WO2018051991A1 - 絶縁電線、コイルおよび電気・電子機器 - Google Patents

絶縁電線、コイルおよび電気・電子機器 Download PDF

Info

Publication number
WO2018051991A1
WO2018051991A1 PCT/JP2017/032936 JP2017032936W WO2018051991A1 WO 2018051991 A1 WO2018051991 A1 WO 2018051991A1 JP 2017032936 W JP2017032936 W JP 2017032936W WO 2018051991 A1 WO2018051991 A1 WO 2018051991A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulated wire
layer
resin
adhesive layer
coil
Prior art date
Application number
PCT/JP2017/032936
Other languages
English (en)
French (fr)
Inventor
智子 八本
秀雄 福田
友松 功
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020197006748A priority Critical patent/KR20190055077A/ko
Priority to JP2018539730A priority patent/JP6974330B2/ja
Priority to CN201780049175.3A priority patent/CN109716451B/zh
Priority to EP17850892.5A priority patent/EP3514803B1/en
Publication of WO2018051991A1 publication Critical patent/WO2018051991A1/ja
Priority to US16/299,924 priority patent/US10529463B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J169/00Adhesives based on polycarbonates; Adhesives based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J181/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Adhesives based on polysulfones; Adhesives based on derivatives of such polymers
    • C09J181/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/08Insulating conductors or cables by winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • H01B3/426Polycarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0241Disposition of insulation comprising one or more helical wrapped layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/36Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes condensation products of phenols with aldehydes or ketones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/38Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes condensation products of aldehydes with amines or amides

Definitions

  • the present invention relates to an insulated wire coil and an electric / electronic device.
  • Insulator-related equipment for example, high-speed switching elements, inverter motors, coils for electrical and electronic equipment such as transformers, insulated wires are used as magnet wires.
  • Insulated wires include insulated wires (insulated wires) made of so-called enameled wires, insulated wires having a multilayer coating layer including a layer made of enamel resin and a coating layer made of a resin different from enamel resin. .
  • Patent Document 1 covers a sheet-like base material in which a rectangular conductor whose outer periphery is coated with an insulating coating is laminated and a thermosetting adhesive layer formed by using an epoxy resin composition is formed on the outer periphery.
  • Patent Document 2 discloses a technique in which insulating paper is disposed in a coil housing groove formed in a stator core of a rotating electrical machine, the coil is fixed to the coil housing groove by a varnish, and the coil and the stator core are fixed while being insulated. Has been.
  • thermosetting adhesive layer formed on the sheet base material is made of an epoxy resin composition. Therefore, when used in a high temperature environment (for example, 200 ° C. or higher), the thermosetting adhesive layer softens. The adhesiveness was lost.
  • a varnish that uses a solvent is required to insert a varnish into the coil receiving groove of the stator and fix the insulated wire to the core.
  • the present invention is an insulated wire that can be fixed to other parts without using a varnish only with an insulated wire having excellent adhesion in a high temperature environment, high partial discharge voltage, and excellent bending workability, and this insulation
  • the present invention relates to a coil using an electric wire and an electric / electronic device using the coil.
  • the present inventors have found that an insulating wire having a specific adhesive layer on the outer periphery of an insulating layer covering a conductor can adhere to another member with a strong adhesive force even if the insulating layer is at a high temperature (for example, 200 ° C.). It was found that it can be fixed. Furthermore, it has been found that this insulated wire has a high PDIV at the bent portion and is excellent in heat resistance.
  • the present invention has been further studied based on these findings and has been completed.
  • An insulated wire having an insulating layer on the outer periphery of a single conductor or a plurality of conductors, and having an adhesive layer on the outer periphery of the insulating layer,
  • the adhesive layer has a thickness of 2 to 200 ⁇ m, the resin constituting the adhesive layer does not have a melting point, has a tensile elastic modulus at 250 ° C. of 0.6 ⁇ 10 7 to 10 ⁇ 10 7 Pa, and
  • An insulated wire which is a resin having a substance having two or more amino groups on the surface of the adhesive layer.
  • a film layer is provided on the outer periphery of the adhesive layer, the resin constituting the film layer does not have a melting point, and a tensile elastic modulus at 250 ° C. is 0.6 ⁇ 10 7 to 10 ⁇ 10 7 Pa.
  • the insulated wire according to (1) which is a resin.
  • the adhesive layer contains at least one resin selected from the group consisting of polyetherimide, polycarbonate, polysulfone, polyphenylsulfone, and polyethersulfone.
  • a numerical range represented by using “to” means a range including numerical values described before and after that as a lower limit value and an upper limit value.
  • the adhesive layer can be fixed to other members with a strong adhesive force, the partial discharge start voltage (PDIV) of the bent portion is high, and the heat resistance is excellent. Moreover, the coil using the insulated wire of this invention and the electrical / electronic device using the said coil are excellent in insulation.
  • the insulated wire of the present invention has an insulating layer on the outer periphery of a conductor having a rectangular cross section, and has an adhesive layer on the outer periphery of the insulating layer. Furthermore, it is preferable to have a film layer on the outer periphery of this adhesive layer.
  • the conductor constituting the insulated wire and the composition of each layer will be described later.
  • a preferred insulated wire 1 of the present invention shown in FIG. 1 includes a conductor 11, a resin coating layer 14 formed on the outer peripheral surface of the conductor 11, and a film layer 15.
  • the conductor 11 has a rectangular cross section (flat rectangular shape).
  • a conductor having a rectangular cross section includes a conductor having a rectangular cross section and a conductor having a square cross section.
  • the conductor which has roundness in a cross-sectional corner part is also included.
  • the resin coating layer 14 has a two-layer structure including an innermost insulating layer 12 in contact with the outer peripheral surface of the conductor 11 and an adhesive layer 13 in contact with the outer peripheral surface of the insulating layer 12.
  • the total thickness of the resin coating layer 14 is preferably set to 65 to 330 ⁇ m.
  • the thickness of each layer constituting the resin coating layer or the resin coating layer is determined by observing a cross section of the insulated wire cut perpendicular to the longitudinal axis direction using a microscope. 16 points randomly selected the shortest distance from the outer periphery of the inner layer adjacent to the resin layer to be measured (or the conductor if the layer to be measured is in contact with the conductor) to the outer periphery of the layer to be measured Is a value calculated as an average value thereof.
  • a preferred insulated wire 2 of the present invention whose sectional view is shown in FIG. 2 has the same configuration as that of the insulated wire 1 except that the insulating layer 22 has a two-layer structure of an insulating layer 22A and an insulating layer 22B. .
  • conductors 11 and 21 used in the present invention ordinary conductors used in insulated wires can be widely used.
  • metal conductors such as copper wires and aluminum wires can be used.
  • it may be a divided conductor provided with a plurality of subdivided conductors.
  • it is a low oxygen copper having an oxygen content of 30 ppm or less, more preferably a low oxygen copper or oxygen free copper conductor having a oxygen content of 20 ppm or less. If the oxygen content is 30 ppm or less, when the conductor is melted with heat to prevent welding, voids due to oxygen contained in the welded portion are not generated, and the electrical resistance of the welded portion is prevented from deteriorating. The strength of the welded portion can be maintained.
  • the conductors 11 and 21 used in the present invention have a rectangular cross section (flat rectangular shape).
  • the rectangular conductor can increase the space factor with respect to the slots of the stator core at the time of winding as compared with a circular conductor.
  • the flat rectangular conductor has a shape in which chamfers (curvature radius r) are provided at the four corners of the cross section in the width direction of the conductor as shown in FIG. 1 or 2 in terms of suppressing partial discharge from the corner. preferable.
  • the curvature radius r is preferably 0.6 mm or less, and more preferably 0.2 to 0.4 mm.
  • the size of the conductor is not particularly limited, but in the case of a flat rectangular conductor, the width (long side) is preferably 1.0 to 5.0 mm, more preferably 1.4 to 4.0 mm, and the thickness in a rectangular cross-sectional shape.
  • the length (short side) is preferably 0.4 to 3.0 mm, and more preferably 0.5 to 2.5 mm.
  • the ratio between the width (long side) and the thickness (short side) (thickness: width) is preferably 1: 1 to 1: 4.
  • the diameter is preferably 0.3 to 3.0 mm, more preferably 0.4 to 2.7 mm.
  • the insulating layers 12 and 22 are preferably layers made of a thermosetting resin (after being baked).
  • a layer made of resin resin Z
  • it is formed of a layer formed only from resin Z, and resin Z and other components (for example, resin or additive other than resin Z). It is used to mean to include both aspects of the layer.
  • the content rate of the “other components” in the layer made of the resin Z is not particularly limited as long as the target effect is not impaired, and is usually larger than 0% by mass and 10% by mass or less ( Preferably it is 5 mass% or less.
  • the thermosetting resin layer means a cured resin layer, and does not mean a resin layer before curing.
  • the insulating layers 12 and 22A are preferably resin layers that are cured by treating a thermosetting resin varnish by ordinary baking coating or the like.
  • the thermosetting resin used for the insulating layers 12 and 22A is not particularly limited, and examples thereof include thermosetting polyimide (PI), polyamideimide (PAI), polyesterimide, polyester (PEst), and polyurethane. Among these, at least one selected from polyimide and polyamideimide is more preferable.
  • the PI varnish may be prepared by dissolving PI in dimethylacetamide or the like so that the resin content is 15 to 30% by mass.
  • the PAI varnish can be prepared by dissolving PAI in N-methyl 2-pyrrolidone so that the resin content is 15 to 30% by mass.
  • one type of thermosetting resin may be used alone, or two or more types may be used in combination.
  • the polyimide that can constitute the insulating layers 12 and 22A is not particularly limited, and ordinary polyimides such as wholly aromatic polyimides and thermosetting aromatic polyimides can be used.
  • a polyamic acid solution obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine compound in a polar solvent by a conventional method a product obtained by imidization by a heat treatment during baking is used. Can be used.
  • the polyamideimide that can form the insulating layers 12 and 22A is not particularly limited, and examples thereof include those obtained by directly reacting a tricarboxylic acid anhydride and a diisocyanate compound in a polar solvent, for example.
  • those obtained by first reacting a diamine compound with a tricarboxylic acid anhydride in a polar solvent, first introducing an imide bond, and then amidating with a diisocyanate compound can be mentioned.
  • the polyesterimide that can form the insulating layers 12 and 22 is not particularly limited as long as it is a polymer having an ester bond and an imide bond in the molecule and is thermosetting.
  • an imide bond is formed from a tricarboxylic acid anhydride and an amine compound
  • an ester bond is formed from an alcohol and a carboxylic acid or an alkyl ester thereof
  • the free acid group or anhydride group of the imide bond is added to the ester formation reaction.
  • a polyesterimide for example, those obtained by reacting a tricarboxylic acid anhydride, a dicarboxylic acid compound or an alkyl ester thereof, an alcohol compound and a diamine compound by an ordinary method can be used.
  • the polyester which can comprise the insulating layers 12 and 22 should just be a polymer which has an ester bond in a molecule
  • HPE H class polyester
  • Examples of such a type H polyester include those obtained by modifying a resin by adding a phenol resin or the like among aromatic polyesters and having a heat resistance class H.
  • the thickness of the insulating layers 12 and 22A is not particularly limited, and is usually 30 to 200 ⁇ m, more preferably 40 to 180 ⁇ m.
  • the thickness of the insulating layer 22B is not particularly limited, and is usually 40 to 200 ⁇ m, more preferably 60 to 160 ⁇ m.
  • thermosetting resin used for the insulating layers 12 and 22A can be used as the thermosetting resin used for the insulating layers 12 and 22A.
  • polyimide Uimide AR (trade name, manufactured by Unitika Ltd.), U-varnish (trade name, manufactured by Ube Industries Co., Ltd.) and the like can be mentioned.
  • polyamideimide examples include HI406 (trade name, manufactured by Hitachi Chemical Co., Ltd.).
  • the insulating layers 12 and 22A may have a form in which bubbles are present in the layers.
  • the adhesive layers 13 and 23 can be bonded to the core, for example, and as a result, the insulated wire can be fixed to the core.
  • the core include a coil core, specifically, a stator core of a rotating machine, a rotor core, and the like.
  • the heat treatment is performed at 170 ° C. or higher and 210 ° C. or lower.
  • the heat treatment temperature for adhesion is preferably 170 to 210 ° C., more preferably 180 to 200 ° C.
  • the heat treatment time for bonding is 10 to 40 minutes, and more preferably 10 to 30 minutes. If the heating temperature is too high, the thermoplastic resin will melt, and if the heating temperature is too low, the adhesive force will not be exhibited.
  • the adhesive layers 13 and 23 are made of a thermoplastic resin having specific physical properties. That is, the thermoplastic resin constituting the adhesive layers 13 and 23 does not have a melting point. Since the thermoplastic resin constituting the adhesive layer does not have a melting point, the adhesive layer is hard to be hardened even if it is repeatedly exposed to high temperatures or exposed to high temperatures for a long period of time, and has a firm adhesion state to the object. It becomes possible to maintain it stably for a long time.
  • “having no melting point” means that no crystal melting peak or crystallization peak is observed in a differential scanning calorimeter (DSC) measurement.
  • DSC differential scanning calorimeter
  • the thermoplastic resin constituting the adhesive layers 13 and 23 has a tensile elastic modulus at 250 ° C. of 0.6 ⁇ 10 7 to 10 ⁇ 10 7 Pa, and 0.6 ⁇ 10 7 to 4.0 ⁇ 10 7. Pa is preferable, and 0.8 ⁇ 10 7 to 3.5 ⁇ 10 7 Pa is more preferable.
  • a tensile elastic modulus By having such a tensile elastic modulus, a strong fixing force can be expressed even in a severer environment at a higher temperature.
  • the “tensile elastic modulus at 250 ° C.” can be measured by the method described in the section of Examples described later.
  • the thermoplastic resin constituting the adhesive layers 13 and 23 has a substance having two or more amino groups on the surface of the adhesive layer.
  • the substance having an amino group is dispersed on the adhesive layer surface by spraying, for example.
  • the substance having two or more amino groups include 4,4′-diaminodiphenyl ether, 1,4-butanediamine, 1,6-hexanediamine, and 1,10-decanediamine.
  • the substance having an amino group is contained in an amount of 3 to 15% by mass, preferably 3 to 12% by mass, more preferably 4 to 10% by mass with respect to the adhesive layer 13. If there are too many substances having amino groups, the persistence of adhesion will be weak, and if there are too few substances, the reaction for adhesion will be weak.
  • the thermoplastic resin constituting the adhesive layers 13 and 23 is not particularly limited as long as it has the above physical properties.
  • thermoplastic resin for example, polyetherimide
  • a crosslinking reaction is caused by an amino group.
  • the adhesive force of the adhesive layers 13 and 23 increases.
  • the polycarbonate, polysulfone, and the like that can form the adhesive layers 13 and 23 also increase the adhesive force of the adhesive layers 13 and 23 by causing a crosslinking reaction. As a result, adhesion can be performed in a state having a strong adhesive force.
  • the total content of polyetherimide, polycarbonate, and polysulfone is preferably 50% by mass or more, more preferably 70% by mass or more, and further more preferably 80% by mass or more. Preferably, 90 mass% or more is particularly preferable.
  • the thickness of the adhesive layers 13 and 23 is not particularly limited, and is 2 to 200 ⁇ m, preferably 5 to 200 ⁇ m, from the viewpoint of satisfying both a sufficient fixing force and a high density (space factor) of the coil. If the thickness of the adhesive layer is too thick, cracks may occur during bending, and if it is too thin, the adhesiveness will deteriorate.
  • a porous resin may be used as the thermoplastic resin constituting the adhesive layers 13 and 23 .
  • a manufacturing method will not be specifically limited if it is a method of becoming porous. For example, the method including processes, such as a heating, is mentioned. By being porous, an effect of improving the adhesion can be obtained.
  • the film layers 15 and 25 play a role equivalent to that of insulating paper used in the process of forming a coil by winding a winding made of a round wire or a rectangular wire around a stator coil constituting a driving motor of a hybrid vehicle. Is required. For this reason, it is calculated
  • the film layers 15 and 25 can use at least one resin selected from polyetherimide (PEI), polycarbonate (PC), and polysulfone (PSU). It is also preferable to use a blend resin of these resins.
  • the film layers 15 and 25 are formed, for example, by winding a film layer having a predetermined width around the outer periphery a plurality of times in a wire of an insulated wire in which an insulating layer and an adhesive layer are formed on a conductor.
  • the thickness of the film layer 15 is 10 to 200 ⁇ m, preferably about 50 to 180 ⁇ m. If the thickness of the film layer is too thick, it is disadvantageous from the viewpoint of the space factor (percentage occupied by the conductor), and if it is too thin, it breaks during bending.
  • the film layers 15 and 25 are heated together with the adhesive layers 13 and 23 during the heat treatment for adhesion, and react with a substance having two or more amino groups dispersed on the surface of the adhesive layers 13 and 23 to be bonded. Expresses power. This reaction is the same as the reaction between the adhesive layers 13 and 23 and the substance having an amino group.
  • the insulated wire 1 having the configuration shown in FIG. 1 has an insulating layer made of a thermoplastic resin between the insulating layer 12 and the adhesive layer 13, and has the configuration shown in FIG. Good. That is, the insulating layer is composed of two layers, an insulating layer 22A and an insulating layer 22B.
  • the thermoplastic resin constituting the insulating layer 22B is not particularly limited.
  • the thermoplastic resin constituting the insulating layer 22B for example, an extrudable thermoplastic resin is used.
  • the thermoplastic resin preferably has a melting point of 250 ° C. or higher, preferably 270 ° C. or higher, more preferably 300 ° C. or higher. This melting point can be measured by differential scanning calorimetry (DSC).
  • the insulating layer 22B has a relative dielectric constant of 4.5 or less, preferably 4.0 or less, more preferably 3.8 or less, in that the partial discharge start voltage can be further increased. .
  • This relative dielectric constant can be measured with a commercially available dielectric constant measuring apparatus. About measurement temperature and a frequency, it changes as needed. In this specification, unless otherwise specified, it is a value measured at 25 ° C. and 50 Hz.
  • thermoplastic resin having a relative dielectric constant of 4.5 or less examples include polyetheretherketone, modified polyetheretherketone, and thermoplastic polyimide.
  • the insulating layer 22B it is particularly preferable to use a thermoplastic resin having a melting point of 270 ° C. or higher and 450 ° C. or lower and a relative dielectric constant of 4.5 or lower.
  • polyether ether ketone PEEK: melting point 343 ° C., relative dielectric constant 3.2
  • thermoplastic polyimide TPI: melting point 388 ° C., relative dielectric constant 3.2
  • modified PEEK melting point 345
  • a relative dielectric constant of 3.2 examples include polyetheretherketone, modified polyetheretherketone, and thermoplastic polyimide.
  • thermoplastic resin used for the insulating layer 22B may be one type alone, or two or more types. When two or more kinds are mixed and two or more melting points exist, it is preferable to include a resin having a melting point of 270 ° C. or more.
  • the insulated wire of the present invention is formed by covering an outer peripheral surface of a conductor with an insulating layer and an adhesive layer. Moreover, it forms by coat
  • the extrusion temperature conditions for extruding the insulating layer and the adhesive layer are appropriately set according to the thermoplastic resin used. As an example of a preferable extrusion temperature, specifically, the extrusion temperature is set to a temperature about 40 ° C. to 60 ° C. higher than the melting point in order to obtain a melt viscosity suitable for extrusion coating.
  • the insulating layer and the adhesive layer of the thermoplastic resin are formed by extrusion molding at a set temperature. In this case, there is an advantage that the thickness of the insulating layer or the adhesive layer can be increased because it is not necessary to pass through a baking furnace when forming the insulating layer or the adhesive layer in the manufacturing process.
  • the method for forming the film layers 15 and 25 is not particularly limited, but after forming the insulating layers 12 and 22 and the adhesive layer 13, a plurality of layers are formed in a spiral shape with the wire winding direction as an axis while using the film winding equipment while passing the wires. By wrapping the film, it can be formed as a film layer. Therefore, since the insulated wires 1 and 2 can form both the insulating layer 22B and the adhesive layers 13 and 23 by extrusion molding, it is not necessary to prepare and use a varnish. For this reason, since it can form without using a solvent, it can manufacture friendly to an environment.
  • the insulated wire 2 may be laminated
  • the film layer 25 is formed on the outermost periphery of the laminated insulated wires. That is, the film layer 25 may be formed on the outermost periphery (the surface of the adhesive layer 23) in a state where the insulated wires 2 are laminated, and may not be formed between the insulated wires 2.
  • the insulated wire 1 can also be laminated with the same configuration as the insulated wire 2.
  • the insulated wire of the present invention can be used as a coil in fields requiring electrical characteristics (voltage resistance) and heat resistance, such as various electric and electronic devices.
  • the insulated wire of the present invention is used for a motor, a transformer, etc., and can constitute a high-performance electric / electronic device.
  • it is suitably used as a winding for a drive motor of a hybrid car (HV) and an electric car (EV).
  • HV hybrid car
  • EV electric car
  • the insulated wire of this invention can be used for the coil for superconductivity by using a superconductor for a conductor.
  • the superconducting coil using the insulated wire can be suitably used as a superconducting magnet, for example, and can provide a superconducting linear motor.
  • the coil of the present invention only needs to have a form suitable for various electric and electronic devices, and is formed by coiling the insulated wire of the present invention, a predetermined portion after bending the insulated wire of the present invention Are formed by electrically connecting the two. It does not specifically limit as a coil formed by coiling the insulated wire of this invention, What wound the elongate insulated wire helically is mentioned. In such a coil, the number of windings of the insulated wire is not particularly limited. Usually, an iron core or the like is used when winding an insulated wire.
  • the coil 40 is formed by winding the insulated wire 1 or 2 (the insulated wire 2 is shown in the drawing) a plurality of times in the groove 42 formed in the core 41.
  • the coil 40 is heated after winding to melt the connection layer 23 and the film layer 25 of the insulated wire 2, and the insulated wires 2 and the insulated wire 2 are fused to the core 41 constituting the inner wall of the groove 42. Put on.
  • the heat treatment is performed at 180 to 200 ° C. for 20 to 30 minutes, depending on the type of the adhesive layer. In this way, the insulated wire 2 can be fixed in the groove 42 without using a varnish.
  • a coil used for a stator of a rotating electrical machine or the like is an example in which a predetermined portion is electrically connected after bending an insulated wire.
  • a plurality of such coils are obtained by cutting the insulated wire of the present invention having the configuration shown in FIGS. 1 and 2 into a predetermined length and bending it into a U shape or the like.
  • the electric wire segment 54 is produced.
  • the coil 53 (refer FIG. 5) formed by connecting two open end parts (terminal) 54a, such as U shape of each electric wire segment 54, is mentioned.
  • the adhesive layer 13 and the slot 52 can be fixed through the film layer 15 by heating the coil 53 to a temperature of, for example, 170 ° C. or more, and the coil is fixed. Is done.
  • powder coating is performed after winding, and the insulated wire can be fused by heating during the powder coating.
  • the number of processes can be reduced.
  • the electric / electronic device using this coil is not particularly limited.
  • a rotating electric machine particularly, a drive motor for HV and EV
  • the rotating electrical machine can have the same configuration as that of a conventional rotating electrical machine except that the rotating electrical machine is provided.
  • the stator 50 can have the same configuration as the conventional stator except that the electric wire segment 54 is formed of the insulated wire of the present invention. That is, the stator 50 has a stator core 51 and a coil 53 as shown in FIG.
  • the coil 53 includes a wire segment 54 made of an insulated wire according to the present invention having the configuration shown in FIG. 1 or FIG.
  • the electric wire segments 54 may be incorporated into the slot 52 by one, but are preferably incorporated as a set of two as shown in FIG.
  • coils 53 formed by alternately connecting the open ends 54 a that are the two ends of the electric wire segments 54 bent as described above are accommodated in the slots 52 of the stator core 51.
  • the open end 54a of the wire segment 54 may be connected and then stored in the slot 52. After the insulating segment 54 is stored in the slot 52, the open end 54a of the wire segment 54 is bent. May be connected.
  • the insulated wire of the present invention uses a conductor having a rectangular cross-sectional shape, for example, the ratio (space factor) of the cross-sectional area of the conductor to the slot cross-sectional area of the stator core can be increased, and the characteristics of the electric / electronic device Can be improved.
  • Example 1 The insulated wire of Example 1 which has a structure shown in FIG. 2 was manufactured.
  • ⁇ Insulating layer 22A> A polyamideimide (PAI) varnish was applied to the surface of the conductor using a die having a cross-sectional shape similar to that shown in FIG. 1 of the innermost thermosetting resin layer in contact with the conductor. PAI varnish is obtained by dissolving PAI in N-methyl 2-pyrrolidone. Then, it was passed through a baking furnace having a furnace length of 8 m set at 450 ° C. at a speed of 15 seconds. A layer having an average thickness of 5 ⁇ m was formed by this single baking process. By repeating this eight times, an insulating layer 22A (insulating layer (A) in Table 1 below) having a thickness of 40 ⁇ m was formed.
  • PAI varnish is obtained by dissolving PAI in N-methyl 2-pyrrolidone. Then, it was passed through a baking furnace having a furnace length of 8 m set at 450 ° C. at a speed of 15 seconds. A layer having an average thickness of 5 ⁇ m was formed by this
  • PEEK Polyetheretherketone
  • the material used was polyetherimide (PEI) (manufactured by Savic, trade name: Ultem 1000, relative dielectric constant 3.2), and the extrusion temperature conditions were as follows. (Extrusion temperature condition) C1: 260 ° C C2: 300 ° C C3: 300 ° C H: 360 ° C D: 360 ° C After PEEK extrusion coating was performed using an extrusion die, the adhesive layer 23 (connection layer (C) in Table 1 below) having a thickness of 50 ⁇ m was formed on the outside of the insulating layer 22B by allowing water cooling for 2 seconds.
  • connection layer (C) in Table 1 below connection layer (C) in Table 1 below
  • thermoplastic resin forming the adhesive layers 13 and 23 is cooled, 4,4′-diaminodiphenyl ether as a substance having an amino group is applied to the surface of the adhesive layers 13 and 23 by, for example, spraying. , 23 to a mass ratio of 8% by mass.
  • PC polycarbonate
  • Examples 2 to 10 Comparative Examples 1 to 5> Examples 2 to 5 and 10 shown in the following table (shown in FIG. 2) were the same as Example 1 except that the type of resin forming each layer and the thickness of each layer were changed as shown in Table 1 below. Insulated wires), 6 to 9 (insulated wires shown in FIG. 1) were obtained. In addition, insulated wires of Comparative Examples 1 to 5 were obtained. In Table 1 below, “-” means that no layer was provided.
  • Adhesive strength high-temperature adhesive strength in a high-temperature atmosphere (200 ° C)
  • the adhesion strength was evaluated by the following adhesion test using two insulated wires obtained by superposing two wires (in each example and each comparative example) having a layer structure before forming a film layer.
  • the overlapped length was 200 mm, and two insulated wires were fixed by heat treatment at 200 ° C. for 30 minutes.
  • This electric wire was set in a tensile testing machine with a thermostatic bath (manufactured by Shimadzu Corporation, trade name: Autograph AGS-J, thermostatic bath temperature: 200 ° C.), and both ends of the electric wires overlapped at a tensile speed of 50 mm / min were mutually connected.
  • a fixing force of 2.0 MPa or more was designated as “A”
  • B a fixing force of 0.5 MPa or more and less than 2.0 MPa
  • C a fixing force of less than 0.5 MPa
  • the “flat surface” refers to a surface in which a long side (side along the left-right direction in FIGS. 1 and 2) is continuously formed in the axial direction in the cross-sectional shape of the rectangular insulated wire. Therefore, for example, the test sample is in a state in which another insulated wire 1 is stacked above or below the insulated wire 1 shown in FIG.
  • the case where the peak voltage is 1000 (Vp) or more is “A”, the case where it is 700 (Vp) or more and less than 1000 (Vp) is “B”, and the case where it is less than 700 (Vp) is “ C ”.
  • an evaluation of “B” or higher is a pass level, and “A” is a particularly excellent level.
  • the adhesion between the conductor and the resin layer in the insulated wire was evaluated by the following bending workability test.
  • a 300 mm long straight test piece was cut out from each manufactured insulated wire.
  • a scratch (cut) having a depth of about 5 ⁇ m and a length of 2 ⁇ m in each of two directions, the longitudinal direction and the vertical direction.
  • the edge surface refers to a surface in which a short side (thickness, a side along the vertical direction in FIGS.
  • PAI Polyamideimide (trade name: HI406, manufactured by Hitachi Chemical Co., Ltd., varnished resin and then baked to form a layer)
  • PI Polyimide (trade name: Uimide AR, manufactured by Unitika Co., Ltd., varnished resin, and then baked to form a layer)
  • PEEK Polyetheretherketone (trade name: KetaSpire KT-820, manufactured by Solvay Specialty Polymers, melted resin, then extrusion coated to form a layer)
  • PC Polycarbonate (trade name: Gulliver 300, manufactured by Sumika Stylon Polycarbonate Co., Ltd., melted resin, and then extrusion coated to form a layer)
  • PSU Polysulfone (trade name: Udel P3703, manufactured by Solvay Specialty Polymers, melted resin, and then extrusion coated to form a layer)
  • PPSU Polyphenylsulfone
  • the insulated wires of Examples 1 to 10 that satisfy the provisions of the present invention are firmly attached to other members at 200 ° C. with a strong adhesive force, and have no additional insulating layer. Further, it can be seen that the partial discharge start voltage (PDIV) of the bent portion is high, and the bending workability and heat resistance are excellent. In addition, since it is excellent in bending workability, when inserting an insulated wire in the slot of a stator core, it turns out that the shift
  • PDIV partial discharge start voltage
  • the fixing force at 200 ° C. failed.
  • the bending test was not performed because it did not have a film layer.
  • the fixing force and bending workability at 200 ° C. were unacceptable.
  • the fixing force at 200 ° C. was unacceptable.
  • the insulated wire of Comparative Example 5 failed in bending workability because the resin constituting the adhesive layer had a melting point.

Abstract

単体または複数のそれぞれの導体の外周に絶縁層を有し、該絶縁層の外周に接着層を有する絶縁電線であって、前記接着層の厚さが2~200μmであり、前記接着層を構成する樹脂が、融点を持たず、250℃における引張弾性率が0.6×10~10×10Paであり、かつアミノ基を2個以上持つ物質を前記接着層表面に有する樹脂である絶縁電線、前記絶縁電線からなるコイル、および前記コイルを用いた電気・電子機器。

Description

絶縁電線、コイルおよび電気・電子機器
 本発明は、絶縁電線コイルおよび電気・電子機器に関する。
 インバータ関連機器、例えば高速スイッチング素子、インバータモータ、変圧器等の電気・電子機器用コイルには、マグネットワイヤとして、絶縁電線が用いられている。絶縁電線には、いわゆるエナメル線からなる絶縁電線(絶縁ワイヤ)や、エナメル樹脂からなる層と、エナメル樹脂とは別種の樹脂からなる被覆層とを含む多層の被覆層を有する絶縁電線等がある。
 電気・電子機器用コイルにおいて絶縁電線(巻線)を固定化したり、絶縁性を高めたりするために、様々な技術が開発されている。例えば、特許文献1には、絶縁被膜で外周が被覆された平角導体が積層され、その外周にエポキシ樹脂組成物が用いられてなる熱硬化性接着剤層が形成されたシート状基材が被覆されている構成が開示されている。また特許文献2には、回転電機のステータコアに形成されたコイル収容溝部に絶縁紙を配置し、ワニスによりコイルをコイル収容溝部に固定して、コイルとステータコア間を絶縁しながら固定する技術が開示されている。
特開2010-126684号公報 特開2007-166731号公報
 特許文献1記載の技術では、シート基材に形成された熱硬化性接着剤層がエポキシ系樹脂組成物からなるため、高温環境(例えば200℃以上)で使用すると熱硬化性接着層が軟化して接着性が失われた。特許文献2記載の技術では、ステータのコイル収容溝部内にワニスを入れて絶縁電線をコアに固定するため、溶剤を使用するワニスが必要となっていた。
 本発明は、高温環境における固着力に優れ、部分放電電圧が高く、曲げ加工性に優れた絶縁電線のみで、ワニスを使用せずに他の部品に固定することが可能な絶縁電線、この絶縁電線を用いたコイル、およびそのコイルを用いた電気・電子機器の関する。
 本発明者らは、導体を被覆する絶縁層の外周に特定の接着層を有する絶縁電線が、高温下(例えば、200℃)であっても、接着層が強固な固着力で他の部材に固着できることを見出した。さらに、この絶縁電線が、曲げ部のPDIVが高くまた耐熱性にも優れていることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、本発明の上記課題は、以下の手段によって解決された。
(1)単体または複数のそれぞれの導体の外周に絶縁層を有し、該絶縁層の外周に接着層を有する絶縁電線であって、
 前記接着層の厚さが2~200μmであり、前記接着層を構成する樹脂が、融点を持たず、250℃における引張弾性率が0.6×10~10×10Paであり、かつアミノ基を2個以上持つ物質を前記接着層表面に有する樹脂である絶縁電線。
(2)前記接着層の外周にフィルム層を有し、該フィルム層を構成する樹脂が、融点を持たず、かつ250℃における引張弾性率が0.6×10~10×10Paである樹脂である(1)に記載の絶縁電線。
(3)前記フィルム層が、ポリエーテルイミド、ポリカーボネイト、ポリスルホンからなる群から選択される少なくとも1種の樹脂を含有する(2)に記載の絶縁電線。
(4)前記接着層が、ポリエーテルイミド、ポリカーボネイト、ポリスルホン、ポリフェニルスルホン、ポリエーテルスルホンからなる群から選択される少なくとも1種の樹脂を含有する(1)~(3)のいずれか1項に記載の絶縁電線。
(5)前記接着層が多孔質である、(1)~(4)のいずれか1項に記載の絶縁電線。
(6)(1)~(5)のいずれか1項に記載の絶縁電線からなるコイル。
(7)(1)~(5)のいずれか1項に記載の絶縁電線からなる超電導用コイル。
(8)(6)に記載のコイルを有する電気・電子機器。
 本発明において、「~」を用いて表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明の絶縁電線は、接着層が他の部材に対して強固な接着力で固着することができ、曲げ部の部分放電開始電圧(PDIV)が高く、耐熱性に優れる。また本発明の絶縁電線を用いたコイル、当該コイルを用いた電気・電子機器は、絶縁性に優れる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の絶縁電線の好ましい実施形態の一例を示した概略斜視断面図である。 本発明の絶縁電線の別の好ましい実施形態の一例を示した概略斜視断面図である。 本発明の絶縁電線の好ましい別の実施形態の一例を示した概略断面図である。 コイルの好ましい実施形態の一例を示した概略部分断面図である。 電気・電子機器に用いられるステータの好ましい実施形態の一例を示した概略斜視図である。 電気・電子機器に用いられるステータの好ましい実施形態の一例を示した概略分解斜視図である。
[絶縁電線]
 本発明の絶縁電線は、断面が矩形の導体の外周に絶縁層を有し、この絶縁層の外周に接着層を有している。さらに、この接着層の外周にフィルム層を有していることが好ましい。絶縁電線を構成する導体、各層の組成については後述する。
 以下、本発明の絶縁電線の好ましい実施形態を、図面を参照して説明する。
 本発明は、本発明で規定されること以外は下記実施形態に限定されるものではない。また、各図面に示される形態は、本発明の理解を容易にするための模式図であり、各部材の大きさ、厚さ、相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。さらに、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。
 図1に示した本発明の好ましい絶縁電線1は、導体11と、導体11の外周面に形成された樹脂被覆層14、とフィルム層15とを有する。
 導体11は、断面形状が矩形(平角形状)である。本発明において、断面が矩形である導体は、断面が長方形の導体と、断面が正方形の導体とを包含する。また、断面角部に丸みを有する導体も包含する。
 樹脂被覆層14は、導体11の外周面と接触する最も内側の絶縁層12と、絶縁層12の外周面と接触する接着層13とからなる2層構造になっている。樹脂被覆層14の総厚は65~330μmに設定されていることが好ましい。
 本明細書において、樹脂被覆層ないし樹脂被覆層を構成する各層の厚さは、マイクロスコープを用いて、絶縁電線をその長手軸方向に対して垂直に切断した断面を観察して求める。そして、測定対象の樹脂層に隣接する内側の層(測定対象の層が導体と接している場合は導体)の外周から測定対象の層の外周までの最短距離を、無作為に選択した16点について測定し、それらの平均値として算出される値である。
 図2に断面図を示した本発明の好ましい絶縁電線2は、絶縁層22が絶縁層22Aと絶縁層22Bとの2層構造になっていること以外は、絶縁電線1と同様の構成である。
 以下、図1および2を参照して本発明の絶縁電線を構成する導体、絶縁層、接着層およびフィルム層について説明する。
 <導体11、21>
 本発明に用いる導体11、21としては、絶縁電線で用いられている通常のものを広く使用することができ、例えば、銅線、アルミニウム線等の金属導体を用いることができる。さらに、細分化した導体を複数備えた分割導体でもよい。好ましくは、酸素含有量が30ppm以下の低酸素銅、さらに好ましくは20ppm以下の低酸素銅または無酸素銅の導体である。酸素含有量が30ppm以下であれば、導体を溶接するために熱で溶融させた場合、溶接部分に含有酸素に起因するボイドの発生がなく、溶接部分の電気抵抗が悪化することを防止するとともに溶接部分の強度を保持することができる。
 本発明で使用する導体11、21は、その断面形状が矩形(平角形状)である。平角形状の導体は、円形のものと比較し、巻線時にステータコアのスロットに対する占積率を高めることができる。
 平角形状の導体は、角部からの部分放電を抑制する点において、図1または2に示すように、導体の幅方向断面の4隅に面取り(曲率半径r)を設けた形状であることが好ましい。曲率半径rは、0.6mm以下が好ましく、0.2~0.4mmがより好ましい。
 導体の大きさは、特に限定されないが、平角導体の場合、矩形の断面形状において、幅(長辺)は1.0~5.0mmが好ましく、1.4~4.0mmがより好ましく、厚さ(短辺)は0.4~3.0mmが好ましく、0.5~2.5mmがより好ましい。幅(長辺)と厚さ(短辺)の長さの割合(厚さ:幅)は、1:1~1:4が好ましい。一方、断面形状が円形の導体の場合、直径は0.3~3.0mmが好ましく、0.4~2.7mmがより好ましい。なお、幅(長辺)と厚さ(短辺)の長さの割合(厚さ:幅)が1:1のとき、長辺とは1対の対向する辺を意味し、短辺とは他の1対の対向する辺を意味する。
 <絶縁層12、22>
 本発明の絶縁電線において、絶縁層12、22は、(焼付塗装した後の)熱硬化性樹脂からなる層であることが好ましい。
 本発明において、「樹脂(樹脂Z)からなる層」という場合、樹脂Zのみから形成された層と、樹脂Zと他の成分(例えば、樹脂Z以外の樹脂または添加剤)とで形成された層との両態様を包含する意味に用いる。ここで、樹脂Zからなる層中における上記「他の成分」の含有率は、目的の効果を損なわない限り特に限定されるものではなく、通常は、0質量%より大きく、10質量%以下(好ましくは5質量%以下)である。
 本発明において熱硬化性樹脂層とは、硬化した状態の樹脂層を意味し、硬化前の樹脂層を意味するものではない。
 本発明の絶縁電線において、絶縁層12、22Aは熱硬化性樹脂のワニスを通常の焼付け塗布等により処理して硬化させた樹脂層であることが好ましい。
 絶縁層12、22Aに用いる熱硬化性樹脂としては、特に限定されないが、例えば、熱硬化性ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエステルイミド、ポリエステル(PEst)、ポリウレタン、等が挙げられる。なかでも、ポリイミドおよびポリアミドイミドから選択される少なくとも1種がより好ましい。
 例えば、PIのワニスは、PIをジメチルアセトアミド等に樹脂分が15~30質量%になるように溶解したものを用いることができる。またPAIのワニスは、PAIをN-メチル2-ピロリドンに樹脂分が15~30質量%になるように溶解したものを用いることができる。
 絶縁層12、22Aには、熱硬化性樹脂を1種単独で用いてもよく、2種以上を併用してもよい。
 絶縁層12、22Aを構成し得るポリイミドは、特に限定されず、全芳香族ポリイミドおよび熱硬化性芳香族ポリイミドなど、通常のポリイミドを用いることができる。また、常法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、焼付け時の加熱処理によってイミド化させることによって得られるものを用いることができる。
 絶縁層12、22Aを構成し得るポリアミドイミドは、特に限定されないが、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート化合物を直接反応させて得たものが挙げられる。または、極性溶媒中でトリカルボン酸無水物にジアミン化合物を先に反応させて、まずイミド結合を導入し、次いでジイソシアネート化合物でアミド化して得られるものが挙げられる。
 絶縁層12、22を構成しうるポリエステルイミドは、分子内にエステル結合とイミド結合を有するポリマーであって熱硬化性のものであれば特に限定されない。例えば、トリカルボン酸無水物とアミン化合物からイミド結合を形成し、アルコールとカルボン酸またはそのアルキルエステルからエステル結合を形成して、イミド結合の遊離酸基または無水基がエステル形成反応に加わることで得られるものを用いることができる。このようなポリエステルイミドは、例えば、トリカルボン酸無水物、ジカルボン酸化合物又はそのアルキルエステル、アルコール化合物およびジアミン化合物を通常の方法で反応させて得られるものを用いることもできる。
 また、絶縁層12、22を構成しうるポリエステルは、分子内にエステル結合を有するポリマーであって熱硬化性のものであればよく、H種ポリエステル(HPE)が好ましい。このようなH種ポリエステルとしては、例えば、芳香族ポリエステルのうちフェノール樹脂等を添加することによって樹脂を変性させたもので、耐熱クラスがH種であるものが挙げられる。
 絶縁層12、22Aの厚さは特に限定されず、通常は30~200μmであり、より好ましくは40~180μmである。また絶縁層22Bの厚さも特に限定されず、通常は40~200μmであり、より好ましくは60~160μmである。
 絶縁層12、22Aに用いる熱硬化性樹脂として市販品を用いることができる。例えば、ポリイミドとして、UイミドAR(商品名、ユニチカ社製)、U―ワニス(商品名、宇部興産社製)等が挙げられる。ポリアミドイミドとして、HI406(商品名、日立化成社製)等が挙げられる。絶縁層12、22Aは、その層中に気泡が存在した形態であってもよい。
 <接着層13、23>
 接着層13、23は、例えばコアと接着することができ、結果、絶縁電線をコアに固定化することができる。コアとしては、例えば、コイルのコア、具体的には回転機械のステータコア、ロータコア等が挙げられる。この接着層13、23とコアとをフィルム層15を介して接触させた状態で、170℃以上210℃以下の加熱処理に付す。接着のための加熱処理温度は170~210℃とすることが好ましく、180~200℃とすることがより好ましい。接着のための加熱処理時間は10~40分間とし、10~30分間とすることがより好ましい。加熱温度が高すぎると熱可塑性樹脂が溶け出してしまい、加熱温度が低すぎると接着力を発現しなくなる。
 接着層13、23は特定物性の熱可塑性樹脂からなる。すなわち接着層13、23を構成する熱可塑性樹脂は融点を持たない。接着層を構成する熱可塑性樹脂が融点を持たないことにより、繰り返し高温に曝されたり、長期間高温に曝されたりしても、接着層が硬くなりにくく、対象物との強固な固着状態を安定に、長期間持続的に維持することが可能となる。本発明において「融点を持たない」とは、示差走査熱量計(DSC)測定において結晶融解ピークもしくは結晶化ピークが観測されないことをいう。
 また接着層13、23を構成する上記熱可塑性樹脂は、250℃における引張弾性率が0.6×10~10×10Paであり、0.6×10~4.0×10Paであることが好ましく、0.8×10~3.5×10Paであることがさらに好ましい。かかる引張弾性率を有することにより、より高温の過酷環境下においても強固な固着力を発現することができる。なお、「250℃における引張弾性率」は、後述の実施例の項に記載の方法で測定することができる。
 かつ、接着層13、23を構成する上記熱可塑性樹脂にはアミノ基を2個以上持つ物質を接着層表面に有する。具体的には、接着層13、23を形成する熱可塑性樹脂を冷却した後、例えばスプレーにてこのアミノ基を持つ物質を接着層表面に分散させる。このアミノ基を2個以上持つ物質としては、4,4’-ジアミノジフェニルエーテル、1,4-ブタンジアミン、1,6-ヘキサンジアミンおよび1,10-デカンジアミンが挙げられる。アミノ基を持つ物質は、接着層13に対して3~15質量%、好ましくは3~12質量%、より好ましくは4~10質量%含まれる。アミノ基を持つ物質が多すぎると接着の持続性が弱くなり、少なすぎると接着の為の反応が弱くなる。
 接着層13、23を構成する熱可塑性樹脂は上記の物性を有すれば特に制限されず、例えば、ポリエーテルイミド(PEI)、ポリカーボネイト(PC)、ポリスルホン(PSU)、ポリフェニルスルホン(PPSU)、およびポリエーテルスルホン(PES)から選ばれる少なくとも1種の樹脂を用いることができ、ポリエーテルイミド(PEI)、ポリカーボネイト(PC)、およびポリスルホン(PSU)から選ばれる少なくとも1種を用いることが好ましい。また、これらの樹脂のブレンド樹脂を用いることも好ましい。
 接着層13、23を構成しうる熱可塑性樹脂にアミノ基を2個以上持つ物質としてジアミン化合物を分散させると、接着の際に行う加熱によって熱可塑性樹脂(例えば、ポリエーテルイミド)がジアミン化合物のアミノ基によって架橋反応を起こす。これによって、接着層13、23の接着力が増す。
 また、接着層13、23を構成しうるポリカーボネイト、ポリスルホン等も、架橋反応起こすことによって、接着層13、23の接着力が増す。
 これによって、強固な接着力を有する状態で接着を行うことができる。
 上記接着層13、23を構成する熱可塑性樹脂中、ポリエーテルイミド、ポリカーボネイト、およびポリスルホンの含有量は、合計で50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。
 接着層13、23の厚さは特に限定されず、十分な固着力とコイルの高密度化(占積率)を両立する観点から2~200μmであり、好ましくは5~200μmである。接着層の厚さが厚すぎると曲げ加工時に亀裂が発生する場合があり、薄すぎると接着性が低下することになる。
 接着層13、23を構成する熱可塑性樹脂は、多孔質になったものを用いてもよい。製造方法は、多孔質になる方法であれば特に限定されない。例えば、加熱等の工程を含む方法が挙げられる。多孔質であることにより密着性が向上する効果が得られる。
 <フィルム層15、25>
 フィルム層15、25は、例えばハイブリッド車の駆動用モータを構成するステータコイル周りに、丸線や平角線からなる巻線を巻きコイルを形成する工程において使用する絶縁紙と同等の役割を果たすことが求められる。このため、絶縁性に優れ、かつ耐熱性に優れることが求められる。例えば、フィルム層15、25は、ポリエーテルイミド(PEI)、ポリカーボネイト(PC)およびポリスルホン(PSU)から選ばれる少なくとも1種の樹脂を用いることができる。また、これらの樹脂のブレンド樹脂を用いることも好ましい。フィルム層15、25は、例えば、導体上に絶縁層および接着層を形成した絶縁電線の通線中に、所定幅のフィルム層を外周に複数回、巻回し、層として形成される。フィルム層15の層の厚さは、10~200μmであり、好ましくは50~180μm程度である。フィルム層の厚さが厚すぎると占積率(導体の占める割合)からの観点から不利となり、薄すぎると曲げ加工時に破断する。
 フィルム層15、25は、接着のための加熱処理の際に、接着層13、23とともに加熱され、接着層13、23表面に分散されたアミノ基を2個以上持つ物質と反応して、接着力を発現する。この反応は、接着層13、23とアミノ基を持つ物質との反応と同様である。
 <絶縁層22B>
 本発明において、図1に示した構成を有する絶縁電線1は、絶縁層12と接着層13との間に熱可塑性樹脂からなる絶縁層を配し、図2に示した構成を有してもよい。すなわち、絶縁層が絶縁層22Aと絶縁層22Bの2層で構成されている。
 絶縁層22Bを構成する熱可塑性樹脂は特に制限されない。絶縁層22Bを構成する熱可塑性樹脂としては、例えば、押出成形可能な熱可塑性樹脂を用いる。この点で、熱可塑性樹脂は、融点が250℃以上、好ましくは270℃以上、さらに好ましくは300℃以上のものが好ましい。この融点は示差走査熱量分析(DSC)により測定することができる。
 さらに絶縁層22Bは、部分放電開始電圧をより一層高くできる点で、比誘電率が4.5以下であり、好ましくは4.0以下であり、さらに好ましくは3.8以下であることが好ましい。この比誘電率は市販の誘電率測定装置で測定することができる。測定温度、周波数については、必要に応じて変更するものである。本明細書においては、特に記載の無い限り、25℃、50Hzにおいて測定した値である。
 上記押出成形可能な比誘電率が4.5以下の熱可塑性樹脂としては、ポリエーテルエーテルケトン、変性ポリエーテルエーテルケトン、熱可塑性ポリイミド、等が挙げられる。
 上記絶縁層22Bには、融点が270℃以上450℃以下で、比誘電率が4.5以下である熱可塑性樹脂を用いることが特に好ましい。例えば、ポリエーテルエーテルケトン(PEEK:融点343℃、比誘電率3.2)、熱可塑性ポリイミド(TPI:融点388℃、比誘電率3.2)、変性ポリエーテルエーテルケトン(変性PEEK:融点345℃、比誘電率3.2)が挙げられる。この他には、ポリアリールエーテルケトン(PAEK:融点343℃、比誘電率3.2)、ポリフェニレンサルファイド(PPS:融点280℃、比誘電率3.5)、等が挙げられる。好ましくは、PEEK、PPS、変性PEEKから選ばれる少なくとも1種の樹脂が用いられる。
 絶縁層22Bに用いる熱可塑性樹脂は1種単独でもよく、2種以上を用いてもよい。2種以上混合の場合で融点が2種類以上存在する場合は270℃以上の融点を有する樹脂を含めるとよい。
 [絶縁電線の製造方法]
 本発明の絶縁電線は、導体の外周面に、絶縁層と接着層とを被覆することで形成される。また接着層の外周面にフィルム層を被覆することで形成される。
 上記絶縁層および接着層を押出成形する際の押出温度条件は、用いる熱可塑性樹脂に応じて適宜に設定される。好ましい押出温度の一例を挙げると、具体的には、押出被覆に適した溶融粘度にするために融点よりも約40℃から60℃高い温度に押出温度を設定する。このように、温度設定された押出成形によって熱可塑性樹脂の絶縁層および接着層を形成する。この場合、製造工程にて絶縁層や接着層を形成する際に焼付炉を通す必要がないため、絶縁層や接着層の厚さを厚くできるという利点がある。
 フィルム層15、25の形成方法は特に限定されないが、絶縁層12、22と接着層13の形成後に、通線しながら、フィルム巻用設備を用いて通線方向を軸としてらせん状に複数層、フィルムを巻き付けることにより、フィルム層として形成することができる。
 したがって、絶縁電線1,2は、絶縁層22B、接着層13、23のいずれも押出成形によって形成することができるため、ワニスを調製して用いる必要がない。このため、溶剤を用いることなく形成することができるため、環境に優しく製造することができる。
 また、図3に示すように、絶縁電線2が複数層に積層されていてもよい。絶縁電線2が積層された構成では、フィルム層25は、積層された絶縁電線の最外周に形成されている。すなわち、フィルム層25が、各絶縁電線2を積層した状態の最外周(接着層23表面)に形成されていて、絶縁電線2間には形成されていない構成であってもよい。図示はしていないが、絶縁電線1も絶縁電線2と同様の構成で積層することが可能である。
 [コイルおよび電気・電子機器]
 本発明の絶縁電線は、コイルとして、各種電気・電子機器など、電気特性(耐電圧性)や耐熱性を必要とする分野に利用可能である。例えば、本発明の絶縁電線はモータやトランス等に用いられ、高性能の電気・電子機器を構成できる。特にハイブリッドカー(HV)および電気自動車(EV)の駆動モータ用の巻線として好適に用いられる。このように、本発明によれば、本発明の絶縁電線を用いたコイル、そのコイルを用いた電気・電子機器、特にHVやEVの駆動モータを提供できる。また、本発明の絶縁電線は、導体に超電導体を用いることによって、超電導用コイルに用いることができる。この絶縁電線を用いた超電導用コイルは、例えば、超電導磁石として好適に用いることができ、超電導リニアモーターを提供できる。
 本発明のコイルは、各種電気・電子機器に適した形態を有していればよく、本発明の絶縁電線をコイル加工して形成したもの、本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるもの等が挙げられる。
 本発明の絶縁電線をコイル加工して形成したコイルとしては、特に限定されず、長尺の絶縁電線を螺旋状に巻き回したものが挙げられる。このようなコイルにおいて、絶縁電線の巻線数等は特に限定されない。通常、絶縁電線を巻き回す際には鉄芯等が用いられる。
 例えば、図4に示すように、コア41に形成された溝42内に絶縁電線1または2(図面には絶縁電線2を示した)を複数回巻いて、コイル40が形成されている。コイル40は、巻線後に加熱処理を行って、絶縁電線2の接続層23およびフィルム層25を溶融させて、絶縁電線2同士、および絶縁電線2を溝42の内壁を構成するコア41に融着させる。加熱処理は、接着層の種類にもよるが、180~200℃、20~30分行う。このようにして、ワニスを用いることなく、溝42内に絶縁電線2を固定することができる。
 絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるものとして、回転電機等のステータに用いられるコイルが挙げられる。このようなコイルは、例えば、図6に示されるように、図1~図2に示す構成を有する本発明の絶縁電線を所定の長さに切断してU字形状等に曲げ加工して複数の電線セグメント54を作製する。そして、各電線セグメント54のU字形状等の2つの開放端部(末端)54aを互い違いに接続してなるコイル53(図5参照)が挙げられる。本発明の絶縁電線を用いた場合、コイル53を、例えば170℃以上の温度に加熱することにより、接着層13とスロット52とをフィルム層15を介して固着することができ、コイルが固定化される。例えば、巻き線後に紛体塗装が行われるが、この紛体塗装時の加熱によって、絶縁電線の融着を行うことができる。このように、他工程の加熱工程を利用して融着が行えるので、工程数の削減が図れる。また、本発明の絶縁電線で形成したコイルの固定にワニスを用いる必要がない。このため、紛体塗装後のワニスの塗布、昇温、ワニスの硬化の各工程を省略することが可能になる。よって、さらに工程数が削減され、製造コストが削減される。
 このコイルを用いてなる電気・電子機器としては、特に限定されない。このような電気・電子機器の好ましい一態様として、例えば、図5に示されるステータ50を備えた回転電機(特にHVおよびEVの駆動モータ)が挙げられる。この回転電機は、ステータ50を備えていること以外は、従来の回転電機と同様の構成とすることができる。
 ステータ50は、電線セグメント54が本発明の絶縁電線で形成されていること以外は従来のステータと同様の構成とすることができる。すなわち、ステータ50は、図5に示されるように、ステータコア51と、コイル53とを有している。コイル53は、例えば図6に示されるように、図1または図2に示した構成を有する本発明の絶縁電線からなる電線セグメント54がステータコア51のスロット52に組み込まれ、開放端部54aが電気的に接続されてなる。ここで、電線セグメント54は、スロット52に1本で組み込まれてもよいが、好ましくは図6に示したように2本一組として組み込まれる。このステータ50は、上記のように曲げ加工した電線セグメント54を、その2つの末端である開放端部54aを互い違いに接続してなるコイル53が、ステータコア51のスロット52に収納されている。このとき、電線セグメント54の開放端部54aを接続してからスロット52に収納してもよく、また、絶縁セグメント54をスロット52に収納した後に、電線セグメント54の開放端部54aを折り曲げ加工して接続してもよい。
 本発明の絶縁電線は、断面形状が矩形の導体を用いているため、例えば、ステータコアのスロット断面積に対する導体の断面積の比率(占積率)を高めることができ、電気・電子機器の特性を向上させることができる。
 以下に、本発明を実施例に基づいて、さらに詳細に説明するが、本発明をこれらに限定されない。
 [実施例、比較例]
<実施例1>
 図2に示す構造を有する実施例1の絶縁電線を製造した。
<導体11>
 導体11として、断面平角(長辺3.2mm×短辺2.4mmで、四隅の面取りの曲率半径r=0.3mm)の平角導体(酸素含有量15ppmの銅)を用いた。
<絶縁層22A>
 ポリアミドイミド(PAI)ワニスを導体に接する最も内側の熱硬化性樹脂層の断面の外形の形状が図1に示す断面形状と相似形のダイスを使用して、導体の表面に塗布した。PAIワニスは、N-メチル2-ピロリドンにPAIを溶解したものである。そして450℃に設定した炉長8mの焼付け炉内を通過時間15秒となる速度で通過させた。この一回の焼付け工程で平均厚さ5μmの層を形成した。これを繰り返し8回行うことで厚さ40μmの絶縁層22A(下表1における絶縁層(A))を形成した。
 <絶縁層22B>
 押出機のスクリューは、30mmフルフライト、L/D=25、圧縮比3を用いた。材料はポリエーテルエーテルケトン(PEEK)(ビクトレックスジャパン社製、商品名:450G、比誘電率3.2)を用い、押出温度条件は次のようにした。
(押出温度条件)
   C1:260℃
   C2:300℃
   C3:380℃
   H :380℃
   D :380℃
 押出ダイを用いてPEEKの押出被覆を行った後、2秒の時間を空けて水冷して導体11の外側に厚さ160μmの絶縁層22B(下表1における絶縁層(B))を形成した。
 <接着層13>
 押出機のスクリューは、30mmフルフライト、L/D=25、圧縮比3を用いた。材料は、ポリエーテルイミド(PEI)(サビック社製、商品名:ウルテム1000、比誘電率3.2)を用い、押出温度条件は次のようにした。
(押出温度条件)
   C1:260℃
   C2:300℃
   C3:300℃
   H :360℃
   D :360℃
 押出ダイを用いてPEEKの押出被覆を行った後、2秒の時間を空けて水冷して絶縁層22Bの外側に厚さ50μmの接着層23(下表1における接続層(C))を形成した。
 そして、接着層13、23を形成する熱可塑性樹脂を冷却させた後、例えばスプレーにて、接着層13、23表面に、アミノ基を持つ物質として4,4’-ジアミノジフェニルエーテルを、接着層13、23に対する質量比が8質量%となるように分散させた。
 <フィルム層15>
 フィルム層15には厚さ100μmのポリカーボネイト(PC)フィルム(住化スタイロンポリカーボネート社製、商品名:ガリバー300)を用いた。このフィルムを通線しながら、フィルム巻用設備を用いて通線方向を軸としてらせん状に複数層、フィルムを巻き付けることにより、アミノ基を持つ物質が分散された接着層13の表面に厚さ150μmのフィルム層15を形成した。
 <実施例2~10、比較例1~5>
 各層を形成する樹脂の種類と各層厚を下表1に示す通りに変更したこと以外は、上記実施例1と同様にして、下表に示す実施例2~5、10(図2に示した絶縁電線)、6~9(図1に示した絶縁電線)を得た。また、比較例1~5の絶縁電線を得た。
 なお、下表1おいて、「-」は層を設けなかったこと等を意味する。
 <測定、評価>
(1)接着層を構成する樹脂の250℃における引張弾性率
 表1に記載の接着層(A)および(B)に使用する熱可塑性樹脂について、厚さ1.6mmのダンベル片(ASTM D 638)を準備し、動的粘弾性測定装置(商品名:DMA8000、パーキンエルマー社製)を用いて引張弾性率を測定した。引張モードにより、1Hzで、10℃/分の昇温速度で50~270℃まで昇温しながら引張弾性率を測定し、250℃における引張弾性率を得た。
 (2)高温雰囲気中(200℃)における固着力(高温固着力)
 フィルム層を形成する前の層構成を有する電線2本(各実施例、各比較例において)を重ね合せた2本の絶縁電線を用いて、下記固着力試験により、密着力を評価した。
 重ね合せた長さを200mmとし、200℃、30分加熱処理することで2本の絶縁電線を固着させた。この電線を恒温槽付引張試験機(島津製作所社製、商品名:オートグラフ AGS-J、恒温槽温度:200℃)にセットし、50mm/minの引張速度で重ね合せた電線の両端を互いに反対方向に引っ張った。2本の電線の固着状態を破断するのに要した強度を固着力とし、下記基準により評価した。
 固着力が2.0MPa以上を「A」、固着力が0.5MPa以上2.0MPa未満を「B」、固着力が0.5MPa未満を「C」とした。本試験において、評価は「B」以上が合格レベルであり、「A」は特に優れたレベルである。
 (3)電気特性(部分放電開始電圧(PDIV))試験
 製造した各絶縁電線の部分放電開始電圧の測定には、部分放電試験機(菊水電子工業社製、商品名:KPD2050)を用いた。
 各絶縁電線を、2本の絶縁のフラット面同士を長さ150mmに亘って隙間がないように密着させた試験試料を作製した。この試験試料の2本の導体間に電極をつなぎ、温度25℃にて、50Hzの交流電圧かけながら連続的に昇圧し、10pCの部分放電が発生した時点の電圧をピーク電圧(Vp)で読み取った。ここで、「フラット面」とは、平角形状の絶縁電線の断面形状において、長辺(図1および図2において左右方向に沿う辺)が軸線方向に連続して形成する面をいう。したがって、上記試験試料は、例えば、図1に示した絶縁電線1の上方または下方に別の絶縁電線1を重ねた状態になっている。
 ピーク電圧が、1000(Vp)以上であった場合を「A」とし、700(Vp)以上1000(Vp)未満であった場合を「B」とし、700(Vp)未満であった場合を「C」とした。本試験において、評価は「B」以上が合格レベルであり、「A」は特に優れたレベルである。
 (4)曲げ加工性試験(密着性試験)
 絶縁電線における導体と樹脂層との密着性を、下記曲げ加工性試験により、評価した。
 製造した各絶縁電線から長さ300mmの直状試験片を切り出した。この直状試験片のエッジ面の樹脂層(A)の中央部に、専用冶具を用いて、長手方向と垂直方向との2方向それぞれに、深さ約5μmで長さ2μmのキズ(切り込み)をつけた(このとき、樹脂層(A)と導体とは密着しており、剥離していない)。ここで、エッジ面とは、平角形状の絶縁電線の断面形状において、短辺(厚さ、図1および図2において上下方向に沿う辺)が軸線方向に連続して形成する面をいう。したがって、上記キズは、図1に示される絶縁電線1の左右側面のいずれか一方の側面に、設けられている。
 このキズを頂点として、直径1.0mmの鉄芯を軸として直状試験片を180°(U字状)に曲げ、この状態を5分間維持した。直状試験片の頂点付近に発生する導体と樹脂層(A)との剥離の進行を目視で観察した。
 本試験において、樹脂層(A)に形成した、いずれのキズも拡張せず、樹脂層(A)が導体から剥離していなかった場合を合格:「A」とした。また樹脂層(A)に形成したキズの少なくとも1本が拡張して、樹脂層(A)の全体が導体等から剥離した場合を不合格:「C」とした。
 上記の結果を下記表1にまとめて示す。下表に記載の樹脂の詳細は下記の通りである。
 PAI:ポリアミドイミド(商品名:HI406、日立化成社製、樹脂をワニス化した後、焼付塗布して層を形成)
 PI:ポリイミド(商品名:UイミドAR、ユニチカ社製、樹脂をワニス化した後、焼付塗布して層を形成)
 PEEK:ポリエーテルエーテルケトン(商品名:キータスパイアKT-820、ソルベイスペシャルティポリマーズ社製、樹脂を溶融させた後、押出被覆して層を形成)
 PC:ポリカーボネイト(商品名:ガリバー300、住化スタイロンポリカーボネート社製、樹脂を溶融させた後、押出被覆して層を形成)
 PSU:ポリスルホン(商品名:ユーデルP3703、ソルベイスペシャルティポリマーズ社製、樹脂を溶融させた後、押出被覆して層を形成)
 PPSU:ポリフェニルスルホン(商品名:レーデルR5800、ソルベイスペシャルティポリマーズ社製、樹脂を溶融させた後、押出被覆して層を形成)
 PES:ポリエーテルスルホン(商品名:スミカエクセル4800G、住友化学社製、樹脂を溶融させた後、押出被覆して層を形成)
 PEI:ポリエーテルイミド(商品名:ウルテム1000、サビック社製、樹脂を溶融させた後、押出被覆して層を形成)
 エポキシ樹脂:ビスフェノールA型エポキシ樹脂(商品名:1004、三菱化学社製、使用時にメチルエチルケトン(MEK)を用いてワニス化)
 PET:ポリエチレンテレフタレート(商品名:TR8550、帝人社製、樹脂を溶融させた後、押出被覆して層を形成)
Figure JPOXMLDOC01-appb-T000001
 
<表の注>
絶縁層(A):導体の外周面上に形成された絶縁層
絶縁層(B):絶縁層(A)の外周面上に形成された絶縁層
接着層(C):絶縁層(A)または絶縁層(B)の外周面上に形成された接着層
厚さ:単位はμm
質量比:接着層に対するアミノ基を持つ物質の質量割合
弾性率:250℃における引張弾性率
 表1から明らかなように、本発明の規定を満たす実施例1~10の絶縁電線は、200℃において他の部材に対して強固な接着力で固着しており、付加絶縁層を有さずに、曲げ部の部分放電開始電圧(PDIV)が高く、曲げ加工性および耐熱性に優れることがわかる。なお、曲げ加工性に優れることから、ステータコアのスロット内に絶縁電線を挿入する際にフィルム層のズレが生じないことがわかる。
 さらに、実施例1~10の絶縁電線は、接着層を押出成形で作製されることから、ワニスを用いることがないため、溶剤を使用することがない。このため、安全で環境に優しい製造工程になる。
 比較例1の絶縁電線は、接着層およびフィルム層を有さないため、200℃における固着力が不合格であった。なお、フィルム層を有さないことから曲げ加工試験は行わなかった。比較例2および3の絶縁電線は、接着層を有さないため、200℃における固着力および曲げ加工性が不合格であった。比較例4の絶縁電線は、接着層を構成する樹脂の250℃における引張弾性率が、本発明の規定の範囲外であるため、200℃における固着力が不合格であった。比較例5の絶縁電線は、接着層を構成する樹脂が融点を持つため、曲げ加工性が不合格であった。
 本発明をその実施形態および実施例とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年9月13日に日本国で特許出願された特願2016-179039に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
  1、2 絶縁電線
 11、21 導体
 12、22、22A、22B 絶縁層
 13、23 接着層
 14、24 樹脂被覆層
 15、25 フィルム層
 40 コイル
 41 コア
 42 溝
 50 ステータ
 51 ステータコア
 52 スロット
 53 コイル
 54 電線セグメント
 54a 開放端部

Claims (8)

  1.  単体または複数のそれぞれの導体の外周に絶縁層を有し、該絶縁層の外周に接着層を有する絶縁電線であって、
     前記接着層の厚さが2~200μmであり、前記接着層を構成する樹脂が、融点を持たず、250℃における引張弾性率が0.6×10~10×10Paであり、かつアミノ基を2個以上持つ物質を前記接着層表面に有する樹脂である絶縁電線。
  2.  前記接着層の外周にフィルム層を有し、該フィルム層を構成する樹脂が、融点を持たず、かつ250℃における引張弾性率が0.6×10~10×10Paである樹脂である請求項1に記載の絶縁電線。
  3.  前記フィルム層が、ポリエーテルイミド、ポリカーボネイト、ポリスルホンからなる群から選択される少なくとも1種の樹脂を含有する請求項2に記載の絶縁電線。
  4.  前記接着層が、ポリエーテルイミド、ポリカーボネイト、ポリスルホン、ポリフェニルスルホン、ポリエーテルスルホンからなる群から選択される少なくとも1種の樹脂を含有する請求項1~3のいずれか1項に記載の絶縁電線。
  5.  前記接着層が多孔質である、請求項1~4のいずれか1項に記載の絶縁電線。
  6.  請求項1~5のいずれか1項に記載の絶縁電線からなるコイル。
  7.  請求項1~5のいずれか1項に記載の絶縁電線からなる超電導用コイル。
  8.  請求項6に記載のコイルを有する電気・電子機器。
PCT/JP2017/032936 2016-09-13 2017-09-12 絶縁電線、コイルおよび電気・電子機器 WO2018051991A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197006748A KR20190055077A (ko) 2016-09-13 2017-09-12 절연 전선, 코일 및 전기·전자 기기
JP2018539730A JP6974330B2 (ja) 2016-09-13 2017-09-12 絶縁電線、コイルおよび電気・電子機器
CN201780049175.3A CN109716451B (zh) 2016-09-13 2017-09-12 绝缘电线、线圈和电气/电子设备
EP17850892.5A EP3514803B1 (en) 2016-09-13 2017-09-12 Insulated wire, coil, and electrical or electronic equipment
US16/299,924 US10529463B2 (en) 2016-09-13 2019-03-12 Insulated wire, coil, and electrical or electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016179039 2016-09-13
JP2016-179039 2016-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/299,924 Continuation US10529463B2 (en) 2016-09-13 2019-03-12 Insulated wire, coil, and electrical or electronic equipment

Publications (1)

Publication Number Publication Date
WO2018051991A1 true WO2018051991A1 (ja) 2018-03-22

Family

ID=61618809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032936 WO2018051991A1 (ja) 2016-09-13 2017-09-12 絶縁電線、コイルおよび電気・電子機器

Country Status (6)

Country Link
US (1) US10529463B2 (ja)
EP (1) EP3514803B1 (ja)
JP (1) JP6974330B2 (ja)
KR (1) KR20190055077A (ja)
CN (1) CN109716451B (ja)
WO (1) WO2018051991A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622394B (zh) * 2017-05-25 2022-01-11 三菱电机株式会社 定子、电动机、压缩机及空调装置
DE212018000379U1 (de) * 2017-12-18 2020-07-24 Dana Tm4 Inc. Statorstruktur mit zwei Schichten vorgewickelter Spulen
WO2019176500A1 (ja) * 2018-03-12 2019-09-19 古河電気工業株式会社 集合導線、分割導体、これを用いたセグメントコイル及びモータ
KR102618459B1 (ko) * 2019-01-07 2023-12-27 엘지마그나 이파워트레인 주식회사 회전전기기계의 스테이터
EP3910761A1 (de) * 2020-05-15 2021-11-17 Siemens Aktiengesellschaft Flächenisolierstoff einer dynamoelektrischen maschine
CN113012847B (zh) * 2021-02-24 2021-11-23 佳腾电业(赣州)有限公司 一种绝缘电线及其制备方法、线圈和电子/电气设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166731A (ja) 2005-12-12 2007-06-28 Nissan Motor Co Ltd 回転電気モータ及びワニス含浸方法
JP2010126684A (ja) 2008-11-28 2010-06-10 Nitto Shinko Kk プリプレグシート
WO2015098638A1 (ja) * 2013-12-26 2015-07-02 古河電気工業株式会社 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法
WO2015186730A1 (ja) * 2014-06-03 2015-12-10 古河電気工業株式会社 絶縁ワイヤおよびその製造方法
JP2016179039A (ja) 2015-03-24 2016-10-13 株式会社平和 遊技機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212034A (ja) 2008-03-06 2009-09-17 Hitachi Magnet Wire Corp 耐部分放電性エナメル線用塗料及び耐部分放電性エナメル線
JP5609732B2 (ja) * 2011-03-22 2014-10-22 日立金属株式会社 絶縁塗料及びそれを用いた絶縁電線
JP5556720B2 (ja) * 2011-03-28 2014-07-23 日立金属株式会社 絶縁電線
JP5454804B2 (ja) * 2011-08-12 2014-03-26 古河電気工業株式会社 絶縁ワイヤ
JP2013109874A (ja) 2011-11-18 2013-06-06 Hitachi Cable Ltd 絶縁電線
JP6026446B2 (ja) * 2014-01-10 2016-11-16 古河電気工業株式会社 平角絶縁電線および電動発電機用コイル
JP2017199566A (ja) * 2016-04-27 2017-11-02 日立金属株式会社 絶縁電線及びその製造方法並びに電気機器の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166731A (ja) 2005-12-12 2007-06-28 Nissan Motor Co Ltd 回転電気モータ及びワニス含浸方法
JP2010126684A (ja) 2008-11-28 2010-06-10 Nitto Shinko Kk プリプレグシート
WO2015098638A1 (ja) * 2013-12-26 2015-07-02 古河電気工業株式会社 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法
WO2015186730A1 (ja) * 2014-06-03 2015-12-10 古河電気工業株式会社 絶縁ワイヤおよびその製造方法
JP2016179039A (ja) 2015-03-24 2016-10-13 株式会社平和 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514803A4

Also Published As

Publication number Publication date
CN109716451A (zh) 2019-05-03
CN109716451B (zh) 2021-01-29
EP3514803A1 (en) 2019-07-24
EP3514803B1 (en) 2023-08-02
JP6974330B2 (ja) 2021-12-01
US10529463B2 (en) 2020-01-07
US20190206590A1 (en) 2019-07-04
KR20190055077A (ko) 2019-05-22
JPWO2018051991A1 (ja) 2019-06-24
EP3514803A4 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6974330B2 (ja) 絶縁電線、コイルおよび電気・電子機器
US10566109B2 (en) Insulated wire, coil and electrical or electronic equipment
JP6016846B2 (ja) 絶縁ワイヤおよびその製造方法
WO2016103804A1 (ja) 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器
JP6407168B2 (ja) 絶縁ワイヤ、モーターコイル、電気・電子機器および絶縁ワイヤの製造方法
WO2015033821A1 (ja) 平角電線およびその製造方法並びに電気機器
JP6839695B2 (ja) 絶縁電線、モーターコイルおよび電気・電子機器
JP7423509B2 (ja) 絶縁ワイヤ、コイル及び電気・電子機器
WO2017150625A1 (ja) 絶縁電線、コイル及び電気・電子機器
KR102575842B1 (ko) 절연 전선, 코일 및 전기·전자 기기
KR20170078608A (ko) 절연 전선, 코일 및 전기·전자기기, 및 절연 전선의 제조 방법
KR20170078609A (ko) 절연 전선, 코일 및 전기·전자기기, 및 절연 전선의 제조 방법
WO2017094789A1 (ja) 自己融着性絶縁電線、コイル及び電気・電子機器
WO2015098640A1 (ja) 絶縁ワイヤ、コイルおよび電子・電気機器
JP6932642B2 (ja) 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
KR102166630B1 (ko) 절연 전선, 코일 및 전기·전자 기기
JP2017117681A (ja) 自己融着性絶縁電線、コイル及び電気・電子機器
JP6490505B2 (ja) 絶縁電線、コイル及び電気・電子機器
JP7257558B1 (ja) 絶縁電線、コイル、回転電機および電気・電子機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018539730

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006748

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017850892

Country of ref document: EP

Effective date: 20190415