid were placed in a 100-ml container equipped with an Al-BiN-1 synthesis stirrer, a condenser tube and a burette. A solution prepared by adding 6.2 g (45 mmol) of potassium to 100 mL of acetone was added, and 5.4 (45 mmol) g of allyl bromide and 2.0 g of 10-crown-6 were added, and the resulting reaction solution was refluxed. The reaction was carried out with stirring for 7 hours. Next, the solid content was removed from the reaction solution by filtration, cooled in an ice bath, and the reaction solution was concentrated to precipitate a solid. The precipitated solid was filtered and dried, followed by separation and purification by column chromatography to obtain 3.8 g of the target compound represented by the following formula (Al-BiN-1).
The obtained compound (Al—BiN-1) was measured to have a molecular weight of 546 by the method described above.
The obtained compound had a thermal decomposition temperature of 370 ° C. and a glass transition temperature of 90 ° C., and was confirmed to have high heat resistance.
The obtained compound (Al-BiN-1) was subjected to NMR measurement under the above-described measurement conditions. As a result, the following peak was found, and the compound (Al-BiN-1) had the chemical structure represented by the following formula (Al-BiN-1). confirmed.
δ (ppm) 6.98 to 7.60 (25H, Ph—H), 5.90 (2H, —CH═CH2), 4.90 (4H, —CH═CH2), 3.80 (4H, − CH2-), 2.25 (3H, C—H)
Figure JPOXMLDOC01-appb-C000240
(Al-BiN-1)
Figure JPOXMLDOC01-appb-C000240
(Al-BiN-1)
<合成実施例2-1> Al-BiP-1の合成
 BiN-1の代わりに、BiP-1を使用する以外は合成実施例1-1と同様に反応させ、下記式(Al-BiP-1)で表される目的化合物が2.9g得られた。
 得られた化合物(Al-BiP-1)について、上述の方法により分子量を測定した結果、710であった。
 得られた化合物の熱分解温度は380℃、ガラス転移温度は180℃であり、高耐熱性を有することが確認できた。
 得られた化合物(Al-BiP-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(Al-BiP-1)の化学構造を有することを確認した。
 δ(ppm)9.4(4H,O-H)、6.8~7.8(23H,Ph-H)、5.90(4H,-CH=CH)、4.90(8H,-CH=CH)、3.80(8H,-CH-)、2.25(3H,C-H)
<Synthesis Example 2-1> Synthesis of Al-BiP-1 The reaction was carried out in the same manner as in Synthesis Example 1-1 except that BiP-1 was used instead of BiN-1, and the following formula (Al-BiP-1 2.9 g of the target compound represented by
The obtained compound (Al—BiP-1) was measured to have a molecular weight of 710 by the method described above.
The resulting compound had a thermal decomposition temperature of 380 ° C. and a glass transition temperature of 180 ° C., confirming that it had high heat resistance.
The obtained compound (Al-BiP-1) was subjected to NMR measurement under the measurement conditions described above. As a result, the following peak was found, and the compound (Al-BiP-1) had the chemical structure represented by the following formula (Al-BiP-1). confirmed.
δ (ppm) 9.4 (4H, OH), 6.8 to 7.8 (23H, Ph—H), 5.90 (4H, —CH═CH 2 ), 4.90 (8H, − CH = CH 2 ), 3.80 (8H, —CH 2 —), 2.25 (3H, C—H)
Figure JPOXMLDOC01-appb-C000241
(Al-BiP-1)
Figure JPOXMLDOC01-appb-C000241
(Al-BiP-1)
<合成実施例1-2> AlOH-BiN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式(Al-BiN-1)で表される化合物6.1g(11mmol)を6.0mLに加え、反応液を130℃で6時間撹拌して、その後160℃に昇温して24時間反応を行なった。次に反応液に30mLの水を加え、結晶を析出させ、ろ過を行なって分離した。得られた固形物をろ過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式で示される目的化合物を0.72g得た。400MHz-H-NMRにより下記式の化学構造を有することを確認した。
 得られた化合物(AlOH-BiN-1)について、上述の方法により分子量を測定した結果、546であった。
 得られた化合物の熱分解温度は370℃、ガラス転移温度は100℃であり、高耐熱性を有することが確認できた。
 得られた化合物(AlOH-BiN-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(AlOH-BiN-1)の化学構造を有することを確認した。
 δ(ppm)9.78(2H,O-H)、7.01~7.67(19H,Ph-H)、5.90(2H,-CH=CH)、4.90(4H,-CH=CH)、3.80(4H,-CH-)、2.28(3H,C-H)
<Synthesis Example 1-2> Synthesis of AlOH-BiN-1 6.1 g (11 mmol) of the compound represented by the above formula (Al-BiN-1) in a 100 mL internal vessel equipped with a stirrer, a condenser tube and a burette. Was added to 6.0 mL, and the reaction solution was stirred at 130 ° C. for 6 hours, then heated to 160 ° C. and reacted for 24 hours. Next, 30 mL of water was added to the reaction solution to precipitate crystals, which were separated by filtration. The obtained solid was filtered and dried, followed by separation and purification by column chromatography to obtain 0.72 g of the target compound represented by the following formula. It was confirmed by 400 MHz- 1 H-NMR that it had a chemical structure of the following formula.
The obtained compound (AlOH-BiN-1) was measured to have a molecular weight of 546 by the method described above.
The resulting compound had a thermal decomposition temperature of 370 ° C. and a glass transition temperature of 100 ° C., confirming that it had high heat resistance.
The obtained compound (AlOH-BiN-1) was subjected to NMR measurement under the above-described measurement conditions. As a result, the following peak was found, and it had a chemical structure of the following formula (AlOH-BiN-1). confirmed.
δ (ppm) 9.78 (2H, OH), 7.01 to 7.67 (19H, Ph—H), 5.90 (2H, —CH═CH 2 ), 4.90 (4H, − CH = CH 2 ), 3.80 (4H, —CH 2 —), 2.28 (3H, C—H)
Figure JPOXMLDOC01-appb-C000242
(AlOH-BiN-1)
Figure JPOXMLDOC01-appb-C000242
(AlOH-BiN-1)
<合成実施例2-2> AlOH-BiP-1の合成
 Al-BiN-1の代わりに、Al-BiP-1を使用する以外は合成実施例1-2と同様に反応させ、下記式(AlOH-BiP-1)で表される目的化合物が0.9g得られた。
 得られた化合物(AlOH-BiP-1)について、上述の方法により分子量を測定した結果、710であった。
 得られた化合物の熱分解温度は385℃、ガラス転移温度は190℃であり、高耐熱性を有することが確認できた。
 得られた化合物(AlOH-BiP-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(AlOH-BiP-1)の化学構造を有することを確認した。
 δ(ppm)δ(ppm)9.4(4H,O-H)、6.8~7.8(19H,Ph-H)、5.9(4H,-CH=CH)、4.9(8H,-CH=CH)、3.8(8H,-CH-)、2.25(3H,C-H)
<Synthesis Example 2-2> Synthesis of AlOH-BiP-1 The reaction was performed in the same manner as in Synthesis Example 1-2 except that Al-BiP-1 was used instead of Al-BiN-1, and the following formula (AlOH 0.9 g of the target compound represented by -BiP-1) was obtained.
The obtained compound (AlOH-BiP-1) was measured to have a molecular weight of 710 by the method described above.
The resulting compound had a thermal decomposition temperature of 385 ° C. and a glass transition temperature of 190 ° C., confirming that it had high heat resistance.
The obtained compound (AlOH-BiP-1) was subjected to NMR measurement under the above-mentioned measurement conditions. As a result, the following peak was found, and it had a chemical structure of the following formula (AlOH-BiP-1). confirmed.
δ (ppm) δ (ppm) 9.4 (4H, O—H), 6.8 to 7.8 (19H, Ph—H), 5.9 (4H, —CH═CH 2 ), 4.9 (8H, —CH═CH 2 ), 3.8 (8H, —CH 2 —), 2.25 (3H, C—H)
Figure JPOXMLDOC01-appb-C000243
(AlOH-BiP-1)
Figure JPOXMLDOC01-appb-C000243
(AlOH-BiP-1)
(合成例3~13)
 合成例1の原料である2-ナフトール及び4-アセチルビフェニルを表1のように変更し、その他は合成例1と同様に行い、各目的物を得た。
 それぞれ、1H-NMRで同定した(表2)。
(Synthesis Examples 3 to 13)
2-naphthol and 4-acetylbiphenyl which are the raw materials of Synthesis Example 1 were changed as shown in Table 1, and the others were carried out in the same manner as in Synthesis Example 1 to obtain the respective desired products.
Each was identified by 1H-NMR (Table 2).
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000245
Figure JPOXMLDOC01-appb-T000245
Figure JPOXMLDOC01-appb-C000246
(BiN-2)
Figure JPOXMLDOC01-appb-C000246
(BiN-2)
Figure JPOXMLDOC01-appb-C000247
(BiN-3)
Figure JPOXMLDOC01-appb-C000247
(BiN-3)
Figure JPOXMLDOC01-appb-C000248
(BiN-4)
Figure JPOXMLDOC01-appb-C000248
(BiN-4)
Figure JPOXMLDOC01-appb-C000249
(BiP-2)
Figure JPOXMLDOC01-appb-C000249
(BiP-2)
Figure JPOXMLDOC01-appb-C000250
(BiP-3)
Figure JPOXMLDOC01-appb-C000250
(BiP-3)
Figure JPOXMLDOC01-appb-C000251
(BiP-4)
Figure JPOXMLDOC01-appb-C000251
(BiP-4)
Figure JPOXMLDOC01-appb-C000252
(P-1)
Figure JPOXMLDOC01-appb-C000252
(P-1)
Figure JPOXMLDOC01-appb-C000253
(P-2)
Figure JPOXMLDOC01-appb-C000253
(P-2)
Figure JPOXMLDOC01-appb-C000254
(XBiN-1)
Figure JPOXMLDOC01-appb-C000254
(XBiN-1)
Figure JPOXMLDOC01-appb-C000255
(XBiN-2)
Figure JPOXMLDOC01-appb-C000255
(XBiN-2)
Figure JPOXMLDOC01-appb-C000256
(XBiN-3)
Figure JPOXMLDOC01-appb-C000256
(XBiN-3)
(合成例14~15)
 合成例の原料である2-ナフトール及び4-アセチルビフェニルを表3の原料1及び原料2のように変更し、水1.5mL、ドデシルメルカプタン73mg(0.35mmol)、37%塩酸2.3g(22mmol)を加え、反応温度を55℃に変更し、その他は合成例1と同様に行い、各目的物を得た。それぞれ、1H-NMRで同定した(表4)。
(Synthesis Examples 14 to 15)
The raw materials of synthesis example, 2-naphthol and 4-acetylbiphenyl were changed to raw material 1 and raw material 2 in Table 3, 1.5 mL of water, 73 mg (0.35 mmol) of dodecyl mercaptan, 2.3 g of 37% hydrochloric acid ( 22 mmol) was added, the reaction temperature was changed to 55 ° C., and the others were carried out in the same manner as in Synthesis Example 1 to obtain each target product. Each was identified by 1H-NMR (Table 4).
Figure JPOXMLDOC01-appb-T000257
Figure JPOXMLDOC01-appb-T000257
Figure JPOXMLDOC01-appb-T000258
Figure JPOXMLDOC01-appb-T000258
Figure JPOXMLDOC01-appb-C000259
(P-3)
Figure JPOXMLDOC01-appb-C000259
(P-3)
Figure JPOXMLDOC01-appb-C000260
(P-4)
Figure JPOXMLDOC01-appb-C000260
(P-4)
(合成実施例3-1~15-1)
 合成実施例1-1の原料である上記式(BiN-1)で表される化合物を表5のように変更し、その他は合成実施例1-1と同様の条件にて合成を行い、それぞれ、目的物を得た。各化合物の構造は400MHz-H-NMR(d-DMSO、内部標準TMS)およびLC-MSで分子量を確認することにより、同定した。
(Synthesis Examples 3-1 to 15-1)
The compound represented by the above formula (BiN-1) as the raw material of Synthesis Example 1-1 was changed as shown in Table 5, and the others were synthesized under the same conditions as in Synthesis Example 1-1. The target was obtained. The structure of each compound was identified by confirming the molecular weight with 400 MHz- 1 H-NMR (d-DMSO, internal standard TMS) and LC-MS.
(合成実施例3-2~15-2)
 合成実施例1-2の原料である上記式(Al-BiN-1)で表される化合物を表5の原料1のように変更し、その他は合成実施例1-2と同様の条件にて合成を行い、それぞれ、目的物を得た。各化合物の構造は400MHz-H-NMR(d-DMSO、内部標準TMS)およびLC-MSで分子量を確認することにより、同定した。
(Synthesis Examples 3-2 to 15-2)
The compound represented by the above formula (Al-BiN-1), which is the raw material of Synthesis Example 1-2, was changed to the raw material 1 of Table 5, and the other conditions were the same as those of Synthesis Example 1-2. Synthesis was performed to obtain the desired products. The structure of each compound was identified by confirming the molecular weight with 400 MHz- 1 H-NMR (d-DMSO, internal standard TMS) and LC-MS.
Figure JPOXMLDOC01-appb-T000261
Figure JPOXMLDOC01-appb-T000261
Figure JPOXMLDOC01-appb-C000262
(Al-BiN-2)
Figure JPOXMLDOC01-appb-C000262
(Al-BiN-2)
Figure JPOXMLDOC01-appb-C000263
(AlOH-BiN-2)
Figure JPOXMLDOC01-appb-C000263
(AlOH-BiN-2)
Figure JPOXMLDOC01-appb-C000264
(Al-BiN-3)
Figure JPOXMLDOC01-appb-C000264
(Al-BiN-3)
Figure JPOXMLDOC01-appb-C000265
(AlOH-BiN-3)
Figure JPOXMLDOC01-appb-C000265
(AlOH-BiN-3)
Figure JPOXMLDOC01-appb-C000266
(Al-BiN-4)
Figure JPOXMLDOC01-appb-C000266
(Al-BiN-4)
Figure JPOXMLDOC01-appb-C000267
(AlOH-BiN-4)
Figure JPOXMLDOC01-appb-C000267
(AlOH-BiN-4)
Figure JPOXMLDOC01-appb-C000268
(Al-BiP-2)
Figure JPOXMLDOC01-appb-C000268
(Al-BiP-2)
Figure JPOXMLDOC01-appb-C000269
(AlOH-BiP-2)
Figure JPOXMLDOC01-appb-C000269
(AlOH-BiP-2)
Figure JPOXMLDOC01-appb-C000270
(Al-BiP-3)
Figure JPOXMLDOC01-appb-C000270
(Al-BiP-3)
Figure JPOXMLDOC01-appb-C000271
(AlOH-BiP-3)
Figure JPOXMLDOC01-appb-C000271
(AlOH-BiP-3)
Figure JPOXMLDOC01-appb-C000272
(Al-BiP-4)
Figure JPOXMLDOC01-appb-C000272
(Al-BiP-4)
Figure JPOXMLDOC01-appb-C000273
(AlOH-BiP-4)
Figure JPOXMLDOC01-appb-C000273
(AlOH-BiP-4)
Figure JPOXMLDOC01-appb-C000274
(Al-P-1)
Figure JPOXMLDOC01-appb-C000274
(Al-P-1)
Figure JPOXMLDOC01-appb-C000275
(AlOH-P-1)
Figure JPOXMLDOC01-appb-C000275
(AlOH-P-1)
Figure JPOXMLDOC01-appb-C000276
(Al-P-2)
Figure JPOXMLDOC01-appb-C000276
(Al-P-2)
Figure JPOXMLDOC01-appb-C000277
(AlOH-P-2)
Figure JPOXMLDOC01-appb-C000277
(AlOH-P-2)
Figure JPOXMLDOC01-appb-C000278
(Al-XBiN-1)
Figure JPOXMLDOC01-appb-C000278
(Al-XBiN-1)
Figure JPOXMLDOC01-appb-C000279
(AlOH-XBiN-1)
Figure JPOXMLDOC01-appb-C000279
(AlOH-XBiN-1)
Figure JPOXMLDOC01-appb-C000280
(Al-XBiN-2)
Figure JPOXMLDOC01-appb-C000280
(Al-XBiN-2)
Figure JPOXMLDOC01-appb-C000281
(AlOH-XBiN-2)
Figure JPOXMLDOC01-appb-C000281
(AlOH-XBiN-2)
Figure JPOXMLDOC01-appb-C000282
(Al-XBiN-3)
Figure JPOXMLDOC01-appb-C000282
(Al-XBiN-3)
Figure JPOXMLDOC01-appb-C000283
(AlOH-XBiN-3)
Figure JPOXMLDOC01-appb-C000283
(AlOH-XBiN-3)
Figure JPOXMLDOC01-appb-C000284
(Al-P-3)
Figure JPOXMLDOC01-appb-C000284
(Al-P-3)
Figure JPOXMLDOC01-appb-C000285
(AlOH-P-3)
Figure JPOXMLDOC01-appb-C000285
(AlOH-P-3)
Figure JPOXMLDOC01-appb-C000286
(Al-P-4)
Figure JPOXMLDOC01-appb-C000286
(Al-P-4)
Figure JPOXMLDOC01-appb-C000287
(AlOH-P-4)
Figure JPOXMLDOC01-appb-C000287
(AlOH-P-4)
(合成例16)樹脂(R1-BiP-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例2で得られた化合物(BiP-1)を36.6g(70mmol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(R1-BiP-1)34.1gを得た。
(Synthesis Example 16) Synthesis of Resin (R1-BiP-1) A four-necked flask with an inner volume of 1 L and equipped with a Dimroth condenser, thermometer, and stirring blade and capable of bottoming out was prepared. In this four-necked flask, 36.6 g (70 mmol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) of the compound (BiP-1) obtained in Synthesis Example 2 in a nitrogen stream, 21.0 g of a 40 mass% formalin aqueous solution (formaldehyde) 280 mmol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 0.97 mL of 98% by mass sulfuric acid (manufactured by Kanto Chemical Co., Ltd.) were charged and reacted for 7 hours while refluxing at 100 ° C. under normal pressure. Thereafter, 180.0 g of ortho-xylene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a diluent solvent was added to the reaction solution, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were performed, and orthoxylene was distilled off under reduced pressure to obtain 34.1 g of a brown solid resin (R1-BiP-1).
 得られた樹脂(R1-BiP-1)は、Mn:1875、Mw:3550、Mw/Mn:1.89であった。 The obtained resin (R1-BiP-1) had Mn: 1875, Mw: 3550, and Mw / Mn: 1.89.
(合成例17)樹脂(R2-BiP-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例2で得られた化合物(BiP-1)を36.6g(70mmol、三菱ガス化学(株)製)、4-ビフェニルアルデヒド50.9g(280mmol、三菱ガス化学(株)製)、アニソール(関東化学(株)製)100mL及びシュウ酸二水和物(関東化学(株)製)10mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、有機相の溶媒および未反応の4-ビフェニルアルデヒドを減圧下で留去することにより、褐色固体の樹脂(R2-BiP-2)34.7gを得た。
(Synthesis Example 17) Synthesis of Resin (R2-BiP-1) A four-necked flask having an internal volume of 1 L and equipped with a Dimroth condenser, thermometer, and stirring blade and capable of bottoming out was prepared. In a four-necked flask, 36.6 g (70 mmol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) of the compound (BiP-1) obtained in Synthesis Example 2 and 50.9 g (280 mmol, 4-biphenylaldehyde) were obtained in a nitrogen stream. Mitsubishi Gas Chemical Co., Ltd.), Anisole (Kanto Chemical Co., Ltd.) 100 mL and oxalic acid dihydrate (Kanto Chemical Co., Ltd.) 10 mL were charged and reacted at normal pressure for 7 hours while refluxing at 100 ° C. I let you. Thereafter, 180.0 g of ortho-xylene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a diluent solvent was added to the reaction solution, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were performed, and the organic phase solvent and unreacted 4-biphenylaldehyde were distilled off under reduced pressure to obtain 34.7 g of a brown solid resin (R2-BiP-2).
 得られた樹脂(R2-BiP-2)は、Mn:1682、Mw:2910、Mw/Mn:1.73であった。 The obtained resin (R2-BiP-2) had Mn: 1682, Mw: 2910, and Mw / Mn: 1.73.
<合成実施例16-1> Al-R1-BiP-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mlの容器に上記式(R1-BiP-1)で表される樹脂29.8gと炭酸カリウム6.2g(45mmol)とを200mlアセトンに加えた液を仕込み、さらに臭化アリル5.4g(45mmol)及び10-クラウンー6を2.0g加えて、得られた反応液を還流下で7時間撹拌して反応を行なった。次に反応液から固形分をろ過で除去後、氷浴で冷却し、反応液を濃縮し、固体を析出させ、濾過し、乾燥させることにより、褐色固体の樹脂(Al-R1-BiP-1)35.6gを得た。
<Synthesis Example 16-1> Synthesis of Al-R1-BiP-1 29.8 g of the resin represented by the above formula (R1-BiP-1) was placed in a 500-ml container equipped with a stirrer, a cooling tube, and a burette. A solution obtained by adding 6.2 g (45 mmol) of potassium carbonate to 200 ml acetone was added, and 5.4 g (45 mmol) of allyl bromide and 2.0 g of 10-crown-6 were added, and the resulting reaction solution was refluxed. The reaction was carried out with stirring for 7 hours. Next, the solid content is removed from the reaction solution by filtration, and then cooled in an ice bath. The reaction solution is concentrated, and the solid is precipitated, filtered, and dried to obtain a brown solid resin (Al-R1-BiP-1). ) 35.6 g was obtained.
 得られた樹脂(Al-R1-BiP-1)は、Mn:2299、Mw:3982、Mw/Mn:1.73であった。 The obtained resin (Al-R1-BiP-1) had Mn: 2299, Mw: 3982, and Mw / Mn: 1.73.
<合成実施例16-2> AlOH-R1-BiP-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に上記式(Al-R1-BiP-1)で表される樹脂26.1gをN-メチルピロリドン30.0mLに加え、反応液を130℃で6時間撹拌して、その後160℃に昇温して24時間反応を行なった。次に反応液に150mLの水を加え、固体を析出させ、ろ過を行なって分離した。
得られた固形物をろ過し、乾燥させることにより、褐色固体の下記式AlOH-R1-BiP-1で表される樹脂が32.4g得られた。
<Synthesis Example 16-2> Synthesis of AlOH-R1-BiP-1 Resin represented by the above formula (Al-R1-BiP-1) in a 500-mL container equipped with a stirrer, a condenser tube and a burette. 1 g was added to 30.0 mL of N-methylpyrrolidone, and the reaction solution was stirred at 130 ° C. for 6 hours, then heated to 160 ° C. and reacted for 24 hours. Next, 150 mL of water was added to the reaction solution to precipitate a solid, which was separated by filtration.
The obtained solid was filtered and dried to obtain 32.4 g of a resin represented by the following formula AlOH-R1-BiP-1 as a brown solid.
 得られた樹脂(AlOH-R1-BiP-1)は、Mn:2216、Mw:3845、Mw/Mn:1.73であった。 The obtained resin (AlOH-R1-BiP-1) had Mn: 2216, Mw: 3845, and Mw / Mn: 1.73.
<合成実施例17-1> Al-R2-BiP-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mlの容器に上記式(R2-BiP-1)で表される樹脂29.8gと炭酸カリウム6.2g(45mmol)とを200mlアセトンに加えた液を仕込み、さらに臭化アリル5.4g(45mmol)及び10-クラウンー6を2.0g加えて、得られた反応液を還流下で7時間撹拌して反応を行なった。次に反応液から固形分をろ過で除去後、氷浴で冷却し、反応液を濃縮し、固体を析出させ、濾過し、乾燥させることにより、褐色固体の樹脂(Al-R2-BiP-1)37.4gを得た。
<Synthesis Example 17-1> Synthesis of Al-R2-BiP-1 29.8 g of the resin represented by the above formula (R2-BiP-1) was placed in a 500-ml container equipped with a stirrer, a cooling tube, and a burette. A solution obtained by adding 6.2 g (45 mmol) of potassium carbonate to 200 ml acetone was added, and 5.4 g (45 mmol) of allyl bromide and 2.0 g of 10-crown-6 were added, and the resulting reaction solution was refluxed. The reaction was carried out with stirring for 7 hours. Next, the solid content is removed from the reaction solution by filtration, and then cooled in an ice bath. The reaction solution is concentrated, and the solid is precipitated, filtered, and dried to obtain a brown solid resin (Al-R2-BiP-1). ) 37.4 g was obtained.
 得られた樹脂(Al-R2-BiP-1)は、Mn:2630、Mw:4682、Mw/Mn:1.78であった。 The obtained resin (Al-R2-BiP-1) had Mn: 2630, Mw: 4682, and Mw / Mn: 1.78.
<合成実施例17-2> AlOH-R2-BiP-1の合成
 上記式(R2-BiP-1)で表される樹脂の代わりに、上記式(Al-R2-BiP-1)で表される樹脂を29.8g用いた以外、合成実施例16-2と同様に反応させ、褐色固体の下記式AlOH-R2-BiP-1で表される樹脂が22.4g得られた。
<Synthesis Example 17-2> Synthesis of AlOH-R2-BiP-1 Instead of the resin represented by the above formula (R2-BiP-1), it is represented by the above formula (Al-R2-BiP-1). The reaction was conducted in the same manner as in Synthesis Example 16-2 except that 29.8 g of the resin was used, to obtain 22.4 g of a resin represented by the following formula AlOH-R2-BiP-1 as a brown solid.
  得られた樹脂(AlOH-R2-BiP-1)は、Mn:2712、Mw:4641、Mw/Mn:1.71であった。 The obtained resin (AlOH-R2-BiP-1) was Mn: 2712, Mw: 4641, and Mw / Mn: 1.71.
(合成比較例1)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mlを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562であった。
(Synthesis Comparative Example 1)
A four-necked flask with an internal volume of 10 L capable of bottoming was prepared, equipped with a Dimroth condenser, thermometer, and stirring blade. To this four-necked flask, in a nitrogen stream, 1.09 kg of 1,5-dimethylnaphthalene (7 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.), 2.1 kg of 40% by weight formalin aqueous solution (28 mol of formaldehyde, Mitsubishi Gas Chemical Co., Ltd.) )) And 98 mass% sulfuric acid (manufactured by Kanto Chemical Co., Ltd.) 0.97 ml were charged and reacted for 7 hours under reflux at 100 ° C. under normal pressure. Thereafter, 1.8 kg of ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a diluent solvent was added to the reaction solution, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were performed, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
The molecular weight of the obtained dimethylnaphthalene formaldehyde was Mn: 562.
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後、さらに1-ナフトール52.0g(0.36mol)を加え、220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
 得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、炭素濃度は89.1質量%、酸素濃度は4.5質量%であった。
Subsequently, a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared. This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid under a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was raised to 220 ° C. and reacted for 2 hours. After the solvent was diluted, neutralization and water washing were performed, and the solvent was removed under reduced pressure to obtain 126.1 g of a dark brown solid modified resin (CR-1).
The obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17. The carbon concentration was 89.1% by mass, and the oxygen concentration was 4.5% by mass.
[実施例1-1~17-2、比較例1]
 上記合成実施例1-1~17-2の化合物および樹脂、合成比較例1の樹脂CR-1につき、溶解性の評価を行った。結果を下記表6に示す。
 また、表1に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
・酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
・架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
・有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
[Examples 1-1 to 17-2, Comparative Example 1]
The solubility of the compounds and resins of Synthesis Examples 1-1 to 17-2 and the resin CR-1 of Synthesis Comparative Example 1 were evaluated. The results are shown in Table 6 below.
In addition, materials for forming a lower layer film for lithography having the composition shown in Table 1 were prepared. Next, these lower-layer film forming materials for lithography were spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare 200 nm-thick underlayer films. The following were used about the acid generator, the crosslinking agent, and the organic solvent.
・ Acid generator: Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDDPI) manufactured by Midori Chemical Co., Ltd.
・ Crosslinking agent: Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
Organic solvent: propylene glycol monomethyl ether acetate acetate (PGMEA)
 また、下記表7に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、その後、110℃で60秒間ベークして塗膜の溶媒を除去した後、高圧水銀ランプにより、積算露光量600mJ/cm、照射時間20秒で硬化させて膜厚200nmの下層膜を各々作製した。光酸発生剤、架橋剤及び有機溶媒については表76に記載のものを用いた。 In addition, materials for forming a lower layer film for lithography having the compositions shown in Table 7 below were prepared. Next, these lower layer film forming materials for lithography are spin-coated on a silicon substrate, and then baked at 110 ° C. for 60 seconds to remove the solvent of the coating film. Then, an integrated exposure amount of 600 mJ is obtained with a high-pressure mercury lamp. / cm 2, and is cured by irradiation time of 20 seconds to produce each an underlying film having a thickness of 200 nm. The photo acid generator, the crosslinking agent and the organic solvent described in Table 76 were used.
・光酸発生剤:和光純薬製 WPAG-336(ジフェニル-4-メチルフェニルスルホニウムトリフルオロメタンスルホネート)
・架橋剤:
三菱ガス化学製 ジアリルビスフェノールA型シアネート(DABPA-CN)
小西化学工業製 ジアリルビスフェノールA(BPA-CA)
小西化学工業製 ベンゾオキサジン(BF-BXZ)
日本化薬製 ビフェニルアラルキル型エポキシ樹脂(NC-3000-L)
・有機溶媒:
プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
Photo acid generator: WPA Pure Chemicals WPAG-336 (diphenyl-4-methylphenylsulfonium trifluoromethanesulfonate)
・ Crosslinking agent:
Diallyl bisphenol A cyanate manufactured by Mitsubishi Gas Chemical (DABPA-CN)
Konishi Chemical Industry Diallylbisphenol A (BPA-CA)
Benzoxazine (BF-BXZ) manufactured by Konishi Chemical Industries
Nippon Kayaku Biphenyl Aralkyl Epoxy Resin (NC-3000-L)
・ Organic solvent:
Propylene glycol monomethyl ether acetate acetate (PGMEA)
 上記架橋剤の構造を下記式で示す。 The structure of the crosslinking agent is shown by the following formula.
Figure JPOXMLDOC01-appb-C000288
(DABPA-CN)
Figure JPOXMLDOC01-appb-C000288
(DABPA-CN)
Figure JPOXMLDOC01-appb-C000289
(BPA-CA)
Figure JPOXMLDOC01-appb-C000289
(BPA-CA)
Figure JPOXMLDOC01-appb-C000290
(BF-BXZ)
Figure JPOXMLDOC01-appb-C000290
(BF-BXZ)
Figure JPOXMLDOC01-appb-C000291
(上記式中、nは1~4の整数である。)
(NC-3000-L)
Figure JPOXMLDOC01-appb-C000291
(In the above formula, n is an integer of 1 to 4.)
(NC-3000-L)
[エッチング耐性]
 下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表6および表7に示す。
[Etching resistance]
An etching test was performed under the following conditions to evaluate etching resistance. The evaluation results are shown in Table 6 and Table 7.
[エッチング試験]
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
[Etching test]
Etching device: RIE-10NR manufactured by Samco International
Output: 50W
Pressure: 20Pa
Time: 2min
Etching gas Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 5: 5 (sccm)
 エッチング耐性の評価は、以下の手順で行った。
 まず、化合物(Al-BisN-1)に代えてノボラック(群栄化学社製 PSM4357)を用いたこと以外は、実施例1-1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例1-1~17-2、1-1A~17-2A及び比較例1の下層膜を対象として、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
 そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
Etching resistance was evaluated according to the following procedure.
First, a novolak underlayer film was produced under the same conditions as in Example 1-1, except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (Al-BisN-1). Then, the above-described etching test was performed on this novolac lower layer film, and the etching rate at that time was measured.
Next, the above-described etching test was similarly performed on the lower layer films of Examples 1-1 to 17-2, 1-1A to 17-2A and Comparative Example 1, and the etching rate at that time was measured.
Then, the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak underlayer film.
[評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが-10%未満
 B:ノボラックの下層膜に比べてエッチングレートが-10%~+5%
 C:ノボラックの下層膜に比べてエッチングレートが+5%超
[Evaluation criteria]
A: Etching rate is less than −10% compared to the novolac lower layer film B: Etching rate from −10% to + 5% compared to the novolac lower layer film
C: Etching rate is more than + 5% compared to the novolak underlayer
Figure JPOXMLDOC01-appb-T000292
Figure JPOXMLDOC01-appb-T000292
Figure JPOXMLDOC01-appb-T000293
Figure JPOXMLDOC01-appb-T000293
 表6及び表7から明らかなように、本実施形態の化合物を含む下層形成材料を用いた実施例では、溶解性及びエッチング耐性のいずれの点でも良好であることが確認された。一方、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1では、エッチング耐性が不良であった。
 また、上述のように実施例の化合物は耐熱性に優れていた。
As is clear from Tables 6 and 7, it was confirmed that the examples using the lower layer forming material containing the compound of the present embodiment are good in both solubility and etching resistance. On the other hand, Comparative Example 1 using CR-1 (phenol-modified dimethylnaphthalene formaldehyde resin) had poor etching resistance.
Further, as described above, the compounds of the examples were excellent in heat resistance.
(実施例38~41)
 次に、Al-BiN-1、Al-BiP-1、AlOH-BiN-1、又はAlOH-BiP-1を含むリソグラフィー用下層膜形成材料の各溶液を、膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
(Examples 38 to 41)
Next, each solution of an underlayer film forming material for lithography containing Al—BiN-1, Al—BiP-1, AlOH—BiN-1, or AlOH—BiP-1 is applied onto a 300 nm-thick SiO 2 substrate. Then, by baking at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds, a lower layer film having a thickness of 70 nm was formed. On this lower layer film, an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 140 nm-thick photoresist layer. As the ArF resist solution, a compound of the following formula (11): 5 parts by mass, triphenylsulfonium nonafluoromethanesulfonate: 1 part by mass, tributylamine: 2 parts by mass, and PGMEA: 92 parts by mass are blended. The prepared one was used.
 式(11)の化合物は、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られた生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。 The compound of the formula (11) is 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy-γ-butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, azobisisobutyronitrile. 0.38 g was dissolved in 80 mL of tetrahydrofuran to obtain a reaction solution. This reaction solution was polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane. The resulting resin thus obtained was coagulated and purified, and the resulting white powder was filtered and obtained by drying overnight at 40 ° C. under reduced pressure.
Figure JPOXMLDOC01-appb-C000294
(11)
Figure JPOXMLDOC01-appb-C000294
(11)
 上記式(11)中、「40」、「40」、「20」とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。 In the above formula (11), “40”, “40”, and “20” indicate the ratio of each structural unit, and do not indicate a block copolymer.
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。 Next, the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide ( A positive resist pattern was obtained by developing with an aqueous solution of TMAH for 60 seconds.
 得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状及び欠陥を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。
 現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを「良好」とし、それ以外を「不良」として評価した。また、上記観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を“解像性”として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を“感度”として、評価の指標とした。
 評価結果を、表8に示す。
The shapes and defects of the obtained 55 nm L / S (1: 1) and 80 nm L / S (1: 1) resist patterns were observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd.
As for the shape of the resist pattern after development, the resist pattern was evaluated as “good” when the pattern was not collapsed and the rectangularity was good, and “bad”. As a result of the above observation, the minimum line width with no pattern collapse and good rectangularity was used as an evaluation index as “resolution”. Further, the minimum electron beam energy amount capable of drawing a good pattern shape was set as “sensitivity” and used as an evaluation index.
The evaluation results are shown in Table 8.
(比較例2)
 下層膜の形成を行わなかったこと以外は、実施例2と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表2に示す。
(Comparative Example 2)
A photoresist layer was directly formed on the SiO 2 substrate in the same manner as in Example 2 except that the lower layer film was not formed to obtain a positive resist pattern. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000295
Figure JPOXMLDOC01-appb-T000295
 表8から明らかなように、Al-BiN-1、Al-BiP-1、AlOH-BiN-1、又はAlOH-BiP-1を用いた実施例1-1~2-2では、比較例1に比して、耐熱性、溶解度及びエッチング耐性のいずれの点でも良好であることが少なくとも確認された。一方、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1では、エッチング耐性が不良であった。
 また、実施例38~41においては、現像後のレジストパターン形状が良好であり、欠陥も見られないことも確認された。さらに、下層膜の形成を省略した比較例2に比べて、解像性及び感度ともに有意に優れていることも確認された。
 加えて、現像後のレジストパターン形状の相違から、実施例5~8において用いたリソグラフィー用下層膜形成材料は、レジスト材料との密着性が良いことも確認された。
As is clear from Table 8, in Examples 1-1 to 2-2 using Al—BiN-1, Al—BiP-1, AlOH—BiN-1, or AlOH—BiP-1, In comparison, it was at least confirmed that the heat resistance, solubility, and etching resistance were all good. On the other hand, Comparative Example 1 using CR-1 (phenol-modified dimethylnaphthalene formaldehyde resin) had poor etching resistance.
In Examples 38 to 41, it was also confirmed that the resist pattern shape after development was good and no defects were observed. Furthermore, it was also confirmed that both the resolution and sensitivity were significantly superior to those of Comparative Example 2 in which the formation of the lower layer film was omitted.
In addition, from the difference in the resist pattern shape after development, it was also confirmed that the lower layer film forming material for lithography used in Examples 5 to 8 had good adhesion to the resist material.
<実施例42~45>
 実施例1-1~2-2のリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO2基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、上記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、下記で得られた珪素原子含有ポリマーを用いた。
<Examples 42 to 45>
The solution of the material for forming a lower layer film for lithography of Examples 1-1 to 2-2 was applied on a SiO 2 substrate having a film thickness of 300 nm and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds. An underlayer film of 80 nm was formed. On this lower layer film, a silicon-containing intermediate layer material was applied and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a thickness of 35 nm. Further, the ArF resist solution was applied on the intermediate layer film and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer. As the silicon-containing intermediate layer material, the silicon atom-containing polymer obtained below was used.
 テトラヒドロフラン(THF)200g、純水100gに、3-カルボキシルプロピルトリメトキシシラン16.6gとフェニルトリメトキシシラン7.9gと3-ヒドロキシプロピルトリメトキシシラン14.4gとを溶解させ、液温を35℃にし、シュウ酸5gを滴下し、その後80℃に昇温し、シラノールの縮合反応を行った。次に、ジエチルエーテルを200g加え水層を分別し、有機液層を超純水で2回洗浄、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を200g加え、液温を60℃に加熱しながらの減圧下にTHF、ジエチルエーテル水を除去し、珪素原子含有ポリマーを得た。 In 200 g of tetrahydrofuran (THF) and 100 g of pure water, 16.6 g of 3-carboxypropyltrimethoxysilane, 7.9 g of phenyltrimethoxysilane and 14.4 g of 3-hydroxypropyltrimethoxysilane were dissolved, and the liquid temperature was 35 ° C. Then, 5 g of oxalic acid was added dropwise, and then the temperature was raised to 80 ° C. to conduct a silanol condensation reaction. Next, 200 g of diethyl ether was added, the aqueous layer was separated, the organic liquid layer was washed twice with ultrapure water, 200 g of propylene glycol monomethyl ether acetate (PGMEA) was added, and the liquid temperature was reduced to 60 ° C. while heating. Then, THF and diethyl ether water were removed to obtain a silicon atom-containing polymer.
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。 Next, the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide. By developing with (TMAH) aqueous solution for 60 seconds, a positive resist pattern of 55 nm L / S (1: 1) was obtained.
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。 Thereafter, dry etching of the silicon-containing intermediate layer film (SOG) was performed using the obtained resist pattern as a mask, using RIE-10NR manufactured by Samco International Co., and then the obtained silicon-containing intermediate layer film pattern was A dry etching process for the lower layer film using the mask and a dry etching process for the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO 膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
Each etching condition is as shown below.
Etching condition output to resist intermediate layer film of resist pattern : 50W
Pressure: 20Pa
Time: 1 min
Etching gas Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 8: 2 (sccm)
Output of etching condition to resist underlayer film of resist intermediate film pattern : 50W
Pressure: 20Pa
Time: 2min
Etching gas Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 5: 5 (sccm)
Etching condition output to SiO 2 film of resist underlayer film pattern : 50W
Pressure: 20Pa
Time: 2min
Etching gas Ar gas flow rate: C 5 F 12 gas flow rate: C 2 F 6 gas flow rate: O 2 gas flow rate = 50: 4: 3: 1 (sccm)
[評価]
 上記のようにして得られたパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
[Evaluation]
When the pattern cross section (shape of the SiO 2 film after etching) obtained as described above was observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd., the lower layer film of this embodiment was used. In this example, it was confirmed that the shape of the SiO 2 film after etching in the multilayer resist processing was rectangular, and no defects were observed, which was good.
[実施例46~65]
 上記合成例、及び合成実施例で合成した各化合物を用いて、下記表9に示す配合で光学部品形成組成物を調製した。なお、表9中の光学部品形成組成物の各成分のうち、酸発生剤、酸架橋剤、酸拡散抑制剤、及び溶媒については、以下のものを用いた。
・酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
・架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
 均一状態の光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でプレベーク(prebake:PB)して、厚さ1μmの光学部品形成膜を形成した。調製した光学部品形成組成物について、膜形成が良好な場合には「A」、形成した膜に欠陥がある場合には「C」と評価した。
[Examples 46 to 65]
Using the respective compounds synthesized in the above synthesis examples and synthesis examples, optical component-forming compositions were prepared with the formulations shown in Table 9 below. In addition, among the components of the optical component forming composition in Table 9, the following were used for the acid generator, the acid crosslinking agent, the acid diffusion inhibitor, and the solvent.
・ Acid generator: Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDDPI) manufactured by Midori Chemical Co., Ltd.
・ Crosslinking agent: Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
Organic solvent: Propylene glycol monomethyl ether acetate acetate (PGMEA)
The optical component-forming composition in a uniform state was spin-coated on a clean silicon wafer, and then pre-baked (PB) in an oven at 110 ° C. to form an optical component-forming film having a thickness of 1 μm. The prepared optical component-forming composition was evaluated as “A” when the film formation was good and “C” when the formed film had defects.
 均一な光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でPBして、厚さ1μmの膜を形成した。その膜につき、ジェー・エー・ウーラム製多入射角分光エリプソメーターVASEにて、25℃における屈折率(λ=589.3nm)を測定した。調製した膜について、屈折率が1.6以上の場合には「A」、1.55以上1.6未満の場合には「B」、1.55未満の場合には「C」と評価した。また透明性(λ=632.8nm)が90%以上の場合には「A」、90%未満の場合には「C」と評価した。 A uniform optical component-forming composition was spin-coated on a clean silicon wafer, and then PB was performed in an oven at 110 ° C. to form a film having a thickness of 1 μm. The refractive index (λ = 589.3 nm) at 25 ° C. of the film was measured with a multi-angle-of-incidence spectroscopic ellipsometer VASE manufactured by JA Woollam. The prepared film was evaluated as “A” when the refractive index was 1.6 or more, “B” when 1.55 or less and less than 1.6, and “C” when less than 1.55. . Further, when the transparency (λ = 632.8 nm) was 90% or more, “A” was evaluated, and when it was less than 90%, “C” was evaluated.
Figure JPOXMLDOC01-appb-T000296
Figure JPOXMLDOC01-appb-T000296
[実施例50~71]
 上記合成例、及び合成実施例で合成した各化合物を用いて、下記表10に示す配合でレジスト組成物を調製した。なお、表10中のレジスト組成物の各成分のうち、酸発生剤、酸架橋剤、酸拡散抑制剤、及び溶媒については、以下のものを用いた。
・酸発生剤:みどり化学社製 トリフェニルホスホニウム トリフルオロメタンスルホネート
・架橋剤:三和ケミカル社製 ニカラックMX270
・酸拡散抑制剤:東京化成工業社製 トリオクチルアミン
・有機溶媒:東京化成工業社製 プロピレングリコールモノメチルエーテル(PGME)
[Examples 50 to 71]
Using each of the compounds synthesized in the above synthesis examples and synthesis examples, a resist composition was prepared with the formulation shown in Table 10 below. Of the components of the resist composition in Table 10, the following were used for the acid generator, the acid crosslinking agent, the acid diffusion inhibitor, and the solvent.
・ Acid generator: Triphenylphosphonium trifluoromethanesulfonate manufactured by Midori Kagaku Co., Ltd. ・ Crosslinking agent: Nicalak MX270 manufactured by Sanwa Chemical Co., Ltd.
・ Acid diffusion inhibitor: Trioctylamine manufactured by Tokyo Chemical Industry Co., Ltd. ・ Organic solvent: Propylene glycol monomethyl ether (PGME) manufactured by Tokyo Chemical Industry Co., Ltd.
[評価方法]
(1)レジスト組成物の保存安定性及び薄膜形成
 レジスト組成物の保存安定性は、レジスト組成物を作成後、23℃、50%RHにて3日間静置し、析出の有無を目視にて観察することにより評価した。3日間静置後のレジスト組成物において、均一溶液であり析出がない場合にはA、析出がある場合はCと評価した。また、均一状態のレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ40nmのレジスト膜を形成した。作成したレジスト組成物について、薄膜形成が良好な場合にはA、形成した膜に欠陥がある場合にはCと評価した。
[Evaluation methods]
(1) Storage stability of resist composition and thin film formation The storage stability of the resist composition was determined by standing the resist composition at 23 ° C. and 50% RH for 3 days and visually checking for the presence or absence of precipitation. Evaluation was made by observation. The resist composition after standing for 3 days was evaluated as A when it was a homogeneous solution and there was no precipitation, and C when there was precipitation. Moreover, after spin-coating the resist composition of a uniform state on the clean silicon wafer, it prebaked (PB) in 110 degreeC oven, and formed the resist film with a thickness of 40 nm. The prepared resist composition was evaluated as A when the thin film formation was good and as C when the formed film had defects.
(2)レジストパターンのパターン評価
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm、40nm及び30nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、PGMEに60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ネガ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
 感度は、パターンを得るために必要な単位面積当たりの最小のエネルギー量で示し、以下に従って評価した。
 A:50μC/cm未満でパターンが得られた場合
 C:50μC/cm以上でパターンが得られた場合
 パターン形成は、得られたパターン形状をSEM(走査型電子顕微鏡:Scanning Electron Microscope)にて観察し、以下に従って評価した。
 A:矩形なパターンが得られた場合
 B:ほぼ矩形なパターンが得られた場合
 C:矩形でないパターンが得られた場合
(2) Pattern evaluation of resist pattern A uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposure baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 60 nm. The obtained resist film was irradiated with an electron beam with a line and space setting of 1: 1 at intervals of 50 nm, 40 nm, and 30 nm using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Co., Ltd.). . After the irradiation, each resist film was heated at a predetermined temperature for 90 seconds and immersed in PGME for 60 seconds for development. Thereafter, the resist film was washed with ultrapure water for 30 seconds and dried to form a negative resist pattern. With respect to the formed resist pattern, the line and space was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technology Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated.
Sensitivity was expressed as the minimum amount of energy per unit area necessary for obtaining a pattern, and was evaluated according to the following.
A: When a pattern is obtained at less than 50 μC / cm 2 C: When a pattern is obtained at 50 μC / cm 2 or more In pattern formation, the obtained pattern shape is transferred to an SEM (Scanning Electron Microscope). And evaluated according to the following.
A: When a rectangular pattern is obtained B: When a substantially rectangular pattern is obtained C: When a non-rectangular pattern is obtained
Figure JPOXMLDOC01-appb-T000297
Figure JPOXMLDOC01-appb-T000297
 上述したとおり、本発明は、上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。 As described above, the present invention is not limited to the above-described embodiments and examples, and appropriate modifications can be made without departing from the scope of the invention.
 本発明に係る化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本発明に係るレジスト組成物は良好なレジストパターン形状を与える。 The compound and resin according to the present invention are highly soluble in a safe solvent, have good heat resistance and etching resistance, and the resist composition according to the present invention gives a good resist pattern shape.
 また、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な化合物、樹脂及びリソグラフィー用膜形成組成物を実現することができる。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。さらには、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。 Also, a wet process can be applied, and a compound, a resin, and a film forming composition for lithography useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance can be realized. And since this film-forming composition for lithography uses a compound or resin having a specific structure that has high heat resistance and high solvent solubility, deterioration of the film during high-temperature baking is suppressed, oxygen plasma etching, etc. It is possible to form a resist and an underlayer film that are also excellent in etching resistance to. Furthermore, when the lower layer film is formed, the adhesion with the resist layer is also excellent, so that an excellent resist pattern can be formed.
 さらには屈折率が高く、また低温~高温処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。 Furthermore, since the refractive index is high and the coloring is suppressed by low-temperature to high-temperature treatment, it is useful as a composition for forming various optical parts.
 したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂、フィルム状、シート状で使われる他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路等の光学部品等において、広く且つ有効に利用可能である。 Accordingly, the present invention provides, for example, an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for a printed wiring board, an electrical laminate mounted on an electrical device / electronic device / industrial device, etc.・ Matrix resin for prepregs, built-up laminate materials, resin for fiber reinforced plastics, sealing resin for liquid crystal display panels, paints, various coating agents, adhesives, and coatings for semiconductors installed in electronic equipment and industrial equipment In addition to resin, resin for semiconductor resist, resin for forming lower layer film, film and sheet, plastic lens (prism lens, lenticular lens, micro lens, Fresnel lens, viewing angle control lens, contrast enhancement lens, etc.) , Retardation film, electromagnetic shielding film, prism, optical fiber, flexible Solder resist printed wiring, plating resist, multilayer printed wiring boards interlayer insulating film, the optical component such as a photosensitive optical waveguide, it is widely and effectively available.
 本出願は、2016年9月13日に日本国特許庁へ出願された日本特許出願(特願2016-178443号)に基づくものであり、それらの内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2016-178443) filed with the Japan Patent Office on September 13, 2016, the contents of which are incorporated herein by reference.
 本発明は、リソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野における産業上利用可能性を有する。 The present invention has industrial applicability in the fields of lithography resist, lithography underlayer film, multilayer resist underlayer film and optical components.

Claims (37)

  1.  下記式(0)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000001
    (0)
    (式(0)中、Rは、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
     Rは、炭素数1~60のN価の基又は単結合であり、
     Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは水酸基であり、またRの少なくとも1つは炭素数2~30のアルケニル基であり、
     Xは、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
     mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは2~9の整数又はmの少なくとも2つは1~9の整数であり、
     Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
     rは、各々独立して0~2の整数である。)
    The compound represented by following formula (0).
    Figure JPOXMLDOC01-appb-C000001
    (0)
    (In the formula (0), R Y is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms,
    R Z is an N-valent group having 1 to 60 carbon atoms or a single bond,
    R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T is a hydroxyl group, and R T At least one of these is an alkenyl group having 2 to 30 carbon atoms,
    X represents an oxygen atom, a sulfur atom, a single bond or no bridge,
    m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 2 to 9 or at least two of m is an integer of 1 to 9,
    N is an integer of 1 to 4, where, when N is an integer of 2 or more, the structural formulas in N [] may be the same or different,
    Each r is independently an integer of 0-2. )
  2.  前記式(0)で表される化合物が、下記式(1)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    (1)
    (式(1)中、Rは、前記Rと同義であり、
     Rは、炭素数1~60のn価の基又は単結合であり、
     R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは少なくとも1つは水酸基であり、またR~Rの少なくとも1つは炭素数2~30のアルケニル基であり、
     m及びmは、各々独立して、0~8の整数であり、
     m及びmは、各々独立して、0~9の整数であり、
     但し、m、m、m及びmは同時に0になることはなく、m、m、m及びmの少なくとも1つは2~8若しくは2~9の整数又はm、m、m及びmの少なくとも2つは1~8若しくは1~9の整数であり、
     nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
     p~pは、各々独立して、前記rと同義である。)
    The compound of Claim 1 whose compound represented by said Formula (0) is a compound represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (1)
    (In Formula (1), R 0 has the same meaning as R Y ,
    R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond,
    R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or A hydroxyl group, and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2 to R 5 is at least One is a hydroxyl group, and at least one of R 2 to R 5 is an alkenyl group having 2 to 30 carbon atoms;
    m 2 and m 3 are each independently an integer of 0 to 8,
    m 4 and m 5 are each independently an integer of 0 to 9,
    However, m 2 , m 3 , m 4 and m 5 are not 0 simultaneously, and at least one of m 2 , m 3 , m 4 and m 5 is an integer of 2 to 8, 2 to 9, or m 2 , M 3 , m 4 and m 5 are integers from 1 to 8 or 1 to 9,
    n is synonymous with the above N, and here, when n is an integer of 2 or more, the structural formulas in the n [] may be the same or different,
    p 2 to p 5 are each independently the same as r. )
  3.  前記式(0)で表される化合物が、下記式(2)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (2)
    (式(2)中、R0Aは、前記Rと同義であり、
     R1Aは、炭素数1~30のn価の基又は単結合であり、
     R2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは少なくとも1つは水酸基であり、またR2Aの少なくとも1つは炭素数2~30のアルケニル基であり、
     nは、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
     Xは、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
     m2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは2~7の整数又は少なくとも2つのm2Aは1~7の整数であり、
     qは、各々独立して、0又は1である。)
    The compound of Claim 1 whose compound represented by the said Formula (0) is a compound represented by following formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (2)
    (In Formula (2), R 0A has the same meaning as R Y ,
    R 1A is an n A valent group having 1 to 30 carbon atoms or a single bond,
    R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A is a hydroxyl group. And at least one of R 2A is an alkenyl group having 2 to 30 carbon atoms,
    n A has the same meaning as N above. Here, when n A is an integer of 2 or more, the structural formulas in n A [] may be the same or different,
    X A represents an oxygen atom, a sulfur atom, a single bond or no bridge,
    m 2A is each independently an integer from 0 to 7, provided that at least one m 2A is an integer from 2 to 7 or at least two m 2A is an integer from 1 to 7;
    q A is each independently 0 or 1. )
  4.  前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (1-1)
    (式(1-1)中、R、R、R、R、n、p~p、m及びmは、前記と同義であり、
     R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R~Rの少なくとも1つは炭素数2~30のアルケニル基であり、
     R10~R11は、各々独立して、水素原子であり、
     m及びmは、各々独立して、0~7の整数であり、但し、m、m、m及びmは同時に0になることはない。)
    The compound according to claim 2, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000004
    (1-1)
    (In the formula (1-1), R 0 , R 1 , R 4 , R 5 , n, p 2 to p 5 , m 4 and m 5 are as defined above.
    R 6 to R 7 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein at least one of R 6 to R 7 has 2 carbon atoms -30 alkenyl groups,
    R 10 to R 11 are each independently a hydrogen atom,
    m 6 and m 7 are each independently an integer of 0 to 7, provided that m 4 , m 5 , m 6 and m 7 are not 0 at the same time. )
  5.  前記式(1-1)で表される化合物が、下記式(1-2)で表される化合物である、請求項4に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    (1-2)
    (式(1-2)中、R、R、R、R、R10、R11、n、p~p、m及びmは、前記と同義であり、
     R~Rは、前記R~Rと同義であり、
     R12~R13は、前記R10~R11と同義であり、
     m及びmは、各々独立して、0~8の整数であり、但し、m、m、m及びmは同時に0になることはない。)
    The compound according to claim 4, wherein the compound represented by the formula (1-1) is a compound represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000005
    (1-2)
    (In the formula (1-2), R 0 , R 1 , R 6 , R 7 , R 10 , R 11 , n, p 2 to p 5 , m 6 and m 7 are as defined above.
    R 8 to R 9 have the same meanings as R 6 to R 7 ,
    R 12 to R 13 have the same meanings as R 10 to R 11 ,
    m 8 and m 9 are each independently an integer of 0 to 8, provided that m 6 , m 7 , m 8 and m 9 are not 0 at the same time. )
  6.  前記式(2)で表される化合物が、下記式(2-1)で表される化合物である、請求項3に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    (2-1)
    (式(2-1)中、R0A、R1A、n、q及びX、は、前記と同義であり、
     R3Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R3Aの少なくとも1つは炭素数2~30のアルケニル基であり、
     R4Aは、各々独立して、水素原子であり、
     m6Aは、各々独立して、0~5の整数である。)
    The compound according to claim 3, wherein the compound represented by the formula (2) is a compound represented by the following formula (2-1).
    Figure JPOXMLDOC01-appb-C000006
    (2-1)
    (In the formula (2-1), R 0A , R 1A , n A , q A and X A are as defined above,
    R 3A each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. And an alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein at least one of R 3A is an alkenyl group having 2 to 30 carbon atoms. Yes,
    R 4A is each independently a hydrogen atom;
    m 6A is each independently an integer of 0 to 5. )
  7.  請求項1に記載の化合物をモノマーとして得られる、樹脂。 A resin obtained by using the compound according to claim 1 as a monomer.
  8.  下記式(3)で表される構造を有する、請求項7に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000007
    (3)
    (式(3)中、Lは、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基及び前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     Rは、前記Rと同義であり、
     Rは、炭素数1~60のn価の基又は単結合であり、
     R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは水酸基であり、またR~Rの少なくとも1つは炭素数2~30のアルケニル基であり、
     m及びmは、各々独立して、0~8の整数であり、
     m及びmは、各々独立して、0~9の整数であり、但し、m、m、m及びmは同時に0になることはなく、m、m、m及びmの少なくとも1つは2~8若しくは2~9の整数又はm、m、m及びmの少なくとも2つは1~8若しくは1~9の整数である。)
    The resin of Claim 7 which has a structure represented by following formula (3).
    Figure JPOXMLDOC01-appb-C000007
    (3)
    (In Formula (3), L is a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may have a substituent, and 6 to 6 carbon atoms which may have a substituent. 30 arylene group, an alkoxylene group having 1 to 30 carbon atoms which may have a substituent, or a single bond, wherein the alkylene group, the arylene group and the alkoxylene group are an ether bond, a ketone bond or an ester May contain bonds,
    R 0 has the same meaning as R Y ,
    R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond,
    R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or A hydroxyl group, and the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2 to R 5 is a hydroxyl group And at least one of R 2 to R 5 is an alkenyl group having 2 to 30 carbon atoms,
    m 2 and m 3 are each independently an integer of 0 to 8,
    m 4 and m 5 are each independently an integer of 0 to 9, provided that m 2 , m 3 , m 4 and m 5 are not 0 at the same time, and m 2 , m 3 , m 4 And at least one of m 5 is an integer of 2 to 8 or 2 to 9, or at least two of m 2 , m 3 , m 4 and m 5 are an integer of 1 to 8 or 1 to 9. )
  9.  下記式(4)で表される構造を有する、請求項7に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000008
    (4)
    (式(4)中、Lは、炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
     R0Aは、前記Rと同義であり、
     R1Aは、炭素数1~30のn価の基又は単結合であり、
     R2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは水酸基であり、またR2Aの少なくとも1つは炭素数2~30のアルケニル基であり、
     nは、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
     Xは、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
     m2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは2~7の整数又は少なくとも2つのm2Aは1~7の整数であり、
     qは、各々独立して、0又は1である。)
    The resin of Claim 7 which has a structure represented by following formula (4).
    Figure JPOXMLDOC01-appb-C000008
    (4)
    (In the formula (4), L is a linear or branched alkylene group having 1 to 30 carbon atoms or a single bond,
    R 0A has the same meaning as R Y ,
    R 1A is an n A valent group having 1 to 30 carbon atoms or a single bond,
    R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, or a hydroxyl group. , The alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A is a hydroxyl group, and R 2A At least one of these is an alkenyl group having 2 to 30 carbon atoms,
    n A has the same meaning as N above. Here, when n A is an integer of 2 or more, the structural formulas in n A [] may be the same or different,
    X A represents an oxygen atom, a sulfur atom, a single bond or no bridge,
    m 2A is each independently an integer from 0 to 7, provided that at least one m 2A is an integer from 2 to 7 or at least two m 2A is an integer from 1 to 7;
    q A is each independently 0 or 1. )
  10.  下記式(0-A)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000009
    (0-A)
    (式(0-A)中、RY’は、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
     RZ’は、炭素数1~60のN価の基又は単結合であり、
     RT’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、RT’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
     X’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
     m’は、各々独立して0~9の整数であり、ここで、m’の少なくとも1つは1~9の整数であり、
     N’は、1~4の整数であり、ここで、N’が2以上の整数の場合、N’個の[ ]内の構造式は同一であっても異なっていてもよく、
     r’は、各々独立して0~2の整数である。)
    A compound represented by the following formula (0-A).
    Figure JPOXMLDOC01-appb-C000009
    (0-A)
    (In the formula (0-A), R Y ′ is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms,
    R Z ′ is an N-valent group having 1 to 60 carbon atoms or a single bond,
    R T ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. And the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R T ′ has 2 to 30 carbon atoms. An alkenyloxy group of
    X ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
    m ′ is each independently an integer of 0 to 9, wherein at least one of m ′ is an integer of 1 to 9,
    N ′ is an integer of 1 to 4, where, when N ′ is an integer of 2 or more, the structural formulas in N ′ [] may be the same or different,
    r ′ is independently an integer of 0 to 2. )
  11.  前記式(0-A)で表される化合物が、下記式(1-A)で表される化合物である、請求項10に記載の化合物。
    Figure JPOXMLDOC01-appb-C000010
    (1-A)
    (式(1-A)中、R0’は、前記RY’と同義であり、
     R1’は、炭素数1~60のn価の基又は単結合であり、
     R2’~R5’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2’~R5’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
     m2’及びm3’は、各々独立して、0~8の整数であり、
     m4’及びm5’は、各々独立して、0~9の整数であり、但し、m2’、m3’、m4’及びm5’は同時に0になることはなく、
     n’は前記N’と同義であり、ここで、n’が2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
     p2’~p5’は、前記rと同義である。)
    The compound according to claim 10, wherein the compound represented by the formula (0-A) is a compound represented by the following formula (1-A).
    Figure JPOXMLDOC01-appb-C000010
    (1-A)
    (In the formula (1-A), R 0 ′ has the same meaning as R Y ′ ,
    R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond,
    R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol A group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2 ′ to R 5 ′ One is an alkenyloxy group having 2 to 30 carbon atoms,
    m 2 ′ and m 3 ′ are each independently an integer of 0 to 8,
    m 4 ′ and m 5 ′ are each independently an integer of 0 to 9, provided that m 2 ′ , m 3 ′ , m 4 ′ and m 5 ′ are not 0 at the same time,
    n ′ has the same meaning as N ′, and when n ′ is an integer of 2 or more, the structural formulas in n [] may be the same or different,
    p 2 ′ to p 5 ′ have the same meaning as r. )
  12.  前記式(0-A)で表される化合物が、下記式(2-A)で表される化合物である、請求項10に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
    (2-A)
    (式(2-A)中、R0A’は、前記RY’と同義であり、
     R1A’は、炭素数1~30のn価の基又は単結合であり、
     R2A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2A’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
     nA’は、前記Nと同義であり、ここで、nA’が2以上の整数の場合、nA’個の[ ]内の構造式は同一であっても異なっていてもよく、
     XA’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
     m2A’は、各々独立して、0~7の整数であり、但し、少なくとも1つのm2A’は1~7の整数であり、
     qA’は、各々独立して、0又は1である。)
    The compound according to claim 10, wherein the compound represented by the formula (0-A) is a compound represented by the following formula (2-A).
    Figure JPOXMLDOC01-appb-C000011
    (2-A)
    (In the formula (2-A), R 0A ′ has the same meaning as R Y ′ ,
    R 1A ′ is an n A valent group having 1 to 30 carbon atoms or a single bond,
    Each R 2A ′ independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. And the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms. An alkenyloxy group of
    n A ′ has the same meaning as N above. Here, when n A ′ is an integer of 2 or more, the structural formulas in n A ′ [] may be the same or different,
    X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
    m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7;
    q A ′ is independently 0 or 1. )
  13.  前記式(1-A)で表される化合物が、下記式(1-1-A)で表される化合物である、請求項11に記載の化合物。
    Figure JPOXMLDOC01-appb-C000012
    (1-1-A)
    (式(1-1-A)中、R0’、R1’、R4’、R5’、n、p2’~p5’、m4’及びm5’は、前記と同義であり、
     R6’~R7’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R10’~R11’は、各々独立して、水素原子又は炭素数2~30のアルケニル基であり、
     ここで、R10’~R11’の少なくとも1つは炭素数2~30のアルケニル基であり、
     m6’及びm7’は、各々独立して、0~7の整数であり、但し、m4’、m5’、m6’及びm7’は同時に0になることはない。)
    The compound according to claim 11, wherein the compound represented by the formula (1-A) is a compound represented by the following formula (1-1-A).
    Figure JPOXMLDOC01-appb-C000012
    (1-1-A)
    (In the formula (1-1-A), R 0 ′ , R 1 ′ , R 4 ′ , R 5 ′ , n, p 2 ′ to p 5 ′ , m 4 ′ and m 5 ′ are as defined above. Yes,
    R 6 ′ to R 7 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An optionally substituted alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein R 10 ′ to R 11 ′ are each independently A hydrogen atom or an alkenyl group having 2 to 30 carbon atoms,
    Here, at least one of R 10 ′ to R 11 ′ is an alkenyl group having 2 to 30 carbon atoms,
    m 6 ′ and m 7 ′ are each independently an integer of 0 to 7, provided that m 4 ′ , m 5 ′ , m 6 ′ and m 7 ′ cannot be 0 at the same time. )
  14.  前記式(1-1-A)で表される化合物が、下記式(1-2-A)で表される化合物である、請求項13に記載の化合物。
    Figure JPOXMLDOC01-appb-C000013
    (1-2-A)
    (式(1-2-A)中、R0’、R1’、R6’、R7’、R10’、R11’、n’、p2’~p5’、m6’及びm7’は、前記と同義であり、
     R8’~R9’は、前記R6’~R7’と同義であり、
     R12’~R13’は、前記R10’~R11’と同義であり、
     m8’及びm9’は、各々独立して、0~8の整数であり、但し、m6’、m7’、m8’及びm9’は同時に0になることはない。)
    14. The compound according to claim 13, wherein the compound represented by the formula (1-1-A) is a compound represented by the following formula (1-2-A).
    Figure JPOXMLDOC01-appb-C000013
    (1-2-A)
    (In the formula (1-2-A), R 0 ′ , R 1 ′ , R 6 ′ , R 7 ′ , R 10 ′ , R 11 ′ , n ′, p 2 ′ to p 5 ′ , m 6 ′ and m 7 ′ is as defined above,
    R 8 ′ to R 9 ′ have the same meanings as R 6 ′ to R 7 ′ ,
    R 12 ′ to R 13 ′ have the same meanings as R 10 ′ to R 11 ′ ,
    m 8 ′ and m 9 ′ are each independently an integer of 0 to 8, provided that m 6 ′ , m 7 ′ , m 8 ′ and m 9 ′ are not 0 at the same time. )
  15.  前記式(2-A)で表される化合物が、下記式(2-1-A)で表される化合物である、請求項12に記載の化合物。
    Figure JPOXMLDOC01-appb-C000014
    (2-1-A)
    (式(2-1-A)中、R0A’、R1A’、nA’、qA’及びXA’、は、前記と同義であり、
     R3A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基又はチオール基であり、ここで、R4A’は、各々独立して、水素原子又は炭素数2~30のアルケニル基であり、ここで、R4A’の少なくとも1つは炭素数2~30のアルケニル基であり、
     m6A’は、各々独立して、0~5の整数である。)
    The compound according to claim 12, wherein the compound represented by the formula (2-A) is a compound represented by the following formula (2-1-A).
    Figure JPOXMLDOC01-appb-C000014
    (2-1-A)
    (In the formula (2-1-A), R 0A ′ , R 1A ′ , n A ′ , q A ′ and X A ′ are as defined above,
    R 3A ′ each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent. Which may be an alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group or a thiol group, wherein each R 4A ′ is independently a hydrogen atom or a carbon number An alkenyl group having 2 to 30 carbon atoms, wherein at least one of R 4A ′ is an alkenyl group having 2 to 30 carbon atoms,
    m 6A ′ is each independently an integer of 0 to 5. )
  16.  請求項10に記載の化合物をモノマーとして得られる、樹脂。 A resin obtained by using the compound according to claim 10 as a monomer.
  17.  下記式(3-A)で表される構造を有する、請求項16に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000015
    (3-A)
    (式(3-A)中、Lは、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基及び前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     R0’は、前記RY’と同義であり、
     R1’は、炭素数1~60のn価の基又は単結合であり、
     R2’~R5’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2’~R5’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
     m2’及びm3’は、各々独立して、0~8の整数であり、
     m4’及びm5’は、各々独立して、0~9の整数であり、但し、m2’、m3’、m4’及びm5’は同時に0になることはない。)
    The resin according to claim 16, which has a structure represented by the following formula (3-A).
    Figure JPOXMLDOC01-appb-C000015
    (3-A)
    (In the formula (3-A), L represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may have a substituent, and a carbon number which may have a substituent. An arylene group having 6 to 30 carbon atoms, an alkoxylene group having 1 to 30 carbon atoms which may have a substituent, or a single bond, and the alkylene group, the arylene group and the alkoxylene group may be an ether bond or a ketone bond. Or it may contain an ester bond,
    R 0 ′ has the same meaning as R Y ′
    R 1 ′ is an n-valent group having 1 to 60 carbon atoms or a single bond,
    R 2 ′ to R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol A group or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group and the alkoxy group may contain an ether bond, a ketone bond or an ester bond, wherein at least one of R 2 ′ to R 5 ′ One is an alkenyloxy group having 2 to 30 carbon atoms,
    m 2 ′ and m 3 ′ are each independently an integer of 0 to 8,
    m 4 ′ and m 5 ′ are each independently an integer of 0 to 9, provided that m 2 ′ , m 3 ′ , m 4 ′ and m 5 ′ are not 0 at the same time. )
  18.  下記式(4-A)で表される構造を有する、請求項16に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000016
    (4-A)
    (式(4-A)中、L’は、炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
     R0A’は、前記RY’と同義であり、
     R1A’は、炭素数1~30のn価の基又は単結合であり、
     R2A’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2A’の少なくとも1つは炭素数2~30のアルケニルオキシ基であり、
     nA’は、前記Nと同義であり、ここで、nA’が2以上の整数の場合、nA’個の[ ]内の構造式は同一であっても異なっていてもよく、
     XA’は、酸素原子、硫黄原子、単結合又は無架橋であることを示し、
     m2A’は、各々独立して、0~7の整数であり、但し、少なくとも1つのm2A’は1~7の整数であり、
     qA’は、各々独立して、0又は1である。)
    The resin according to claim 16, which has a structure represented by the following formula (4-A).
    Figure JPOXMLDOC01-appb-C000016
    (4-A)
    (In the formula (4-A), L ′ is a linear or branched alkylene group having 1 to 30 carbon atoms or a single bond,
    R 0A ′ has the same meaning as R Y ′ ,
    R 1A ′ is an n A valent group having 1 to 30 carbon atoms or a single bond,
    Each R 2A ′ independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent. An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group or a hydroxyl group. And the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, wherein at least one of R 2A ′ has 2 to 30 carbon atoms. An alkenyloxy group of
    n A ′ has the same meaning as N above. Here, when n A ′ is an integer of 2 or more, the structural formulas in n A ′ [] may be the same or different,
    X A ′ represents an oxygen atom, a sulfur atom, a single bond or no bridge,
    m 2A ′ is each independently an integer of 0 to 7, provided that at least one m 2A ′ is an integer of 1 to 7;
    q A ′ is independently 0 or 1. )
  19.  請求項1~6のいずれか1項に記載の化合物及び請求項7~9のいずれか1項に記載の樹脂、並びに請求項10~15のいずれか1項に記載の化合物及び請求項16~18のいずれか1項に記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。 The compound according to any one of claims 1 to 6, the resin according to any one of claims 7 to 9, and the compound according to any one of claims 10 to 15 and claim 16 to The composition containing 1 or more types chosen from the group which consists of resin of any one of 18.
  20.  溶媒をさらに含有する、請求項19に記載の組成物。 20. The composition according to claim 19, further comprising a solvent.
  21.  酸発生剤をさらに含有する、請求項19又は20に記載の組成物。 The composition according to claim 19 or 20, further comprising an acid generator.
  22.  架橋剤をさらに含有する、請求項19~21のいずれか1項に記載の組成物。 The composition according to any one of claims 19 to 21, further comprising a crosslinking agent.
  23.  前記架橋剤が、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、請求項22に記載の組成物。 The crosslinking agent is at least one selected from the group consisting of phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanate compounds, and azide compounds. The composition according to claim 22.
  24.  前記架橋剤が、少なくとも1つのアリル基を有する、請求項22又は23に記載の組成物。 24. The composition according to claim 22 or 23, wherein the crosslinking agent has at least one allyl group.
  25.  前記架橋剤の含有量が、固形成分の全質量の0.1~50質量%である、請求項22~24のいずれか一項に記載の組成物。 The composition according to any one of claims 22 to 24, wherein the content of the crosslinking agent is 0.1 to 50 mass% of the total mass of the solid component.
  26.  架橋促進剤をさらに含有する、請求項22~25のいずれか一項に記載の組成物。 The composition according to any one of claims 22 to 25, further comprising a crosslinking accelerator.
  27.  前記架橋促進剤が、アミン類、イミダゾール類、有機ホスフィン類、及びルイス酸からなる群より選ばれる少なくとも1種である、請求項26に記載の組成物。 27. The composition according to claim 26, wherein the crosslinking accelerator is at least one selected from the group consisting of amines, imidazoles, organic phosphines, and Lewis acids.
  28.  前記架橋促進剤の含有量が、固形成分の全質量の0.1~5質量%である、請求項26又は27に記載の組成物。 The composition according to claim 26 or 27, wherein the content of the crosslinking accelerator is 0.1 to 5 mass% of the total mass of the solid component.
  29.  ラジカル重合開始剤をさらに含有する、請求項19~28のいずれか一項に記載の組成物。 The composition according to any one of claims 19 to 28, further comprising a radical polymerization initiator.
  30.  前記ラジカル重合開始剤が、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種である、請求項19~29のいずれか一項に記載の組成物。 The radical polymerization initiator is at least one selected from the group consisting of a ketone photopolymerization initiator, an organic peroxide polymerization initiator, and an azo polymerization initiator. A composition according to 1.
  31.  前記ラジカル重合開始剤の含有量が、固形成分の全質量の0.05~25質量%である、請求項19~30のいずれか一項に記載の組成物。 The composition according to any one of claims 19 to 30, wherein the content of the radical polymerization initiator is 0.05 to 25 mass% of the total mass of the solid component.
  32.  リソグラフィー用膜形成に用いられる、請求項19~31のいずれか一項に記載の組成物。 The composition according to any one of claims 19 to 31, which is used for forming a film for lithography.
  33.  レジスト永久膜形成に用いられる、請求項19~31のいずれか一項に記載の組成物。 The composition according to any one of claims 19 to 31, which is used for forming a resist permanent film.
  34.  光学部品形成に用いられる、請求項19~31のいずれか一項に記載の組成物。 The composition according to any one of claims 19 to 31, which is used for forming an optical component.
  35.  請求項32に記載の組成物を用いて基板上にフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。 33. A resist pattern forming method, comprising: forming a photoresist layer on a substrate using the composition according to claim 32; and irradiating a predetermined region of the photoresist layer with radiation to perform development.
  36.  請求項32に記載の組成物を用いて基板上に下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。 33. A lower layer film is formed on a substrate using the composition according to claim 32, and at least one photoresist layer is formed on the lower layer film, and then a predetermined region of the photoresist layer is irradiated with radiation. And a resist pattern forming method including a step of developing.
  37.  請求項32に記載の組成物を用いて基板上に下層膜を形成し、前記下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
     前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む、回路パターン形成方法。
    33. A lower layer film is formed on a substrate using the composition according to claim 32, an intermediate layer film is formed on the lower layer film using a resist intermediate layer film material, and at least one layer is formed on the intermediate layer film. Forming a photoresist layer of
    Irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern;
    Etching the intermediate layer film using the resist pattern as a mask, etching the lower layer film using the obtained intermediate layer film pattern as an etching mask, and etching the substrate using the obtained lower layer film pattern as an etching mask. Forming a pattern; and a circuit pattern forming method.
PCT/JP2017/033071 2016-09-13 2017-09-13 Compound, resin, composition, and pattern formation method WO2018052028A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018539754A JP7445382B2 (en) 2016-09-13 2017-09-13 Compounds, resins, compositions and pattern forming methods
KR1020197007287A KR20190053187A (en) 2016-09-13 2017-09-13 COMPOSITIONS, RESINS, COMPOSITIONS
CN201780056312.6A CN109715592A (en) 2016-09-13 2017-09-13 Compound, resin, composition and pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-178443 2016-09-13
JP2016178443 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018052028A1 true WO2018052028A1 (en) 2018-03-22

Family

ID=61618845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033071 WO2018052028A1 (en) 2016-09-13 2017-09-13 Compound, resin, composition, and pattern formation method

Country Status (5)

Country Link
JP (1) JP7445382B2 (en)
KR (1) KR20190053187A (en)
CN (1) CN109715592A (en)
TW (1) TW201829362A (en)
WO (1) WO2018052028A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027206A1 (en) * 2018-07-31 2020-02-06 三菱瓦斯化学株式会社 Optical component-forming composition, optical component, compound, and resin
WO2020158931A1 (en) * 2019-01-31 2020-08-06 三菱瓦斯化学株式会社 Compound, resin, composition, method for forming resist pattern, method for forming circuit pattern and method for purifying resin

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230368A (en) * 1992-02-19 1993-09-07 Toagosei Chem Ind Co Ltd Thermosetting resin composition
JPH0611836A (en) * 1992-03-23 1994-01-21 Japan Synthetic Rubber Co Ltd Resist applying composition
US20030018150A1 (en) * 1999-07-30 2003-01-23 Hynix Semiconductor Inc. Reflection-inhibiting resinn used in process for forming photoresist pattern
JP2004046222A (en) * 2002-07-15 2004-02-12 Canon Inc Electrophotographic photosensitive body, process cartridge and electrophotographic device
JP2008512524A (en) * 2004-09-07 2008-04-24 オフソニックス,インク Monomers and polymers for optical elements
JP2014122281A (en) * 2012-12-21 2014-07-03 Shin Etsu Chem Co Ltd Diallyl group-containing hydroxyphenyl derivative, silicone skeleton-containing polymer compound, negative resist material, photocurable dry film, pattern formation method and coating for protection of electric/electronic component
WO2014123005A1 (en) * 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 Novel aryl compound and method for producing same
KR20160143996A (en) * 2015-06-05 2016-12-15 주식회사 삼양사 Bisphenol-based epoxy compound having alkoxysilyl group and method for preparing the same, and composite of organic-inorganic materials comprising a cured product thereof and method for preparing the composite
JP2017122180A (en) * 2016-01-07 2017-07-13 信越化学工業株式会社 Epoxy-modified silicone resin and method for producing the same, curable composition and electronic component
JP2017125008A (en) * 2016-01-07 2017-07-20 信越化学工業株式会社 Aryl compound and method for producing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746289B4 (en) 1996-10-31 2012-04-19 Merck Patent Gmbh dopants
JP3774668B2 (en) 2001-02-07 2006-05-17 東京エレクトロン株式会社 Cleaning pretreatment method for silicon nitride film forming apparatus
JP3914493B2 (en) 2002-11-27 2007-05-16 東京応化工業株式会社 Underlayer film forming material for multilayer resist process and wiring forming method using the same
CN100350574C (en) 2003-01-24 2007-11-21 东京毅力科创株式会社 Method of CVD for forming silicon nitride film on substrate
JP3981030B2 (en) 2003-03-07 2007-09-26 信越化学工業株式会社 Resist underlayer film material and pattern forming method
JP4388429B2 (en) 2004-02-04 2009-12-24 信越化学工業株式会社 Resist underlayer film material and pattern forming method
US7871751B2 (en) 2004-04-15 2011-01-18 Mitsubishi Gas Chemical Company, Inc. Resist composition
JP4781280B2 (en) 2006-01-25 2011-09-28 信越化学工業株式会社 Antireflection film material, substrate, and pattern forming method
JP4638380B2 (en) 2006-01-27 2011-02-23 信越化学工業株式会社 Antireflection film material, substrate having antireflection film, and pattern forming method
JP4858136B2 (en) 2006-12-06 2012-01-18 三菱瓦斯化学株式会社 Radiation-sensitive resist composition
JP5446118B2 (en) 2007-04-23 2014-03-19 三菱瓦斯化学株式会社 Radiation sensitive composition
JP2010138393A (en) 2008-11-13 2010-06-24 Nippon Kayaku Co Ltd Energy ray-curable resin composition for optical lens sheet, and cured product thereof
EP2743769B1 (en) 2011-08-12 2017-03-22 Mitsubishi Gas Chemical Company, Inc. Resist composition, resist pattern formation method, polyphenol compound used therein, and alcohol compound capable of being derived therefrom
EP2743770B1 (en) * 2011-08-12 2015-12-30 Mitsubishi Gas Chemical Company, Inc. Underlayer film-forming material for lithography, underlayer film for lithography, and pattern formation method
JP2015174877A (en) 2014-03-13 2015-10-05 日産化学工業株式会社 Resin composition containing specified hardening acceleration catalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230368A (en) * 1992-02-19 1993-09-07 Toagosei Chem Ind Co Ltd Thermosetting resin composition
JPH0611836A (en) * 1992-03-23 1994-01-21 Japan Synthetic Rubber Co Ltd Resist applying composition
US20030018150A1 (en) * 1999-07-30 2003-01-23 Hynix Semiconductor Inc. Reflection-inhibiting resinn used in process for forming photoresist pattern
JP2004046222A (en) * 2002-07-15 2004-02-12 Canon Inc Electrophotographic photosensitive body, process cartridge and electrophotographic device
JP2008512524A (en) * 2004-09-07 2008-04-24 オフソニックス,インク Monomers and polymers for optical elements
JP2014122281A (en) * 2012-12-21 2014-07-03 Shin Etsu Chem Co Ltd Diallyl group-containing hydroxyphenyl derivative, silicone skeleton-containing polymer compound, negative resist material, photocurable dry film, pattern formation method and coating for protection of electric/electronic component
WO2014123005A1 (en) * 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 Novel aryl compound and method for producing same
KR20160143996A (en) * 2015-06-05 2016-12-15 주식회사 삼양사 Bisphenol-based epoxy compound having alkoxysilyl group and method for preparing the same, and composite of organic-inorganic materials comprising a cured product thereof and method for preparing the composite
JP2017122180A (en) * 2016-01-07 2017-07-13 信越化学工業株式会社 Epoxy-modified silicone resin and method for producing the same, curable composition and electronic component
JP2017125008A (en) * 2016-01-07 2017-07-20 信越化学工業株式会社 Aryl compound and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISLAM, MD. MONIRUL ET AL.: "Synthesis and characterization of branched bisphenol-A polycarbonates functionalized with siloxane", MACROMOLECULAR RESEARCH, vol. 19, no. 12, 2011, pages 1278 - 1286, XP055105120, ISSN: 1598-5032, DOI: doi:10.1007/s13233-011-1205-1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027206A1 (en) * 2018-07-31 2020-02-06 三菱瓦斯化学株式会社 Optical component-forming composition, optical component, compound, and resin
JPWO2020027206A1 (en) * 2018-07-31 2021-08-12 三菱瓦斯化学株式会社 Compositions and optical components for forming optical components, as well as compounds and resins
WO2020158931A1 (en) * 2019-01-31 2020-08-06 三菱瓦斯化学株式会社 Compound, resin, composition, method for forming resist pattern, method for forming circuit pattern and method for purifying resin

Also Published As

Publication number Publication date
TW201829362A (en) 2018-08-16
CN109715592A (en) 2019-05-03
JPWO2018052028A1 (en) 2019-06-27
KR20190053187A (en) 2019-05-17
JP7445382B2 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
JP7283515B2 (en) Compound, resin, composition, resist pattern forming method and circuit pattern forming method
JP7194355B2 (en) Compound, resin, composition and pattern forming method
JP7069529B2 (en) Compounds, resins, compositions, resist pattern forming methods and circuit pattern forming methods
JP7069530B2 (en) Compounds, resins, compositions and pattern forming methods
JP7194356B2 (en) Compound, resin and composition, resist pattern forming method and circuit pattern forming method
JP7205716B2 (en) Compound, resin, composition, resist pattern forming method and circuit pattern forming method
JP7452947B2 (en) Compounds, resins, compositions, resist pattern forming methods, and circuit pattern forming methods
JP7205715B2 (en) Compound, resin, composition, resist pattern forming method and circuit pattern forming method
JP7083455B2 (en) Compounds, resins, compositions and pattern forming methods
JP7061271B2 (en) Compounds, resins, compositions, resist pattern forming methods and circuit pattern forming methods
JP7068661B2 (en) Compounds, resins, compositions, resist pattern forming methods and pattern forming methods
JP7385827B2 (en) Compound, resin, composition, resist pattern forming method, circuit pattern forming method, and resin purification method
JP7445382B2 (en) Compounds, resins, compositions and pattern forming methods
JP7090843B2 (en) Compounds, resins, compositions, pattern forming methods and purification methods
WO2018155495A1 (en) Compound, resin, composition, pattern forming method and purification method
JP7139622B2 (en) Compound, resin, composition and pattern forming method
JP7145415B2 (en) Compound, resin, composition, pattern forming method and purification method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018539754

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007287

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850929

Country of ref document: EP

Kind code of ref document: A1