WO2018051955A1 - タッチパネル内蔵ディスプレイ - Google Patents

タッチパネル内蔵ディスプレイ Download PDF

Info

Publication number
WO2018051955A1
WO2018051955A1 PCT/JP2017/032717 JP2017032717W WO2018051955A1 WO 2018051955 A1 WO2018051955 A1 WO 2018051955A1 JP 2017032717 W JP2017032717 W JP 2017032717W WO 2018051955 A1 WO2018051955 A1 WO 2018051955A1
Authority
WO
WIPO (PCT)
Prior art keywords
sense electrode
proximity
touch panel
touch
proximity sense
Prior art date
Application number
PCT/JP2017/032717
Other languages
English (en)
French (fr)
Inventor
ジョン ムジラネザ
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/331,555 priority Critical patent/US10802633B2/en
Priority to CN201780056048.6A priority patent/CN109690459B/zh
Publication of WO2018051955A1 publication Critical patent/WO2018051955A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041662Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using alternate mutual and self-capacitive scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04114Touch screens adapted for alternating or simultaneous interaction with active pens and passive pointing devices like fingers or passive pens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs

Definitions

  • the present invention relates to a display with a built-in touch panel that can detect a touch position and can detect proximity of a coil.
  • Patent Document 1 A display device capable of detecting the proximity of a coil is known as a prior art (Patent Document 1).
  • a wire grid induction layer is incorporated behind the display screen.
  • the wire grating of the induction layer consists of a wire formed along the X-axis direction and a wire formed along the Y-axis direction, and constitutes an electromagnetic induction antenna array to recognize the proximity of induction elements such as coils. To do.
  • the present invention has been made in view of the above-described problems, and an object thereof is to realize a display with a built-in touch panel that can recognize the proximity of a coil without increasing material costs and manufacturing costs. .
  • a touch panel built-in display is a touch panel built-in display including a touch panel and a display incorporating the touch panel, and the display includes a circuit board and the circuit board.
  • a counter substrate disposed opposite to the circuit board and a liquid crystal layer formed between the circuit substrate and the counter substrate, so that the touch panel detects a capacitance or a change in capacitance with the touch target.
  • (A) is a perspective view which shows typically the structure of the liquid crystal display panel which concerns on Embodiment 1
  • (b) is the sectional drawing. It is a top view which shows the structure of the touch sense electrode provided in the TFT substrate of the said liquid crystal display panel. It is a top view which shows the structure of the proximity
  • FIG. 1 It is a schematic diagram for demonstrating operation
  • A) is a perspective view which shows typically the structure of the liquid crystal display panel which concerns on Embodiment 2, (b) is the sectional drawing.
  • A) is a perspective view which shows typically the structure of the liquid crystal display panel which concerns on Embodiment 3, (b) is the sectional drawing.
  • FIG. 1A is a perspective view schematically showing a configuration of a liquid crystal display panel 1 (display with built-in touch panel, display) according to Embodiment 1, and FIG. 1B is a cross-sectional view thereof.
  • the liquid crystal display panel 1 includes a touch panel 2, a TFT (Thin Film Transistor) substrate 6 (circuit board), and a CF (Color Filter) substrate 7 (facing the TFT substrate 6). Substrate) and a liquid crystal layer 8 formed between the TFT substrate 6 and the CF substrate 7.
  • the touch panel 2 is provided in a plurality of touch sense electrodes 3 formed on the liquid crystal layer 8 side of the TFT substrate 6 and an RFID (Radio Frequency IDentifier) device 9 in order to detect capacitance between the touch target or a change in capacitance.
  • an RFID (Radio Frequency IDentifier) device 9 in order to detect capacitance between the touch target or a change in capacitance.
  • a plurality of proximity sense electrodes 4 formed on the liquid crystal layer 8 side of the CF substrate 7 are provided.
  • the liquid crystal display panel 1 includes a touch panel controller 13 connected to each of the plurality of touch sense electrodes 3, a modulator 14 connected to each of the plurality of proximity sense electrodes 4 and the touch panel controller 13, and a connection to the modulator 14.
  • the electromagnetic signal generator 15 is provided.
  • FIG. 2 is a plan view showing the configuration of the touch sense electrode 3 provided on the TFT substrate 6 of the liquid crystal display panel 1.
  • M ⁇ N square touch sense electrodes 3 are arranged in a matrix of M rows and N columns (M and N are plural).
  • Each touch sense electrode 3 is connected to the touch panel controller 13 (FIG. 1A) by a corresponding wiring.
  • FIG. 3 is a plan view showing the configuration of the proximity sense electrode 4 provided on the CF substrate 7 of the liquid crystal display panel 1.
  • FIG. 4 is a diagram showing the black matrix 12 and the proximity sense electrode 4 provided on the CF substrate 7.
  • FIG. 5 is a plan view for explaining the relationship between the touch sense electrode 3 and the proximity sense electrode 4.
  • a color filter 11 (FIG. 1B) configured by periodically arranging a color filter layer, and a black formed in a lattice shape to partition the color filter layer A matrix 12 is provided.
  • M proximity sense electrodes 4 are formed, and surround N touch sense electrodes 3 in 1 row and N columns among a plurality of touch sense electrodes 3 in M rows and N columns when viewed from a direction perpendicular to the CF substrate 7. Are arranged in a substantially U-shape.
  • the proximity sense electrode 4 is formed to have the resonance frequency of the coil 10.
  • a resonance frequency capacitor 5 connected to one end and the other end of the substantially U-shaped proximity sense electrode 4 is provided.
  • the resonant frequency capacitor 5 corresponding to the proximity sense electrode 4 surrounding the touch sense electrode 3 in the odd-numbered row is arranged on the right side and corresponds to the proximity sense electrode 4 surrounding the touch sense electrode 3 in the even-numbered row.
  • the resonant frequency capacitor 5 is arranged on the left side.
  • the proximity sense electrode 4 is formed at a position corresponding to the black matrix 12 on the CF substrate 7 as shown in FIG.
  • the proximity sense electrode 4 formed in a loop shape becomes an RCL circuit that resonates at the resonance frequency of the coil 10.
  • the proximity sense electrode 4 is preferably made of ITO (indium tin oxide).
  • the proximity sense electrode 4 may be made of metal.
  • Capacitive touch panels have become a common interface in mobile devices because users can touch information with a simple finger touch. Capacitive touch panels are also commonly used in other electronic devices such as vending machines and household appliances. And a new era of connecting devices known as Internet Things is spreading. There, the connection of different devices becomes widespread, and it will soon be necessary to connect the devices themselves through the touch panel.
  • the conventional capacitive touch panel functions well for a finger to touch, but has a problem in operating with a pen input device and other devices.
  • Most commonly used pens use magnetic inductive sensing for good performance. The performance in the hover state where the pen is slightly floating from the capacitive touch panel is not good enough to detect the proximity of other devices.
  • At least one sense electrode layer including a group of touch sense electrodes 3 and a group of loop-shaped proximity sense electrodes 4 is provided.
  • the loop-shaped proximity sense electrode 4 is preferably arranged so as to enclose at least one touch sense electrode 3.
  • the loop-like proximity sense electrode 4 is allowed to be magnetically coupled to another input device such as a pen, card, or tag.
  • a signal for magnetic induction sensing is modulated by a touch panel signal.
  • the RFID device 9 FIG. 6
  • an induced voltage is generated in the touch sense electrode 3 as a result of a change in magnetic flux. This change can be detected by the touch panel controller 13. For this reason, the position of the touched RFID device 9 is detected, and the RFID device 9 is easily identified.
  • the liquid crystal display panel 1 has a touch panel 2, and is patterned on the first sensing array (touch sense electrode 3) composed of segments patterned on the TFT substrate 6 of the liquid crystal display panel 1 and the CF substrate 7. And a second sensing array (proximity sense electrode 4) made of a looped array.
  • the loop electrode (proximity sense electrode 4) is preferably arranged so as to wrap around the segment electrode (touch sense electrode 3).
  • the segment electrode (touch sense electrode 3) is connected to the touch panel controller 13 and detects a touch object.
  • FIG. 6 is a schematic diagram for explaining the operation of the proximity sense electrode 4.
  • FIG. 7 is a schematic diagram for explaining operations of the proximity sense electrode 4 and the touch sense electrode 3.
  • the magnetic flux in the proximity sense electrode 4 changes.
  • an induced electromotive force is generated.
  • This causes a change in the combined charge in the proximity sense electrode 4.
  • the change ⁇ Q c in the combined charge between the proximity sense electrode 4 and the touch sense electrode 3 is detected by the touch panel controller 13 that controls the touch panel 1. Therefore, the position on the touch panel 1 of the RFID device 9 accompanied with the high frequency radiation is detected, and the RFID device 9 and the user thereof are easily identified.
  • the signal for identifying the user is generated by using the touch panel controller 13.
  • mutual inductance occurs between the RFID device 9 and the proximity sense electrode 4. Due to the change in the induced current, the charge flowing from the proximity sense electrode 4 to the touch sense electrode 3 changes. Resonance occurs in the proximity sense electrode 4 that forms an electrical loop, and a coupling capacitance change ⁇ Q c is induced between the proximity sense electrode 4 and the touch sense electrode 3.
  • the loop shape of the proximity sense electrode 4 increases its inductance.
  • the proximity sense electrode 4 is further coupled to the capacitance so as to coincide with a predetermined resonance frequency.
  • the outer proximity sense electrode 4 is coupled to the inner touch sense electrode 3 through a given capacitance. Due to the change in the induced current in the loop-shaped proximity sense electrode 4, the flow of current and charge in the inner touch sense electrode 3 changes.
  • a current signal read from the touch sense electrode 3 is amplified by an amplifier 16 having an integration capacitor 17. The proximity of the coil 10 is detected based on the current signal amplified by the amplifier 16.
  • FIG. 8 is a timing chart showing the operation of the liquid crystal display panel 1.
  • the touch panel controller 13 shown in FIG. 1 applies drive signals TX 1 to TX (N ⁇ M) to each touch sense electrode 3 shown in FIG. 2 during the vertical blanking period T2 of the liquid crystal display panel 1. Then, the touch panel controller 13 reads out the sense signal RX corresponding to each of the drive signals TX 1 to TX (N ⁇ M) from each touch sense electrode 3 in the vertical blanking period T2. In this manner, finger touch detection by the touch sense electrode 3 is performed by the self-capacitance method in the vertical blanking period T2.
  • the detection of the RFID device 9 by the proximity sense electrode 4 is preferably performed during the scanning period T1 of the liquid crystal display panel 1.
  • the electromagnetic signal generator 15 generates the RFID signal S1 and supplies it to the modulator 14.
  • the modulator 14 generates a modulation signal S ⁇ b> 2 in which the transmission signal generated by the touch panel controller 13 is superimposed on the RFID signal S ⁇ b> 1 generated by the electromagnetic signal generator 15 and supplies the modulation signal S ⁇ b> 2 to the proximity sense electrode 4.
  • the modulator 14 outputs the modulation signal S2 accompanied by the high frequency as the carrier frequency and the envelope signal similar to the transmission signal of the touch panel controller 13.
  • the touch panel controller 13 In the vertical blanking period T2 in which a finger touch is detected, the touch panel controller 13 operates in the self-capacitance detection mode. On the other hand, in the scanning period T1 in which the RFID device 9 is detected, the touch panel controller 13 operates in the mutual capacitance detection mode.
  • the RFID device 9 such as an RFID card or a device is detected by the touch sense electrode 3 in the scanning period T1, it is arranged at a position corresponding to the detected position of the RFID apparatus 9 in the next vertical blanking period T2.
  • the modulation signal S2 is supplied from the modulator 14 to the proximity sense electrode 4, the response for the detection of the RFID device 9 is faster than supplying the modulation signal S2 to all the proximity sense electrodes 4 in order.
  • the RFID device 9 such as an RFID card or a device is detected by the touch sense electrode 3 in the scanning period T1
  • the operation of the touch panel controller 13 related to finger sensing is stopped in the next vertical blanking period T2, the consumption It also leads to power reduction and RFID signal performance improvement.
  • the touch sense electrode 3 is formed on the TFT substrate 6 and the proximity sense electrode 4 is formed on the CF substrate 7.
  • the touch sense electrode 3 and the proximity sense electrode 4 may be built in the liquid crystal display panel.
  • the touch sense electrode 3 may be formed on at least one of the TFT substrate 6 and the CF substrate 7, and the proximity sense electrode 4 may be formed on at least one of the TFT substrate 6 and the CF substrate 7. Good. The same applies to the embodiments described later.
  • FIG. 9A is a perspective view schematically showing a configuration of the liquid crystal display panel 1a according to the second embodiment, and FIG. 9B is a cross-sectional view thereof.
  • the proximity sense electrode 4 is disposed on the opposite side of the liquid crystal layer 8 of the CF substrate 7.
  • Other configurations are the same as those of the liquid crystal display panel 1 according to the first embodiment.
  • the proximity sense electrode 4 When the proximity sense electrode 4 is disposed on the opposite side of the liquid crystal layer 8 of the CF substrate 7, compared to the configuration in which the proximity sense electrode 4 is disposed on the liquid crystal layer 8 side of the CF substrate 7, The distance between the adjacent RFID device 9 and the coil 10 becomes shorter. For this reason, the change of the magnetic flux in the proximity sense electrode 4 becomes larger. As a result, a larger induced electromotive force is generated. Thereby, the change of the combined charge generated in the proximity sense electrode 4 becomes larger. As a result, the proximity of the RFID device 9 can be detected more reliably as compared with the configuration in which the proximity sense electrode 4 is disposed on the liquid crystal layer 8 side of the CF substrate 7.
  • FIG. 10A is a perspective view schematically showing the configuration of the liquid crystal display panel 1b according to Embodiment 3, and FIG. 10B is a cross-sectional view thereof.
  • the proximity sense electrodes 4 are arranged on both the liquid crystal layer 8 side and the opposite side of the liquid crystal layer 8 of the CF substrate 7.
  • Other configurations are the same as those of the liquid crystal display panel 1 according to the first embodiment.
  • square touch sense electrodes 3 are arranged in M rows along the Y direction and N columns along the X direction.
  • M proximity sense electrodes 4 surround M touch sense electrodes 3 in M rows and 1 column, respectively. It is arranged in a substantially U shape.
  • M proximity sense electrodes 4 b are arranged in a substantially U shape so as to surround the N touch sense electrodes 3 in one row and N columns, respectively.
  • the touch panel controller 13 can detect the position of the adjacent RFID device 9 in the X direction. Since the plurality of proximity sense electrodes 4b are arranged along the Y direction, the touch panel controller 13 can detect the position of the adjacent RFID device 9 in the Y direction. Therefore, the touch panel controller 13 can specify the X coordinate and the Y coordinate on the touch panel 1b of the RFID device 9 that is in close proximity.
  • FIG. 11 is a plan view illustrating a configuration of the touch panel 2c according to the fourth embodiment.
  • a proximity sense electrode 4 c is additionally formed on the periphery of the TFT substrate 6 so as to further surround the plurality of proximity sense electrodes 4.
  • a resonance frequency capacitor 5c connected to one end and the other end of the proximity sense electrode 4c is provided.
  • Other configurations are the same as those of the touch panel 2 according to the first embodiment.
  • the proximity sense electrode 4c when the proximity sense electrode 4c is additionally formed, the magnetic flux in the proximity sense electrode 4 is changed when the RFID device 9 is close as compared with the configuration in which only the proximity sense electrode 4 is formed. In addition, a magnetic flux change occurs in the proximity sense electrode 4c. As a result, in addition to the change in the combined charge that occurs in the proximity sense electrode 4, a change in the combined charge occurs in the proximity sense electrode 4c. For this reason, the proximity of the RFID device 9 can be detected more reliably as compared with the configuration in which only the proximity sense electrode 4 is formed.
  • FIG. 12 is a plan view showing the configuration of the touch panel 2d according to the fifth embodiment.
  • a proximity sense electrode 4d surrounding one touch sense electrode 3 is provided instead of the proximity sense electrode 4 surrounding the 1 row N column touch sense electrode 3 according to the first embodiment shown in FIG.
  • a proximity sense electrode 4c is provided so as to surround all the proximity sense electrodes 4d.
  • a resonance frequency capacitor 5c connected to one end and the other end of the proximity sense electrode 4c is provided.
  • Other configurations are the same as those of the touch panel 2 according to the first embodiment.
  • the proximity sense electrode 4d surrounding one touch sense electrode 3 is provided, the proximity sense electrode and the proximity sense electrode 4 are compared with the configuration in which the proximity sense electrode 4 surrounding the 1 row N column touch sense electrode 3 is provided.
  • the change ⁇ Q c (FIG. 7) in the combined charge with the touch sense electrode becomes larger. As a result, the proximity of the RFID device 9 can be detected more reliably.
  • the touch panel built-in display is a display (liquid crystal display panel 1, 1a, 1b) including the touch panel 2, 2b, 2d and the touch panel 2, 2b, 2d.
  • the display is a circuit board (TFT substrate 6) and a counter substrate (CF substrate 7) arranged to face the circuit substrate (TFT substrate 6).
  • a liquid crystal layer 8 formed between the circuit substrate (TFT substrate 6) and the counter substrate (CF substrate 7), and the touch panel 2, 2b, 2d is a capacitance or capacitance between the touch target
  • the proximity sense electrode for detecting the proximity of the coil is formed on at least one of the circuit board and the counter substrate of the display. For this reason, a proximity sense electrode for detecting the proximity of the coil is built in the display. Therefore, it is not necessary to newly add a member for recognizing the proximity of the coil, and an increase in material cost and manufacturing cost is avoided in order to recognize the proximity of the coil. As a result, it is possible to realize a display with a built-in touch panel that can recognize the proximity of a coil without increasing material costs and manufacturing costs.
  • the touch panel built-in display (liquid crystal display panels 1, 1 a, 1 b) according to aspect 2 of the present invention is the above-described aspect 1, wherein the plurality of touch sense electrodes 3 are formed on the circuit board (TFT substrate 6), and the proximity sense Electrodes 4, 4b, 4c, and 4d may be formed on the counter substrate (CF substrate 7).
  • the proximity sense electrode is disposed on the counter substrate closer to the coil closer to the circuit board, so that the proximity of the coil can be detected more reliably.
  • a display with a built-in touch panel (liquid crystal display panels 1, 1 a, 1 b) according to aspect 3 of the present invention is the above aspect 1 or 2, wherein the plurality of touch sense electrodes 3 are arranged in a matrix of M rows and N columns (M , N are plural), and the proximity sense electrodes 4, 4 b, 4 c, and 4 d are disposed so as to surround at least one touch sense electrode 3 when viewed from a direction perpendicular to the counter substrate (CF substrate 7). Also good.
  • the proximity sense electrode is disposed so as to surround the touch sense electrode, the distance between the proximity sense electrode and the touch sense electrode is reduced, and the proximity sense electrode and the touch sense electrode are disposed.
  • the change in combined charge ⁇ Q c increases. As a result, the proximity of the coil can be detected more reliably.
  • the touch panel built-in display (liquid crystal display panels 1, 1 a, 1 b) according to aspect 4 of the present invention is the above aspect 3 in which M pieces of the proximity sense electrodes 4 are formed, and each of the proximity sense electrodes 4 is connected to the counter substrate (CF When viewed from the direction perpendicular to the substrate 7), the plurality of touch sense electrodes 3 of M rows and N columns may be disposed so as to surround the plurality of touch sense electrodes 3 of 1 row and N columns.
  • the proximity sense electrode is arranged so as to surround the N touch sense electrodes in 1 row and N column, the distance between the proximity sense electrode and the N touch sense electrodes becomes close, The change in coupling charge ⁇ Q c between the proximity sense electrode and the N touch sense electrodes increases. As a result, the proximity of the coil can be detected more reliably.
  • the coil 10 may be provided in the RFID device 9 in any one aspect of the above aspects 1 to 4.
  • the proximity of the RFID device can be detected.
  • the touch panel built-in display (liquid crystal display panel 1, 1 a, 1 b) according to aspect 6 of the present invention is the same as any one of the above aspects 1 to 5, wherein the proximity sense electrodes 4, 4 b, 4 c, 4 d are connected to the coil 10. It may be formed to have a resonance frequency of
  • the proximity sense electrode resonates with the coil due to the proximity of the coil. For this reason, the combined charge between the proximity sense electrode and the touch sense electrode changes. Therefore, the proximity of the coil can be detected by changing the signal read from each touch sense electrode in accordance with the change in the combined charge.
  • the proximity sense electrodes 4, 4b, 4c, 4d are made of ITO (indium oxide). Tin).
  • the proximity sense electrode becomes transparent, the display visibility of the display with a built-in touch panel is improved.
  • the touch panel built-in display (liquid crystal display panels 1, 1 a, 1 b) according to aspect 8 of the present invention is the liquid crystal layer 8 side of the counter substrate (CF substrate 7) in any one aspect of the above aspects 1 to 7,
  • the proximity filter is further provided with a color filter 11 configured by periodically arranging color filter layers, and a black matrix 12 formed in a lattice shape to partition the color filter layer, and the proximity sense electrodes 4, 4 b, 4 c 4d may be formed at a position corresponding to the black matrix 12.
  • the proximity sense electrode can be covered with the black matrix, so that the display visibility of the display with a built-in touch panel can be improved.
  • the touch panel built-in display (liquid crystal display panels 1, 1 a, 1 b) according to aspect 9 of the present invention is the above-described aspect 1 to 8, wherein the proximity sense electrodes 4, 4 b, 4 c, 4 d are U-shaped.
  • Resonance frequency capacitors 5, 5a connected to one end and the other end of the proximity sense electrodes 4, 4b, 4c, 4d to determine the resonance frequency of the proximity sense electrodes 4, 4b, 4c, 4d. 5c may be further provided.
  • the resonance frequency of the proximity sense electrode that resonates with the coil can be determined by the capacitance of the resonance frequency capacitor.
  • Liquid crystal display panel (display with built-in touch panel, display) 2 Touch panel 3 Touch sense electrode 4 Proximity sense electrode 5 Resonance frequency capacitor 6 TFT substrate (circuit board) 7 CF substrate (counter substrate) 8 Liquid crystal layer 9 RFID device 10 Coil 11 Color filter 12 Black matrix

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)

Abstract

材料コスト及び製造コストを増大させることなく、コイルの近接を認識する。液晶表示パネルが、TFT基板(6)とCF基板(7)とを備え、タッチパネル(2)が、タッチ対象との間の容量又は容量変化を検出するためにTFT基板(6)に形成された複数のタッチセンス電極(3)と、コイル(10)の近接を検出するためにCF基板(7)に形成された近接センス電極(4)とを備える。

Description

タッチパネル内蔵ディスプレイ
 本発明は、タッチ位置を検出することができるとともに、コイルの近接を検出することができるタッチパネルを内蔵したタッチパネル内蔵ディスプレイに関する。
 コイルの近接を検出することができる表示装置が従来技術として知られている(特許文献1)。特許文献1に開示されたタッチ制御表示スクリーンは、ワイヤ格子の誘導層が表示スクリーンの背後に組み込まれている。誘導層のワイヤ格子は、X軸方向に沿って形成されたウィヤとY軸方向に沿って形成されたワイヤとから成り、電磁誘導アンテナアレイを構成して、コイル等の誘導素子の近接を認識する。
米国特許出願公開第2009/0231299号明細書(2009年9月17日公開)
 しかしながら、上述のような従来技術は、表示スクリーンの背後にワイヤ格子の誘導層を設ける構成であるため、コイルの近接を認識するための部材を新たに追加しなければならない。このため、コイルの近接を認識するために材料コスト及び製造コストが増大するという問題がある。
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、材料コスト及び製造コストが増大することなく、コイルの近接を認識することができるタッチパネル内蔵ディスプレイを実現することにある。
 上記の課題を解決するために、本発明の一態様に係るタッチパネル内蔵ディスプレイは、タッチパネルと前記タッチパネルを内蔵したディスプレイとを備えるタッチパネル内蔵ディスプレイであって、前記ディスプレイが、回路基板と、前記回路基板に対向して配置される対向基板と、前記回路基板と前記対向基板との間に形成される液晶層とを備え、前記タッチパネルが、タッチ対象との間の容量又は容量変化を検出するために前記回路基板と前記対向基板との少なくとも一方に形成された複数のタッチセンス電極と、コイルの近接を検出するために前記回路基板と前記対向基板との少なくとも一方に形成された近接センス電極とを備えることを特徴とする。
 本発明の一態様によれば、材料コスト及び製造コストが増大することなく、コイルの近接を認識することができるタッチパネル内蔵ディスプレイを実現することができるという効果を奏する。
(a)は実施形態1に係る液晶表示パネルの構成を模式的に示す斜視図であり、(b)はその断面図である。 上記液晶表示パネルのTFT基板に設けられたタッチセンス電極の構成を示す平面図である。 上記液晶表示パネルのCF基板に設けられた近接センス電極の構成を示す平面図である。 上記CF基板に設けられたブラックマトリックスと、近接センス電極とを示す図である。 上記タッチセンス電極と上記近接センス電極との間の関係を説明するための平面図である。 上記近接センス電極の動作を説明するための模式図である。 上記近接センス電極及び上記タッチセンス電極の動作を説明するための模式図である。 上記液晶表示パネルの動作を示すタイミングチャートである。 (a)は実施形態2に係る液晶表示パネルの構成を模式的に示す斜視図であり、(b)はその断面図である。 (a)は実施形態3に係る液晶表示パネルの構成を模式的に示す斜視図であり、(b)はその断面図である。 実施形態4に係るタッチパネルの構成を示す平面図である。 実施形態5に係るタッチパネルの構成を示す平面図である。
 以下、本発明の実施の形態について、詳細に説明する。
 〔実施形態1〕
 (液晶表示パネル1の構成)
 図1(a)は実施形態1に係る液晶表示パネル1(タッチパネル内蔵ディスプレイ、ディスプレイ)の構成を模式的に示す斜視図であり、(b)はその断面図である。液晶表示パネル1は、タッチパネル2を内蔵し、TFT(Thin Film Transistor、薄膜トランジスタ)基板6(回路基板)と、TFT基板6に対向して配置されるCF(Color Filter、カラーフィルタ)基板7(対向基板)と、TFT基板6とCF基板7との間に形成される液晶層8とを備える。
 タッチパネル2は、タッチ対象との間の容量又は容量変化を検出するために、TFT基板6の液晶層8側に形成された複数のタッチセンス電極3と、RFID(Radio Frequency IDentifier)装置9に設けられたコイル10(図6)の近接を検出するために、CF基板7の液晶層8側に形成された複数の近接センス電極4とを備える。
 液晶表示パネル1には、複数のタッチセンス電極3のそれぞれに接続されたタッチパネルコントローラ13と、複数の近接センス電極4のそれぞれ及びタッチパネルコントローラ13に接続された変調器14と、変調器14に接続された電磁信号生成器15とが設けられる。
 図2は液晶表示パネル1のTFT基板6に設けられたタッチセンス電極3の構成を示す平面図である。TFT基板6上において、(M×N)個の正方形状のタッチセンス電極3が、M行N列の行列状に配置される(M、Nは複数)。各タッチセンス電極3は、それぞれに対応する配線によりタッチパネルコントローラ13(図1(a))に接続される。
 図3は液晶表示パネル1のCF基板7に設けられた近接センス電極4の構成を示す平面図である。図4はCF基板7に設けられたブラックマトリックス12と、近接センス電極4とを示す図である。図5はタッチセンス電極3と近接センス電極4との間の関係を説明するための平面図である。
 CF基板7の液晶層8側に、カラーフィルタ層を周期的に配列して構成されたカラーフィルタ11(図1(b))と、カラーフィルタ層を区画するために格子状に形成されたブラックマトリックス12とが設けられる。
 近接センス電極4は、M個形成され、CF基板7に垂直な方向から見て、M行N列の複数のタッチセンス電極3のうちの1行N列のN個のタッチセンス電極3を囲むように略U字型形状に配置される。近接センス電極4は、コイル10の共振周波数を有するように形成される。近接センス電極4の共振周波数を定めるために略U字形状の近接センス電極4の一端と他端とに接続される共振周波数コンデンサ5が設けられる。図5に示すように、奇数行目のタッチセンス電極3を囲む近接センス電極4に対応する共振周波数コンデンサ5は右側に配置され、偶数行目のタッチセンス電極3を囲む近接センス電極4に対応する共振周波数コンデンサ5は左側に配置される。
 近接センス電極4は、図3に示すように、CF基板7上において、ブラックマトリックス12に対応する位置に形成される。ループ状に形成された近接センス電極4は、コイル10の共振周波数で共振するRCL回路となる。
 近接センス電極4は、ITO(酸化インジウムスズ)により構成されることが好ましい。近接センス電極4は金属により構成されてもよい。
 静電容量型タッチパネルは、シンプルな指タッチにより使用者が情報に接することができるので、携帯機器において一般的なインターフェースになってきている。静電容量型タッチパネルは、また、自動販売機、家庭用電気製品のような他の電子機器にも一般的に使用されている。そして、インターネットオブシングス(Internet of Things)として知られる接続装置の新しい時代が広まっている。そこでは異なる装置の接続が普及し、まもなく、タッチパネルを通して装置自体が接続される必要が生じる。
 しかしながら、従来の静電容量型タッチパネルは、タッチする指については良好に機能するが、ペン入力装置及び他の装置と動作するには問題を有していた。最もよく使用されるペンは、良好なパフォーマンスのために磁気誘導センシングを使用する。静電容量型タッチパネルからペンが微妙に浮いているホバー状態のパフォーマンスも、他の装置の近接を検出するために十分良好ではない。
 本実施形態では、タッチセンス電極3のグループと、ループ状の近接センス電極4のグループとからなるセンス電極の層が少なくとも一つ設けられる。ループ状の近接センス電極4は、少なくとも一つのタッチセンス電極3を包むように配置されることが好ましい。
 ループ状の近接センス電極4は、ペン、カード、又はタグのような他の入力装置との磁気結合が許容される。磁気誘導センシングのための信号は、タッチパネル信号により変調される。コイル10を有するRFID装置9(図6)が、タッチパネル2のループ状の近接センス電極4と磁気的に結合すると、磁束が変化する結果、タッチセンス電極3に誘導電圧が生じる。この変化がタッチパネルコントローラ13により検出され得る。このため、タッチしたRFID装置9の位置が検出され、容易にRFID装置9が識別される。
 本実施形態では、液晶表示パネル1がタッチパネル2を有し、液晶表示パネル1のTFT基板6上にパターニングされたセグメントからなる第1センシングアレイ(タッチセンス電極3)と、CF基板7上にパターニングされたループ状のアレイからなる第2センシングアレイ(近接センス電極4)とが設けられる。ループ電極(近接センス電極4)はセグメント電極(タッチセンス電極3)の周りを包むように配置されることが好ましい。セグメント電極(タッチセンス電極3)は、タッチパネルコントローラ13に接続され、タッチ対象物を検出する。
 (近接センス電極4及びタッチセンス電極3の動作)
 図6は近接センス電極4の動作を説明するための模式図である。図7は近接センス電極4及びタッチセンス電極3の動作を説明するための模式図である。
 電気的ループを形成する近接センス電極4の共振周波数を有するコイル10を備えて高周波数の放射を伴うRFID装置9がタッチパネル1に近づくと、近接センス電極4における磁束が変化する。その結果、誘導起電力が生じる。これにより、近接センス電極4の中で結合電荷の変化が生じる。近接センス電極4とタッチセンス電極3との間の結合電荷の変化ΔQが、タッチパネル1を制御するタッチパネルコントローラ13によって検出される。従って、上記高周波数の放射を伴うRFID装置9のタッチパネル1上の位置が検出され、上記RFID装置9及びその使用者が容易に識別される。
 使用者を識別する信号は、タッチパネルコントローラ13を使用することにより生成される。コイル10を有するRFID装置9がタッチパネル1に近づくと、RFID装置9と近接センス電極4との間で相互インダクタンスが生じる。誘導電流の変化により、近接センス電極4からタッチセンス電極3に流れる電荷に変化が生じる。電気的ループを形成する近接センス電極4で共振が生じ、近接センス電極4とタッチセンス電極3との間で結合容量の変化ΔQが誘導される。
 近接センス電極4のループ形状は、そのインダクタンスを増大させる。近接センス電極4は、予め定められた共振周波数に一致するように、静電容量とさらに結合する。
 交流信号を伴うループ状の近接センス電極4とRFID装置9のコイル10との誘導結合の結果、コイル10と近接センス電極4とを通って流れる磁束が変化する。これにより、下記(式1)~(式3)に示すように、emfが誘導され、自己インダクタンス電圧が変化する。
Figure JPOXMLDOC01-appb-M000001
 外側の近接センス電極4は、与えられた静電容量を通って内側のタッチセンス電極3と結合する。ループ状の近接センス電極4における誘導電流の変化により、内側のタッチセンス電極3における電流及び電荷の流れが変化する。タッチセンス電極3から読み出される電流信号は、積分容量17を有する増幅器16により増幅される。増幅器16により増幅された電流信号に基づいて、コイル10の近接が検出される。
 図8は、液晶表示パネル1の動作を示すタイミングチャートである。図1に示されるタッチパネルコントローラ13は、液晶表示パネル1の垂直ブランキンク期間T2において、駆動信号TX~TX(N×M)を図2に示される各タッチセンス電極3に印加する。そして、駆動信号TX~TX(N×M)のそれぞれに対応するセンス信号RXを垂直ブランキンク期間T2においてタッチパネルコントローラ13は各タッチセンス電極3から読み出す。このように、タッチセンス電極3による指のタッチ検出は、垂直ブランキンク期間T2において自己容量方式により実行される。
 近接センス電極4によるRFID装置9の検出は、液晶表示パネル1の走査期間T1に実行されることが好ましい。走査期間T1において、電磁信号生成器15はRFID信号S1を生成して変調器14に供給する。変調器14は、タッチパネルコントローラ13により生成された伝送信号に、電磁信号生成器15により生成されたRFID信号S1が重畳された変調信号S2を生成して近接センス電極4に供給する。このように、変調器14は、搬送周波数としての高周波と、タッチパネルコントローラ13の伝送信号類似するエンベロープ信号とを伴う変調信号S2を出力する。
 走査期間T1において、近接センス電極4の共振周波数に対応する共振周波数を有するコイル10を有するRFID装置9が近接センス電極4に近づくと、誘導結合が発生し、近接センス電極4に供給された変調信号S2、および、タッチセンス電極3からタッチパネルコントローラ13に読み出されるセンス信号RXの振幅が変化する。
 指のタッチを検出する垂直ブランキンク期間T2において、タッチパネルコントローラ13は自己容量検出モードで動作する。一方、RFID装置9を検出する走査期間T1において、タッチパネルコントローラ13は相互容量検出モードで動作する。
 もし、走査期間T1においてタッチセンス電極3によりRFIDカードやデバイス等のRFID装置9が検出された場合、次の垂直ブランキンク期間T2において、検出されたRFID装置9の位置に対応する位置に配置された近接センス電極4に、変調信号S2を変調器14から供給するように構成すると、すべての近接センス電極4に順番に変調信号S2を供給するよりも、RFID装置9の検出のためのレスポンスが速くなる。更に、走査期間T1においてタッチセンス電極3によりRFIDカードやデバイス等のRFID装置9が検出された場合、次の垂直ブランキンク期間T2において、指のセンシングに係るタッチパネルコントローラ13の動作を停止させると、消費電力の低減、及び、RFID信号の性能向上にも繋がる。
 本実施形態では、タッチセンス電極3がTFT基板6に形成され、近接センス電極4がCF基板7に形成される例を示した。しかしながら本発明はこれに限定されない。タッチセンス電極3及び近接センス電極4は、液晶表示パネルに内蔵されていればよい。例えば、タッチセンス電極3は、TFT基板6とCF基板7との少なくとも一方に形成されていればよく、近接センス電極4も、TFT基板6とCF基板7との少なくとも一方に形成されていればよい。後述する実施形態も同様である。
 〔実施形態2〕
 本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図9(a)は実施形態2に係る液晶表示パネル1aの構成を模式的に示す斜視図であり、(b)はその断面図である。
 液晶表示パネル1aでは、近接センス電極4が、CF基板7の液晶層8と反対側に配置されている。その他の構成は、実施形態1に係る液晶表示パネル1と同様である。
 CF基板7の液晶層8と反対側に近接センス電極4が配置されると、CF基板7の液晶層8側に近接センス電極4が配置された構成と比較して、近接センス電極4と、近接するRFID装置9のコイル10との間の距離がより短くなる。このため、近接センス電極4における磁束の変化がより大きくなる。その結果、より大きな誘導起電力が生じる。これにより、近接センス電極4の中で生じる結合電荷の変化がより大きくなる。この結果、CF基板7の液晶層8側に近接センス電極4が配置された構成と比較して、RFID装置9の近接をより確実に検出することができる。
 〔実施形態3〕
 図10(a)は実施形態3に係る液晶表示パネル1bの構成を模式的に示す斜視図であり、(b)はその断面図である。
 液晶表示パネル1bでは、近接センス電極4が、CF基板7の液晶層8側と液晶層8の反対側との双方に配置されている。その他の構成は、実施形態1に係る液晶表示パネル1と同様である。
 TFT基板6の表面には、正方形状のタッチセンス電極3が、Y方向に沿ってM行、X方向に沿ってN列配置されている。CF基板7の液晶層8側には、CF基板7の表面に垂直な方向から見て、M個の近接センス電極4が、M行1列のM個のタッチセンス電極3をそれぞれ囲むように略U字型形状に配置される。CF基板7の液晶層8と反対側には、M個の近接センス電極4bが、1行N列のN個のタッチセンス電極3をそれぞれ囲むように略U字型形状に配置される。
 このように、複数個の近接センス電極4がX方向に沿って配置されているので、近接したRFID装置9のX方向の位置をタッチパネルコントローラ13が検出することができる。そして、複数個の近接センス電極4bがY方向に沿って配置されているので、近接したRFID装置9のY方向の位置をタッチパネルコントローラ13が検出することができる。従って、近接したRFID装置9のタッチパネル1b上のX座標及びY座標をタッチパネルコントローラ13が特定することができる。
 〔実施形態4〕
 図11は、実施形態4に係るタッチパネル2cの構成を示す平面図である。タッチパネル2cでは、複数の近接センス電極4をさらに囲むように近接センス電極4cがTFT基板6の周縁に追加して形成されている。近接センス電極4cの共振周波数を定めるために近接センス電極4cの一端と他端とに接続される共振周波数コンデンサ5cが設けられる。その他の構成は、実施形態1に係るタッチパネル2と同様である。
 このように、近接センス電極4cが追加して形成されると、近接センス電極4のみが形成される構成と比較して、RFID装置9が近接したときに、近接センス電極4における磁束の変化に追加して、近接センス電極4cにおける磁束の変化が生じる。これにより、近接センス電極4の中で生じる結合電荷の変化に加えて、近接センス電極4cの中で結合電荷の変化が生じる。このため、近接センス電極4のみが形成される構成と比較して、RFID装置9の近接をより確実に検出することができる。
 〔実施形態5〕
 図12は、実施形態5に係るタッチパネル2dの構成を示す平面図である。図5に示される実施形態1に係る1行N列のタッチセンス電極3を囲む近接センス電極4に代えて、1個のタッチセンス電極3を囲む近接センス電極4dが設けられる。そして、全ての近接センス電極4dを囲むように近接センス電極4cが設けられる。近接センス電極4cの共振周波数を定めるために近接センス電極4cの一端と他端とに接続される共振周波数コンデンサ5cが設けられる。その他の構成は、実施形態1に係るタッチパネル2と同様である。
 このように、1個のタッチセンス電極3を囲む近接センス電極4dが設けられると、1行N列のタッチセンス電極3を囲む近接センス電極4が設けられる構成と比較して、近接センス電極とタッチセンス電極との間の結合電荷の変化ΔQ(図7)がより大きくなる。この結果、RFID装置9の近接をより確実に検出することができる。
 〔まとめ〕
 本発明の態様1に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、タッチパネル2・2b・2dと前記タッチパネル2・2b・2dを内蔵したディスプレイ(液晶表示パネル1・1a・1b)とを備え、前記ディスプレイ(液晶表示パネル1・1a・1b)が、回路基板(TFT基板6)と、前記回路基板(TFT基板6)に対向して配置される対向基板(CF基板7)と、前記回路基板(TFT基板6)と前記対向基板(CF基板7)との間に形成される液晶層8とを備え、前記タッチパネル2・2b・2dが、タッチ対象との間の容量又は容量変化を検出するために前記回路基板(TFT基板6)と前記対向基板(CF基板7)との少なくとも一方に形成された複数のタッチセンス電極3と、コイル10の近接を検出するために前記回路基板(TFT基板6)と前記対向基板(CF基板7)との少なくとも一方に形成された近接センス電極4・4b・4c・4dとを備える。
 上記の構成によれば、コイルの近接を検出するための近接センス電極が、ディスプレイの前記回路基板と前記対向基板との少なくとも一方に形成される。このため、コイルの近接を検出するための近接センス電極がディスプレイに内蔵される。従って、コイルの近接を認識するための部材を新たに追加する必要が無くなり、コイルの近接を認識するために材料コスト及び製造コストの増大が回避される。この結果、材料コスト及び製造コストが増大することなく、コイルの近接を認識することができるタッチパネル内蔵ディスプレイを実現することができる。
 本発明の態様2に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、上記態様1において、前記複数のタッチセンス電極3が前記回路基板(TFT基板6)に形成され、前記近接センス電極4・4b・4c・4dが前記対向基板(CF基板7)に形成されてもよい。
 上記の構成によれば、近接センス電極が、回路基板よりも近接するコイルにより近い対向基板に配置されるので、コイルの近接をより確実に検出することができる。
 本発明の態様3に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、上記態様1又は2において、前記複数のタッチセンス電極3が、M行N列の行列状に配置され(M、Nは複数)、前記近接センス電極4・4b・4c・4dが、前記対向基板(CF基板7)に垂直な方向から見て、少なくとも1個のタッチセンス電極3を囲むように配置されてもよい。
 上記の構成によれば、近接センス電極がタッチセンス電極を囲むように配置されるので、近接センス電極とタッチセンス電極との間の距離が近くなり、近接センス電極とタッチセンス電極との間の結合電荷の変化ΔQが大きくなる。この結果、コイルの近接をより確実に検出することができる。
 本発明の態様4に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、上記態様3において、前記近接センス電極4がM個形成され、各近接センス電極4が、前記対向基板(CF基板7)に垂直な方向から見て、前記M行N列の複数のタッチセンス電極3のうちの1行N列の複数のタッチセンス電極3を囲むように配置されてもよい。
 上記の構成によれば、近接センス電極が1行N列のN個のタッチセンス電極を囲むように配置されるので、近接センス電極とN個のタッチセンス電極との間の距離が近くなり、近接センス電極とN個のタッチセンス電極との間の結合電荷の変化ΔQが大きくなる。この結果、コイルの近接をより確実に検出することができる。
 本発明の態様5に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、上記態様1から4のいずれか一態様において、前記コイル10がRFID装置9に設けられてもよい。
 上記の構成によれば、RFID装置の近接を検出することができる。
 本発明の態様6に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、上記態様1から5のいずれか一態様において、前記近接センス電極4・4b・4c・4dが、前記コイル10の共振周波数を有するように形成されてもよい。
 上記の構成によれば、コイルの近接により近接センス電極がコイルと共振する。このため、近接センス電極とタッチセンス電極との間の結合電荷が変化する。従って、各タッチセンス電極から読み出される信号が上記結合電荷の変化に応じて変化することにより、コイルの近接を検出することができる。
 本発明の態様7に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、上記態様1から6のいずれか一態様において、前記近接センス電極4・4b・4c・4dがITO(酸化インジウムスズ)により構成されてもよい。
 上記の構成によれば、近接センス電極が透明になるため、タッチパネルを内蔵したタッチパネル内蔵ディスプレイの表示の視認性が向上する。
 本発明の態様8に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、上記態様1から7のいずれか一態様において、前記対向基板(CF基板7)の前記液晶層8側に、カラーフィルタ層を周期的に配列して構成されたカラーフィルタ11と、前記カラーフィルタ層を区画するために格子状に形成されたブラックマトリックス12とをさらに備え、前記近接センス電極4・4b・4c・4dが、前記ブラックマトリックス12に対応する位置に形成されてもよい。
 上記の構成によれば、近接センス電極をブラックマトリックスによって覆うことができるので、タッチパネル内蔵ディスプレイの表示の視認性を向上させることができる。
 本発明の態様9に係るタッチパネル内蔵ディスプレイ(液晶表示パネル1・1a・1b)は、上記態様1から8のいずれか一態様において、前記近接センス電極4・4b・4c・4dがU字型形状を有し、前記近接センス電極4・4b・4c・4dの共振周波数を定めるために前記近接センス電極4・4b・4c・4dの一端と他端とに接続される共振周波数コンデンサ5・5a・5cをさらに備えてもよい。
 上記の構成によれば、共振周波数コンデンサの静電容量により、コイルと共振する近接センス電極の共振周波数を定めることができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1 液晶表示パネル(タッチパネル内蔵ディスプレイ、ディスプレイ)
 2 タッチパネル
 3 タッチセンス電極
 4 近接センス電極
 5 共振周波数コンデンサ
 6 TFT基板(回路基板)
 7 CF基板(対向基板)
 8 液晶層
 9 RFID装置
10 コイル
11 カラーフィルタ
12 ブラックマトリックス

Claims (9)

  1.  タッチパネルと前記タッチパネルを内蔵したディスプレイとを備えるタッチパネル内蔵ディスプレイであって、
     前記ディスプレイが、回路基板と、
     前記回路基板に対向して配置される対向基板と、
     前記回路基板と前記対向基板との間に形成される液晶層とを備え、
     前記タッチパネルが、タッチ対象との間の容量又は容量変化を検出するために前記回路基板と前記対向基板との少なくとも一方に形成された複数のタッチセンス電極と、
     コイルの近接を検出するために前記回路基板と前記対向基板との少なくとも一方に形成された近接センス電極とを備えることを特徴とするタッチパネル内蔵ディスプレイ。
  2.  前記複数のタッチセンス電極が前記回路基板に形成され、
     前記近接センス電極が前記対向基板に形成される請求項1に記載のタッチパネル内蔵ディスプレイ。
  3.  前記複数のタッチセンス電極が、M行N列の行列状に配置され(M、Nは複数)、
     前記近接センス電極が、前記対向基板に垂直な方向から見て、少なくとも1個のタッチセンス電極を囲むように配置される請求項1又は2に記載のタッチパネル内蔵ディスプレイ。
  4.  前記近接センス電極がM個形成され、
     各近接センス電極が、前記対向基板に垂直な方向から見て、前記M行N列の複数のタッチセンス電極のうちの1行N列の複数のタッチセンス電極を囲むように配置される請求項3に記載のタッチパネル内蔵ディスプレイ。
  5.  前記コイルがRFID装置に設けられる請求項1から4のいずれか一項に記載のタッチパネル内蔵ディスプレイ。
  6.  前記近接センス電極が、前記コイルの共振周波数を有するように形成される請求項1から5のいずれか一項に記載のタッチパネル内蔵ディスプレイ。
  7.  前記近接センス電極がITO(酸化インジウムスズ)により構成される請求項1から6のいずれか一項に記載のタッチパネル内蔵ディスプレイ。
  8.  前記対向基板の前記液晶層側に、カラーフィルタ層を周期的に配列して構成されたカラーフィルタと、
     前記カラーフィルタ層を区画するために格子状に形成されたブラックマトリックスとをさらに備え、
     前記近接センス電極が、前記ブラックマトリックスに対応する位置に形成される請求項1から7のいずれか一項に記載のタッチパネル内蔵ディスプレイ。
  9.  前記近接センス電極がU字型形状を有し、
     前記近接センス電極の共振周波数を定めるために前記近接センス電極の一端と他端とに接続される共振周波数コンデンサをさらに備える請求項1から8のいずれか一項に記載のタッチパネル内蔵ディスプレイ。
PCT/JP2017/032717 2016-09-15 2017-09-11 タッチパネル内蔵ディスプレイ WO2018051955A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/331,555 US10802633B2 (en) 2016-09-15 2017-09-11 Display with built-in touch panel
CN201780056048.6A CN109690459B (zh) 2016-09-15 2017-09-11 触摸面板内置显示器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016180999 2016-09-15
JP2016-180999 2016-09-15

Publications (1)

Publication Number Publication Date
WO2018051955A1 true WO2018051955A1 (ja) 2018-03-22

Family

ID=61619131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032717 WO2018051955A1 (ja) 2016-09-15 2017-09-11 タッチパネル内蔵ディスプレイ

Country Status (3)

Country Link
US (1) US10802633B2 (ja)
CN (1) CN109690459B (ja)
WO (1) WO2018051955A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022135874A (ja) * 2021-03-03 2022-09-15 緯創資通股▲ふん▼有限公司 スピーカー装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066685A1 (ja) * 2016-10-06 2018-04-12 シャープ株式会社 タッチパネル及びタッチパネルシステム
US11048370B2 (en) * 2016-12-29 2021-06-29 Samsung Display Co., Ltd. Display device and method of manufacturing the same
JP6854743B2 (ja) * 2017-11-15 2021-04-07 株式会社ジャパンディスプレイ 表示装置
US11294497B2 (en) * 2019-06-18 2022-04-05 Himan Technologies Limited Touch-and-display device and sensing system with peripheral electrode for transmitting uplink signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185680A (ja) * 2010-03-05 2011-09-22 Wacom Co Ltd 位置検出装置
JP2014174713A (ja) * 2013-03-08 2014-09-22 Nec Access Technica Ltd ペン、入力装置及び入力方法
JP2016126695A (ja) * 2015-01-08 2016-07-11 三菱電機株式会社 タッチスクリーン、タッチパネル、表示装置、および電子機器
JP2016206791A (ja) * 2015-04-17 2016-12-08 株式会社ジャパンディスプレイ 表示装置およびタッチ検出装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231299A1 (en) 2002-09-16 2009-09-17 Taiguen Technology (Shen Zhen) Co., Ltd. Touch control display screen apparatus with a built-in electromagnetic induction layer of wire lattice
US9746981B2 (en) * 2007-03-29 2017-08-29 Microsoft Technology Licensing, Llc System and method for multiple object detection on a digitizer system
JP5378243B2 (ja) * 2010-01-13 2013-12-25 アルプス電気株式会社 アンテナ付き入力装置、及び該装置を備える電子機器
CN103650025B (zh) * 2011-07-07 2016-05-25 瑟克公司 消除具有嵌入式近场通信天线的触摸传感装置中的感应电流
KR102061569B1 (ko) * 2013-05-16 2020-01-03 삼성디스플레이 주식회사 표시장치 및 표시장치의 구동방법
US9389737B2 (en) * 2012-09-14 2016-07-12 Samsung Display Co., Ltd. Display device and method of driving the same in two modes
CN105051655A (zh) * 2014-02-18 2015-11-11 智通科技有限公司 指定位置检测装置
TW201604746A (zh) * 2014-07-18 2016-02-01 凌通科技股份有限公司 增加訊號雜訊比之方法及使用其之電容感測器與觸控面板
CN104298411B (zh) * 2014-10-30 2017-11-17 上海天马微电子有限公司 触控基板、触控屏、触控显示面板及触控显示装置
WO2018066685A1 (ja) * 2016-10-06 2018-04-12 シャープ株式会社 タッチパネル及びタッチパネルシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185680A (ja) * 2010-03-05 2011-09-22 Wacom Co Ltd 位置検出装置
JP2014174713A (ja) * 2013-03-08 2014-09-22 Nec Access Technica Ltd ペン、入力装置及び入力方法
JP2016126695A (ja) * 2015-01-08 2016-07-11 三菱電機株式会社 タッチスクリーン、タッチパネル、表示装置、および電子機器
JP2016206791A (ja) * 2015-04-17 2016-12-08 株式会社ジャパンディスプレイ 表示装置およびタッチ検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022135874A (ja) * 2021-03-03 2022-09-15 緯創資通股▲ふん▼有限公司 スピーカー装置
JP7149390B2 (ja) 2021-03-03 2022-10-06 緯創資通股▲ふん▼有限公司 スピーカー装置

Also Published As

Publication number Publication date
CN109690459A (zh) 2019-04-26
CN109690459B (zh) 2022-02-25
US20190196639A1 (en) 2019-06-27
US10802633B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2018051955A1 (ja) タッチパネル内蔵ディスプレイ
WO2018066685A1 (ja) タッチパネル及びタッチパネルシステム
US9639218B2 (en) Liquid crystal panel, display device and scanning method thereof
US9158398B2 (en) Display device having touch screen sensing function
JP2019117636A (ja) 静電容量感知デバイスのための多重センサタッチ統合表示ドライバ構成
US20150002446A1 (en) Wireless communication enabling capacitive imaging sensor assembly
CN103927071B (zh) 一种触摸显示面板以及触摸显示装置
EP2811370B1 (en) Inductive touch screen
JP5819565B1 (ja) 位置検出ユニット
TWI541712B (zh) 觸控螢幕、觸控板及其驅動方法
CN105786290A (zh) 触摸感测器件、触控面板、显示面板和显示装置
CN104969154A (zh) 用于在触摸屏设备中降低可见度的网格传感器设计
CN104679357A (zh) 混合型触摸屏
JP6662738B2 (ja) 入力検出装置および電子装置
CN103927070A (zh) 一种内嵌式电磁触摸显示屏以及触摸显示装置
CN103927072A (zh) 一种tft阵列基板、触摸显示面板以及触摸显示装置
CN107422933B (zh) 电磁触控屏及触控显示装置
US20150009623A1 (en) Tablet having a flexible and transparent sensing area
WO2017056259A1 (ja) 指定位置検出ユニット
JP2016031767A (ja) 位置検出ユニット
KR102478273B1 (ko) 터치 위치 식별을 위한 전자 장치, 전자 장치를 포함하는 터치 시스템 및 그의 동작 방법
TWI524249B (zh) 電容式觸控板
US20240045523A1 (en) Touch input system including pen and controller
WO2021002123A1 (ja) 端末装置および位置検出センサ
WO2023216302A1 (zh) 触控显示模组及触控显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP