WO2018051837A1 - 変異糸状菌、及びそれを用いたc4ジカルボン酸の製造方法 - Google Patents

変異糸状菌、及びそれを用いたc4ジカルボン酸の製造方法 Download PDF

Info

Publication number
WO2018051837A1
WO2018051837A1 PCT/JP2017/031857 JP2017031857W WO2018051837A1 WO 2018051837 A1 WO2018051837 A1 WO 2018051837A1 JP 2017031857 W JP2017031857 W JP 2017031857W WO 2018051837 A1 WO2018051837 A1 WO 2018051837A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
polypeptide
filamentous fungus
amino acid
dicarboxylic acid
Prior art date
Application number
PCT/JP2017/031857
Other languages
English (en)
French (fr)
Inventor
鏡士朗 野中
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201780055565.1A priority Critical patent/CN109689871B/zh
Priority to US16/330,173 priority patent/US20190194700A1/en
Priority to JP2018539638A priority patent/JP6970101B2/ja
Publication of WO2018051837A1 publication Critical patent/WO2018051837A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01038Malate dehydrogenase (oxaloacetate-decarboxylating) (1.1.1.38)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01039Malate dehydrogenase (decarboxylating) (1.1.1.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/0104Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (1.1.1.40)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/845Rhizopus

Definitions

  • the present invention relates to a mutant filamentous fungus and a method for producing C4 dicarboxylic acid using the same.
  • C4 dicarboxylic acid is a material with high industrial value such as acidulant, antibacterial agent, pH adjuster, used in various applications in the food industry, and as a raw material for synthetic resins and biodegradable polymers. is there.
  • C4 dicarboxylic acid is industrially produced by either chemical synthesis derived from petrochemical raw materials or microbial fermentation. In the past, chemical synthesis methods have been the mainstream because of their lower cost, but in recent years, production methods using microbial fermentation using recycled resources as raw materials have attracted attention from the viewpoint of soaring raw materials and environmental impact.
  • fumaric acid which is one of C4 dicarboxylic acids
  • fermenting bacteria such as Rhizopus.
  • Rhizopus sp. Produces fumaric acid using glucose as a carbon source and discharges it outside the cell.
  • improvement of the culture method and production of a high-productivity strain by mutation breeding have been known.
  • the genetic background of Rhizopus spp. Has not yet been fully studied, the development of a technology for increasing the production of fumaric acid in Rhizopus spp. By genetic recombination is not easy and there are few reports.
  • Non-Patent Document 1 Slightly introducing a gene encoding pyruvate carboxylase derived from Saccharomyces cerevisiae into Rhizopus deremer (Patent Document 1) and introducing a gene encoding phosphoenolpyruvate carboxylase derived from E. coli into Rhizopus oryzae The improvement of fumaric acid productivity by (Non-Patent Document 1) has been reported.
  • ME Malic enzyme
  • Streptococcus genus Candida genus, Bradyrhizobium genus, Corynebacterium genus, and lipid producing bacteria such as oleaginous yeast, Mucor circinelloides and Mortierella alpine. It has been reported that it is involved in various metabolic pathways such as metabolism.
  • Non-Patent Document 2 reports that the amount of succinic acid produced has increased in Escherichia coli introduced with the malate enzyme gene sfcA.
  • Patent Document 2 reports that the amount of malic acid produced increased in E. coli in which the fum gene was knocked out and the malic enzyme gene was overexpressed. On the other hand, the role of ME in the metabolic pathway of filamentous fungi such as Rhizopus is still unclear.
  • Patent Document 1 Chinese Patent Application Publication No. 103013843 (Patent Document 2) Chinese Patent No. 10125405 (Non-Patent Document 1) Metabolic Engineering, 2012, 14: 512-520 (Non-Patent Document 2) Biotech. Bioeng. 2001, 74: 89-95.
  • the present invention provides the following: A polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2; A polypeptide comprising an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 and having malic enzyme activity; and A polypeptide comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, added or inserted into the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity; A mutant filamentous fungus having enhanced expression of at least one polypeptide selected from the group consisting of:
  • the present invention relates to a host filamentous fungus, wherein: A polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2; A polypeptide comprising an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 and having malic enzyme activity; and A polypeptide comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, added or inserted into the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity;
  • a method for producing a mutant filamentous fungus comprising enhancing the expression of at least one polypeptide selected from the group consisting of:
  • the present invention relates to a filamentous fungus, wherein: A polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2; A polypeptide comprising an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 and having malic enzyme activity; and A polypeptide comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, added or inserted into the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity; A method for improving the ability to produce C4 dicarboxylic acid in a filamentous fungus, comprising enhancing the expression of at least one polypeptide selected from the group consisting of:
  • the present invention relates to a mutant filamentous fungus having an improved ability to produce C4 dicarboxylic acid, and a method for producing C4 dicarboxylic acid using the mutant filamentous fungus.
  • filamentous fungi with enhanced expression of a polypeptide having a malic enzyme activity consisting of a given amino acid sequence can improve the ability to produce C4 dicarboxylic acid.
  • amino acid sequences or nucleotide sequences refers to 90% or more, preferably 95% or more, more preferably 96% or more, even more preferably 97% or more, and even more preferably It means 98% or more, preferably 99% or more identity.
  • nucleotide sequence in which one or more nucleotides are deleted, substituted, added, or inserted is 1 or more and 90 or less, preferably 1 or more and 30 or less, more preferably It refers to a nucleotide sequence in which 1 to 15 nucleotides, even more preferably 1 to 9 nucleotides have been deleted, substituted, added, or inserted.
  • additional of amino acids or nucleotides includes addition of amino acids or nucleotides to one and both ends of the sequence.
  • upstream and downstream relating to a gene refer to upstream and downstream in the transcription direction of the gene.
  • a gene arranged downstream of a promoter means that a gene is present 3 ′ of the promoter in the DNA sense strand, and “upstream of the gene” is 5 ′ of the gene in the DNA sense strand. Means the area.
  • operable linkage between a control region and a gene means that the gene and the control region are linked so that the gene can be expressed under the control of the control region.
  • the procedure of “operable linkage” between a gene and a regulatory region is well known to those skilled in the art.
  • the term “original” used for the function, property, and trait of a microorganism is used to indicate that the function, property, or trait is present in the wild type of the microorganism.
  • the term “foreign” is used not to indicate that the microorganism originally exists, but to indicate a function, property, or trait introduced from the outside.
  • a “foreign” gene or polynucleotide is a gene or polynucleotide introduced into a microorganism from the outside.
  • the foreign gene or polynucleotide may be derived from the same type of organism as the microorganism into which it is introduced or from a different type of organism (ie, a heterologous gene or polynucleotide).
  • the “C4 dicarboxylic acid-producing ability” of a microorganism is expressed as the production rate of C4 dicarboxylic acid in the culture medium of the microorganism, and more specifically, by the time when a certain time has elapsed after the start of cultivation of the microorganism. It is expressed as a value (g / L / h) obtained by dividing the mass per volume of the C4 dicarboxylic acid produced by the microorganism by the culture time.
  • the amount of C4 dicarboxylic acid produced by the microorganism can be calculated as the amount of C4 dicarboxylic acid in the culture supernatant obtained by removing cells from the microorganism culture.
  • the amount of C4 dicarboxylic acid in the culture supernatant can be measured by high performance liquid chromatography (HPLC) or the like. A more specific measurement procedure is illustrated in Reference Example 1 described later.
  • “improving C4 dicarboxylic acid-producing ability” in the mutant means that the C4 dicarboxylic acid-producing ability of the mutant is improved as compared with the host or the control.
  • the mutant refers to a cell in which a given trait has been modified to change a given character
  • the host refers to the mutant host (parent cell or parent organism).
  • the control includes a cell or organism of a different species from the host cell with the same modification as the mutant, or a host cell or organism without the modification (for example, a host cell into which an empty vector or a control sequence is introduced, Organisms).
  • the improvement rate of the C4 dicarboxylic acid producing ability in the mutant is calculated based on the C4 dicarboxylic acid producing ability of each cell or organism when the production rate of C4 dicarboxylic acid by the mutant is maximized.
  • Examples of the C4 dicarboxylic acid produced according to the present invention include fumaric acid, malic acid, and succinic acid, preferably fumaric acid and malic acid, more preferably fumaric acid.
  • malic enzyme activity refers to the activity of decarboxylating malic acid to produce pyruvic acid and CO 2 , preferably coupled with the reduction of NAD + or NADP + as shown below. This activity catalyzes the reaction of oxidatively decarboxylating malic acid to produce pyruvic acid and CO 2 , and NADH or NADPH.
  • the malic enzyme activity can be measured by a known method (for example, the method described in W. Tang et al., Mol. Biotechnol., 2010, 45: 121-128).
  • malic enzyme is an enzyme having the above-described malic enzyme activity, and as an example, EC1.1.1.18 (NAD + alone is used). NAD-ME), EC1.1.1.39 (NAD (P) -ME that can use both NAD + and NADP + ) or EC1.1.1.10 (NADP + only) And NADP-malate enzyme and NADP-malate enzyme, which are classified as NADP-ME).
  • the present invention provides a mutant filamentous fungus with enhanced expression of a polypeptide having malic enzyme activity.
  • examples of polypeptides having malic enzyme activity that are enhanced in expression in the mutant filamentous fungus of the present invention include the following: (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2; (B) a polypeptide comprising an amino acid sequence having at least 90% identity with the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity; (C) A polypeptide comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, added or inserted into the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity.
  • polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is a malic enzyme derived from Rhizopus sp.
  • a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is registered as RO3G_04512, and is encoded by a gene consisting of the nucleotide sequence represented by SEQ ID NO: 1.
  • polypeptide having malic enzyme activity that is enhanced in expression in the mutant filamentous fungus of the present invention is any one selected from the group consisting of the polypeptides (a) to (c) listed above, or any two More than species.
  • the mutant filamentous fungus of the present invention can be produced by modifying the filamentous fungus to enhance the expression of the polypeptide having malic enzyme activity. Therefore, in a further aspect, the present invention provides a method for producing a mutant filamentous fungus, comprising enhancing the expression of the above-mentioned polypeptide having malic enzyme activity in a host filamentous fungus.
  • the host filamentous fungus of the mutant filamentous fungus of the present invention includes all filamentous fungi belonging to the subdivision fungi (Emycota) and the oomycete (Omycota) (Hawksworth et al., In, Ainsworth and Bisby ' s Dictionary of The Fungi, 8th edition, 1995, CAB International, bUniversity, Press, Cambridge, UK).
  • Preferred examples of the host filamentous fungus of the mutant filamentous fungus of the present invention include the genus Acremonium, the genus Aspergillus, the genus Aureobasidium, the genus Bjerkandera, the genus Cerioporium, the genus Chrysosporium, the genus Corpirus, the genus Coriorus, Genus, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Parasitella, Penicillium, Phanerohule, Phlebros us genus Schizophyllum sp, Talaromyces sp, Thermoascus sp., Thielavia genus Tolypocladium sp, Trametes sp, and include filamentous fungus Trichoderma sp.
  • the host filamentous fungus of the mutant filamentous fungus of the present invention may be a mutant strain of the genus Rhizopus, and examples of the mutant strain include an alcohol dehydrogenase gene deletion ( ⁇ adh) strain (Japanese Patent Application No. 2016). -000184, the entirety of which is incorporated herein by reference), pyruvate decarboxylase gene deletion ( ⁇ pdc) strain (PCT / JP2017 / 003647, the entirety of which is incorporated herein by reference), and the like. Can be mentioned.
  • ⁇ adh alcohol dehydrogenase gene deletion
  • ⁇ pdc pyruvate decarboxylase gene deletion
  • a gene encoding the polypeptide is introduced into a host cell so that the gene can be expressed from the outside, or the polypeptide on the host genome can be expressed. Examples thereof include a method for improving the transcription amount of the gene in the host by modifying the control region of the gene encoding the peptide.
  • the enhancement of the expression of a polypeptide having malic enzyme activity according to the present invention is performed by introducing a DNA fragment or vector containing a gene encoding the polypeptide into a host filamentous fungus. Expression of a gene encoding a polypeptide having malic enzyme activity contained in the DNA fragment or vector increases the expression level of the target polypeptide having malic enzyme activity.
  • the gene encoding a polypeptide having malic enzyme activity to be enhanced in expression includes the following: (A ′) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1; (B ′) a polynucleotide comprising a nucleotide sequence having at least 90% identity to the nucleotide sequence set forth in SEQ ID NO: 1 and encoding a polypeptide having malic enzyme activity; (C ′) a polypeptide comprising a nucleotide sequence in which one or more nucleotides have been deleted, substituted, added or inserted into the nucleotide sequence represented by SEQ ID NO: 1 and having malic enzyme activity A polynucleotide.
  • the polynucleotides (a ′) to (c ′) listed above can be used alone or in combination of any two or more thereof.
  • the polynucleotides listed above may be in single-stranded or double-stranded form, or may be DNA or RNA.
  • the DNA may be artificial DNA such as cDNA or chemically synthesized DNA.
  • the polynucleotides (a ′) to (c ′) can be synthesized genetically or chemically.
  • the polynucleotide represented by SEQ ID NO: 1 can be prepared by isolation from a Rhizopus genus such as Rhizopus delmar, Rhizopus oryzae and the like.
  • it can be chemically synthesized based on the nucleotide sequence represented by SEQ ID NO: 1.
  • a polynucleotide comprising an inserted nucleotide sequence is suddenly generated by a known mutagenesis method such as ultraviolet irradiation or site-directed mutagenesis with respect to a polynucleotide comprising a nucleotide sequence represented by SEQ ID NO: 1. It can be created by introducing a mutation.
  • Examples of methods for introducing mutations such as nucleotide deletions, substitutions, additions or insertions into nucleotide sequences include chemical mutagens such as ethyl methanesulfonate, N-methyl-N-nitrosoguanidine, nitrous acid, etc. Mutagenesis by physical mutagens such as ultraviolet ray, X-ray, gamma ray, ion beam, site-directed mutagenesis method, method described in Diffenbach et al. (Cold Spring Harbor Laboratory Press, New York, 581-621, 1995), Etc.
  • chemical mutagens such as ethyl methanesulfonate, N-methyl-N-nitrosoguanidine, nitrous acid, etc.
  • Mutagenesis by physical mutagens such as ultraviolet ray, X-ray, gamma ray, ion beam, site-directed mutagenesis method, method described in Diffenbach et al. (Cold Spring Harbor Laboratory Press, New York,
  • the vector containing the polynucleotide to be introduced into the host filamentous fungus is an expression vector.
  • the vector is an expression vector capable of introducing the polynucleotide of the present invention into a host and capable of expressing the polynucleotide in the host.
  • the vector comprises the polynucleotide and a control region operably linked thereto.
  • the vector may be a vector capable of self-propagating and replicating outside the chromosome, such as a plasmid, or a vector that is integrated into the chromosome.
  • vectors include, for example, pBluescript II SK (-) (Stratagene), pUC18, pUC18 / 19, pUC118 / 119, and other pUC vectors (Takara Bio), pET vectors (Takara Bio), pGEX systems Vector (GE Healthcare), pCold-based vector (Takara Bio), pHY300PLK (Takara Bio), pUB110 (Mckenzie, T.
  • DNA fragments containing a polynucleotide to be introduced into host filamentous fungi include PCR amplified DNA fragments and restriction enzyme cleaved DNA fragments.
  • the DNA fragment may be an expression cassette comprising the polynucleotide and a control region operably linked thereto.
  • the control region contained in the vector or DNA fragment is a sequence for expressing the introduced polynucleotide in the host into which the vector or DNA fragment has been introduced.
  • an expression control region such as a promoter or terminator, For example, the replication start point.
  • the type of the control region can be appropriately selected according to the type of host into which the vector or DNA fragment is introduced. If necessary, the vector or DNA fragment may further have a selection marker such as an antibiotic resistance gene or an amino acid synthesis-related gene.
  • control region contained in the vector or DNA fragment is a control region having a higher transcriptional activity than the control regions of polynucleotides (a ′) to (c ′) inherent in the host genome (so-called forced Territory).
  • control regions of polynucleotides (a ′) to (c ′) inherent in the host genome are used in the control region contained in the vector or DNA fragment.
  • strong control region for Rhizopus spp. include, but are not limited to, the ldhA promoter (US Pat. No. 6,268,189), the pgk1 promoter (International Publication No. 2001/73083), the pgk2 promoter (International Publication No. 2001/2001).
  • control regions include, but are not limited to, the control region of the rRNA operon, the control region of a gene encoding a ribosomal protein, and the like.
  • the target polynucleotide and control region contained in the vector or DNA fragment may be introduced into the host nucleus or may be introduced into the host genome.
  • the target polynucleotide contained in the vector or DNA fragment may be directly introduced into the host genome and operably linked to a high expression promoter on the genome.
  • a homologous recombination method is mentioned as a means for introducing the polynucleotide into the genome.
  • transformation methods such as electroporation method, transformation method, transfection method, conjugation method, protoplast method, particle gun method, Agrobacterium method Etc. can be used.
  • Examples of means for introducing a vector or DNA fragment into a host genome include, but are not limited to, genome editing using an artificial DNA cleavage enzyme (artificial DNA nucleases or Programmable nuclease).
  • an artificial DNA cleavage enzyme artificial DNA nucleases or Programmable nuclease.
  • the genome editing technology TALEN (transcription activator-like effector nuclease), ZFN (zinc-finger nuclease), or CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) -Cas9 system, CRISPR-Cpf1, Homing endonuclease, such as compact designer TALEN is Can be mentioned. Kits for genome editing based on these technologies are commercially available, and can be purchased from Life technologies, Cellectis, Transposagen Biopharmaceuticals, and the like.
  • the mutant into which the target vector or DNA fragment has been introduced can be selected using a selection marker.
  • a selection marker is an antibiotic resistance gene
  • a mutant into which the target vector or DNA fragment has been introduced can be selected by culturing cells in the antibiotic-added medium.
  • the selection marker is an auxotrophy-related gene such as an amino acid synthesis-related gene or a base synthesis-related gene
  • a mutant into which a vector or DNA fragment has been introduced can be selected.
  • introduction of the target vector or DNA fragment can be confirmed by examining the DNA sequence of the mutant by PCR or the like.
  • the enhanced expression of a polypeptide having malic enzyme activity according to the present invention modifies the regulatory region of the gene encoding the polypeptide on the genome of the host filamentous fungus, and the transcription amount of the gene Is done by improving.
  • the target gene for improving the transcription amount includes any one of the above-mentioned polynucleotides (a ′) to (c ′) or any two or more thereof.
  • the above-mentioned strong control region is substituted or inserted into the control region of the target gene on the host genome, and the strong control is performed.
  • Examples include operably linking a region to a gene of interest.
  • a homologous recombination method may be mentioned, and the above-described genome editing techniques may be combined.
  • the mutant filamentous fungus of the present invention obtained by the above procedure has improved malic enzyme activity compared to its host (parent filamentous fungus).
  • the malic enzyme activity of the mutant filamentous fungus of the present invention is 1.1 times or more, more preferably 1.5 times or more, still more preferably 2 times or more with respect to the host.
  • the mutant filamentous fungus of the present invention has an improved ability to produce C4 dicarboxylic acid compared to its host.
  • the C4 dicarboxylic acid-producing ability of the mutant filamentous fungus of the present invention is improved by 10% or more, more preferably 20% or more, and further preferably 30% or more with respect to the host.
  • the mutant filamentous fungus of the present invention has an improved ability to produce C4 dicarboxylic acid. Therefore, in a further aspect, the present invention provides a method for producing C4 dicarboxylic acid, comprising culturing the mutant filamentous fungus of the present invention.
  • the C4 dicarboxylic acid produced by the production method of the present invention include fumaric acid, malic acid, and succinic acid, preferably fumaric acid and malic acid, more preferably fumaric acid.
  • the medium and culture conditions for culturing the mutant filamentous fungus can be appropriately selected according to the type of the host of the mutant filamentous fungus. In general, media and culture conditions that are usually used for the host of the mutant filamentous fungus can be employed.
  • the culture temperature may be 10 ° C. to 50 ° C., preferably 25 ° C. to 45 ° C.
  • the culture period is not particularly limited as long as the target C4 dicarboxylic acid is sufficiently produced, and may be, for example, 1 to 240 hours, preferably 12 to 120 hours, preferably 24 to 72 hours. It is preferable to culture under stirring or aeration.
  • the medium generally contains a carbon source, a nitrogen source, an inorganic salt, and the like, but each component composition can be appropriately selected.
  • concentration of each component in the culture medium described below represents the density
  • the carbon source in the medium examples include glucose, maltose, starch hydrolyzate, fructose, xylose, sucrose, etc. Among these, glucose and fructose are preferable. These saccharides can be used alone or in combination of two or more.
  • the concentration of the carbon source in the medium is preferably 1% (w / v) or higher, more preferably 5% (w / v) or higher, and even more preferably 7.5% (w / v) or higher. And preferably 40% (w / v) or less, more preferably 30% (w / v) or less.
  • the concentration of the carbon source in the medium is preferably 1-40% (w / v), more preferably 5-30% (w / v), even more preferably 7.5-30% (w / v). v).
  • the medium can contain sulfate, magnesium salt, zinc salt and the like.
  • sulfates include magnesium sulfate, zinc sulfate, potassium sulfate, sodium sulfate, ammonium sulfate and the like.
  • magnesium salts include magnesium sulfate, magnesium nitrate, magnesium chloride and the like.
  • zinc salts include zinc sulfate, zinc nitrate, zinc chloride and the like.
  • the concentration of sulfate in the medium is preferably 0.001 to 0.5% (w / v), more preferably 0.001 to 0.2% (w / v).
  • the concentration of magnesium salt in the medium is preferably 0.001 to 0.5% (w / v), more preferably 0.01 to 0.1% (w / v).
  • the concentration of zinc salt in the medium is preferably 0.001 to 0.05% (w / v), more preferably 0.005 to 0.05% (w / v).
  • Preferred examples of the medium include 7.5 to 30% carbon source, 0.001 to 0.2% ammonium sulfate, 0.01 to 0.6% potassium dihydrogen phosphate, and 0.01 to 0.1% sulfuric acid.
  • step A a spore suspension of a filamentous fungus is prepared (step A), which is cultured in a culture solution to germinate the spore to prepare a mycelium (step B1), and preferably the mycelium is further propagated ( C4 dicarboxylic acid can be efficiently produced by culturing the prepared mycelium to produce C4 dicarboxylic acid (step C).
  • cultivation process of the mutant filamentous fungi in this invention is not limited to the following processes.
  • the spores of the mutant filamentous fungi are, for example, an inorganic agar medium (composition example: 2% glucose, 0.1% ammonium sulfate, 0.06% potassium dihydrogen phosphate, 0.025% magnesium sulfate heptahydrate, 0. Inoculate 009% zinc sulfate heptahydrate, 1.5% agar (both concentrations are% (w / v)), PDA medium, etc., at 10-40 ° C, preferably 27-30 ° C
  • the spore suspension can be prepared by allowing the spore to form by stationary culture for 7 to 10 days and then suspending in physiological saline or the like.
  • the spore suspension may or may not contain mycelium.
  • Step B1 Preparation of mycelium>
  • the spore suspension obtained in step A is inoculated into a culture solution and cultured, and the spores are germinated to obtain mycelium.
  • the number of spores of the filamentous fungus inoculated into the culture solution is 1 ⁇ 10 2 to 1 ⁇ 10 8 spore / mL-culture solution, preferably 1 ⁇ 10 2 to 5 ⁇ 10 4 spore / mL-culture solution, More preferred is 5 ⁇ 10 2 to 1 ⁇ 10 4 spores / mL-culture solution, and further preferred is 1 ⁇ 10 3 to 1 ⁇ 10 4 spores / mL-culture solution.
  • the culture solution may be a monosaccharide such as glucose or xylose as a carbon source, an oligosaccharide such as sucrose, lactose or maltose, or a polysaccharide such as starch; glycerin, citric acid or the like.
  • Biological components ammonium sulfate, urea, amino acids, etc. as nitrogen sources; various salts such as sodium, potassium, magnesium, zinc, iron, phosphoric acid, etc., can be added as appropriate.
  • the preferred concentration of monosaccharides, oligosaccharides, polysaccharides and glycerin is 0.1-30% (w / v)
  • the preferred concentration of citric acid is 0.01-10% (w / v)
  • ammonium sulfate, urea and amino acids are preferred
  • the concentration is 0.01 to 1% (w / v)
  • the preferred concentration of the inorganic substance is 0.0001 to 0.5% (w / v).
  • the culture solution is inoculated with a spore suspension, and preferably stirred at 80 to 250 rpm, more preferably 100 to 170 rpm, under a culture temperature control of 25 to 42.5 ° C., preferably for 24 to 120 hours.
  • the culture is preferably performed for 48 to 72 hours.
  • the amount of the culture solution used for the culture may be appropriately adjusted according to the culture vessel. For example, it may be about 50 to 100 mL for a 200 mL baffled flask and about 100 to 300 mL for a 500 mL baffled flask. That's fine.
  • the inoculated spores germinate and grow into mycelium.
  • Step B2 Growth of mycelium> From the viewpoint of improving the ability to produce C4 dicarboxylic acid, it is preferable to carry out a step (step B2) of further culturing and growing the mycelium obtained in step B1.
  • the growth medium used in the step B2 is not particularly limited, and may be any inorganic culture liquid containing glucose that is normally used. For example, 7.5 to 30% glucose, 0.001 to 0.2% ammonium sulfate 0.01 to 0.6% potassium dihydrogen phosphate, 0.01 to 0.1% magnesium sulfate heptahydrate, 0.005 to 0.05% zinc sulfate heptahydrate, and 3.
  • Examples thereof include a culture solution containing 75 to 20% calcium carbonate (the concentration is% (w / v)).
  • the amount of the culture solution may be appropriately adjusted according to the culture vessel. For example, in the case of a 500 mL Erlenmeyer flask, it may be 50 to 300 mL, preferably 100 to 200 mL.
  • the cells cultured in step B1 are inoculated so that the wet weight becomes 1 to 6 g-cells / 100 mL-culture solution, preferably 3 to 4 g-cells / 100 mL-culture solution.
  • the culture is performed for 12 to 120 hours, preferably 24 to 72 hours under a culture temperature control of 25 to 42.5 ° C. while stirring at 300 rpm, preferably 170 to 230 rpm.
  • the mycelium of the filamentous fungus obtained in the above procedure is cultured to cause the fungus to produce C4 dicarboxylic acid.
  • the culture conditions may be the same as those for normal filamentous fungi described above.
  • the volume of the medium can be about 20 to 80 mL for a 200 mL Erlenmeyer flask, about 50 to 200 mL for a 500 mL Erlenmeyer flask, and about 10 L to 15 L for a 30 L jar fermenter. What is necessary is just to adjust suitably collectively.
  • the inoculum of the cells obtained in step B1 or B2 with respect to the medium can be preferably 5 g to 90 g-bacteria / 100 mL-medium, more preferably 5 g to 50 g-bacteria / 100 mL-medium.
  • the culture is performed at a temperature of 25 to 45 ° C. with stirring at 100 to 300 rpm, preferably 150 to 230 rpm, for 2 hours to 240 hours, preferably 12 hours to 120 hours.
  • aeration is preferably performed at 0.05 to 2 vvm, more preferably 0.1 to 1.5 vvm.
  • the mutant filamentous fungus of the present invention is cultured by the above procedure to produce C4 dicarboxylic acid.
  • C4 dicarboxylic acid is recovered from the culture. If necessary, the recovered C4 dicarboxylic acid may be further purified.
  • the method for recovering or purifying C4 dicarboxylic acid from the culture is not particularly limited, and may be performed according to a known recovery or purification method. For example, after removing cells from the culture by a gradient method, filtration, centrifugation, etc., and concentrating the remaining culture as necessary, a method such as a crystallization method, an ion exchange method, a solvent extraction method, or the like, By applying these combinations, C4 dicarboxylic acid in the culture can be recovered or purified.
  • the mutant filamentous fungus of the present invention isolated from the culture can be reused for C4 dicarboxylic acid production. For example, newly adding the above-mentioned medium to the mutant filamentous fungus of the present invention isolated from the culture, culturing again under the above conditions to produce C4 dicarboxylic acid, and then recovering the produced C4 dicarboxylic acid from the medium Can do. Furthermore, this process can be repeated.
  • the cultivation of mutant filamentous fungi and the recovery of C4 dicarboxylic acid may be carried out by any of batch, semi-batch and continuous methods.
  • Mutant filamentous fungus having enhanced expression of at least one polypeptide selected from the group consisting of: (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2; (B) a polypeptide comprising an amino acid sequence having at least 90% identity with the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity; (C) A polypeptide comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, added or inserted into the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity.
  • a ′ a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1
  • B ′ a polynucleotide comprising a nu
  • mutant filamentous fungus according to [2] or [3], wherein the DNA fragment or vector is introduced into the nucleus or genome.
  • the control region of the gene encoding the polypeptide on the genome is modified so as to improve the transcription amount of the gene, and the gene is at least one selected from the group consisting of:
  • the mutant filamentous fungus according to [5] wherein a strong control region is substituted or inserted into the control region.
  • the mutant filamentous fungus according to any one of [1] to [6], wherein the filamentous fungus is a Rhizopus sp.
  • Rhizopus sp Preferably, Rhizopus deremer or Rhizopus oryzae, More preferably Rhizopus delemar,
  • Rhizopus delemar Preferably, Rhizopus deremer or Rhizopus oryzae, More preferably Rhizopus delemar,
  • Rhizopus delemar The mutant filamentous fungus according to [7].
  • the C4 dicarboxylic acid is Preferably, it is fumaric acid, malic acid or succinic acid, More preferably fumaric acid or malic acid, More preferably, it is fumaric acid.
  • [12] A method for producing C4 dicarboxylic acid, comprising culturing the mutant filamentous fungus according to any one of [1] to [11].
  • the C4 dicarboxylic acid is Preferably, it is fumaric acid, malic acid or succinic acid, More preferably fumaric acid or malic acid, More preferably, it is fumaric acid.
  • a method for producing a mutant filamentous fungus comprising enhancing the expression of at least one polypeptide selected from the group consisting of: (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2; (B) a polypeptide comprising an amino acid sequence having at least 90% identity with the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity; (C) A polypeptide comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, added or inserted into the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity.
  • a method for improving the ability to produce C4 dicarboxylic acid in a filamentous fungus comprising enhancing the expression of at least one polypeptide selected from the group consisting of: (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2; (B) a polypeptide comprising an amino acid sequence having at least 90% identity with the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity; (C) A polypeptide comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, added or inserted into the amino acid sequence represented by SEQ ID NO: 2 and having malic enzyme activity.
  • the enhanced expression comprises introducing a DNA fragment or vector containing at least one polynucleotide selected from the group consisting of: : (A ′) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1; (B ′) a polynucleotide comprising a nucleotide sequence having at least 90% identity to the nucleotide sequence set forth in SEQ ID NO: 1 and encoding a polypeptide having malic enzyme activity; (C ′) a polypeptide comprising a nucleotide sequence in which one or more nucleotides have been deleted, substituted, added or inserted into the nucleotide sequence represented by SEQ ID NO: 1 and having malic enzyme activity A polynucleotide.
  • a ′ a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1
  • B ′ a polynucleotide comprising a nucleotide sequence
  • the method comprises modifying a regulatory region of a gene encoding the polypeptide on the genome so as to improve the transcription amount of the gene, wherein the gene is selected from the group consisting of:
  • Rhizopus sp Preferably, Rhizopus deremer or Rhizopus oryzae, More preferably Rhizopus delemar, [22] The method described.
  • Rhizopus bacterium is preferably a ⁇ adh or ⁇ pdc strain.
  • the C4 dicarboxylic acid producing ability of the filamentous fungus with enhanced expression of the polypeptide is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more.
  • the C4 dicarboxylic acid is Preferably, it is fumaric acid, malic acid or succinic acid, More preferably fumaric acid or malic acid, More preferably, it is fumaric acid. [25] The method described.
  • Example 1 Preparation of mutant filamentous fungi PCR primers used in this example are shown in Table 1-1 and Table 1-2.
  • RNA extraction After washing, excess water was removed by suction filtration, and 0.3 g was weighed out and placed in a 3 mL crushing tube together with a 3 mL metal cone (Yasui Kikai), immediately put into liquid nitrogen and frozen. The obtained frozen cells were crushed at 1700 rpm for 10 seconds using a multi-bead shocker (Yasui Kikai). 500 ⁇ L of RLT buffer was added to the disrupted cells, and after mixing by inversion, 450 ⁇ L was subjected to RNeasy Plant Mini Kit (Qiagen) to perform total RNA extraction.
  • RNeasy Plant Mini Kit Qiagen
  • RNA solution 1 ⁇ L of DNase I (TaKaRa) and 5 ⁇ L of 10 ⁇ DNase I buffer (USB Corporation) are added to 40 ⁇ L of the obtained RNA solution, filled to 50 ⁇ L with RNase free water, and reacted at 37 ° C. for 30 minutes or more. The remaining DNA was removed. An additional 1 ⁇ L of DNase I was added and reacted at 37 ° C. for 30 minutes, followed by phenol / chloroform extraction, followed by ethanol precipitation. The precipitate was dissolved in 50 ⁇ L of sterile water, and the concentration and purity of the RNA solution were measured using Qubit (Life Technologies).
  • RNA Integrity Number which is an index of RNA degradation
  • RNA solution obtained in (i) was filled up to 8 ⁇ L with DEPC water, 10 ⁇ L of 2 ⁇ RT Relaxation Mix and 2 ⁇ L of RT Enzyme Mix were added, gently mixed, and mixed at 25 ° C. for 10 minutes. And reacted at 50 ° C. for 30 minutes and at 85 ° C. for 5 minutes. 1 ⁇ L of RNase H was added to the solution after the reaction and reacted at 37 ° C. for 20 minutes to obtain a cDNA solution.
  • the DNA fragment was amplified by PCR using primers oJK210 (SEQ ID NO: 20) and oJK211 (SEQ ID NO: 21).
  • the above three fragments were ligated in the same procedure as in (i) to construct a plasmid pUC18-trpC-Padh-Tadh.
  • an ADH1 promoter and a terminator are sequentially arranged downstream of the trpC gene region. Further, a Not I restriction enzyme recognition sequence is arranged downstream of the ADH1 terminator.
  • a plasmid vector was prepared by removing the trpC gene region from pUC18-trpC-Pad-Tadh. That is, the DNA fragment was amplified by PCR using the primers trpC-lost-F (SEQ ID NO: 22) and trpC-lost-R (SEQ ID NO: 23) using the pUC18-trpC-Pad-Tadh constructed above as a template. . This fragment was ligated in the same manner as in (i) to construct plasmid pUC18-Padh-Tadh.
  • Plasmid vector preparation A gene encoding malate enzyme (hereinafter referred to as RdME1; SEQ ID NO: 1) was obtained by PCR using primers NK-141 (SEQ ID NO: 24) and NK-163 (SEQ ID NO: 25). Amplified from the cDNA library prepared in (2). Next, the DNA fragment was amplified by PCR using primers NK-011 (SEQ ID NO: 26) and NK-012 (SEQ ID NO: 27), using the plasmid pUC18-trpC-Pad-Tadh obtained in (ii) as a template. did.
  • the two fragments were ligated in the same procedure as in (i) to construct plasmid pUC18-trpC-Pad-RdME1-Tadh.
  • the RdME1 gene is inserted between the ADH promoter and the terminator.
  • plasmid ptrpC-knock-in for knock-in the trpC gene region was prepared by removing the pdc1 gene ORF from the pdc1 gene locus. That is, the pUC18 vector fragment amplified with primers pUC18-Pae1-F3 (SEQ ID NO: 28) and pUC18-Hind3-R3 (SEQ ID NO: 29) using pUC18 as a template, and the primer PDC1-upstr-F using the genome of JCM5557 strain as a template.
  • SEQ ID NO: 30 and the promoter region fragment of the pdc gene amplified by PDC1-upstr-R (SEQ ID NO: 31), and the primers trpCpro-R (SEQ ID NO: 32) and trpCter-F (sequence) using the JCM5557 strain genome as a template No. 33) and the terminator of the pdc gene amplified with the primers PDC1-downstr-F (SEQ ID NO: 34) and PDC1-downstr-R (SEQ ID NO: 35) using the trpC gene region fragment amplified in No. 33) and the genome of JCM5557 strain as a template.
  • Site fragment was ligated with the In-Fusion HD Cloning Kit (Clontech), to construct a plasmid ptrpC-knock-in.
  • the two fragments were ligated in the same procedure as in (i) to construct plasmid pUC18-Ppdc-trpC-Pad-RdME1-Tpdc.
  • the obtained plasmid contains the trpC knock-in sequence, and the RdME1 gene represented by SEQ ID NO: 1 is inserted between the ADH promoter and the PDC terminator.
  • the purified product was further treated with Lambda Exonuclease (NEW ENGLAND BioLabs) and then purified in the same manner as above to obtain single-stranded DNA. Lambda exonuclease treatment was performed at 37 ° C. overnight.
  • TALEN expression vector A request was made to Transposagen Biopharmaceuticals to produce Custom XTN TALEN (trade name of TALEN provided by Transposagen Biopharmaceuticals). This is a kit for TALEN that targets the gene encoding pyruvate decarboxylase (PDC) (pdc gene; SEQ ID NO: 6), the two polynucleotides LeftTALEN-pdc (SEQ ID NO: 7) and RightTALEN-pdc (SEQ ID NO: 8), which bind to the region containing the pdc gene (SEQ ID NO: 9).
  • PDC pyruvate decarboxylase
  • LeftTALEN-pdc encodes TALEN targeting the sequence of 5′-TGCCTGCTATTAAAATCG-3 ′ (SEQ ID NO: 10) in the sense strand of the pdc gene
  • RightTALEN-pdc is 5′-TTGATTTCCTTAAGACGG- in the antisense strand It encodes a TALEN that targets the 3 '(SEQ ID NO: 11) sequence.
  • the above-mentioned polynucleotide encoding LeftTALEN-pdc was inserted into the expression vector pUC18-Pad-Tadh prepared in (3) above to prepare a vector that expresses TALEN under the control of the adh promoter and adh terminator. That is, the vector fragment was amplified by PCR using pUC18-Pad-Tadh as a template and primers adhpro-R (SEQ ID NO: 44) and adhter-F (SEQ ID NO: 45).
  • the LeftTALEN-pdc fragment was amplified by PCR with the primers adhpro-TALEN-F (SEQ ID NO: 46) and TALEN-adter-R (SEQ ID NO: 47) using LeftTALEN-pdc as a template. In the two fragments, there is an overlapping region of 15 bases. These two fragments were ligated using In-Fusion HD cloning kit (Clontech) to obtain a vector padh-LeftTALEN-pdc containing LeftTALEN-pdc.
  • the polynucleotide encoding the above RightTALEN-pdc was inserted into pUC18-Padh-Tadh to prepare a vector padh-RightTALEN-pdc that expresses TALEN under the control of the adh promoter and adh terminator.
  • Primers adhpro-R (SEQ ID NO: 44) and adhter-F (SEQ ID NO: 45) were used for amplification of the pUC18-Pad-Tadh fragment.
  • primers adhpro-TALEN-F (SEQ ID NO: 46) and TALEN-adhter-R SEQ ID NO: 47
  • Rhizopus delmar 02T6 strain (hereinafter referred to as 02T6 strain) exhibiting tryptophan auxotrophy was obtained.
  • the 02T6 strain is deficient in single nucleotide at position 2093 in the total length 2298 bp of the trpC gene coding region (SEQ ID NO: 3).
  • the spore after gene transfer is an inorganic agar medium (20 g / L glucose, 1 g / L ammonium sulfate, 0.6 g / L potassium dihydrogen phosphate, 0.25 g / L magnesium sulfate heptahydrate, 0.09 g / L (Zinc sulfate heptahydrate, 15 g / L agar), and statically cultured at 30 ° C. for about one week.
  • Colony PCR was performed using the above genomic template solution, primers NK-069 (SEQ ID NO: 50) and NK-118 (SEQ ID NO: 51), and KOD FX Neo (TOYOBO).
  • NK-069 SEQ ID NO: 50
  • NK-118 SEQ ID NO: 51
  • KOD FX Neo TOYOBO
  • colony PCR is performed with the above primers, the DNA fragment is amplified if knock-in of the trpC gene fragment occurs in the pdc1 gene locus.
  • a strain from which a DNA amplified fragment was obtained by colony PCR was obtained as a pdc1 gene-deficient strain ⁇ pdc strain.
  • the strain introduced with the gene using the plasmid pUC18-Ppdc-trpC-Pad-RdME1-Tpdc is the ⁇ pdc :: ME1 strain
  • the strain introduced with the gene using the plasmid ptrpC-knock-in is the ⁇ pdc :: trpC strain. It was.
  • the remaining cells were scraped with an inoculation ear and vigorously mixed in a spore collection solution (8.5 g / L sodium chloride, 0.5 g / L polyoxyethylene sorbitan monooleate).
  • the spore suspension after mixing was filtered with a 3GP100 cylindrical funnel type glass filter (Shibata Chemical Co., Ltd.), and this was used as a spore solution.
  • the number of spores in the spore solution was measured using TC20 Automated Cell Counter (Bio-Rad).
  • Example 2 Measurement of Malate Enzyme Activity of Mutant Strains
  • Culture of Strains i) Preparation of Mycelium Final sorbitan monolaurate (Reodol SP-L10 (Kao)) was added to a 500 mL Erlenmeyer flask with baffle (Asahi Glass) 200 mL of SD / -Trp medium (Clontech) supplemented with 0.5% (v / v) at a concentration was used, and the spore solution of ⁇ pdc :: ME1 strain and ⁇ pdc :: trpC strain prepared in Example 1 was 1 ⁇ 10 After inoculating each to give 3- spore / mL-medium, the mixture was stirred and cultured at 170 rpm for 3 days at 27 ° C. The obtained culture was filtered using a stainless steel sieve (As One) having a mesh mesh of 250 ⁇ m that had been sterilized in advance, and the cells were
  • the bacterial cells were washed with 200 mL of physiological saline, and the physiological saline was removed by suction filtration, and 1.0 g of the bacterial cells were frozen at -80 ° C.
  • the frozen cells were crushed using a multi-bead shocker and a metal cone (Yasui Kikai). 1 mL of 50 mM Tris-HCl buffer (pH 8.0) was added thereto, and the mixture was crushed again. After centrifugation at 15000 rpm and 4 ° C. for 5 minutes, the supernatant was concentrated using AmiconUltra-0.5 (3 kDa, Millipore). And wash. A cell disruption solution was obtained.
  • the activity unit (U) was defined as the amount of malic acid consumed in one minute ( ⁇ mol / min).
  • the measurement results are shown in Table 2.
  • the ⁇ pdc :: trpC the ⁇ pdc :: ME1 strain improved malic enzyme activity about 3 times.
  • ICSep ICE-ION-300 (7.8 mm ID) is a polymer column for organic acid analysis to which ICSep ICE-ION-300 Guard Column Cartridge (4.0 mm ID ⁇ 2.0 cm, TRANSGENIC) is connected. Elution was performed under the conditions of 10 mM sulfuric acid, a flow rate of 0.5 mL / min, and a column temperature of 50 ° C. A UV detector (detection wavelength 210 nm) was used for detection of C4 dicarboxylic acid.
  • a concentration calibration curve was prepared using a standard sample [fumaric acid (distributor code 063-00655, Wako Pure Chemical Industries)], and C4 dicarboxylic acid in the culture supernatant was quantified based on the concentration calibration curve.
  • the value obtained by subtracting the initial amount of C4 dicarboxylic acid in the medium from the amount of C4 dicarboxylic acid in the determined medium was defined as the amount of C4 dicarboxylic acid produced.
  • a value obtained by dividing the amount of C4 dicarboxylic acid per medium at 8 hours after the start of culture by the culture time was calculated as the production rate of C4 dicarboxylic acid in the cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

C4ジカルボン酸生産能の向上した変異糸状菌、及び該変異糸状菌を用いたC4ジカルボン酸の製造方法の提供。以下:配列番号2で示されるアミノ酸配列からなるポリペプチド;配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド、からなる群より選択される少なくとも1種のポリペプチドの発現が強化された、変異糸状菌。

Description

変異糸状菌、及びそれを用いたC4ジカルボン酸の製造方法
 本発明は、変異糸状菌、及びそれを用いたC4ジカルボン酸の製造方法に関する。
 C4ジカルボン酸は、酸味料や抗菌剤、pH調整剤として食品工業において様々な用途に利用されるほか、合成樹脂や生分解性ポリマーの原料としても用いられるなど、工業的な価値が高い物質である。C4ジカルボン酸は、工業的には石化原料由来の化学合成、又は微生物発酵のいずれかにより製造される。従前は、より低コストなため化学合成法が主流であったが、近年、原料の高騰や、環境負荷などの観点から、循環再生資源を原料とする微生物発酵による製造方法が注目されている。
 C4ジカルボン酸の一つであるフマル酸は、リゾプス属菌(Rhizopus)等の発酵菌を用いて製造できることが知られている。リゾプス属菌は、グルコースを炭素源としてフマル酸を生産し、菌体外に排出する。これまでに、リゾプス属菌のフマル酸高生産化のための手法に関しては、培養法の改良や変異育種による高生産性菌株の作製等が知られている。しかしながら、リゾプス属菌の遺伝学的背景は未だ充分に研究されていないことから、遺伝子組換えによるリゾプス属菌のフマル酸高生産化技術の開発は容易ではなく、報告も少ない。わずかに、サッカロマイセス・セレビシエ由来のピルビン酸カルボキシラーゼをコードする遺伝子をリゾプス・デレマーに導入すること(特許文献1)、及び大腸菌由来のホスホエノールピルビン酸カルボキシラーゼをコードする遺伝子をリゾプス・オリゼに導入すること(非特許文献1)によるフマル酸生産性向上が報告されている。
 リンゴ酸酵素(malic enzyme、ME)は、NAD+又はNADP+の還元と共役してリンゴ酸を酸化的に脱炭酸し、ピルビン酸とCO2を生成する反応を触媒する酵素である。MEは、大腸菌の細胞質に存在するほか、Streptococcus属、Candida属、Bradyrhizobium属、Corynebacterium属、ならびに油性酵母、Mucor circinelloides及びMortierella alpine等の脂質生産菌で見出されており、光合成、脂質合成、エネルギー代謝などの様々な代謝経路に関与していることが報告されている。非特許文献2には、リンゴ酸酵素遺伝子sfcAを導入した大腸菌において、コハク酸生産量が増加したことが報告されている。特許文献2には、fum遺伝子をノックアウトし、リンゴ酸酵素遺伝子を過剰発現させた大腸菌において、リンゴ酸生産量が増加したことが報告されている。一方で、リゾプス属等の糸状菌の代謝経路におけるMEの役割については未だ不明である。
 (特許文献1)中国特許出願公開第103013843号明細書
 (特許文献2)中国特許第101255405号公報
 (非特許文献1)Metabolic Engineering,2012,14:512-520
 (非特許文献2)Biotech.Bioeng.,2001,74:89-95
 一態様において、本発明は、以下:
 配列番号2で示されるアミノ酸配列からなるポリペプチド;
 配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
 配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド、
からなる群より選択される少なくとも1種のポリペプチドの発現が強化された、変異糸状菌を提供する。
 別の一態様において、本発明は、上記変異糸状菌を培養することを含む、C4ジカルボン酸の製造方法を提供する。
 さらなる一態様において、本発明は、宿主糸状菌において、以下:
 配列番号2で示されるアミノ酸配列からなるポリペプチド;
 配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
 配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド、
からなる群より選択される少なくとも1種のポリペプチドの発現を強化することを含む、変異糸状菌の製造方法を提供する。
 さらなる一態様において、本発明は、糸状菌において、以下:
 配列番号2で示されるアミノ酸配列からなるポリペプチド;
 配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
 配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド、
からなる群より選択される少なくとも1種のポリペプチドの発現を強化することを含む、糸状菌におけるC4ジカルボン酸生産能の向上方法を提供する。
発明の詳細な説明
 本発明は、C4ジカルボン酸生産能の向上した変異糸状菌、及び該変異糸状菌を用いたC4ジカルボン酸の製造方法に関する。
 本発明者は、鋭意検討した結果、所与のアミノ酸配列からなるリンゴ酸酵素活性を有するポリペプチドの発現が強化された糸状菌が、そのC4ジカルボン酸生産能を向上させることを見出した。
 本発明によれば、C4ジカルボン酸生産能が向上した変異糸状菌、及びその製造方法が提供される。本発明の変異糸状菌は、C4ジカルボン酸の生物学的生産のために有用である。本発明の変異糸状菌を用いたC4ジカルボン酸の製造方法によれば、効率の良いC4ジカルボン酸生産が可能になる。本発明の上記及び他の特徴及び利点は、以下の本明細書の記載からより明らかになるであろう。
(1.定義)
 本明細書において、アミノ酸配列又はヌクレオチド配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGENETY Ver.12のホモロジー解析プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 本明細書において、アミノ酸配列又はヌクレオチド配列に関する「少なくとも90%の同一性」とは、90%以上、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらにより好ましくは98%以上、なお好ましくは99%以上の同一性をいう。
 本明細書における「1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列」とは、1個以上30個以下、好ましくは1個以上10個以下、より好ましくは1個以上5個以下、さらに好ましくは1個以上3個以下のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列をいう。また本明細書における「1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列」とは、1個以上90個以下、好ましくは1個以上30個以下、より好ましくは1個以上15個以下、さらにより好ましくは1個以上9個以下のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列をいう。本明細書において、アミノ酸又はヌクレオチドの「付加」には、配列の一末端及び両末端へのアミノ酸又はヌクレオチドの付加が含まれる。
 本明細書において、遺伝子に関する「上流」及び「下流」とは、該遺伝子の転写方向の上流及び下流をいう。例えば、「プロモーターの下流に配置された遺伝子」とは、DNAセンス鎖においてプロモーターの3’側に遺伝子が存在することを意味し、遺伝子の上流とは、DNAセンス鎖における該遺伝子の5’側の領域を意味する。
 本明細書において、制御領域と遺伝子との「作動可能な連結」とは、遺伝子と制御領域とが、該遺伝子が該制御領域の制御の下で発現し得るように連結されていることをいう。遺伝子と制御領域との「作動可能な連結」の手順は当業者に周知である。
 本明細書において、微生物の機能や性状、形質に対して使用する用語「本来」とは、当該機能や性状、形質が当該微生物の野生型に存在していることを表すために使用される。対照的に、用語「外来」とは、当該微生物に元から存在するのではなく、外部から導入された機能や性状、形質を表すために使用される。例えば、「外来」遺伝子又はポリヌクレオチドとは、微生物に外部から導入された遺伝子又はポリヌクレオチドである。外来遺伝子又はポリヌクレオチドは、それが導入された微生物と同種の生物由来であっても、異種の生物由来(すなわち異種遺伝子又はポリヌクレオチド)であってもよい。
 本明細書において、微生物の「C4ジカルボン酸生産能」は、該微生物の培養培地におけるC4ジカルボン酸の生産速度として表され、より詳細には、該微生物の培養開始後一定時間経過時までに該微生物により生産されたC4ジカルボン酸の培地体積あたりの質量を培養時間で割った値(g/L/h)で表される。微生物のC4ジカルボン酸の生産量は、該微生物の培養物から細胞を除いた培養上清中のC4ジカルボン酸の量として算出することができる。培養上清中のC4ジカルボン酸の量は、高速液体クロマトグラフィー(HPLC)等により測定することができる。より具体的な測定手順は、後述の参考例1に例示する。
 本明細書において、変異体における「C4ジカルボン酸生産能の向上」とは、該変異体のC4ジカルボン酸生産能が、宿主又はコントロールと比較して向上されたことをいう。変異体におけるC4ジカルボン酸生産能の向上率は、以下の式で計算される。
  向上率(%)
 =(変異体のC4ジカルボン酸生産能/宿主又はコントロールのC4ジカルボン酸生産能)×100-100
 ここで、変異体とは、宿主細胞に対して所与の形質が変化するような改変を加えた細胞をいい、宿主とは、該変異体の宿主(親細胞又は親生物体)をいう。コントロールとしては、該変異体と同じ改変を加えた宿主細胞と異なる種の細胞又は生物体、あるいは該改変を加えなかった宿主細胞又は生物体(例えば、空ベクターもしくはコントロール配列を導入した宿主細胞や生物体など)が挙げられる。好ましくは、変異体におけるC4ジカルボン酸生産能の向上率は、該変異体によるC4ジカルボン酸の生産速度が最大となる時点における、各細胞又は生物体のC4ジカルボン酸生産能に基づいて計算される。本明細書において、「C4ジカルボン酸生産能がX%以上向上した変異体」とは、上記式で計算されるC4ジカルボン酸生産能の向上率がX%以上である変異体をいい、また変異体における「C4ジカルボン酸生産能のX%以上の向上」とは、上記式で計算される該変異体のC4ジカルボン酸生産能の向上率がX%以上であることを意味する。
 本発明により製造されるC4ジカルボン酸の例としては、フマル酸、リンゴ酸、及びコハク酸が挙げられ、好ましくはフマル酸及びリンゴ酸、より好ましくはフマル酸が挙げられる。
 本明細書において、「リンゴ酸酵素活性」とは、リンゴ酸を脱炭酸してピルビン酸とCO2を生成する活性をいい、好ましくは、下記に示す、NAD+又はNADP+の還元と共役してリンゴ酸を酸化的に脱炭酸し、ピルビン酸とCO2、及びNADH又はNADPHを生成する反応を触媒する活性である。
  L-malate + NAD(P)+ ⇔  pyruvate + CO2 + NAD(P)H
 リンゴ酸酵素活性は、公知の方法(例えば、W.Tang et al.,Mol.Biotechnol.,2010,45:121-128に記載の方法)により測定することができる。
 本明細書において、「リンゴ酸酵素」(malic enzyme、ME)とは、上述したリンゴ酸酵素活性を有する酵素であり、その例としては、EC1.1.1.38(NAD+のみを利用することが出来るNAD-ME)、EC1.1.1.39(NAD+とNADP+の両方を利用することが出来るNAD(P)-ME)又はEC1.1.1.40(NADP+のみを利用することが出来るNADP-ME)に分類される、NAD-リンゴ酸酵素及びNADP-リンゴ酸酵素が挙げられる。
(2.変異糸状菌及びその製造方法)
(2.1.変異糸状菌)
 一態様において、本発明は、リンゴ酸酵素活性を有するポリペプチドの発現が強化された変異糸状菌を提供する。
 一実施形態において、本発明の変異糸状菌において発現強化されるリンゴ酸酵素活性を有するポリペプチドの例としては、以下が挙げられる:
(a)配列番号2で示されるアミノ酸配列からなるポリペプチド;
(b)配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
(c)配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド。
 配列番号2で示されるアミノ酸配列からなるポリペプチドは、リゾプス属菌起源のリンゴ酸酵素である。配列番号2で示されるアミノ酸配列からなるポリペプチドは、RO3G_04512として登録されており、配列番号1で示されるヌクレオチド配列からなる遺伝子にコードされる。
 本発明の変異糸状菌において発現強化されるリンゴ酸酵素活性を有するポリペプチドとしては、上記に列挙したポリペプチド(a)~(c)からなる群より選択されるいずれか1種又はいずれか2種以上が挙げられる。
(2.2.変異糸状菌の製造)
 本発明の変異糸状菌は、糸状菌を改変し、上記リンゴ酸酵素活性を有するポリペプチドの発現を強化することによって製造することができる。したがって、さらなる態様において、本発明は、宿主糸状菌において、上記リンゴ酸酵素活性を有するポリペプチドの発現を強化することを含む、変異糸状菌の製造方法を提供する。
 本発明の変異糸状菌の宿主糸状菌としては、細区分真菌類(Eumycota)及び卵菌(Oomycota)に属する全ての糸状形の菌が包含される(Hawksworth et al.,In,Ainsworth and Bisby’s Dictionary of The Fungi,8th edition,1995,CAB International,bUniversity,Press,Cambridge,UKにより定義されるもの)。
 本発明の変異糸状菌の宿主糸状菌の好ましい例としては、Acremonium属、Aspergillus属、Aureobasidium属、Bjerkandera属、Ceriporiopsis属、Chrysosporium属、Coprinus属、Coriolus属、Cryptococcus属、Filibasidium属、Fusarium属、Humicola属、Magnaporthe属、Mucor属、Myceliophthora属、Neocallimastix属、Neurospora属、Paecilomyces属、Parasitella属、Penicillium属、Phanerochaete属、Phlebia属、Piromyces属、Pleurotus属、Rhizopus属、Schizophyllum属、Talaromyces属、Thermoascus属、Thielavia属、Tolypocladium属、Trametes属、及びTrichoderma属の糸状菌が挙げられる。このうち、C4ジカルボン酸の生産性の観点からは、Rhizopus delemar、Rhizopus arrhizus、Rhizopus chinensis、Rhizopus nigricans、Rhizopus tonkinensis、Rhizopus tritici、Rhizopus oryzae等のRhizopus属菌が好ましく、Rhizopus delemar及びRhizopus oryzaeがより好ましく、Rhizopus delemarがさらに好ましい。
 一実施形態において、本発明の変異糸状菌の宿主糸状菌は、Rhizopus属菌の変異株であってもよく、該変異株の例としては、アルコールデヒドロゲナーゼ遺伝子欠失(Δadh)株(特願2016-000184、その全体が本明細書において参考として援用される)、ピルビン酸デカルボキシラーゼ遺伝子欠失(Δpdc)株(PCT/JP2017/003647、その全体が本明細書において参考として援用される)などが挙げられる。
 宿主糸状菌においてリンゴ酸酵素活性を有するポリペプチドの発現を強化する手段としては、宿主細胞に対して該ポリペプチドをコードする遺伝子を外部から発現可能に導入するか、又は宿主ゲノム上の該ポリペプチドをコードする遺伝子の制御領域を改変することによって、宿主内での該遺伝子の転写量を向上させる方法などが挙げられる。
 好ましい実施形態において、本発明によるリンゴ酸酵素活性を有するポリペプチドの発現の強化は、該ポリペプチドをコードする遺伝子を含有するDNA断片又はベクターを、宿主糸状菌に導入することによって行われる。該DNA断片又はベクターに含まれるリンゴ酸酵素活性を有するポリペプチドをコードする遺伝子が発現することによって、目的のリンゴ酸酵素活性を有するポリペプチドの発現量が増加する。
 好ましい実施形態において、発現強化されるべきリンゴ酸酵素活性を有するポリペプチドをコードする遺伝子としては、以下が挙げられる:
(a')配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
(b')配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド;ならびに、
(c')配列番号1で示されるヌクレオチド配列に対して1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド。
 本発明による変異糸状菌の製造方法において、上記に挙げたポリヌクレオチド(a')~(c')は、いずれか1種又はいずれか2種以上を組み合わせて使用することができる。
 上記に挙げたポリヌクレオチドは、1本鎖もしくは2本鎖の形態であり得、又はDNAであってもRNAであってもよい。該DNAは、cDNA、化学合成DNA等の人工DNAであり得る。
 当該ポリヌクレオチド(a')~(c')は、遺伝子工学的又は化学的に合成することができる。例えば、配列番号1で示されるポリヌクレオチドは、リゾプス属菌、例えばRhizopus delemar、Rhizopus oryzae等から単離することにより調製することができる。あるいは、配列番号1で示されるヌクレオチド配列を基に、化学合成することができる。配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなるポリヌクレオチド、又は配列番号1で示されるヌクレオチド配列に対して1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるポリヌクレオチドは、例えば、配列番号1で示されるヌクレオチド配列からなるポリヌクレオチドに対して、紫外線照射や部位特異的変異導入のような公知の突然変異導入法により突然変異を導入することによって作製することができる。
 ヌクレオチド配列に対してヌクレオチドの欠失、置換、付加、又は挿入等の変異を導入する手法としては、例えば、エチルメタンスルホネート、N-メチル-N-ニトロソグアニジン、亜硝酸等の化学的変異原又は紫外線、X線、ガンマ線、イオンビーム等の物理的変異原による突然変異誘発、部位特異的変異導入法、Dieffenbachら(Cold Spring Harbar Laboratory Press,New York,581-621,1995)に記載の方法、などが挙げられる。部位特異的変異導入の手法としては、Splicing overlap extension(SOE)PCR(Horton et al.,Gene 77,61-68,1989)を利用した方法、ODA法(Hashimoto-Gotoh et al.,Gene,152,271-276,1995)、Kunkel法(Kunkel,T.A.,Proc.Natl.Acad.Sci.USA,1985,82,488)等が挙げられる。あるいは、Site-Directed Mutagenesis System Mutan-SuperExpress Kmキット(タカラバイオ社)、TransformerTM Site-Directed Mutagenesisキット(Clonetech社)、KOD-Plus-Mutagenesis Kit(東洋紡社)等の市販の部位特異的変異導入用キットを利用することもできる。
 好ましくは、宿主糸状菌に導入されるポリヌクレオチドを含有するベクターは、発現ベクターである。また好ましくは、該ベクターは、本発明のポリヌクレオチドを宿主に導入することができ、かつ宿主内で該ポリヌクレオチドを発現することができる発現ベクターである。好ましくは、該ベクターは、該ポリヌクレオチド、及びこれと作動可能に連結された制御領域を含む。該ベクターは、プラスミド等の染色体外で自立増殖及び複製可能なベクターであってもよく、又は染色体内に組み込まれるベクターであってもよい。
 具体的なベクターの例としては、例えば、pBluescript II SK(-)(Stratagene)、pUC18、pUC18/19、pUC118/119等のpUC系ベクター(タカラバイオ)、pET系ベクター(タカラバイオ)、pGEX系ベクター(GEヘルスケア)、pCold系ベクター(タカラバイオ)、pHY300PLK(タカラバイオ)、pUB110(Mckenzie,T.et al.,1986,Plasmid 15(2):93-103)、pBR322(タカラバイオ)、pRS403(Stratagene)、pMW218/219(ニッポンジーン)、pRI909/910等のpRI系ベクター(タカラバイオ)、pPTR1/2(タカラバイオ)、pBI系ベクター(クロンテック)、IN3系ベクター(インプランタイノベーションズ)、pDJB2(D.J.Ballance et al.,Gene,36,321-331,1985)、pAB4-1(van Hartingsveldt W et al.,Mol Gen Genet,206,71-75,1987)、pLeu4(M.I.G.Roncero et al.,Gene,84,335-343,1989)、pPyr225(C.D.Skory et al.,Mol Genet Genomics,268,397-406,2002)、pFG1(Gruber,F.et al.,Curr Genet,18,447-451,1990)などが挙げられる。
 宿主糸状菌に導入されるポリヌクレオチドを含有するDNA断片の例としては、PCR増幅DNA断片及び制限酵素切断DNA断片が挙げられる。好ましくは、該DNA断片は、該ポリヌクレオチド、及びこれと作動可能に連結された制御領域を含む発現カセットであり得る。
 当該ベクター又はDNA断片に含まれる制御領域は、該ベクター又はDNA断片が導入された宿主内で、導入されたポリヌクレオチドを発現させるための配列であり、例えば、プロモーターやターミネーター等の発現調節領域、複製開始点などが挙げられる。該制御領域の種類は、ベクター又はDNA断片を導入する宿主の種類に応じて適宜選択することができる。必要に応じて、該ベクター又はDNA断片はさらに、抗生物質耐性遺伝子、アミノ酸合成関連遺伝子等の選択マーカーを有していてもよい。
 好ましくは、当該ベクター又はDNA断片に含まれる制御領域は、宿主ゲノムに本来備わるポリヌクレオチド(a')~(c')の制御領域と比較して、より高い転写活性を有する制御領域(いわゆる強制御領域)である。リゾプス属菌についての当該強制御領域の例としては、これらに限定されないが、ldhAプロモーター(米国特許第6268189号)、pgk1プロモーター(国際公開第2001/73083号)、pgk2プロモーター(国際公開第2001/72967号)、pdcAプロモーター及びamyAプロモーター(Archives of Microbiology,2006,186:41-50)、tef及び18SrRNAプロモーター(米国特許出願公開第2010/112651号)、adh1プロモーター(国際公開第2017/022583号)などが挙げられる(本段落において引用された文献は、その全体が本明細書において参考として援用される)。強制御領域のさらなる例としては、これらに限定されないが、rRNAオペロンの制御領域、リボソームタンパク質をコードする遺伝子の制御領域などが挙げられる。
 当該ベクター又はDNA断片に含まれる目的のポリヌクレオチド及び制御領域は、宿主の核に導入されてもよいが、宿主ゲノムに導入されてもよい。あるいは、当該ベクター又はDNA断片に含まれる目的のポリヌクレオチドを、宿主ゲノムに直接導入して、該ゲノム上の高発現プロモーターと作動可能に連結させてもよい。ポリヌクレオチドをゲノムに導入する手段としては、相同組換え法が挙げられる。
 宿主糸状菌へのベクター又はDNA断片の導入には、一般的な形質転換法、例えばエレクトロポレーション法、トランスフォーメーション法、トランスフェクション法、接合法、プロトプラスト法、パーティクル・ガン法、アグロバクテリウム法等を用いることができる。
 ベクター又はDNA断片を宿主ゲノムに導入する手段の例としては、これに限定されるものではないが、人工DNA切断酵素(artificial DNA nucleases又はProgrammable nuclease)を用いたゲノム編集が挙げられる。ゲノム編集技術としては、TALEN(transcription activator-like effector nuclease)、ZFN(zinc-finger nuclease)、又はCRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)-Cas9システム、CRISPR-Cpf1、Homing endonuclease、compact designer TALENなどが挙げられる。これらの技術に基づくゲノム編集のためのキットは市販されており、例えばLife technologies社、Cellectis社、Transposagen Biopharmaceuticals社などから購入することができる。
 目的のベクター又はDNA断片が導入された変異体は、選択マーカーを利用して選択することができる。例えば、選択マーカーが抗生物質耐性遺伝子である場合、該抗生物質添加培地で細胞を培養することで、目的のベクター又はDNA断片が導入された変異体を選択することができる。また例えば、選択マーカーがアミノ酸合成関連遺伝子、塩基合成関連遺伝子等の栄養要求性関連遺伝子である場合、該栄養要求性の宿主に遺伝子導入した後、該栄養要求性の有無を指標に、目的のベクター又はDNA断片が導入された変異体を選択することができる。あるいは、PCR等によって変異体のDNA配列を調べることで目的のベクター又はDNA断片の導入を確認することもできる。
 別の好ましい実施形態において、本発明によるリンゴ酸酵素活性を有するポリペプチドの発現の強化は、宿主糸状菌のゲノム上における該ポリペプチドをコードする遺伝子の制御領域を改変し、該遺伝子の転写量を向上させることによって行われる。本実施形態で転写量向上の標的とする遺伝子としては、上述したポリヌクレオチド(a')~(c')のいずれか1種又はいずれか2種以上が挙げられる。
 目的の遺伝子の転写量を向上させるためのゲノム改変の手順としては、例えば、宿主ゲノム上の目的の遺伝子の制御領域に対し、上述した強制御領域を置換するか又は挿入して、該強制御領域を目的の遺伝子と作動可能に連結させることが挙げられる。ゲノム領域の置換又は挿入の手段としては、相同組換え法が挙げられ、さらに上述したゲノム編集技術を組み合わせてもよい。
 以上の手順で得られた本発明の変異糸状菌は、その宿主(親糸状菌)と比較して、リンゴ酸酵素活性が向上している。好ましくは、本発明の変異糸状菌のリンゴ酸酵素活性は、宿主に対して1.1倍以上、より好ましくは1.5倍以上、さらに好ましくは2倍以上である。
(2.3.C4ジカルボン酸生産能の向上)
 本発明の変異糸状菌は、その宿主と比較して、C4ジカルボン酸生産能が向上している。好ましくは、本発明の変異糸状菌のC4ジカルボン酸生産能は、宿主に対して10%以上、より好ましくは20%以上、さらに好ましくは30%以上向上している。
(3.C4ジカルボン酸の製造)
 本発明の変異糸状菌は、C4ジカルボン酸生産能が向上している。したがって、さらなる態様において、本発明は、上記本発明の変異糸状菌を培養することを含むC4ジカルボン酸の製造方法を提供する。該本発明の製造方法により製造されるC4ジカルボン酸としては、フマル酸、リンゴ酸、及びコハク酸が挙げられ、好ましくはフマル酸及びリンゴ酸、より好ましくはフマル酸が挙げられる。
 変異糸状菌を培養するための培地及び培養条件は、該変異糸状菌の宿主の種類に応じて適宜選択することができる。一般的には、該変異糸状菌の宿主に対して通常用いられる培地及び培養条件を採用することができる。
 例えば、培養温度は、10℃~50℃、好ましくは25℃~45℃であればよい。培養期間は、目的のC4ジカルボン酸が充分に産生される期間であれば特に限定されないが、例えば1~240時間、好ましくは12~120時間、好ましくは24~72時間であり得る。攪拌又は通気下で培養することが好ましい。
 糸状菌培養のための培地としては、通常用いられるものを使用すればよい。好ましくは、該培地は液体培地であり、また合成培地、天然培地、及び合成培地に天然成分を添加した半合成培地のいずれであってもよい。市販のPDB培地(ポテトデキストロース培地;ベクトン・ディッキンソン アンド カンパニー製等)、PDA培地(ベクトン・ディッキンソン アンド カンパニー製等)、LB培地(Luria-Bertani培地;日本製薬社製(商標名「ダイゴ」)等)、NB培地(Nutrient Broth;ベクトン・ディッキンソン アンド カンパニー製等)、SB培地(Sabouraud培地;OXOID社製等)、SD培地(Synthetic Dropout Broth;例えばClontech)なども使用可能である。当該培地には、炭素源、窒素源、無機塩等が含まれるのが一般的であるが、各成分組成は適宜選択可能である。
 以下に、糸状菌培養のための好ましい培地組成について詳述する。以下に記載する培地中の各成分の濃度は、初発(培地調製時又は培養開始時)の濃度を表す。
 当該培地中の炭素源の例としては、グルコース、マルトース、でんぷん加水分解物、フルクトース、キシロース、スクロース等が挙げられ、このうち、グルコース及びフルクトースが好ましい。これらの糖類は、単独で又は2種以上組み合わせて使用することができる。該培地中の炭素源の濃度は、好ましくは1%(w/v)以上、より好ましくは5%(w/v)以上、さらにより好ましくは7.5%(w/v)以上であって、かつ好ましくは40%(w/v)以下、より好ましくは30%(w/v)以下である。あるいは、当該培地中の炭素源の濃度は、好ましくは1~40%(w/v)、より好ましくは5~30%(w/v)、さらにより好ましくは7.5~30%(w/v)である。
 当該培地中の窒素源の例としては、硫酸アンモニウム、尿素、硝酸アンモニウム、硝酸カリウム、硝酸ナトリウム等の含窒素化合物が挙げられる。該培地中の窒素源の濃度は、好ましくは0.001~0.5%(w/v)、より好ましくは0.001~0.2%(w/v)である。
 当該培地には、硫酸塩、マグネシウム塩、亜鉛塩などを含有することができる。硫酸塩の例としては、硫酸マグネシウム、硫酸亜鉛、硫酸カリウム、硫酸ナトリウム、硫酸アンモニウム等が挙げられる。マグネシウム塩の例としては、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム等が挙げられる。亜鉛塩の例としては、硫酸亜鉛、硝酸亜鉛、塩化亜鉛等が挙げられる。該培地中の硫酸塩の濃度は、好ましくは0.001~0.5%(w/v)、より好ましくは0.001~0.2%(w/v)である。該培地中のマグネシウム塩の濃度は、好ましくは0.001~0.5%(w/v)、より好ましくは0.01~0.1%(w/v)である。該培地中の亜鉛塩の濃度は、好ましくは0.001~0.05%(w/v)、より好ましくは0.005~0.05%(w/v)である。
 当該培地のpH(25℃)は、好ましくは3~7、より好ましくは3.5~6である。培地のpHは、水酸化カルシウム、水酸化ナトリウム、炭酸カルシウム、アンモニア等の塩基、又は硫酸、塩酸等の酸を用いて調整することができる。
 当該培地の好ましい例としては、7.5~30%炭素源、0.001~0.2%硫酸アンモニウム、0.01~0.6%リン酸2水素カリウム、0.01~0.1%硫酸マグネシウム・7水和物、0.005~0.05%硫酸亜鉛・7水和物、及び3.75~20%炭酸カルシウム(いずれも濃度は%(w/v))を含有する液体培地が挙げられる。
 糸状菌を用いてより効率的にC4ジカルボン酸を生産するには、以下に示すような工程で生産を行ってもよい。すなわち、糸状菌の胞子懸濁液を調製し(工程A)、それを培養液で培養して胞子を発芽させ菌糸体を調製し(工程B1)、好適にはさらに当該菌糸体を増殖させ(工程B2)、次いで調製した菌糸体を培養してC4ジカルボン酸を生産させること(工程C)により、効率よくC4ジカルボン酸を製造することができる。ただし、本発明における変異糸状菌の培養工程は、以下の工程に限定されない。
<工程A:胞子懸濁液の調製>
 変異糸状菌の胞子を、例えば、無機寒天培地(組成例:2%グルコース、0.1%硫酸アンモニウム、0.06%リン酸2水素カリウム、0.025%硫酸マグネシウム・7水和物、0.009%硫酸亜鉛・7水和物、1.5%寒天、いずれも濃度は%(w/v))、PDA培地、等の培地に接種し、10~40℃、好ましくは27~30℃にて、7~10日間静置培養を行なうことにより胞子を形成させ、次いで生理食塩水などに懸濁することで、胞子懸濁液を調製することができる。胞子懸濁液には菌糸体が含まれていても、含まれていなくてもよい。
<工程B1:菌糸体の調製>
 工程Aで得られた胞子懸濁液を、培養液に接種して培養し、胞子を発芽させて菌糸体を得る。培養液に接種する糸状菌の胞子数は、1×102~1×108個-胞子/mL-培養液、好ましくは1×102~5×104個-胞子/mL-培養液、より好ましくは5×102~1×104個-胞子/mL-培養液、さらに好ましくは1×103~1×104個-胞子/mL-培養液である。培養液には、市販の培地、例えば、PDB培地、LB培地、NB培地、SB培地、SD培地等が利用できる。該培養液には、発芽率と菌体生育の観点から、炭素源としてグルコース、キシロースなどの単糖、シュークロース、ラクトース、マルトースなどのオリゴ糖、又はデンプン等の多糖;グリセリン、クエン酸などの生体成分;窒素源として硫酸アンモニウム、尿素、アミノ酸等;その他無機物としてナトリウム、カリウム、マグネシウム、亜鉛、鉄、リン酸等の各種塩類、を適宜添加することができる。単糖、オリゴ糖、多糖及びグリセリンの好ましい濃度は0.1~30%(w/v)、クエン酸の好ましい濃度は0.01~10%(w/v)、硫酸アンモニウム、尿素及びアミノ酸の好ましい濃度は0.01~1%(w/v)、無機物の好ましい濃度は0.0001~0.5%(w/v)である。当該培養液に胞子懸濁液を接種し、好ましくは80~250rpm、より好ましくは100~170rpmで攪拌しながら、25~42.5℃の培養温度制御下で、好ましくは24~120時間、より好ましくは48~72時間培養する。培養に供する培養液の量は、培養容器にあわせて適宜調整すればよいが、例えば、200mL容バッフル付フラスコの場合は50~100mL程度、500mL容バッフル付フラスコの場合は100~300mL程度であればよい。この培養により、接種した胞子は発芽し、菌糸体へと成長する。
<工程B2:菌糸体の増殖>
 C4ジカルボン酸生産能向上の観点から、工程B1で得られた菌糸体をさらに培養して増殖させる工程(工程B2)を行うことが好ましい。工程B2で使用する増殖用の培養液は特に限定されないが、通常使用されるグルコースを含む無機培養液であればよく、例えば、7.5~30%グルコース、0.001~0.2%硫酸アンモニウム、0.01~0.6%リン酸2水素カリウム、0.01~0.1%硫酸マグネシウム・7水和物、0.005~0.05%硫酸亜鉛・7水和物、及び3.75~20%炭酸カルシウム(いずれも濃度は%(w/v))を含有する培養液等が挙げられる。当該培養液の量は、培養容器にあわせて適宜調整すればよいが、例えば、500mL容三角フラスコの場合は50~300mL、好ましくは100~200mLであればよい。この培養液に、工程B1で培養した菌体を、湿重量として1~6g-菌体/100mL-培養液、好ましくは3~4g-菌体/100mL-培養液となるよう接種し、100~300rpm、好ましくは170~230rpmで攪拌しながら、25~42.5℃の培養温度制御下で、12~120時間、好ましくは24~72時間培養する。
<工程C:C4ジカルボン酸生産>
 上記の手順(工程B1又はB2)で得られた糸状菌の菌糸体を培養して、当該菌にC4ジカルボン酸を生産させる。該培養の条件は、上述した通常の糸状菌の培養条件に従えばよい。培地の量は、200mL容三角フラスコの場合は20~80mL程度、500mL容三角フラスコの場合は50~200mL程度、30Lジャーファーメンターの場合は10L~15L程度とすることができるが、培養容器にあわせて適宜調整すればよい。培地に対する工程B1又はB2で得られた菌体の接種量は、好ましくは湿重量として5g~90g-菌体/100mL-培地、より好ましくは5g~50g-菌体/100mL-培地であり得る。好適には、培養は、100~300rpm、好ましくは150~230rpmで攪拌しながら、25~45℃の温度下で、2時間~240時間、好ましくは12時間~120時間行われる。ジャーファーメンターを用いる場合は、通気は好ましくは0.05~2vvm、より好ましくは0.1~1.5vvmにて行う。
 以上の手順で本発明の変異糸状菌を培養し、C4ジカルボン酸を生産させる。培養後、培養物からC4ジカルボン酸を回収する。必要に応じて、回収したC4ジカルボン酸をさらに精製してもよい。培養物からC4ジカルボン酸を回収又は精製する方法は、特に限定されず、公知の回収又は精製方法に従って行えばよい。例えば、傾斜法、ろ過、遠心分離などにより培養物から細胞等を除去し、残った培養物を、必要に応じて濃縮した後、晶析法、イオン交換法、溶剤抽出法等の方法、又はこれらの組み合わせにかけることで、該培養物中のC4ジカルボン酸を回収又は精製することができる。
 培養物から分離された本発明の変異糸状菌は、C4ジカルボン酸生産に再利用することができる。例えば、培養物から分離した本発明の変異糸状菌に、上述した培地を新たに加え、再び上記条件で培養してC4ジカルボン酸を生産させ、次いで生産されたC4ジカルボン酸を培地から回収することができる。さらにこの過程を繰り返すことができる。本発明の製造方法において、変異糸状菌の培養及びC4ジカルボン酸の回収は、回分式、半回分式及び連続式のいずれの方法で行ってもよい。
(4.例示的実施形態)
 本発明の例示的実施形態として、以下の物質、製造方法、用途、方法等をさらに本明細書に開示する。但し、本発明はこれらの実施形態に限定されない。
〔1〕以下からなる群より選択される少なくとも1種のポリペプチドの発現が強化された、変異糸状菌:
(a)配列番号2で示されるアミノ酸配列からなるポリペプチド;
(b)配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
(c)配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド。
〔2〕好ましくは、以下からなる群より選択される少なくとも1種のポリヌクレオチドを含有するDNA断片又はベクターを導入された、〔1〕記載の変異糸状菌:
(a')配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
(b')配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド;ならびに、
(c')配列番号1で示されるヌクレオチド配列に対して1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド。
〔3〕好ましくは、前記DNA断片又はベクターが、前記ポリヌクレオチドと作動可能に連結された制御領域をさらに含有する、〔2〕記載の変異糸状菌。
〔4〕好ましくは、前記DNA断片又はベクターが、核内もしくはゲノムに導入されている、〔2〕又は〔3〕記載の変異糸状菌。
〔5〕好ましくは、ゲノム上の前記ポリペプチドをコードする遺伝子の制御領域が、該遺伝子の転写量を向上させるように改変されており、該遺伝子が、以下からなる群より選択される少なくとも1種である、〔1〕記載の変異糸状菌:
(a')配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
(b')配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド;ならびに、
(c')配列番号1で示されるヌクレオチド配列に対して1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド。
〔6〕好ましくは、前記制御領域に対して強制御領域が置換又は挿入されている、〔5〕記載の変異糸状菌。
〔7〕好ましくは、前記糸状菌がリゾプス属菌である、〔1〕~〔6〕のいずれか1項記載の変異糸状菌。
〔8〕前記リゾプス属菌が、
 好ましくは、リゾプス・デレマー又はリゾプス・オリゼであり、
 より好ましくはリゾプス・デレマーである、
〔7〕記載の変異糸状菌。
〔9〕好ましくは、前記リゾプス属菌がΔadh又はΔpdc株である、〔7〕又は〔8〕記載の変異糸状菌。
〔10〕C4ジカルボン酸生産能が、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上向上している、〔1〕~〔9〕のいずれか1項記載の変異糸状菌。
〔11〕前記C4ジカルボン酸が、
 好ましくは、フマル酸、リンゴ酸又はコハク酸であり、
 より好ましくはフマル酸又はリンゴ酸であり、
 さらに好ましくはフマル酸である、
〔10〕記載の変異糸状菌。
〔12〕〔1〕~〔11〕のいずれか1項記載の変異糸状菌を培養することを含む、C4ジカルボン酸の製造方法。
〔13〕前記培養物からC4ジカルボン酸を回収することをさらに含む、〔12〕記載の製造方法。
〔14〕前記C4ジカルボン酸が、
 好ましくは、フマル酸、リンゴ酸又はコハク酸であり、
 より好ましくはフマル酸又はリンゴ酸であり、
 さらに好ましくはフマル酸である、
〔12〕又は〔13〕記載の製造方法。
〔15〕宿主糸状菌において、以下からなる群より選択される少なくとも1種のポリペプチドの発現を強化することを含む、変異糸状菌の製造方法:
(a)配列番号2で示されるアミノ酸配列からなるポリペプチド;
(b)配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
(c)配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド。
〔16〕糸状菌において、以下からなる群より選択される少なくとも1種のポリペプチドの発現を強化することを含む、糸状菌におけるC4ジカルボン酸生産能の向上方法:
(a)配列番号2で示されるアミノ酸配列からなるポリペプチド;
(b)配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
(c)配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド。
〔17〕好ましくは、前記発現の強化が、以下からなる群より選択される少なくとも1種のポリヌクレオチドを含有するDNA断片又はベクターを導入することを含む、〔15〕又は〔16〕記載の方法:
(a')配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
(b')配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド;ならびに、
(c')配列番号1で示されるヌクレオチド配列に対して1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド。
〔18〕好ましくは、前記DNA断片又はベクターが、前記ポリヌクレオチドと作動可能に連結された制御領域をさらに含有する、〔17〕記載の方法。
〔19〕好ましくは、前記DNA断片又はベクターの導入が、該DNA断片又はベクターを核内もしくはゲノムに導入することを含む、〔17〕又は〔18〕記載の方法。
〔20〕好ましくは、ゲノム上の前記ポリペプチドをコードする遺伝子の制御領域を、該遺伝子の転写量を向上させるように改変することを含み、該遺伝子が、以下からなる群より選択される少なくとも1種である、〔15〕又は〔16〕記載の方法:
(a')配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
(b')配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド;ならびに、
(c')配列番号1で示されるヌクレオチド配列に対して1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド。
〔21〕好ましくは、前記制御領域の改変が、該制御領域に対して強制御領域を置換又は挿入することを含む、〔20〕記載の方法。
〔22〕好ましくは、前記糸状菌がリゾプス属菌である、〔15〕~〔21〕のいずれか1項記載の方法。
〔23〕前記リゾプス属菌が、
 好ましくは、リゾプス・デレマー又はリゾプス・オリゼであり、
 より好ましくはリゾプス・デレマーである、
〔22〕記載の方法。
〔24〕好ましくは、前記リゾプス属菌がΔadh又はΔpdc株である、〔22〕又は〔23〕記載の方法。
〔25〕前記ポリペプチドの発現を強化した糸状菌のC4ジカルボン酸生産能が、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上向上している、〔15〕~〔24〕のいずれか1項記載の方法。
〔26〕前記C4ジカルボン酸が、
 好ましくは、フマル酸、リンゴ酸又はコハク酸であり、
 より好ましくはフマル酸又はリンゴ酸であり、
 さらに好ましくはフマル酸である、
〔25〕記載の方法。
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
実施例1 変異糸状菌の作製
 本実施例で用いたPCRプライマーを表1-1及び表1-2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(1)ゲノム抽出
 PDA培地にRhizopus delemar JCM(Japan Collection of Microorganisms/理研)5557株(以降、5557株と表記)の胞子を植菌後、30℃で5日間培養を行った。培養後、菌体を3mL用メタルコーン(安井器械)とともに3mL破砕チューブに入れ、直ちに液体窒素中で10分間以上凍結させた。その後、マルチビーズショッカー(安井器械)を用いて1700rpmで10秒間菌体の破砕を行った。破砕後の容器にTE Buffer(pH8.0)(ニッポンジーン)を400μL加え転倒混和し、250μLを1.5mLチューブに移した。該菌体溶液から、“Genとるくん(酵母用)”(タカラバイオ)を用いて、プロトコールに従いゲノム抽出を行った。得られたゲノム溶液50μLに対し、RNaseA(ロシュ)を1μL添加し、37℃で1時間反応させた。反応後、等量のフェノール/クロロホルムを加え、タッピングにより混和した後、4℃、14500rpmで5分間遠心し、上清を新しい1.5mLチューブに移した。再度フェノール/クロロホルム処理を繰り返し、次いでエタノール沈殿を行い、5557株の精製ゲノム溶液を得た。
(2)cDNAの作製
(i)total RNA抽出
 5557株の菌体6g-湿重量を、液体培地40mL(0.1g/L(NH42SO4、0.6g/L KH2PO4、0.25g/L MgSO4・7H2O、0.09g/L ZnSO4・7H2O、50g/L 炭酸カルシウム、100g/Lグルコース)に植菌し、35℃、170rpmで8時間培養した。培養液中から菌体をろ過、回収し、0.85%生理食塩水100mLで2回洗浄を行った。洗浄後、吸引濾過により余分な水分を取り除いた後、0.3gを量りとり3mL用メタルコーン(安井器械)とともに3mL破砕チューブに入れ、直ちに液体窒素に投入し、凍結させた。得られた凍結菌体を、マルチビーズショッカー(安井器械)を用いて1700rpmで10秒間破砕した。破砕後の菌体にRLT bufferを500μL添加し、転倒混和後、450μLをRNeasy Plant Mini Kit(Qiagen)に供し、total RNA抽出を行った。得られたRNA溶液40μLに1μLのDNaseI(TaKaRa)及び5μLの10×DNaseI buffer(USB Corporation)を添加し、RNase free waterで50μLにフィルアップした後、37℃で30分以上反応させて溶液中の残存DNAを除去した。DNaseIをさらに1μL追加し、37℃で30分間反応させた後にフェノール/クロロホルム抽出を行い、次いでエタノール沈殿を行った。沈殿を50μLの滅菌水に溶解し、Qubit(Life Technologies)を用いてRNA溶液の濃度及び純度を測定した。また、該RNA溶液を適宜希釈し、Agilent 2100 Bioanalyzer(Agilent)及びRNA6000 Pico Kit(Agilent)を用いて抽出したRNAの検定を行った。RNAの分解度指標である「RNA Integrity Number(RIN値)」が6.0以上であることを確認し、得られたRNA溶液をtotal RNAとして取得した。
(ii)cDNA合成
 cDNA合成は、SuperScriptIII First-Strand Synthesis SuperMix for qRT-PCR(Invitrogen)を用いて行った。すなわち、(i)で得られたRNA溶液1μgをDEPC水で8μLにフィルアップした後、10μLの2×RT Reaxtion Mixと、2μLのRT Enzyme Mixを添加し、穏やかに混ぜ、25℃で10分間、50℃で30分間、85℃で5分間反応させた。反応後の溶液に1μLのRNaseHを加え37℃で20分間反応させ、これをcDNA溶液とした。
(3)リンゴ酸酵素RdME1遺伝子含有プラスミドベクターの作製
(i)pUC18へのtrpC遺伝子領域の導入
 上記(1)で得られた5557株のゲノムDNAを鋳型に、trpC遺伝子(配列番号3)を含むDNA断片を、プライマーoJK162(配列番号12)及びoJK163(配列番号13)を用いたPCRにて合成した。次に、プラスミドpUC18を鋳型に、プライマーoJK164(配列番号14)及びoJK165(配列番号15)を用いたPCRにてDNA断片を増幅した。以上の2断片をIn-Fusion HD Cloning Kit(Clontech)を用いて連結しプラスミドpUC18-trpCを構築した。
(ii)ADH1プロモーター、ターミネーターのクローニング
 上記(1)で得られた5557株のゲノムDNAを鋳型に、ADH1のプロモーター配列(配列番号4)を含むDNA断片とターミネーター配列(配列番号5)を含むDNA断片とを、それぞれプライマーoJK202(配列番号16)及びoJK204(配列番号17)、ならびにoJK205(配列番号18)及びoJK216(配列番号19)を用いたPCRにて増幅した。次に、(i)で得られたプラスミドpUC18-trpCを鋳型に、プライマーoJK210(配列番号20)及びoJK211(配列番号21)を用いたPCRにてDNA断片を増幅した。以上の3断片を(i)と同様の手順で連結してプラスミドpUC18-trpC-Padh-Tadhを構築した。得られたプラスミドには、trpC遺伝子領域の下流にADH1プロモーター及びターミネーターが順に配置されている。さらにADH1ターミネーターの下流にはNot I制限酵素認識配列が配置されている。
 さらに、pUC18-trpC-Padh-Tadhから、trpC遺伝子領域を除いたプラスミドベクターを作製した。すなわち、上記で構築したpUC18-trpC-Padh-Tadhを鋳型に、プライマーtrpC-lost-F(配列番号22)及びtrpC-lost-R(配列番号23)を用いたPCRにてDNA断片を増幅した。本断片を(i)と同様の手順で連結してプラスミドpUC18-Padh-Tadhを構築した。
(iii)プラスミドベクター作製
 リンゴ酸酵素をコードする遺伝子(以下、RdME1と称する、配列番号1)を、プライマーNK-141(配列番号24)及びNK-163(配列番号25)を用いたPCRにて、(2)で作製したcDNAライブラリーから増幅した。次に、(ii)で得られたプラスミドpUC18-trpC-Padh-Tadhを鋳型に、プライマーNK-011(配列番号26)及びNK-012(配列番号27)を用いたPCRにてDNA断片を増幅した。上記2断片を(i)と同様の手順で連結してプラスミドpUC18-trpC-Padh-RdME1-Tadhを構築した。得られたプラスミドには、ADHプロモーターとターミネーターの間にRdME1遺伝子が挿入されている。
(4)trpC knock-in用プラスミドの作製
 pdc1遺伝子ローカスにてpdc1遺伝子ORFを除き、trpC遺伝子領域をknock-inするためのプラスミドptrpC-knock-inを作製した。すなわち、pUC18を鋳型にプライマーpUC18-Pae1-F3(配列番号28)及びpUC18-Hind3-R3(配列番号29)にて増幅したpUC18ベクター断片と、JCM5557株のゲノムを鋳型にプライマーPDC1-upstr-F(配列番号30)及びPDC1-upstr-R(配列番号31)にて増幅したpdc遺伝子のプロモーター部位断片と、JCM5557株のゲノムを鋳型にプライマーtrpCpro-R(配列番号32)及びtrpCter-F(配列番号33)にて増幅したtrpC遺伝子領域断片と、JCM5557株のゲノムを鋳型にプライマーPDC1-downstr-F(配列番号34)及びPDC1-downstr-R(配列番号35)にて増幅したpdc遺伝子のターミネーター部位断片を、In-Fusion HD Cloning Kit(Clontech)を用いて連結し、プラスミドptrpC-knock-inを構築した。
(5)RdME1遺伝子導入用コンストラクトの作製
(i)trpC knock-in用プラスミドとの連結
 (4)で作製したプラスミドptrpC-knock-inを鋳型に、プライマーoJK899(配列番号36)及びoJK900(配列番号37)を用いたPCRにてDNA断片を増幅した。次に、(3)(iii)で得られたプラスミドpUC18-trpC-Padh-RdME1-Tadhを鋳型に、プライマーoJK901(配列番号38)及びNK-195(配列番号39)を用いたPCRにてDNA断片を増幅した。上記2断片を(i)と同様の手順で連結してプラスミドpUC18-Ppdc-trpC-Padh-RdME1-Tpdcを構築した。得られたプラスミドは、trpC knock-in用配列を含み、またADHプロモーターとPDCターミネーターの間に配列番号1で示されるRdME1遺伝子が挿入されている。
(ii)一本鎖DNAの調製
 (i)で作製したプラスミドpUC18-Ppdc-trpC-Padh-RdME1-Tpdcを鋳型にプライマーoJK902(配列番号40)及びoJK903(配列番号41、5’末端がリン酸化されている)を用いてDNA断片をPCR増幅し、またプラスミドptrpC-knock-inを鋳型にプライマーPDC1-upstr-F2(配列番号42)及びPDC1-downstr-R-P(配列番号43、5’末端がリン酸化されている)を用いてDNA断片をPCR増幅し、鋳型をDpn1(TOYOBO)処理にて分解した後、生成物をフェノール/クロロホルム/イソアミルアルコール処理、及びエタノール沈殿処理にて精製した。精製物を、さらにLambda Exonuclease(NEW ENGLAND BioLabs)を用いて処理した後、上記と同様に精製し、一本鎖DNAを得た。Lambda Exonuclease処理は、37℃、オーバーナイトで行った。
(6)pdc1遺伝子破壊用TALENの作製
(i)TALEN発現ベクターの作製
 Transposagen Biopharmaceuticals社に依頼し、Custom XTN TALEN(Transposagen Biopharmaceuticals社が提供するTALENの商品名)を作製した。これは、ピルビン酸デカルボキシラーゼ(PDC)をコードする遺伝子(pdc遺伝子;配列番号6)を標的とするTALENのためのキットであり、2つのポリヌクレオチドLeftTALEN-pdc(配列番号7)及びRightTALEN-pdc(配列番号8)を含み、これらはpdc遺伝子を含む領域(配列番号9)に結合する。LeftTALEN-pdcは、pdc遺伝子のセンス鎖中の5’-TGCCTGCTATTAAAATCG-3’(配列番号10)の配列を標的とするTALENをコードし、RightTALEN-pdcは、アンチセンス鎖中の5’-TTGATTTCCTTAAGACGG-3’(配列番号11)の配列を標的とするTALENをコードする。
 上記LeftTALEN-pdcをコードするポリヌクレオチドを、上記(3)で作製した発現ベクターpUC18-Padh-Tadhに挿入し、adhプロモーターとadhターミネーターの制御下でTALENを発現するベクターを作製した。すなわち、pUC18-Padh-Tadhを鋳型に、プライマーadhpro-R(配列番号44)及びadhter-F(配列番号45)を用いたPCRにてベクター断片を増幅した。続いてLeftTALEN-pdcを鋳型に、プライマーadhpro-TALEN-F(配列番号46)及びTALEN-adhter-R(配列番号47)を用いたPCRにてLeftTALEN-pdc断片を増幅した。上記2断片には、15塩基ずつオーバーラップする領域が存在する。これら2断片をIn-Fusion HD cloning kit(clontech社)にて連結し、LeftTALEN-pdcを含むベクターpadh-LeftTALEN-pdcを得た。
 同様に、上記RightTALEN-pdcをコードするポリヌクレオチドをpUC18-Padh-Tadhに挿入し、adhプロモーターとadhターミネーターの制御下でTALENを発現するベクターpadh-RightTALEN-pdcを作製した。pUC18-Padh-Tadh断片の増幅には、プライマーadhpro-R(配列番号44)及びadhter-F(配列番号45)を用いた。RightTALEN-pdc断片の増幅には、プライマーadhpro-TALEN-F(配列番号46)及びTALEN-adhter-R(配列番号47)を用いた。
(ii)エキソヌクレアーゼ発現ベクターの作製
 細胞内でTALENとともにエキソヌクレアーゼを発現させることにより、TALENによる標的DNAの破壊が促進される(Scientific Reports,2013,3:1253,DOI:10.1038/srep01253、Nat Methods,2012,9:973-975)ため、TALEN発現ベクターと共に導入するエキソヌクレアーゼ発現ベクターを作製した。
 Rhizopus oryzae NRBC5384株の精製ゲノム溶液を鋳型に、プライマーadhpro-exo1-F(配列番号48)及びexo1-adhter-R(配列番号49)を用いてエキソヌクレアーゼ遺伝子断片を、またpUC18-Padh-Tadhを鋳型に、プライマーadhpro-R(配列番号44)及びadhter-F(配列番号45)を用いたPCRにてベクター断片をそれぞれ増幅した。増幅した上記2断片を、In-Fusion HD cloning kit(clontech社)にて連結し、プラスミドpadh-exo1を作製した。
(7)宿主への遺伝子導入
(i)トリプトファン栄養要求性株の作製
 遺伝子導入の宿主細胞として用いたトリプトファン栄養要求性株は、5557株へのイオンビーム照射による変異導入株の中から選抜し取得した。イオンビーム照射は、独立行政法人日本原子力研究開発機構・高崎量子応用研究所のイオン照射施設(TIARA)において行った。照射は、AVFサイクロトロンを用いて125+を加速し、220MeVのエネルギーで100~1250Gray照射した。照射した菌体より胞子を回収し、その中から、トリプトファン栄養要求性を示すRhizopus delemar 02T6株(以降、02T6株と表記)を取得した。02T6株は、trpC遺伝子コーディング領域(配列番号3)全長2298bp中の2093番目が一塩基欠損している。
(ii)DNA-金粒子混合液の作製
 上記(6)で作製したpadh-LeftTALEN-pdc、padh-RightTALEN-pdc、padh-exo1、及び上記(5)で作製した一本鎖DNAを混合したDNA溶液(1μg/μL)10μLを、金粒子溶液(60mg/mL、INBIO GOLD社、粒子径1μm)100μLに加えた。さらに0.1Mスペルミジンを40μL加え、ボルテックスでよく攪拌した。2.5MのCaCl2を100μL加え、ボルテックスで1分間攪拌した後、6000rpmで30秒間遠心し、上清を除いた。得られた沈殿に70%EtOHを200μL加え、30秒間ボルテックスで攪拌した後、6000rpmで30秒間遠心し、上清を除いた。得られた沈殿を100μLの100%EtOHで再懸濁した。
(iii)遺伝子導入
 次に、(i)で作製した02T6株の胞子に対し、(ii)で作製したDNA-金粒子溶液を用い、GDS-80(ネッパジーン)にて遺伝子導入を行った。遺伝子導入後の胞子は、無機寒天培地(20g/Lグルコース、1g/L硫酸アンモニウム、0.6g/Lリン酸2水素カリウム、0.25g/L硫酸マグネシウム・7水和物、0.09g/L硫酸亜鉛・7水和物、15g/L寒天)上で、30℃の条件で1週間程静置培養した。
(iv)遺伝子導入株の選択
 培養した菌体から胞子を回収し、pH3に調製した無機寒天培地(20g/Lグルコース、1g/L硫酸アンモニウム、0.6g/Lリン酸2水素カリウム、0.25g/L硫酸マグネシウム・7水和物、0.09g/L硫酸亜鉛・7水和物、15g/L寒天)を用いて菌株を単離した。生育した菌株の菌糸を爪楊枝にて一部かき取り、10mM Tris-HCl(pH8.5)に懸濁し、95℃で10分間インキュベートした。その後、10mM Tris-HCl(pH8.5)で適宜希釈し、コロニーPCR用のゲノムテンプレート溶液とした。コロニーPCRは、上記ゲノムテンプレート溶液、プライマーNK-069(配列番号50)とNK-118(配列番号51)、及びKOD FX Neo(TOYOBO)を用いて行った。上記プライマーでコロニーPCRを行った場合、pdc1遺伝子ローカスにtrpC遺伝子断片のknock-inが起こっていれば、DNA断片が増幅する。コロニーPCRによりDNA増幅断片が得られた菌株を、pdc1遺伝子欠失株Δpdc株として取得した。プラスミドpUC18-Ppdc-trpC-Padh-RdME1-Tpdcを用いて遺伝子導入を行った菌株をΔpdc::ME1株とし、プラスミドptrpC-knock-inを用いて遺伝子導入を行った菌株をΔpdc::trpC株とした。残りの菌体を植菌耳で掻き取り、胞子回収溶液(8.5g/L塩化ナトリウム、0.5g/Lポリオキシエチレンソルビタンモノオレアート)中で激しく混和した。混和後の胞子懸濁液を3GP100円筒ロート型ガラスろ過器(柴田化学)にてろ過し、これを胞子液とした。胞子液中の胞子数は、TC20 Automated Cell Counter(バイオラッド)を用いて測定した。
実施例2 変異株のリンゴ酸酵素活性測定
(1)菌株の培養
(i)菌糸体の調製
 500mL用バッフル付三角フラスコ(旭硝子)に、ソルビタンモノラウレート(レオドールSP-L10(花王))を最終濃度で0.5%(v/v)添加した200mLのSD/-Trp培地(Clontech)を供し、実施例1で調製したΔpdc::ME1株及びΔpdc::trpC株の胞子液を1×103個-胞子/mL-培地となるようにそれぞれ接種後、27℃にて3日間、170rpmで攪拌培養した。得られた培養物を予め滅菌処理したメッシュ網目250μmのステンレスふるい(アズワン)を用いてろ過し、菌体をフィルター上に回収した。
(ii)菌糸体の増殖
 500mL容三角フラスコに供した無機培養液100mL(0.1g/L(NH42SO4、0.6g/L KH2PO4、0.25g/L MgSO4・7H2O、0.09g/L ZnSO4・7H2O、50g/L炭酸カルシウム、100g/Lグルコース)に、(i)で回収した湿菌体5.0~8.0gを接種し、27℃で約40時間、220rpmにて攪拌培養した。得られた培養物を、予め滅菌処理したステンレススクリーンフィルターホルダー(MILLIPORE)を用いてろ過し、フィルター上に菌体を回収した。さらにこのフィルターホルダー上で、200mLの生理食塩水で菌体を洗浄した。洗浄に用いた生理食塩水は吸引ろ過して除去した。
(2)菌体破砕液の調製
 上記(1)で得られた湿菌体6.0gを、200mL容三角フラスコに供した無機培養液40mL(0.0175g/L(NH42SO4、0.06g/L KH2PO4、0.375g/L MgSO4・7H2O、0.135g/L ZnSO4・7H2O、50g/L炭酸カルシウム、100g/Lグルコース)に植菌し、35℃、170rpmで24時間攪拌培養した。得られた培養物を、予め滅菌処理したステンレススクリーンフィルターホルダー(MILLIPORE)を用いてろ過し、フィルター上に菌体を回収した。さらにこのフィルターホルダー上で、200mLの生理食塩水で菌体を洗浄し、生理食塩水を吸引ろ過して除去し、菌体を1.0gずつ-80℃にて凍結した。凍結菌体をマルチビーズショッカー及びメタルコーン(安井器械)を用いて破砕した。ここに50mM Tris-HClバッファー(pH8.0)1mLを加えて再度破砕し、15000rpm・4℃にて5分間遠心分離した後、上清をAmiconUltra-0.5(3kDa、ミリポア)を用いて濃縮及び洗浄し。菌体破砕液を得た。
(3)リンゴ酸酵素活性測定
 上記(2)で得られた菌体破砕液を5μL添加した96穴アッセイプレート(イワキ)に、185μLの反応液(終濃度50mM Tris-HCl pH8.0、2.5mM MnCl2、0.2mM NAD+)を加え、200mM リンゴ酸を10μL添加することで反応を開始した。30℃における340nmの吸光度変化(NADHの吸光係数=6200 M-1cm-1)の傾きを基準として活性値(mU/菌体湿重量g)を算出した。このとき、活性単位(U)は1分間に消費されたリンゴ酸の量(μmol/min)と定義した。測定結果を表2に示す。参照株であるΔpdc::trpC株と比較して、Δpdc::ME1株ではリンゴ酸酵素活性が約3倍に向上した。
Figure JPOXMLDOC01-appb-T000003
実施例3 Δpdc::ME1株のC4ジカルボン酸生産能
(1)菌株の培養
 実施例2(1)と同様の条件で菌糸体を調製し増殖させた。
(2)形質転換株のC4ジカルボン酸生産性評価
 上記(1)で得られたΔpdc::ME1株及びΔpdc::trpC株の湿菌体6.0gを、200mL容三角フラスコに供した無機培養液40mL(0.0175g/L(NH42SO4、0.06g/L KH2PO4、0.375g/L MgSO4・7H2O、0.135g/L ZnSO4・7H2O、50g/L炭酸カルシウム、100g/Lグルコース)に植菌し、35℃、170rpmで攪拌培養した。培養8時間後に、菌体を含まない培養上清を回収し、後述する参考例1に記載の手順にてC4ジカルボン酸(フマル酸)の定量を行った。求めたC4ジカルボン酸の量に基づいて、下記式に従いΔpdc::ME1株におけるC4ジカルボン酸生産能向上率を算出した。
  向上率(%)
 =(Δpdc::ME1株における生産速度/Δpdc::trpC株における生産速度)×100-100
結果を表3に示す。RdME1遺伝子を導入されていないΔpdc::trpC株と比較して、Δpdc::ME1株では、40%のフマル酸生産能の向上が観察された。
Figure JPOXMLDOC01-appb-T000004
参考例1 C4ジカルボン酸の定量
 培養上清中のC4ジカルボン酸の定量は、HPLCにより行った。HPLC分析に供する培養上清は、予め37mM硫酸にて適宜希釈した後、DISMIC-13cp(0.20μmセルロースアセテート膜、ADVANTEC)又はアクロプレップ96フィルタープレート(0.2μmGHP膜、日本ポール)を用いて不溶物の除去を行なった。
 HPLCの装置は、LaChrom Elite(日立ハイテクノロジーズ)を用いた。分析カラムには、ICSep ICE-ION-300 Guard Column Cartride(4.0mmI.D.×2.0cm、TRANSGENOMIC)を接続した有機酸分析用ポリマーカラムICSep ICE-ION-300(7.8mm I.D.×30cm、TRANSGENOMC)を用い、溶離液は10mM硫酸、流速0.5mL/分、カラム温度50℃の条件にて溶出を行なった。C4ジカルボン酸の検出には、UV検出器(検出波長210nm)を用いた。濃度検量線は、標準試料〔フマル酸(販売元コード063-00655、和光純薬工業)〕を用いて作成し、濃度検量線に基づいて培養上清中のC4ジカルボン酸の定量を行なった。
 定量した培地中のC4ジカルボン酸量から、該培地の初発C4ジカルボン酸量を引いた値を、C4ジカルボン酸生産量とした。培養開始後8時間時点での培地あたりのC4ジカルボン酸量を培養時間で割った値を、該細胞のC4ジカルボン酸の生産速度として算出した。

Claims (9)

  1.  以下からなる群より選択される少なくとも1種のポリペプチドの発現が強化された、変異糸状菌:
     配列番号2で示されるアミノ酸配列からなるポリペプチド;
     配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
     配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド。
  2.  以下からなる群より選択される少なくとも1種のポリヌクレオチドを含有するDNA断片又はベクターを導入された、請求項1記載の変異糸状菌:
     配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド;ならびに、
     配列番号1で示されるヌクレオチド配列に対して1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド。
  3.  前記糸状菌がリゾプス属菌である、請求項1又は2記載の変異糸状菌。
  4.  請求項1~3のいずれか1項記載の変異糸状菌を培養することを含む、C4ジカルボン酸の製造方法。
  5.  前記培養物からC4ジカルボン酸を回収することをさらに含む、請求項4記載の製造方法。
  6.  前記C4ジカルボン酸がフマル酸、リンゴ酸又はコハク酸である、請求項4又は5記載の製造方法。
  7.  宿主糸状菌において、以下からなる群より選択される少なくとも1種のポリペプチドの発現を強化することを含む、変異糸状菌の製造方法:
     配列番号2で示されるアミノ酸配列からなるポリペプチド;
     配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド;ならびに、
     配列番号2で示されるアミノ酸配列に対して1個又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、かつリンゴ酸酵素活性を有するポリペプチド。
  8.  前記発現の強化が、以下からなる群より選択される少なくとも1種のポリヌクレオチドを含有するDNA断片又はベクターを導入することを含む、請求項7記載の方法:
     配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド;ならびに、
     配列番号1で示されるヌクレオチド配列に対して1個又は複数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなり、かつリンゴ酸酵素活性を有するポリペプチドをコードする、ポリヌクレオチド。
  9.  前記糸状菌がリゾプス属菌である、請求項7又は8記載の方法。
     
PCT/JP2017/031857 2016-09-15 2017-09-05 変異糸状菌、及びそれを用いたc4ジカルボン酸の製造方法 WO2018051837A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780055565.1A CN109689871B (zh) 2016-09-15 2017-09-05 突变丝状菌和使用其制造c4二羧酸的方法
US16/330,173 US20190194700A1 (en) 2016-09-15 2017-09-05 Mutant Filamentous Fungus and Method for Producing C4 Dicarboxylic Acid Using Same
JP2018539638A JP6970101B2 (ja) 2016-09-15 2017-09-05 変異糸状菌、及びそれを用いたc4ジカルボン酸の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016180627 2016-09-15
JP2016-180627 2016-09-15

Publications (1)

Publication Number Publication Date
WO2018051837A1 true WO2018051837A1 (ja) 2018-03-22

Family

ID=61618728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031857 WO2018051837A1 (ja) 2016-09-15 2017-09-05 変異糸状菌、及びそれを用いたc4ジカルボン酸の製造方法

Country Status (4)

Country Link
US (1) US20190194700A1 (ja)
JP (1) JP6970101B2 (ja)
CN (1) CN109689871B (ja)
WO (1) WO2018051837A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110312046A1 (en) * 2010-06-21 2011-12-22 Novozymes, Inc. Methods for C4 Dicarboxylic Acid Production in Filamentous Fungi
JP2013503631A (ja) * 2009-09-01 2013-02-04 ノボザイムス,インコーポレイティド 糸状菌におけるリンゴ酸生成の改良方法
WO2013151093A1 (ja) * 2012-04-04 2013-10-10 花王株式会社 有機酸の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2222854A1 (en) * 2007-11-20 2010-09-01 DSM IP Assets B.V. Dicarboxylic acid production in a filamentous fungus
WO2010056640A2 (en) * 2008-11-11 2010-05-20 Danisco Us Inc. Compositions and methods comprising serine protease variants
US8431372B2 (en) * 2009-06-19 2013-04-30 Mbi International Fermentation method using a magnesium compound containing oxygen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503631A (ja) * 2009-09-01 2013-02-04 ノボザイムス,インコーポレイティド 糸状菌におけるリンゴ酸生成の改良方法
US20110312046A1 (en) * 2010-06-21 2011-12-22 Novozymes, Inc. Methods for C4 Dicarboxylic Acid Production in Filamentous Fungi
WO2013151093A1 (ja) * 2012-04-04 2013-10-10 花王株式会社 有機酸の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein [online] 23 March 2015 (2015-03-23), MA, L.J. ET AL.: "Definition: hypothetical protein RO 3G_04512 [Rhizopus delemar RA 99-880", XP055603649, retrieved from NCBI Database accession no. EIE79807 *
HONG, S.H. ET AL.: "Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity", BIOTECHNOLOGY AND BIOENGINEERING, vol. 74, no. 2, 2001, pages 89 - 95, XP003009624, DOI: doi:10.1002/bit.1098 *

Also Published As

Publication number Publication date
JPWO2018051837A1 (ja) 2019-06-27
JP6970101B2 (ja) 2021-11-24
US20190194700A1 (en) 2019-06-27
CN109689871A (zh) 2019-04-26
CN109689871B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US10435724B2 (en) Method for producing C4 dicarboxylic acid
EP3412765B1 (en) Method for producing mutant filamentous fungi
US10787686B2 (en) Method for producing C4-dicarboxylic acid
JP6859086B2 (ja) 糸状菌変異株及びそれを用いたc4ジカルボン酸の製造方法
JP6944748B2 (ja) C4ジカルボン酸の製造方法
JP6970101B2 (ja) 変異糸状菌、及びそれを用いたc4ジカルボン酸の製造方法
JP2017121184A (ja) 変異リゾプス属菌
JP6671923B2 (ja) C4ジカルボン酸の製造方法
JP6671922B2 (ja) C4ジカルボン酸の製造方法
US10947522B2 (en) Mutant of genus Rhizopus
JP6276479B2 (ja) 新規プロモーター
JP2006280368A (ja) 有機酸の製造法
JP2009254264A (ja) Issatchenkiaorientalisに属する菌の形質転換系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850740

Country of ref document: EP

Kind code of ref document: A1