WO2018049718A1 - 一种高效低能耗环保高温气固反应鼓风炉及其生产工艺 - Google Patents

一种高效低能耗环保高温气固反应鼓风炉及其生产工艺 Download PDF

Info

Publication number
WO2018049718A1
WO2018049718A1 PCT/CN2016/104287 CN2016104287W WO2018049718A1 WO 2018049718 A1 WO2018049718 A1 WO 2018049718A1 CN 2016104287 W CN2016104287 W CN 2016104287W WO 2018049718 A1 WO2018049718 A1 WO 2018049718A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
chamber
gas
solid reaction
blast furnace
Prior art date
Application number
PCT/CN2016/104287
Other languages
English (en)
French (fr)
Other versions
WO2018049718A9 (zh
Inventor
彭金辉
巨少华
郭胜惠
郑明春
周俊文
刘秉国
夏洪应
许磊
李鑫培
李超
田时泓
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610819291.6A external-priority patent/CN106440797B/zh
Priority claimed from CN201610819448.5A external-priority patent/CN106440802B/zh
Priority claimed from CN201621052104.8U external-priority patent/CN206146187U/zh
Priority claimed from CN201621052006.4U external-priority patent/CN206146190U/zh
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Publication of WO2018049718A1 publication Critical patent/WO2018049718A1/zh
Publication of WO2018049718A9 publication Critical patent/WO2018049718A9/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0028Microwave heating

Definitions

  • the invention belongs to the technical field of industrial furnaces, and particularly relates to a high-efficiency low-energy environment-friendly high-temperature gas-solid reaction blast furnace and a production process thereof.
  • the existing gas-solid reaction furnaces mainly include rotary kiln, multi-hearth furnace, boiling roaster and the like.
  • the rotary kiln usually uses heavy oil and gas as fuel, the reaction atmosphere is difficult to control, the solid phase product has many impurities, the reaction effect is poor, the energy consumption is high, the pollution is large, and the system is huge;
  • the traditional multi-hearth furnace adopts Rotating the animal feed, the gas-solid contact is still poor, requires a lot of hot air, poor thermal efficiency, low reaction efficiency, complicated system and large investment; in addition, the traditional boiling roaster needs to pass a large amount of gas from a large number of hoods at the bottom to feed the material.
  • the heat source is the heat generated by the reaction between the material and the gas phase
  • the gas utilization rate is low
  • the amount of dust is large, and it is not suitable for processing materials with low calorific value, and is not suitable for processing of coarse particulate materials with large specific gravity. Need to be finely ground, the equipment is very bulky.
  • the powdery materials in the traditional gas-solid reaction furnace are not only difficult to be gas-solid contact, but also easy to blow the furnace chamber with high-temperature flue gas, resulting in incomplete gas-solid reaction, resulting in low material utilization rate.
  • the energy loss of the reaction is large, the dust emission exceeds the standard or the dust treatment cost increases.
  • the object of the present invention is to provide a high-efficiency, low-energy, environmentally-friendly, high-temperature gas-solid reaction blast furnace and a production process thereof.
  • the invention provides a high-efficiency low-energy environment-friendly high-temperature gas-solid reaction blast furnace which is realized by the following: a feeding device, a horizontal gas-solid reaction blast furnace, a gas supply device, a microwave generating device, a boiling chamber, a dust collector, and a flue gas treatment.
  • the horizontal gas-solid reaction blast furnace comprises a furnace body, a furnace chamber, a discharge port of the feed port and the tail section disposed in the first section of the furnace body, a hood distributed on the upper side of the furnace body and communicating with the furnace cavity, and a setting a magnetron for heating the furnace body and the furnace chamber, a stirring shaft and a blade thereof disposed in the furnace chamber, a driving device disposed outside the furnace body and connected to the stirring shaft, the furnace body is laterally disposed, and the feeding device
  • the hood is connected to the air supply device, and the blasting chamber is connected to the air supply device.
  • the boiling chamber is a cylindrical heat sourceless reactor.
  • the boiling chamber is disposed at the upper part of the horizontal gas-solid reaction blast furnace and the bottom portion communicates with the furnace chamber and the upper portion receives
  • the dust collector is in communication with the flue gas treatment device, and a lower portion of the inner wall of the furnace chamber is provided with a absorbing ceramic base, and the magnetron is disposed in the furnace body and electrically connected to the microwave generating device.
  • the production process of the high-efficiency low-energy environment-friendly high-temperature gas-solid reaction blast furnace provided by the invention is realized as follows:
  • the material is fed into the furnace chamber through the feeding device through the feeding device, and uniformly tumbling in the furnace under the stirring action of the blade, and the air supply device is adjusted to supply the preheated gas to the furnace chamber through the hood.
  • the air supply device is adjusted to supply the preheated gas to the furnace chamber through the hood.
  • the feeding device is required to process the volume of the gas-solid reaction according to different gas-solid reaction requirements.
  • the material is fed into the furnace chamber continuously or in batches by time.
  • the material in the furnace is evenly distributed in the furnace under the stirring action of the blade.
  • the air supply device supplies the preheated gas through the hood into the furnace chamber to uniformly contact the material, and the microwave generating device enables the output power of each part of the magnetron to be the material in the furnace chamber and the boiling chamber.
  • the invention has the following beneficial effects:
  • the boiling chamber can increase the pressure of the gas-solid reaction in the furnace chamber, promote the reaction, and thereby increase the speed of the gas-solid reaction;
  • Microwave energy directly acts on the material in the furnace and the absorbing ceramic base, avoiding the traditional heat exchange, the temperature in the cavity is more uniform, and the energy utilization rate is high;
  • the reaction gas Since the microwave energy is directly converted into the heat energy required for the material reaction, the reaction gas is pure, the reaction efficiency is high, and the obtained reaction solid phase product is more pure, so that it is easy to be separated and treated, and is suitable for various reaction atmosphere requirements, such as oxidation, Reduction, inertness, etc., suitable for a wide range of applications;
  • Figure 1 is a schematic block diagram of the principle of the present invention
  • Figure 3 is a schematic cross-sectional structural view of the gas-solid reaction blast furnace of Figure 2;
  • Figure 4 is a flow chart of the production process of the present invention.
  • 1-feeding device 11-hopper, 12-screw conveyor, 2-horizontal gas-solid reaction blast furnace, 21-furnace, 22-furnace chamber, 23-feed port, 24-outlet, 25-wind cap, 26-magnetron, 27-absorbing ceramic base, 28-agitating shaft, 29-blade, 2a-drive, 2b-transparent ceramic top cover, 4-boiling chamber, 5-dust collector, 6-flue gas treatment device, 61-flue gas purification tower, 62-chimney, 7-spiral discharge machine, 8-high temperature resistant trough;
  • the high-efficiency low-energy environment-friendly high-temperature gas-solid reaction blast furnace of the present invention comprises a feeding device 1, a horizontal gas-solid reaction blast furnace 2, a supply device, a microwave generating device, a boiling chamber 4, and dust collection.
  • the horizontal gas-solid reaction blast furnace 2 includes a furnace body 21, a furnace chamber 22, a feed port 23 disposed at the first stage of the furnace body 21, and a discharge port 24 of the tail section, distributed a hood 25 that communicates with the furnace chamber 22 at the upper portion of the furnace body 21, a magnetron 26 that is disposed in the furnace body 21 and heats the furnace chamber 22, an agitation shaft 28 that is disposed in the furnace chamber 22, and its blades 29, and is disposed in the furnace body.
  • the furnace body 21 is disposed laterally, the feeding device 1 is in communication with a feed port 23, and the hood 25 is connected to a supply device, and the boiling chamber 4 is a cylindrical heat-free reactor, the boiling chamber 4 is disposed at an upper portion of the horizontal gas-solid reaction blast furnace 2, and the bottom portion communicates with the furnace chamber 22 and the upper portion communicates with the dust collector 5
  • the dust collector 5 is in communication with the flue gas treatment device 6, and a lower portion of the inner wall of the furnace chamber 22 is provided with a absorbing ceramic base 27, and the magnetron 26 is disposed in the furnace body 21 and electrically connected to the microwave generating device.
  • the boiling chamber 4 is conical or cylindrical, and the rectangular tube is vertically disposed.
  • the bottom of the chamber of the boiling chamber 4 is directly connected to the furnace chamber 22 of the horizontal gas-solid reaction blast furnace 2, and the boiling chamber 4 is
  • the side wall is provided with an insulating layer.
  • the exhaust port of the boiling chamber 4 and the inlet of the dust collector 5 are connected by a gradually decreasing variable section elbow.
  • the air supply device includes an air bag, a gas preheater, a pipe and a pressure sensor, a temperature sensor and a flow detector, and a valve
  • the gas preheater is a heat exchanger disposed on a side wall of the boiling chamber 4 or independently provided
  • the heated gas preheater is connected to the gas preheater, the pipeline and the pressure sensor, the temperature sensor and the flow detector, and the air bag through the valve and the pipeline.
  • At least two temperature measuring sensors are disposed on the bottom and/or the side of the absorbing ceramic base 27.
  • the side wall of the boiling chamber 4 is provided with a temperature measuring sensor, and the temperature measuring sensor is connected to the microwave generating device.
  • the gas supplied from the air supply device is a reducing, oxidizing or inert gas.
  • the furnace chamber 22 is U-shaped, polygonal, elliptical or circular.
  • the upper part of the inner wall of the furnace chamber 22 is provided with a wave-transparent ceramic top cover 2b, and the absorbing ceramic base 27 is an inverted arch-shaped structure.
  • the tube 26 is disposed on the upper portion of the wave-transparent ceramic top cover 2b and/or the lower portion of the absorbing ceramic base 27, and the material in the furnace chamber 22 is in the gas-solid reaction state in the wave-transparent ceramic top cover 2b and the absorbing ceramic base 27 between.
  • the hood 25 extends into the furnace chamber 22 from one or both sides of the furnace body 21.
  • the hood 25 is a plurality of "T"-shaped structural pipes horizontally extending from the side of the furnace body 21 into the upper portion of the furnace chamber 22, and the tubes of the "T"-shaped structural pipe are closed at both ends and the lower portion of the pipe and/or the lower portion of the pipe
  • the wall is provided with a plurality of spouts.
  • the spout of the "T" type structural pipe is a through hole having a diameter of 1 to 5 mm on the pipe wall.
  • the "T"-shaped structural duct extends horizontally from both sides of the furnace body 21 into the upper portion of the furnace chamber 22.
  • the "T"-shaped structural duct is provided three from the head end to the left end of the furnace body 21 and two on the right side.
  • the absorbing ceramic base 27 is a SiC granular ceramic base.
  • the outer wall of the furnace body 21 is formed by splicing a metal plate, and the joint between the furnace wall of the furnace body 21 and the agitating shaft 28 is sealed by a graphite wire and sealed by a metal gland.
  • the feeding device 1 is a screw conveyor or a blower feeder.
  • the discharge port 24 is disposed at the bottom or end of the tail section of the furnace body 21, and the discharge port 24 is in communication with the screw discharger 7.
  • the screw discharger 7 is vertically disposed and communicates with the high temperature resistant tank 8, and the high temperature resistant tank 8 and/or the screw discharger 7 is provided with a cooling device.
  • the microwave generating device comprises a microwave power supply system, a cooling system and a control system.
  • the magnetron 26 is electrically connected to the microwave power supply system and connected to the control system signal, and the temperature measuring sensor is connected to the control system signal.
  • the dust collector 5 is one or a combination of a cyclone dust collector, a bag filter, and an electric dust collector.
  • the production process of the high-efficiency low-energy environment-friendly high-temperature gas-solid reaction blast furnace of the present invention includes the steps of opening the furnace, producing the blast furnace, and stopping the furnace.
  • the specific steps are as follows:
  • the material is fed into the furnace chamber 22 through the feeding port 23 through the feeding device 1, and uniformly tumbling in the furnace under the stirring action of the blade 29, and the air supply device is adjusted to pass the preheated gas through the hood 25
  • the feeding chamber 22 is evenly contacted with the material, and the microwave generating device is adjusted to make the power output from the magnetron 26 to the furnace chamber 22 to heat the material to the temperature required for the reaction, and to maintain the reaction time without discharging the material;
  • the feeding device 1 feeds materials into the furnace chamber 22 from the feeding port 23 continuously or in batches according to the processing requirements of different gas-solid reactions, and the material in the furnace is under the stirring action of the blades 29.
  • the furnace uniformly rolls and moves to the discharge port 24, and the air supply device supplies the preheated gas to the furnace chamber 22 through the hood 25 to uniformly contact the material, and the microwave generating device makes the output power of each part of the magnetron 26
  • the material in the furnace chamber 22 and the boiling chamber 4 is maintained at the temperature required for the reaction, and the adjusting drive 2a causes the agitating shaft 28 and its blades 29 to transport the material from the inlet 23 to the outlet 24 in the furnace.
  • the reaction takes time, and then the corresponding solid phase product is discharged from the discharge port 24;
  • the powdery material in the furnace chamber 22 is blown into the boiling chamber 4 by the action of the air blowing device, and the powdery material is naturally in combination with the residual heat of the flue gas and the microwave reflected by the furnace chamber 22.
  • the reaction is continued in a boiling suspension state, and the coarse particles in the powdery material fall back to the furnace chamber 22.
  • the materials in the steps A and B are moved on the inner wall of the absorbing ceramic base 27 disposed in the furnace chamber 22 as the blades 29 are agitated and moved toward the discharge port 24, and the microwave generating device passes the magnetron 26 to the material and the absorbing ceramic.
  • the invention connects a cylindrical heat-free boiling chamber in the upper part of the tail section of the horizontal gas-solid reaction blast furnace, and the powdery material is blown into the boiling chamber by the action of the blast, without requiring additional energy supply, Using the flue gas waste heat and the natural boiling suspension state of the powdery material, the powdery material is in full contact with the high temperature flue gas, and the microwave which is reflected by the horizontal gas-solid reaction blast furnace wall into the boiling chamber, and the powdery material suspended therein is heated.
  • the smoke resistance is increased compared to the conventional direct flue gas treatment, and the horizontal gas-solid reaction blast furnace chamber can be increased.
  • the pressure of the internal gas-solid reaction thereby promoting the reaction and increasing the speed of the gas-solid reaction; in addition, since the flow rate of the gas is reduced after the powdery material is blown into the boiling chamber, the coarse particles in the powdery material are returned to the bottom of the baking furnace after the reaction Recycling, fine particles are collected from the top into the dust collection system, which not only improves the utilization rate and direct yield of the material, but also greatly reduces the amount of dust of the flue gas;
  • the powdery material reacts with the flue gas into the boiling chamber. With the reaction of the material in the boiling chamber, the temperature of the flue gas can be effectively reduced, thereby reducing the difficulty of dust collection and flue gas treatment at the back, and reducing dust emission or dust emission.
  • Cost of treatment especially the material and absorbing ceramic base absorb microwave energy at the same time, avoiding the traditional heat exchange link, high energy utilization rate, and more uniform temperature in the furnace cavity; and due to the reflection of the furnace body, part of the microwave can enter the boiling chamber Heating the suspended powdery material to further promote the gas-solid reaction, providing the gas-solid reaction efficiency and the quality of the gas-solid reaction product; since the microwave energy is directly converted into the heat energy required for the material reaction, the reaction gas is pure, and the reaction efficiency is high, The reaction solid phase product is more pure, so that it is easy to separate and process, and is suitable for various reaction atmosphere requirements, such as oxidation, reduction, inertness, etc., and has wide application range.
  • the chamber of the boiling chamber is directly connected with the furnace chamber of the horizontal gas-solid reaction blast furnace, which can reduce the resistance of the airflow and the dust material entering the boiling chamber, is beneficial to the strengthening reaction of the dust material in the boiling chamber, and is also beneficial to the coarse granular material.
  • the gas-solid reaction After the gas-solid reaction is completed, it is automatically returned to the bottom of the gas-solid reaction furnace for recovery, which reduces the difficulty of recovery of the solid product in the boiling chamber and the boiling chamber mechanism.
  • the activation energy of the reaction can be reduced by the torsion of the reaction molecules in the material by microwave.
  • the efficiency of the gas-solid reaction is improved; in addition, the coarse-grained material is continuously tumbling in the furnace under the action of agitating the blade in the furnace chamber, the gas-solid phase material is in sufficient contact, and the reaction is more rapid; and for the porous particles, the material particle size can be compared In the case of rough operation, no need for fine grinding, the preparation in the early stage is simpler; since the hood is distributed in the upper part of the furnace chamber of the blast furnace, the corrosion and clogging of the material on the hood can be avoided, and the service life and reliability of the blast furnace are improved.
  • the gas preheater of the air supply device is a heat exchanger disposed in the furnace body of the boiling chamber, and can use the residual heat of the boiling chamber to preheat the reaction gas, thereby saving energy, and also reducing the flue gas in the boiling chamber.
  • the temperature is beneficial to reduce the difficulty of subsequent flue gas treatment.
  • the furnace cavity is provided with a wave-transparent ceramic top cover, and the upper part of the wave-transparent ceramic top cover and/or the lower part of the absorbing ceramic base is provided with a magnetron, which can not only further improve the efficiency of microwave heating and the uniformity of temperature in the furnace, but also Different magnetrons can be set or turned on at different locations for different applications, thus expanding the range of applications for the reactor.
  • the invention is suitable for oxidative dechlorination of chloride, defluorination chlorine of slag dust, arsenic removal by metallurgical materials, desulfurization of mineral roasting, dephosphorization by roasting, preparation of activated carbon pores, activation and regeneration, mineral oxidation or chlorination roasting, coal gasification, Removal of harmful gases in solid materials, gas catalytic reaction, reduction of metal oxides, roasting of anode mud, pyrolysis of solid materials and deep drying of materials.
  • cuprous chloride slag is dried and then crushed to a particle size of 3 mm or less, and the cuprous chloride slag particles are fed into the furnace chamber 22 through the feeding port 23 through the feeding device 1, and the stirring shaft 28 and the stirring shaft 28 thereof are driven by the driving device 2a.
  • the blade 29 rotates, the material is evenly tumbling in the furnace, and the air supply device is adjusted to preheat the oxygen to 450 ° C and blast into the furnace chamber 22 through the hood 25 at 70-80 m 3 /h, while adjusting the microwave generating device to make the magnetron 26
  • the furnace chamber 22 is supplied with a microwave of 50 KW to bring the temperature of the material and the furnace chamber 22 to a reaction temperature of 500 ° C, and the time required for the reaction to be maintained without discharging;
  • the feeding device 1 continuously feeds the cuprous chloride slag particles in the S100 from the feeding port 23 to the furnace chamber 22 at a processing amount of 30 kg/h, and the material in the furnace is uniformly distributed in the furnace under the stirring action of the blades 29.
  • the air supply device preheats the oxygen to 450 ° C and blasts into the furnace chamber 22 through the hood 25 at 70-80 m 3 /h, and adjusts the output power of the microwave generating device to the magnetron 26 to 50 KW to make the furnace.
  • the reaction temperature of the material in the chamber 22 and the boiling chamber 4 reaches 500 ° C, and the adjusting drive 2a causes the stirring shaft 28 and its blades 29 to transport the material from the feed port 23 to the discharge port 24 in the furnace for exactly the reaction time.
  • cuprous chloride slag is dried and then crushed to a particle size of 3 mm or less, and the cuprous chloride slag particles are sent to the furnace chamber 22 through the feeding device 1, and the stirring shaft 28 and the blades 29 thereon are driven by the driving device 2a to rotate the material.
  • the feeding device 1 continuously feeds the cuprous chloride slag particles in the S100 from the feeding port 23 to the furnace chamber 22 at a processing amount of 20 kg/h, and the material in the furnace is in the furnace chamber 22 under the stirring action of the blades 29.
  • the inverted arched absorbing ceramic base 27 is uniformly tumbling and moved toward the discharge port 24, and the air supply device preheats the compressed air to a temperature of 400 ° C through a heat exchanger disposed on the furnace wall of the boiling chamber 4, and then passes through the hood 25
  • the drum is blown into the furnace chamber 22 at 70 m 3 /h, the microwave generating device is adjusted so that the output power of the magnetron 26 is 50 KW, the reaction temperature reaches 500 ° C, and the driving device 2a is adjusted so that the rotation speed of the stirring shaft 28 feeds the material in the furnace from the inlet.
  • the time of delivery to the discharge port 24 is exactly equal to the time required for the reaction; part of the cuprous chloride slag powder particles are blown into the cylindrical heat-free source boiling chamber 4 by the action of the blast, and the powder particles are in the air flow. Under the action, the mixture is boiled from top to bottom and boiled naturally and fully in contact with the high-temperature flue gas.
  • the reaction is heated under the action of microwaves which are reflected by the wall of the horizontal gas-solid reaction blast furnace 2 and fed into the boiling chamber 4;
  • the cuprous chloride particles are blown into the boiling chamber 4, due to the decrease in the flow rate of the gas stream,
  • the copper oxide particles in the middle part of the reaction fall back to the bottom of the furnace cavity 22 due to the increase in density;
  • the chlorine in the cuprous chloride slag particles volatilizes into the gas phase in the form of HCl and chlorine gas, and some ultrafine particles pass through the dust collector 5 and pass through
  • the flue gas purification tower 61 is discharged from the chimney 62, and the cuprous chloride is oxidized to copper oxide, which is discharged from the discharge port 24, and the chlorine removal rate is over 95%;
  • the zinc oxide dust produced by the steel mill has high fluorine and chlorine, and its particle size is below 0.1mm.
  • the non-treatment has great influence on the subsequent recycling.
  • the specific steps of the zinc oxide dust treatment process are as follows:
  • the zinc oxide soot is sent to the furnace chamber 22 through the feeding port 23 through the feeding device 1, and the stirring shaft 28 and the blades 29 thereon are driven to rotate by the driving device 2a, and the material is evenly driven by the blades 29 in the furnace.
  • Rolling forward adjusting the air supply device to preheat the compressed air to 500 ° C and blasting into the furnace chamber 22 through the hood 25 at 100 m 3 /h, while adjusting the microwave generating device to supply the magnetron 26 to the furnace chamber 22 to supply 50 KW of microwave to make the material
  • the temperature of the furnace chamber 22 reaches a reaction temperature of 650 ° C, and the time required to maintain the reaction without discharging;
  • the feeding device 1 continuously feeds the zinc oxide soot in the S100 to the furnace chamber 22 according to the processing amount of 100 kg/h, and the zinc oxide soot in the furnace uniformly rolls and turns out in the furnace under the agitation and air flow of the blade 29.
  • the feed port 24 moves, and the air supply device causes the compressed air preheated to 500 ° C to be blown into the furnace chamber 22 through the hood 25 at 100 m 3 /h, and the microwave generating device is adjusted to a power of 50 KW to bring the reaction temperature to a reaction temperature of 650 ° C, and the temperature is adjusted.
  • the driving device 2a causes the agitating shaft 28 and its blades 29 to transport the material in the furnace from the feeding port 23 to the discharge port 24 for exactly the time required for the reaction; part of the zinc oxide soot is blown into the blast by the action of the blast.
  • the soot particles are naturally boiled from top to bottom under the action of the air flow and are in full contact with the high-temperature flue gas, and are reflected by the wall of the horizontal gas-solid reaction blast furnace 2
  • the reaction is heated by the microwave fed into the boiling chamber 4; after the zinc oxide soot is blown into the boiling chamber 4, part of the reacted zinc oxide particles fall back to the bottom of the furnace chamber 22 due to the decrease of the gas flow rate; the fluorine chlorine in the soot Oxidized and volaged into the gas phase
  • a part of the ultrafine particles are discharged from the chimney 62 through the dust collector 5 and through the flue gas purification tower 61, and the zinc oxide is discharged from the discharge port 24, and the removal rate of fluorine and chlorine reaches 90%;
  • S100 The sulfur-containing gold ore is sent to the furnace chamber 22 through the feeding device 1, and the stirring shaft 28 and the blades 29 thereon are driven to rotate by the driving device 2a, and the material is evenly distributed on the inverted arch-shaped absorbing ceramic base 27 of the furnace chamber 22.
  • the tumbling device adjusts the air supply device to compress the compressed air preheated to 500 ° C into the furnace chamber 22 through the hood 25 at 100 m 3 /h, while the adjustment microwave generating device is disposed on the upper portion of the wave-transparent ceramic top cover 2b and the furnace chamber 22
  • the magnetron 26 at the rear of the side-transmissive ceramic side plate supplies 50 KW of microwave to the furnace chamber 22 so that the temperature of the material and the furnace chamber 22 reaches a reaction temperature of 550 ° C, and the time required for the reaction to be maintained without discharging;
  • the feeding device 1 continuously feeds the sulfur-containing gold ore into the furnace chamber 22 according to the processing amount of 50 kg/h, and the inverted arch-shaped absorbing ceramic in the furnace chamber 22 under the action of the blade 29 agitating and the compressed air
  • the base 27 is uniformly tumbling and moved toward the discharge port 24, and the air supply device blows compressed air preheated to 500 ° C into the furnace chamber 22 through the hood 25 at 100 m 3 /h, and adjusts the microwave generating device to output the magnetron 26
  • the microwave of 50 KW makes the reaction temperature reach 550 ° C, and the driving device 2a adjusts the rotation speed of the stirring shaft 28 to transport the material in the furnace from the feeding port 23 to the discharging port 24, which is exactly equal to the time required for the reaction; the furnace chamber 22 is gas-solid.
  • the sulfur-containing gold ore therein is blown into the cylindrical heat-free boiling chamber 4 by the compressed air, and the sulfur-containing gold ore particles are naturally suspended from the top to the bottom and are in full contact with the high-temperature flue gas.
  • the horizontal gas-solid reaction blast furnace 2 reflects the cavity wall and feeds the microwave into the boiling chamber 4 to heat the reaction; after the sulfur-containing gold ore particles are blown into the boiling chamber 4, the gas flow rate is reduced, and the sulfur-containing gold ore is removed.
  • the copper sulfide phase is oxidized to copper oxide, and some of the oxidation after the reaction
  • the copper particles fall back to the bottom of the furnace chamber 22 due to the increase in density; the density of the reacted material rises back to the bottom of the blast furnace; some of the ultrafine particles are separated by the gas stream and the sulfuric acid gas formed by the oxidation passes through the dust collector 5 and passes through the flue gas.
  • the purification tower 61 is discharged from the chimney 62, and the sulfur removal rate is over 90%;
  • the implementation process is the same as that in the first embodiment.
  • the arsenic-containing gold ore with a particle size of 1 mm or less is compressed air preheated to 700 ° C, the air volume is 100 m 3 /h, the reaction temperature is 900 ° C, the treatment capacity is 50 kg / h, and the microwave blast furnace power is 50 KW.
  • the arsenic in the arsenic gold ore is volatilized, and the arsenic-containing tail gas is treated by dust collection and cooling.
  • the removal rate of arsenic is over 90%, and the direct yield of gold ore is over 97%.
  • the implementation process is the same as in the fourth embodiment, the phosphorus-containing iron ore having a particle size of 1 mm or less is compressed air preheated to 700 ° C, the air volume is 80 m 3 /h, the reaction temperature is 1000 ° C, the treatment amount is 50 kg / h, and the microwave generating device is set in The upper portion of the wave-transparent ceramic top cover 2b and the magnetron 26 at the lower portion of the inverted arch-shaped absorbing ceramic base 27 are supplied with 50 KW of microwave into the furnace chamber 22, and the phosphorus in the phosphorus-containing iron ore is oxidized and volatilized, and the phosphorus-containing tail gas is collected by dust. After cooling, it is processed. The removal rate of phosphorus is over 90%.
  • the siderite particle having a particle size of 1 mm or less is compressed air preheated to 500 ° C, the air volume is 50 m 3 /h, the reaction temperature is 600 ° C, the treatment amount is 30 kg / h, and the microwave generating device is set in The upper portion of the wave-transparent ceramic top cover 2b, the lower portion of the inverted arch-shaped absorbing ceramic base 27, and the magnetron 26 at the rear of the wave-transmissive ceramic side plate on both sides of the furnace chamber 22 collectively supply 60 KW of microwave to the furnace chamber 22, siderite The CO 2 in the volatilization is volatilized, and the exhaust gas is cooled and treated. The oxidation rate of siderite is over 95%.
  • the implementation process is the same as that in the first embodiment.
  • the walnut shell particles with a particle size of 2 mm or less are compressed air preheated to 500 ° C, the air volume is 50 m 3 /h, the reaction temperature is 600 ° C, the treatment volume is 30 kg/h, and the microwave blast furnace power is 60 KW.
  • the activated carbon has a specific surface area of 1200 m 2 /g.
  • the implementation process is the same as that in the first embodiment.
  • the quartz sand particles with a particle size of 0.5 mm or less and 1% water are compressed air preheated to 100 ° C, the air volume is 60 m 3 /h, the drying temperature is 100 ° C, the treatment amount is 60 kg / h, and the microwave blast furnace power is used. 60KW, the drying efficiency is over 95%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)

Abstract

一种高效低能耗环保高温气固反应鼓风炉,鼓风炉包括炉体(21)、炉腔(22)、设于炉体(21)首段的进料口(23)及尾段的出料口(24)、分布于炉体(21)侧上部并与炉腔(22)连通的风帽(25)、设于炉体(21)并对炉腔(22)加热的磁控管(26),炉腔(22)内壁下部设有吸波陶瓷底座(27),物料搅拌装置使物料在炉内均匀翻滚,风帽(25)与供风装置连接,沸腾室(4)为直筒状无热源反应器且设于鼓风炉上部,沸腾室(4)底部与炉腔(22)连通而顶部与收尘器(5)连通,收尘器(5)和烟气处理装置(6)连通,磁控管(26)与微波发生装置电连接。由于在卧式气固反应鼓风炉(2)尾段上部连接沸腾室(4),在无需外供热源的情况下提高粉状物料的反应效率和质量,减少后部收尘和烟气处理难度。

Description

一种高效低能耗环保高温气固反应鼓风炉及其生产工艺 技术领域
本发明属于工业炉技术领域,具体涉及一种高效低能耗环保高温气固反应鼓风炉及其生产工艺。
背景技术
在冶金、化工、建材等工业化生产中,经常需要气体与固体进行反应,现有的气固反应炉主要有回转窑、多膛炉、沸腾焙烧炉等多种形式。其中回转窑由于气固接触差,通常采用重油、煤气作为燃料,反应气氛难以控制,固相产物杂质多,反应效果差,能耗高,污染大,系统庞大;另外,传统的多膛炉采用旋转耙拨动物料,气固接触仍较差,需要大量热风,热效率差,反应效率低,系统复杂,投资大;此外,传统的沸腾焙烧炉需要从底部的大量风帽中通入大量气体将物料悬浮起来,气固接触充分,热量来源为物料与气相反应生成的热,气体利用率低,粉尘量大,不适合于处理低发热值的物料,不适合于比重大的粗颗粒物料处理,物料需要细磨,设备体积高度庞大。传统的回转窑、烟化炉和多膛炉由于采用诸如煤气等燃气燃烧供热,不仅热效率较低、炉腔温度均匀性难以控制,而且反应气氛不够纯净,如氧化反应时,由于燃烧反应而使反应气体中的氧分压减少,影响反应效率,且由于反应的固相产物复杂,后期难以分离和处理,也就难以广泛适应诸如氧化、还原、惰性等反应,应用范围较为狭窄。特别是对含有粉状物料的气固反应,传统气固反应炉中粉状物料不仅气固接触困难,而且容易随高温烟气吹出炉腔而造成气固反应不完全,导致物料利用率低、直收率和效率低;此外,含粉状物料的固体物料在气固反应炉中排出的烟气粉尘量大、温度高,增加了后部收尘和烟气处理的难度,从而导致气固反应能耗损失大、粉尘排放超标或粉尘治理成本增加。因此,高温气固反应鼓风炉如何在不增加能耗的基础上,有效提高含粉状物料的固体物料与反应气体的充分接触和反应速度、利用率、直收率,降低烟气中粉尘含量和烟气温度,从而减少后部收尘和烟气处理的难度。
发明内容
本发明的目的在于提供一种高效低能耗环保高温气固反应鼓风炉及其生产工艺。
本发明提供的一种高效低能耗环保高温气固反应鼓风炉是这样实现的:包括进料装置、卧式气固反应鼓风炉、供风装置、微波发生装置、沸腾室、收尘器、烟气处理装置,所述卧式气固反应鼓风炉包括炉体、炉腔、设置于炉体首段的进料口及尾段的出料口、分布于炉体侧上部并与炉腔连通的风帽、设置于炉体并对炉腔加热的磁控管、设置于炉腔的搅动轴及其叶片、设置于炉体外部并与搅动轴连接的驱动装置,所述炉体横向设置,所述进料装置与进料口连通,所述风帽与供风装置连接,所述沸腾室为筒状无热源反应器,所述沸腾室设置于卧式气固反应鼓风炉上部且底部与炉腔连通而上部与收尘器连通,所述收尘器和烟气处理装置连通,所述炉腔内壁的下部设置有吸波陶瓷底座,所述磁控管设置于炉体并与微波发生装置电连接。
本发明提供的一种高效低能耗环保高温气固反应鼓风炉的生产工艺是这样实现的:
包括开炉、鼓风炉生产、停炉步骤,具体步骤如下:
A、开炉:将物料通过进料装置由进料口送入炉腔,在叶片的搅动作用下在炉内均匀的翻滚,调节供风装置将预热后的气体通过风帽供入炉腔均匀地与物料进行接触,调节微波发生装置使磁控管向炉腔输出的功率将物料加热到反应所需温度,在不出料的情况下保持反应所需时间;
B、鼓风炉生产:进料装置按不同气固反应的处理量要求,连续或按时间分批次由进料口向炉腔送入物料,炉内物料在叶片的搅动作用下在炉内均匀的翻滚并向出料口移动,供风装置将预热后的气体通过风帽供入炉腔均匀地与物料进行接触,微波发生装置使各部分磁控管的输出功率将炉腔和沸腾室内的物料保持在反应所需温度,调节驱动装置使搅动轴及其叶片把物料在炉内由进料口向出料口输送的时间正好等于反应所需时间,然后由出料口放出相应的固相产 物;
D、停炉:停止进料装置的进料,继续加热最后进入的物料至反应所需时间,然后停止微波加热,由出料口连续出料,待物料出完后停止供风和停止叶片的搅动,待炉腔温度降至设定温度后停止所有系统
本发明与现有技术相比具有以下有益效果:
1)沸腾室中由于物料实现了流态化,因此没有运动的部件,炉子结构简单得多,不但制造方便,投产后维修保养便捷;
2)沸腾室能够增加炉腔内气固反应的压力,促进反应发生,从而提高气固反应的速度;
3)粉状物料由于鼓风的作用而被吹入到沸腾室中,由于沸腾室侧壁设有保温层,以保持其中的反应温度,且微波可以由卧式气固反应鼓风炉腔壁反射而进入沸腾室,加热悬浮于其中的粉状物料,利用烟气余热与粉状物料的自然沸腾悬浮状态,实现粉状物料低能耗、快速高效而充分的反应,大大提高了反应效果;
4)由于粉状物料被吹入沸腾室后气流流速降低,粗颗粒粉状物料逐渐沉降落回到焙烧炉底部而得以回收,细颗粒从顶部进入到收尘系统而回收,不仅提高了物料的利用率和直收率,而且大大降低烟气的粉尘量;
5)粉状物料随烟气进入沸腾室中反应,随着沸腾室炉壁散热,能够有效降低烟气的温度,从而降低后部收尘和烟气处理的难度,减少粉尘排放量或粉尘排放治理成本;
6)微波能直接作用于炉内物料和吸波陶瓷底座,避免了传统换热环节,腔体内温度更加均匀,能量利用率高;
7)由于微波能直接转化为物料反应所需的热能,反应气体纯净,反应效率较高,得到的反应固相产物更加纯净,从而易于分离和处理,适合于各种反应气氛要求,如氧化、还原、惰性等,适用面广;
8)利用微波对物料中反应分子的扭转作用,可降低反应的活化能,提高反 应效率;
9)粗颗粒物料在搅动叶片的作用下不断在炉内翻滚,气固相物料接触充分,反应更加迅速。
附图说明
图1为本发明之原理示意框图;
图2为本发明之结构原理示意图;
图3为图2之气固反应鼓风炉剖面结构示意图;
图4为本发明之生产工艺流程图;
图中:1-进料装置,11-料斗,12-螺旋输送机,2-卧式气固反应鼓风炉,21-炉体,22-炉腔,23-进料口,24-出料口,25-风帽,26-磁控管,27-吸波陶瓷底座,28-搅动轴,29-叶片,2a-驱动装置,2b-透波陶瓷顶盖,4-沸腾室,5-收尘器,6-烟气处理装置,61-烟气净化塔,62-烟囱,7-螺旋出料机,8-耐高温料槽;
S100-开炉,S200-鼓风炉生产,S300-停炉。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变更或改进,均属于本发明的保护范围。
如图1、2和3所示,本发明的高效低能耗环保高温气固反应鼓风炉包括进料装置1、卧式气固反应鼓风炉2、供风装置、微波发生装置、沸腾室4、收尘器5、烟气处理装置6,所述卧式气固反应鼓风炉2包括炉体21、炉腔22、设置于炉体21首段的进料口23及尾段的出料口24、分布于炉体21侧上部并与炉腔22连通的风帽25、设置于炉体21并对炉腔22加热的磁控管26、设置于炉腔22的搅动轴28及其叶片29、设置于炉体21外部并与搅动轴28连接的驱动装置2a,所述炉体21横向设置,所述进料装置1与进料口23连通,所述风帽25与供风装置连接,所述沸腾室4为筒状无热源反应器,所述沸腾室4设置于卧式气固反应鼓风炉2上部且底部与炉腔22连通而上部与收尘器5连通,所述 收尘器5和烟气处理装置6连通,所述炉腔22内壁的下部设置有吸波陶瓷底座27,所述磁控管26设置于炉体21并与微波发生装置电连接。
所述沸腾室4为圆锥形或圆筒形、方筒形竖直设置,所述沸腾室4的腔室底部直接与卧式气固反应鼓风炉2的炉腔22连通,所述沸腾室4之侧壁设有保温层。
所述沸腾室4之排烟气口与收尘器5之进气口通过逐步减小的变截面弯管连通。
所述供风装置包括气包、气体预热器、管道及压力传感器、温度传感器和流量检测器、阀门,所述气体预热器为设置于沸腾室4之侧壁的热交换器或独立设置的加热气体预热器,所述风帽25通过阀门、管道依次与气体预热器、管道及压力传感器、温度传感器和流量检测器、气包连通。
于所述吸波陶瓷底座27的底部和/或侧部设置有至少两个测温传感器,所述沸腾室4之侧壁设置有测温传感器,所述测温传感器与微波发生装置信号连接。
所述供风装置所供气体为还原、氧化或惰性气体。
所述炉腔22呈U形、多边形、椭圆形或圆形,所述炉腔22内壁上部设置有透波陶瓷顶盖2b,所述吸波陶瓷底座27为倒拱形结构,所述磁控管26设置于透波陶瓷顶盖2b的上部和/或吸波陶瓷底座27的下部,所述炉腔22内的物料发生气固反应时处于透波陶瓷顶盖2b和吸波陶瓷底座27之间。
所述风帽25自炉体21的一侧或两侧伸入炉腔22。
所述风帽25为自炉体21侧部水平伸入炉腔22侧上部的多个“T”形结构管道,所述“T”形结构管道两端封闭且管道下部和/或侧下部的管壁设有多个喷口。
所述“T”型结构管道的喷口为管壁上直径1~5mm的通孔。
所述“T”形结构管道为自炉体21两侧交叉水平伸入炉腔22侧上部。
所述“T”形结构管道为自炉体21首端向尾端方向左侧设置3个且右侧设置2个。
所述吸波陶瓷底座27为SiC颗粒陶瓷底座。
所述炉体21之外壁采用金属板拼接而成,所述炉体21之炉壁与搅动轴28连接处采用石墨线密封并由金属压盖进行封波。
所述进料装置1为螺旋输送机或喷吹式送料机,所述出料口24设置于炉体21尾段的底部或端部,所述出料口24与螺旋出料机7连通。
所述螺旋出料机7竖直设置并与耐高温料槽8连通,所述耐高温料槽8和/或螺旋出料机7附设有冷却装置。
所述微波发生装置包括微波电源系统、冷却系统、控制系统,所述磁控管26与微波电源系统电连接及与控制系统信号连接,所述测温传感器与控制系统信号连接。
所述收尘器5为旋风收尘器、布袋收尘器和电收尘中的一种或多种组合。
如图4所示,本发明的高效低能耗环保高温气固反应鼓风炉的生产工艺包括开炉、鼓风炉生产、停炉步骤,具体步骤如下:
A、开炉:将物料通过进料装置1由进料口23送入炉腔22,在叶片29的搅动作用下在炉内均匀的翻滚,调节供风装置将预热后的气体通过风帽25供入炉腔22均匀地与物料进行接触,调节微波发生装置使磁控管26向炉腔22输出的功率将物料加热到反应所需温度,在不出料的情况下保持反应所需时间;
B、鼓风炉生产:进料装置1按不同气固反应的处理量要求,连续或按时间分批次由进料口23向炉腔22送入物料,炉内物料在叶片29的搅动作用下在炉内均匀的翻滚并向出料口24移动,供风装置将预热后的气体通过风帽25供入炉腔22均匀地与物料进行接触,微波发生装置使各部分磁控管26的输出功率将炉腔22和沸腾室4内的物料保持在反应所需温度,调节驱动装置2a使搅动轴28及其叶片29把物料在炉内由进料口23向出料口24输送的时间正好等于反应所需时间,然后由出料口24放出相应的固相产物;
D、停炉:停止进料装置1的进料,继续加热最后进入的物料至反应所需时间,然后停止微波加热,由出料口24连续出料,待物料出完后停止供风和停止 叶片28的搅动,待炉腔22温度降至设定温度后停止所有系统。
所述B步骤中炉腔22内的粉状物料由于供风装置鼓风的作用而被吹入到沸腾室4内,在烟气余热和炉腔22反射微波共同作用下,粉状物料在自然沸腾悬浮状态下继续反应,粉状物料中的粗颗粒落回到炉腔22。
所述A和B步骤中的物料在炉腔22内设置的吸波陶瓷底座27内壁上随叶片29搅动向出料口24移动,所述微波发生装置通过磁控管26对物料和吸波陶瓷底座27加热
本发明工作原理:
本发明通过在卧式气固反应鼓风炉的尾段上部连接筒状无热源的沸腾室,粉状物料由于鼓风的作用而被吹入到沸腾室中,在不需要另外供应能源的情况下,利用烟气余热与粉状物料的自然沸腾悬浮状态,粉状物料与高温烟气充分接触,以及由卧式气固反应鼓风炉腔壁反射而进入沸腾室的微波,加热悬浮于其中的粉状物料,从而实现固体物料的低能耗、快速高效而充分的反应;另外,由于沸腾室的存在,相比传统的直接烟气后处理,烟气阻力增大,能够增加卧式气固反应鼓风炉炉腔内气固反应的压力,从而促进反应发生,提高气固反应的速度;此外,由于粉状物料被吹入沸腾室后气流流速降低,粉状物料中粗颗粒反应完后落回到焙烧炉底部回收,细颗粒从顶部进入到收尘系统而回收,不仅提高了物料的利用率和直收率,而且大大降低烟气的粉尘量;其次,粉状物料随烟气进入沸腾室中反应,随着沸腾室内物料的反应,能够有效降低烟气的温度,从而降低后部收尘和烟气处理的难度,减少粉尘排放量或粉尘排放治理成本;特别是物料和吸波陶瓷底座同时吸收微波能量,避免了传统的换热环节,能量利用率高,而且炉腔内温度更加均匀;而由于炉体的反射,部分微波能够进入沸腾室加热悬浮着的粉状物料,从而进一步促进气固反应,提供气固反应效率和气固反应产物的质量;由于微波能直接转化为物料反应所需的热能,反应气体纯净,反应效率较高,得到的反应固相产物更加纯净,从而易于分离和处理,适合于各种反应气氛要求,如氧化、还原、惰性等,适用面广。进一步, 将沸腾室的腔室直接与卧式气固反应鼓风炉的炉腔连通,能够减小气流及粉尘物料进入沸腾室的阻力,有利于粉尘物料在沸腾室中的强化反应,也有利于粗颗粒物料气固反应完成后自动回落到气固反应炉底部而回收,降低了沸腾室中固体产物的回收难度和沸腾室机构;另外,利用微波对物料中反应分子的扭转作用,可降低反应的活化能,提高了气固反应的效率;此外,粗颗粒物料在炉腔中搅动叶片的作用下不断在炉内翻滚,气固相物料接触充分,反应更加迅速;且对于多孔颗粒,可在物料粒度较粗的情况下操作,不需细磨,前期准备更加简单;由于风帽分布在鼓风炉炉腔的侧上部,可避免物料对风帽的腐蚀和堵塞,提高了鼓风炉的使用寿命和可靠性。更进一步,供风装置的气体预热器为设置于沸腾室之炉体的热交换器,既能够利用沸腾室的余热预热反应气体,从而节约能源,另外也能够降低沸腾室中烟气的温度,有利于降低后续烟气处理的难度。进一步,炉腔设置有透波陶瓷顶盖,透波陶瓷顶盖上部和/或吸波陶瓷底座下部设置有磁控管,不仅能够进一步提高微波加热的效率和炉内温度的均匀性,而且也能针对不同的用途在不同位置设置或开启不同的磁控管,从而扩大反应炉的应用范围。
本发明适用于氯化物氧化脱氯、渣尘脱氟氯、冶金物料脱砷、矿物焙烧脱硫、焙烧脱磷、活性炭造孔制备、活化和再生、矿物氧化或氯化焙烧、煤的气化、固体物料中有害气体的脱除、气体催化反应、金属氧化物的还原反应、阳极泥氧化焙烧、固体物料高温分解反应及物料深度干燥。
实施例1:
湿法炼锌脱氯产生的氯化亚铜渣的氧气处理工艺具体步骤如下:
S100:氯化亚铜渣干燥后破碎至粒度3mm以下,将氯化亚铜渣颗粒通过进料装置1由进料口23送入炉腔22,通过驱动装置2a带动搅拌轴28及其上的叶片29转动,物料在炉内均匀的翻滚,调节供风装置将氧气预热至450℃通过风帽25按70~80m3/h鼓入炉腔22,同时调节微波发生装置使磁控管26向炉腔22供入50KW的微波使物料和炉腔22的温度达到500℃的反应温度,在不出料的 情况下保持反应所需时间;
S200:进料装置1按30kg/h的处理量,连续由进料口23向炉腔22送入S100中的氯化亚铜渣颗粒,炉内物料在叶片29的搅动作用下在炉内均匀的翻滚并向出料口24移动,供风装置预热氧气至450℃通过风帽25按70~80m3/h鼓入炉腔22,调节微波发生装置至磁控管26输出功率为50KW使炉腔22和沸腾室4内物料的反应温度达到500℃,调节驱动装置2a使搅动轴28及其叶片29把物料在炉内由进料口23向出料口24输送的时间正好等于反应所需时间;部分氯化亚铜渣粉状颗粒随鼓风的作用而被吹入到筒状无热源沸腾室4中,粉状颗粒在气流的作用下由细到粗自上而下自然沸腾悬浮并与高温烟气充分接触,同时在由卧式气固反应鼓风炉2之腔壁反射而馈入到沸腾室4的微波作用下加热反应;粉状氯化亚铜颗粒被吹入沸腾室4后由于气流流速的降低,其中部分反应后的氧化铜颗粒由于密度增加而落回到炉腔22底部;氯化亚铜渣颗粒中的氯以HCl和氯气形式挥发入气相随部分超细颗粒经收尘器5并过烟气净化塔61自烟囱62排出,氯化亚铜被氧化为氧化铜由出料口24放出,氯的脱除率达到95%以上;
S300:停止进料装置1进料,继续加热最后进入的物料至反应所需时间,然后停止微波加热,由出料口24将氧化铜放出,待氧化铜出完后停止供风和停止叶片29的搅动,待炉腔22温度降至300℃后停止所有系统。
实施例2:
湿法炼锌脱氯产生的氯化亚铜渣的压缩空气处理工艺具体步骤如下:
S100:氯化亚铜渣干燥后破碎至粒度3mm以下,将氯化亚铜渣颗粒通过进料装置1送入炉腔22,通过驱动装置2a带动搅拌轴28及其上的叶片29转动,物料在炉腔22的倒拱形吸波陶瓷底座27上均匀的翻滚,调节供风装置将压缩空气经设于沸腾室4之炉壁的热交换器对气体预热至400℃,通过风帽25按70m3/h鼓入炉腔22,同时调节微波发生装置使设于透波陶瓷顶盖2b上部的磁控管26向炉腔22供入50KW的微波使物料和炉腔22的温度达到500℃的反应温 度,在不出料的情况下保持反应所需时间;
S200:进料装置1按20kg/h的处理量,连续由进料口23向炉腔22送入S100中的氯化亚铜渣颗粒,炉内物料在叶片29的搅动作用下在炉腔22的倒拱形吸波陶瓷底座27上均匀的翻滚并向出料口24移动,供风装置使压缩空气经设置于沸腾室4之炉壁的热交换器预热至400℃,然后通过风帽25按70m3/h鼓入炉腔22,调节微波发生装置使磁控管26输出功率为50KW使反应温度达到500℃,调节驱动装置2a使搅动轴28的转速把物料在炉内由进料口23向出料口24输送的时间正好等于反应所需时间;部分氯化亚铜渣粉状颗粒随鼓风的作用而被吹入到筒状无热源沸腾室4中,粉状颗粒在气流的作用下由细到粗自上而下自然沸腾悬浮并与高温烟气充分接触,同时在由卧式气固反应鼓风炉2之腔壁反射而馈入到沸腾室4的微波作用下加热反应;粉状氯化亚铜颗粒被吹入沸腾室4后由于气流流速的降低,其中部分反应后的氧化铜颗粒由于密度增加而落回到炉腔22底部;氯化亚铜渣颗粒中的氯以HCl和氯气形式挥发入气相随部分超细颗粒经收尘器5并过烟气净化塔61自烟囱62排出,氯化亚铜被氧化为氧化铜由出料口24放出,氯的脱除率达到95%以上;
S300:停止进料装置1进料,继续加热最后进入的氯化亚铜渣颗粒至反应所需时间,然后停止微波加热,由出料口24将氧化铜放出,待氧化铜出完后停止供风和停止叶片29的搅动,待炉腔22温度降至250℃后停止所有系统。
实施例3:
钢厂产出的氧化锌烟尘中氟氯高,其粒度为0.1mm以下,不处理对后续回收利用影响很大,氧化锌烟尘处理工艺具体步骤如下:
S100:将上述氧化锌烟尘通过进料装置1由进料口23送入炉腔22,通过驱动装置2a带动搅拌轴28及其上的叶片29转动,物料在炉内叶片29的带动下均匀的翻滚前进,调节供风装置将压缩空气预热至500℃并通过风帽25按100m3/h鼓入炉腔22,同时调节微波发生装置使磁控管26向炉腔22供入50KW微波使物料和炉腔22的温度达到650℃的反应温度,在不出料的情况下保持反应所需时间;
S200:进料装置1按100kg/h的处理量,连续向炉腔22送入S100中的氧化锌烟尘,炉内氧化锌烟尘在叶片29的搅动和气流作用下在炉内均匀翻滚并向出料口24移动,供风装置使预热至500℃的压缩空气通过风帽25按100m3/h鼓入炉腔22,调节微波发生装置至功率为50KW使反应温度达到650℃的反应温度,调节驱动装置2a使搅动轴28及其叶片29把物料在炉内由进料口23向出料口24输送的时间正好等于反应所需时间;部分氧化锌烟尘随鼓风的作用而被吹入到筒状无热源沸腾室4中,烟尘颗粒在气流的作用下由细到粗自上而下自然沸腾悬浮并与高温烟气充分接触,同时在由卧式气固反应鼓风炉2之腔壁反射而馈入到沸腾室4的微波作用下加热反应;氧化锌烟尘被吹入沸腾室4后由于气流流速的降低,其中部分反应后的氧化锌颗粒落回到炉腔22底部;烟尘中的氟氯被氧化并挥发进入气相随部分超细颗粒经收尘器5并过烟气净化塔61自烟囱62排出,氧化锌由出料口24放出,氟、氯的脱除率达到90%;
S300:停止进料装置1进料,继续加热最后进料的氧化锌烟尘至反应所需时间,然后停止微波加热,由出料口24将氧化锌放出,待氧化锌出完后停止供风和停止叶片29的搅动,待炉腔22温度降至300℃后停止所有系统。
实施例4:
粒度为1mm以下的含硫金矿处理工艺具体步骤如下:
S100:将含硫金矿通过进料装置1送入炉腔22,通过驱动装置2a带动搅拌轴28及其上的叶片29转动,物料在炉腔22的倒拱形吸波陶瓷底座27上均匀的翻滚,调节供风装置将预热至500℃的压缩空气通过风帽25按100m3/h鼓入炉腔22,同时调节微波发生装置将设于透波陶瓷顶盖2b上部和炉腔22一侧透波陶瓷侧板后部的磁控管26向炉腔22供入50KW的微波使物料和炉腔22的温度达到550℃的反应温度,在不出料的情况下保持反应所需时间;
S200:进料装置1按50kg/h的处理量,连续向炉腔22送入含硫金矿,炉内物料在叶片29搅动和压缩空气的作用下在炉腔22的倒拱形吸波陶瓷底座27上均匀的翻滚并向出料口24移动,供风装置将预热至500℃的压缩空气通过风帽 25按100m3/h鼓入炉腔22,调节微波发生装置使磁控管26输出50KW的微波使反应温度达到550℃,调节驱动装置2a使搅动轴28的转速把物料在炉内由进料口23向出料口24输送的时间正好等于反应所需时间;炉腔22气固反应过程中,其内的含硫金矿由于压缩空气被吹入到筒状无热源沸腾室4中,含硫金矿颗粒由细到粗自上而下自然悬浮并与高温烟气充分接触,同时卧式气固反应鼓风炉2之腔壁反射而馈入到沸腾室4的微波作用下加热反应;含硫金矿颗粒被吹入沸腾室4后由于气流流速的降低,含硫金矿中的硫化铜物相被氧化为氧化铜,其中部分反应后的氧化铜颗粒由于密度增加而落回到炉腔22底部;反应完的物料密度升高落回到鼓风炉底部;部分超细颗粒被气流随氧化后形成的含硫酸气经收尘器5并过烟气净化塔61自烟囱62排出,硫的脱除率达到90%以上;
S300:停止进料装置1进料,继续加热最后进料的含硫金矿至反应所需时间,然后停止微波加热,由出料口24将固体产物放出,待固体产物出完后停止供风和停止叶片29的搅动,待炉腔22温度降至300℃后停止所有系统。
实施例5:
实施过程同实施例1,粒度为1mm以下的含砷金矿采用预热到700℃的压缩空气,鼓风量100m3/h,反应温度900℃,处理量50kg/h,微波鼓风炉功率50KW,含砷金矿中的砷发生挥发,含砷尾气经收尘、冷却后处理排放。砷的脱除率达到90%以上,金矿直收率为97%以上。
实施例6:
实施过程同实施例4,粒度为1mm以下的含磷铁矿采用预热到700℃的压缩空气,鼓风量80m3/h,反应温度1000℃,处理量50kg/h,微波发生装置经设于透波陶瓷顶盖2b上部和倒拱形吸波陶瓷底座27下部的磁控管26共同向炉腔22供入50KW的微波,含磷铁矿中的磷发生氧化挥发,含磷尾气经收尘、冷却后处理。磷的脱除率达到90%以上。
实施例7:
实施过程同实施例4,粒度为1mm以下的菱铁矿颗粒采用预热到500℃的压缩空气,鼓风量50m3/h,反应温度600℃,处理量30kg/h,微波发生装置经设 于透波陶瓷顶盖2b上部、倒拱形吸波陶瓷底座27下部和炉腔22两侧的透波陶瓷侧板后部的磁控管26共同向炉腔22供入60KW的微波,菱铁矿中的CO2发生挥发,尾气冷却后处理。菱铁矿氧化率达到95%以上。
实施例8:
实施过程同实施例1,粒度为2mm以下的核桃壳颗粒采用预热到500℃的压缩空气,鼓风量50m3/h,反应温度600℃,处理量30kg/h,微波鼓风炉功率60KW,所得颗粒活性炭的比表面积达到1200m2/g。
实施例9:
实施过程同实施例1,粒度为0.5mm以下含水1%的石英砂颗粒采用预热到100℃的压缩空气,鼓风量60m3/h,干燥温度100℃,处理量60kg/h,微波鼓风炉功率60KW,干燥效率达到95%以上。

Claims (21)

  1. 一种高效低能耗环保高温气固反应鼓风炉,其特征在于包括进料装置(1)、卧式气固反应鼓风炉(2)、供风装置、微波发生装置、沸腾室(4)、收尘器(5)、烟气处理装置(6),所述卧式气固反应鼓风炉(2)包括炉体(21)、炉腔(22)、设置于炉体(21)首段的进料口(23)及尾段的出料口(24)、分布于炉体(21)侧上部并与炉腔(22)连通的风帽(25)、设置于炉体(21)并对炉腔(22)加热的磁控管(26)、设置于炉腔(22)的搅动轴(28)及其叶片(29)、设置于炉体(21)外部并与搅动轴(28)连接的驱动装置(2a),所述炉体(21)横向设置,所述进料装置(1)与进料口(23)连通,所述风帽(25)与供风装置连接,所述沸腾室(4)为筒状无热源反应器,所述沸腾室(4)设置于卧式气固反应鼓风炉(2)上部且底部与炉腔(22)连通而上部与收尘器(5)连通,所述收尘器(5)和烟气处理装置(6)连通,所述炉腔(22)内壁的下部设置有吸波陶瓷底座(27),所述磁控管(26)设置于炉体(21)并与微波发生装置电连接。
  2. 根据权利要求1所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述沸腾室(4)为圆锥形或圆筒形、方筒形竖直设置,所述沸腾室(4)的腔室底部直接与卧式气固反应鼓风炉(2)的炉腔(22)连通,所述沸腾室(4)之侧壁设有保温层。
  3. 根据权利要求2所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述沸腾室(4)之排烟气口与收尘器(5)之进气口通过逐步减小的变截面弯管连通。
  4. 根据权利要求2所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述供风装置包括气包、气体预热器、管道及压力传感器、温度传感器和流量检测器、阀门,所述气体预热器为设置于沸腾室(4)之侧壁的热交换器或独立设置的加热气体预热器,所述风帽(25)通过阀门、管道依次与气体预热器、管道及压力传感器、温度传感器和流量检测器、气包连通。
  5. 根据权利要求1或2所述的高效低能耗环保高温气固反应鼓风炉,其特 征在于所述吸波陶瓷底座(27)的底部和/或侧部设置有至少两个测温传感器,所述沸腾室(4)之侧壁设置有测温传感器,所述测温传感器与微波发生装置信号连接。
  6. 根据权利要求1或2所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述供风装置所供气体为还原、氧化或惰性气体。
  7. 根据权利要求1或2所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述炉腔(22)呈U形、多边形、椭圆形或圆形,所述炉腔(22)内壁上部设置有透波陶瓷顶盖(2b),所述吸波陶瓷底座(27)为倒拱形结构,所述磁控管(26)设置于透波陶瓷顶盖(2b)的上部和/或吸波陶瓷底座(27)的下部,所述炉腔(22)内的物料发生气固反应时处于透波陶瓷顶盖(2b)和吸波陶瓷底座(27)之间。
  8. 根据权利要求7所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述风帽(25)自炉体(21)的一侧或两侧伸入炉腔(22)。
  9. 根据权利要求8所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述风帽(25)为自炉体(21)侧部水平伸入炉腔(22)侧上部的多个“T”形结构管道,所述“T”形结构管道两端封闭且管道下部和/或侧下部的管壁设有多个喷口。
  10. 根据权利要求9所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述“T”型结构管道的喷口为管壁上直径1~5mm的通孔。
  11. 根据权利要求9所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述“T”形结构管道为自炉体(21)两侧交叉水平伸入炉腔(22)侧上部。
  12. 根据权利要求9所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述“T”形结构管道为自炉体(21)首端向尾端方向左侧设置3个且右侧设置2个。
  13. 根据权利要求1或2所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述吸波陶瓷底座(27)为SiC颗粒陶瓷底座。
  14. 根据权利要求1或2所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述炉体(21)之外壁采用金属板拼接而成,所述炉体(21)之炉壁与搅动轴(28)连接处采用石墨线密封并由金属压盖进行封波。
  15. 根据权利要求1或2所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述进料装置(1)为螺旋输送机或喷吹式送料机,所述出料口(24)设置于炉体(21)尾段的底部或端部,所述出料口(24)与螺旋出料机(7)连通。
  16. 根据权利要求15所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述螺旋出料机(7)竖直设置并与耐高温料槽(8)连通,所述耐高温料槽(8)和/或螺旋出料机(7)附设有冷却装置。
  17. 根据权利要求1所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述微波发生装置包括微波电源系统、冷却系统、控制系统,所述磁控管(26)与微波电源系统电连接及与控制系统信号连接,所述测温传感器与控制系统信号连接。
  18. 根据权利要求1所述的高效低能耗环保高温气固反应鼓风炉,其特征在于所述收尘器(5)为旋风收尘器、布袋收尘器和电收尘中的一种或多种组合。
  19. 一种根据权利要求1所述高效低能耗环保高温气固反应鼓风炉的生产工艺,其特征在于包括开炉、鼓风炉生产、停炉步骤,具体步骤如下:
    A、开炉:将物料通过进料装置(1)由进料口(23)送入炉腔(22),在叶片(29)的搅动作用下在炉内均匀的翻滚,调节供风装置将预热后的气体通过风帽(25)供入炉腔(22)均匀地与物料进行接触,调节微波发生装置使磁控管(26)向炉腔(22)输出的功率将物料加热到反应所需温度,在不出料的情况下保持反应所需时间;
    B、鼓风炉生产:进料装置(1)按不同气固反应的处理量要求,连续或按时间分批次由进料口(23)向炉腔(22)送入物料,炉内物料在叶片(29)的搅动作用下在炉内均匀的翻滚并向出料口(24)移动,供风装置将预热后的气 体通过风帽(25)供入炉腔(22)均匀地与物料进行接触,微波发生装置使各部分磁控管(26)的输出功率将炉腔(22)和沸腾室(4)内的物料保持在反应所需温度,调节驱动装置(2a)使搅动轴(28)及其叶片(29)把物料在炉内由进料口(23)向出料口(24)输送的时间正好等于反应所需时间,然后由出料口(24)放出相应的固相产物;
    D、停炉:停止进料装置(1)的进料,继续加热最后进入的物料至反应所需时间,然后停止微波加热,由出料口(24)连续出料,待物料出完后停止供风和停止叶片(28)的搅动,待炉腔(22)温度降至设定温度后停止所有系统。
  20. 根据权利要求19所述高效低能耗环保高温气固反应鼓风炉的生产工艺,其特征在于所述B步骤中炉腔(22)内的粉状物料由于供风装置鼓风的作用而被吹入到沸腾室(4)内,在烟气余热和炉腔(22)反射微波共同作用下,粉状物料在自然沸腾悬浮状态下继续反应,粉状物料中的粗颗粒落回到炉腔(22)。
  21. 根据权利要求19或20所述高效低能耗环保高温气固反应鼓风炉的生产工艺,其特征在于所述A和B步骤中的物料在炉腔(22)内设置的吸波陶瓷底座(27)内壁上随叶片(29)搅动向出料口(24)移动,所述微波发生装置通过磁控管(26)对物料和吸波陶瓷底座(27)加热。
PCT/CN2016/104287 2016-09-13 2016-11-02 一种高效低能耗环保高温气固反应鼓风炉及其生产工艺 WO2018049718A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610819291.6 2016-09-13
CN201610819291.6A CN106440797B (zh) 2016-09-13 2016-09-13 一种高效低能耗环保高温气固反应鼓风炉
CN201610819448.5A CN106440802B (zh) 2016-09-13 2016-09-13 一种高效环保微波气固反应鼓风炉及其生产方法
CN201621052104.8U CN206146187U (zh) 2016-09-13 2016-09-13 一种高效低能耗环保高温气固反应鼓风炉
CN201621052006.4 2016-09-13
CN201610819448.5 2016-09-13
CN201621052104.8 2016-09-13
CN201621052006.4U CN206146190U (zh) 2016-09-13 2016-09-13 一种高效环保微波气固反应鼓风炉

Publications (2)

Publication Number Publication Date
WO2018049718A1 true WO2018049718A1 (zh) 2018-03-22
WO2018049718A9 WO2018049718A9 (zh) 2018-04-12

Family

ID=61619318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104287 WO2018049718A1 (zh) 2016-09-13 2016-11-02 一种高效低能耗环保高温气固反应鼓风炉及其生产工艺

Country Status (1)

Country Link
WO (1) WO2018049718A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108835400A (zh) * 2018-06-25 2018-11-20 北京中农博后农业科学研究院 生物质络合有机硒的制备方法及其生产设备
CN109852812A (zh) * 2019-04-10 2019-06-07 华北理工大学 一种处理铜渣用装置和处理铜渣的方法
CN113278438A (zh) * 2021-05-31 2021-08-20 西安热工研究院有限公司 一种基于燃煤电厂的废弃风电叶片微波裂解处理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242725A (ja) * 1988-03-25 1989-09-27 Nippon Steel Corp 紛粒体の循環流動層反応炉
CN1339612A (zh) * 2000-08-18 2002-03-13 夏延波 鼓风炉挥发熔炼直接生产超细三氧化锑的方法及其专用设备
CN1600878A (zh) * 2004-10-25 2005-03-30 昆明易明兴矿冶设备有限公司 高铁低硫型硫铁矿烧渣的生产方法
CN101285128A (zh) * 2008-03-18 2008-10-15 郑州永通特钢有限公司 一种红土镍矿的综合回收利用方法
CN101519734A (zh) * 2009-05-12 2009-09-02 东营方圆有色金属有限公司 吹氧造锍多金属捕集工艺
CN102181662A (zh) * 2011-04-21 2011-09-14 北京矿冶研究总院 一种低硫铜精矿的冶炼方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242725A (ja) * 1988-03-25 1989-09-27 Nippon Steel Corp 紛粒体の循環流動層反応炉
CN1339612A (zh) * 2000-08-18 2002-03-13 夏延波 鼓风炉挥发熔炼直接生产超细三氧化锑的方法及其专用设备
CN1600878A (zh) * 2004-10-25 2005-03-30 昆明易明兴矿冶设备有限公司 高铁低硫型硫铁矿烧渣的生产方法
CN101285128A (zh) * 2008-03-18 2008-10-15 郑州永通特钢有限公司 一种红土镍矿的综合回收利用方法
CN101519734A (zh) * 2009-05-12 2009-09-02 东营方圆有色金属有限公司 吹氧造锍多金属捕集工艺
CN102181662A (zh) * 2011-04-21 2011-09-14 北京矿冶研究总院 一种低硫铜精矿的冶炼方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108835400A (zh) * 2018-06-25 2018-11-20 北京中农博后农业科学研究院 生物质络合有机硒的制备方法及其生产设备
CN108835400B (zh) * 2018-06-25 2022-09-27 北京中农博后农业科学研究院 生物质络合有机硒的制备方法及其生产设备
CN109852812A (zh) * 2019-04-10 2019-06-07 华北理工大学 一种处理铜渣用装置和处理铜渣的方法
CN109852812B (zh) * 2019-04-10 2024-01-26 华北理工大学 一种处理铜渣用装置和处理铜渣的方法
CN113278438A (zh) * 2021-05-31 2021-08-20 西安热工研究院有限公司 一种基于燃煤电厂的废弃风电叶片微波裂解处理系统及方法

Also Published As

Publication number Publication date
WO2018049718A9 (zh) 2018-04-12

Similar Documents

Publication Publication Date Title
CN111500852B (zh) 一种含碳金矿悬浮焙烧系统
WO2018049718A9 (zh) 一种高效低能耗环保高温气固反应鼓风炉及其生产工艺
CN110117013A (zh) 一种活性炭制备系统
CN109974004A (zh) 一种清洁焚烧炉
CN108518984A (zh) 卧式双螺带滚筒式电阻炉系统及其工艺流程
CN106282467A (zh) 一种铁矿粉煤基生产直接还原铁设施及方法
CN109110813B (zh) 一种动态煅烧制取多价态氧化钒的方法
CN106440802B (zh) 一种高效环保微波气固反应鼓风炉及其生产方法
CN111172405A (zh) 一种微波转底炉氯化提金装置及方法
CN206146190U (zh) 一种高效环保微波气固反应鼓风炉
CN208720804U (zh) 卧式双螺带滚筒式电阻炉系统
CN211689180U (zh) 一种微波转底炉氯化提金装置
CN206146187U (zh) 一种高效低能耗环保高温气固反应鼓风炉
CN212712780U (zh) 可处理铝渣灰的动能干燥机
CN209386798U (zh) 双热源旋流闪速煅烧系统
CN104315823B (zh) 一种兰炭脱水装置及脱水方法
JP4264188B2 (ja) 酸化金属の還元方法
CN202347064U (zh) 一种竖炉式氧化钠化焙烧装置
CN211346241U (zh) 一种底吹式干燥装置
CN206886688U (zh) 一种电石渣回收利用的系统
CN206593472U (zh) 废阴极超高温煅烧窑炉及煅烧装置
CN103374636A (zh) 一种粉状固体料脱除ZnO的装置及方法
CN220230106U (zh) 一种富氧熔炼炉余热回收利用装置
CN106440797B (zh) 一种高效低能耗环保高温气固反应鼓风炉
CN209326324U (zh) 一种适用于矿粉和线路板的冶炼环保装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916098

Country of ref document: EP

Kind code of ref document: A1