WO2018047573A1 - マスキング耐熱塗料および溶射方法 - Google Patents

マスキング耐熱塗料および溶射方法 Download PDF

Info

Publication number
WO2018047573A1
WO2018047573A1 PCT/JP2017/028943 JP2017028943W WO2018047573A1 WO 2018047573 A1 WO2018047573 A1 WO 2018047573A1 JP 2017028943 W JP2017028943 W JP 2017028943W WO 2018047573 A1 WO2018047573 A1 WO 2018047573A1
Authority
WO
WIPO (PCT)
Prior art keywords
mer
masking
heat
resistant paint
binder
Prior art date
Application number
PCT/JP2017/028943
Other languages
English (en)
French (fr)
Inventor
▲隆▼壽 舩山
丈昭 浅井
真寿 今枝
雅紀 峯村
Original Assignee
株式会社コガネイ
東京熱化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コガネイ, 東京熱化学工業株式会社 filed Critical 株式会社コガネイ
Publication of WO2018047573A1 publication Critical patent/WO2018047573A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • B05D1/10Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas

Definitions

  • the present invention relates to a masking heat-resistant coating material and a thermal spraying method. For example, when a thermal spray coating is formed by injecting a material in which a metal material is melted toward a base material, a region other than the region where the thermal spray coating is formed on the base material. And a thermal spraying method using the masking heat-resistant paint.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-301378 discloses a photocatalyst module having a protective film that can sufficiently withstand a film forming method such as thermal spraying and prevents oxidation and decomposition of the substrate.
  • Patent Document 2 Japanese Patent Laid-Open No. 5-171401 discloses a metal processing method for forming an organic resin film on the surface of a pottery or the like before the metal spraying step.
  • a thermal spraying technique is used to form a stronger metal film in a portion requiring wear resistance.
  • the sprayed powder may be scattered and fixed in addition to the target portion to be sprayed.
  • the sprayed powder in the case of thermal spraying of metal powder, it is firmly fixed to the metal substrate. For this reason, it is not easy to peel off the fixed object other than the target portion to be sprayed, and a method of grinding and removing using a machine tool or the like is employed.
  • the present inventor forms a coating film by applying a heat-resistant paint to a portion other than the target portion to be sprayed, and then sprays to remove the sprayed sprayed powder together with the coating film.
  • a masking heat-resistant paint suitable for use in the masking method.
  • the object of the present invention is to provide a masking heat resistance suitable for use in a masking method in which a coating film is formed by applying a heat-resistant paint to a portion other than the target portion to be sprayed and then sprayed, and the sprayed sprayed powder is removed together with the coating film.
  • a coating film is formed by applying a heat-resistant paint to a portion other than the target portion to be sprayed and then sprayed, and the sprayed sprayed powder is removed together with the coating film.
  • the masking heat-resistant paint of the present invention comprises (a) a first binder and a second binder, (b) a solvent for dissolving the first binder and the second binder, and (c) a hollow ceramic.
  • Masking heat resistant paint is an m-mer silicone alkoxy oligomer
  • the second binder is an n-mer silicone alkoxy oligomer larger than m.
  • the proportion of the crosslinkable substituent bonded to Si constituting the m-mer silicone alkoxy oligomer is larger than the proportion of the crosslinkable substituent bonded to Si constituting the n-mer silicone alkoxy oligomer larger than m. .
  • the m-mer is a pentamer or less
  • the n-mer is a 10-mer or more and 30-mer or less.
  • the silicone alkoxy oligomer has an alkyl group and an alkoxy group, and the crosslinkable substituent is the alkoxy group.
  • the masking heat-resistant paint has (d) silica sol.
  • the solvent is a ketone solvent.
  • the masking heat-resistant paint of the present invention comprises (a) a first binder and a second binder, (b) a solvent for dissolving the first binder and the second binder, and (c) a hollow ceramic.
  • This is a masking heat-resistant paint.
  • the first binder is an m-mer silicone alkoxy oligomer
  • the second binder is an n-mer silicone alkoxy oligomer larger than m.
  • Si constituting the m-mer silicone alkoxy oligomer has a trifunctional siloxane structural unit and a bifunctional siloxane structural unit, and the bifunctional siloxane structure of the n-mer silicone alkoxy oligomer.
  • the ratio of the unit is larger than the ratio of the bifunctional siloxane structural unit of the m-mer silicone alkoxy oligomer.
  • the m-mer is a pentamer or less
  • the n-mer is a 10-mer or more and 30-mer or less.
  • the silicone alkoxy oligomer has an alkyl group and an alkoxy group
  • the bifunctional siloxane structural unit is a site where two alkyl groups are bonded to Si
  • the trifunctional siloxane The structural unit is a site where one alkyl group and one alkoxy group are bonded to Si.
  • the ratio of the bifunctional siloxane structural unit of the n-mer silicone alkoxy oligomer is 50% or more, and the ratio of the bifunctional siloxane structural unit of the m-mer silicone alkoxy oligomer is 10% or less. is there.
  • the masking heat-resistant paint has (d) silica sol.
  • the solvent is a ketone solvent.
  • the thermal spraying method of the present invention is a thermal spraying method for forming a thermal spray coating on the first region of the substrate, (A) a step of applying a masking tape to the first region of the substrate, (B) the above A step of applying a masking heat-resistant paint to a region other than the first region of the substrate, (C) a step of exposing the first region of the substrate by peeling the masking tape, and (D) applying A step of forming a coating film by curing the masking heat-resistant paint; (E) a step of forming a sprayed coating by spraying spray particles onto the first region of the substrate; and (F) the coating film.
  • a peeling step is a thermal spraying method for forming a thermal spray coating on the first region of the substrate, (A) a step of applying a masking tape to the first region of the substrate, (B) the above A step of applying a masking heat-resistant paint to a region other than the first region of the substrate, (C) a step of
  • the masking heat-resistant paint is obtained by mixing (a) a first binder and a second binder, (b) a solvent for dissolving the first binder and the second binder, and (c) a hollow ceramic.
  • the first binder is an m-mer silicone alkoxy oligomer
  • the second binder is an n-mer silicone alkoxy oligomer larger than m
  • Si constituting the m-mer silicone alkoxy oligomer is included.
  • the ratio of the crosslinkable substituent bonded is larger than the ratio of the crosslinkable substituent bonded to Si constituting the n-mer silicone alkoxy oligomer larger than m.
  • the masking heat-resistant paint of the present invention has heat resistance because it has hollow ceramics, and further has two types of silicone alkoxy oligomers having different ratios of crosslinkable substituents or difunctional siloxane structural units as binders. Further, it is possible to improve the releasability of the masking material after the operation while maintaining the adhesiveness as the masking material during the high temperature operation. For example, in the thermal spraying process, a masking material can be easily peeled off after forming a masking material in a non-sprayed region and forming a sprayed coating in the sprayed region using a masking heat resistant paint.
  • FIG. 1 It is the perspective view and side view which show an example of a thermal spraying object component. It is sectional drawing which shows the thermal spraying process using a masking heat-resistant coating material. It is a figure which shows the model structure of the coating film (masking material) formed using the coating materials A-C. It is a figure which shows the model structural formula of the silicone alkoxy oligomer 1 and the silicone alkoxy oligomer 2. FIG. It is a figure which shows reaction of a silicone alkoxy oligomer. It is a figure which shows a siloxane structural unit.
  • FIG. 1 is a perspective view and a side view showing an example of a thermal spray target component.
  • 1A is a perspective view
  • FIG. 1B is a side view.
  • FIG. 2 is a cross-sectional view showing a thermal spraying process using a masking heat resistant paint.
  • region of the left half of a support stand is shown.
  • 1A and 1B have a moving block 3 and a support base 1 on which a guide rail 2 is provided. With such a configuration, the moving block 3 can be linearly reciprocated along the guide rail 2.
  • a thermal spray coating 4 is provided by spraying powder of a metal material (for example, stainless steel) harder than the constituent metal (for example, Al alloy) of the support base 1. ing.
  • thermal spray coating 4 As a method of forming the thermal spray coating 4, there is a method in which a region other than the region where the thermal spray coating 4 is formed is covered with a masking material using a masking heat-resistant paint, and thermal spraying is performed only in a desired region.
  • a support base 1 that is a thermal spraying target part is prepared.
  • a masking tape MT is affixed to a region where the sprayed coating 4 is formed.
  • region which forms the sprayed coating 4 in the support stand 1 are exposed.
  • the region where the sprayed coating 4 is formed is the side surface of the guide rail 2 of the support base 1.
  • a masking heat-resistant paint M1 is applied to the area exposed from the masking tape MT.
  • spread the poured paint with a spatula spatula
  • the surface of the masking heat resistant paint M1 is dried. For example, a surface drying process is performed at 20 ° C. for about 3 hours. Thereafter, the masking tape MT is peeled off.
  • the heat-resistant masking paint M1 is cured by heat treatment to form a coating film (masking material) M2.
  • a coating film (masking material) M2 For example, it is heated (baked) at 180 ° C. for 15 minutes in a hot air circulation dryer.
  • a thermal spray material for example, stainless powder, thermal spray particles
  • the melting temperature of the stainless steel powder is 1400 to 1500 ° C.
  • the temperature of the sprayed surface during spraying is about 300 to 400 ° C.
  • the coating film (masking material) M2 needs to have a heat resistance of at least about 500 ° C. or more, and has an adhesive property that does not peel off due to the wind pressure when spraying the molten material.
  • the preheating temperature is, for example, 100 to 150 ° C.
  • the coating film (masking material) M2 is peeled off together with the sprayed material scattered on the upper surface.
  • the coating film (masking material) M2 is required to have a performance of having peelability after thermal spraying while maintaining heat resistance and adhesiveness during thermal spraying.
  • paints A to C The following three types of paints (paints A to C) were used, and the performance of the coating film (masking material) was examined. These paints are so-called “one-pack type” paints.
  • the paint (masking heat-resistant paint, silicone resin precursor) has (a) a binder, (b) a pigment, (c) an additive, and (d) a solvent.
  • a silicone alkoxy oligomer As the binder, a silicone alkoxy oligomer can be used. An inorganic oxide sol can be used as a material for supplying moisture for hydrolysis of the silicone alkoxy oligomer.
  • an inorganic pigment can be used as a color pigment or an extender pigment.
  • powders such as composite metal oxides, metal oxides, metals, and natural minerals can be used.
  • shape of the powder a granular shape, a scale shape, or a fibrous shape can be used.
  • solvent aromatic hydrocarbon solvents, alcohol solvents, ketone solvents, ester solvents, water, and the like can be used.
  • the solvent (solvent) dissolves the silicone alkoxy oligomer.
  • the said various materials can be mixed using a sand mill, a ball mill, a colloidal mixer, a disper, etc.
  • a coating method when applying the masking heat-resistant paint to the non-sprayed portion of the object to be sprayed there are methods such as brush coating, flow coating, dip coating, spray coating, electrostatic coating and the like in addition to the above-mentioned flow spatula coating. Can be used.
  • Table 1 is a table showing the silicone alkoxy oligomer shown in Table 1.
  • the organic substituent of the silicone alkoxy oligomer In Table 2, the organic substituent of the silicone alkoxy oligomer, the kind of alkoxy group, the amount of alkoxy group (wt%), the amount of SiO 2 (wt%), and the amount of Si (wt%) are shown.
  • the amount of Si content (wt%) is the amount of SiO 2 minutes (wt%), was calculated by multiplying the "Si molecular weight / SiO 2 molecular weight”.
  • the silicone alkoxy oligomer manufactured by Shin-Etsu Silicone used in this example has an organic substituent (methyl group) and an alkoxy group (methoxy group).
  • the paints A to C shown in Table 1 were applied to an Al alloy member whose sprayed area was covered with a masking tape MT (made by 3M, 243JP Plus) by applying a spatula, and after drying the surface, the coating was heated at 180 ° C.
  • a coating film (masking material) was obtained by heating for 15 minutes and curing. The thickness of the coating film was about 200 ⁇ m to 250 ⁇ m.
  • a member having a coating film was heated in an electric furnace heated to 650 ° C. for 1 hour and then cooled to room temperature.
  • the member having the coating film (masking material) was heated in an electric furnace heated to 650 ° C. for 2 minutes and then cooled to room temperature.
  • the first heat treatment is a temperature condition corresponding to the preheating process
  • the second heating process is a temperature condition corresponding to the thermal spraying process
  • the hardness of the coating film was about 6H.
  • the coating film using the coating material B when the said 1st, 2nd heat processing was performed, since hardness was low and it had a softness
  • the pencil hardness of the coating film was about 6B.
  • the film could be peeled off. Specifically, the coating film peeled into a single plate shape by inserting a flat blade at the boundary between the coating film and the member and applying light stress. The pencil hardness of the coating film was about HB.
  • paint C when paint C is used as a masking heat-resistant paint, it will not melt or burn out during high-temperature work, and maintain the adhesion as a masking material while improving the releasability of the masking material after work. I was able to.
  • the masking material can be easily peeled off after forming a masking material in a non-sprayed region and forming a sprayed coating in the sprayed region using a masking heat resistant paint.
  • the paint C it is possible to easily remove the thermal spraying powder other than the target portion to be sprayed together with the masking material, and to greatly reduce the number of stripping work steps and costs compared to the removal process by grinding. Can do.
  • FIG. 3 is a diagram showing a model structure of a coating film (masking material) formed using the paints A to C.
  • the intersection points indicate the Si arrangement positions, and the straight lines extending from the intersection points indicate “Si—O” bonds.
  • a flexible film having a low crosslinking density is formed from the characteristics of the silicone alkoxy oligomer 2 as shown in FIG. In other words, it is considered that a flexible film was formed because there were many uncrosslinked portions (elastic molecular structure portions).
  • the silicone alkoxy oligomer 1 shown in Table 2 is a tetramer
  • the silicone alkoxy oligomer 2 is a 10 to 20 mer.
  • the silicone alkoxy oligomers 1 and 2 are hydrolyzed and silanolated in the presence of moisture (silica sol) (reaction (1)).
  • reaction (2) By this dehydration condensation of silanol (reaction (2)), the crosslinking reaction proceeds and becomes polymerized (cured).
  • a hydrolysis / polycondensation reaction may be referred to as a sol-gel reaction.
  • the pH of the reaction system is, for example, pH 3-4.
  • the dehydration reaction is suppressed by a ketone solvent, and the dehydration reaction (crosslinking reaction) proceeds when the ketone solvent volatilizes by drying or heating after application of the paint. Therefore, when water (silica sol) is contained in the paint, the two types of silicone alkoxy oligomers may be silanolized by hydrolysis. That is, a part or all of —OCH 3 in the structural formulas (1) and (2) in FIG. 4 may be —OH.
  • the coating film is cured.
  • the amount of —OCH 3 (or —OH after hydrolysis) serving as a site (crosslinking substituent) serving as a base point for crosslinking is high, the crosslink density is high and a strong film is formed (FIG. 3A )reference).
  • a flexible film is formed (see FIG. 3B).
  • the polymerization degree of the silicone alkoxy oligomer is large, a flexible film is formed.
  • the silicone alkoxy oligomer 1 having a low proportion (for example, a tetramer) and a large proportion of cross-linking substituents is changed to a silicone alkoxy oligomer 1 having a low proportion of the cross-linking substituents in a medium (for example, a 10-20 mer).
  • a medium for example, a 10-20 mer.
  • the ratio of the crosslinking substituent can be represented, for example, by the number of crosslinking substituents bonded to the Si atom in the monomer. In the structural formula (1) of FIG. 4, it is 1.5, and in the structural formula (2), it is about 0.4.
  • the proportion of the crosslinkable substituent bonded to Si constituting the m-mer (low-mer) silicone alkoxy oligomer is set to an n-mer larger than m.
  • m-mer (low-mer) is pentamer or less
  • n-mer (medium) larger than m is 10-mer or more and 30-mer or less.
  • the ratio of the crosslinkable substituent bonded to Si constituting the m-mer (low-mer) silicone alkoxy oligomer is 1 or more, and Si constituting the n-mer (medium) silicone alkoxy oligomer.
  • the ratio of the crosslinkable substituent bonded to is less than 1.
  • FIG. 6A shows the structure of Si in the D unit (bifunctional siloxane structural unit), and FIG. 6B shows the structure of Si in the T unit (trifunctional siloxane structural unit).
  • the number of T units (trifunctional) is four (100%). Moreover, about Si which comprises Structural formula (2), T unit (trifunctional) will be four (40%), and D unit (bifunctional) will be six (60%). Thus, a crosslinking density can be lowered
  • the proportion of D units (bifunctional siloxane structural units) of the n-mer (medium) silicone alkoxy oligomer is expressed as m-mer (low-mer).
  • the proportion of the D unit (bifunctional siloxane structural unit) of the n-mer (medium) silicone alkoxy oligomer is 50% or more, more preferably 80% or more.
  • the ratio of D unit (bifunctional siloxane structural unit) of the silicone alkoxy oligomer is 10% or less.
  • the silicone alkoxy oligomer 1 (m-mer) and the silicone alkoxy oligomer 2 (n-mer) have an m-mer so that the amount of active components after hydrolysis is equal.
  • Active ingredient: 13 ⁇ 70% 9 (Equation 1)
  • n-mer active ingredient: 10 ⁇ 90% 9 (Equation 2) from silicone alkoxy oligomer 1 (m-mer) and silicone alkoxy
  • the weight ratio of oligomer 2 (n-mer) was 13:10.
  • the binder (total amount of the silicone alkoxy oligomer) in the paint can be adjusted in the range of 5 to 30% by weight of the paint weight.
  • the inorganic oxide sol (for example, silica sol) for supplying water for hydrolysis can be adjusted in the range of 3 wt% to 20 wt% of the coating weight.
  • the pigment can be adjusted in the range of 15% to 45% by weight of the paint weight.
  • the reinforcing material fibrous mica
  • the heat insulating material (hollow ceramic) is adjusted in the range of 10 to 30% by weight of the paint weight.
  • the hollow ceramics those having different particle diameters may be mixed and used.
  • the spherical hollow aluminosilicate shown in Table 1 is used in a 1: 1 mixture of those having an average particle diameter of 21-25 ⁇ m and 13-14 ⁇ m.
  • the range of particle size and the mixing ratio can be adjusted as appropriate.
  • this hollow ceramic also plays the role which enlarges the film thickness of a coating film.
  • the pigment dispersant can be adjusted in the range of 1 to 2% by weight of the paint weight.
  • a surfactant can be used as the pigment dispersant.
  • the solvent can be adjusted in the range of 15% to 40% by weight of the paint weight.
  • the solvent for suppressing the dehydration condensation reaction (here, the ketone solvent) can be adjusted in the range of 5 to 10% by weight of the coating weight.
  • the organic substituent (alkyl group) is exemplified by a methyl group and the alkoxy group is represented by —OCH 3 , but is not limited thereto. Moreover, you may use a phenyl group as an organic substituent. However, the use of an alkyl group as the organic substituent is easier and easier to handle.
  • the thickness of the coating film is about 200 ⁇ m to 250 ⁇ m, but is not limited to this, and can be appropriately adjusted according to the application. However, in order to have high adhesion and peelability, it is preferable to form the coating film with a thickness of 200 ⁇ m or more.
  • the Al alloy is exemplified as the constituent material of the base material (support base) which is the component to be sprayed
  • the stainless powder is exemplified as the spraying material, but is not limited thereto.
  • metal (including alloy), ceramics, plastic, wood, paper, etc. can be used as the base material that is the component to be sprayed.
  • thermal spray material metals (including alloys), ceramics, plastics, and the like can be used.
  • thermal spraying method there is no limitation on the thermal spraying method, but there are, for example, a method using plasma spraying in which metal is turned into plasma and a method using an arc spray gun in which metal is melted by applying an electric current and sprayed with air pressure.
  • the thermal spraying of the support stand 1 of a linear reciprocating component was demonstrated to the example, you may form a thermal spray coating in the side surface of the hollow of the back surface of the moving block 3 (refer FIG. 1). .
  • the masking heat-resistant coating material of this invention is widely applicable to the spraying of components (for example, the coating layer of a rice cooker etc.) used in a wide field
  • the masking heat-resistant coating material of the present invention can be used as a masking material for preventing contamination of components of a high-temperature processing apparatus (such as a blast furnace and a film forming apparatus) in addition to the thermal spraying process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

作業時には、耐熱性、接着性を維持しつつ、作業後には、剥離性を有する塗布膜となるマスキング耐熱塗料を提供する。本発明のマスキング耐熱塗料は、低量体(例えば、4量体)で、架橋置換基の割合の多いシリコーンアルコキシオリゴマー1に、中量体(例えば、10~20量体)で、架橋置換基の割合の少ないシリコーンアルコキシオリゴマー2を添加した塗料である。このようなマスキング耐熱塗料を、例えば、溶射工程に用いる。具体的には、マスキング耐熱塗料を用いて、非溶射領域にマスキング材を形成し、溶射領域に溶射被膜を形成した後、マスキング材を剥離する。本発明のマスキング耐熱塗料によれば、マスキング材としての接着性を維持しつつ、作業後のマスキング材の剥離性を向上させることができる。

Description

マスキング耐熱塗料および溶射方法
 本発明は、マスキング耐熱塗料および溶射方法に関し、例えば、金属材料を溶融させた材料を基材に向けて射出して溶射被膜を形成する場合に、上記基材の溶射被膜の形成領域以外の領域を覆うためのマスキング耐熱塗料およびマスキング耐熱塗料を用いた溶射方法に関するものである。
 基材上に薄い金属被膜を形成する際に、溶射工法が利用されている。例えば、特許文献1(特開2002-301378号公報)には、溶射等の成膜方法にも十分耐え、素地の酸化や分解を防止する保護膜を備えた光触媒モジュールが開示されている。また、特許文献2(特開平5-171401号公報)には、金属の吹き付け工程前に、陶器等の表面に有機樹脂の被膜を形成する金属加工方法が開示されている。
特開2002-301378号公報 特開平5-171401号公報
 例えば、各種金属加工部品において、軽量化のためアルミニウム材料を用いた場合、耐摩耗性を要する部分に、より強固な金属膜を形成するため、溶射技術が用いられる。
 溶射技術を用い、耐摩耗性を要する部分に、より強固な金属よりなる溶射被膜を形成するなど、基材の一部にのみ溶射する場合には、溶射のスポット径を小さくし、走査することにより溶射範囲を限定的にする方法が考えられる。
 しかしながら、上記方法を用いても、溶射をしたい目的箇所以外にも、溶射粉末が飛び散り固着する場合がある。特に、金属粉末の溶射の場合には、金属基材に強固に固着する。このため、溶射をしたい目的箇所以外の固着物の剥離は、容易なものではなく、工作機械などを用いて研削除去するといった方法が取られている。
 そこで、本発明者は、上記問題点を解消するため、溶射をしたい目的箇所以外に耐熱塗料を塗布することにより塗布膜を形成した後、溶射を行い、飛び散った溶射粉末を塗布膜ごと除去するマスキング方法を採用し、鋭意検討の結果、マスキング方法に用いて好適なマスキング耐熱塗料を見出すに至った。
 本発明の目的は、溶射をしたい目的箇所以外に耐熱塗料を塗布することにより塗布膜を形成した後、溶射を行い、飛び散った溶射粉末を塗布膜ごと除去するマスキング方法に用いて好適なマスキング耐熱塗料を提供することにある。
 (1)本発明のマスキング耐熱塗料は、(a)第1バインダーおよび第2バインダーと、(b)上記第1バインダーおよび上記第2バインダーを溶解する溶剤と、(c)中空セラミックスと、を混合してなるマスキング耐熱塗料。そして、上記第1バインダーは、m量体のシリコーンアルコキシオリゴマーであり、上記第2バインダーは、mより大きいn量体のシリコーンアルコキシオリゴマーである。さらに、上記m量体のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合は、mより大きいn量体のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合より大きい。
 例えば、上記マスキング耐熱塗料において、上記m量体は、5量体以下であり、上記n量体は、10量体以上30量体以下である。
 例えば、上記マスキング耐熱塗料において、上記シリコーンアルコキシオリゴマーは、アルキル基とアルコキシ基を有し、上記架橋性置換基は、上記アルコキシ基である。
 例えば、上記マスキング耐熱塗料において、(d)シリカゾルを有する。
 例えば、上記マスキング耐熱塗料において、上記溶剤は、ケトン系溶剤である。
 (2)本発明のマスキング耐熱塗料は、(a)第1バインダーおよび第2バインダーと、(b)上記第1バインダーおよび上記第2バインダーを溶解する溶剤と、(c)中空セラミックスと、を混合してなるマスキング耐熱塗料である。そして、上記第1バインダーは、m量体のシリコーンアルコキシオリゴマーであり、上記第2バインダーは、mより大きいn量体のシリコーンアルコキシオリゴマーである。さらに、上記m量体のシリコーンアルコキシオリゴマーを構成するSiは、3官能性シロキサン構造単位と、2官能性シロキサン構造単位と、を有し、上記n量体のシリコーンアルコキシオリゴマーの2官能性シロキサン構造単位の割合は、上記m量体のシリコーンアルコキシオリゴマーの2官能性シロキサン構造単位の割合より大きい。
 例えば、上記マスキング耐熱塗料において、上記m量体は、5量体以下であり、上記n量体は、10量体以上30量体以下である。
 例えば、上記マスキング耐熱塗料において、上記シリコーンアルコキシオリゴマーは、アルキル基とアルコキシ基を有し、上記2官能性シロキサン構造単位は、Siに2つのアルキル基が結合した部位であり、上記3官能性シロキサン構造単位は、Siに1つのアルキル基と1つのアルコキシ基が結合した部位である。そして、上記n量体のシリコーンアルコキシオリゴマーの2官能性シロキサン構造単位の割合は、50%以上であり、上記m量体のシリコーンアルコキシオリゴマーの2官能性シロキサン構造単位の割合は、10%以下である。
 例えば、上記マスキング耐熱塗料において、(d)シリカゾルを有する。
 例えば、上記マスキング耐熱塗料において、上記溶剤は、ケトン系溶剤である。
 (3)本発明の溶射方法は、基材の第1領域に溶射被膜を形成する溶射方法であって、(A)上記基材の第1領域にマスキングテープを貼りつける工程、(B)上記基材の上記第1領域以外の領域に、マスキング耐熱塗料を塗布する工程、(C)上記マスキングテープを剥離することで、上記基材の上記第1領域を露出させる工程、(D)塗布した上記マスキング耐熱塗料を硬化させることにより、塗布膜を形成する工程、(E)上記基材の上記第1領域に溶射粒子を吹き付けることにより、溶射被膜を形成する工程、(F)上記塗布膜を剥離する工程、を有する。そして、上記マスキング耐熱塗料は、(a)第1バインダーおよび第2バインダーと、(b)上記第1バインダーおよび上記第2バインダーを溶解する溶剤と、(c)中空セラミックスと、を混合してなるマスキング耐熱塗料である。さらに、上記第1バインダーは、m量体のシリコーンアルコキシオリゴマーであり、上記第2バインダーは、mより大きいn量体のシリコーンアルコキシオリゴマーであり、上記m量体のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合は、mより大きいn量体のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合より大きい。
 本発明のマスキング耐熱塗料は、中空セラミックスを有するため耐熱性を有し、さらに、バインダーとして、架橋性置換基の割合または2官能性シロキサン構造単位の割合の異なる2種のシリコーンアルコキシオリゴマーを有するため、高温作業時においてマスキング材としての接着性を維持しつつ、作業後のマスキング材の剥離性を向上させることができる。例えば、溶射工程において、マスキング耐熱塗料を用いて、非溶射領域にマスキング材を形成し、溶射領域に溶射被膜を形成した後、簡易にマスキング材を剥離することができる。
溶射対象部品の一例を示す斜視図および側面図である。 マスキング耐熱塗料を用いた溶射工程を示す断面図である。 塗料A~Cを用いて形成された塗布膜(マスキング材)のモデル構造を示す図である。 シリコーンアルコキシオリゴマー1およびシリコーンアルコキシオリゴマー2のモデル構造式を示す図である。 シリコーンアルコキシオリゴマーの反応を示す図である。 シロキサン構造単位を示す図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 (溶射技術の説明)
 図1は、溶射対象部品の一例を示す斜視図および側面図である。図1(A)は、斜視図、図1(B)は、側面図である。図2は、マスキング耐熱塗料を用いた溶射工程を示す断面図である。なお、図2においては、支持台の左半分の領域が示されている。
 図1(A)および図1(B)に示す部品は、移動ブロック3と、ガイドレール2が設けられた支持台1とを有する。このような構成により、移動ブロック3をガイドレール2に沿って直線往復動することができる。
 ここで、移動ブロック3とガイドレール2との対向面においては、支持台1の構成金属(例えば、Al合金)より硬質な金属材料(例えば、ステンレス)の粉末を溶射した溶射被膜4が設けられている。
 上記溶射被膜4を形成する方法としては、マスキング耐熱塗料を用いて、溶射被膜4を形成する領域以外の領域をマスキング材で覆い、所望の領域にのみ、溶射を行う方法がある。
 例えば、図2(A)に示すように、溶射対象部品である支持台1を準備する。次いで、図2(B)に示すように、溶射被膜4を形成する領域に、マスキングテープMTを貼り付ける。これにより、支持台1のうち、溶射被膜4を形成する領域以外の領域が露出する。ここでは、溶射被膜4を形成する領域は、支持台1のガイドレール2の側面である。
 次いで、図2(C)に示すように、マスキングテープMTから露出した領域に、マスキング耐熱塗料M1を塗布する。塗布方法に制限はないが、流し込んだ塗料をヘラなどを用いて塗り広げる(流しヘラ塗り)。次いで、マスキング耐熱塗料M1の表面を乾燥する。例えば、20℃で、3時間程度の表面乾燥処理を行う。この後、マスキングテープMTを剥離する。
 次いで、加熱処理により、マスキング耐熱塗料M1を硬化させ、塗布膜(マスキング材)M2を形成する。例えば、熱風循環式乾燥機にて、180℃で15分加熱する(焼き付ける)。
 これにより、図2(D)に示すように、溶射被膜4を形成する領域以外の領域を塗布膜(マスキング材)M2で覆うことができる。
 次いで、図2(E)に示すように、塗布膜(マスキング材)M2で覆われていない領域(ガイドレール2の側面)に、溶射材料(例えば、ステンレスの粉末、溶射粒子)を溶融したものを射出し、溶射被膜4を形成する。例えば、ステンレスの粉末の溶融温度は、1400~1500℃であり、溶射時の被溶射面(ここでは、ガイドレール2の側面)の温度は、300~400℃程度となる。このため、塗布膜(マスキング材)M2は、少なくとも約500℃以上の耐熱性が必要であり、溶融材料を吹き付ける際の風圧によって剥がれない接着性が必要である。なお、溶射被膜4の形成前に、溶射対象部品である支持台1を予備加熱してもよい。予備加熱温度は、例えば、100~150℃である。
 次いで、図2(F)に示すように、塗布膜(マスキング材)M2をその上面に飛び散った溶射材料とともに剥離する。このように、塗布膜(マスキング材)M2には、溶射時には、耐熱性、接着性を維持しつつ、溶射後には、剥離性を有するという性能が要求される。
 乾燥(硬化)後に、上記性能を充足する塗布膜(マスキング材)とするためのマスキング耐熱塗料(マスキング材組成物)の組成について以下の検討を行った。
 以下に示す3種の塗料(塗料A~C)を用い、塗布膜(マスキング材)の性能について検討した。これらの塗料は、いわゆる“1液型”の塗料である。
 上記塗料(マスキング耐熱塗料、シリコーン樹脂前駆体)は、(a)バインダー、(b)顔料、(c)添加剤、(d)溶剤を有する。
 (a)バインダーとしては、シリコーンアルコキシオリゴマーを用いることができる。シリコーンアルコキシオリゴマーの加水分解のための水分を供給する材料として無機酸化物ゾルを用いることができる。
 (b)顔料としては、無機顔料を着色顔料または体質顔料として用いることができる。無機顔料としては、複合金属酸化物、金属酸化物、金属、天然鉱物などの紛体を用いることができる。紛体の形状としては、粒状、鱗片状、繊維状のものを用いることができる。
 (c)添加剤としては、増粘剤、顔料分散剤、レべリング剤、硬化促進剤などを用いることができる。
 (d)溶剤としては、芳香族の炭化水素系溶剤、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、水などを用いることができる。溶剤(溶媒)は、シリコーンアルコキシオリゴマーを溶解する。
 上記各種材料を混合し、マスキング耐熱塗料を形成する。混合方法に制限はないが、例えば、サンドミル、ボールミル、コロイダルミキサー、ディスパーなどを用いて上記各種材料を混合することができる。
 また、マスキング耐熱塗料を溶射対象物の非溶射部に塗布する際の、塗布方法としては、上記流しヘラ塗りの他、はけ塗り、流し塗り、浸漬塗装、スプレー塗り、静電塗装などの方法を用いることができる。
 上記(a)~(d)の成分として、表1に示す各成分を混合し塗料A~Cを形成した。表2は、表1に示すシリコーンアルコキシオリゴマーを示す表である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表2においては、シリコーンアルコキシオリゴマーの有機置換基、アルコキシ基の種類、アルコキシ基量(wt%)、SiO分の量(wt%)、Si分の量(wt%)を示す。Si分の量(wt%)は、SiO分の量(wt%)に、“Si分子量/SiO分子量”を乗じて算出した。表2に示すように、本実施例で用いたシリコーンアルコキシオリゴマー(信越シリコーン製)は、有機置換基(メチル基)とアルコキシ基(メトキシ基)とを有する。
 表1に示す塗料A~Cを、溶射領域がマスキングテープMT(3M製、243JPlus)で覆われたAl合金製の部材に、流しヘラ塗りにて塗料を塗布し、表面乾燥後、180℃で15分加熱し、硬化させることにより、塗布膜(マスキング材)を得た。塗布膜の膜厚は、200μm~250μm程度であった。
 この後、第1加熱処理として、塗布膜(マスキング材)を有する部材を650℃に加熱した電気炉内で1時間加熱した後、室温まで冷却した。
 さらに、第2加熱処理として、塗布膜(マスキング材)を有する部材を650℃に加熱した電気炉内で2分間加熱した後、室温まで冷却した。
 なお、上記第1加熱処理は、予備加熱工程に対応する温度条件であり、上記第2加熱工程は、溶射工程に対応する温度条件である。
 塗料Aを用いた塗布膜について、上記第1、第2加熱処理を施したところ、硬度が高く、熱収縮が大きく、クラックが生じやすい傾向にあった。このため、均一した剥離性が低く、膜上(板状)に剥離することはできなかった。塗布膜の鉛筆硬度は、6H程度であった。
 塗料Bを用いた塗布膜について、上記第1、第2加熱処理を施したところ、硬度が低く柔軟性を有するため、熱収縮は抑制できた。しかしながら、当該塗布膜について、溶射を行ったところ、風圧により剥離し、塗布膜(マスキング材)としての機能が満たされないことが判明した。塗布膜の鉛筆硬度は、6B程度であった。
 なお、塗料Aのシリコーンアルコキシオリゴマー1に代えて表2のシリコーンアルコキシオリゴマー2、3を用いて塗料を形成し、上記と同様の加熱処理を施したところ、塗料Aと同様に、硬度が高く、熱収縮が大きく、クラックが生じやすい傾向にあった。
 そこで、塗料Cのように、シリコーンアルコキシオリゴマー1、2を混合したバインダーを用いたところ、上記第1、第2加熱処理後においても、クラックは生じず、溶射の風圧によっても剥離することはなかった。さらに、加熱処理後は、膜状で剥離することができた。具体的には、塗布膜と部材との境界に平板状の刃物を挿入し軽く応力をかけるだけで一枚の板状に塗布膜が剥離した。塗布膜の鉛筆硬度は、HB程度であった。
 このように、塗料Cをマスキング耐熱塗料として用いた場合、高温作業時において溶解や焼失することはなく、マスキング材としての接着性を維持しつつ、作業後のマスキング材の剥離性を向上させることができた。例えば、溶射工程において、マスキング耐熱塗料を用いて、非溶射領域にマスキング材を形成し、溶射領域に溶射被膜を形成した後、簡易にマスキング材を剥離できることが判明した。
 よって、上記塗料Cを用いることで、溶射をしたい目的箇所以外の溶射粉末をマスキング材とともに容易に除去することができ、研削による除去工程と比較し、剥離作業工数やコストを大幅に削減することができる。
 以上の実施例の結果を踏まえ、マスキング耐熱塗料としてより好ましいバインダー組成について以下に説明する。
 (架橋密度と各塗布膜の性質について)
 図3は、上記塗料A~Cを用いて形成された塗布膜(マスキング材)のモデル構造を示す図である。図3に示す格子状のモデル構造のうち、交点はSiの配置位置を示し、交点から延びる直線が“Si-O”の結合を示す。
 上記塗料Aを用いた場合、シリコーンアルコキシオリゴマー1の特性から、図3(A)に示すように、架橋密度が高く、強固な膜が形成されたと考えられる。
 また、上記塗料Bを用いた場合、シリコーンアルコキシオリゴマー2の特性から、図3(B)に示すように、架橋密度が低く、柔軟性のある膜が形成されたと考えられる。言い換えれば、架橋されていない部分(弾性分子構造部)が多く、柔軟性のある膜が形成されたと考えられる。
 これに対し、上記塗料Cを用いた場合、シリコーンアルコキシオリゴマー1と2を混合したため、図3(C)に示すように、架橋されていない部分(弾性分子構造部)を含むものの、架橋密度が塗料Bの場合より大きくなり、接着性を保て、また、柔軟性は維持されているため、膜状での剥離が可能となったものと考えられる。
 (シリコーンアルコキシオリゴマーの構造と架橋密度の関係について)
 本発明者の解析および検討によれば、表2に示すシリコーンアルコキシオリゴマー1は、4量体であり、シリコーンアルコキシオリゴマー2は、10~20量体である。
 シリコーンアルコキシオリゴマー1のモデル構造式として、図4の構造式(1)に示すものが挙げられる。また、シリコーンアルコキシオリゴマー2のモデル構造式として、図4の構造式(2)に示すものが挙げられる。
 図5に示すように、上記シリコーンアルコキシオリゴマー1、2は、水分(シリカゾル)の存在下で加水分解し、シラノール化する(反応(1))。このシラノールの脱水縮合(反応(2))により、架橋反応が進行し、高分子化(硬化)する。このような加水分解・重縮合反応を、ゾルゲル反応という場合がある。反応系のpHは、例えば、pH3~4である。
 ここで、上記脱水反応は、ケトン系溶剤により抑制されており、塗料の塗布後、乾燥や加熱によりケトン系溶剤が揮発すると、上記脱水反応(架橋反応)が進行する。よって、塗料中に水分(シリカゾル)が含まれている場合には、加水分解により、2種のシリコーンアルコキシオリゴマーが、シラノール化していてもよい。即ち、図4の構造式(1)と構造式(2)の-OCHの一部または全部が-OHになっていてもよい。
 上記架橋反応が進行すると、塗布膜が硬化する。この際、架橋の基点となる部位(架橋置換基)となる-OCH(または加水分解後は、-OH)が多いと、架橋密度が高く、強固な膜が形成される(図3(A)参照)。また、架橋の基点となる部位(架橋置換基)となる-OCH(または加水分解後は、-OH)が少ないと、柔軟な膜となる(図3(B)参照)。一方、シリコーンアルコキシオリゴマーの重合度が大きいと、柔軟な膜となる。
 このため、低量体(例えば、4量体)で、架橋置換基の割合の多いシリコーンアルコキシオリゴマー1に、中量体(例えば、10~20量体)で、架橋置換基の割合の少ないシリコーンアルコキシオリゴマー2を添加することで、接着性と剥離性を高めることが可能となる。架橋置換基の割合は、例えば、モノマー中のSi原子に結合する架橋置換基の数で表すことができる。図4の構造式(1)では、1.5であり、構造式(2)では、約0.4である。
 このように、塗料において2種のシリコーンアルコキシオリゴマーを用いる際に、m量体(低量体)のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合を、mより大きいn量体(中量体)のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合より大きくすることで、塗布膜の接着性と剥離性を高めることができる。
 例えば、m量体(低量体)は、5量体以下であり、mより大きいn量体(中量体)は、10量体以上30量体以下である。また、m量体(低量体)のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合は、1以上であり、n量体(中量体)のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合は、1未満とする。
 また、2種のシリコーンアルコキシオリゴマーについて、シリコーンの官能数を用いて説明することもできる。図6(A)は、D単位(2官能性シロキサン構造単位)のSiの構成を示し、図6(B)は、T単位(3官能性シロキサン構造単位)のSiの構成を示す。
 構造式(1)を構成するSiについて、T単位(3官能)は4つ(100%)となる。また、構造式(2)を構成するSiについて、T単位(3官能)は4つ(40%)、D単位(2官能)は、6つ(60%)となる。このように、D単位(2官能)の割合が多いシリコーンアルコキシオリゴマーを用いることで、架橋密度を低下させることができる。
 即ち、塗料において2種のシリコーンアルコキシオリゴマーを用いる際に、n量体(中量体)のシリコーンアルコキシオリゴマーのD単位(2官能性シロキサン構造単位)の割合を、m量体(低量体)のシリコーンアルコキシオリゴマーのD単位(2官能性シロキサン構造単位)の割合より大きくすることで、塗布膜の接着性と剥離性を高めることができる。
 例えば、n量体(中量体)のシリコーンアルコキシオリゴマーのD単位(2官能性シロキサン構造単位)の割合を、50%以上、より好ましくは80%以上とし、m量体(低量体)のシリコーンアルコキシオリゴマーのD単位(2官能性シロキサン構造単位)の割合を、10%以下とする。
 このような、本実施の形態の(マスキング耐熱塗料)を用いることで、溶射をしたい目的箇所以外の溶射粉末をマスキング材とともに容易に除去することができ、研削による除去工程と比較し、剥離作業工数やコストを大幅に削減することができる。
 (成分の調整例など)
 2種のシリコーンアルコキシオリゴマーの混合比について、例えば、1:1の重量割合で混合する。各重量について、±30%程度のばらつきは許容範囲である。但し、より好ましくは、m量体のシリコーンアルコキシオリゴマーとn量体のシリコーンアルコキシオリゴマーのそれぞれの加水分解後の有効成分量が等しくなるように加水分解率(%)を考慮し調整することが好ましい。さらに、各重量の±30%程度の範囲で調整することが可能である。
 例えば、前述の表1の塗料Cにおいては、シリコーンアルコキシオリゴマー1(m量体)と、シリコーンアルコキシオリゴマー2(n量体)について、加水分解後の有効成分量が等しくなるように、m量体の有効成分:13×70%=9…(計算式1)、n量体の有効成分:10×90%=9…(計算式2)からシリコーンアルコキシオリゴマー1(m量体)と、シリコーンアルコキシオリゴマー2(n量体)の重量比を13:10とした。
 また、塗料中のバインダー(シリコーンアルコキシオリゴマーの総量)としては、塗料重量の5重量%~30重量%の範囲で調整することができる。また、加水分解用の水分を供給する無機酸化物ゾル(例えば、シリカゾル)は、塗料重量の3重量%~20重量%の範囲で調整することができる。
 また、顔料としては、塗料重量の15重量%~45重量%の範囲で調整することができる。中でも、補強材(繊維状マイカ)は、塗料重量の5重量%~10重量%の範囲で、また、断熱材(中空セラミックス)としては、塗料重量の10重量%~30重量%の範囲で調整することができる。中空セラミックスとしては、粒径の異なるものを混合して用いてもよい。例えば、表1に示す球状中空アルミノシリケートは、平均粒径が21-25μmのものと、13-14μmのものを1:1で混合して用いている。粒径の範囲や混合比は適宜調整可能である。また、この中空セラミックスは、塗布膜の膜厚を大きくする役割も果たす。
 添加剤のうち、顔料分散剤は、塗料重量の1重量%~2重量%の範囲で調整することができる。顔料分散剤としては、例えば、界面活性剤を用いることができる。
 溶剤としては、塗料重量の15重量%~40重量%の範囲で調整することができる。中でも、脱水縮合反応を抑制する溶剤(ここでは、ケトン系溶剤)は、塗料重量の5重量%~10重量%の範囲で調整することができる。
 また、上記実施例においては、有機置換基(アルキル基)として、メチル基を、アルコキシ基として、-OCHを例示したがこれらに限定されるものではない。また、有機置換基としては、フェニル基を用いてもよい。但し、有機置換基としてアルキル基を用いた方が取り扱いが容易で有益である。
 また、上記実施例において、塗布膜の膜厚を、200μm~250μm程度としたが、これに限定されるものではなく、用途に応じて適宜調整可能である。但し、密着性と剥離性を高度に有するためには、200μm以上の厚さで塗布膜を形成することが好ましい。
 また、上記実施の形態においては、溶射対象部品である基材(支持台)の構成材料としてAl合金を例示し、溶射材料としてステンレスの粉末を例示したが、これらに限定されるものではない。例えば、溶射対象部品である基材としては、金属(合金含む)、セラミックス、プラスチック、木材、紙などを用いることができる。また、溶射材料としては、金属(合金を含む)、セラミックス、プラスチックなどを用いることができる。
 溶射方法に制限はないが、例えば、金属をプラズマ化して噴射するプラズマ溶射を用いる方法や、金属を電流印加して溶融させ空気圧で噴射するアーク溶射ガンを用いる方法がある。
 また、上記実施の形態においては、直線往復動部品の支持台1の溶射を例に説明したが、移動ブロック3の裏面の窪みの側面に、溶射被膜を形成してもよい(図1参照)。また、溶射対象物に制限はなく、本発明のマスキング耐熱塗料は、幅広い分野において使用される部品(例えば、炊飯釜のコート層など)の溶射に広く適用可能である。さらに、本発明のマスキング耐熱塗料は、溶射工程以外にも、高温処理装置(溶鉱炉や成膜装置など)の構成部材の汚れ防止用のマスキング材としても用いることができる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
1 支持台
2 ガイドレール
3 移動ブロック
4 溶射被膜
M1 マスキング耐熱塗料
M2 塗布膜(マスキング材)
MT マスキングテープ

Claims (13)

  1.  (a)第1バインダーおよび第2バインダーと、
     (b)前記第1バインダーおよび前記第2バインダーを溶解する溶剤と、
     (c)中空セラミックスと、
    を混合してなるマスキング耐熱塗料であって、
     前記第1バインダーは、m量体のシリコーンアルコキシオリゴマーであり、
     前記第2バインダーは、mより大きいn量体のシリコーンアルコキシオリゴマーであり、
     前記m量体のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合は、mより大きいn量体のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合より大きい、マスキング耐熱塗料。
  2.  請求項1記載のマスキング耐熱塗料において、
     前記m量体は、5量体以下であり、
     前記n量体は、10量体以上30量体以下である、マスキング耐熱塗料。
  3.  請求項2記載のマスキング耐熱塗料において、
     前記シリコーンアルコキシオリゴマーは、アルキル基とアルコキシ基を有し、
     前記架橋性置換基は、前記アルコキシ基である、マスキング耐熱塗料。
  4.  請求項3記載のマスキング耐熱塗料において、
     (d)シリカゾルを有する、マスキング耐熱塗料。
  5.  請求項4記載のマスキング耐熱塗料において、
     前記溶剤は、ケトン系溶剤を含むマスキング耐熱塗料。
  6.  請求項4または5記載のマスキング耐熱塗料において、
     前記溶剤は、アルコール系溶剤を含むマスキング耐熱塗料。
  7.  (a)第1バインダーおよび第2バインダーと、
     (b)前記第1バインダーおよび前記第2バインダーを溶解する溶剤と、
     (c)中空セラミックスと、
    を混合してなるマスキング耐熱塗料であって、
     前記第1バインダーは、m量体のシリコーンアルコキシオリゴマーであり、
     前記第2バインダーは、mより大きいn量体のシリコーンアルコキシオリゴマーであり、
     前記m量体のシリコーンアルコキシオリゴマーを構成するSiは、3官能性シロキサン構造単位と、2官能性シロキサン構造単位と、を有し、
     前記n量体のシリコーンアルコキシオリゴマーの2官能性シロキサン構造単位の割合は、前記m量体のシリコーンアルコキシオリゴマーの2官能性シロキサン構造単位の割合より大きい、マスキング耐熱塗料。
  8.  請求項7記載のマスキング耐熱塗料において、
     前記m量体は、5量体以下であり、
     前記n量体は、10量体以上30量体以下である、マスキング耐熱塗料。
  9.  請求項8記載のマスキング耐熱塗料において、
     前記シリコーンアルコキシオリゴマーは、アルキル基とアルコキシ基を有し、
     前記2官能性シロキサン構造単位は、Siに2つのアルキル基が結合した部位であり、
     前記3官能性シロキサン構造単位は、Siに1つのアルキル基と1つのアルコキシ基が結合した部位であり、
     前記n量体のシリコーンアルコキシオリゴマーの2官能性シロキサン構造単位の割合は、50%以上であり、
     前記m量体のシリコーンアルコキシオリゴマーの2官能性シロキサン構造単位の割合は、10%以下である、マスキング耐熱塗料。
  10.  請求項9記載のマスキング耐熱塗料において、
     (d)シリカゾルを有する、マスキング耐熱塗料。
  11.  請求項10記載のマスキング耐熱塗料において、
     前記溶剤は、ケトン系溶剤を含む、マスキング耐熱塗料。
  12.  請求項10または11記載のマスキング耐熱塗料において、
     前記溶剤は、アルコール系溶剤を含む、マスキング耐熱塗料。
  13.   基材の第1領域に溶射被膜を形成する溶射方法であって、
     (A)前記基材の第1領域にマスキングテープを貼りつける工程、
     (B)前記基材の前記第1領域以外の領域に、マスキング耐熱塗料を塗布する工程、
     (C)前記マスキングテープを剥離することで、前記基材の前記第1領域を露出させる工程、
     (D)塗布した前記マスキング耐熱塗料を硬化させることにより、塗布膜を形成する工程、
     (E)前記基材の前記第1領域に溶射粒子を吹き付けることにより、溶射被膜を形成する工程、
     (F)前記塗布膜を剥離する工程、
    を有し、
      前記マスキング耐熱塗料は、
     (a)第1バインダーおよび第2バインダーと、
     (b)前記第1バインダーおよび前記第2バインダーを溶解する溶剤と、
     (c)中空セラミックスと、
    を混合してなるマスキング耐熱塗料であって、
     前記第1バインダーは、m量体のシリコーンアルコキシオリゴマーであり、
     前記第2バインダーは、mより大きいn量体のシリコーンアルコキシオリゴマーであり、
     前記m量体のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合は、mより大きいn量体のシリコーンアルコキシオリゴマーを構成するSiに結合した架橋性置換基の割合より大きい、マスキング耐熱塗料である、溶射方法。
PCT/JP2017/028943 2016-09-12 2017-08-09 マスキング耐熱塗料および溶射方法 WO2018047573A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016177954A JP2018044039A (ja) 2016-09-12 2016-09-12 マスキング耐熱塗料および溶射方法
JP2016-177954 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018047573A1 true WO2018047573A1 (ja) 2018-03-15

Family

ID=61561971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028943 WO2018047573A1 (ja) 2016-09-12 2017-08-09 マスキング耐熱塗料および溶射方法

Country Status (3)

Country Link
JP (1) JP2018044039A (ja)
TW (1) TW201829669A (ja)
WO (1) WO2018047573A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195616A (zh) * 2018-12-19 2021-07-30 Ppg工业俄亥俄公司 可喷涂的有机硅聚合物分散体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322130A (en) * 1976-08-12 1978-03-01 Sumitomo Chemical Co Masking method for plasma metallization
JPS62295958A (ja) * 1986-06-13 1987-12-23 Shin Etsu Chem Co Ltd 室温硬化性オルガノシロキサン組成物
JP2009280716A (ja) * 2008-05-23 2009-12-03 D & D:Kk 無溶剤一液常温硬化型含浸材
JP2010155946A (ja) * 2008-12-29 2010-07-15 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン組成物および多孔質オルガノポリシロキサン硬化物
WO2010110389A1 (ja) * 2009-03-27 2010-09-30 旭硝子株式会社 オルガノポリシロキサンおよびハードコート剤組成物並びにハードコート層を有する樹脂基板
JP2013001880A (ja) * 2011-06-21 2013-01-07 Shin-Etsu Chemical Co Ltd マスキング用液状オルガノポリシロキサン組成物、施工方法及び部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322130A (en) * 1976-08-12 1978-03-01 Sumitomo Chemical Co Masking method for plasma metallization
JPS62295958A (ja) * 1986-06-13 1987-12-23 Shin Etsu Chem Co Ltd 室温硬化性オルガノシロキサン組成物
JP2009280716A (ja) * 2008-05-23 2009-12-03 D & D:Kk 無溶剤一液常温硬化型含浸材
JP2010155946A (ja) * 2008-12-29 2010-07-15 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン組成物および多孔質オルガノポリシロキサン硬化物
WO2010110389A1 (ja) * 2009-03-27 2010-09-30 旭硝子株式会社 オルガノポリシロキサンおよびハードコート剤組成物並びにハードコート層を有する樹脂基板
JP2013001880A (ja) * 2011-06-21 2013-01-07 Shin-Etsu Chemical Co Ltd マスキング用液状オルガノポリシロキサン組成物、施工方法及び部材

Also Published As

Publication number Publication date
TW201829669A (zh) 2018-08-16
JP2018044039A (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
US6294261B1 (en) Method for smoothing the surface of a protective coating
JP5996085B2 (ja) 白色反射膜用インク、白色反射膜用粉体塗料及び白色反射膜の製造方法
CN100484261C (zh) 在佩戴者的耳道中和/或耳廓上使用的助听器或助听器元件
RU2004129296A (ru) Защита изделий, изготовленных из композитного материала
JP2008127275A (ja) 抗酸化コーティングの方法および被覆製品
CN108203576A (zh) 粘合剂组合物和其在电子学中的用途
WO2018047573A1 (ja) マスキング耐熱塗料および溶射方法
JP6517103B2 (ja) 放熱基板、デバイス及び放熱基板の製造方法
JPH10113290A (ja) 加熱調理器具
KR20150086700A (ko) 분리형 유/무기 하이브리드형 보호 코팅제 조성물 및 이를 피막한 코팅 제품
CN110451976A (zh) 一种碳化硅复合材料及其制备方法
JPWO2004000952A1 (ja) 水性懸濁状組成物、水性塗料組成物、塗装物品及びその製造方法
JPH0196265A (ja) コーティング剤
JP2010192378A (ja) フラットパネルディスプレイ部材形成用組成物
CN105965986B (zh) 一种高温维形纳米隔热材料及其制备方法
CN108410296A (zh) 一种机械设备用防腐涂料及其制备方法
JP2004360904A (ja) 断熱材および断熱材の形成方法
JP6289356B2 (ja) オルガノシロキサン網目構造組成物
KR20220145933A (ko) 방열 코팅제 조성물, 방열 인쇄회로기판 및 방열 인쇄회로기판의 제조 방법
KR20090041567A (ko) 단열성이 우수한 스프레이용 내화물 조성물 및 이를 이용한스프레이 시공방법
KR20170131228A (ko) 내열충격성이 향상된 고온내열 세라믹 코팅 조성물 및 코팅 방법
JP2010192377A (ja) フラットパネルディスプレイ部材形成用組成物
KR101723102B1 (ko) 방열 도포용 조성물, 이의 제조 방법 및 이를 이용한 도포 방법
JP3818992B2 (ja) 窒化硼素組成物
SU1523245A1 (ru) Состав разделительного покрыти дл модельной оснастки

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848517

Country of ref document: EP

Kind code of ref document: A1