WO2018050337A1 - Module lumineux a source electroluminescente monolithique - Google Patents

Module lumineux a source electroluminescente monolithique Download PDF

Info

Publication number
WO2018050337A1
WO2018050337A1 PCT/EP2017/068934 EP2017068934W WO2018050337A1 WO 2018050337 A1 WO2018050337 A1 WO 2018050337A1 EP 2017068934 W EP2017068934 W EP 2017068934W WO 2018050337 A1 WO2018050337 A1 WO 2018050337A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electroluminescent
source
light module
module according
Prior art date
Application number
PCT/EP2017/068934
Other languages
English (en)
Inventor
François-Xavier AMIEL
Vincent Dubois
Van-Thai HOANG
Thomas Canonne
Samira MBATA
Guillaume THIN
Antoine De Lamberterie
Nicolas Lefaudeux
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision filed Critical Valeo Vision
Priority to US16/333,910 priority Critical patent/US10683986B2/en
Priority to CN201780057055.8A priority patent/CN109716016B/zh
Priority to EP17742269.8A priority patent/EP3513119B1/fr
Publication of WO2018050337A1 publication Critical patent/WO2018050337A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/16Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to the field of terrestrial vehicle light modules, that is to say modules that can be integrated into a light device of the vehicle and, during use of the vehicle, to project light illuminating the vehicle. road or the cockpit and / or allowing the vehicle to make itself more visible.
  • Examples of such luminous devices are the sidelights or the dipped beam and / or road (commonly called "headlights").
  • a land vehicle is equipped with light devices, including lighting and / or signaling, such as headlights or taillights, intended to illuminate the road in front of the vehicle, at night or in case of reduced brightness. They can also be used to illuminate the cabin of the vehicle.
  • These light devices may comprise one or more light modules. Each lighting function can be provided by one or more modules.
  • electroluminescent light sources are more and more frequently used. These light sources can consist of light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), or polymeric light-emitting diodes (PLEDs). (acronyms for "polymer light-emitting diodes").
  • Solid state monolithic light sources (also known as the "monolithic array of LEDs") have recently become known.
  • a monolithic light source comprises tens, hundreds or even thousands of LEDs that are located on the same substrate, the LEDs being separated from the others by lines (or “lanes” in English) or streets (or “ streets “in English).
  • LEDs are also called pixels. These light sources are called high-density LEDs because the number of pixels is large, by several hundreds of LEDs per cm 2 .
  • Each of the LEDs is electrically independent of the others and therefore illuminates the other LEDs of the matrix independently.
  • each LED of the matrix is individually controlled by the electronic circuit which manages its power supply (circuit called "driver" in English).
  • Solid state monolithic light sources have many advantages. Firstly, they offer a high luminous intensity, which makes it possible to improve the lighting of the scene and thus to secure, for example, the driving of a motor vehicle. In addition, they create a highly pixelated light beam that allows for the implementation and enhancement of existing driver assistance features, including adaptive lighting features. For example, an anti-glare function can be configured so that only the windshield of a vehicle arriving from the front is no longer illuminated.
  • Solid state monolithic light sources have disadvantages.
  • these light sources heat up and involve specific management of the heat generated by the electroluminescent elements.
  • the heat generated causes a rise in the temperature at the component level which can degrade the components and / or prevent their optimal use.
  • these light sources suffer from cross-talk, that is to say that the light emitted by a light emitting element interferes with at least the light emitted by the electroluminescent elements of its vicinity. The pixellisation of the light beam emitted by the source is therefore affected.
  • some of the emitted light is lost because all the light emitted can not be collected because of the emission angle of the electroluminescent elements which is important.
  • the lines or streets present on the source show intervals between the different light beams composing the beam of the source.
  • the light beam obtained output is not a homogeneous light beam.
  • these lines or streets form non-emissive zones that cause the average luminance of the source to fall below the value of the luminance of the transmitter.
  • the loss can be very important; for example, if we have a pitch of 50 ⁇ and transmitters of 40 ⁇ , the non emissive surface about 36% of the total surface of the source
  • a light module is proposed, in particular for a motor vehicle, which comprises a monolithic electroluminescent source comprising electroluminescent elements, a primary optical system provided with a plurality of convergent optics, at least one convergent optics associated with each electroluminescent element and forming an image of the electroluminescent element with which it is associated.
  • the light module may comprise one or more of the following characteristics combined with one another:
  • the electroluminescent elements of the monolithic source form a matrix of electroluminescent elements, and the convergent optics form a matrix of convergent microlenses;
  • the optical axis of the said at least one convergent optics is aligned with the center of the electroluminescent element with which the said at least one convergent optics is associated;
  • the distance between said at least one converging optics and the electroluminescent element with which said at least one convergent optics is associated is less than or equal to the object focal distance of said at least one convergent optics;
  • the angle of collection of the convergent optics is between 30 ° and 70 °, limits included;
  • the plurality of convergent optics of the primary optical system covers the monolithic electroluminescent source; the plurality of convergent optics is in contact with the monolithic electroluminescent source;
  • an intermediate element is arranged between the plurality of convergent optics and the monolithic electroluminescent source
  • the distance between the center of a first pixel and the center of a second pixel neighboring the first pixel is between 20 and 500 micrometers ( ⁇ );
  • an electroluminescent element is between 10 and 500 micrometers ( ⁇ );
  • the primary optical system is arranged such that the images it forms are substantially adjacent to form a continuous homogeneous light distribution
  • each convergent optic comprises at least one convex portion
  • the plurality of convergent optics is integral
  • the electroluminescent elements of the monolithic electroluminescent source are light-emitting diodes
  • a luminous device in particular lighting and / or signaling preferably land vehicle, which comprises the light module above, a projection optical system forming an image of the images produced by the primary optical system.
  • Figures 1 and 2 show schematically an example of a monolithic electroluminescent source with high pixel density
  • FIG. 3 schematically shows an example of a light module according to the invention
  • Figure 4 shows schematically an example of a microlens front view
  • Figure 5 shows schematically an example of fitting a microlens with a light source
  • FIG. 6 schematically illustrates a perspective view of an example of a projection module according to the invention
  • Figure 7 schematically illustrates a perspective view of an example of a projection module according to the invention.
  • the light module according to the invention comprises a light emitting light source solid state (acronym for "solid-state lighting").
  • the electroluminescent source comprises electroluminescent elements which are submillimetric in size.
  • the source further comprises a substrate on which the electroluminescent elements are epitaxially grown.
  • Electroluminescent elements use electroluminescence to emit light. Electroluminescence is an optical and electrical phenomenon in which a material emits light in response to an electrical current flowing through it, or to a strong electric field. This is to be distinguished from light emission due to temperature (incandescence) or the action of chemicals (chemiluminescence).
  • the electroluminescent source is a monolithic electroluminescent source, that is to say that the electroluminescent elements are located and epitaxied on the same substrate, and preferably on the same face of the substrate which can be for example its phir.
  • the electroluminescent elements are deposited on or extending from at least one face of the substrate.
  • the electroluminescent elements of the monolithic matrix are separated from each other by lines (called “lanes” in English) or streets (called “streets” in English).
  • lines and streets are synonymous. These lines or streets are spaces separating the electroluminescent elements. These spaces can be empty, or even contain elements introduced for example for the management of crosstalk phenomena.
  • the electroluminescent source monolithic forms a grid of electroluminescent elements or a matrix of electroluminescent elements.
  • An electroluminescent element may be, but is not limited to, a light emitting diode (LED), an organic light emitting diode (OLED), a polymeric light emitting diode (PLED).
  • the electroluminescent source is therefore a semiconductor light source and it comprises a substrate from which the electroluminescent elements are placed.
  • An electroluminescent element is more generally called a pixel. Therefore, the light source comprises a plurality of pixels deposited on or extending from the first face of the substrate. Pixels (i.e., light-emitting elements) emit light when the semiconductor material is supplied with electricity. We can therefore speak of pixel lit when an electroluminescent element emits light.
  • the monolithic electroluminescent source may be a monolithic electroluminescent source with a high density of light elements, that is to say that it comprises a very large number of electroluminescent elements.
  • very high number it is meant that the substrate of the light source comprises at least 400 electroluminescent elements on the same substrate.
  • the pitch is 200 ⁇
  • the pixel density is 2500 electroluminescent elements per square centimeter (cm 2 ).
  • the dimensions of the pixels may vary, depending on the density of pixels per cm 2 sought.
  • FIG. 1 shows a top view of an example of a high-density electroluminescent electroluminescent light source 1 of electroluminescent elements.
  • FIG. 2 shows part of the side view of the example of FIG. 1.
  • the electroluminescent elements 8 have been deposited on a substrate 110, for example sapphire.
  • the electroluminescent elements 8 are in these examples LEDs.
  • the LEDs have been placed so that they form an LED grid, also called LED matrix.
  • the LEDs are separated by straight lines or streets arranged vertically 104a and horizontally 104b. The regular pattern thus formed is perfectly integrated in the current manufacturing processes of light sources.
  • the LEDs have a (substantially) square shape and have a dimension of 40 ⁇ . This dimension refers to one of the sides of the square 106. The dimension is the width of the LED.
  • the lines or streets 104a, 104b have a width of 10 ⁇ .
  • the pitch 108 between the LEDs is therefore 50 ⁇ .
  • the pitch is the distance between the center of a first pixel and the center of a second pixel neighboring the first; this distance is also called "pixel pitch" in English.
  • the pitch depends on the size of the pixels and the width of the lines or streets.
  • the electroluminescent elements 8 also have a height 109 which depends on the technology used for their manufacture. The height of an electroluminescent element is measured from the surface of the substrate on which the electroluminescent element is deposited or extends. For example, the LEDs may have a height of 100 ⁇ .
  • all the LEDs and all the lines or streets of a monolithic electroluminescent source have dimensions that are equal or substantially equal.
  • the source forms a regular grid pattern of electroluminescent elements.
  • the LEDs can have other forms, depending on the technology used for their manufacture.
  • the definition of the term dimension can vary. For example, if the LEDs have a rectangular shape, it can be agreed that the size of an LED is the distance from the shortest side of the rectangle. As another example, if the LEDs have a circular shape, it can be conventionally decided that the size of an LED is its diameter.
  • the electroluminescent elements are each semiconductor, that is to say that they each comprise at least one semiconductor material.
  • the electroluminescent elements may be predominantly of semiconductor material. This semiconductor material may be the same as or different from the semiconductor material of the substrate.
  • Electroluminescent elements can generally be all made in the same material or materials.
  • the electroluminescent elements may be of the same nature, for example substantially identical or similar. All the electroluminescent elements can be positioned to form a regular pattern, for example a grid.
  • Each of the electroluminescent elements of the monolithic electroluminescent source is electrically independent of the others and emits light independently of other elements of the matrix.
  • Each element of the matrix is individually controlled by an electronic circuit called "driver" in English.
  • the driver manages the power supply of the monolithic matrix, which is to say that it individually manages the power supply of each electroluminescent element.
  • electroluminescent elements can be electrically grouped, for example by feeding them electrically using a parallel or series connection, in order to reduce the number of elements to be managed.
  • the groups may comprise between two and four electroluminescent elements, this number making it possible to maintain a sufficiently pixelated light beam.
  • the driver is therefore an electronic device that is able to control the elements of a monolithic matrix of electroluminescent elements.
  • Several drivers can be used to drive the electroluminescent elements of the source.
  • the light module may include one or more monolithic electroluminescent sources.
  • Several light modules comprising such a monolithic electroluminescent source can be integrated into the light device according to the invention.
  • the term "light module” therefore designates at least one monolithic electroluminescent source.
  • the light module further comprises a layer covering the semiconductor material.
  • This layer modifies the spectrum of the light emitted by the semiconductor material.
  • the spectrum is defined by a continuum of wavelengths, and the layer therefore modifies the wavelengths of electromagnetic radiation forming the spectrum of the emitted light.
  • To cover means that the layer is arranged with respect to the semiconductor material so that the light it emits passes through the layer. The latter may be in contact with at least the surface of the semiconductor material through which the light produced by the semiconductor material escapes.
  • a third material may serve as an interface between the layer and the surface of the semiconductor material whereby the light produced by the semiconductor material escapes; this third material may be silicone which is a polymer.
  • FIG. 2 shows an example in which each electroluminescent element is individually covered by the layer 120.
  • the layer 120 is in contact with the surface of the electroluminescent element through which the photons emitted by the semiconductor material escape.
  • the path of light is represented by the dashed arrows.
  • the layer 120 is a light or phosphor converter, and it comprises at least one phosphor material adapted to absorb at least a portion of at least one excitation light emitted from a light source and to convert at least a portion of said light of excitation absorbed into an emission light having a light spectrum different from that of the excitation light.
  • the light module according to the invention therefore comprises a monolithic electroluminescent source which can be of high density of electroluminescent elements.
  • the light module further comprises a primary optical system which is provided with a plurality of convergent optics. Each convergent optics of the primary optical system forms an image of an electroluminescent source.
  • One or more convergent optics is associated with each electroluminescent element. The association is exclusive, that is to say that the optics are responsible for converging the light of a single electroluminescent element.
  • an optic is associated with an electroluminescent element.
  • Convergent optics form an image of the electroluminescent element with which it is associated. The image formed is preferably a virtual image. Creating a real image can also be considered.
  • the electroluminescent elements of the monolithic source preferably form a matrix of electroluminescent elements. As explained with reference to FIG. 1, the electroluminescent elements are placed on the substrate of the source in a regular pattern, for example that of a grid.
  • Convergent optics also preferably form a matrix of convergent lenses. The convergent lenses of the convergent lens array are arranged such that there is a match between a light-emitting element and the lens associated therewith, for example the lens covers the light-emitting element.
  • the matrix of convergent lenses is not necessarily strictly the same as the monolithic source; for example, a slightly different pitch may be used to redirect the rays emitted by the electroluminescent elements at the edge of the monolithic electroluminescent source.
  • This correspondence can be ensured by aligning the optical axis of the convergent optics on the center of the electroluminescent element with which said at least one convergent optics is associated.
  • the electroluminescent elements are preferably of submillimetric dimensions so that the monolithic source is at high luminous pixel density.
  • the convergent optics are convergent microlenses of millimetric or submillimetric dimensions.
  • FIG. 4 shows an example of a grid of convergent microlenses of optical center "0" through which the optical axis passes.
  • FIG. 5 schematically shows an example of a set of convergent microlenses, for example the microlens grid shown in FIG. 4, whose optical axes (represented by dashed lines passing through their optical center "0") are aligned with the center "0 '" of the electroluminescent elements 8.
  • microlenses means diopters converging light whose external dimensions are less than or equal to five times the dimensions of the electroluminescent elements the light source.
  • the microlenses have a size which is between one and five times, inclusive limits, those of the electroluminescent elements.
  • an electroluminescent element has a dimension L and a width I, noted (Lx1)
  • the microlens will have a dimension (L'xl ') with L ⁇ L' ⁇ 5xL and I ⁇ ⁇ 5x1. This dimensioning makes it possible to maintain a good luminance.
  • the dimensions of the associated diopter will be inscribed in a square of 250 ⁇ maximum side.
  • Microlenses are usually in a submillimetric order of magnitude.
  • the electroluminescent elements are of the same size, it can be expected that all the microlenses have the same size.
  • the microlenses associated with the sources at the edge of the matrix, in particular at the lateral ends are of larger dimensions than the others in order to form an elongated image laterally and vertically which will give a larger projected light pattern. size than others, especially to produce an illumination of the sides of the road.
  • the convergent optics may preferably be placed, relative to the electroluminescent element with which it is associated, at a distance which is less than or equal to the focal length of the convergent optics to ensure the creation of an image of the electroluminescent element.
  • the virtual image thus created can serve as a new source of light, for example for a projection lens.
  • the virtual image obtained is enlarged relative to the electroluminescent element.
  • the primary optical system for example a matrix of microlenses, thus makes it possible to form virtual images of the electroluminescent elements of the monolithic electroluminescent source.
  • the convergent optics can be placed, relative to the electroluminescent element with which it is associated, at a distance that is greater than the objective focal length of the convergent optics in order to ensure the creation of a real image of the electroluminescent element.
  • the microlens must have a much shorter focal length and must therefore be more curved, which complicates its realization.
  • Convergent optics may further be located at a distance from the light emitting element that is selected for the convergent optics to collect the largest amount of light emitted by the light emitting element.
  • the electroluminescent element sends light on a half space - in practice a 180 ° emission cone -, and it is therefore very difficult to collect all the light it emits.
  • the distance chosen is as short as possible so that the convergent optics is as close as possible to the electroluminescent element in order to capture a maximum of light emitted by the electroluminescent element: thus, the loss of the emitted light is minimized. Virtually all of the light emitted can be recovered, which provides the maximum light energy used.
  • the convergent optics are in contact with the electroluminescent elements, that is to say that there is no intermediate element such as for example air between the electroluminescent elements and the optical elements. converging. There is no loss of light by passing light into the air or any other material.
  • an intermediate element makes the junction between the convergent optics and the electroluminescent elements. The intermediate element material is selected to prevent losses.
  • the plurality of convergent optics of the system primary optics can cover the monolithic electroluminescent source.
  • the electroluminescent elements and the streets / lines separating them are covered by the primary optical system.
  • the dimensions of the two convergent optical associated - or that of said at least one convergent optic with which the first electroluminescent element is associated and that of said at least one convergent optics with which the second electroluminescent element is associated will be chosen so that the two lenses cover the two electroluminescent elements along the entire length of the electroluminescent element. given pitch.
  • the convergent lenses can be disjoint, and thus do not form a single element. This may be for example the case of electroluminescent elements individually covered with a lens.
  • the pitch 108 between the LEDs comprises the edge-to-edge distance of an LED 8 as well as the width of a street 104a, 104b - all the LEDs and streets of the source have an equal size, and each micro lens has dimensions (L'x ') which are equal to the pitch so that each microlens covers the LED in its entirety and all or part of the streets.
  • the overlap of the electroluminescent elements by the convergent optics of the primary optical system makes it possible to ensure that all of the light emitted by the electroluminescent elements is used in the light beam generated, for example at the output of the primary optical system.
  • a 70% increase in the luminous intensity of the light beam generated by the light module according to the invention has been measured to be compared with a light module of the state of the art: indeed, the light module according to the invention recovers all the light emitted by the electroluminescent elements. Thanks to this increase, the light module according to the invention allows a reducing the size of the emitting surfaces of the electroluminescent elements while having a light intensity at least equal to that obtained with the light modules known from the prior art.
  • Reducing the size of the emitting surfaces can be achieved by increasing the width of the streets / lines separating the electroluminescent elements. Alternatively, the dimensions of the electroluminescent elements can be reduced. In all cases, a reduction in the emissive (light) surfaces of the light emitting source associated with the primary optical system provides greater luminance as well as an increase in luminous flux. By reducing the size of the emitting surfaces, the light source consumes less energy, which reduces the amount of heat to be removed from the light module. Thus, the junctions of the semiconductor materials of the electroluminescent elements work at lower temperatures, which provides greater efficiency, longer life of the electroluminescent elements. It is also possible to feed them with a higher current density to increase the luminance. In addition, the manufacture of the light source is facilitated, which can be an economic advantage.
  • a greater spacing of the electroluminescent elements also makes it possible to reduce the phenomenon of crosstalk ("cross-talk" in English), the greater spacing between the elements being compensated by the primary optical system which recovers all the light itself emitted with an angle significant issue.
  • the pitch of the monolithic electroluminescent source may be less than or equal to 1 mm, and is preferably between 500 and 20 micrometers ( ⁇ ), limits included.
  • the dimensions (Lxl) of an electroluminescent element are preferably between 10 and 500 micrometers ( ⁇ ), inclusive.
  • FIG. 6 shows an example of an optical module 1 for projecting a light beam, in particular for a motor vehicle.
  • the module 1 comprises from upstream to downstream in the direction of propagation of the light rays along the optical axis 15, a monolithic electroluminescent source 2 comprising electroluminescent elements 8 capable of emitting light rays, a primary optical system 4 which transmits the rays. light, and projection means configured to project a light beam from the incident light rays transmitted by the optical primary optical system 4.
  • the projection means take the form of a single projection lens 3.
  • the projection means could nevertheless be formed by the combination of several lenses, several reflectors, or a combination of one or more lenses and / or one or more reflectors.
  • the electroluminescent elements 8 are for example light emitting diodes (LEDs) forming an array on the matrix 2 of electroluminescent elements, as shown in FIGS. 1 and 2.
  • LEDs light emitting diodes
  • the primary optical system 4 has the function of transmitting light rays of the electroluminescent elements so that, combined with the projection means, here in the form of a projection lens 3, the beam projected outside the module, for example on the road, be homogeneous.
  • the primary optical system 4 is provided with a plurality of convergent optics, which are preferably convergent microlenses.
  • the input diopters 5 have a convex surface, that is to say they are bulged outwards, towards the sources 8. The surface could however be flat, plano-convex or concave-convex .
  • An input diopter 5 is advantageously disposed downstream of each light source 8, that is to say of each electroluminescent element.
  • the input diopters 5 preferably form virtual images 6 of the electroluminescent elements 8.
  • the virtual images 6 are formed upstream of the electroluminescent elements 8, and thus serve as new light sources for the projection lens 3.
  • the virtual images 6 obtained are enlarged and preferably substantially adjacent. In other words, they are not separated by significant space.
  • the virtual virtual images may have a slight overlap between them, which will result in an overlap of their respective projections by the projection means measured on a screen placed at 25 m from the device which will preferably be less than 1 °.
  • the edges of each virtual image will be fuzzy, so as to obtain this slight overlap which will ensure a good homogeneity of the generated light beam.
  • the primary optical system 4 thus makes it possible to form virtual images 6 of the primary sources 8 of light in order to obtain a homogeneous distribution of the beam, that is to say that the components of the light beam are correctly adjusted relative to each other. other, with no dark and / or bright (overcurrent) bands between them that would interfere with driving comfort.
  • the streets or lines present on the monolithic source are not visible in the light beam generated at the output of the primary system 4 and the projection lens 3, and even if the streets / lines have increased dimensions in a decreasing effort emitting surfaces of the source.
  • the pixelation of the source 2 is preserved, that is to say that the light beam generated consists of as many pixels of light as there are electroluminescent elements on the source. If the source is a highly pixelated monolithic source, then the light beam maintains this high pixelation.
  • the generated light beam can be used in driver assistance functions that require adaptive lighting, for example an anti-glare function.
  • the virtual images 6 are further away from the projection lens 3 with respect to the actual matrix of the light sources, which makes it possible to keep a compact optical module.
  • the primary optical system 4 can be advantageously configured to form virtual images 6 on a curved surface, the dimensions of the virtual images 6 being larger than the dimensions of the primary sources 8 of light. This case is illustrated in FIG. 7.
  • the curved surface makes it possible to compensate for the curvature of the field of the projection system 3.
  • the primary optical system 4 can be configured to form virtual images 6 on a plane, the dimensions of the virtual images 6 being larger than the dimensions of the primary sources 8 of light. This case is illustrated in Figure 6.
  • the enlargement of the size of the virtual images 6 allows a juxtaposition of the virtual images 6 so as to be adjacent to each other to form a continuous homogeneous light distribution.
  • the convex curvature and the material constituting the matrix of convergent optics are adapted to the dimensions of the source 2 of electroluminescent elements 8, as well as the positioning of the optical primary optical system 4 with respect to the source 2, so that the virtual images 6 are correctly juxtaposed to form a continuous homogeneous light distribution.
  • the distance between the monolithic electroluminescent source and the primary optical system 4 will be for example, from 0 mm to twice the pitch of the electroluminescent elements, inclusive. These distances make it possible to collect enough light.
  • the primary optical system 4 provided with the input diopters 5 furthermore comprises a single output diopter 9 for all the input diopters 5.
  • the output diopter 9 provides an optical correction of the beam transmitted to the lens of FIG. projection 3.
  • the correction serves in particular to improve the optical efficiency of the device and to correct the optical aberrations of the projection optical system 3.
  • the output diopter 9 has a substantially spherical dome shape. This shape deviates little the direction of the light rays of the beam coming from an electroluminescent element disposed on the optical axis 15, and which pass through the exit diopter 9.
  • the exit diopter may have an elongated shape, of cylindrical type, with a bifocal definition. In front view, the exit diopter 9 is wider than it is high.
  • the output diopter 9 has in horizontal section - so in the direction of its width - a large radius of curvature.
  • the primary optical system 4 is made of a single material, that is to say, come from material.
  • the input diopters 5 and the output diopter 9 form the input and output faces of the same element, the primary optical system 4, which is similar to a complex lens.
  • FIG. 7 shows the same elements as that of FIG. 6, except that the primary optical system 4 comprises an output micro-diopter 9 for each input micro-diopter 5.
  • the primary optical system 4 then forms a set of bi convex microlenses, each microlens being disposed in front of a primary source of light.
  • the primary optical system 4 is a matrix of microlenses, for example that shown in FIG. 4.
  • the microlens do not make it possible to correct the transmitted overall beam, such as a primary optical system 4 provided with a single output diopter 9. However, the correction of the overall beam can be performed by the projection means 3.
  • the microlenses are, however, suitable for electroluminescent sources with high pixel density for which the electroluminescent elements are of submillimeter size.
  • the microlenses have the advantage of bringing a better homogeneity of the virtual images and less deformation of the images.
  • the microlenses have a collection angle of the emitted light which must be maximum so that they recover all the light even emitted with a large emission angle.
  • the collection angle may preferably be between 30 ° and 70 ° inclusive.
  • FIG 3 shows schematically an example of a light module for a motor vehicle.
  • the light module 1 comprises a high-density monolithic electroluminescent source 2 on which a phosphor layer is deposited, a PCB 14 which supports the source 12 and a device 19 which controls the electroluminescent elements of the luminous monolithic source 2. Any other medium that a PCB can be considered.
  • the light module further comprises a matrix of microlenses 4.
  • the light module may further comprise at least one heat sink 18 which may be arranged directly or indirectly on the source 12. In this example, the heat sink 18 is arranged indirectly on the source since the PCB 14 and a thermal interface 16 are located between the heat sink 18 and the source 12.
  • the heat sink allows the transfer of heat from the light emitting source that it transmits to the PCB when using a light module.
  • the heat sink allows heat dissipation through cooperation with the support 14 of the monolithic electroluminescent source, i.e. the heat sink receives the heat produced by the light emitting source.
  • the heat sink 18 is thus in heat communication with the PCB 14 which is itself in heat communication source 12.
  • the transmission can be ensured by the fact that the heat sink is in an example arranged directly against the PCB 14. This means that the heat sink is in physical contact (ie material) with the PCB.
  • the heat sink 18 may however alternatively be arranged on the PCB via an intermediate element which improves the heat transfer. This intermediate element is also called the thermal interface 16.
  • the intermediate element 16 may comprise, for example, thermal paste or a phase-change material.
  • the intermediate element may comprise copper, for example the thermal interface 16 is a copper plate.
  • the invention also relates to an optical module comprising such a projection device and projection means, such as a projection lens or a reflector, arranged downstream of the primary optical system in the direction of projection of the light beam, the means for projection being capable of projecting a light beam from the virtual images serving as light sources to the projection means which are focused on said virtual images.
  • projection means such as a projection lens or a reflector
  • This last characteristic of the invention is particularly interesting and advantageous. Indeed, the focusing of the projection means on the virtual images, in particular on the plane containing said virtual images, makes the projection optical module insensitive to the defects of the primary optical system: if the projection means are focused on the surface of the diopters, it is this surface which is imaged and therefore all its defects of realization which are made visible, which can generate defects of homogeneity or chromaticism in the projected light beam.
  • this makes it possible to use a matrix of electroluminescent elements with streets / lines of large size in association with the primary optics, each electroluminescent element being individually imaged and the generated beam not showing intervals between the different beams. bright component the beam of the source.
  • the invention also relates to a motor vehicle headlight provided with such an optical module.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

L'invention se rapporte notamment à un module lumineux, notamment pour véhicule automobile, comprenant une source électroluminescente monolithique comprenant des éléments électroluminescents, un système optique primaire muni d'une pluralité d'optiques convergentes, au moins une optique convergente étant associée à chaque élément électroluminescent et formant une image de l'élément électroluminescent auquel elle est associée.

Description

MODULE LUMINEUX A SOURCE ELECTROLUMINESCENTE MONOLITHIQUE DOMAINE DE L'INVENTION
L'invention se rapporte au domaine des modules lumineux de véhicule terrestre, c'est-à-dire des modules pouvant être intégrés à un dispositif lumineux du véhicule et permettant, lors de l'utilisation du véhicule, de projeter de la lumière éclairant la route ou l'habitacle et/ou permettant au véhicule de se rendre plus visible. Des exemples de tels dispositifs lumineux sont les feux de position ou les feux de croisement et/ou route (communément appelés « phares »).
ARRIERE-PLAN
Un véhicule terrestre est équipé de dispositifs lumineux, notamment d'éclairage et/ou de signalisation, tels que des projecteurs avants ou feux arrières, destinés à illuminer la route devant le véhicule, la nuit ou en cas de luminosité réduite. Ils peuvent aussi servir à éclairer l'habitacle du véhicule. Ces dispositifs lumineux peuvent comprendre un ou plusieurs modules lumineux. Chaque fonction d'éclairage peut être assurée par un ou des module(s).
Dans ces modules lumineux de véhicules terrestres, des sources de lumière électroluminescentes sont de plus en plus fréquemment utilisées. Ces sources lumineuses peuvent constituées par des diodes électroluminescentes ou LEDs (acronyme anglais pour « Light Emitting Diode »), par des diodes électroluminescentes organiques ou OLEDs (acronymes anglais pour « organic light- emitting diodes », ou encore par des diodes électroluminescentes polymériques ou PLED (acronymes anglais pour « polymer light-emitting diodes »).
On connaît depuis peu des sources de lumière monolithique à état solide (également connues sous le nom de « matrice monolithique de LEDs », traduction de l'expression anglaise « monolithic array of LEDs »). Une source de lumière monolithique comprend des dizaines, des centaines, voire des milliers de DELs qui sont situées sur un même substrat, les DELs étant séparées des autres par des lignes (ou encore « lanes » en anglais) ou des rues (ou encore « streets » en anglais). Dans ce contexte de matrice monolithique, les DELs sont également appelées pixels. Ces sources de lumière sont dites à haute densité de DELs parce que le nombre de pixels est important, par plusieurs centaines de DELs par cm2. Chacune des DELs est indépendante électriquement des autres et éclaire donc de manière autonome des autres DEL de la matrice. Ainsi, chaque DEL de la matrice est commandée individuellement par le circuit électronique qui gère son alimentation électrique (circuit appelé « driver » en anglais).
Les sources de lumière monolithique à état solide présentent de nombreux avantages. Elles offrent tout d'abord une forte intensité lumineuse, ce qui permet d'améliorer l'éclairage de la scène et ainsi de sécuriser par exemple la conduite d'un véhicule automobile. De plus, elles créent un faisceau lumineux hautement pixélisé qui permet d'implémenter et d'améliorer des fonctionnalités existantes d'aide à la conduite, notamment des fonctions d'éclairage adaptatif. Par exemple, une fonction d'anti-éblouissement peut être configurée pour que seul le pare-brise d'un véhicule arrivant de face ne soit plus éclairé.
Les sources de lumière monolithique à état solide présentent cependant des inconvénients. Tout d'abord, ces sources de lumière chauffent et impliquent une gestion spécifique de la chaleur générée par les éléments électroluminescents. En effet, la chaleur générée entraîne une élévation de la température au niveau des composants qui peut dégrader les composants et/ou en empêcher une utilisation optimale. De plus, ces sources lumineuses souffrent de diaphonie (« cross-talk » en anglais), c'est-à-dire que la lumière émise par un élément électroluminescent interfère avec au moins la lumière émise par les éléments électroluminescents de son voisinage. La pixellisation du faisceau lumineux émis par la source est donc affectée. En outre, une partie de la lumière émise est perdue car toute la lumière émise ne peut pas être collectée à cause de l'angle d'émission des éléments électroluminescent qui est important. Un autre problème enfin est que les lignes ou rues présentes sur la source font apparaître des intervalles entre les différents faisceaux lumineux composant le faisceau de la source. Le faisceau lumineux obtenu en sortie n'est donc pas un faisceau lumineux homogène. De plus, ces lignes ou rues forment des zones non émissives qui font chuter la luminance moyenne de la source sous la valeur de la luminance de l'émetteur. La perte peut être très importante ; par exemple, si on a un pitch de 50 μιη et des émetteurs de 40 μιη, la surface non émissive environ 36% de la surface totale de la source
RESUME DE L'INVENTION
On propose pour cela un module lumineux, notamment pour véhicule automobile, qui comprend une source électroluminescente monolithique comprenant des éléments électroluminescents, un système optique primaire muni d'une pluralité d'optiques convergentes, au moins une optique convergente étant associée à chaque élément électroluminescent et formant une image de l'élément électroluminescent auquel elle est associée.
Selon différents exemples, le module lumineux peut comprendre l'une ou plusieurs des caractéristiques suivantes combinées entre elles :
- les éléments électroluminescents de la source monolithique forment une matrice d'éléments électroluminescents, et les optiques convergentes forment une matrice de microlentilles convergentes ;
- l'axe optique de la dite au moins une optique convergente est aligné sur le centre de l'élément électroluminescent avec lequel la dite au moins une optique convergente est associée ;
- la distance entre ladite au moins une optique convergente et l'élément électroluminescent avec lequel la dite au moins une optique convergente est associée est inférieure ou égale à la distance focale objet de ladite au moins une optique convergente ;
- l'angle de collection des optiques convergentes est compris entre 30° et 70°, bornes incluses ;
- la pluralité d'optiques convergentes du système optique primaire recouvre la source électroluminescente monolithique ; - la pluralité d'optiques convergentes est en contact avec la source électroluminescente monolithique ;
- un élément intermédiaire est agencé entre la pluralité d'optiques convergentes et la source électroluminescente monolithique ;
- la distance entre le centre d'un premier pixel et le centre d'un deuxième pixel voisin du premier est comprise entre 20 et 500 micromètres (μιη) ;
- les dimensions d'un élément électroluminescent sont comprises entre 10 et 500 micromètres (μιη) ;
- le système optique primaire est agencé de sorte que les images qu'il forme soient sensiblement adjacentes pour former une distribution de lumière homogène continue ;
- chaque optique convergente comprend au moins une portion convexe ;
- la pluralité d'optiques convergentes est venue de matière ;
- les éléments électroluminescents de la source électroluminescente monolithique sont des diodes électroluminescentes ;
On propose également un dispositif lumineux, notamment d'éclairage et/ou de signalisation de préférence de véhicule terrestre, qui comprend le module lumineux ci-dessus, un système optique de projection formant une image des images produites par le système optique primaire.
BREVE DESCRIPTION DES FIGURES
Différents modes de réalisation de l'invention vont maintenant être décrits, à titre d'exemples nullement limitatifs, en se référant aux dessins annexés dans lesquels :
Les figures 1 et 2 montrent schématiquement un exemple de source monolithique électroluminescente à haute densité de pixels ;
La figure 3 montre schématiquement un exemple de module lumineux selon l'invention ;
La figure 4 montre schématiquement un exemple de microlentille vue de face ; La figure 5 montre schématiquement un exemple d'ajustement d'une microlentille avec une source lumineuse ;
La figure 6 illustre de façon schématique une vue en perspective d'un exemple d'un module de projection selon l'invention ;
La figure 7 illustre de façon schématique une vue en perspective d'un exemple d'un module de projection selon l'invention.
DESCRIPTION DETAILLEE
Le module lumineux selon l'invention comprend une source de lumière électroluminescente à état solide (acronyme de l'anglais « solid-state lighting »). La source électroluminescente comprend des éléments électroluminescents qui sont de dimensions submillimétriques. La source comprend en outre un substrat sur lequel sont épitaxiés les éléments électroluminescents. Les éléments électroluminescents utilisent l'électroluminescence pour émettre de la lumière. L'électroluminescence est un phénomène optique et électrique durant lequel un matériau émet de la lumière en réponse à un courant électrique qui le traverse, ou à un fort champ électrique. Cela est à distinguer de l'émission de lumière en raison de la température (incandescence) ou de l'action des produits chimiques (chimiluminescence).
La source électroluminescente est une source électroluminescente monolithique, c'est-à-dire que les éléments électroluminescents sont situés et épitaxiés sur un même substrat, et de préférence sur une même face du substrat qui peut être par exem ple du sa phir. Les éléments électroluminescents sont déposés sur ou s'étendant à partir d'au moins une face du substrat. Les éléments électroluminescents de la matrice monolithique sont séparées les uns des autres par des lignes (nommée « lanes » en anglais) ou des rues (nommées « streets » en anglais). Les termes lignes et rues sont synonymes. Ces lignes ou rues sont des espaces séparant les éléments électroluminescents. Ces espaces peuvent être vides, ou bien encore contenir des éléments introduits par exemple pour la gestion des phénomènes de diaphonies (« crosstalk » en anglais). La source électroluminescente monolithique forme une grille d'éléments électroluminescents ou encore une matrice d'éléments électroluminescents.
Un élément électroluminescent peut être, mais n'est pas limité à, une diode électroluminescente (LED), une diode électroluminescente organique (OLED), une diode électroluminescente polymérique (PLED). La source électroluminescente est donc une source lumineuse à semi-conducteur et elle comporte un substrat à partir sur lequel sont placés les éléments électroluminescents. Un élément électroluminescent est plus généralement appelé pixel. Par conséquent, la source lumineuse comprend une pluralité de pixels déposés sur ou s'étendant à partir de la première face du substrat. Les pixels (c'est-à-dire les éléments électroluminescents) émettent de la lumière lorsque le matériau semi-conducteur est alimenté en électricité. On peut donc parler de pixel allumé lorsqu'un élément électroluminescent émet de la lumière.
La source électroluminescente monolithique peut être une source électroluminescente monolithique à haute densité d'éléments lumineux, c'est-à-dire qu'elle comprend un nombre très important d'éléments électroluminescents. Par nombre très élevé, il faut entendre que le substrat de la source lumineux comprend au moins 400 éléments électroluminescents sur le même substrat. Par exemple, si le pitch est de 200μιη, la densité de pixels est alors de 2500 éléments électroluminescents par centimètre carré (cm2). Les dimensions des pixels peuvent varier, dépendant de la densité de pixels par cm2 recherchées.
La figure 1 montre une vue de haut d'un exemple de source électroluminescente monolithique 1 à haute densité d'éléments électroluminescent. La figure 2 montre une partie de la vue de côte de l'exemple de la figure 1. Les éléments électroluminescents 8 ont été déposés sur un substrat 110, par exemple du saphir. Les éléments électroluminescents 8 sont dans ces exemples des DELs. Les DELs ont été placées de sorte qu'elles forment une grille de DELs encore appelée matrice de DELs. Les DELs sont séparées par les lignes ou rues rectilignes disposées verticalement 104a et horizontalement 104b. Le motif régulier ainsi formé est parfaitement intégré dans les processus de fabrication actuels de sources lumineuses.
Toujours dans les exemples des figures 1 et 2, les DELs ont une forme (sensiblement) carré et ont une dimension de 40 μιη. Cette dimension se rapporte à l'un des côtés du carré 106. La dimension est donc la largeur de la DEL. Les lignes ou rues 104a, 104b ont toute une largeur de 10 μιη. Le pitch 108 entre les DELs est donc de 50 μιη. Le pitch est la distance entre le centre d'un premier pixel et le centre d'un deuxième pixel voisin du premier ; cette distance est également appelée « pixel pitch » en anglais. Le pitch dépend donc de la dimension des pixels et de la largeur des lignes ou rues. Les éléments électroluminescents 8 ont également une hauteur 109 qui dépend de la technologie utilisée pour leur fabrication. La hauteur d'un élément électroluminescent se mesure à partir de la surface du substrat sur laquelle l'élément électroluminescent est déposé ou s'étend. Par exemple, les DELs peuvent avoir une hauteur de 100 μιη.
En pratique, toutes les DELs et toutes les lignes ou rues d'une source électroluminescente monolithique ont des dimensions qui sont égales ou sensiblement égales. La source forme un motif régulier de grille d'éléments électroluminescents.
On comprend que les DELs peuvent avoir d'autres formes, dépendant de la technologie utilisée pour leur fabrication. Dans ce cas la définition du terme dimension peut varier. Par exemple, si les DELs ont une forme rectangulaire, on peut par convention décider que la dimension d'une DEL est la distance du côté le plus court du rectangle. Comme autre exemple, si les DELs ont une forme circulaire, on peut par convention décider que la dimension d'une DEL est son diamètre.
Les éléments électroluminescents sont chacun semi-conducteur, c'est-à-dire qu'ils comportent chacun au moins un matériau semi-conducteur. Les éléments électroluminescents peuvent être majoritairement en matériau semi-conducteur. Ce matériau semi-conducteur peut être le même que ou différent du matériau semiconducteur du substrat. Les éléments électroluminescents peuvent plus généralement être tous réalisés dans le ou les mêmes matériaux. Les éléments électroluminescents peuvent être de même nature, par exemple sensiblement identiques ou similaires. Tous les éléments électroluminescents peuvent être positionnés pour former un motif régulier, par exemple une grille.
Chacun des éléments électroluminescents de la source électroluminescente monolithique est indépendant électriquement des autres et émet ou non de la lumière indépendamment des autres éléments de la matrice. Chaque élément de la matrice est commandé individuellement par un circuit électronique appelé « driver » en anglais. Le driver gère l'alimentation électrique de la matrice monolithique, ce qui revient à dire qu'il gère individuellement l'alimentation électrique de chaque élément électroluminescent. Alternativement, des éléments électroluminescents peuvent être regroupés électriquement, par exemple en les alimentant électriquement à l'aide d'un montage en parallèle ou en série, afin de diminuer le nombre d'éléments à gérer. Par exemple, les groupes peuvent comprendre entre deux et quatre éléments électroluminescents, ce nombre permettant de conserver un faisceau lumineux suffisamment pixélisé. Le driver est donc un dispositif électronique qui est apte à commander les éléments d'une matrice monolithique d'éléments électroluminescents. Plusieurs drivers peuvent être utilisés pour piloter les éléments électroluminescents de la source.
Le module lumineux peut comprendre une ou plusieurs sources électroluminescentes monolithiques. Plusieurs modules lumineux comprenant une telle source électroluminescente monolithique peuvent être intégrés au dispositif lumineux selon l'invention. Le terme « module lumineux » désigne donc au moins une source électroluminescente monolithique.
Le module lumineux comprend de plus une couche recouvrant le matériau semi-conducteur. Cette couche modifie le spectre de la lumière émise par le matériau semi-conducteur. Le spectre est défini par un continuum de longueurs d'onde, et la couche modifie donc les longueurs d'onde des rayonnements électromagnétiques formant le spectre de la lumière émise. Recouvrir signifie que la couche est agencée par rapport au matériau semi-conducteur de sorte que la lumière qu'il émet passe au travers de la couche. Cette dernière peut être en contact avec au moins la surface du matériau semi-conducteur par laquelle la lumière produite par le matériau semi-conducteur s'échappe. Alternativement, un matériau tiers peut servir d'interface entre la couche et la surface du matériau semiconducteur par laquelle la lumière produite par le matériau semi-conducteur s'échappe ; ce matériau tiers peut être du silicone qui est un polymère. La figure 2 montre un exemple dans lequel chaque élément électroluminescent est individuellement recouvert par la couche 120. Plus précisément, la couche est en contact avec la surface de l'élément électroluminescent par laquelle les photons émis par le matériau semi-conducteur s'échappent. Le parcours de la lumière est représenté par les flèches en pointillé. La couche 120 est un convertisseur de lumière ou luminophore, et elle comprend au moins un matériau luminophore conçu pour absorber au moins une partie d'au moins une lumière d'excitation émise par une source lumineuse et pour convertir au moins une partie de ladite lumière d'excitation absorbée en une lumière d'émission ayant un spectre lumineux différente de celle de la lumière d'excitation.
Le module lumineux selon l'invention comprend donc une source électroluminescente monolithique qui peut être à haute densité d'éléments électroluminescents. Le module lumineux comprend de plus un système optique primaire qui est muni d'une pluralité d'optiques convergentes. Chaque optique convergente du système optique primaire forme une image d'une source électroluminescente. Une ou plusieurs optiques convergentes est associée à chaque élément électroluminescent. L'association est exclusive, c'est-à-dire que la ou les optiques sont chargées de faire converger la lumière d'un seul et unique élément électroluminescent. De préférence, une optique est associée à un élément électroluminescent. L'optique convergente forme une image de l'élément électroluminescent auquel elle est associée. L'image formée est de préférence une image virtuelle. La création d'une image réelle peut être également envisagée. Les éléments électroluminescents de la source monolithique forment de préférence une matrice d'éléments électroluminescents. Comme expliqué en référence avec la figure 1, les éléments électroluminescents sont placés sur le substrat de la source suivant un motif régulier, par exemple celui d'une grille. Les optiques convergentes forment elle également de préférence une matrice de lentilles convergentes. Les lentilles convergentes de la matrice de lentilles convergentes sont disposées de sorte qu'il existe une correspondance entre un élément électroluminescent et la lentille qui lui est associée, par exemple la lentille recouvre l'élément électroluminescent. Cela n'exclue pas que la matrice de lentilles convergentes ne soit pas forcément strictement de même pas que la source monolithique ; par exemple, un pas légèrement différent peut être permettre de réorienter les rayons émis par les éléments électroluminescents en bord de la source électroluminescente monolithique.
Cette correspondance peut être assurée en alignant l'axe optique de l'optique convergente sur le centre de l'élément électroluminescent avec lequel la dite au moins une optique convergente est associée.
D'autres motifs qu'une grille régulière peuvent être envisagés pour les matrices d'éléments électroluminescents et d'optiques convergentes ; par exemple les éléments d'une ligne sont décalés par rapport d'une autre ligne voisine. Tout motif, qu'il soit régulier ou non, peut être envisagé.
Les éléments électroluminescents sont de préférence de dimensions submillimétriques afin que la source monolithique soit à haute densité de pixel lumineux. Dans ce cadre, les optiques convergentes sont des microlentilles convergentes de dimensions millimétriques ou submillimétriques.
La figure 4 montre un exemple de grille de microlentilles convergentes de centre optique « 0 » par lequel passe l'axe optique.
La figure 5 montre schématiquement un exemple d'un ensemble de microlentilles convergentes, par exemple la grille de microlentilles représentée sur le figure 4, dont les axes optiques (représentés des lignes 15 en pointillés passant par leur centre optique « 0 ») sont alignées sur le centre « 0'» des éléments électroluminescents 8.
Dans le cadre de la présente invention, on désigne par microlentilles des dioptres faisant converger la lumière dont les dimensions externes sont inférieures ou égales à cinq fois les dimensions des éléments électroluminescents la source de lumière. En pratique, les microlentilles ont une dimension qui est comprises entre une et cinq fois, bornes incluses, celles des éléments électroluminescents. Ainsi, si un élément électroluminescent a pour dimension une longueur L et une largeur I, notée (Lxl), alors la microlentille aura une dimension (L'xl') avec L≤ L'≤ 5xL et I≤ Γ≤ 5x1. Ce dimensionnement permet de conserver une bonne luminance. Par exemple, pour une diode électroluminescente (LED) individuelle dont la surface émettrice est de 50 μιη de côté, les dimensions du dioptre associé seront inscrites dans un carré de 250 μιη de côté maximum. Les microlentilles sont en général dans un ordre de grandeur submillimétrique.
De plus, si tous les éléments électroluminescents sont de même dimension, on pourra prévoir que toutes les microlentilles ont la même dimension. Avantageusement toutefois, on pourra également prévoir que les microlentilles associés aux sources en bordure de la matrice, notamment aux extrémités latérales, soient de dimensions plus grande que les autres afin de former une image allongée latéralement et verticalement qui donnera un motif lumineux projeté de plus grande taille que les autres, notamment pour produire un éclairement des bas-côtés de la route.
L'optique convergente peut de préférence être placée, par rapport à l'élément électroluminescent auquel il est associé, à une distance qui est inférieure ou égale à la distance focale objet de l'optique convergente afin d'assurer la création d'une image virtuelle de l'élément électroluminescent. L'image virtuelle ainsi créée peut servir de nouvelle source de lumière, par exemple pour une lentille de projection. L'image virtuelle obtenue est agrandie par rapport à l'élément électroluminescent. Le système optique primaire, par exemple une matrice de microlentilles, permet donc de former des images virtuelles des éléments électroluminescents de la source électroluminescente monolithique.
Alternativement, l'optique convergente peut être placée, par rapport à l'élément électroluminescent auquel il est associé, à une distance qui est supérieure à la distance focale objet de l'optique convergente afin d'assurer la création d'une image réelle de l'élément électroluminescent. Dans ce cas, et comparativement au cas précédent où une image virtuelle est créée, la microlentille doit avoir une focale beaucoup plus courte et doit en conséquent être plus bombée, ce qui complexifie sa réalisation.
L'optique convergente peut en outre être placée à une distance de l'élément électroluminescent qui est choisie pour que l'optique convergente collecte la plus grande quantité de lumière émise par l'élément électroluminescent. L'élément électroluminescent envoie de la lumière sur un demi-espace - en pratique un cône d'émission de 180°-, et il est donc très difficile de collecter toute la lumière qu'il émet. En pratique, la distance choisie est la plus courte possible afin que l'optique convergente soit le plus proche possible de l'élément électroluminescent pour capturer un maximum de lumière émise par l'élément électroluminescent : on minimise ainsi la perte de la lumière émise. Quasiment toute la totalité de la lumière émise peut être récupérée, ce qui permet d'obtenir une énergie lumineuse maximale utilisée.
Dans un exemple préféré, les optiques convergentes sont en contact avec les éléments électroluminescent, c'est-à-dire qu'il n'y a pas d'élément intermédiaire tel que par exemple de l'air entre les éléments électroluminescents et les optiques convergentes. Il n'y a pas de perte de lumière par passage de la lumière dans l'air ou tout autre matériau. Alternativement, un élément intermédiaire fait la jonction entre les optiques convergentes et les éléments électroluminescents. Le matériau servant d'élément intermédiaire est sélectionné pour qu'il évite les pertes.
Toujours afin d'assurer qu'un maximum de la lumière émise par un élément électroluminescent soit utilisée, la pluralité d'optiques convergentes du système optique primaire peut recouvrir la source électroluminescente monolithique. En d'autres termes, les éléments électroluminescents et les rues/lignes les séparant sont recouverts par le système optique primaire. Ainsi, pour un pitch donné entre deux éléments électroluminescents - soit la distance entre le centre d'un premier élément électroluminescent et le centre d'un deuxième l'élément électroluminescent voisin du premier -, les dimensions des deux optiques convergentes associées - soit celle de ladite au moins une optique convergente avec laquelle le premier élément électroluminescent est associée et celle de ladite au moins une optique convergente avec laquelle le deuxième élément électroluminescent est associé- seront choisies de sorte que les deux lentilles recouvrent les deux éléments électroluminescents sur toute la longueur du pitch donné.
Alternativement, les lentilles convergentes peuvent être disjointes, et ne forment donc pas un unique élément. Cela peut être par exemple le cas d'éléments électroluminescents individuellement recouverts d'une lentille.
Sur la figure 5, le pitch 108 entre les DELs comprend la distance bord à bord d'une DEL 8 ainsi que la largeur d'une rue 104a, 104b - toutes les DELs et rues de la source ont une taille égale-, et chaque micro lentille a des dimensions (L'xl') qui sont égales au pitch de sorte que chaque microlentille recouvre la DEL dans son intégralité et tout ou partie des rues.
Le recouvrement des éléments électroluminescents par les optiques convergentes du système optique primaire permet d'assurer que la totalité de la lumière émise par les éléments électroluminescents est utilisée dans le faisceau lumineux généré, par exemple en sortie du système optique primaire. En pratique, on a mesuré une augmentation de 70% de l'intensité lumineuse du faisceau lumineux généré par le module lumineux selon l'invention à comparer avec un module lumineux de l'état de l'art : en effet, le module lumineux selon l'invention récupère toute la lumière émise par les éléments électroluminescents. Grâce à cette augmentation constatée, le module lumineux selon l'invention autorise une réduction de la taille des surfaces émissives des éléments électroluminescents tout en ayant une intensité lumineuse au moins égale à celle obtenue avec les modules lumineux connus de l'art antérieur.
La réduction de la taille des surfaces émissives peut être réalisée en augmentant la largeur des rues/lignes séparant les éléments électroluminescents. Alternativement, les dimensions des éléments électroluminescents peuvent être réduites. Dans tous les cas, une réduction des surfaces émissive (de lumière) de la source électroluminescente associée au système optique primaire offre une plus grande luminance ainsi qu'une augmentation du flux lumineux. Grâce à cette réduction de la taille des surfaces émissives, la source lumineuse consomme moins d'énergie, ce qui permet de réduire la quantité de chaleur à évacuer du module lumineux. Ainsi, les jonctions des matériaux semi-conducteurs des éléments électroluminescents travaillent à des températures plus basses, ce qui offre une plus grande efficacité, une plus grande durée de vie aux éléments électroluminescents. Il est en outre possible de les alimenter avec une densité de courant plus importante pour augmenter la luminance. De plus, la fabrication de la source lumineuse se trouve facilité, ce qui peut présenter un avantage économique.
Un plus grand espacement des éléments électroluminescent permet en outre de diminuer les phénomènes de diaphonie (« cross-talk » en anglais), le plus grand espacement entre les éléments étant compensé par le système optique primaire qui récupère toute la lumière même émise avec un angle d'émission important.
Le pitch de la source électroluminescente monolithique peut être inférieur ou égal à 1 mm, et est de préférence compris entre 500 et 20 micromètres (μιη), bornes incluses. Les dimensions (Lxl) d'un élément électroluminescent sont de préférence comprises entre 10 et 500 micromètres (μιη), bornes incluses. L'élément électroluminescent peut être carré (L=l) ou encore rectangulaire. Ces dimensions sont particulièrement adaptées pour une matrice de microlentilles, par exemple les microlentilles ont des dimensions (L'xl') compris entre 10 et 4000 micromètres (μιη), bornes incluses.
La figure 6 montre un exemple d'un module optique 1 de projection de faisceau lumineux, notamment pour véhicule automobile. Le module 1 comprend d'amont en aval dans le sens de propagation des rayons lumineux selon l'axe optique 15, une source électroluminescente monolithique 2 comprenant des éléments électroluminescents 8 aptes à émettre des rayons lumineux, un système optique primaire 4 qui transmet les rayons lumineux, et des moyens de projection configurés pour projeter un faisceau lumineux à partir des rayons lumineux incidents transmis par le système optique primaire optique 4.
Sur les figures les moyens de projection prennent la forme d'une lentille de projection 3 unique. Les moyens de projection pourraient néanmoins être formés de l'association de plusieurs lentilles, de plusieurs réflecteurs, ou encore d'une combinaison d'une ou plusieurs lentilles et/ou d'un ou plusieurs réflecteurs.
Les éléments électroluminescents 8 sont par exemple des diodes électroluminescentes (DELs) formant un réseau sur la matrice 2 d'éléments électroluminescents, comme représenté sur les figures 1 et 2.
Le système optique primaire 4 a pour fonction de transmettre des rayons lumineux des éléments électroluminescents de sorte que, combiné aux moyens de projection, ici sous la forme d'une lentille de projection 3, le faisceau projeté en dehors du module, par exemple sur la route, soit homogène. A cette fin, le système optique primaire 4 est muni d'une pluralité d'optiques convergentes, qui sont de préférence des microlentilles 5 convergentes. Ici, les dioptres d'entrée 5 présentent une surface convexe, c'est-à-dire qu'ils sont bombés vers l'extérieur, en direction des sources 8. La surface pourrait toutefois être plane, plan-convexe ou concave- convexe. Un dioptre d'entrée 5 est avantageusement disposé en aval de chaque source de lumière 8, c'est-à-dire de chaque élément électroluminescent. Les dioptres d'entrée 5 forment de préférence des images virtuelles 6 des éléments électroluminescents 8. Les images virtuelles 6 sont formées en amont des éléments électroluminescents 8, et servent ainsi de nouvelles sources de lumière pour la lentille de projection 3. Les images virtuelles 6 obtenues sont agrandies et de préférence sensiblement adjacentes. Autrement dit, elles ne sont pas séparées par un espace significatif. En outre, les images virtuelles mitoyennes peuvent présenter un léger recouvrement entre elles, qui se traduira par un chevauchement de leurs projections respectives par les moyens de projection mesuré sur un écran placé à 25 m du dispositif qui sera de préférence inférieur à 1°. De fait, on cherchera dans la conception du système optique primaire à ce que les images virtuelles soient juxtaposées d'un point de vue paraxial, avec une marge de tolérancement pour assurer la robustesse vis-vis de la précision de positionnement des sources lumineuses et vis-à-vis des défauts de réalisation des surfaces des micro-dioptres : les bords de chaque image virtuelle seront flous, de sorte à obtenir ce léger recouvrement qui assurera une bonne homogénéité du faisceau lumineux généré. Le système optique primaire 4 permet donc de former des images virtuelles 6 des sources primaires 8 de lumière afin d'obtenir une distribution homogène du faisceau, c'est-à-dire que les composantes du faisceau lumineux sont correctement ajustées les unes par rapport aux autres, sans bandes sombres et/ou brillantes (en surintensité) entre elles qui nuiraient au confort de conduite. Ainsi, les rues ou lignes présentes sur la source monolithique ne sont pas visibles dans le faisceau lumineux généré en sortie du système primaire 4 et de la lentille de projection 3, et même si les rues/lignes ont des dimensions accrues dans un effort de diminution des surfaces émissives de la source. En outre, la pixellisation de la source 2 est préservée, c'est à dire que le faisceau lumineux généré est constitué d'autant de pixels de lumière qu'il y a d'éléments électroluminescents sur la source. Si la source est une source monolithique hautement pixélisée, alors le faisceau lumineux conserve cette haute pixellisation. En conséquence de quoi, le faisceau lumineux généré peut être utilisé dans des fonctions d'aide à la conduite qui requièrent un éclairage adaptatif, par exemple une fonction d'anti-éblouissement. De plus, les images virtuelles 6 sont plus éloignées de la lentille de projection 3 par rapport à la matrice réelle des sources lumineuses, ce qui permet de garder un module optique compact.
Le système optique primaire 4 peut être avantageusement configuré pour former des images virtuelles 6 sur une surface courbe, les dimensions des images virtuelles 6 étant plus grandes que les dimensions des sources primaires 8 de lumière. Ce cas est illustré sur la figure 7. La surface courbe permet de compenser la courbure du champ du système de projection 3.
Alternativement, le système optique primaire 4 peut être configuré pour former des images virtuelles 6 sur un plan, les dimensions des images virtuelles 6 étant plus grandes que les dimensions des sources primaires 8 de lumière. Ce cas est illustré sur la figure 6.
Comme le montrent les figures 6 et 7, l'agrandissement de la taille des images virtuelles 6 permet une juxtaposition des images virtuelles 6 de sorte à être adjacentes les unes aux autres pour former une distribution de lumière homogène continue. A cette fin, la courbure convexe et le matériau composant la matrice d'optiques convergentes sont adaptés aux dimensions de la source 2 d'éléments électroluminescents 8, ainsi que le positionnement du système optique primaire optique 4 par rapport à la source 2, de sorte que les images virtuelles 6 soient correctement juxtaposées pour former une distribution de lumière homogène continue. En fonction de la taille 106 des éléments électroluminescents 8, de la taille du pitch 108 et/ou de la taille des rues 104a, 104b, et en fonction du grandissement recherché, la distance entre la source électroluminescente monolithique et le système optique primaire 4 sera comprise, par exemple, de 0 mm à deux fois le pitch des éléments électroluminescents, bornes incluses. Ces distances permettent de collecter suffisamment de lumière.
Le système optique primaire 4 muni des dioptres d'entrée 5 comprend en outre un dioptre de sortie 9 unique pour toutes les dioptres d'entrée 5. Le dioptre de sortie 9 apporte une correction optique du faisceau transmis à la lentille de projection 3. La correction sert notamment à améliorer l'efficacité optique du dispositif et à corriger les aberrations optiques du système optique de projection 3. A cette fin, le dioptre de sortie 9 a une forme de dôme sensiblement sphérique. Cette forme dévie peu la direction des rayons lumineux du faisceau provenant d'un élément électroluminescent disposée sur l'axe optique 15, et qui traversent le dioptre de sortie 9. Le dioptre de sortie peut avoir une forme allongée, de type cylindrique, avec une définition bifocale. En vue frontale, le dioptre de sortie 9 est plus large que haut. Selon un exemple préféré de réalisation de cette variante, le dioptre de sortie 9 présente en section horizontale - donc dans le sens de sa largeur - un grand rayon de courbure.
Dans l'exemple de la figure 6, le système optique primaire 4 est fait d'une seule matière, c'est-à-dire venu de matière. Autrement dit, les dioptres d'entrée 5 et le dioptre de sortie 9 forment les faces d'entrée et de sortie d'un même élément, le système optique primaire 4, qui s'apparente à une lentille complexe.
L'exemple de la figure 7 reprend les mêmes éléments que celui de la figure 6, excepté que le système optique primaire 4 comprend un micro-dioptre de sortie 9 pour chaque micro-dioptre d'entrée 5. Le système optique primaire 4 forme alors un ensemble de microlentilles bi convexes, chaque microlentille étant disposée devant une source primaire de lumière. Le système optique primaire 4 est une matrice de microlentilles, par exemple celle représentée sur la figure 4. La microlentille ne permet cependant pas de corriger le faisceau global transmis, comme un système optique primaire 4 muni d'un dioptre de sortie 9 unique. Cependant, la correction du faisceau global peut être réalisée par les moyens de projection 3. Les microlentilles sont cependant adaptées aux sources électroluminescentes à haute densité de pixels pour lesquelles les éléments électroluminescents sont de taille submillimétriques. Elles ont l'avantage d'apporter une meilleure homogénéité des images virtuelles et moins de déformation des images. Les microlentilles ont un angle de collection de la lumière émise qui doit être maximal afin qu'elles récupèrent toute la lumière même émise avec un angle d'émission important. L'angle de collection peut de préférence être compris entre 30° et 70°, bornes incluses.
La figure 3 montre schématiquement un exemple d'un module lumineux pour véhicule automobile. Le module lumineux 1 comprend une source électroluminescente monolithique 2 à haute densité sur laquelle une couche luminophore est déposée, un PCB 14 qui supporte la source 12 et un dispositif 19 qui commande les éléments électroluminescents de la source monolithique lumineuse 2. Tout autre support qu'un PCB peut être envisagé. Le module lumineux comprend en outre une matrice de microlentilles 4. Le module lumineux peut en outre comprendre au moins un dissipateur thermique 18 qui est peut être agencé directement ou indirectement sur la source 12. Dans cet exemple, le dissipateur thermique 18 est agencé indirectement sur la source puisque le PCB 14 et une interface thermique 16 sont situés entre le dissipateur thermique 18 et la source 12. Le dissipateur thermique permet le transfert de la chaleur de la source électroluminescente que cette dernière transmet au PCB lors de l'utilisation d'un module lumineux. Le dissipateur thermique permet une dissipation de chaleur via une coopération avec le support 14 de la source électroluminescente monolithique, c'est-à-dire que le dissipateur thermique reçoit la chaleur produite par la source électroluminescente. Le dissipateur thermique 18 est ainsi en communication de chaleur avec le PCB 14 qui est lui-même en communication de chaleur la source 12. La transmission peut être assurée par le fait que le dissipateur thermique est dans un exemple agencé directement contre le PCB 14. Cela signifie que le dissipateur thermique est en contact physique (i. e. de matériau) avec le PCB. Le dissipateur thermique 18 peut toutefois être alternativement agencé sur le PCB via un élément intermédiaire qui améliore le transfert thermique. Cet élément intermédiaire est aussi appelé interface thermique 16. L'élément intermédiaire 16 peut comprendre par exemple de la pâte thermique ou un matériau à changement de phase. L'élément intermédiaire peut comprendre du cuivre, par exemple l'interface thermique 16 est une plaque de cuivre. Ainsi, le module lumineux dissipe efficacement la chaleur. La dissipation de la chaleur est d'autant plus efficace que le module selon l'invention peut avoir des éléments électroluminescents de taille réduite, comme discuté précédemment.
L'invention se rapporte également à un module optique comprenant un tel dispositif de projection et des moyens de projection, tels une lentille de projection ou un réflecteur, disposés en aval du système optique primaire dans le sens de projection du faisceau lumineux, les moyens de projection étant aptes à projeter un faisceau lumineux à partir des images virtuelles servant de sources de lumière aux moyens de projection qui sont focalisés sur lesdites images virtuelles.
Cette dernière caractéristique de l'invention est particulièrement intéressante et avantageuse. En effet, la focalisation des moyens de projection sur les images virtuelles, notamment sur le plan qui contient lesdites images virtuelles, rend le module optique de projection peu sensible aux défauts de réalisation du système optique primaire : si les moyens de projection sont focalisés sur la surface des dioptres, c'est cette surface qui est imagée et donc tous ses défauts de réalisation qui sont rendus visibles, ce qui peut générer des défauts d'homogénéité ou de chromatisme dans le faisceau lumineux projeté. De plus, cela permet d'utiliser une matrice d'éléments électroluminescents avec des rues/lignes de dimension importante en association avec l'optique primaire, chaque élément électroluminescent étant individuellement imagée et le faisceau généré ne faisant pas apparaître des intervalles entre les différents faisceaux lumineux composant le faisceau de la source.
L'invention se rapporte encore à un projecteur de véhicule automobile muni d'un tel module optique.

Claims

REVENDICATIONS
1. Module lumineux, notamment pour véhicule automobile, comprenant :
- une source électroluminescente monolithique comprenant des éléments électroluminescents ;
- un système optique primaire muni d'une pluralité d'optiques convergentes, au moins une optique convergente étant associée à chaque élément électroluminescent et formant une image de l'élément électroluminescent auquel elle est associée.
2. Module lumineux selon la revendication 1, dans lequel :
- les éléments électroluminescents de la source monolithique forment une matrice d'éléments électroluminescents ; et
- les optiques convergentes forment une matrice de microlentilles convergentes.
3. Module lumineux selon l'une des revendications 1 à 2, dans lequel l'axe optique de la dite au moins une optique convergente est aligné sur le centre de l'élément électroluminescent avec lequel la dite au moins une optique convergente est associée.
4. Module lumineux selon l'une des revendications 1 à 3, dans lequel la distance entre ladite au moins une optique convergente et l'élément électroluminescent avec lequel la dite au moins une optique convergente est associée est inférieure ou égale à la distance focale objet de ladite au moins une optique convergente.
5. Module lumineux selon l'une des revendications 1 à 4, dans lequel l'angle de collection des optiques convergentes est compris entre 30° et 70°, bornes incluses.
6. Module lumineux selon l'une des revendications 1 à 5, dans lequel la pluralité d'optiques convergentes du système optique primaire recouvre la source électroluminescente monolithique.
7. Module lumineux selon l'une des revendications 1 à 6, dans lequel la pluralité d'optiques convergentes est en contact avec la source électroluminescente monolithique.
8. Module lumineux selon l'une des revendications 1 à 6, dans lequel un élément intermédiaire est agencé entre la pluralité d'optiques convergentes et la source électroluminescente monolithique.
9. Module lumineux selon l'une des revendications 1 à 8, dans lequel la distance entre le centre d'un premier pixel et le centre d'un deuxième pixel voisin du premier est comprise entre 20 et 500 micromètres (μιη).
10. Module lumineux selon l'une des revendications 1 à 9, dans lequel les dimensions d'un élément électroluminescent sont comprises entre 10 et 500 micromètres (μιη).
11. Module lumineux selon l'une des revendications 1 à 10, dans lequel le système optique primaire est agencé de sorte que les images qu'il forme soient sensiblement adjacentes pour former une distribution de lumière homogène continue.
12. Module lumineux selon l'une des revendications 1 à 11, dans lequel chaque optique convergente comprend au moins une portion convexe.
13. Module lumineux selon l'une des revendications 1 à 12, dans lequel la pluralité d'optiques convergentes est venue de matière.
14. Module lumineux selon l'une des revendications 1 à 13, dans lequel les éléments électroluminescents de la source électroluminescente monolithique sont des diodes électroluminescentes.
15. Dispositif lumineux, notamment d'éclairage et/ou de signalisation de préférence de véhicule terrestre, comprenant :
- un module lumineux selon l'une des revendications 1-14 ;
- un système optique de projection formant une image des images produites par le système optique primaire.
PCT/EP2017/068934 2016-09-15 2017-07-26 Module lumineux a source electroluminescente monolithique WO2018050337A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/333,910 US10683986B2 (en) 2016-09-15 2017-07-26 Luminous module comprising a monolithic electroluminescent source
CN201780057055.8A CN109716016B (zh) 2016-09-15 2017-07-26 包括单片电致发光源的发光模块
EP17742269.8A EP3513119B1 (fr) 2016-09-15 2017-07-26 Module lumineux a source electroluminescente monolithique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1658664 2016-09-15
FR1658664 2016-09-15

Publications (1)

Publication Number Publication Date
WO2018050337A1 true WO2018050337A1 (fr) 2018-03-22

Family

ID=57396642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/068934 WO2018050337A1 (fr) 2016-09-15 2017-07-26 Module lumineux a source electroluminescente monolithique

Country Status (4)

Country Link
US (1) US10683986B2 (fr)
EP (1) EP3513119B1 (fr)
CN (1) CN109716016B (fr)
WO (1) WO2018050337A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109058913A (zh) * 2018-08-20 2018-12-21 常熟理工学院 一种智能汽车用多像素高效率车灯模组
CN109163302A (zh) * 2018-10-12 2019-01-08 常熟理工学院 一种智能汽车用远光车灯模组
EP3660384A1 (fr) * 2018-11-30 2020-06-03 Erwin Hymer Group SE Luminaire
WO2020143915A1 (fr) * 2019-01-10 2020-07-16 Osram Gmbh Dispositif d'affichage d'image et procédé d'affichage d'une image sur un écran
WO2021102394A1 (fr) * 2019-11-22 2021-05-27 Facebook Technologies, Llc Extraction de lumière pour micro-del
US11309464B2 (en) 2019-10-14 2022-04-19 Facebook Technologies, Llc Micro-LED design for chief ray walk-off compensation
JP2022547389A (ja) * 2019-07-31 2022-11-14 オプシス テック リミテッド 高分解能ソリッドステートlidar透過機
US11581457B1 (en) 2018-03-30 2023-02-14 Meta Platforms Technologies, Llc Reduction of surface recombination losses in micro-LEDs

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11629949B2 (en) * 2018-04-20 2023-04-18 Qualcomm Incorporated Light distribution for active depth systems
FR3081969B1 (fr) * 2018-06-01 2021-12-31 Valeo Vision Module lumineux pour vehicule automobile, et dispositif d'eclairage et/ou de signalisation muni d'un tel module
US11626448B2 (en) 2019-03-29 2023-04-11 Lumileds Llc Fan-out light-emitting diode (LED) device substrate with embedded backplane, lighting system and method of manufacture
CN110195825B (zh) * 2019-07-16 2021-03-30 浙江生辉照明有限公司 感应灯
CN112443808A (zh) * 2019-08-28 2021-03-05 堤维西交通工业股份有限公司 适应性头灯
FR3101692B1 (fr) * 2019-10-04 2021-10-01 Valeo Vision Procede d’adaptation de consignes pour une unite d’eclairage numerique d’un vehicule automobile
US11631594B2 (en) 2019-11-19 2023-04-18 Lumileds Llc Fan out structure for light-emitting diode (LED) device and lighting system
EP3835649A1 (fr) * 2019-12-12 2021-06-16 T.Y.C. Brother Industrial Co., Ltd. Phare adaptatif pour véhicules
US11777066B2 (en) 2019-12-27 2023-10-03 Lumileds Llc Flipchip interconnected light-emitting diode package assembly
US11664347B2 (en) 2020-01-07 2023-05-30 Lumileds Llc Ceramic carrier and build up carrier for light-emitting diode (LED) array
US11476217B2 (en) 2020-03-10 2022-10-18 Lumileds Llc Method of manufacturing an augmented LED array assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013329A1 (en) * 2006-06-28 2008-01-17 Koito Manufacturing Co., Ltd. Lamp for vehicle
WO2008109296A1 (fr) * 2007-03-08 2008-09-12 3M Innovative Properties Company Réseau d'éléments luminescents
WO2011135508A2 (fr) * 2010-04-26 2011-11-03 Koninklijke Philips Electronics N.V. Système d'éclairage comprenant des collimateurs alignés avec des segments électroluminescents

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2464102A (en) * 2008-10-01 2010-04-07 Optovate Ltd Illumination apparatus comprising multiple monolithic subarrays
WO2011146569A2 (fr) * 2010-05-19 2011-11-24 3M Innovative Properties Company Illuminateur compact
DE102013206488A1 (de) * 2013-04-11 2014-10-30 Automotive Lighting Reutlingen Gmbh Lichtmodul für eine Kraftfahrzeugbeleuchtungseinrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013329A1 (en) * 2006-06-28 2008-01-17 Koito Manufacturing Co., Ltd. Lamp for vehicle
WO2008109296A1 (fr) * 2007-03-08 2008-09-12 3M Innovative Properties Company Réseau d'éléments luminescents
WO2011135508A2 (fr) * 2010-04-26 2011-11-03 Koninklijke Philips Electronics N.V. Système d'éclairage comprenant des collimateurs alignés avec des segments électroluminescents

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11581457B1 (en) 2018-03-30 2023-02-14 Meta Platforms Technologies, Llc Reduction of surface recombination losses in micro-LEDs
US12021168B1 (en) 2018-03-30 2024-06-25 Meta Platforms Technologies, Llc Reduction of surface recombination losses in micro-LEDs
CN109058913A (zh) * 2018-08-20 2018-12-21 常熟理工学院 一种智能汽车用多像素高效率车灯模组
CN109163302A (zh) * 2018-10-12 2019-01-08 常熟理工学院 一种智能汽车用远光车灯模组
EP3660384A1 (fr) * 2018-11-30 2020-06-03 Erwin Hymer Group SE Luminaire
WO2020143915A1 (fr) * 2019-01-10 2020-07-16 Osram Gmbh Dispositif d'affichage d'image et procédé d'affichage d'une image sur un écran
US11774837B2 (en) 2019-01-10 2023-10-03 Osram Gmbh Image displaying device and method for displaying an image on a screen
JP2022547389A (ja) * 2019-07-31 2022-11-14 オプシス テック リミテッド 高分解能ソリッドステートlidar透過機
US11309464B2 (en) 2019-10-14 2022-04-19 Facebook Technologies, Llc Micro-LED design for chief ray walk-off compensation
WO2021102394A1 (fr) * 2019-11-22 2021-05-27 Facebook Technologies, Llc Extraction de lumière pour micro-del

Also Published As

Publication number Publication date
CN109716016B (zh) 2024-06-21
EP3513119A1 (fr) 2019-07-24
US20190203907A1 (en) 2019-07-04
US10683986B2 (en) 2020-06-16
EP3513119B1 (fr) 2021-11-10
CN109716016A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
EP3513119B1 (fr) Module lumineux a source electroluminescente monolithique
FR3039880B1 (fr) Dispositif d’eclairage et/ou de signalisation pour vehicule automobile
WO2017025445A1 (fr) Dispositif d'eclairage et/ou de signalisation pour vehicule automobile
EP3376096B1 (fr) Dispositif lumineux, notamment d'éclairage et/ou de signalisation, pour véhicule automobile
FR3062217A1 (fr) Aboutage de sources lumineuses pixelisees
EP3784953A1 (fr) Module optique projetant un faisceau lumineux à pixels
FR3047941A1 (fr) Systeme d'eclairage pour l'habitacle d'un vehicule automobile
EP3513120A1 (fr) Câblage d'une source lumineuse de haute résolution
FR3101391A1 (fr) Système optique
WO2020064964A1 (fr) Système optique de projection et module lumineux pour véhicule
FR3056014A1 (fr) Procede pour creer une isolation optique entre des pixels d'une matrice de sources lumineuses semi-conductrices
EP3502549A1 (fr) Module lumineux à éléments électroluminescents à coupure progressive
WO2023030808A1 (fr) Module lumineux pour vehicule automobile
WO2023006673A1 (fr) Module lumineux pour phare de vehicule
WO2024094536A1 (fr) Dispositif d'éclairage
WO2024094529A1 (fr) Dispositif d'éclairage
EP4370376A1 (fr) Module lumineux comprenant un élément à taux de transmission de lumière variable
WO2017025444A1 (fr) Dispositif d'eclairage et/ou de signalisation pour vehicule automobile
FR3085742A1 (fr) Systeme lumineux pour vehicule
WO2023094332A1 (fr) Dispositif optique de projection à trois lentilles
FR3080907A1 (fr) Ensemble optique pour module lumineux de vehicule automobile
WO2017046160A1 (fr) Corps lumineux, lampe comprenant un tel corps lumineux et dispositif lumineux comprenant une telle lampe
FR3119879A1 (fr) Dispositif lumineux pour automobile
FR3103876A1 (fr) Dispositif optique de projection de faisceaux lumineux
FR3054297A1 (fr) Dispositif d'eclairage pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17742269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017742269

Country of ref document: EP

Effective date: 20190415