WO2018047936A1 - 容量型ガスセンサ - Google Patents

容量型ガスセンサ Download PDF

Info

Publication number
WO2018047936A1
WO2018047936A1 PCT/JP2017/032422 JP2017032422W WO2018047936A1 WO 2018047936 A1 WO2018047936 A1 WO 2018047936A1 JP 2017032422 W JP2017032422 W JP 2017032422W WO 2018047936 A1 WO2018047936 A1 WO 2018047936A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
gas
electrode
sensitive film
gas sensor
Prior art date
Application number
PCT/JP2017/032422
Other languages
English (en)
French (fr)
Inventor
栄次 伊東
善紀 山口
西田 達也
幸輔 松原
Original Assignee
北陸電気工業株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北陸電気工業株式会社, 国立大学法人信州大学 filed Critical 北陸電気工業株式会社
Priority to US16/331,701 priority Critical patent/US11287395B2/en
Priority to CN201780054609.9A priority patent/CN109690301B/zh
Priority to JP2018538478A priority patent/JP6450506B2/ja
Priority to GB1903506.2A priority patent/GB2568196B/en
Publication of WO2018047936A1 publication Critical patent/WO2018047936A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/226Construction of measuring vessels; Electrodes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • G01N2027/222Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties for analysing gases

Definitions

  • the present invention relates to a capacitive gas sensor used for measuring humidity and the like.
  • Japanese Patent Application Laid-Open No. 2015-7618 discloses a first electrode layer formed on a substrate, a gas-sensitive gas permeable film formed on the first electrode layer, a first electrode layer, A capacitive gas sensor is disclosed that includes a second electrode layer made of a nanocarbon material entangled in a three-dimensional network formed on a gas-sensitive film facing each other.
  • the second electrode layer provided on the outer surface of the gas-sensitive film is formed of a nanocarbon material
  • the second electrode layer has a structure in which the nanocarbon material is entangled in a three-dimensional network, so that gas permeability is improved.
  • the contact area between the electrode layer and the gas-sensitive film is reduced, so that the second electrode layer and the gas-sensitive film are increased due to an increase in environmental humidity or changes over time.
  • peeling occurs between the first electrode layer and the second electrode layer.
  • the electrical resistance increases and the frequency of the applied AC signal becomes extremely high. The problem that becomes impossible arises. Further, the occurrence of peeling causes deterioration of linear response to the humidity of the capacity and causes hysteresis.
  • An object of the present invention is to provide a capacitive gas sensor in which separation does not occur between a second electrode layer having a structure in which a nanocarbon material is entangled in a three-dimensional network and a gas sensitive film.
  • the present invention relates to a first electrode layer formed on a substrate, a gas sensitive film having air permeability formed on the first electrode layer, and a gas sensitive film facing the first electrode layer.
  • a capacitive gas sensor including a second electrode layer made of a nanocarbon material entangled in a three-dimensional network formed on the substrate.
  • the second electrode layer is formed in such a size that a part of the gas sensitive film protrudes around.
  • a breathable resin layer having air permeability is provided on at least the second electrode layer.
  • the reinforcing resin layer enters the void portion of the second electrode layer made of the nanocarbon material intertwined in a three-dimensional network, and a part thereof is in contact with the gas sensitive film. Accordingly, the reinforcing resin layer exhibits a function of preventing the second electrode layer from being peeled off from the gas sensitive film.
  • a state in which the reinforcing resin layer is partially bonded to a part of the gas sensitive film is generated, so that an AC signal applied between the first electrode layer and the second electrode layer. The second electrode layer is prevented from being peeled off from the gas sensitive film when the frequency becomes extremely high or the environmental humidity becomes high.
  • the second electrode layer is made of a nanocarbon material intertwined in a three-dimensional network, it is possible to prevent the detection accuracy of the sensor from deteriorating. Moreover, since peeling can be prevented, according to the present invention, it is possible to prevent deterioration of linear response to the humidity of the capacity and occurrence of hysteresis.
  • the reinforcing resin layer may exist only on the second electrode layer.
  • the second electrode layer is formed to have a size in which a part of the gas sensitive film protrudes from the periphery, and the gas-sensitive reinforcing resin layer that protrudes from the second electrode layer and the second electrode layer has a gas permeability. You may cover at least one part of a film
  • the reinforcing resin layer is preferably formed of the same material as the gas sensitive film.
  • the reinforcing resin layer serves as an anchor that prevents the second electrode layer from separating from the gas sensitive film, according to the present invention, the second electrode layer can be more reliably peeled from the gas sensitive film. Can be prevented.
  • the thickness of the reinforcing resin layer is 2 ⁇ m or less, the presence of the reinforcing resin layer does not significantly impair the air permeability of the second electrode layer, so that the detection sensitivity is greatly increased by providing the reinforcing resin layer. Can be prevented.
  • the thickness of the reinforcing resin layer is 1 ⁇ m or less, a high-speed response can be maintained.
  • the gas sensitive film may have a capacity that changes according to a change in humidity, for example. In that case, it is preferable to use fluorinated polyimide as the gas sensitive film.
  • the nanocarbon material is preferably one or more materials selected from SWCNT, NWCNT, DWCNT, and graphene.
  • one or more first electrode portions connected to the first electrode layer and one or more second electrode portions connected to the second electrode layer are formed on the substrate.
  • a gas sensitive film is formed on the substrate so as to cover the first electrode layer and expose the one or more first electrode portions and the one or more second electrode portions.
  • the second electrode layer, the one or more second electrode portions, and the electrically sensitive through hole portion penetrating the gas sensitive film are electrically connected.
  • the reinforcing resin layer is paired with both ends of the second electrode layer. It is preferable to have a shape that covers a part of the electrode portion. If it does in this way, it will become possible to prevent effectively also exfoliation of the 2nd electrode layer from an electrode part.
  • the capacitive gas sensor of the present invention may have a structure including a pair of sensor elements on a substrate.
  • two second electrode layers are formed on the gas sensitive film so as to intersect with the first electrode layer.
  • the two second electrode layers have a width dimension in which a part of the gas sensitive film protrudes around.
  • a reinforcing resin layer having air permeability covers at least a part of the two second electrode layers and the gas sensitive membrane protruding from the two second electrode layers.
  • a pair of sensor elements is formed between the first electrode layer and the two second electrode layers. If it does in this way, the temperature characteristic can be improved using the output of two sensor elements.
  • FIG. 2 is a sectional view taken along line II-II in FIG. It is a figure which shows the result of having measured the change of the capacity
  • a humidity sensor using a gas sensitive film humidity sensitive film whose dielectric constant varies depending on the amount of water adsorbed will be described.
  • FIG. 1 is a plan view of an example of a capacitive gas sensor 1 manufactured as a humidity sensor according to a first embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line II-II in FIG. Note that FIG. 2 is a simulation, and the thickness dimension of each layer is not proportional to the actual dimension.
  • the capacitive gas sensor according to the present embodiment includes a first electrode layer 5 integrally provided with electrode portions 5A and 5B at both ends on a substrate 3, and two pairs of electrode portions 7A and 7B and 9A and 9B. It is equipped with.
  • the substrate 3 can be formed by forming a conductive layer on an arbitrary substrate such as a silicon substrate or a resin substrate by an arbitrary film forming method instead of a glass substrate with a transparent electrode. .
  • the first electrode layer 5, the pair of electrode portions 7A and 7B, and 9A and 9B are formed of a transparent electrode (ITO).
  • a gas sensitive film 11 having air permeability is formed on the first electrode layer 5 so as to leave the electrode portions 5A and 5B.
  • the gas sensitive film 11 has a capacity that changes in accordance with a change in humidity.
  • the gas sensitive film 11 is made of fluorinated polyimide.
  • two second electrode layers 13 and 13 made of a nanocarbon material entangled in a three-dimensional network formed on the gas sensitive film 11 partially facing the first electrode layer 5 are provided. Yes.
  • two second electrode layers 13 and 13 are formed on the gas sensitive film 11 so as to cross the first electrode layer 5 with a space therebetween.
  • the two second electrode layers 13 and 13 have a width dimension in which a part of the gas sensitive film 11 protrudes around.
  • the two second electrode layers 13 and 13 are formed so that both end portions thereof overlap the pair of electrode portions 7A and 7B and 9A and 9B, respectively.
  • the present embodiment there are two reinforcing resin layers 15 having a thickness that penetrates the inside of the two second electrode layers 13, 13 that have air permeability and come into contact with the gas-sensitive film 11.
  • the second electrode layers 13 and 13 and at least a part of the gas sensitive film 11 protruding from the two second electrode layers 13 and 13 are covered.
  • a pair of humidity sensor elements is formed between the first electrode layer 5 and the two second electrode layers 13 and 13.
  • the capacitive gas sensor of the Example used for a test is provided with the structure of FIG.1 and FIG.2, and has the following raw materials and dimensions.
  • the first electrode layer 5 was made of ITO and had a width dimension of 4 mm and a thickness of 150 nm.
  • the pair of electrode portions 7A and 7B and 9A and 9B were also made of ITO, and the dimensions thereof were 4 mm ⁇ 4 mm.
  • the gas sensitive film 11 was a fluorinated polyimide film (thickness 1.4 ⁇ m).
  • the fluorinated polyimide is a polyimide containing fluorine, specifically, a polyimide containing a trifluoromethyl group or a hexafluoropropane group. Since the fluorinated polyimide has the hydrophilic property of the polyimide and the hydrophobic property of the fluorine, it has an advantage that it can quickly absorb and desorb moisture according to the surrounding humidity and has excellent response characteristics. The thinner the gas sensitive film 11, the more sensitive the humidity detection. However, since the film strength decreases as the thickness decreases, the thickness is appropriately set according to the application.
  • the thickness of the gas sensitive film 11 may be determined in the range of about 10 nm to 100 ⁇ m.
  • a precursor of fluorinated polyimide is applied on the substrate 3 in a flat shape to form a precursor coating film made of the precursor of fluorinated polyimide. Since the thickness of the sensitive film 11 and the reinforcing resin layer 15 depends on the thickness of the precursor coating film, the thickness of the precursor coating film is adjusted according to the thickness of the gas sensitive film 11 to be formed. To do. Next, the precursor coating film is pre-baked. The pre-baking temperature (100 to 200 ° C.) is set to a temperature at which the solvent of the precursor coating film is scattered and the precursor coating film is not imidized. Next, the precursor coating film at the portion covering the electrode portions 7A to 9B is removed by plasma etching to expose the electrode portions 7A to 9B.
  • the reinforcing resin layer 15 is formed of the same material as the gas sensitive film 11. Therefore, a fluorinated polyimide film was used as the reinforcing resin layer 15.
  • the thickness of the reinforcing resin layer 15 is preferably set to such a thickness that it penetrates into the second electrode layers 13 and 13 and comes into contact with the gas sensitive film 11. Specifically, the thickness of the reinforcing resin layer 15 is 2 ⁇ m. Is preferable. More preferably, it is 1 ⁇ m or less. In particular, the thickness of the reinforcing resin layer 15 is preferably 0.5 ⁇ m to 1 ⁇ m.
  • the method for forming the reinforcing resin layer 15 is the same as the method for forming the gas sensitive film 11.
  • the second electrode layers 13 and 13 are each composed of a conductive layer containing single-walled carbon nanotubes (SWCNT) as a conductive material.
  • the second electrode layers 13 and 13 are formed by a transfer method. ing.
  • the second electrode layers 13 and 13 have a width dimension of 2 mm and a thickness of about 100 nm to several ⁇ m.
  • a transfer method or a coating method described in detail in Japanese Patent Laid-Open No. 2015-7618 cited as the prior art was used, but the description is omitted here.
  • a method of forming a film by a transfer method or a coating method is much simpler than the case of using a method such as a plasma treatment or a vacuum process.
  • the second electrode layers 13 formed by the transfer method have a rough surface. This indicates that the carbon nanotubes of the second electrode layers 13 and 13 are formed so as to be entangled with each other, and the surfaces of the second electrode layers 13 and 13 are uneven. Further, the second electrode layers 13 and 13 formed by the transfer method are integrated with the gas sensitive film 11 with a certain degree of strength. However, if the bonding strength between the first electrode layer 5 and the second electrode layer 13 becomes high due to high humidity in the environment or weakening due to changes over time, peeling occurs and the electrical resistance increases due to the reduction in the contact area. Thus, there arises a problem that measurement becomes impossible when the frequency of the AC signal to be applied is increased. For this purpose, the reinforcing resin layer 15 is provided in the present embodiment.
  • SWCNT is used as the conductive material for the second electrode layers 13 and 13, but as the conductive material constituting the second electrode layers 13 and 13, double-layer carbon is used in addition to SWCNT and MWCNT.
  • nano-sized carbon materials such as nanotubes (DWCNT) and graphene can be appropriately selected and used in combination.
  • nanocarbon material means that nanocarbon materials such as SWCNT, MWCNT, DWCNT, and graphene are used singly or in combination.
  • the change in capacitance was obtained by measuring the capacitance of the humidity sensor relative to the relative humidity by the following method. That is, a chamber (internal volume: about 110 cm 3 ) with an open / close door installed in a constant temperature / humidity chamber, a humidity sensor to be measured is set in the chamber, and the open / close door of the chamber is closed. Dry air is introduced into the chamber through a flow path communicating with the outside of the chamber, and the air is discharged to the outside to dry the chamber (humidity 0 to 2% RH).
  • the measurement was performed three times for each predetermined humidity (measurement humidity), and the measurement humidity (20%, 50%, and 80% was changed, and the frequency of the applied AC signal was changed to 1 kHz, 10 kHz, and 100 kHz, and the measurement was performed in the same manner.
  • the value of the volume meter when the inside of the chamber was dried was 0% RH, and all measurements were at room temperature (25 ° C.).
  • FIG. 4 shows a plan view of the second embodiment.
  • both end portions of the second electrode layers 13 and 13 are formed on the substrate 3 with a pair of electrode portions 7A and 7B, 9A and
  • the reinforcing resin layer 15 has a shape and dimension that covers both ends of the second electrode layers 13, 13 and the pair of electrode portions 7A and 7B and a part of 9A and 9B. is doing.
  • the reinforcing resin layer 15 is formed in this manner, the peeling of the second electrode layers 13 and 13 from the electrode portions 7A and 7B and 9A and 9B can be effectively prevented.
  • two second electrode layers 13 are provided for one first electrode layer 5, but one for each first electrode layer 5. Naturally, the case where two second electrode layers 13 are provided is also included in the present invention.
  • FIG. 5 shows a cross-sectional view of the third embodiment. Specifically, a gas sensitive film 11 is formed on the entire surface of the substrate 3 so as to expose a pair of electrode portions 7A and 7B connected to both ends and an electrode portion (not shown) of the first electrode layer 5. ing. Then, both end portions of the second electrode layer 13 and the pair of electrode portions 7A and 7B are connected by the conductive through-hole portion 14.
  • the conductive through hole portion 14 is formed of the same conductive material as the conductive material forming the second electrode layer 13. Needless to say, the conductive through-hole portion 14 may be formed of a conductive material different from the conductive material forming the second electrode layer 13.
  • the reinforcing resin layer 15 having air permeability is provided only on the second electrode layer. Even in such a structure, the resin constituting the reinforcing resin layer enters the void portion of the second electrode layer made of the nanocarbon material entangled in a three-dimensional network, and a part thereof is in contact with the gas sensitive film. To do.
  • the reinforcing resin layer 15 exhibits a function of preventing the second electrode layer 13 from peeling off from the gas sensitive film 11. Therefore, even in such a structure, a state in which the resin constituting the reinforcing resin layer 15 is partially bonded to a part of the gas sensitive film 11 occurs, so that the second electrode layer 13 is formed of the gas sensitive film. 11 can be prevented from peeling off.
  • the gas-sensitive film 11 is formed using fluorinated polyimide.
  • the gas-sensitive film 11 has air permeability after curing.
  • other materials can be used as long as they are shown.
  • the gas-sensitive film and the reinforcing resin layer may be formed using a polyimide-based photosensitive resin.
  • the capacitive gas sensor according to the present invention is used as a humidity sensor.
  • the capacitive gas sensor according to the present invention is not limited to use as a humidity sensor.
  • the capacitive gas sensor according to the present invention can be used as a gas sensor for detecting the concentration of an organic compound such as alcohol or aldehyde.
  • a humidity sensor or a general gas sensor can also be incorporated into a circuit board, it can be reduced in size and can be easily adapted to mass production.
  • the reinforcing resin layer having air permeability is provided on at least the second electrode layer.
  • the reinforcing resin layer enters the void portion of the second electrode layer made of the nanocarbon material intertwined in a three-dimensional network, and a part thereof is in contact with the gas sensitive film. Accordingly, the reinforcing resin layer exhibits a function of preventing the second electrode layer from being peeled off from the gas sensitive film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

ナノカーボン材が3次元網目状に絡みあった構造の第2の電極層とガス感応膜との間に剥離が生じない容量型ガスセンサを提供する。基板3の上に形成された第1の電極層5と、第1の電極層の上に形成された通気性のあるガス感応膜11と、第1の電極層5と対向してガス感応膜の上に形成された3次元網目状に絡み合ったナノカーボン材からなる第2の電極層13とを備えている。少なくとも第2の電極層の上に通気性を有する補強用樹脂層15が設けられている。

Description

容量型ガスセンサ
 本発明は湿度等の計測に用いられる容量型ガスセンサに関するものである。
 特開2015-7618号公報には、基板の上に形成された第1の電極層と、第1の電極層の上に形成された通気性のあるガス感応膜と、第1の電極層と対向してガス感応膜の上に形成された3次元網目状に絡み合ったナノカーボン材からなる第2の電極層とを備えてなる容量型ガスセンサが開示されている。
特開2015-7618号公報
 ガス感応膜の外表面に設ける第2の電極層をナノカーボン材により形成すると、第2の電極層はナノカーボン材が3次元網目状に絡み合った構造となるため、ガス透過性が向上する。しかしながらナノカーボン材が3次元網目状に絡み合った構造では、電極層とガス感応膜との接触面積が少なくなるため、環境湿度が高くなったり、経時変化により、第2の電極層とガス感応膜との接合強度が低くなり、第1の電極層と第2の電極層との間に剥離が発生し、その結果電気抵抗が高くなり、印加する交流信号の周波数が極端に高くなると、測定が不能になる問題が生じる。また剥離の発生は、容量の湿度に対する線形応答の劣化やヒステリシスの原因となる。
 本発明の目的は、ナノカーボン材が3次元網目状に絡みあった構造の第2の電極層とガス感応膜との間に剥離が生じない容量型ガスセンサを提供することにある。
 本発明は、基板の上に形成された第1の電極層と、第1の電極層の上に形成された通気性のあるガス感応膜と、第1の電極層と対向してガス感応膜の上に形成された3次元網目状に絡み合ったナノカーボン材からなる第2の電極層とを備えてなる容量型ガスセンサを対象とする。本発明の容量型ガスセンサでは、第2の電極層が周囲にガス感応膜の一部がはみ出る大きさに形成されている。そして少なくとも第2の電極層の上に通気性を有する補強用樹脂層が設けられている。
 このような構造にすると、3次元網目状に絡み合ったナノカーボン材からなる第2の電極層の空隙部内には、補強用樹脂層が入り込み、一部はガス感応膜と接触する。これによって補強用樹脂層は、第2の電極層がガス感応膜から剥離することを防止する機能を発揮する。このような構造にすると、補強用樹脂層がガス感応膜の一部と結合された状態が部分的に発生するので、第1の電極層と第2の電極層との間に印加する交流信号の周波数が極端に高くなったり、環境湿度が高くなった場合において、第2の電極層がガス感応膜から剥離することを防止する。その結果、第2の電極層を3次元網目状に絡み合ったナノカーボン材から構成しても、センサの検出精度が悪くなることを防止できる。また剥離が防止できることから、本発明によれば、容量の湿度に対する線形応答の劣化やヒステリシスが発生することを防止できる。
 なお補強用樹脂層は、第2の電極層の上にのみ存在していてもよい。
 また第2の電極層が、周囲にガス感応膜の一部がはみ出る大きさに形成され、通気性を有する補強用樹脂層が、第2の電極層及び第2の電極層からはみ出たガス感応膜の少なくとも一部を覆っていてもよい。このような構造にすると、第2の電極層を介することなく、補強用樹脂層がガス感応膜の一部と直接的に結合される部分が、第2の電極層の周囲にも発生するので、第2の電極層がガス感応膜から剥離することをより確実に防止する。
 補強用樹脂層は、ガス感応膜と同じ材料によって形成されているのが好ましい。補強用樹脂層をガス感応膜と同じ材料で形成すると、補強用樹脂層とガス感応膜との結合面で強固な化学結合を得ることができる。そして補強用樹脂層は、第2の電極層がガス感応膜から離れることを阻止するアンカーとなるため、本発明によれば、第2の電極層がガス感応膜から剥離することをより確実に防止することができる。また補強用樹脂層の厚みが2μm以下であれば、補強用樹脂層の存在が第2の電極層の通気性を大きく阻害することが無いので、補強用樹脂層を設けることによって検出感度が大幅に低下することを防止できる。また補強用樹脂層の厚みが1μm以下であれば、高速応答を維持することができる。
 ガス感応膜は、例えば、湿度の変化に応じて容量が変化するものであってもよい。その場合、ガス感応膜としては、フッ素化ポリイミドを用いるのが好ましい。
 またナノカーボン材は、SWCNT、NWCNT、DWCNT及びグラフェンから選択された1種または複数種の材料であるのが好ましい。
 具体的には、基板の上には第1の電極層に接続された1以上の第1の電極部と、第2の電極層に接続された1以上の第2の電極部とが形成されており、基板の上には、第1の電極層を覆い且つ1以上の第1の電極部及び1以上の第2の電極部を露出させるようにガス感応膜が形成されている。この場合、第2の電極層と1以上の第2の電極部とガス感応膜を貫通する導電性スルーホール部を介して電気的に接続されているのが好ましい。このような接続構造を用いると、容量型ガスセンサの寸法の小型化を図ることができる。
 なお基板の上には第2の電極層の両端部が重なった状態で接続される一対の電極部が形成されている場合には、補強用樹脂層は第2の電極層の両端部と一対の電極部の一部を覆う形状寸法を有しているのが好ましい。このようにすると電極部からの第2の電極層の剥離も、有効に阻止することが可能になる。
 本発明の容量型ガスセンサは、基板上に一対のセンサ素子を備えた構造であってもよい。その場合の容量型ガスセンサは、ガス感応膜の上に第1の電極層と交差するように間隔をあけて2本の第2の電極層が形成されている。そして2本の第2の電極層は周囲にガス感応膜の一部がはみ出る幅寸法を有している。また通気性を有する補強用樹脂層が、2本の第2の電極層及び2本の第2の電極層からはみ出たガス感応膜の少なくとも一部を覆っている。第1の電極層と2本の第2の電極層との間に一対のセンサ素子が形成されている。このようにすると、二つのセンサ素子の出力を利用して、温度特性を改善できる。
本発明の第1の本実施の形態の湿度センサとして作製した容量型ガスセンサの実施の形態の一例の平面図である。 図1のII-II線断面図である。 補強用樹脂層を設けた容量型ガスセンサと補強用樹脂層を設けなかった容量型ガスセンサについて、湿度と交流信号の周波数を変えて容量の変化を測定した結果を示す図である。 本発明の第2の実施の形態の湿度センサとして作製した容量型ガスセンサの実施の形態の一例の平面図である。 本発明の第3の実施の形態の湿度センサとして作製した容量型ガスセンサの実施の形態の一例の断面図である。
 本発明に係る容量型ガスセンサの一実施の形態として、水の吸着量により誘電率が変化するガス感応膜(感湿膜)を使用した湿度センサについて説明する。
 図1は、本発明の第1の実施の形態の湿度センサとして作製した容量型ガスセンサ1の一例の平面図である。図2は、図1のII-II線断面図である。なお図2は、模擬的に示したもので、各層の厚み寸法は、実際の寸法に比例するものではない。本実施の形態の容量型ガスセンサは、基板3の上に両端部に電極部5A,5Bを一体に備えた第1の電極層5と、2組の一対の電極部7A及び7B並びに9A及び9Bと備えている。本実施の形態では、基板3は、透明電極付きのガラス基板のかわりに、シリコン基板、樹脂基板等の任意の基板に、任意の成膜方法により導電層を形成したものを使用することができる。
 第1の電極層5と一対の電極部7A及び7B並びに9A及び9Bは、透明電極(ITO)により形成されている。基板3の上には、電極部5A,5Bを残すように第1の電極層5の上には、通気性のあるガス感応膜11が形成されている。ガス感応膜11は、湿度の変化に応じて容量が変化するものであり、具体的には、フッ素化ポリイミドにより形成されている。
 そして第1の電極層5と部分的に対向してガス感応膜11の上に形成された3次元網目状に絡み合ったナノカーボン材からなる2つの第2の電極層13,13とを備えている。この例では、ガス感応膜11の上、第1の電極層5と交差するように間隔をあけて2本の第2の電極層13,13が形成されている。2本の第2の電極層13,13は周囲にガス感応膜11の一部がはみ出る幅寸法を有している。また2本の第2の電極層13,13は、その両端部が、それぞれ一対の電極部7A及び7B並びに9A及び9Bの上に重なるように形成されている。
 そして本実施の形態では、通気性を有し且つ厚みが2本の第2の電極層13,13の内部に浸透してガス感応膜11と接触する厚みの補強用樹脂層15が、2本の第2の電極層13,13及び2本の第2の電極層13,13からはみ出たガス感応膜11の少なくとも一部を覆っている。本実施の形態では、第1の電極層5と2本の第2の電極層13,13との間に一対の湿度センサ素子が形成されている。
 (実施例)
 試験に使用する実施例の容量型ガスセンサは、図1及び図2の構成を備えて、以下の素材と寸法を有している。第1の電極層5は、ITOからなり、幅寸法が4mm、厚さが150nmであった。一対の電極部7A及び7B並びに9A及び9BもITOからなり、その寸法は4mm×4mmであった。
 ガス感応膜11には、フッ素化ポリイミド膜(厚さ1.4μm)を使用した。フッ素化ポリイミドは、フッ素を含有するポリイミドで、具体的には、トリフルオロメチル基やヘキサフルオロプロパン基を含有するポリイミドが挙げられる。フッ素化ポリイミドは、ポリイミドの有する親水性と、フッ素の有する疎水性を備えることから、周囲の湿度に応じて、水分を迅速に吸収、離脱させることができ、応答特性に優れるという利点がある。ガス感応膜11は薄いほど湿度検知の感度が向上する。ただし、薄くすると膜強度が低下するから、用途に応じて適宜厚さを設定する。ガス感応膜11の厚さとしては10nm~100μm程度の範囲で決めればよい。
 ガス感応膜11を形成する場合には、フッ素化ポリイミドの前駆体を基板3上に平坦状に塗布し、フッ素化ポリイミドの前駆体からなる前駆体被覆膜を形成する。感応膜11及び補強用樹脂層15の厚さは前駆体被覆膜の厚さに依存するから、形成しようとするガス感応膜11の厚さに合わせて前駆体被覆膜の厚さを調整する。次いで、前駆体被覆膜をプリベイクする。プリベイク温度(100~200℃)は、前駆体被覆膜の溶剤を飛散させ、前駆体被覆膜をイミド化しない温度に設定する。次に、プラズマエッチングにより、電極部7A~9Bを被覆している部位の前駆体被覆膜を除去し、電極部7A~9Bを露出させる。
 補強用樹脂層15は、ガス感応膜11と同じ材料により形成されている。そのため補強用樹脂層15として、フッ素化ポリイミド膜を使用した。補強用樹脂層15の厚みは第2の電極層13,13の内部に浸透してガス感応膜11と接触する程度の厚みにするのが好ましく、具体的に補強用樹脂層15の厚みは2μmにするのが好ましい。より好ましくは1μm以下にするのが好ましい。特に補強用樹脂層15の厚みは0.5μm~1μmにするのが好ましい。これは補強用樹脂層15の厚みが0.5μmより小さくなると、必要な補強強度を得ることができず、また補強用樹脂層15の厚みが1μmより大きくなると、センサの感度が悪くなり応答速度が遅くなるからである。なお補強用樹脂層15の形成方法は、ガス感応膜11の形成方法と同じである。
 また第2の電極層13,13は、単層カーボンナノチューブ(SWCNT)を導電材として含む導電層からなるものであり、本実施例では、第2の電極層13,13は転写法によって形成されている。第2の電極層13,13の、幅寸法が2mm厚さは100nm~数μm程度の厚さに設定される。第2の電極層13,13の形成方法は、先行技術として挙げた特開2015-7618号公報に詳しく説明されている転写法または塗布法を用いたが、ここでは説明は省略する。転写法あるいは塗布法により膜を形成する方法は、プラズマ処理、真空プロセスといった方法を利用する場合と比較して、はるかに簡単である。転写法により形成した第2の電極層13,13は、表面が荒れた形態となっている。これは、第2の電極層13,13のカーボンナノチューブが互いに絡み合った形態に形成され、第2の電極層13,13の表面が凹凸面になっていることを示す。また、転写法によって形成された第2の電極層13,13は、ガス感応膜11とある程度の強度で一体化している。しかしながら第1の電極層5と第2の電極層13との間の接合強度が、使用環境湿度が高くなったり、経時変化により弱くなって剥離が生じると、接触面積の減少により電気抵抗が高くなって、印加する交流信号の周波数が高くなると測定が不能になる問題が生じる。そのために、本実施の形態では、補強用樹脂層15を設けている。
 本実施例では、第2の電極層13,13の導電材としてSWCNTを使用しているが、第2の電極層13,13を構成する導電材としては、SWCNT、MWCNTの他に二層カーボンナノチューブ(DWCNT)、グラフェン等のナノサイズのカーボン材料(ナノカーボン材)を適宜選択し、組み合わせて使用することができるからである。本発明において、ナノカーボン材という場合は、SWCNT、MWCNT、DWCNT、グラフェン等のナノカーボン材を単一であるいは組み合わせて使用することを意味する。
 (試験)
 本発明の効果を確認するために、補強用樹脂層15を設けた上記実施例の容量型ガスセンサと補強用樹脂層15を設けなかった容量型ガスセンサについて、湿度と第1の電極層5と第2の電極層13,13との間に印加する交流信号の周波数を変えて容量の変化を測定した。図3はその結果を示している。
 容量の変化は、相対湿度に対する湿度センサの静電容量を次の方法により測定することにより得た。すなわち恒温恒湿槽内に開閉扉を取り付けたチャンバー(内容積:約110cm3)を設置し、チャンバー内に測定対象である湿度センサをセットし、チャンバーの開閉扉を閉じた状態で、恒温槽の外部と連通する流路を介してチャンバー内に乾燥空気を流入させ、エアを外部に排出してチャンバー内を乾燥状態にする(湿度0~2%RH)。
 次に、チャンバーの外側、すなわち恒温恒湿槽内を測定しようとする湿度に設定し、所定の湿度になった時点でチャンバーの開閉扉を開き(加湿)、サンプルの温度センサに接続した容量計(LCRメータ)でサンプルの静電容量の変化を計測する。開閉扉を開いてから所定時間後(100秒後)に開閉扉を閉じ、チャンバー内に乾燥空気を流し(除湿)、乾燥時におけるサンプルの静電容量の変化を計測した。
 計測は、所定の湿度(測定湿度)ごとに3回行い、測定湿度(20%、50%及び80%と変え、また印加する交流信号の周波数を1kHz、10kHz及び100kHzと変えて同様に計測した。チャンバー内を乾燥状態にしたときの容量計の値を0%RHとした。測定はすべて室温(25℃)である。
 図3を見ると判るように、いずれの条件においても、補強用樹脂層15がある場合(折れ線X)と補強用樹脂層15がない場合(折れ線Y)とを比較すると、容量の変化は、補強用樹脂層15がある場合(折れ線X)には、許容範囲にはいるが、補強用樹脂層15がない場合(折れ線Y)には湿度が高くなりすぎるまたは印加する交流信号の周波数が極端に高くなると、測定できないほどに変化量が大きくなってしまうことが判る。このことは、補強用樹脂層15がない場合(折れ線Y)には第2の電極層13とガス感応膜11との間で剥離が発生していることを意味している。そして図3からは、補強用樹脂層15がある場合(折れ線X)には、いずれの条件であっても、第2の電極層13とガス感応膜11との間で剥離が発生していないことが判る。
 (第2の実施の形態)
 次に本発明の第2の実施の形態について説明する。図4は第2の実施の形態の平面図を示している。この第2の実施の形態では、図1の第1の実施の形態と異なって、基板3の上に第2の電極層13,13の両端部が、一対の電極部7A及び7B並びに9A及び9Bと重なった状態で接続される場合において、補強用樹脂層15が第2の電極層13,13の両端部と一対の電極部7A及び7B並びに9A及び9Bの一部を覆う形状寸法を有している。このように補強用樹脂層15を形成すると、電極部7A及び7B並びに9A及び9Bからの第2の電極層13,13の剥離も、有効に阻止することができる。
 上記第1及び第2の実施の形態では、1つの第1の電極層5に対して2つの第2の電極層13が設けられているが、1つの第1の電極層5に対して1つの第2の電極層13が設けられている場合も当然にして本発明に含まれる。
 (第3の実施の形態)
 次に本発明の第3の実施の形態について説明する。第1及び第2の実施の形態では、第2の電極層13の大部分また全部を補強用樹脂層15により覆ったが、第3の実施の形態では、第2の電極層13の表面上だけを補強用樹脂層15により覆っている。図5は第3の実施の形態の断面図を示している。具体的には、両端部に接続される一対の電極部7A及び7Bと第1の電極層5の図示しない電極部を露出させるようにガス感応膜11が基板3の上に全面的に形成されている。そして第2の電極層13の両端部と一対の電極部7A及び7Bとが、導電性スルーホール部14により接続されている。本実施の形態では、導電性スルーホール部14は、第2の電極層13を形成する導電材と同じ導電材により形成されている。なお導電性スルーホール部14を第2の電極層13を形成する導電材とは別の導電材により形成してもよいのは勿論である。そして本実施の形態では、第1及び第2の実施の形態と異なって、第2の電極層の上にのみ通気性を有する補強用樹脂層15が設けられている。このような構造にしても、3次元網目状に絡み合ったナノカーボン材からなる第2の電極層の空隙部内には、補強用樹脂層を構成する樹脂が入り込み、一部はガス感応膜と接触する。これによって補強用樹脂層15は、第2の電極層13がガス感応膜11から剥離することを防止する機能を発揮する。したがってこのような構造であっても、補強用樹脂層15を構成する樹脂がガス感応膜11の一部と結合された状態が部分的に発生するので、第2の電極層13がガス感応膜11から剥離することを防止できる。
 (変形例)
 上記各実施の形態においては、ガス感応膜11にフッ素化ポリイミドを用いて形成したが、ポリイミド系有機化合物、セルロース、セルロース系有機化合物、ポリビニルアルコール(PVA)等のように、硬化後に通気性を示す材料であれば、その他の材料を用いることもできるのは勿論である。またガス感応膜及び補強用樹脂層をポリイミド系の感光性樹脂を用いて形成してもよいのは勿論である。
 (容量型ガスセンサの検出対象)
 上記各実施形態においては、本発明に係る容量型ガスセンサを湿度センサに利用した例である。本発明に係る容量型ガスセンサは湿度センサとして使用する場合に限られるものではない。本発明に係る容量型ガスセンサは、アルコールやアルデヒド等の有機化合物の濃度を検出するガスセンサとして利用することができる。
 また近年の電子装置は、さまざまな回路部品やセンサを備えた複合機能を備える製品として提供される場合が多い。湿度センサあるいは一般的なガスセンサも回路基板に組み込んで構成することができれば、小型化を図るとともに、量産等にも容易に対応することができる。
 本発明によれば、少なくとも第2の電極層の上に通気性を有する補強用樹脂層が設けられている。その結果、3次元網目状に絡み合ったナノカーボン材からなる第2の電極層の空隙部内には、補強用樹脂層が入り込み、一部はガス感応膜と接触する。これによって補強用樹脂層は、第2の電極層がガス感応膜から剥離することを防止する機能を発揮する。
 1 容量型ガスセンサ
 3 基板
 5 第1の電極層
 11 ガス感応膜
 13 第2の電極層
 15 補強用樹脂層

Claims (10)

  1.  基板の上に形成された第1の電極層と、前記第1の電極層の上に形成された通気性のあるガス感応膜と、前記第1の電極層と対向して前記ガス感応膜の上に形成された3次元網目状に絡み合ったナノカーボン材からなる第2の電極層とを備えてなる容量型ガスセンサであって、
     少なくとも前記第2の電極層の上に通気性を有する補強用樹脂層が設けられていることを特徴とする容量型ガスセンサ。
  2.  前記補強用樹脂層は、前記第2の電極層の上にのみ存在している請求項1に記載の容量型ガスセンサ。
  3.  前記第2の電極層は周囲に前記ガス感応膜の一部がはみ出る大きさに形成されており、通気性を有する補強用樹脂層が、前記第2の電極層及び前記第2の電極層からはみ出た前記ガス感応膜の少なくとも一部を覆っていることを特徴とする請求項1に記載の容量型ガスセンサ。
  4.  前記補強用樹脂層が、前記ガス感応膜と同じ材料によって形成されており、
     前記補強用樹脂層の厚みが2μm以下である請求項1に記載の容量型ガスセンサ。
  5.  前記ガス感応膜は、湿度の変化に応じて容量が変化するものである請求項4に記載の容量型ガスセンサ。
  6.  前記ガス感応膜がフッ素化ポリイミドである請求項5に記載の容量型ガスセンサ。
  7.  前記ナノカーボン材が、SWCNT、NWCNT、DWCNT及びグラフェンから選択された1種または複数種の材料である請求項1または2に記載の容量型ガスセンサ。
  8.  前記基板の上には前記第1の電極層に接続された1以上の第1の電極部と、前記第2の電極層に接続された1以上の第2の電極部とが形成されており、
     前記基板の上には、前記第1の電極層を覆い且つ前記1以上の第1の電極部及び前記1以上の第2の電極部を露出させるように前記ガス感応膜が形成されており、
     前記第2の電極層と前記1以上の第2の電極部と前記ガス感応膜を貫通する導電性スルーホール部を介して電気的に接続されている請求項1に記載の容量型ガスセンサ。
  9.  前記基板の上には前記第2の電極層の両端部が重なった状態で接続される一対の電極部が形成されており、
     前記補強用樹脂層は前記第2の電極層の前記両端部と前記一対の電極部の一部を覆う形状寸法を有している請求項1に記載の容量型ガスセンサ。
  10.  基板の上に形成された第1の電極層と、前記第1の電極層の上に形成された通気性のあるガス感応膜と、前記第1の電極層と対向して前記ガス感応膜の上に形成された3次元網目状に絡み合ったナノカーボン材からなる第2の電極層とを備えてなる容量型ガスセンサであって、
     前記ガス感応膜の上に前記第1の電極層と交差するように間隔をあけて2本の第2の電極層が形成されており、
     前記2本の第2の電極層は周囲に前記ガス感応膜の一部がはみ出る幅寸法を有しており、
     通気性を有する補強用樹脂層が、前記2本の第2の電極層及び前記2本の第2の電極層からはみ出た前記ガス感応膜の少なくとも一部を覆っていることを特徴とする容量型ガスセンサ。
PCT/JP2017/032422 2016-09-09 2017-09-08 容量型ガスセンサ WO2018047936A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/331,701 US11287395B2 (en) 2016-09-09 2017-09-08 Capacitive gas sensor
CN201780054609.9A CN109690301B (zh) 2016-09-09 2017-09-08 容量型气体传感器
JP2018538478A JP6450506B2 (ja) 2016-09-09 2017-09-08 容量型ガスセンサ
GB1903506.2A GB2568196B (en) 2016-09-09 2017-09-08 Capacitive gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-176199 2016-09-09
JP2016176199 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047936A1 true WO2018047936A1 (ja) 2018-03-15

Family

ID=61562166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032422 WO2018047936A1 (ja) 2016-09-09 2017-09-08 容量型ガスセンサ

Country Status (5)

Country Link
US (1) US11287395B2 (ja)
JP (1) JP6450506B2 (ja)
CN (1) CN109690301B (ja)
GB (1) GB2568196B (ja)
WO (1) WO2018047936A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168289A (ja) * 2018-03-22 2019-10-03 株式会社東芝 ガスセンシング方法、ガスセンサ、及びガスセンシングシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599877A (ja) * 1991-06-25 1993-04-23 Yamatake Honeywell Co Ltd 感湿装置
US20060249402A1 (en) * 2005-03-15 2006-11-09 Snow Eric S Capacitive based sensing of molecular adsorbates on the surface of single wall nanotubes
JP2013539040A (ja) * 2010-09-30 2013-10-17 スリーエム イノベイティブ プロパティズ カンパニー センサー素子、その製造方法、及びそれを含むセンサー装置
JP2015007618A (ja) * 2013-05-29 2015-01-15 国立大学法人信州大学 容量型ガスセンサ及びその製造方法
JP2015518158A (ja) * 2012-06-04 2015-06-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ グラフェン電極を有する容量性の湿度センサー
JP2015525362A (ja) * 2012-06-25 2015-09-03 スリーエム イノベイティブ プロパティズ カンパニー センサー素子、その製造方法、及びその使用方法
JP2016504595A (ja) * 2013-01-11 2016-02-12 メアス フランスMeas France 半導体回路上に一体化された容量センサ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB559240A (en) * 1942-06-23 1944-02-10 Leslie Hartshorn Improvements in and relating to electrically operated indicating or measuring instruments
JPS55136946A (en) * 1979-04-12 1980-10-25 Ngk Spark Plug Co Ltd Gas component detecting element and manufacture thereof
JPS599877B2 (ja) * 1979-04-28 1984-03-05 株式会社日立製作所 原子炉
FR2526949B1 (fr) * 1982-05-11 1989-05-12 Ministere Transports Direct Me Procede de fabrication d'un capteur de temperature ou d'humidite du type a couches minces et capteurs obtenus
JPS599877A (ja) * 1982-07-07 1984-01-19 日立電線株式会社 フラツトケ−ブル直付型コンセント装置
US4656455A (en) * 1984-07-20 1987-04-07 Toyama Prefecture Humidity-sensing element
US4603372A (en) * 1984-11-05 1986-07-29 Direction De La Meteorologie Du Ministere Des Transports Method of fabricating a temperature or humidity sensor of the thin film type, and sensors obtained thereby
JP3570153B2 (ja) * 1997-04-28 2004-09-29 ソニー株式会社 電子材料、その製造方法、誘電体キャパシタ、不揮発性メモリおよび半導体装置
JP2001004579A (ja) * 1999-06-16 2001-01-12 Shinei Kk 容量式感湿素子
JP2001057618A (ja) * 1999-08-18 2001-02-27 Funai Electric Co Ltd ファクシミリ装置
JP2002005868A (ja) * 2000-06-16 2002-01-09 Yamatake Corp 検出器
US6724612B2 (en) * 2002-07-09 2004-04-20 Honeywell International Inc. Relative humidity sensor with integrated signal conditioning
KR101093612B1 (ko) * 2008-11-12 2011-12-15 전자부품연구원 정전용량형 습도센서 및 그 제조방법
CN102341698B (zh) * 2009-06-01 2013-10-09 阿尔卑斯电气株式会社 湿度检测传感器封装件及其制造方法
JP5653015B2 (ja) * 2009-08-12 2015-01-14 日本ゴア株式会社 補強された膜電極組立体の製造方法および補強された膜電極組立体
CN104752602B (zh) * 2010-03-12 2017-07-28 北陆电气工业株式会社 具备pzt膜的传感器元件的制造方法
KR101367887B1 (ko) * 2012-03-16 2014-03-03 주식회사삼영에스앤씨 정전용량형 습도센서
JP2014169409A (ja) * 2013-03-05 2014-09-18 Shinshu Univ Cfrp構造体及びcfrp構造体の修復装置
JP6235415B2 (ja) * 2014-06-10 2017-11-22 アルプス電気株式会社 湿度検知装置
CN204831421U (zh) * 2015-07-30 2015-12-02 深圳嘉树科技有限公司 一种热式气体流量传感器
CN105486728B (zh) * 2015-11-27 2018-05-25 深圳市美思先端电子有限公司 电容式湿度传感器及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599877A (ja) * 1991-06-25 1993-04-23 Yamatake Honeywell Co Ltd 感湿装置
US20060249402A1 (en) * 2005-03-15 2006-11-09 Snow Eric S Capacitive based sensing of molecular adsorbates on the surface of single wall nanotubes
JP2013539040A (ja) * 2010-09-30 2013-10-17 スリーエム イノベイティブ プロパティズ カンパニー センサー素子、その製造方法、及びそれを含むセンサー装置
JP2015518158A (ja) * 2012-06-04 2015-06-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ グラフェン電極を有する容量性の湿度センサー
JP2015525362A (ja) * 2012-06-25 2015-09-03 スリーエム イノベイティブ プロパティズ カンパニー センサー素子、その製造方法、及びその使用方法
JP2016504595A (ja) * 2013-01-11 2016-02-12 メアス フランスMeas France 半導体回路上に一体化された容量センサ
JP2015007618A (ja) * 2013-05-29 2015-01-15 国立大学法人信州大学 容量型ガスセンサ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITOH, EIJI ET AL.: "Fabrication of fast, highly sensitive all-printed capacitive humidity sensors with carbon nanotube/polyimide hybrid electrodes", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 55, no. 2S, 19 January 2016 (2016-01-19), pages 02BB10, XP055604137, DOI: 10.7567/JJAP.55.02BB10 *

Also Published As

Publication number Publication date
GB2568196A (en) 2019-05-08
JPWO2018047936A1 (ja) 2018-11-29
JP6450506B2 (ja) 2019-01-16
US11287395B2 (en) 2022-03-29
GB201903506D0 (en) 2019-05-01
GB2568196B (en) 2022-04-20
CN109690301A (zh) 2019-04-26
US20190250117A1 (en) 2019-08-15
CN109690301B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
KR101093612B1 (ko) 정전용량형 습도센서 및 그 제조방법
CN102209892B (zh) 改进的电容传感器及其制造方法
WO2012046501A1 (ja) 湿度検出センサ及びその製造方法
KR101367887B1 (ko) 정전용량형 습도센서
WO2018062379A1 (ja) 湿度センサ
CN107290241B (zh) 一种qcm湿度传感器及其制备方法
TWI432721B (zh) 用以檢測解凍之感測器裝置及其製造方法
KR100856577B1 (ko) 탄소나노튜브 센서 및 그 제조방법
US20090108852A1 (en) Structure for capacitive balancing of integrated relative humidity sensor
JP2007139447A (ja) 薄膜の透湿度測定装置および透湿度測定方法
CN105510404A (zh) 一种快速响应的湿度传感器及其制造方法
US9234859B2 (en) Integrated device of a capacitive type for detecting humidity, in particular manufactured using a CMOS technology
JP6450506B2 (ja) 容量型ガスセンサ
JP2018059716A (ja) センサ装置
US20060055502A1 (en) Humidity sensor
KR101902067B1 (ko) 습도 센서
JP6370111B2 (ja) 容量型ガスセンサ及びその製造方法
ITMI982153A1 (it) Dispositivo multisensore per misure chimiche gravimetriche mediante strati piezoelettrici risonanti in tecnologia a film spesso.
US11506624B2 (en) Capacitive gas sensors and manufacturing method thereof
KR20140003085A (ko) 정전용량형 습도 센서 및 이의 제조방법
Hsieh et al. Dual-layer nanoporous anodic aluminum oxide with embedded electrodes for capacitive relative humidity sensor
Saeidi et al. The effects of fabrication process on the performance of a CMOS based capacitive humidity sensor
KR101830304B1 (ko) 통합 센서의 제조 방법 및 이를 이용한 통합 센서
JP2007155556A (ja) 湿度センサ
CN114858874A (zh) 湿度感测结构、湿度传感器及湿度感测结构的制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018538478

Country of ref document: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201903506

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170908

122 Ep: pct application non-entry in european phase

Ref document number: 17848874

Country of ref document: EP

Kind code of ref document: A1