WO2018048083A1 - 스테이브 두께 측정 장치 - Google Patents

스테이브 두께 측정 장치 Download PDF

Info

Publication number
WO2018048083A1
WO2018048083A1 PCT/KR2017/007261 KR2017007261W WO2018048083A1 WO 2018048083 A1 WO2018048083 A1 WO 2018048083A1 KR 2017007261 W KR2017007261 W KR 2017007261W WO 2018048083 A1 WO2018048083 A1 WO 2018048083A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
stave
support leg
link
thickness measuring
Prior art date
Application number
PCT/KR2017/007261
Other languages
English (en)
French (fr)
Inventor
최상우
유병수
김관태
신남호
장수호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP17848967.0A priority Critical patent/EP3511675B1/en
Priority to JP2019511564A priority patent/JP2019526709A/ja
Priority to CN201780054701.5A priority patent/CN109690242A/zh
Priority to ES17848967T priority patent/ES2902878T3/es
Publication of WO2018048083A1 publication Critical patent/WO2018048083A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • G01B17/025Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/28Arrangements of monitoring devices, of indicators, of alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Definitions

  • the present invention relates to a stave thickness measuring device which is installed inside the shell of the blast furnace to measure the remaining thickness of the stave acting as a cooling means.
  • blast furnaces are charged with iron ore, which is the main raw material, and coal, which is a fuel, in the form of sintered ore and coke, and is a facility for producing iron oxide in the molten state, that is, molten iron, through a reduction reaction.
  • the blast furnace includes cooling means inside the shell, which is the outer wall of the blast furnace, in order to protect the furnace body from the descending fuel, raw materials, high temperature hot air and reaction heat.
  • cooling means a stave is used.
  • the stave may cause damage to accelerate the wear in the operation of the high lead ratio operation, damage to the cooling water pipes inside the stave, this damage has a problem that the cooling water flows into the blast furnace to lower the temperature.
  • the ultrasonic waves of the sensor portion preferentially receive a signal that arrives first, not the overall thickness.
  • the thin thickness of the groove is measured. This is not a residual thickness of interest, and there is a problem that results in a measurement that is much thinner than the actual residual thickness.
  • the present invention has a main object to provide a stave thickness measuring device capable of measuring the thickness by moving at least partially the sensor unit.
  • Stave thickness measurement apparatus the body through which the operating rod; A link unit for connecting between one end of the manipulation rod and the main body; And a sensor unit installed at one side of the link unit to move according to the rotation of the link unit.
  • FIG. 1 is a schematic cross-sectional view showing a stave thickness measuring apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view for describing an operating state of the stave thickness measuring apparatus illustrated in FIG. 1.
  • 3 and 4 are cross-sectional views showing a state in which the stave thickness measurement apparatus according to the first embodiment of the present invention is applied in the blast furnace.
  • FIG. 5 is a schematic cross-sectional view showing a stave thickness measuring apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view for describing an operating state of the stave thickness measuring apparatus illustrated in FIG. 5.
  • FIG. 7 is a schematic cross-sectional view showing a modified example of the stave thickness measuring device according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a use state in which a modified example of the stave thickness measuring device according to the second embodiment of the present invention is applied to a blast furnace.
  • FIG. 9 is a schematic cross-sectional view showing a stave thickness measuring apparatus according to a third embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a stave thickness measuring apparatus according to a first embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view for explaining the operating state of the stave thickness measuring device shown in Figure 1
  • Figure 3 4 is a cross-sectional view showing a state in which the stave thickness measurement apparatus according to the first embodiment of the present invention is applied in the blast furnace.
  • Blast furnace (not shown) is a facility that charges iron ore, which is the main raw material, and coal, which is fuel, in the form of sintered ore and coke, and manufactures iron oxide in the molten state of iron, that is, molten iron, through a reduction reaction.
  • a stave 100 is provided to protect the furnace body from hot air and reaction heat.
  • the stave 100 is a component for cooling and protecting the furnace body of the blast furnace, the blast furnace may be provided with a plurality of staves.
  • the stave is a wide panel installed in parallel with the blast furnace 200, the inside is provided with a coolant pipe 104, the groove 102 is processed on the side facing the inner side of the blast furnace protrusion 103 Can be formed.
  • the cooling water pipe 104 is a passage through which the cooling water flows, and the cooling water can protect the furnace body from hot air and reaction heat of high heat.
  • the stave thickness measuring apparatus mentioned later is provided in this cooling water piping, and the thickness of the stave 100 can be measured.
  • the cooling water pipe 104 may be formed in plural in one stave 100, and may be in communication with a water supply pipe (not shown) and a drain pipe 105 to allow the cooling water to flow in and out.
  • the water supply pipe and the drain pipe are extended to the outside of the blast furnace 200, the cooling water can be supplied from the outside or discharged to the outside.
  • the upper and lower ends of the cooling water pipe 104 may be formed in an approximately T shape together with the water supply pipe or the drain pipe 105, and a predetermined space 101 may be formed between one end of the cooling water pipe and the water supply pipe or between the other end of the cooling water pipe and the drain pipe. This can be formed.
  • the stave thickness measuring apparatus of the present invention may be disposed in the predetermined space 101.
  • the thickness of the stave 100 measured by the stave thickness measuring device disposed in the space 101 is the thickness of the wall where the wear occurs when the blast furnace is in operation, the thickness of the blast furnace from the inner wall of the cooling water pipe 104 Wall thickness in the inward direction. It should be possible to preferentially measure the thickness of the protruding portion 103, which is where wear progresses substantially prior to the groove 102 portion.
  • Refractories may be disposed inside and outside the stave 100, and the refractory is a material that withstands high temperatures of the blast furnace, and may sufficiently maintain strength without softening at high temperatures and may withstand chemical effects.
  • the stave thickness measuring apparatus 10 includes a main body 1 through which the operating rod 2 passes; A link portion 5 connecting between one end of the operation rod and the main body; And a sensor unit 9 installed at one side of the link unit to move in accordance with the rotation of the link unit.
  • the main body 1 is a substantially tubular member, and is preferably configured to be coupled to each other by being provided as a pair of halves for assembling other components.
  • the operating rod 2 penetrates inside the main body 1 along the longitudinal direction.
  • One end of the main body may be equipped with a support 3 which extends from the leading end face or side wall of the main body and is integrally formed or separately manufactured and attached to the main body.
  • a support 3 which extends from the leading end face or side wall of the main body and is integrally formed or separately manufactured and attached to the main body.
  • a pair of support parts may be provided on the front end face or side wall of the main body so as to face each other depending on conditions.
  • the other end of the main body 1 can be connected to the connecting pipe 4, which extends out of the water supply pipe or drain pipe 105 and has a length that can be exposed to the outside.
  • the operating rod 2 is a substantially tubular or rod-shaped member, and a link portion 5 is connected to one end thereof, and the other end extends through the connecting tube 4 and extends out of the connecting tube.
  • a signal cable (not shown) for the sensor unit 9 may be built in the manipulation rod.
  • the operation rod 2 is moved along the longitudinal direction of the main body at the center of the main body 1, the support portion 3 is provided on the front end surface or side wall of the main body at a position deflected away from the center of the main body, The rod and the support do not interfere with each other.
  • the side of the main body 1 may be provided with at least one incision groove (1a) for the unfolding of the support leg 11 to be described later.
  • a stepped portion 1b may be formed on the inner wall of the main body to penetrate the operation rod 2 to reduce the internal space of the main body.
  • An extension block 12 may also be provided on the manipulation rod 2 to unfold the support legs 11 to be described later.
  • This expansion block is fixed to a portion located in the main body 1 of the operation rod and can move together in the main body together with the movement of the operation rod. However, the expansion block is prevented from moving in the stepped portion 1b in the main body.
  • link portion 5 One end of the link portion 5 is rotatably connected to one end of the operation rod, and a long hole 6a is formed to be inclined in the longitudinal direction thereof, and thus, the main body 1, that is, through a connecting pin 3a inserted into the long hole.
  • a first link 6 connected to the support 3; And a second link 7 having one end connected to the other end of the first link and having a sensor unit 9 mounted thereon.
  • the sensor unit 9 may further include a third link 8 connecting the other end of the second link 7 and one end of the operation rod 2 so that the sensing surface of the sensor 9 has a predetermined orientation.
  • the sensor unit 9 may include a piezoelectric body that transmits ultrasonic waves to the stave 100 and receives ultrasonic waves reflected and returned.
  • the thickness of the stave can be measured by the speed of the transmitted and received ultrasonic waves and the time taken to receive them.
  • the surface of the sensor unit 9 may be formed of a curved surface having the same radius of curvature as the inner surface of the cylindrical coolant pipe 104. This is to maximize the sensing efficiency by maximizing the area detected by the sensor.
  • a signal cable passing through the operating rod 2 may be connected to the sensor unit 9.
  • the signal cable may be drawn out along the water supply pipe or the drain pipe 105 and finally connected to an operation unit (not shown).
  • the signal transmitted and received by the sensor unit 9 is transmitted to an external operation unit, and the operation unit may calculate the thickness of the stave 100 using the detection value of the sensor unit.
  • the groove is included in the area (area) in which the sensor transmits and receives a signal, the signal reflected from the cross section of the groove is first received and is thin.
  • the problem of measuring thickness arises. If such a problem occurs in either the drain pipe 105 or the water supply pipe, it will not be able to measure a meaningful residual thickness until the wear progresses seriously.
  • the measurement of the remaining thickness is measured to be less serious than the actual wear. Errors may occur.
  • the sensor portion 9 can be moved in parallel in a direction substantially perpendicular to the insertion direction of the operation rod 2 by the link portion 5, so that the sensor portion shown in FIG. Ascending up or down in the stave 100 as shown.
  • the remaining thickness to the surface where the sensor portion is in contact with the protruding portion 103 adjacent to the wear progresses can be easily measured.
  • the stave thickness measuring apparatus 10 may include at least one support leg 11 installed on the main body 1 and extending to the side of the main body.
  • the water supply pipe or the drain pipe 105 of the stave 100 may be bent in the middle instead of the straight pipe. Furthermore, a ball valve or the like may be installed in the water supply pipe or the drain pipe for maintenance, and the water supply pipe or the drain pipe 105 may be inserted into the water supply pipe or the drain pipe.
  • the thickness (or width) of the sensor part 9 should be much smaller than the inner diameter of the tube.
  • the thickness of the sensor part 9 is much smaller than the inner diameter of the pipe as described above, the sensor part easily shakes and moves during the measurement inside the water supply pipe or the drain pipe 105, so that the sensor part is difficult to contact at the proper position of the cooling water pipe 104. .
  • the stave thickness measuring device of the present invention includes a support leg for positioning the sensor part at a predetermined position on the inner wall of the pipe, which is supported when the sensor part is pushed into the water supply pipe or the drain pipe and after the measurement.
  • a support leg for positioning the sensor part at a predetermined position on the inner wall of the pipe, which is supported when the sensor part is pushed into the water supply pipe or the drain pipe and after the measurement.
  • one end of the support leg 11 is fixed to the stepped portion 1b of the main body 1, and the other end thereof extends toward the expansion block 12 of the operation rod 2.
  • Rotating members 13, such as balls or rollers, are installed at the other end of the support leg to prevent the inner diameter of the tube or the other end of the support leg from being worn when it contacts the inner diameter of the tube.
  • These support legs can be made of an elastic material, such as metal or plastic, so that bending deformation is possible.
  • the expansion block 12 fixed to the operation rod is a gap between the support leg 11 and the operation rod (2).
  • the support leg is exposed to the outside of the body through the incision groove (1a) of the body and unfolded at the same time.
  • one end of the support leg 11 is rotatably connected to the stepped portion 1b of the main body via a rotation shaft (not shown), and the other end of the support block 11 extends the expansion block 12 of the operating rod 2.
  • Stretched toward These support legs are made of a material such as metal, and the expansion block may be formed of a magnetic material.
  • the expansion block 12 fixed to the operation rod is a gap between the support leg 11 and the operation rod (2).
  • the support leg is rotated to open the other end side, and thus the support leg is exposed to the outside of the main body through the incision groove (1a) of the main body and unfolded at the same time.
  • the extension block 12 fixed to the operation rod is pulled out of the gap between the support leg and the operation rod while pulling the support leg 11 by magnetic force and the other end of the support leg is caused by magnetic force.
  • One end is closed and the supporting leg is folded into the main body.
  • one end of the support leg 11 is rotatably connected to the stepped portion 1b of the main body via a rotation shaft (not shown), and the other end thereof is an expansion block 12 of the operation rod 2. It can be connected to the main body 1 or the connection pipe 4 by an elastic member (not shown) such as a spring extending toward. Accordingly, when the expansion block fixed to the operation rod is pulled out of the gap between the extended support leg and the operation rod, the other end side of the support leg is retracted by the elastic force of the elastic member and the support leg can be folded into the main body.
  • any one support leg may be formed longer than the other support legs (see FIG. 8). In this way, the longer supporting leg is stronger to support the main body 1 to move the sensor portion 9 to the opposite side of the longer supporting leg.
  • the longer support leg 11 moves the sensor portion 9 to the opposite side, so that the parallel movement distance of the sensor portion is increased, so that the sensor portion can be moved closer to the protrusion 103 portion.
  • the longer supporting leg is disposed on the side of the main body 1, it is possible to move the sensor part to be deflected to the left or the right.
  • FIG. 5 is a schematic cross-sectional view showing a stave thickness measuring apparatus according to a second embodiment of the present invention
  • Figure 6 is a schematic cross-sectional view for explaining the operating state of the stave thickness measuring apparatus shown in FIG.
  • FIG. 7 is a schematic cross-sectional view showing a modified example of the stave thickness measuring apparatus according to the second embodiment of the present invention.
  • FIG. 7 is a view for explaining an operating state.
  • FIG. 8 is a stave according to the second embodiment of the present invention.
  • a modification of the thickness measuring device is a sectional view showing a use state applied in a blast furnace.
  • the remaining components are the same as those of the first embodiment described above.
  • the same components as those of the stave thickness measuring apparatus 10 according to the first embodiment are given the same reference numerals. Detailed description of the configuration and functions will be omitted.
  • the support leg 21 is rotatably installed at the middle thereof on the main body 1 by the rotation pin 22, and one end thereof is connected to the main body via a spring 23.
  • one end of the wire 24 is connected to the one end of the support leg, and the wire passes through the gap between the operating rod 2 and the connection pipe 4 and the other end extends out of the connection pipe and is exposed.
  • the other end of the support leg may be provided with a rotating member 13, such as a ball or a roller.
  • the support legs may be made of a material such as metal or plastic.
  • an auxiliary spring 25 may be interposed between one end of the support leg 21 and one end of the wire 24, wherein the inner diameter of the tube is less than the unfolded width of the support leg or any portion of the inner diameter of the tube.
  • the deformation characteristic of the auxiliary spring may allow the support legs to rotate in reverse to provide play.
  • the support leg is rotated in the opposite direction to the main body 1 around the rotary pin 22 by the elastic force that the spring 23 connected to one end of the support leg 21 is restored.
  • the other end of the support leg is closed and the support leg is folded into the main body.
  • one of the support legs may be formed longer than the remaining support legs. In this way, the longer supporting leg is stronger to support the main body 1 to move the sensor portion 9 to the opposite side of the longer supporting leg.
  • the longer supporting leg 21 moves the sensor part 9 to the opposite side, so that the parallel moving distance of the sensor part is increased, so that the sensor part can be moved closer to the protruding part 103.
  • the longer supporting leg is disposed on the side of the main body 1, it is possible to move the sensor part to be deflected to the left or the right.
  • FIG. 9 is a schematic cross-sectional view showing a stave thickness measuring apparatus according to a third embodiment of the present invention.
  • the remaining components are the same as those of the above-described first and second embodiments.
  • the stave thickness measuring apparatus 30 according to the third embodiment of the present invention the same components as those of the stave thickness measuring apparatuses 10 and 20 according to the first and second embodiments are described. Regarding the same reference numerals, detailed descriptions of the structures and functions will be omitted.
  • one end of the support leg 31 is fixed to the connecting pipe 4 or the main body 1, and the other end thereof extends to the side of the connecting pipe.
  • the support leg may be formed in the form of a coil made of metal, a brush made of plastic, or a pad made of silicon.
  • the sensor unit 9 when the support leg 31 having elasticity is mounted on one side or the main body of the connection pipe 4 connected to the main body 1, the sensor unit 9 can be operated without any separate operation.
  • the inner diameter of the tube may be contacted to support the main body or the like so as not to move at a constant and proper position.
  • the elastic support leg when passing through the narrow inner diameter region of the tube, the elastic support leg is deformed to smoothly pass through the narrow space.
  • the shape is restored by the elastic force, and the main body and the sensor portion are restored. Will be supported.
  • the stave thickness measuring apparatus of the present invention configured as described above is pushed into the drain pipe 105 or the water supply pipe so that the sensor unit 9 corresponds to the protrusion 103 portion or the groove 102 portion of the stave 100 ( It comes into contact with the inner surface of 104).
  • the sensor unit 9 of the stave thickness measuring device transmits ultrasonic waves so as to measure the thickness of the stave 100 from the inner wall of the cooling water pipe 104 and receives the reflected ultrasonic waves.
  • the thickness of the stave is calculated by using the velocity of the transmitted and received ultrasound and the time difference transmitted and received.
  • the groove 102 portion is measured, since the thickness from the design value of the stave 100 to the groove of the stave is already known from the inner wall of the cooling water pipe 104, the groove is compared by comparing the measured value with the design value. It can be judged that the thickness of the site is measured.
  • the connecting pin 3a of the support portion 3 has the long hole (the first link 6).
  • the entire first link is rotated around the connecting pin, so that the second link 7 and the sensor unit mounted thereon are parallel in a direction substantially perpendicular to the insertion direction of the operation rod. Will move.
  • the sensor part 9 contact
  • the signal transmitted and received by the sensor unit 9 is transmitted to an external operation unit, and the thickness of the stave 100 may be calculated using the detection value of the sensor unit.
  • the thickness can be measured at at least two points, and at least the front side of the stave. Avoiding grooves formed in the can facilitate the measurement of the thickness of the protrusion in progress of wear. In addition, the thickness can be measured at at least two points to check the gradient of the thickness.
  • the dedicated sensor in the water supply pipe and contacting the wall surface of the cooling water pipe by pushing the dedicated sensor in the water supply pipe and contacting the wall surface of the cooling water pipe, while simply measuring the remaining thickness of the stave, while avoiding the groove portion in the area where the water supply pipe and the cooling water pipe intersect the meaning of the projection
  • the remaining thickness can be measured. This makes it possible to reliably measure the wear level of the stave, thus ultimately maximizing the performance and life of the blast furnace.
  • the present invention is useful for, for example, measuring the remaining thickness of the stave as its cooling means in the blast furnace of the steel industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Blast Furnaces (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

본 발명은 스테이브 두께 측정 장치에 관한 것으로, 이는 조작로드가 관통되는 본체; 상기 조작로드의 일단과 상기 본체 사이를 연결하는 링크부; 및 상기 링크부의 일측에 설치되어 상기 링크부의 회전에 따라 이동하게 되는 센서부를 포함하여서, 센서의 위치를 이동시켜 스테이브의 돌출부 부위에서 두께 측정이 가능하고, 마모 초기부터 잔존 두께의 측정이 제한 없이 가능하게 되는 효과가 있다.

Description

스테이브 두께 측정 장치
본 발명은 고로의 철피 내측에 설치되어 냉각수단으로 작용하는 스테이브의 잔존 두께를 측정하는 스테이브 두께 측정 장치에 관한 것이다.
제철산업에서 고로는 주된 원료인 철광석과 연료인 석탄을 소결광과 코크스 형태로 장입하고 환원반응을 통해 산화철을 선철의 용융된 상태, 즉, 용선으로 제조하는 설비이다.
이러한 고로는 하강하는 연료, 원료, 고열의 열풍 및 반응열로부터 노체를 보호하기 위하여 고로의 외벽인 철피 내부에 냉각수단을 포함하고 있다. 이러한 냉각수단으로는 스테이브(Stave)가 사용되고 있다.
하지만, 스테이브는 고출선비 조업에서 마모가 가속화되어 스테이브 내부의 냉각수 배관이 파손되는 손상이 발생할 수 있으며, 이러한 손상은 냉각수가 고로의 내부로 유입되어 온도를 하강시킨다는 문제가 있었다.
이러한 문제를 해소하기 위해, 냉각수가 고로의 내부로 유출되는 것을 방지하도록 스테이브의 두께를 측정하고 마모 정도를 추출하여 고로의 생산성 및 성능을 향상시키도록 하는 방안이 모색되었다.
고로의 스테이브 두께를 측정하기 위한 기술로는 본 출원인이 출원한 대한민국 공개특허공보 제2012-0065119호 "고로의 스테이브 두께 측정 장치 및 방법"이 있다. 이 기술은 스테이브의 두께방향 마모를 온라인으로 모니터링하기 위해 센서부를 스테이브의 냉각수 배관 안에 장착하고 이를 이용하여 실시간으로 스테이브의 잔존 두께를 측정하도록 되어 있다.
그런데 전술한 기술에서 급배수관과 스테이브의 냉각수 배관이 교차되는 부분에서 스테이브의 전면에 홈(groove)이 위치하는 경우에, 센서부의 초음파는 우선적으로 먼저 도달하는 신호를 수신하므로 전체 두께가 아닌 홈의 얇은 두께를 측정하게 된다. 이는 관심 있는 잔존두께가 아니며, 실제 잔존 두께보다 훨씬 얇은 측정치를 나타내게 되는 문제가 있다.
이에 본 발명은, 센서부가 적어도 부분적으로 이동하여 두께를 측정할 수 있는 스테이브 두께 측정 장치를 제공하는 데에 그 주된 목적이 있다.
본 발명의 일 실시예에 따른 스테이브 두께 측정 장치는, 조작로드가 관통되는 본체; 상기 조작로드의 일단과 상기 본체 사이를 연결하는 링크부; 및 상기 링크부의 일측에 설치되어 상기 링크부의 회전에 따라 이동하게 되는 센서부를 포함하는 것을 특징으로 한다.
이상과 같이 본 발명에 의하면, 센서부의 위치를 이동하면서 스테이브의 돌출부 부위에서 두께 측정이 가능하여 마모 초기부터 잔존 두께의 측정이 제한 없이 가능하게 되는 효과가 있다.
특히, 본 발명에 의하면, 스테이브의 전면이 갖는 요철 구조의 제약을 해결하고, 실질적인 잔존 두께의 측정이 가능하게 됨으로써, 스테이브의 마모 정도를 신뢰성 있게 측정할 수 있게 되고, 이에 따라 궁극적으로 고로의 성능 및 수명을 극대화할 수 있는 효과를 얻게 된다.
도 1은 본 발명의 제1실시예에 따른 스테이브 두께 측정 장치를 도시한 개략 단면도이다.
도 2는 도 1에 도시된 스테이브 두께 측정 장치의 작동 상태를 설명하기 위한 개략 단면도이다.
도 3과 도 4는 본 발명의 제1실시예에 따른 스테이브 두께 측정 장치가 고로 내에 적용된 사용 상태를 도시한 단면도들이다.
도 5는 본 발명의 제2실시예에 따른 스테이브 두께 측정 장치를 도시한 개략 단면도이다.
도 6은 도 5에 도시된 스테이브 두께 측정 장치의 작동 상태를 설명하기 위한 개략 단면도이다.
도 7은 본 발명의 제2실시예에 따른 스테이브 두께 측정 장치의 변형예를 도시한 개략 단면도로서, 작동 상태를 설명하기 위한 도면이다.
도 8은 본 발명의 제2실시예에 따른 스테이브 두께 측정 장치의 변형예가 고로 내에 적용된 사용 상태를 도시한 단면도이다.
도 9는 본 발명의 제3실시예에 따른 스테이브 두께 측정 장치를 도시한 개략 단면도이다.
이하, 본 발명이 예시적인 도면을 통해 상세하게 설명된다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 제1실시예에 따른 스테이브 두께 측정 장치를 도시한 개략 단면도이고, 도 2는 도 1에 도시된 스테이브 두께 측정 장치의 작동 상태를 설명하기 위한 개략 단면도이며, 도 3과 도 4는 본 발명의 제1실시예에 따른 스테이브 두께 측정 장치가 고로 내에 적용된 사용 상태를 도시한 단면도들이다.
고로(미도시)는 주된 원료인 철광석과 연료인 석탄을 소결광과 코크스 형태로 장입하고 환원반응을 통해 산화철을 선철의 용융된 상태, 즉, 용선으로 제조하는 설비로서, 하강하는 연료, 원료, 고열의 열풍 및 반응열로부터 노체를 보호하기 위해 스테이브(100)를 구비한다.
스테이브(100)는 고로의 노체를 냉각하여 보호하는 구성요소인데, 고로에는 다수의 스테이브가 구비될 수 있다. 스테이브는 고로의 철피(200)와 평행하게 설치되는 넓은 패널로 되어 있고, 그 내부에는 냉각수 배관(104)을 구비하며, 고로의 내측을 향하는 측면에 홈(102)이 가공되면서 돌출부(103)가 형성될 수 있다.
냉각수 배관(104)은 냉각수가 흐르는 통로로서, 냉각수에 의해 고열의 열풍 및 반응열로부터 노체를 보호할 수 있게 된다. 이 냉각수 배관의 내부에 후술하는 스테이브 두께 측정 장치가 설치되어 스테이브(100)의 두께를 측정할 수 있다.
냉각수 배관(104)은 하나의 스테이브(100)에서 그 내부에 복수 개로 형성될 수 있으며, 냉각수가 유입되고 유출되도록 하는 급수관(미도시) 및 배수관(105)과 연통될 수 있다. 급수관 및 배수관은 고로의 철피(200)의 외부로 연장되어 있어, 외부에서 냉각수를 공급받거나 외부로 배출할 수 있다.
냉각수 배관(104)의 상하 양단은 급수관 또는 배수관(105)과 함께 대략 T형상으로 형성될 수 있으며, 냉각수 배관의 일단과 급수관의 사이 또는 냉각수 배관의 타단과 배수관의 사이에는 소정의 공간(101)이 형성될 수 있다.
이러한 소정의 공간(101) 내에 본 발명의 스테이브 두께 측정 장치가 배치될 수 있다. 여기서, 공간(101)에 배치된 스테이브 두께 측정 장치에 의해 측정되는 스테이브(100)의 두께는 고로가 조업 중일 때 마모가 발생하는 벽의 두께이며, 냉각수 배관(104)의 내벽에서 고로의 내측방향으로의 벽 두께이다. 실질적으로 홈(102) 부위보다 마모가 먼저 진행되는 곳인 돌출부(103) 부위의 두께를 우선적으로 측정할 수 있어야 한다.
스테이브(100)의 내측 및 외측에는 내화물(미도시)이 배치될 수 있으며, 이 내화물은 고로의 고온에 견디는 물질로서, 고온에서 연화하지 않고 강도를 충분히 유지할 수 있으며 화학적 작용에도 견딜 수 있다.
본 발명의 제1실시예에 따른 스테이브 두께 측정 장치(10)는, 조작로드(2)가 관통되는 본체(1); 조작로드의 일단과 본체 사이를 연결하는 링크부(5); 및 링크부의 일측에 설치되어 링크부의 회전에 따라 이동하게 되는 센서부(9)를 포함하고 있다.
본체(1)는 대략 관 형상의 부재로서, 다른 구성요소들의 조립을 위해 한 쌍의 절반부로 마련되어 서로 결합되는 구성의 것이 좋다.
본체(1)의 내부에는 길이방향을 따라 조작로드(2)가 관통하고 있다. 본체의 일단에는 지지부(3)가 장착될 수 있는데, 이 지지부는 본체의 선단면 또는 측벽으로부터 연장하여 일체로 형성되거나 별개로 제조되어 본체에 부착될 수 있다. 도면에는 단지 하나의 지지부가 도시되어 있지만, 조건에 따라 서로 마주보도록 한 쌍의 지지부가 본체의 선단면 또는 측벽에 구비되어도 무방하다.
본체(1)의 타단에는 연결관(4)이 연결될 수 있고, 이 연결관은 급수관 또는 배수관(105) 밖으로 연장하여 외부로 노출될 수 있는 길이를 갖는다.
조작로드(2)는 대략 관 또는 봉형상의 부재로서, 일단에 링크부(5)가 연결되고, 연결관(4)을 관통하여 타단이 연결관 밖으로 연장하여 노출되어 있다. 이 조작로드의 내부에 센서부(9)를 위한 신호 케이블(미도시)이 내장될 수 있다. 이로써, 작업자가 조작로드의 타단을 연결관의 내부를 향해 밀어주면 조작로드의 일단이 본체(1)로부터 돌출되어 링크부를 회동시키게 되는 것이다.
한편, 조작로드(2)는 본체(1)의 중심에서 본체의 길이방향을 따라 이동하게 되고, 지지부(3)는 본체의 중심에서 벗어나 편향된 위치에서 본체의 선단면 또는 측벽에 구비되기 때문에, 조작로드와 지지부는 서로 간섭되지 않는다.
본체(1)의 측면에는 후술하는 지지다리(11)의 펼쳐짐을 위해 적어도 하나의 절개홈(1a)을 구비할 수 있다. 또한, 본체의 내벽에는 조작로드(2)가 관통되면서 본체의 내부공간을 축소시키는 단턱부(1b)가 형성될 수 있다.
조작로드(2)에도 후술하는 지지다리(11)의 펼쳐짐을 위해 확장블록(12)이 구비될 수 있다. 이 확장블록은 조작로드 중 본체(1) 내에 위치하는 부분에 고정되어 조작로드의 이동에 따라 함께 본체 내에서 이동할 수 있다. 하지만, 확장블록은 본체 내 단턱부(1b)에서 그 이동이 저지되게 된다.
링크부(5)는 일단이 조작로드의 일단에 회전가능하게 연결되고, 그 길이방향에 경사지게 장공(6a)이 형성되어 이 장공에 삽입된 연결핀(3a)을 매개로 본체(1), 즉 지지부(3)에 연결되는 제1링크(6); 및 이 제1링크의 타단에 일단이 연결되고, 센서부(9)가 장착된 제2링크(7)를 포함할 수 있다.
또한, 센서부(9)의 센싱면이 일정한 방위를 갖도록, 제2링크(7)의 타단과 조작로드(2)의 일단을 연결하는 제3링크(8)를 더 포함할 수 있다.
이와 같이 구성된 링크부(5)에서는, 조작로드(2)가 직선 이동할 때 지지부(3)의 연결핀(3a)이 제1링크(6)의 장공(6a)을 따라 이동하게 됨으로써 제1링크 전체가 연결핀을 중심으로 하여 회동하게 되고, 이에 따라 제2링크(7) 및 이에 장착된 센서부(9)가 조작로드(2)의 삽입방향에 대해 대략 직각인 방향으로 평행하게 이동할 수 있다.
센서부(9)는 초음파를 스테이브(100)로 송출하고, 반사되어 돌아오는 초음파를 수신하는 압전체를 구비할 수 있다. 이렇게 송수신된 초음파의 속도와 수신하는데 걸린 시간을 통해 스테이브의 두께를 측정할 수 있다.
센서부(9)의 표면은 원통형인 냉각수 배관(104)의 내면과 동일한 곡률 반경을 가진 곡면으로 형성될 수도 있다. 이는 센서부가 감지하는 영역을 최대화하여 센싱 효율을 극대화하기 위함이다.
도시되어 있지는 않지만, 센서부(9)에는 조작로드(2)를 관통한 신호 케이블이 연결될 수 있다. 이 신호 케이블은 급수관 또는 배수관(105)을 따라 외부로 인출되어 최종적으로 연산부(미도시)에 연결될 수 있다. 센서부(9)에서 송수신된 신호는 외부의 연산부로 전송되고, 연산부는 센서부의 검출값을 이용하여 스테이브(100)의 두께를 계산할 수 있다.
실제로, 배수관(105) 또는 급수관에 스테이브 두께 측정 장치를 밀어 넣을 때 센서부(9)가 스테이브(100)의 돌출부(103) 부위에 접촉하게 되는 스테이브의 구조도 있고, 설계 구조상 홈(102) 부위에 접촉하게 되는 경우도 있다. 스테이브는 그 돌출된 부분부터 먼저 마모되게 되므로 홈 부위의 두께는 돌출부가 마모되어 홈 부위와 동일한 두께가 되기 전까지는 거의 변동이 없다. 따라서 스테이브의 마모를 평가하기 위한 잔존 두께의 측정은 돌출부 부위의 두께를 측정하는 것으로 이루어져야 한다.
그런데, 센서부(9)의 중심선이 홈(102) 부위에서 약간 어긋나게 센서부가 위치하더라도 센서부가 신호를 송수신하는 영역(면적)에서 홈이 포함되게 되면 홈의 단면으로부터 반사되는 신호가 먼저 수신되어 얇은 두께를 측정하게 되는 문제가 발생한다. 배수관(105)과 급수관 중 어느 하나에서 이와 같은 문제가 발생하게 되면 마모가 심각하게 진행되기 전까지는 결국 의미 있는 잔존 두께를 측정하지 못하게 된다. 또한, 돌출부(103) 부위에 해당하는 구조가 선택되더라도 스테이브(100)의 상하에서 마모의 불균형으로 상부와 하부의 마모가 다르게 진행된 경우에는 잔존 두께의 측정치가 실제보다 마모가 덜 심각한 것으로 측정되는 오류가 발생할 수 있다.
본 발명의 스테이브 두께 측정 장치에서는 링크부(5)에 의해 센서부(9)가 조작로드(2)의 삽입방향에 대해 대략 직각인 방향으로 평행하게 이동할 수 있어, 센서부가 도 4에 도시된 것처럼 스테이브(100) 내에서 위로 상승되거나, 아래로 하강되게 된다. 이로써, 돌출부(103) 부위에 센서부가 인접하게 접촉되어 마모가 진행되고 있는 면까지의 잔존 두께를 용이하게 측정할 수 있게 되는 것이다.
추가로, 본 발명의 제1실시예에 따른 스테이브 두께 측정 장치(10)는, 본체(1)에 설치되어 본체의 측방으로 펼쳐질 수 있는 적어도 하나의 지지다리(11)를 포함할 수 있다.
스테이브(100)의 급수관 또는 배수관(105)은 직관이 아니고 중간에 구부려진 경우가 있으며, 더구나 정비를 위해 급수관 또는 배수관에 볼밸브 등을 장착한 경우가 있어, 급수관 또는 배수관의 내부에 삽입되는 센서부(9)의 두께(혹은 폭)는 관의 내경보다 훨씬 작은 크기를 가져야 한다.
이와 같이 센서부(9)의 두께가 관의 내경보다 훨씬 작기 때문에 급수관 또는 배수관(105)의 내부에서 측정 동안 센서부가 쉽게 흔들리고 움직여 센서부가 냉각수 배관(104)의 적절한 위치에서 접촉하기가 곤란하게 된다.
이를 해소하기 위해, 본 발명의 스테이브 두께 측정 장치는 센서부를 관의 내벽에서 일정한 위치에 자리를 잡도록 하는 지지다리를 포함하는데, 이 지지다리는 센서부가 급수관 또는 배수관 내로 밀어 넣어질 때와 측정 후 당겨져 급수관 또는 배수관으로부터 인출될 때 접혀 관의 내경부에 간섭없이 지나가고, 측정시에는 일정하고 적절한 위치에서 센서부가 움직이지 않게 본체 등을 지지하도록 펼쳐져 관의 내경부에 접촉할 수 있어야 한다.
본 발명의 제1실시예에서 지지다리(11)는 그 일단이 본체(1)의 단턱부(1b)에 고정되고, 타단은 조작로드(2)의 확장블록(12)을 향해 뻗어 있다. 지지다리의 타단에는 볼이나 롤러 등과 같은 회전부재(13)가 설치되어, 관의 내경부와 접촉할 때 관의 내경부 또는 지지다리의 타단이 마모되는 것을 방지할 수 있다. 이러한 지지다리는 금속이나 플라스틱 등과 같이 탄성을 가진 재질로 만들어질 수 있어 휨 변형이 가능하다.
센서부(9)의 이동을 위해 조작로드(2)가 본체(1)로부터 돌출하도록 이동되면, 조작로드에 고정된 확장블록(12)이 지지다리(11)와 조작로드(2) 사이의 틈새로 삽입되면서 지지다리가 휘어져 타단측이 벌어지게 되고, 이에 따라 지지다리가 본체의 절개홈(1a)을 통해 본체의 외부로 노출됨과 동시에 펼쳐지게 된다.
조작로드(2)가 반대쪽으로 이동되면, 조작로드에 고정된 확장블록(12)이 지지다리(11)와 조작로드(2) 사이의 틈새로부터 빠져나오고 지지다리의 타단측이 오므려져 지지다리는 본체 내로 접혀지게 된다.
다른 변형예로는, 지지다리(11)의 일단이 본체의 단턱부(1b)에 회전축(미도시)을 매개로 회전가능하게 연결되고, 타단은 조작로드(2)의 확장블록(12)을 향해 뻗어 있다. 이러한 지지다리는 금속과 같은 재질로 만들어지며, 확장블록이 자성체로 형성될 수 있다.
센서부(9)의 이동을 위해 조작로드(2)가 본체(1)로부터 돌출하도록 이동되면, 조작로드에 고정된 확장블록(12)이 지지다리(11)와 조작로드(2) 사이의 틈새로 삽입되면서 지지다리가 회전되어 타단측이 벌어지게 되고, 이에 따라 지지다리가 본체의 절개홈(1a)을 통해 본체의 외부로 노출됨과 동시에 펼쳐지게 된다.
조작로드(2)가 반대쪽으로 이동되면, 조작로드에 고정된 확장블록(12)이 지지다리(11)를 자력으로 당기면서 지지다리와 조작로드 사이의 틈새로부터 빠져나오고 자력에 의해 지지다리의 타단측이 오므려져 지지다리는 본체 내로 접혀지게 된다.
또 다른 변형예로는, 지지다리(11)의 일단이 본체의 단턱부(1b)에 회전축(미도시)을 매개로 회전가능하게 연결되고, 타단은 조작로드(2)의 확장블록(12)을 향해 뻗고서 스프링 등과 같은 탄성부재(미도시)에 의해 본체(1) 또는 연결관(4)에 연결될 수 있다. 이에 따라, 조작로드에 고정된 확장블록이 펼쳐진 지지다리와 조작로드 사이의 틈새로부터 빠져나올 때, 탄성부재의 탄성력에 의해 지지다리의 타단측이 오므려지고 지지다리는 본체 내로 접힐 수 있게 된다.
또한, 적어도 한 쌍의 지지다리(11)를 구비하는 경우에, 어느 일측 지지다리가 나머지 지지다리보다 더 길게 형성될 수 있다(도 8 참조). 이와 같이 하면, 더 길게 형성된 지지다리가 본체(1)를 지탱하는 힘이 강하여 더 길게 형성된 지지다리의 반대쪽으로 센서부(9)를 이동시키게 된다.
따라서, 더 길게 형성된 지지다리(11)가 그 반대쪽으로 센서부(9)를 이동시킴으로써, 센서부의 평행 이동 거리가 증대되게 하여 센서부가 돌출부(103) 부위에 더욱 가까이 이동될 수 있다. 혹은, 더 길게 형성된 지지다리가 본체(1)의 측방에 배치되면 좌측 또는 우측으로 편향되게 센서부를 이동시키는 것도 가능하다.
도 5는 본 발명의 제2실시예에 따른 스테이브 두께 측정 장치를 도시한 개략 단면도이고, 도 6은 도 5에 도시된 스테이브 두께 측정 장치의 작동 상태를 설명하기 위한 개략 단면도이다. 도 7은 본 발명의 제2실시예에 따른 스테이브 두께 측정 장치의 변형예를 도시한 개략 단면도로서, 작동 상태를 설명하기 위한 도면이며, 도 8은 본 발명의 제2실시예에 따른 스테이브 두께 측정 장치의 변형예가 고로 내에 적용된 사용 상태를 도시한 단면도이다.
본 발명의 제2실시예에서는 지지다리(21)만 제외하고, 나머지 구성요소들은 전술한 제1실시예의 구성요소들과 동일하다. 이에, 본 발명의 제2실시예에 따른 스테이브 두께 측정 장치(20)를 설명함에 있어, 제1실시예에 의한 스테이브 두께 측정 장치(10)와 동일한 구성요소에 대해서는 동일한 부호를 부여하면서 그 구성 및 기능의 상세한 설명을 생략하기로 한다.
본 발명의 제2실시예에서, 지지다리(21)는 그 중간이 회전핀(22)에 의해 본체(1)에 회전가능하게 설치되고, 일단은 스프링(23)을 매개로 하여 본체에 연결됨과 더불어, 지지다리의 상기 일단에 와이어(24)의 일단이 연결되며, 이 와이어는 조작로드(2)와 연결관(4) 사이의 틈새를 통과하여 타단이 연결관 밖으로 연장하고 노출되어 있다. 지지다리의 타단에는 볼이나 롤러 등과 같은 회전부재(13)가 설치될 수 있다. 또, 이러한 지지다리는 금속이나 플라스틱 등과 같은 재질로 만들어질 수 있다.
센서부(9)의 이동과는 별도로, 작업자가 연결관(4)의 밖으로 노출된 와이어(24)의 타단을 잡아당기면, 이 와이어가 지지다리(21)의 일단을 본체(1)의 안쪽으로 당겨 지지다리가 회전핀(22)을 중심으로 본체에 대해 회전되면서 지지다리의 타단측이 벌어지게 되고, 이에 따라 지지다리가 본체의 절개홈(1a)을 통해 본체의 외부로 노출됨과 동시에 펼쳐지게 된다.
선택적으로, 지지다리(21)의 일단과 와이어(24)의 일단 사이에 보조 스프링(25)이 개재될 수 있는데, 이는 관의 내경부가 지지다리의 펼쳐진 폭보다 작거나 관의 내경부에 임의의 장애물이 있는 경우, 보조 스프링의 변형 특성으로 인해 지지다리가 반대로 회전할 수 있어 유격을 제공할 수 있도록 하기 위한 것이다.
와이어(24)를 느슨하게 풀어주면, 지지다리(21)의 일단에 연결된 스프링(23)이 복원되는 탄성력에 의해 지지다리가 회전핀(22)을 중심으로 본체(1)에 대해 반대방향으로 회전되면서 지지다리의 타단측이 오므려져 지지다리는 본체 내로 접혀지게 된다.
또한, 적어도 한 쌍의 지지다리(21)를 구비하는 경우에, 도 7 및 도 8에 도시된 것처럼 어느 일측 지지다리가 나머지 지지다리보다 더 길게 형성될 수 있다. 이와 같이 하면, 더 길게 형성된 지지다리가 본체(1)를 지탱하는 힘이 강하여 더 길게 형성된 지지다리의 반대쪽으로 센서부(9)를 이동시키게 된다.
따라서, 더 길게 형성된 지지다리(21)가 그 반대쪽으로 센서부(9)를 이동시킴으로서, 센서부의 평행 이동 거리가 증대되게 하여 센서부가 돌출부(103) 부위에 더욱 가까이 이동될 수 있다. 혹은, 더 길게 형성된 지지다리가 본체(1)의 측방에 배치되면 좌측 또는 우측으로 편향되게 센서부를 이동시키는 것도 가능하다.
도 9는 본 발명의 제3실시예에 따른 스테이브 두께 측정 장치를 도시한 개략 단면도이다.
본 발명의 제3실시예에서는 지지다리(31)만 제외하고, 나머지 구성요소들은 전술한 제1실시예 및 제2실시예의 구성요소들과 동일하다. 이에, 본 발명의 제3실시예에 따른 스테이브 두께 측정 장치(30)를 설명함에 있어, 제1실시예 및 제2실시예에 의한 스테이브 두께 측정 장치(10, 20)와 동일한 구성요소에 대해서는 동일한 부호를 부여하면서 그 구성 및 기능의 상세한 설명을 생략하기로 한다.
본 발명의 제3실시예에서, 지지다리(31)는 그 일단이 연결관(4) 또는 본체(1)에 고정되고, 타단이 연결관의 측방으로 뻗어 있다. 이러한 지지다리는 금속으로 된 코일 형태, 플라스틱으로 된 브러쉬 형태, 실리콘 등으로 된 패드 형태로 이루어질 수 있다.
제1실시예 및 제2실시예와 달리, 탄성을 갖는 지지다리(31)를 본체(1)에 연결된 연결관(4)의 일측 또는 본체에 장착하면, 별도의 조작 없이도 센서부(9)가 일정하고 적절한 위치에서 움직이지 않게 본체 등을 지지하도록 관의 내경부에 접촉할 수 있다. 물론, 관의 좁은 내경부 영역을 통과할 때에는 탄성을 갖는 지지다리가 변형되어 좁은 공간을 원활히 통과할 수 있게 되고, 보다 넓은 내경부 영역에 도달하면 탄성력에 의해 그 형상이 복원되면서 본체와 센서부를 지지하게 된다.
이렇게 구성된 본 발명의 스테이브 두께 측정 장치는 배수관(105) 또는 급수관에 밀어 넣어져 센서부(9)가 스테이브(100)의 돌출부(103) 부위 또는 홈(102) 부위에 해당하는 냉각수 배관(104)의 내면과 접촉하게 된다.
스테이브 두께 측정 장치의 센서부(9)는, 냉각수 배관(104)의 내벽으로부터 스테이브(100)의 두께를 측정하도록 초음파를 송출하고 반사되는 초음파를 수신하게 된다. 이렇게 송수신된 초음파의 속도 및 송수신된 시간차를 이용하여 스테이브의 두께를 연산하여 측정한다.
만일 홈(102) 부위의 두께가 측정되면, 이미 스테이브(100)의 설계값으로부터 냉각수 배관(104)의 내벽으로부터 스테이브의 홈까지의 두께를 알고 있으므로, 측정값과 설계값을 비교함으로써 홈 부위의 두께가 측정된 것으로 판단할 수 있다.
이어서, 센서부(9)의 이동을 위해 조작로드(2)가 본체(1)로부터 돌출하도록 조작로드를 이동시키면, 지지부(3)의 연결핀(3a)이 제1링크(6)의 장공(6a)을 따라 이동하게 됨으로써 제1링크 전체가 연결핀을 중심으로 하여 회동하게 되고, 이에 따라 제2링크(7) 및 이에 장착된 센서부가 조작로드의 삽입방향에 대해 대략 직각인 방향으로 평행하게 이동하게 된다.
이로써, 돌출부(103) 부위에 센서부(9)가 인접하게 접촉되어 해당 부위에서 마모가 진행되고 있는 면까지의 잔존 두께를 용이하게 측정할 수 있다.
센서부(9)에서 송수신된 신호는 외부의 연산부로 전송되고, 센서부의 검출값을 이용하여 스테이브(100)의 두께를 계산할 수 있다.
이와 같이 센서부(9)의 위치를 이동시켜주는 링크부(5)가 포함된 본 발명의 스테이브 두께 측정 장치를 이용하면, 최소 2개 지점에서 두께를 측정할 수 있고, 적어도 스테이브의 전면에 형성된 홈을 피하여 마모가 진행중인 돌출부의 두께 측정을 용이하게 할 수 있다. 또한, 최소 2개 지점에서 두께를 측정할 수 있어 두께의 구배를 확인할 수도 있다.
이상과 같이 본 발명에 의하면, 전용 센서를 급배수관 내에 밀어 넣고 냉각수 배관의 벽면에 접촉시켜 스테이브의 잔존 두께를 간단히 측정하면서도 급배수관과 냉각수 배관이 교차되는 영역에서 홈 부위를 회피하여 돌출부의 의미 있는 잔존 두께를 측정할 수 있다. 이로써, 스테이브의 마모 정도를 신뢰성 있게 측정할 수 있게 되고, 이에 따라 궁극적으로 고로의 성능 및 수명을 극대화할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
전술한 바와 같이, 본 발명은 예컨대 제철산업의 고로에서 그 냉각수단인 스테이브의 잔존 두께를 측정하는 데에 유용하다.

Claims (16)

  1. 조작로드가 관통되는 본체;
    상기 조작로드의 일단과 상기 본체 사이를 연결하는 링크부; 및
    상기 링크부의 일측에 설치되어 상기 링크부의 회전에 따라 이동하게 되는 센서부
    를 포함하는 스테이브 두께 측정 장치.
  2. 제1항에 있어서,
    상기 본체의 타단에는 연결관이 연결되고,
    상기 조작로드가 상기 연결관을 관통하여 상기 조작로드의 타단이 상기 연결관 밖으로 연장되는 것을 특징으로 하는 스테이브 두께 측정 장치.
  3. 제1항에 있어서,
    상기 링크부는,
    일단이 상기 조작로드의 일단에 회전가능하게 연결되고, 길이방향에 경사지게 장공이 형성되어 상기 장공에 삽입된 연결핀을 매개로 상기 본체에 연결되는 제1링크; 및
    상기 제1링크의 타단에 일단이 연결되고, 상기 센서부가 장착된 제2링크
    를 포함하는 것을 특징으로 하는 스테이브 두께 측정 장치.
  4. 제3항에 있어서,
    상기 제2링크의 타단과 상기 조작로드의 일단을 연결하는 제3링크를 더 포함하는 것을 특징으로 하는 스테이브 두께 측정 장치.
  5. 제1항에 있어서,
    상기 센서부는 초음파를 송출하고, 반사되어 돌아오는 초음파를 수신하는 압전체를 구비한 것을 특징으로 하는 스테이브 두께 측정 장치.
  6. 제1항에 있어서,
    상기 본체에 설치되어 상기 본체의 측방으로 펼쳐질 수 있는 적어도 하나의 지지다리를 포함하는 것을 특징으로 하는 스테이브 두께 측정 장치.
  7. 제6항에 있어서,
    상기 본체의 측면에는 상기 지지다리의 펼쳐짐을 위한 적어도 하나의 절개홈을 구비하고,
    상기 조작로드에는 상기 지지다리의 펼쳐짐을 위한 확장블록이 고정된 것을 특징으로 하는 스테이브 두께 측정 장치.
  8. 제7항에 있어서,
    상기 지지다리의 일단이 상기 본체에 고정되고,
    상기 지지다리는 탄성을 가진 재질로 만들어져 휨 변형이 가능한 것을 특징으로 하는 스테이브 두께 측정 장치.
  9. 제7항에 있어서,
    상기 지지다리의 일단이 상기 본체에 회전축을 매개로 회전가능하게 연결되고,
    상기 지지다리는 금속으로 만들어지며, 상기 확장블록이 자성체로 형성된 것을 특징으로 하는 스테이브 두께 측정 장치.
  10. 제7항에 있어서,
    상기 지지다리의 일단이 상기 본체에 회전축을 매개로 회전가능하게 연결되고, 상기 지지다리의 타단은 탄성부재에 의해 상기 본체 또는 상기 연결관에 연결된 것을 특징으로 하는 스테이브 두께 측정 장치.
  11. 제6항에 있어서,
    상기 본체의 측면에는 상기 지지다리의 펼쳐짐을 위한 적어도 하나의 절개홈을 구비하고,
    상기 지지다리는 중간이 회전핀에 의해 상기 본체에 회전가능하게 설치되며, 일단은 스프링을 매개로 하여 상기 본체에 연결되고,
    상기 지지다리의 상기 일단에 와이어의 일단이 연결되며, 상기 와이어는 상기 조작로드와 상기 연결관 사이의 틈새를 통과하여 타단이 상기 연결관 밖으로 연장되는 것을 특징으로 하는 스테이브 두께 측정 장치.
  12. 제11항에 있어서,
    상기 지지다리의 일단과 상기 와이어의 일단 사이에 보조 스프링이 개재된 것을 특징으로 하는 스테이브 두께 측정 장치.
  13. 제6항 내지 제12항 중 어느 한 항에 있어서,
    상기 지지다리의 타단에는 회전부재가 설치된 것을 특징으로 하는 스테이브 두께 측정 장치.
  14. 제6항 내지 제12항 중 어느 한 항에 있어서,
    상기 지지다리가 적어도 한 쌍으로 구비될 때, 어느 일측 지지다리가 나머지 지지다리보다 더 길게 형성된 것을 특징으로 하는 스테이브 두께 측정 장치.
  15. 제2항에 있어서,
    상기 연결관 또는 상기 본체에 설치되어 상기 연결관 또는 상기 본체의 측방으로 뻗어 있는 적어도 하나의 지지다리를 포함하는 것을 특징으로 하는 스테이브 두께 측정 장치.
  16. 제15항에 있어서,
    상기 지지다리는 금속으로 된 코일 형태, 플라스틱으로 된 브러쉬 형태, 실리콘으로 된 패드 형태 중 하나인 것을 특징으로 하는 스테이브 두께 측정 장치.
PCT/KR2017/007261 2016-09-06 2017-07-06 스테이브 두께 측정 장치 WO2018048083A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17848967.0A EP3511675B1 (en) 2016-09-06 2017-07-06 Device for measuring thickness of a stave of a blast furnace
JP2019511564A JP2019526709A (ja) 2016-09-06 2017-07-06 ステーブの厚さ測定装置
CN201780054701.5A CN109690242A (zh) 2016-09-06 2017-07-06 用于测量冷却壁的厚度的装置
ES17848967T ES2902878T3 (es) 2016-09-06 2017-07-06 Dispositivo para medir el espesor de una duela de un alto horno

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160114508A KR101940860B1 (ko) 2016-09-06 2016-09-06 고로의 스테이브 두께 측정 장치
KR10-2016-0114508 2016-09-06

Publications (1)

Publication Number Publication Date
WO2018048083A1 true WO2018048083A1 (ko) 2018-03-15

Family

ID=61562762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007261 WO2018048083A1 (ko) 2016-09-06 2017-07-06 스테이브 두께 측정 장치

Country Status (6)

Country Link
EP (1) EP3511675B1 (ko)
JP (1) JP2019526709A (ko)
KR (1) KR101940860B1 (ko)
CN (1) CN109690242A (ko)
ES (1) ES2902878T3 (ko)
WO (1) WO2018048083A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161314A1 (en) * 2019-02-08 2020-08-13 Paul Wurth S.A. Cooling plate thickness measurement in a blast furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU502800B1 (en) * 2022-09-15 2024-03-15 Luxembourg Inst Science & Tech List Wear sensing and wear sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756536Y2 (ja) * 1991-01-10 1995-12-25 東京電子工業株式会社 管内ロボットカメラ
KR200241665Y1 (ko) * 2001-04-25 2001-10-12 한국가스공사연구개발원 기계식 핑거
KR20080077485A (ko) * 2007-02-20 2008-08-25 숭실대학교산학협력단 관 내 주행장치
JP2010271072A (ja) * 2009-05-19 2010-12-02 Naa Fueling Facilities Corp 管厚測定装置
KR20120065119A (ko) 2010-12-10 2012-06-20 주식회사 포스코 고로의 스테이브 두께 측정 장치 및 방법
KR101345082B1 (ko) * 2012-06-28 2013-12-26 현대제철 주식회사 고로내의 스테이브 잔존두께 측정장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048528A (ja) * 2000-08-02 2002-02-15 Nkk Corp 管肉厚測定装置
CN201449249U (zh) * 2009-05-15 2010-05-05 淮阴工学院 并联式三维微观形貌测试仪
CN201611244U (zh) * 2009-12-22 2010-10-20 浙江吉利汽车有限公司 一种零件位置移动检测装置
KR20120067786A (ko) * 2010-12-16 2012-06-26 주식회사 포스코 고로의 스테이브 두께 측정 장치 및 방법
JP5569451B2 (ja) * 2011-03-30 2014-08-13 新日鐵住金株式会社 高炉ステーブの残存厚測定方法
US20130023751A1 (en) * 2011-07-18 2013-01-24 Samuel Victor Lichtenstein Water retention monitoring
CN202928990U (zh) * 2012-10-19 2013-05-08 云南电网公司昭通供电局 钢管杆腐蚀的超声导波检测系统
CN203364706U (zh) * 2013-06-21 2013-12-25 攀钢集团西昌钢钒有限公司 宽度测量仪及直读式焦炉炭化室宽度测量仪
KR101466707B1 (ko) * 2013-10-08 2014-12-01 한국과학기술연구원 광 간섭 단층 영상 프로브의 평행 탐색 가이드 기능을 구비한 가이드 장치 및 이를 이용한 프로브의 가이드 방법
KR101482470B1 (ko) * 2013-12-24 2015-01-13 주식회사 포스코 고로의 스테이브 두께 측정 장치
KR101594719B1 (ko) * 2014-12-26 2016-02-17 주식회사 포스코 스테이브 두께 측정 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756536Y2 (ja) * 1991-01-10 1995-12-25 東京電子工業株式会社 管内ロボットカメラ
KR200241665Y1 (ko) * 2001-04-25 2001-10-12 한국가스공사연구개발원 기계식 핑거
KR20080077485A (ko) * 2007-02-20 2008-08-25 숭실대학교산학협력단 관 내 주행장치
JP2010271072A (ja) * 2009-05-19 2010-12-02 Naa Fueling Facilities Corp 管厚測定装置
KR20120065119A (ko) 2010-12-10 2012-06-20 주식회사 포스코 고로의 스테이브 두께 측정 장치 및 방법
KR101345082B1 (ko) * 2012-06-28 2013-12-26 현대제철 주식회사 고로내의 스테이브 잔존두께 측정장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3511675A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161314A1 (en) * 2019-02-08 2020-08-13 Paul Wurth S.A. Cooling plate thickness measurement in a blast furnace
CN113396308A (zh) * 2019-02-08 2021-09-14 保尔沃特股份公司 在高炉中的冷却板厚度测量
US20220128513A1 (en) * 2019-02-08 2022-04-28 Paul Wurth S.A. Cooling plate thickness measurement in a blast furnace

Also Published As

Publication number Publication date
ES2902878T3 (es) 2022-03-30
EP3511675B1 (en) 2021-10-20
CN109690242A (zh) 2019-04-26
EP3511675A4 (en) 2019-09-04
EP3511675A1 (en) 2019-07-17
KR20180027713A (ko) 2018-03-15
JP2019526709A (ja) 2019-09-19
KR101940860B1 (ko) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2018048083A1 (ko) 스테이브 두께 측정 장치
WO2013009118A2 (en) Apparatus and method for inspecting pipelines
WO2012141461A2 (ko) 코크스로 탄화실용 레벨측정 장치
US5615953A (en) Boiler bank surface temperature profiler
JPH08218071A (ja) コークス炉炭化室の炉壁診断方法および装置
WO2010050681A2 (ko) 코크스 오븐의 연소실 온도 자동 측정 장치
WO2014148760A1 (ko) 내시경 방식의 부단수 상수도관 누수탐사 및 내부 검사장치
WO2014178637A1 (ko) 매립형 변위계를 이용한 터널변위 측정방법
JP2006234525A (ja) 管内調査装置
JP2003501577A (ja) ガスタービンの環状燃焼室の点検装置およびガスタービンの環状燃焼室の点検方法
CN105333968B (zh) 一种回转窑温度检测装置
CN103415891A (zh) 用于检查蒸汽发生器的设备
EP4001441B1 (en) Shaft furnace condition monitoring
WO2018097499A1 (ko) 탕면높이 측정장치 및 측정방법
WO2011025140A2 (ko) 압연 소재의 온도 측정 장치
CN207379480U (zh) 一种光缆缺陷检测装置
JPH0718748Y2 (ja) シャフト炉の多点同時測定装置
CN106610385A (zh) 一种伸入干熄炉内的干熄焦炉内衬在线检测成像设备
US3905239A (en) Trailing gauge
CN104596660B (zh) 一种回转窑温度检测装置及方法
WO2021201641A1 (ko) 공조장치
WO2023067533A1 (en) A device and system for measuring thickness of a conduit
CN208455019U (zh) 一种氧枪
CN117929261A (zh) 用于密集排布的细管道磨损量自动检测末端及装置和方法
TW202330940A (zh) 高爐冷卻板厚度測量

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017848967

Country of ref document: EP

Effective date: 20190408