WO2018049985A1 - 电池电解液及其制备方法、锂电池 - Google Patents
电池电解液及其制备方法、锂电池 Download PDFInfo
- Publication number
- WO2018049985A1 WO2018049985A1 PCT/CN2017/099689 CN2017099689W WO2018049985A1 WO 2018049985 A1 WO2018049985 A1 WO 2018049985A1 CN 2017099689 W CN2017099689 W CN 2017099689W WO 2018049985 A1 WO2018049985 A1 WO 2018049985A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbonate
- battery
- organic solvent
- discharge
- battery electrolyte
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of battery technologies, and in particular, to a battery electrolyte, a method for preparing the same, and a lithium battery.
- lithium batteries have been widely used in various fields such as electric tools, electric vehicles, and grid energy storage.
- batteries for large-rate discharges are rapidly shifting from nickel-hydrogen and nickel-cadmium batteries to higher energy density and environmentally friendly lithium-ion batteries.
- These batteries are based on cylindrical lithium-ion batteries.
- the market has high requirements for high current discharge rate. Taking the cylindrical 18650-2000mAh as an example, the maximum current of continuous discharge can reach 30A, so large.
- the internal resistance of the battery has a great influence on the discharge performance of the battery. The smaller the internal resistance, the stronger the discharge capacity of the battery at a large rate.
- the technical problem to be solved by the present invention is to provide a battery electrolyte which improves battery rate discharge performance, a preparation method thereof, and a lithium battery using the same.
- a battery electrolyte including a raw material and a mass percentage thereof as follows: lithium salt 14 ⁇ 0.5%, additive 1-7%, and the balance being a ternary organic solvent
- the additive includes two or more of vinylene carbonate, propylene sulfite, and fluoroethylene carbonate.
- the mass percentage of the vinylene carbonate is 0.5-2%
- the mass percentage of the propylene sulfite is 0.5-2%
- the mass percentage of the fluoroethylene carbonate is 1-3. %.
- the lithium salt is LiPF6 and/or LiFSI.
- the ternary organic solvent comprises one or more of ethylene carbonate, dihexyl carbonate, dimethyl carbonate and ethyl propionate.
- the mass ratio of ethylene carbonate, dihexyl carbonate and dimethyl carbonate is 2: 1: 7;
- the mass ratio of ethylene carbonate, dihexyl carbonate, dimethyl carbonate and ethyl propionate is 2:2:2:4.
- the electrolyte is prepared in a vacuum environment having a moisture content of less than 1 ppm, an oxygen content of less than 1 ppm, and a degree of vacuum of more than 100 pa.
- the vacuum environment is a vacuum glove box.
- the present invention also provides a method for preparing a battery electrolyte, comprising the following steps:
- Steps Sl and S2 are all performed in a vacuum environment having a moisture content of less than 1 ppm, an oxygen content of less than 1 ppm, and a degree of vacuum greater than 100 Pa.
- step S1 the ternary organic solvent is frozen at -10 ° C to 10 ° C for at least 30 minutes.
- the additive comprises at least two of the following in terms of mass percentage: 0.5-2% vinylene carbonate, 0.5-2% propylene sulfite, 1-3% fluoroethylene carbonate.
- the ternary organic solvent includes one or more of ethylene carbonate, dihexyl carbonate, dimethyl carbonate, and ethyl propionate.
- the present invention also provides a lithium battery comprising the electrolytic solution according to any of the above.
- the electrolyte prepared by mixing other raw materials such as lithium salt is used to improve the rate discharge performance of the battery, and support continuous charging of a large current between 1 C and 15 C. Discharge, the discharge ratio is above 90%, the cycle life can reach more than 400 weeks, and the capacity retention rate is above 80%.
- FIG. 1 is a graph showing a discharge capacity of a battery fabricated in Example 1 according to the present invention under different magnification conditions
- FIG. 2 is a discharge capacity of a battery fabricated in Example 1 according to the present invention at different retention rates. Graph;
- Example 3 is a graph showing discharge capacity of a battery fabricated in Example 2 according to the present invention under different magnification conditions
- FIG. 4 is a graph showing discharge capacity of batteries fabricated in Example 2 of the present invention at different retention rates. [0027] FIG.
- a battery electrolyte according to an embodiment of the present invention includes a raw material and a mass percentage thereof as follows: lithium salt 14 ⁇ 0.5%
- additive 1-7% ie 13.5-14.5%
- additive 1-7% ie 13.5-14.5%
- the rest are ternary organic solvents.
- the additive comprises two or more of vinylene carbonate (VC), propylene sulfite (PS), and fluoroethylene carbonate (FEC).
- VC vinylene carbonate
- PS propylene sulfite
- FEC fluoroethylene carbonate
- the mass percentage of the vinylene carbonate is 0.5-2%, and the mass percentage of the propylene sulfite is
- the mass percentage of fluoroethylene carbonate is 1-3%; at least two of them are selected as needed.
- the lithium salt is LiPF6 (lithium hexafluorophosphate) and/or LiFSI (difluoroxaluminate lithium).
- the ternary organic solvent includes ethylene carbonate (EC), dihexyl carbonate (EMC), dimethyl carbonate (D)
- the ternary organic solvent may be ethylene carbonate (EC) or dihexyl carbonate (EM).
- dimethyl carbonate (DMC) dimethyl carbonate
- mass ratio of ethylene carbonate, dihexyl carbonate and dimethyl carbonate may be 2: 1: 7.
- the ternary organic solvent may be the above four, and ethylene carbonate (EC)
- the mass ratio of dihexyl carbonate (EMC), dimethyl carbonate (DMC) and ethyl propionate (EP) can be 2: 2: 2:4
- the electrolyte needs to be prepared in a vacuum environment having a moisture content of less than 1 ppm, an oxygen content of less than 1 ppm, and a degree of vacuum of more than 100 Pa.
- the vacuum environment is a vacuum glove box.
- the method for preparing a battery electrolyte of the present invention may include the following steps:
- Steps S1 and S2 are all performed in a vacuum environment having a moisture content of less than 1 ppm, an oxygen content of less than 1 ppm, and a degree of vacuum of more than 100 Pa.
- step S1 the ternary organic solvent is frozen at -10 ° C to 10 ° C for at least 30 minutes.
- the ternary organic solvent is also subjected to pretreatment, rectification (or dehydration, dealcoholation), homogenization, etc. before freezing.
- the additive weighed in step S1 comprises at least two of 0.5-2% vinylene carbonate, 0.5-2% propylene sulfite, and 1-3% fluoroethylene carbonate. .
- the weighed ternary organic solvent includes one or more of ethylene carbonate, dihexyl carbonate, dimethyl carbonate, and ethyl propionate.
- the weighed ternary organic solvent includes ethylene carbonate, dihexyl carbonate and dimethyl carbonate in a mass ratio of 2: 1:7.
- the weighed ternary organic solvent includes ethylene carbonate, dihexyl carbonate, dimethyl carbonate, and ethyl propionate in a mass ratio of 2:2:2:4.
- step S2 can be performed in a mixer.
- a double-layer propeller can be placed in the mixer for agitation to ensure accurate, homogeneous and stable preparation.
- the raw material of the electrolyte enters the mixer, and the volume method and the gravimetric method can be realized by the liquid level meter and the electronic scale.
- the mixer can be made into a double jacket with a refrigerant circulation system cooling and double-layer propeller agitation to ensure accurate, homogeneous and stable formulation.
- the crucible was prepared and protected in a high-tight vacuum glove box using a nitrogen purge pipe and an argon atmosphere to ensure the accuracy of the electrolyte formulation ratio.
- the control system has a water content of ⁇ 5 PPM, which improves the quality of the electrolyte solution, reduces the corrosiveness of the power battery component material, and improves the battery life cycle.
- step S2 after mixing the raw materials, they are uniformly mixed on the drum machine for 1 to 2 hours.
- the prepared electrolytic solution was injected into a 18650 type battery (artificial graphite/LiMnNiO 4 ), and the rate discharge performance and cycle performance of the assembled battery described above were measured using a secondary lithium ion battery performance detecting device.
- the lithium electrode can form a very smooth, uniform and dense SEI film on its surface even at a high discharge rate. This is mainly because the lithium salt, organic solvent and added additives in the electrolyte are highly elastic components, which can increase the adhesion and toughness of the SEI film, so that it can be adapted to charge and discharge.
- the shape of the lithium electrode changes during the electrical process, so that the battery can obtain better cycle efficiency.
- a lithium battery according to an embodiment of the present invention includes the above electrolyte solution.
- the lithium battery through the above electrolyte has improved rate discharge performance, and the cycle performance is well improved, solving the problem that the existing low-cost battery has a long life.
- the lithium battery can be used in an electric car.
- the positive electrode material adopts NMC523+ manganese
- the negative electrode material adopts graphite
- the thickness of the separator is 2 0um.
- the rate discharge system is:
- the rate cycling charge and discharge system is:
- Test temperature 25 ° C ⁇ 3 ° C;
- FIG. 2 A graph of the discharge amount at different retention rates is shown in Fig. 2; wherein the horizontal axis is the discharge capacity (mAh) and the vertical axis is the retention ratio.
- the electrolyte solution of the first embodiment of the present invention greatly improves the battery rate discharge culture, mainly because the lithium salt, the solvent and the added additive in the electrolyte are highly elastic.
- the composition can increase the adhesion and toughness of the SEI film, so that it can adapt to the change of the shape of the lithium electrode during the high-rate charge and discharge process, so that the battery can obtain better rate discharge and cycle performance.
- the rate discharge system is:
- FIG. 3 The discharge capacity under different magnification conditions is recorded in the same manner, and the graph of the discharge amount at different magnifications is shown in FIG. 3; wherein the horizontal axis is the discharge capacity (mAh) and the vertical axis is the magnification (V).
- the rate cycling charge and discharge system is:
- Test temperature 25 ° C ⁇ 3 ° C;
- FIG. 4 A graph of discharge capacity at different retention rates is shown in FIG. 4; wherein the horizontal axis is the discharge capacity (mAh) and the vertical axis is the retention ratio.
- the electrolyte of the second embodiment of the present invention has a large current discharge capability of 30 A, and the structural stability of the electrolyte in NMC + lithium manganate is effectively improved, and ions are added to the electrolyte.
- Liquid and rate additives the same auxiliary diaphragm technology, current collector and tab technology, can achieve a long-term 1C ⁇ 15C rate discharge and 3 (: ⁇ 15C rate cycle, improve the battery's ability to sustain discharge at high rates.
- the lithium battery fabricated by using the electrolyte of the invention improves the rate discharge performance of the battery, supports continuous charging and discharging of a large current between 1 C and 15 C, and the discharge ratio is above 90%, and the cycle life can be For more than 400 weeks, the capacity retention rate is above 80%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
一种电池电解液及其制备方法、锂电池,电池电解液包括原料及其质量百分比如下:锂盐14±0.5%、添加剂1-7%,其余为三元有机溶剂;所述添加剂包括碳酸亚乙烯酯、亚硫酸丙烯酯、亚硫酸亚乙酯、氟代碳酸乙烯酯中的两种或以上。通过添加剂的种类及其质量百分比的设计,配合锂盐等其他原料制成的电解液,提高电池的倍率放电性能,支持在1C~15C之间大电流持续充放电,放电比例在90%以上,循环使用寿命可达400周以上,容量保持率在80%以上。
Description
说明书 发明名称:电池电解液及其制备方法、 锂电池 技术领域
[0001] 本发明涉及电池技术领域, 尤其涉及一种电池电解液及其制备方法、 锂电池。
背景技术
[0002] 目前, 锂电池已广泛应用于电动工具、 电动汽车、 电网储能等各种领域。 随着 可移动电动工具和其它大倍率放电用品的发展和环保意识的增强, 用于大倍率 放电的电池从镍氢和镍镉的普通电池快速地向更高能量密度和环保的锂离子电 池转变, 而这些电池又是以圆柱形锂离子电池为主。 市场除对锂离子电池容量 、 内阻、 安全等常规性能重点关注之外, 更对其大电流放电倍率要求很高, 以 圆柱 18650-2000mAh为例, 持续放电最大电流可达到 30A, 如此大的电池放电, 电池的内阻对电池的放电性能影响非常大, 内阻越小, 电池大倍率放电能力越 强。
[0003] 目前, 技术人员主要通过材料改性、 优化工艺设计参数等诸多方式来改善此性 育 , 有较大效果。 但是随着终端用电设备的要求不断提高, 以上大倍率放电性 能的方式仍然不能完全满足市场的需要, 需进一步改进。
技术问题
[0004] 本发明要解决的技术问题在于, 提供一种提高电池倍率放电性能的电池电解液 及其制备方法, 以及使用该电解液的锂电池。
问题的解决方案
技术解决方案
[0005] 本发明解决其技术问题所采用的技术方案是: 提供一种电池电解液, 包括原料 及其质量百分比如下: 锂盐 14±0.5%、 添加剂 1-7%, 其余为三元有机溶剂; [0006] 所述添加剂包括碳酸亚乙烯酯、 亚硫酸丙烯酯、 氟代碳酸乙烯酯中的两种或以 上。
[0007] 优选地, 所述碳酸亚乙烯酯的质量百分比为 0.5-2%, 所述亚硫酸丙烯酯的质量 百分比为 0.5-2%, 所述氟代碳酸乙烯酯的质量百分比为 1-3%。
[0008] 优选地, 所述锂盐为 LiPF6和 /或 LiFSI。
[0009] 优选地, 所述三元有机溶剂包括碳酸乙烯酯、 碳酸二已酯、 碳酸二甲酯和丙酸 乙酯中的一种或多种。
[0010] 优选地, 所述三元有机溶剂中, 碳酸乙烯酯、 碳酸二已酯及碳酸二甲酯的质量 比例为 2: 1: 7; 或者,
[0011] 所述三元有机溶剂中, 碳酸乙烯酯、 碳酸二已酯、 碳酸二甲酯及丙酸乙酯的质 量比例为 2: 2: 2: 4。
[0012] 优选地, 所述电解液在水份含量小于 lppm、 氧含量小于 lppm、 真空度大于 100 pa的真空环境内配制而成。
[0013] 优选地, 所述真空环境为真空手套箱。
[0014] 本发明还提供一种电池电解液的制备方法, 包括如下步骤:
[0015] Sl、 按各原料的质量百分比称取锂盐、 添加剂和三元有机溶剂;
[0016] S2、 将三元有机溶剂冷冻后, 依次加入锂盐和添加剂, 混合获得电解液;
[0017] 步骤 Sl、 S2均在水份含量小于 lppm、 氧含量小于 lppm、 真空度大于 lOOpa的真 空环境中进行。
[0018] 优选地, 步骤 S1中, 将所述三元有机溶剂在 -10°C至 10°C下冷冻至少 30分钟。
[0019] 优选地, 以质量百分比算, 所述添加剂包括以下至少两种: 0.5-2%碳酸亚乙烯 酯, 0.5-2%亚硫酸丙烯酯, 1-3%氟代碳酸乙烯酯。
[0020] 优选地, 所述三元有机溶剂包括碳酸乙烯酯、 碳酸二已酯、 碳酸二甲酯和丙酸 乙酯中的一种或多种。
[0021] 本发明还提供一种锂电池, 包括以上任一项所述的电解液。
发明的有益效果
有益效果
[0022] 本发明的有益效果: 通过添加剂的种类及其质量百分比的设计, 配合锂盐等其 他原料制成的电解液, 提高电池的倍率放电性能, 支持在 1C〜15C之间大电流持 续充放电, 放电比例在 90%以上, 循环使用寿命可达 400周以上, 容量保持率在 8 0%以上。
对附图的简要说明
附图说明
[0023] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0024] 图 1是本发明中实施例 1制成的电池在不同倍率条件下的放电容量曲线图; [0025] 图 2是本发明中实施例 1制成的电池在不同保持率下放电容量曲线图;
[0026] 图 3是本发明中实施例 2制成电池在不同倍率条件下的放电容量曲线图;
[0027] 图 4是本发明中实施例 2制成的电池在不同保持率下放电容量曲线图。
本发明的实施方式
[0028] 本发明一实施例的电池电解液, 包括原料及其质量百分比如下: 锂盐 14±0.5%
(即 13.5-14.5%) 、 添加剂 1-7%, 其余为三元有机溶剂。
[0029] 其中, 添加剂包括碳酸亚乙烯酯 (VC) 、 亚硫酸丙烯酯 (PS) 、 氟代碳酸乙 烯酯 (FEC) 中的两种或以上。
[0030] 优选地, 碳酸亚乙烯酯的质量百分比为 0.5-2%, 亚硫酸丙烯酯的质量百分比为
0.5-2%, 氟代碳酸乙烯酯的质量百分比为 1-3%; 按需要选择其中至少两种。
[0031] 锂盐为 LiPF6 (六氟磷酸锂) 和 /或 LiFSI (双氟黄酰亚胺锂) 。
[0032] 三元有机溶剂包括碳酸乙烯酯 (EC) 、 碳酸二已酯 (EMC) 、 碳酸二甲酯 (D
MC) 及丙酸乙酯 (EP) 中的一种或多种。
[0033] 作为一种选择, 三元有机溶剂可以采用碳酸乙烯酯 (EC) 、 碳酸二已酯 (EM
C) 、 碳酸二甲酯 (DMC) , 并且碳酸乙烯酯、 碳酸二已酯及碳酸二甲酯的质量 比例可为 2: 1: 7。
[0034] 作为另一种选择, 三元有机溶剂可以采用上述四种, 并且碳酸乙烯酯 (EC)
、 碳酸二已酯 (EMC) 、 碳酸二甲酯 (DMC) 及丙酸乙酯 (EP) 的质量比例可 为 2: 2: 2:4
[0035] 该电解液需要在水份含量小于 lppm、 氧含量小于 lppm、 真空度大于 lOOpa的真 空环境内配制而成。 真空环境为真空手套箱。
[0036] 本发明的电池电解液的制备方法, 可包括如下步骤:
[0037] Sl、 按各原料的质量百分比称取锂盐、 添加剂和三元有机溶剂;
[0038] S2、 将三元有机溶剂冷冻后, 依次加入锂盐和添加剂, 混合获得电解液。
[0039] 步骤 Sl、 S2均在水份含量小于 lppm、 氧含量小于 lppm、 真空度大于 lOOpa的真 空环境中进行。
[0040] 进一步地, 步骤 S1中, 将三元有机溶剂在 -10°C至 10°C下冷冻至少 30分钟。 三 元有机溶剂在冷冻前, 还经过预处理、 精馏 (或脱水、 脱醇) 、 均质等处理。
[0041] 优选地, 以质量百分比算, 步骤 S1称取的添加剂包括 0.5-2%碳酸亚乙烯酯、 0.5 -2%亚硫酸丙烯酯以及 1-3%氟代碳酸乙烯酯中的至少两种。
[0042] 称取的三元有机溶剂中, 包括碳酸乙烯酯、 碳酸二已酯、 碳酸二甲酯及丙酸乙 酯的一种或多种。 作为一种选择, 称取的三元有机溶剂中, 包括质量比例为 2: 1: 7的碳酸乙烯酯、 碳酸二已酯及碳酸二甲酯。 作为另一种选择, 称取的三元 有机溶剂中, 包括质量比例为 2: 2: 2:4的碳酸乙烯酯、 碳酸二已酯、 碳酸二甲 酯及丙酸乙酯。
[0043] 上述的步骤 S2可在混合器中进行。 混合器中可设置双层螺旋桨进行搅拌, 确保 配制过程的准确、 均质和稳定。
[0044] 电解液的原料进入混合器吋, 可通过液面计和电子秤实现容量法、 重量法双控
。 混合器可制成双层夹套, 并采用冷冻剂循环系统冷却和双层螺旋桨搅拌, 确 保配制过程的准确、 均质和稳定。
[0045] 制备吋, 在高密闭性的真空手套箱内, 使用氮气吹扫管道和氩气气氛保护, 以 确保电解液配方比例的准确性。 特别是控制系统的水份<5PPM, 从而改善了电 解液的使用质量, 降低了对动力电池组件材料的腐蚀性, 提高了电池的使用循 环寿命。
[0046] 进一步地, 步骤 S2中, 将各原料混合后, 在滚筒机上均匀混合 1至 2h。
[0047] 获得电解液后, 取样测试分析粘度、 色度、 水份、 HF、 电导率、 密度及锂盐 浓度等指标。
[0048] 将制得的电解液注入到 18650型电池 (人造石墨 / LiMnNiO 4)中, 使用二次锂离子 电池性能检测装置测定上述组装的电池的倍率放电性能和循环性能。
[0049] 本发明的电解液中, 锂电极即使在较高的放电速率下, 在其表面也能形成非常 光滑、 均匀致密的 SEI膜。 这主要是由于电解液中锂盐、 有机溶剂以及加入的添 加剂都是具有高弹性的组分, 可増加 SEI膜的粘结力和韧性, 使之能够适应充放
电过程中锂电极形态的变化, 从而使电池能够得到较好的循环效率。
[0050] 本发明一实施例的锂电池, 包括上述的电解液。 通过上述电解液的锂电池, 率放电性能得到提高, 循环性能得到很好的改善, 解决现有低成本电池寿命大 多不长的问题。 该锂电池可用于电动汽车。
[0051] 以下通过具体实施例来对本发明作进一步说明。
[0052] 以 NMC523/人造石墨为例, 按照表 1的原料份数制作电池电解液及电池并测试 其性能。
[0053] 表 1.原料及对应含量
[]
[0054]
[0055] 其中, 三元有机溶剂 EC EMC DMC及 EP按对应的比例 (2: 1 7 0和 2: 2
2 4) 称取。 添加剂分别按各质量百分比的范围进行组合添加。
[0056] 按照实施例 1 2的电解液制作 18650-2000mAh电池后, 使用二次锂离子电池性 能检测装置测试其倍率放电性能及倍率循环性能指标。
[0057] 制作的电池中, 正极材料采用 NMC523+惨锰, 负极材料采用石墨; 隔膜厚度 2 0um
[0058] 采用实施例 1电解液制成的电池的倍率放电性能
[0059] 倍率放电制度为:
[0060] 1.按标准充电方式充满电 以 1C电流放电至 2.75V, 搁置 30分钟;
[0061] 2.按标准充电方式充满电 以 3C电流放电至 3.0V, 搁置 30分钟;
[0062] 3.按标准充电方式充满电 以 5C电流放电至 3.0V, 搁置 30分钟;
[0063] 4.按标准充电方式充满电 以 8C电流放电至 3.0V, 搁置 30分钟;
[0064] 5.按标准充电方式充满电 以 10C电流放电至 3.0V, 搁置 30分钟;
[0065] 6.按标准充电方式充满电 以 15C电流放电至 3.0V, 搁置 30分钟。
[0067] 二、 采用实施例 1电解液制成的电池的倍率循环放电性能
[0068] 倍率循环充放电制度为:
[0069] 1.测试温度: 25°C±3°C;
[0070] 2.充电方式: 使用 6A(3C)恒流恒压充电至 4.2V,截止电流 0.03C(mA);
[0071] 3.放电方式: 使用 30A(15C)恒流放电至 3.0V;
[0072] 4.循环次数: 重复上述循环制度 400周, 容量保持率≥80%以上。
[0073] 不同保持率下放电量的曲线图如图 2所示; 其中横轴为放电容量 (mAh) , 纵 轴为保持率。
[0074] 从图 1、 2可知, 采用本发明实施例 1的电解液, 极大的提高了电池倍率放电性 育 , 其中主要由于电解液中锂盐、 溶剂以及加入的添加剂都是具有高弹性的组 分, 可增加 SEI膜的粘结力和韧性, 使之能够在高倍率充放电过程中适应锂电极 形态的变化, 从而使电池能够得到较好的倍率放电及循环性能。
[0075] 三、 采用实施例 2电解液制成的电池的倍率放电性能
[0076] 倍率放电制度为:
[0077] 1.按标准充电方式充满电 以 1C电流放电至 2.75V, 搁置 30分钟;
[0078] 2.按标准充电方式充满电 以 3C电流放电至 3.0V, 搁置 30分钟;
[0079] 3.按标准充电方式充满电 以 5C电流放电至 3.0V, 搁置 30分钟;
[0080] 4.按标准充电方式充满电 以 8C电流放电至 3.0V, 搁置 30分钟;
[0081] 5.按标准充电方式充满电 以 10C电流放电至 3.0V, 搁置 30分钟;
[0082] 6.按标准充电方式充满电 以 15C电流放电至 3.0V, 搁置 30分钟。
[0083] 同吋记录不同倍率条件下的放电容量, 不同倍率下放电量的曲线图如图 3所示 ; 其中横轴为放电容量 (mAh) , 纵轴为倍率 (V) 。
[0084] 四、 采用实施例 2电解液制成的电池的倍率循环放电性能
[0085] 倍率循环充放电制度为:
[0086] 1.测试温度: 25°C±3°C;
[0087] 2.充电方式: 使用 6A(3C)恒流恒压充电至 4.2V,截止电流 0.03C(mA);
[0088] 3.放电方式: 使用 30A(15C)恒流放电至 3.0V;
[0089] 4.循环次数: 重复上述循环制度 400周, 容量保持率≥80%以上。
[0090] 不同保持率下放电容量的曲线图如图 4所示; 其中横轴为放电容量 (mAh) , 纵轴为保持率。
[0091] 从图 3、 4可知, 采用本发明实施例 2的电解液, 具备 30A大电流放电能力, 且有 效提高了电解液在 NMC+锰酸锂中的结构稳定性, 在电解液中添加离子液体及倍 率添加剂, 同吋辅助隔膜技术、 集流体和极耳技术, 实现一种可以长期 1C〜15C 的倍率放电及 3(:〜 15C的倍率循环, 改善电池在高倍率下持续放电能力。
[0092] 综上所述, 采用本发明的电解液制作的锂电池, 提高电池的倍率放电性能, 支 持在 1C〜15C之间大电流持续充放电, 放电比例在 90%以上, 循环使用寿命可达 400周以上, 容量保持率在 80%以上。
[0093] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书内容所作的等效结构或等效流程变换, 或直接或间接运用在其他相 关的技术领域, 均同理包括在本发明的专利保护范围内。
Claims
[权利要求 1] 一种电池电解液, 其特征在于, 所述电解液包括原料及其质量百分比 如下: 锂盐 14±0.5%、 添加剂 1-7%, 其余为三元有机溶剂; 所述添加剂包括碳酸亚乙烯酯、 亚硫酸丙烯酯、 氟代碳酸乙烯酯中的 两种或以上。
[权利要求 2] 根据权利要求 1所述的电池电解液, 其特征在于, 所述碳酸亚乙烯酯 的质量百分比为 0.5-2%, 所述亚硫酸丙烯酯的质量百分比为 0.5-2%, 所述氟代碳酸乙烯酯的质量百分比为 1-3%。
[权利要求 3] 根据权利要求 1所述的电池电解液, 其特征在于, 所述锂盐为 LiPF6和
/或 LiFSI。
[权利要求 4] 根据权利要求 1所述的电池电解液, 其特征在于, 所述三元有机溶剂 包括碳酸乙烯酯、 碳酸二已酯、 碳酸二甲酯和丙酸乙酯中的一种或多 种。
[权利要求 5] 根据权利要求 4所述的电池电解液, 其特征在于, 所述三元有机溶剂 中, 碳酸乙烯酯、 碳酸二已酯及碳酸二甲酯的质量比例为 2: 1: 7; 或者,
所述三元有机溶剂中, 碳酸乙烯酯、 碳酸二已酯、 碳酸二甲酯及丙酸 乙酯的质量比例为 2: 2: 2: 4。
[权利要求 6] 根据权利要求 1-5任一项所述的电池电解液, 其特征在于, 所述电解 液在水份含量小于 lppm、 氧含量小于 lppm、 真空度大于 lOOpa的真空 环境内配制而成。
[权利要求 7] —种权利要求 1所述的电池电解液的制备方法, 其特征在于, 包括如 下步骤:
51、 按各原料的质量百分比称取锂盐、 添加剂和三元有机溶剂;
52、 将三元有机溶剂冷冻后, 依次加入锂盐和添加剂, 混合获得电解 液;
步骤 Sl、 S2均在水份含量小于 lppm、 氧含量小于 lppm、 真空度大于 lOOpa的真空环境中进行。
[权利要求 8] 根据权利要求 7所述的电池电解液的制备方法, 其特征在于, 步骤 S1 中, 将所述三元有机溶剂在 -10°C至 10°C下冷冻至少 30分钟。
[权利要求 9] 根据权利要求 7所述的电池电解液的制备方法, 其特征在于, 以质量 百分比算, 所述添加剂包括以下至少两种: 0.5-2%碳酸亚乙烯酯, 0. 5-2%亚硫酸丙烯酯, 1-3%氟代碳酸乙烯酯;
所述三元有机溶剂包括碳酸乙烯酯、 碳酸二已酯、 碳酸二甲酯和丙酸 乙酯中的一种或多种。
[权利要求 10] —种锂电池, 其特征在于, 包括权利要求 1-6任一项所述的电解液。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610831300.3 | 2016-09-19 | ||
CN201610831300.3A CN106450450A (zh) | 2016-09-19 | 2016-09-19 | 电池电解液及其制备方法、锂电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018049985A1 true WO2018049985A1 (zh) | 2018-03-22 |
Family
ID=58165555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/099689 WO2018049985A1 (zh) | 2016-09-19 | 2017-08-30 | 电池电解液及其制备方法、锂电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106450450A (zh) |
WO (1) | WO2018049985A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116370883A (zh) * | 2023-03-28 | 2023-07-04 | 楚能新能源股份有限公司 | 一种可吸氧的液态消防介质及其制备方法和应用 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106450451A (zh) * | 2016-09-19 | 2017-02-22 | 深圳拓邦新能源技术有限公司 | 电池电解液及其制备方法、锂电池 |
CN106450450A (zh) * | 2016-09-19 | 2017-02-22 | 深圳拓邦新能源技术有限公司 | 电池电解液及其制备方法、锂电池 |
CN109449488A (zh) * | 2018-11-27 | 2019-03-08 | 湖北诺邦科技股份有限公司 | 一种锂离子动力电池用高倍率电解液及制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102361097A (zh) * | 2011-11-14 | 2012-02-22 | 中国海洋石油总公司 | 一种磷酸铁锂动力电池用低温电解液的制备方法 |
CN105144460A (zh) * | 2013-12-06 | 2015-12-09 | Sk新技术株式会社 | 锂二次电池用电解液及包括该电解液的锂二次电池 |
CN105390748A (zh) * | 2015-12-14 | 2016-03-09 | 苏州华一新能源科技有限公司 | 一种锂离子电池电解液及一种锂离子电池 |
CN106450450A (zh) * | 2016-09-19 | 2017-02-22 | 深圳拓邦新能源技术有限公司 | 电池电解液及其制备方法、锂电池 |
CN106450451A (zh) * | 2016-09-19 | 2017-02-22 | 深圳拓邦新能源技术有限公司 | 电池电解液及其制备方法、锂电池 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367806A (zh) * | 2012-03-27 | 2013-10-23 | 中国科学院宁波材料技术与工程研究所 | 一种新型锂离子电池的电解液体系 |
CN104868165B (zh) * | 2014-07-08 | 2020-04-14 | 贝特瑞新材料集团股份有限公司 | 一种凝胶态聚合物锂电池制备方法及电池 |
CN104900916A (zh) * | 2015-06-26 | 2015-09-09 | 广州天赐高新材料股份有限公司 | 用于高容量锂离子电池的电解液、制备方法及锂离子电池 |
-
2016
- 2016-09-19 CN CN201610831300.3A patent/CN106450450A/zh active Pending
-
2017
- 2017-08-30 WO PCT/CN2017/099689 patent/WO2018049985A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102361097A (zh) * | 2011-11-14 | 2012-02-22 | 中国海洋石油总公司 | 一种磷酸铁锂动力电池用低温电解液的制备方法 |
CN105144460A (zh) * | 2013-12-06 | 2015-12-09 | Sk新技术株式会社 | 锂二次电池用电解液及包括该电解液的锂二次电池 |
CN105390748A (zh) * | 2015-12-14 | 2016-03-09 | 苏州华一新能源科技有限公司 | 一种锂离子电池电解液及一种锂离子电池 |
CN106450450A (zh) * | 2016-09-19 | 2017-02-22 | 深圳拓邦新能源技术有限公司 | 电池电解液及其制备方法、锂电池 |
CN106450451A (zh) * | 2016-09-19 | 2017-02-22 | 深圳拓邦新能源技术有限公司 | 电池电解液及其制备方法、锂电池 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116370883A (zh) * | 2023-03-28 | 2023-07-04 | 楚能新能源股份有限公司 | 一种可吸氧的液态消防介质及其制备方法和应用 |
CN116370883B (zh) * | 2023-03-28 | 2024-05-31 | 楚能新能源股份有限公司 | 一种可吸氧的液态消防介质及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106450450A (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109346772B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
CN111769329B (zh) | 锂离子电池 | |
CN109728340B (zh) | 锂离子电池 | |
CN109119592B (zh) | 一种钛酸锂负极极片、制备方法及钛酸锂电池 | |
CN109509909B (zh) | 二次电池 | |
CN111640984A (zh) | 一种锂离子成品电池及其制备方法 | |
CN114976243A (zh) | 一种电解液及其电化学装置和电子装置 | |
WO2018049985A1 (zh) | 电池电解液及其制备方法、锂电池 | |
CN107293727A (zh) | 一种正极材料、包含该正极材料的锂离子电池及其制备方法 | |
CN111129590A (zh) | 一种高电压锂离子电池非水电解液及高电压锂离子电池 | |
CN109687026B (zh) | 一种高压三元锂离子电池电解液及含该电解液的锂离子电池 | |
CN112310473A (zh) | 一种兼顾高低温型锂离子电池电解液及锂离子电池 | |
CN110112464A (zh) | 一种含有三甲基氟硅烷的锂离子二次电池电解液 | |
CN113130988A (zh) | 一种电解液及应用的电化学装置 | |
CN114024021A (zh) | 一种电池 | |
CN116885281A (zh) | 一种锂离子电池电解液及其锂离子电池 | |
CN112290090A (zh) | 一种高镍三元锂离子电池非水电解液及含该电解液的电池 | |
WO2018049984A1 (zh) | 电池电解液及其制备方法、锂电池 | |
CN115411369B (zh) | 电解液及其制备方法、电化学装置 | |
CN116742129A (zh) | 钠离子电池电解液和钠离子电池 | |
Wang et al. | Electrochemical Behavior of 3, 4-ethylenedioxythiophene as an Anti-overcharge Additive for Lithium-ion Batteries | |
CN111129589A (zh) | 一种三元高电压锂离子电池非水电解液及其锂离子电池 | |
CN113130989A (zh) | 一种电解液及电化学装置 | |
CN116344915A (zh) | 一种高温快充型锂离子电池 | |
CN109659618A (zh) | 一种电解液添加剂、电解液及其制备方法、锂离子电池和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17850187 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.05.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17850187 Country of ref document: EP Kind code of ref document: A1 |