WO2018048162A1 - 차단재 및 이를 이용한 합금강 제조방법 - Google Patents

차단재 및 이를 이용한 합금강 제조방법 Download PDF

Info

Publication number
WO2018048162A1
WO2018048162A1 PCT/KR2017/009665 KR2017009665W WO2018048162A1 WO 2018048162 A1 WO2018048162 A1 WO 2018048162A1 KR 2017009665 W KR2017009665 W KR 2017009665W WO 2018048162 A1 WO2018048162 A1 WO 2018048162A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten
ferroalloy
steel
alloy
barrier material
Prior art date
Application number
PCT/KR2017/009665
Other languages
English (en)
French (fr)
Inventor
송민호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/332,144 priority Critical patent/US20190218632A1/en
Priority to CN201780063192.2A priority patent/CN109804091A/zh
Priority to EP17849046.2A priority patent/EP3511427A4/en
Publication of WO2018048162A1 publication Critical patent/WO2018048162A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C2007/0093Duplex process; Two stage processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2250/00Specific additives; Means for adding material different from burners or lances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a barrier material and a method of manufacturing alloy steel using the same, and more particularly, to a barrier material and an alloy steel manufacturing method using the same that can suppress the contamination of the alloy steel due to nitrogen incorporation during alloy steel production.
  • high manganese steel means a steel containing 1 to 5 wt% of manganese. Recently, as high functional products such as high strength steels for automobiles are developed, high manganese steels having an increased manganese content of about 24wt% have been produced.
  • High manganese steel is manufactured by controlling the concentration of manganese by introducing a metal or an alloy containing manganese (hereinafter referred to as iron alloy) in the course of tapping the molten steel after the converter refining is completed. At this time, since the amount of heat required to dissolve the ferroalloy increases when the amount of ferroalloy added to the molten steel increases, it is possible to secure the required amount of heat by increasing the converter endpoint temperature of the molten steel.
  • iron alloy an alloy containing manganese
  • the oxygen blowing amount is increased to increase the oxygen concentration in the molten steel.
  • This causes a problem that the refractory of the converter is eroded by the high molten steel temperature with a decrease in yield due to the molten steel oxidation.
  • the slag amount is increased due to this.
  • the yield is reduced due to the increase in the amount of atmospheric oxidation caused by the high molten steel temperature when the ferroalloy is added.
  • the present invention provides a barrier material and an alloy steel manufacturing method using the same that can ensure the cleanliness of the alloy steel.
  • the barrier material according to the embodiment of the present invention is a barrier material which is injected into the hot water surface of the molten alloy iron containing manganese and covers the hot water surface of the molten alloy iron, and contains 37 to 66 weight% of CaO and SiO 2 with respect to 100% by weight in total. and, 8 and to 15% by weight of Al 2 O 3, 6 of to 18% by weight including MgO and MnO in the 20 to 30% by weight, and the ratio (CaO / SiO 2) of the CaO with the SiO 2 from 0.95 to 1.2 range.
  • Alloy steel manufacturing method the alloy steel manufacturing method, the process of providing a molten alloy iron; Preparing a barrier; Forming a barrier layer on the hot water surface of the molten alloy iron by injecting the barrier material into the molten alloy iron, and maintaining the molten alloy iron at a temperature equal to or higher than a melting point; combining the molten alloy iron with molten steel to manufacture an alloy steel It can include;
  • the preparing of the molten alloy iron may include: manufacturing molten alloy iron by dissolving iron alloy in a melting furnace; And injecting the molten ferroalloy into a heating furnace.
  • the CaO and SiO 2 the ratio (CaO / SiO 2) of the can to provide a range of 0.95 to 1.2 in the barrier material.
  • the barrier material may be introduced in at least one state of a solid phase and a liquid phase.
  • the process of maintaining the molten ferroalloy at a temperature above the melting point may be performed in the range of 1450 to 1550 ° C.
  • the barrier layer is formed on the entire molten alloy surface of the molten alloy to prevent the molten alloy from contacting the atmosphere to prevent nitrogen in the atmosphere from being mixed into the molten alloy. can do.
  • the contamination of the molten alloy iron used at the time of manufacture of alloy steel can be suppressed.
  • the molten alloy may include a process of maintaining and storing the molten alloy iron at a temperature above the melting point in a heating furnace.
  • a barrier layer for preventing contact with the atmosphere may be formed on the hot water surface of the molten ferroalloy to suppress or prevent contamination, such as absorption, due to contact with the atmosphere.
  • the subsequent process can be omitted or the time required for the subsequent process can be shortened, thereby improving productivity of the alloy steel.
  • the alloy steel required for casting can be smoothly provided, thereby improving casting efficiency.
  • 1 is a flow chart showing sequentially an alloy steel manufacturing method according to an embodiment of the present invention.
  • Figure 2 is a graph showing the change in solubility of the refractory (MgO) according to the change in the MnO concentration contained in the barrier material according to an embodiment of the present invention.
  • Figure 3 is a graph showing the change in solubility of the refractory (MgO) according to the change in the Al 2 O 3 concentration contained in the barrier material according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a change in nitrogen concentration in the molten ferroalloy according to the use of the barrier material according to an embodiment of the present invention.
  • Figure 5 is a graph showing the experimental results for verifying the effect of preventing the absorption of the barrier material in the alloy steel manufacturing method according to an embodiment of the present invention.
  • 1 is a flow chart showing sequentially an alloy steel manufacturing method according to an embodiment of the present invention.
  • an alloy steel manufacturing method relates to a method for manufacturing an alloy steel containing manganese, by mixing molten alloy iron and molten steel dissolved at least one of the manganese metal and manganese alloy to produce an alloy steel It is about a method.
  • the molten alloy iron can be maintained at a temperature equal to or higher than the melting point in the heating furnace before the molten alloy.
  • a barrier layer on the hot water surface of the molten alloy iron while maintaining the molten alloy iron in the heating furnace, it is possible to suppress or prevent the absorption phenomenon in which the molten alloy iron comes into contact with the atmosphere, for example, a nitrogen component in the atmosphere is mixed.
  • the alloy steel manufacturing method the process of preparing the molten alloy iron (S110), the process of preparing the barrier material (S120), and the molten alloy by adding a barrier material to the molten alloy iron
  • the alloy steel may include a refining process (S170) for removing impurities in the alloy steel, and casting the casting by using the refining alloy steel (S180).
  • the process of preparing molten ferroalloy is a process of melting a solid manganese metal or a manganese alloy (hereinafter referred to as iron alloy) to produce a high temperature molten metal or molten alloy iron (hereinafter referred to as molten alloy iron).
  • the molten ferroalloy can be produced by various methods, for example, by melting the solid iron alloy in a melting furnace such as an electric furnace.
  • the process of preparing the molten alloy iron may be prepared by charging the molten steel of high temperature into the thermal insulation furnace and adding molten ferroalloy to dissolve or by mixing molten ferroalloy. At this time, the ferroalloy and the molten ferroalloy may be added together.
  • the molten steel may be a different molten steel from the molten steel that is mixed with the molten alloy iron for the production of ferroalloy.
  • the alloying elements such as manganese content in the molten alloy iron can be maintained higher than the iron content by injecting a large amount of alloy iron and molten alloy iron than the molten steel that was previously charged in the thermal furnace You can do that.
  • the molten ferroalloy thus prepared may be charged into a thermal insulation furnace that is blocked from the outside until it is mixed with molten steel and maintained at a temperature above the melting point.
  • the molten ferroalloy is stored in a thermal furnace until it is mixed with molten steel.
  • the molten ferroalloy is an air present in the thermal furnace, for example, air that is present before the molten ferroalloy is charged or is introduced into the molten ferroalloy.
  • the molten ferroalloy is an air present in the thermal furnace, for example, air that is present before the molten ferroalloy is charged or is introduced into the molten ferroalloy.
  • nitrogen in the air is mixed into the molten ferroalloy to increase the nitrogen content in the molten ferroalloy.
  • the molten ferroalloy may be prevented from coming into contact with air.
  • the barrier material may maintain a liquid phase while maintaining the molten ferroalloy in the thermal furnace, and may be made of a composition capable of suppressing the reaction with the refractory constituting the thermal furnace to the maximum.
  • the barrier material comprises 37 to 66 wt% CaO and SiO 2 , 8 to 15 wt% Al 2 O 3 , 6 to 18 wt% MgO and 20 to 30 wt% MnO based on 100 wt%
  • CaO and SiO 2 may be prepared such that the ratio (CaO / SiO 2 ) of CaO and SiO 2 includes 0.95 to 1.2.
  • CaO, SiO 2 and MgO are used to control the melting point of the barrier material
  • Al 2 O 3 and MnO can be used to reduce the refractory erosion of the heating furnace. The composition of such a barrier material will be described later.
  • the barrier material may be provided in a solid state, for example, in a powder state or in a liquid state, and thus may be provided with a heat source for dissolving the barrier material in the thermal furnace since the temperature of the molten ferroalloy may decrease when the thermal barrier material is injected into the thermal furnace.
  • the barrier material may be introduced in an amount sufficient to cover the entire molten alloy of the molten alloy. That is, the barrier material is introduced into the thermal furnace to form a barrier layer on the molten alloy of the molten alloy, wherein the barrier layer may cover the entire molten alloy of the molten alloy to prevent the molten alloy from contacting the air in the insulation. Accordingly, it is possible to suppress or prevent the molten alloy iron from coming into contact with the air and mixing nitrogen in the air into the molten alloy iron.
  • the molten alloy iron can be maintained at a temperature equal to or higher than the melting point, such as about 1450 to 1550 ° C, in the state where the barrier layer is formed on the molten alloy iron surface.
  • molten steel produced in the blast furnace may be put into a converter, and molten steel may be manufactured according to a necessary condition by performing a process such as blowing and tallin. After the molten steel is manufactured, the molten steel can be moved out to the ladle and then transferred to a place for mixing with molten ferroalloy. Alternatively, the thermal insulation furnace in which the molten ferroalloy is stored may be transferred to a molten steel and a place for mixing.
  • alloy steel can be manufactured by tapping and melting molten alloy iron stored in the heat retention furnace with molten steel. At this time, the molten alloy may be naturally mixed with the molten steel while it is pulled out of the molten steel, but may be mixed with the molten alloy evenly by stirring the molten steel as needed.
  • At least one of a ladle furnace (LF) process and a vacuum degassing process may be performed to control the temperature and the composition of the alloy steel.
  • the denitrification treatment may be performed to reflux the alloy steel to remove nitrogen contained in the alloy steel.
  • the casting process may be performed by casting the cast steel by transferring the alloy steel to the casting facility.
  • FIG. 2 is a graph showing the change in solubility of the refractory material (MgO) according to the change in the MnO concentration contained in the barrier material according to an embodiment of the present invention
  • Figure 3 is a concentration of Al 2 O 3 contained in the barrier material according to an embodiment of the present invention It is a graph showing the change in solubility of the refractory (MgO) according to the change.
  • the barrier material may form a barrier material layer on the hot water surface of the molten alloy iron inside the insulation furnace to prevent the molten alloy iron from contacting with the atmosphere, that is, the air, thereby suppressing or preventing the incorporation of nitrogen into the molten alloy iron.
  • the barrier material is preferably made of a component that can maintain the liquid phase in the thermal furnace and minimize the reaction with the refractory of the thermal furnace.
  • the barrier material comprises 37 to 66 wt% CaO and SiO 2 , 8 to 15 wt% Al 2 O 3 , 6 to 18 wt% MgO and 20 to 30 wt% MnO based on 100 wt% It includes, CaO and SiO 2 may be provided so that the ratio (CaO / SiO 2 ) of CaO and SiO 2 includes 0.95 to 1.2.
  • the barrier material may form a barrier material layer on the hot water surface of the molten alloy iron inside the insulation furnace to prevent the molten alloy iron from contacting with the atmosphere, that is, the air, thereby suppressing or preventing the incorporation of nitrogen into the molten alloy iron.
  • the barrier material is preferably made of a component that can maintain the liquid phase in the thermal furnace and minimize the reaction with the refractory of the thermal furnace.
  • the ratio of CaO and SiO 2 may be adjusted to about (CaO / SiO 2 ) about 0.95 to 1.2. If the basicity of the barrier material is less than or greater than the suggested range, there is a problem that the barrier material is difficult to maintain the liquid phase while maintaining the molten ferroalloy in the heating furnace.
  • MnO and Al 2 O 3 in the barrier material are involved in the suppression of erosion of refractory mainly composed of MgO and Al 2 O 3 .
  • the melting is active, the durability of the insulation furnace is lowered.
  • the solubility of MgO in the refractory was measured while changing the content of MnO except Al 2 O 3 in the barrier.
  • the basicity of the barrier material at a temperature of 1500 °C was measured while changing the content of MnO in the range of 10 to 40% by weight under the conditions of 0.95 to 1.2, the results are as shown in FIG.
  • the solubility of MgO in the refractory of the heating furnace decreases and then increases again as the content of MnO increases under the above conditions.
  • erosion of the refractory can be reduced when the content of MnO in the barrier material is about 20 to 30% by weight. It can be seen.
  • the solubility of MgO in the refractory was measured while changing the content of Al 2 O 3 while containing 25% by weight of MnO in the barrier material. .
  • the basicity of the barrier material at a temperature of 1500 °C was carried out under the conditions of 0.95 to 1.2.
  • the solubility of MgO increases as the content of Al 2 O 3 increases.
  • the content of Al 2 O 3 in the barrier material is 20% by weight or less, more preferably 8 to 15% by weight. It can be seen that the erosion of the refractory can be reduced at about%.
  • FIG. 4 is a graph showing a change in nitrogen concentration in the molten ferroalloy according to the use of the barrier material according to an embodiment of the present invention
  • Figure 5 is verified the effect of preventing the absorption of the barrier material in the alloy steel manufacturing method according to an embodiment of the present invention. This is a graph showing the results of the experiment.
  • the nitrogen concentration in the molten ferroalloy is continuously increased as time passes. have.
  • the nitrogen concentration in the molten ferroalloy fluctuates slightly with time, but the variation is minimal, and the initial nitrogen concentration in the molten ferroalloy is almost constant. It can be seen that it is maintained.
  • the experiment was conducted on a pilot scale (2.0 ton scale). The experiment was carried out by charging molten manganese dissolved in 1.4 tons of manganese alloy (Ferro Manganese, FeMn) into a heating furnace, and inserting a barrier material into the molten manganese hot water to form a barrier material layer at a temperature of 1450 to 1550 ° C. and an atmospheric atmosphere. Hold for 700 to 1500 minutes.
  • FeMn manganese alloy
  • the initial nitrogen concentration of the molten manganese was controlled in the range of 800 to 1800ppm in order to ensure the diversity, it is shown in Figure 5 by measuring the nitrogen concentration change in the molten manganese through continuous sampling and analysis during the holding time.
  • the composition ratio of the barrier material was partially changed within the suggested range, which is shown in Table 1 below.
  • the contact layer between the molten manganese and the atmosphere is blocked by the barrier layer to prevent the incorporation of nitrogen into the molten manganese so that the initial nitrogen concentration of the molten manganese is constant. It can be seen that it is maintained. In addition, even when the external nitrogen concentration is increased, it can be seen that nitrogen incorporation into the molten manganese blocked by the barrier material layer is blocked.
  • the barrier material according to the present invention and the method for producing alloy steel using the same can secure the cleanliness of the alloy steel, thereby eliminating the subsequent process or shortening the time required for the subsequent process, thereby improving productivity of the alloy steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은 차단재 및 이를 이용한 합금강 제조방법에 관한 것으로서, 망간을 함유하는 합금강을 제조 시 사용되는 용융 합금철을 융점 이상의 온도로 유지하는 과정에서, 전체 100중량%에 대해서 37 내지 66중량%의 CaO 및 SiO2와, 8 내지 15중량%의 Al2O3와, 6 내지 18중량%의 MgO 및 20 내지 30중량%의 MnO를 포함하고, 상기 CaO와 상기 SiO2의 비(CaO/SiO2)는 0.95 내지 1.2 범위인 차단재를 이용하여 용융 합금철의 탕면에 차단재층을 형성함으로써, 공기 중 질소가 용융 합금철로 혼입되는 것을 억제할 수 있다.

Description

차단재 및 이를 이용한 합금강 제조방법
본 발명은 차단재 및 이를 이용한 합금강 제조방법에 관한 것으로서, 보다 상세하게는 합금강 제조 시 질소 혼입으로 인한 합금강의 오염을 억제할 수 있는 차단재 및 이를 이용한 합금강 제조방법에 관한 것이다.
일반적으로 고망간강은 1~5 wt% 정도의 망간을 함유하는 강을 의미한다. 최근에는 자동차용 고강도 고성형성 강재 등과 같은 고기능성 제품이 개발되면서, 망간 함유량이 24wt% 정도까지 증가한 고망간강이 생산되고 있다.
고망간강은 전로 정련이 완료된 용강을 출강하는 과정에서 망간을 함유하는 금속이나 합금(이하, 합금철이라 함)을 투입하여 망간 농도를 제어하여 제조된다. 이때, 용강에 투입되는 합금철의 양이 증가하면 합금철을 용해하는데 필요한 열량이 증가하기 때문에 용강의 전로 종점 온도를 높여 요구되는 열량을 확보할 수 있다.
그러나 이와 같이 용강의 전로 종점 온도를 높이는 경우, 산소 취입량이 증가하여 용강 중 산소 농도가 증가하게 된다. 이로 인해 용강 산화에 의한 수율 감소와 함께 높은 용강 온도에 의해 전로의 내화물이 침식되는 문제가 발생하게 된다. 또한, 용강 중 높은 용존 산소량으로 인해 출강 중 탈산제의 투입량을 증가시키게 되고, 이로 인해 슬래그량이 증가하는 문제점이 있다. 또한, 합금철 투입 시 높은 용강의 온도에 의해 대기 산화 발생량이 증가하여 수율이 저하되는 문제점이 있다.
이러한 문제점을 해결하기 위하여 다양한 방법이 시도되고 있고, 그 중 전로 출강 이후 래들 퍼니스(Ladle Furnace, LF), 진공정련(Rheinstahl and Heraeus, RH) 등과 같은 2차 정련 공정에서 용강의 온도를 높이고, 합금철을 추가 투입하여 용강 중 합금철의 농도를 보정하는 방법이 적용되고 있다. 그러나 2차 정련에서의 시간당 온도를 보정할 수 있는 능력의 한계로 인하여 합금철의 투입량이 제한되고, 장시간의 처리 시간이 요구되어 연연주수 증가에 한계가 있어 주편의 대량 생산에 어려움이 있다. 또한, 제강 공정에서의 처리 시간 증가는 생산 단가를 높이는 요인으로 작용하는 문제점이 있다.
이에 최근에는 합금철을 용해시킨 용융 합금철을 마련하고, 이를 용강과 합탕하여 고망간강을 제조하는 기술이 적용되고 있다. 이 기술은 용융 합금철을 이용하기 때문에 고상의 합금철을 용융시킬 때 필요한 열원을 확보할 필요 없이 고망간강을 제조할 수 있는 이점이 있다. 그러나 용융 합금철을 제조하고 합탕까지 소요되는 시간동안 대기와의 접촉으로 인해 흡질 현상이 발생하여 용융 합금철 중 질소 함량이 과도하게 증가하게 된다. 이로 인해 용융 합금철 중 또는 합탕으로 제조된 고망간강 중 질소 함량을 제어하기 위한 추가 공정이 요구되고, 이로 인한 처리 시간의 증가와 함께 추가 비용이 발생하는 문제점이 있다.
(선행기술문헌)
한국등록특허 제1029558호
한국등록특허 제0229910호
한국등록특허 제1048981호
한국등록특허 제1047912호
본 발명은 합금강의 청정도를 확보할 수 있는 차단재 및 이를 이용한 합금강 제조방법을 제공한다.
본 발명의 실시 형태에 따른 차단재는, 망간을 함유하는 용융 합금철의 탕면에 투입되어 상기 용융 합금철의 탕면을 커버하는 차단재로서, 전체 100중량%에 대해서 37 내지 66중량%의 CaO 및 SiO2와, 8 내지 15중량%의 Al2O3와, 6 내지 18중량%의 MgO 및 20 내지 30중량%의 MnO를 포함하고, 상기 CaO와 상기 SiO2의 비(CaO/SiO2)는 0.95 내지 1.2 범위일 수 있다.
본 발명의 실시 형태에 따른 합금강 제조방법은, 합금강 제조방법으로서, 용융 합금철을 마련하는 과정; 차단재를 마련하는 과정; 상기 용융 합금철에 상기 차단재를 투입하여 상기 용융 합금철의 탕면에 차단재층을 형성하고, 상기 용융 합금철을 융점 이상의 온도로 유지하는 과정;상기 용융 합금철을 용강과 합탕하여 합금강을 제조하는 과정;을 포함할 수 있다.
상기 용융 합금철을 마련하는 과정은, 용해로에 합금철을 용해시켜 용융 합금철을 제조하는 과정; 상기 용융 합금철을 보온로에 주입하는 과정;을 포함할 수 있다.
상기 용융 합금철을 마련하는 과정은, 보온로에 용강을 장입하는 과정; 상기 보온로에 합금철과 용융 합금철 중 적어도 어느 하나를 투입하는 과정을 포함할 수 있다.
상기 차단재를 마련하는 과정에서, 상기 차단재 전체 100중량%에 대해서, 37 내지 66중량%의 CaO 및 SiO2와, 8 내지 15중량%의 Al2O3와, 6 내지 18중량%의 MgO 및 20 내지 30중량%의 MnO를 포함하고, 상기 CaO와 상기 SiO2의 비(CaO/SiO2)가 0.95 내지 1.2 범위인 차단재를 마련할 수 있다.
상기 차단재는 고상 및 액상 중 적어도 어느 한 가지 상태로 투입할 수 있다.
상기 용융 합금철을 융점 이상의 온도로 유지하는 과정은 1450 내지 1550℃ 범위에서 수행할 수 있다.
상기 용융 합금철면의 탕면에 차단재층을 형성하는 과정에서, 상기 용융 합금철이 대기와 접촉하여 대기 중 질소가 상기 용융 합금철에 혼입되는 것을 차단하도록 상기 차단재층을 상기 용융 합금철의 탕면 전체에 형성할 수 있다.
본 발명의 실시 형태에 따르면, 합금강의 제조 시 사용되는 용융 합금철의 오염을 억제할 수 있다. 용융 합금철과 용강을 합탕하여 합금강을 제조하는 방법에서 용융 합금철을 보온로에서 융점 이상의 온도로 일정 시간 유지, 보관하는 과정을 포함할 수 있다. 이때, 용융 합금철을 유지, 보관하는 과정에서 용융 합금철의 탕면에 대기와의 접촉을 방지할 수 있는 차단재층을 형성하여 대기와의 접촉으로 인한 오염, 예컨대 흡질을 억제 혹은 방지할 수 있다.
따라서 합금강의 청정도를 확보하여 후속 공정을 생략하거나 후속 공정에 소요되는 시간을 단축할 수 있으므로 합금강의 생산성을 향상시킬 수 있다. 이에 주조에 필요한 합금강을 원활하게 제공할 수 있으므로 주조 효율도 향상시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 합금강 제조방법을 순차적으로 보여주는 순서도.
도 2는 본 발명의 실시 예에 따른 차단재에 함유되는 MnO 농도 변화에 따른 내화물(MgO)의 용해도 변화를 보여주는 그래프.
도 3은 본 발명의 실시 예에 따른 차단재에 함유되는 Al2O3 농도 변화에 따른 내화물(MgO)의 용해도 변화를 보여주는 그래프.
도 4는 본 발명의 실시 예에 따른 차단재의 사용 여부에 따른 용융 합금철 중 질소 농도의 변화를 보여주는 그래프.
도 5는 본 발명의 실시 예에 따른 합금강 제조방법에서 차단재의 흡질 방지 효과를 검증하기 위한 실험 결과를 보여주는 그래프.
이하, 본 발명의 실시 예를 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 실시 예에 따른 합금강 제조방법을 순차적으로 보여주는 순서도이다.
먼저, 본 발명의 실시 예에 따른 합금강 제조방법은 망간을 함유하는 합금강을 제조하는 방법에 관한 것으로서, 망간 금속과 망간 합금 중 적어도 어느 하나를 용해시킨 용융 합금철과 용강을 합탕하여 합금강을 제조하는 방법에 관한 것이다. 이때, 용융 합금철은 용강과 합탕하기 전 보온로에서 융점 이상의 온도로 유지할 수 있다. 그리고 보온로에서 용융 합금철을 유지하면서 용융 합금철의 탕면에 차단재층을 형성함으로써 용융 합금철이 대기와 접촉하여 오염, 예컨대 대기 중 질소 성분이 혼입되는 흡질 현상을 억제 혹은 방지할 수 있다.
도 1을 참조하면, 본 발명의 실시 예에 따른 합금강 제조방법은, 용융 합금철을 마련하는 과정(S110)과, 차단재를 마련하는 과정(S120)과, 용융 합금철에 차단재를 투입하여 용융 합금철의 탕면에 차단재층을 형성하는 과정(S130), 용융 합금철을 융점 이상의 온도로 유지하는 과정(S140), 용강을 마련하는 과정(S150), 용융 합금철과 용강을 합탕하여 합금강을 제조하는 과정(S160)을 포함할 수 있다. 또한, 합금강을 제조한 이후에는 합금강 중 불순물을 제거하기 위한 정련과정(S170)과, 정련이 완료된 합금강을 이용하여 주조물을 주조하는 과정(S180)을 포함할 수 있다.
용융 합금철을 마련하는 과정은, 예컨대 고상의 망간 금속이나 망간 합금(이하에서는 합금철이라 함)을 용해시켜 고온의 용융 금속이나 용융 합금철(이하에서는 용융 합금철이라 함)으로 제조하는 과정이다. 용융 합금철은 다양한 방법으로 제조될 수 있으며, 예컨대 고상의 합금철을 전기로 등과 같은 용해로에서 용해시켜 제조할 수 있다.
또는, 용융 합금철을 마련하는 과정은 보온로에 고온의 용강을 장입하고 합금철을 투입하여 용해시키거나 용융 합금철을 투입하여 혼합함으로써 제조될 수 있다. 이때, 합금철과 용융 합금철이 함께 투입될 수도 있다. 이때, 용강은 합금철 제조를 위해 용융 합금철과 합탕하는 용강과는 서로 다른 용강일 수 있다. 이와 같은 방법으로 용융 합금철을 제조하는 경우 보온로에 미리 장입되어 있던 용강보다 많은 양의 합금철과 용융 합금철을 투입하여 용융 합금철 중 합금 성분, 예컨대 망간 함량이 철 함량보다 높게 유지될 수 있도록 할 수 있다.
이렇게 제조된 용융 합금철은 용강과 합탕하기 전까지 외부와 차단된 보온로에 장입하여 융점 이상의 온도로 유지할 수 있다.
이와 같이 용융 합금철은 용강과 합탕되기 전까지 보온로 내에 저장되는데, 용융 합금철은 보온로 내에 존재하는 공기, 예컨대 용융 합금철이 장입되기 전에 존재하거나 용융 합금철을 보온로에 장입할 때 유입되는 공기와 접촉할 수 있다. 이로 인해 공기 중 질소가 용융 합금철으로 혼입되어 용융 합금철 중 질소 함량이 증가하는 문제점이 있다.
이에 본 발명에서는 보온로에서 용융 합금철을 저장 및 유지하는 동안 용융 합금철의 탕면에 차단재층을 형성함으로써 용융 합금철이 공기와 접촉하여 흡질 현상이 일어나는 것을 방지할 수 있다.
차단재는 보온로 내에서 용융 합금철을 유지하는 동안 액상을 유지할 수 있고, 보온로를 구성하는 내화물과의 반응을 최대한 억제할 수 있는 조성으로 이루어질 수 있다.
이에 차단재는 100중량%에 대해서 37 내지 66중량%의 CaO 및 SiO2와, 8 내지 15중량%의 Al2O3와, 6 내지 18중량%의 MgO 및 20 내지 30중량%의 MnO를 포함하고, CaO와 SiO2는 CaO와 SiO2의 비(CaO/SiO2)가 0.95 내지 1.2를 포함하도록 마련될 수 있다. 여기에서 CaO, SiO2 및 MgO는 차단재의 융점 제어를 위해 사용되며, Al2O3와 MnO는 보온로의 내화물 침식을 저감시키기 위해 사용될 수 있다. 이와 같은 차단재의 조성에 대해서는 나중에 다시 설명하기로 한다.
차단재는 고상, 예컨대 파우더 상태나 액상으로 제공될 수 있으며, 고상으로 보온로에 투입하는 경우 용융 합금철의 온도가 하락할 수 있으므로 보온로에 차단재를 용해시키기 위한 열원을 제공할 수 있다.
차단재는 보온로 내에서 용융 합금철의 탕면 전체를 커버할 수 있을 정도의 양으로 투입될 수 있다. 즉, 차단재는 보온로 내에 투입되어 용융 합금철의 탕면에 차단재층을 형성하는데, 이때 차단재층은 용융 합금철의 탕면 전체를 커버하여 용융 합금철이 보온로 내 공기와 접촉하는 것을 차단할 수 있다. 이에 용융 합금철이 공기와 접촉하여 공기 중 질소가 용융 합금철로 혼입되는 것을 억제 혹은 방지할 수 있다.
이렇게 용융 합금철의 탕면에 차단재층을 형성한 상태로 용융 합금철을 융점 이상의 온도, 예컨대 1450 내지 1550℃ 정도로 유지할 수 있다.
용강을 마련하는 과정은 고로에서 생산된 용선을 전로에 넣고, 취련, 탈린 등의 공정을 수행하여 필요한 조건에 맞게 용강을 제조할 수 있다. 그리고 용강이 제조되면 용강을 래들로 출강한 후 용융 합금철과의 합탕을 위한 장소로 이송할 수 있다. 또는 용융 합금철이 저장된 보온로를 용강과 합탕을 위한 장소로 이송할 수도 있다.
용강이 마련되면, 보온로 내에 저장된 용융 합금철을 용강으로 출강하여 합탕함으로써 합금강을 제조할 수 있다. 이때, 용융 합금철이 용강으로 출강되면서 용강과 자연스럽게 혼합될 수도 있지만, 필요에 따라서 용강을 교반하여 용융 합금철과 균일하게 혼합할 수도 있다.
합금강이 제조되면, 합금강의 온도와 성분 제어를 위해 래들 퍼니스(ladle furnace, LF)공정과 진공탈가스공정 중 적어도 어느 하나의 정련공정을 수행할 수 있다. 이때, 진공탈가스공정에서는 합금강을 환류시켜 합금강에 함유되는 질소를 제거하는 탈질 처리를 수행할 수 있다.
이후, 합금강을 주조설비로 이송하여 주편 등을 주조하는 주조 공정을 수행할 수 있다.
이하에서는 본 발명의 실시 예에 따른 합금강 제조방법에 사용되는 차단재에 대해서 설명한다.
도 2는 본 발명의 실시 예에 따른 차단재에 함유되는 MnO 농도 변화에 따른 내화물(MgO)의 용해도 변화를 보여주는 그래프이고, 도 3은 본 발명의 실시 예에 따른 차단재에 함유되는 Al2O3 농도 변화에 따른 내화물(MgO)의 용해도 변화를 보여주는 그래프이다.
차단재는 보온로 내부에서 용융 합금철의 탕면에 차단재층을 형성하여 용융 합금철이 대기, 즉 공기와 접촉하는 것을 방지하여 용융 합금철 중으로 질소가 혼입되는 것을 억제 혹은 방지할 수 있다. 이때, 차단재는 보온로 내에서 액상을 유지하며 보온로의 내화물과 반응을 최소화할 수 있는 성분으로 제조되는 것이 좋다.
전술한 바와 같이 차단재는 100중량%에 대해서 37 내지 66중량%의 CaO 및 SiO2와, 8 내지 15중량%의 Al2O3와, 6 내지 18중량%의 MgO 및 20 내지 30중량%의 MnO를 포함하고, CaO와 SiO2는 CaO와 SiO2의 비(CaO/SiO2)가 0.95 내지 1.2를 포함하도록 마련될 수 있다.
차단재는 보온로 내부에서 용융 합금철의 탕면에 차단재층을 형성하여 용융 합금철이 대기, 즉 공기와 접촉하는 것을 방지하여 용융 합금철 중으로 질소가 혼입되는 것을 억제 혹은 방지할 수 있다. 이때, 차단재는 보온로 내에서 액상을 유지하며 보온로의 내화물과 반응을 최소화할 수 있는 성분으로 제조되는 것이 좋다.
이에 차단재의 융점을 제어하기 위하여 CaO와 SiO2 의 비, 즉 염기도를 (CaO/SiO2)가 0.95 내지 1.2 정도로 조절할 수 있다. 차단재의 염기도가 제시된 범위보다 작거나 큰 경우에는 보온로에서 용융 합금철을 유지하는 동안 차단재가 액상을 유지하기 어려운 문제점이 있다.
또한, 차단재 중 MnO와 Al2O3는 MgO와 Al2O3를 주성분으로 하는 내화물의 침식 억제에 관여하는데, MnO의 함량이 제시된 범위보다 작거나 큰 경우 보온로의 내화물의 침식, 예컨대 MgO의 용해가 활발하게 이루어져 보온로의 내구성이 저하하는 문제점이 있다.
이와 같이 차단재 중 MnO가 보온로의 내화물에 미치는 영향을 검증하기 위하여, 차단재 중 Al2O3를 제외하고 MnO의 함량을 변경하면서 내화물 중 MgO의 용해도를 측정해보았다. 이때, 1500℃의 온도 조건에서 차단재의 염기도는 0.95 내지 1.2인 조건에서 MnO의 함량은 10 내지 40중량%의 범위에서 변경하면서 측정하였으며, 그 결과는 도 2에 도시된 바와 같다.
도 2를 참조하면, 상기 조건에서 MnO의 함량이 증가함에 따라 보온로의 내화물 중 MgO의 용해도가 감소하다가 다시 증가하는 경향을 보이고 있다. 이때, 통상 용융 합금철을 보온로에 저장, 유지했을 때 MgO의 용해도가 6 내지 16중량% 정도임을 감안하면, 차단재 중 MnO의 함량이 20 내지 30중량% 정도일 때 내화물의 침식을 저감시킬 수 있음을 알 수 있다.
또한, 차단재 중 Al2O3가 보온로의 내화물에 미치는 영향을 검증하기 위하여, 차단재 중 MnO를 25중량% 포함시킨 상태에서 Al2O3의 함량을 변경하면서 내화물 중 MgO의 용해도를 측정해보았다. 이때, 1500℃의 온도 조건에서 차단재의 염기도는 0.95 내지 1.2인 조건에서 실험을 실시하였다.
도 3을 참조하면, MnO의 함량이 동일한 경우 Al2O3의 함량이 증가할수록 MgO의 용해도는 증가하는 경향을 보이고 있다. 그러나 통상 용융 합금철을 보온로에 저장, 유지했을 때 MgO의 용해도가 6 내지 16중량% 정도임을 감안하면, 차단재 중 Al2O3의 함량이 20중량% 이하, 보다 바람직하게는 8 내지 15중량% 정도일 때 내화물의 침식을 저감시킬 수 있음을 알 수 있다.
다음은 본 발명의 실시 예에 따른 차단재의 흡질 방지 효과를 검증하기 위한 실험 결과에 대해서 설명한다.
도 4는 본 발명의 실시 예에 따른 차단재의 사용 여부에 따른 용융 합금철 중 질소 농도의 변화를 보여주는 그래프이고, 도 5는 본 발명의 실시 예에 따른 합금강 제조방법에서 차단재의 흡질 방지 효과를 검증하기 위한 실험 결과를 보여주는 그래프이다.
먼저, 차단재의 사용 유무에 따른 흡질 방지 효과를 검증하기 위하여 다음과 같은 실험을 실시하였다.
제1보온로에 망간을 함유하는 용융 합금철을 주입하고, 1500℃에서 60분 동안 아르곤과 질소가스의 혼합가스(PN2=0.02atm) 분위기에 노출시켰다.
그리고 제2보온로에 망간을 함유하는 용융 합금철을 주입하고, 보온로에 차단재를 투입하여 용융 합금철의 탕면에 차단재층을 형성한 후, 1500℃에서 60분 동안 아르곤과 질소가스의 혼합가스(PN2=0.02atm) 분위기에 노출시켰다. 이때, 26.0중량%의 CaO와, 26.0 중량%의 SiO2와, 25중량%의 MnO와, 13.0중량%의 Al2O3 및 10중량%의 MgO를 포함하고, CaO와 SiO2의 비(C/S)는 1인 차단재를 사용하여 용융 합금철의 탕면에 차단재층을 형성하였다.
그리고 10분 간격으로 각각의 보온로에 수용된 용융 합금철을 채취하여 용융 합금철 중 질소 농도를 측정하였으며, 그 결과는 도 4와 같다.
도 4를 참조하면, 용융 합금철의 탕면에 차단재층을 형성하지 않고 아르곤과 질소 가스의 혼합가스 분위기에 그대로 노출한 경우, 시간이 경과할수록 용융 합금철 중 질소 농도는 지속적으로 증가하는 것을 알 수 있다. 반면에 용융 합금철의 탕면에 차단재층을 형성한 경우에는 시간이 경과함에 따라 용융 합금철 중 질소 농도가 미세하게 변동하기는 하지만 그 변동 정도가 미미하고, 용융 합금철 중 초기 질소 농도가 거의 일정하게 유지됨을 알 수 있다.
또한, 실제 조업에 차단재를 적용한 경우 질소 혼입 방지 효과를 살펴보기 위하여, 파일럿(Pilot) 규모(2.0ton Scale)에서 실험을 진행하였다. 실험은 1.4톤의 망간 합금(Ferro Manganese, FeMn)을 용해한 용융 망간을 보온로에 장입하고, 용융 망간의 탕면에 차단재를 투입하여 차단재층을 형성한 후 1450 내지 1550℃의 온도 조건 및 대기 분위기에서 700 내지 1500분간 유지하였다.
이때, 용융 망간의 초기 질소 농도는 다양성 확보를 위하여 800 내지 1800ppm의 범위에서 제어되었으며, 유지시간 동안 지속적인 채취 및 분석을 통해 용융 망간 중 질소 농도 변화를 측정하여 도 5에 나타내었다. 이때, 용융 망간의 초기 질소 농도에 따라 차단재의 조성비를 제시된 범위 내에서 일부 변경하였으며, 이는 아래의 표 1에 나타내었다.
CaO(중량%) SiO2(중량%) MnO(중량%) MgO(중량%) Al2O3(중량%) C/S 질소 농도(ppm)
실험 예1 27.4 28.5 21.1 13.9 9.1 0.96 900
실험 예2 29.5 27.8 25.1 8.1 9.5 1.06 800
실험 예3 29.5 27.8 25.1 8.1 9.5 1.06 1000
실험 예4 29.9 25.1 22.4 12.0 10.6 1.19 1300
실험 예5 27.4 28.5 21.1 13.9 9.1 0.96 1600
실험 예6 29.5 27.8 25.1 8.1 9.5 1.06 1800
실험 예7 29.9 25.1 22.4 12.0 10.6 1.19 800
도 5를 참조하면, 용융 망간의 탕면에 차단재층을 형성한 경우, 차단재층에 의해 용융 망간과 대기 간의 접촉이 차단되기 때문에 용융 망간으로 질소의 혼입이 방지되어 용융 망간의 초기 질소 농도가 일정하게 유지됨을 알 수 있다. 또한, 외부 질소 농도가 증가하더라도 차단재층에 의해 외부와 차단된 용융 망간으로의 질소 혼입이 억제됨을 알 수 있다.
또한, 질소 농도에 따라 차단재의 조성비를 일부 변경하더라도 차단재를 이용한 흡질 방지 효과는 거의 유사하게 나타남을 알 수 있다.
이를 통해 용융 합금철을 보온로에 유지하는 경우 용융 합금철의 탕면에 차단재층을 형성하면 용융 합금철과 공기 간의 접촉이 차단되어 공기 중 질소가 용융 합금철에 혼입되는 것을 방지할 수 있음을 알 수 있다.
본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
본 발명에 따른 차단재 및 이를 이용한 합금강 제조방법은, 합금강의 청정도를 확보하여 후속 공정을 생략하거나 후속 공정에 소요되는 시간을 단축할 수 있으므로 합금강의 생산성을 향상시킬 수 있다.

Claims (8)

  1. 망간을 함유하는 용융 합금철의 탕면에 투입되어 상기 용융 합금철의 탕면을 커버하는 차단재로서,
    전체 100중량%에 대해서 37 내지 66중량%의 CaO 및 SiO2와, 8 내지 15중량%의 Al2O3와, 6 내지 18중량%의 MgO 및 20 내지 30중량%의 MnO를 포함하고,
    상기 CaO와 상기 SiO2의 비(CaO/SiO2)는 0.95 내지 1.2 범위인 차단재.
  2. 합금강 제조방법으로서,
    용융 합금철을 마련하는 과정;
    차단재를 마련하는 과정;
    상기 용융 합금철에 상기 차단재를 투입하여 상기 용융 합금철의 탕면에 차단재층을 형성하고, 상기 용융 합금철을 융점 이상의 온도로 유지하는 과정;
    상기 용융 합금철을 용강과 합탕하여 합금강을 제조하는 과정;을 포함하는 합금강 제조방법.
  3. 청구항 2에 있어서,
    상기 용융 합금철을 마련하는 과정은,
    용해로에 합금철을 용해시켜 용융 합금철을 제조하는 과정;
    상기 용융 합금철을 보온로에 주입하는 과정;을 포함하는 합금강 제조방법.
  4. 청구항 2에 있어서,
    상기 용융 합금철을 마련하는 과정은,
    보온로에 용강을 장입하는 과정;
    상기 보온로에 합금철과 용융 합금철 중 적어도 어느 하나를 투입하는 과정을 포함하는 합금강 제조방법.
  5. 청구항 2에 있어서,
    상기 차단재를 마련하는 과정에서,
    상기 차단재 전체 100중량%에 대해서, 37 내지 66중량%의 CaO 및 SiO2와, 8 내지 15중량%의 Al2O3와, 6 내지 18중량%의 MgO 및 20 내지 30중량%의 MnO를 포함하고,
    상기 CaO와 상기 SiO2의 비(CaO/SiO2)가 0.95 내지 1.2 범위인 차단재를 마련하는 합금강 제조방법.
  6. 청구항 5에 있어서,
    상기 차단재는 고상 및 액상 중 적어도 어느 한 가지 상태로 투입하는 합금강 제조방법.
  7. 청구항 6에 있어서,
    상기 용융 합금철을 융점 이상의 온도로 유지하는 과정은 1450 내지 1550℃ 범위에서 수행하는 합금강 제조방법.
  8. 청구항 7에 있어서,
    상기 용융 합금철면의 탕면에 차단재층을 형성하는 과정에서,
    상기 용융 합금철이 대기와 접촉하여 대기 중 질소가 상기 용융 합금철에 혼입되는 것을 차단하도록 상기 차단재층을 상기 용융 합금철의 탕면 전체에 형성하는 합금강 제조방법.
PCT/KR2017/009665 2016-09-12 2017-09-04 차단재 및 이를 이용한 합금강 제조방법 WO2018048162A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/332,144 US20190218632A1 (en) 2016-09-12 2017-09-04 Blocking material and method for manufacturing alloy steel
CN201780063192.2A CN109804091A (zh) 2016-09-12 2017-09-04 阻挡材料和用于使用其制造合金钢的方法
EP17849046.2A EP3511427A4 (en) 2016-09-12 2017-09-04 BLOCKING MATERIAL AND PROCESS FOR PRODUCING ALLOY STEEL USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160117208A KR101798846B1 (ko) 2016-09-12 2016-09-12 차단재 및 이를 이용한 합금강 제조방법
KR10-2016-0117208 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018048162A1 true WO2018048162A1 (ko) 2018-03-15

Family

ID=60808367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009665 WO2018048162A1 (ko) 2016-09-12 2017-09-04 차단재 및 이를 이용한 합금강 제조방법

Country Status (5)

Country Link
US (1) US20190218632A1 (ko)
EP (1) EP3511427A4 (ko)
KR (1) KR101798846B1 (ko)
CN (1) CN109804091A (ko)
WO (1) WO2018048162A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170507A (ja) * 1992-12-02 1994-06-21 Nippon Steel Corp 溶鋼表面保温剤
JP2000042706A (ja) * 1998-07-31 2000-02-15 Kubota Corp 遠心鋳造用プリメルト・フラックス
KR20120063848A (ko) * 2010-12-08 2012-06-18 주식회사 포스코 래들 단열 보온재 및 이를 이용한 용강 보온 방법
KR20120080249A (ko) * 2009-12-10 2012-07-16 신닛뽄세이테쯔 카부시키카이샤 용강 표면 보온제와 용강 표면 보온 방법
KR101439763B1 (ko) * 2013-04-11 2014-09-11 주식회사 포스코 망간 함유 용강 제조방법, 보온로, 및 보온로를 활용한 망간 함유 용강 제조설비

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733140A (en) * 1956-01-31 Method for the production of
CN101392303B (zh) * 2008-08-05 2010-08-25 山东石横特钢集团有限公司 易切削钢精炼炉渣中有用元素的回收和利用方法
CN101736114B (zh) * 2008-11-19 2011-11-09 攀钢集团研究院有限公司 一种用于造渣的组合物及其制备和使用方法
KR101252644B1 (ko) * 2010-11-26 2013-04-09 주식회사 포스코 플럭스 및 이를 이용한 전로 정련 방법
CN105452504B (zh) * 2013-04-11 2018-03-20 株式会社Posco 含锰钢水生产方法、保温炉和使用保温炉的含锰钢水生产设备
CZ304951B6 (cs) * 2013-07-08 2015-02-04 Ecofer, S.R.O. Tavidlo pro aglomeraci, způsob výroby tavidla, aglomerační směs pro výrobu aglomerátu a použití strusek sekundární metalurgie jako tavidel pro přípravu aglomerační směsi

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170507A (ja) * 1992-12-02 1994-06-21 Nippon Steel Corp 溶鋼表面保温剤
JP2000042706A (ja) * 1998-07-31 2000-02-15 Kubota Corp 遠心鋳造用プリメルト・フラックス
KR20120080249A (ko) * 2009-12-10 2012-07-16 신닛뽄세이테쯔 카부시키카이샤 용강 표면 보온제와 용강 표면 보온 방법
KR20120063848A (ko) * 2010-12-08 2012-06-18 주식회사 포스코 래들 단열 보온재 및 이를 이용한 용강 보온 방법
KR101439763B1 (ko) * 2013-04-11 2014-09-11 주식회사 포스코 망간 함유 용강 제조방법, 보온로, 및 보온로를 활용한 망간 함유 용강 제조설비

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3511427A4 *

Also Published As

Publication number Publication date
EP3511427A1 (en) 2019-07-17
KR101798846B1 (ko) 2017-11-17
US20190218632A1 (en) 2019-07-18
CN109804091A (zh) 2019-05-24
EP3511427A4 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
WO2014168270A1 (ko) 망간 함유 용강 제조방법, 보온로, 및 보온로를 활용한 망간 함유 용강 제조설비
KR101412566B1 (ko) 전기로를 이용한 극저탄소강 제조방법
CN108998613B (zh) 一种超低碳低铝钢中自由氧控制方法
CN113943145A (zh) 一种不烧镁碳砖及其制备方法和应用
EP0725151A1 (en) Method and apparatus for refining molten metal
WO2018043835A1 (ko) 합금강 제조방법
WO2018048162A1 (ko) 차단재 및 이를 이용한 합금강 제조방법
WO2021125858A2 (ko) 법랑용 강판 및 그 제조방법
WO2016018050A1 (ko) 슬래그 볼, 이를 이용하는 용선 탈린 방법 및 전로 취련 방법
WO2020096390A1 (ko) 탈산제 및 용강 처리 방법
WO2018048161A1 (ko) 강의 제조 방법
JPH09165615A (ja) 溶融金属の脱窒方法
CN102373315A (zh) 一种高牌号冷轧无取向硅钢的制造方法
KR20060012266A (ko) 강철의 직접 합금 방법
WO2020022682A1 (ko) 합금강 제조방법
WO2018110914A2 (ko) 탈린 플럭스 및 그 제조방법
KR100388240B1 (ko) 전기로 용강중의 탈인 처리방법
EP4353843A1 (en) Molten steel denitrification method and steel production method
KR101363923B1 (ko) 강의 제조방법
KR100999197B1 (ko) 강의 정련 방법
EP4353842A1 (en) Molten steel denitrification method and steel production method
KR102396819B1 (ko) 용선 탈린 방법
KR20130032698A (ko) 용강의 정련방법
KR20020051240A (ko) 전로 취련중 용철의 탈황방법
KR960000323B1 (ko) 실리콘-킬드강용 연주 턴디쉬플럭스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017849046

Country of ref document: EP