WO2018045929A1 - 聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法 - Google Patents

聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法 Download PDF

Info

Publication number
WO2018045929A1
WO2018045929A1 PCT/CN2017/100368 CN2017100368W WO2018045929A1 WO 2018045929 A1 WO2018045929 A1 WO 2018045929A1 CN 2017100368 W CN2017100368 W CN 2017100368W WO 2018045929 A1 WO2018045929 A1 WO 2018045929A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
carbon chain
resin
polyterephthalate
sebacate
Prior art date
Application number
PCT/CN2017/100368
Other languages
English (en)
French (fr)
Inventor
王伟伟
袁志敏
蔡彤旻
黄险波
曾祥斌
苑仁旭
郭志龙
唐美军
Original Assignee
珠海万通化工有限公司
金发科技股份有限公司
上海金发科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57999010&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018045929(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 珠海万通化工有限公司, 金发科技股份有限公司, 上海金发科技发展有限公司 filed Critical 珠海万通化工有限公司
Priority to EP17848102.4A priority Critical patent/EP3511358B1/en
Priority to ES17848102T priority patent/ES2857685T3/es
Publication of WO2018045929A1 publication Critical patent/WO2018045929A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof

Definitions

  • the invention belongs to the field of polymer synthesis, and in particular relates to a polyterephthalate-co-sebacate resin and a preparation method thereof.
  • Poly terephthalate-co-sebacate resin is a copolymer of butylene phthalate and butylene terephthalate, polyterephthalate-co-sebacic acid
  • the ester resin contains a flexible fatty chain and a rigid aromatic chain, thus having high toughness and high temperature resistance, and due to the presence of ester bonds, it is simultaneously biodegradable, which is very active in the research of biodegradable plastics and market application.
  • One of the best degradable materials One of the best degradable materials.
  • the polyethylene terephthalate-co-and sebacate resin also has the following drawbacks: when the polyethylene terephthalate-co-sebacate resin is formed into a film, the moisture permeability of the film is higher. Poor, affecting the application of the film. At present, the moisture permeability of the film is usually mainly adjusted by the thickness of the film, such as a PE film, and this adjustment method has certain defects. Too thick is easy to cause material waste, and too thin may sacrifice the mechanical properties of the material.
  • the present inventors have found through research that when the structure of the poly terephthalate-co-sebacate resin S ⁇ conjugated carbon chain hydrogen / S ⁇ saturated carbon chain hydrogen 1.2-2.4 in a specific range, due to effective The repeating unit sequence length and sequence randomness of the molecular chain are controlled, and thus the polyethylene terephthalate-co-sebacate resin exhibits better moisture permeability.
  • a primary object of the present invention is to provide a polyterephthalate-co-diester resin having a hydrogen on the S ⁇ conjugated carbon chain of the polyterephthalate-co-sebacate resin Hydrogen 1.2-2.4 on the /S ⁇ saturated carbon chain has a significantly improved moisture permeability in a specific range.
  • Another object of the present invention is to provide a process for producing the above polyterephthalate-co-sebacate resin.
  • the hydrogen on the S ⁇ conjugated carbon chain is the total integrated area of the peaks of the hydrogen on the conjugated carbon chain in the 1 H NMR spectrum, and the hydrogen on the S ⁇ saturated carbon chain is 1.2-2.4 as the saturated carbon chain in the 1 H NMR spectrum.
  • the ratio of 1.2-2.4 hydrogen on the S ⁇ conjugated carbon chain to hydrogen /S ⁇ saturated carbon chain refers to a substance in the molecular structure in which hydrogen on the conjugated carbon chain and hydrogen on the saturated carbon chain are between 1.2 and 2.4 ppm.
  • There are many factors affecting the ratio of hydrogen 1.2-2.4 on the hydrogen /S ⁇ saturated carbon chain on the S ⁇ conjugated carbon chain such as the difference in the structure or ratio of the raw material monomers, the degree of self-polymerization of the monomers, the molecular weight and the molecular chain sequence.
  • the ratio of the amount of hydrogen on the conjugated carbon chain to the hydrogen on the saturated carbon chain and having a chemical shift of between 1.2 and 2.4 ppm is suitable, since the repeating unit sequence length and sequence randomness of the polymer chain are effectively controlled.
  • Degree when the polyethylene terephthalate-co-and adipic acid ester resin is made into a film having a thickness of 25 ⁇ 1 ⁇ m, the water vapor transmission rate is 100-1500 g/m 2 /d, thereby causing the film to behave. Better moisture permeability.
  • the hydrogen /S ⁇ saturated carbon chain on the S ⁇ conjugated carbon chain is 1.2-2.4 lower than 0.1, the hydrogen is on the saturated carbon chain with a chemical shift of 1.2-2.4 ppm.
  • the high amount of substances and the high water vapor transmission rate are unfavorable for the development of packaging products that are too high in moisture resistance, and are also disadvantageous for products such as agricultural mulch films that require excessive water retention performance, when hydrogen is on the S ⁇ conjugated carbon chain.
  • the hydrogen of 1.2-2.4 on the S ⁇ saturated carbon chain is higher than 0.35, the amount of hydrogen on the conjugated carbon chain in the molecular structure is high, and the water vapor transmission rate is too low, which is disadvantageous for developing a food preservative film.
  • the structure of the polyterephthalate-co-sebacate resin satisfies the relationship:
  • the structure of the polyterephthalate-co-sebacate resin satisfies the relationship:
  • the structure of the polyterephthalate-co-sebacate resin satisfies the relationship:
  • Hydrogen /S ⁇ on the S ⁇ conjugated carbon chain Hydrogen 1.2-2.4 0.18-0.22.
  • the content of the carboxyl group in the polyterephthalate-co-sebacate resin is 50 mol/ton or less. It is preferably 30 mol/ton or less, and most preferably 25 mol/ton or less.
  • the carboxyl group content is increased, the water resistance of the polyethylene terephthalate-co-and sebacate resin is deteriorated during storage or processing, and the product quality tends to be deteriorated.
  • the carboxyl group content is too low, the process route becomes complicated. Equipment investment is too high and economically disadvantageous.
  • the water content of the polyterephthalate-co-sebacate resin is from 1 to 1000 ppm based on the total mass of the entire polyterephthalate-co-sebacate resin.
  • the lower limit of the water content of the polyterephthalate-co-diester is not particularly limited, but is usually 1 ppm or more, preferably 10 ppm to 900 ppm, and most preferably 50 ppm to 800 ppm. .
  • the process route becomes complicated, the drying time is too long, economically unfavorable, and may have a negative impact on color and other varieties.
  • the water content is too high, the polyethylene terephthalate-co-succinate resin is hydrolyzed during storage, and the quality of the product tends to be deteriorated.
  • the polyterephthalate-co-sebacate resin of the present invention has a water vapor transmission rate of 100 to 1500 g/m 2 /d, preferably 150 when formed into a film having a thickness of 25 ⁇ 1 ⁇ m. -1200 g/m 2 /d, more preferably 180-1000 g/m 2 /d, most preferably 200-900 g/m 2 /d.
  • the invention also provides a preparation method of the above polyterephthalate-co-sebacate resin, comprising the following steps:
  • the invention has the following beneficial effects:
  • the metered sebacic acid and 1,4-butanediol are put into the reaction kettle, and the temperature is raised to 160-180 ° C for 20-40 min; the terephthalic acid is put into the reaction kettle, and four (four) are added.
  • 2-ethylhexyl) titanate heated to 200-220 ° C for 1-2 hours, wherein terephthalic acid is added in an amount of 60% by weight of total terephthalic acid, tetrakis(2-ethylhexyl) titanium
  • the acid ester is added in an amount of 30% by weight based on the total amount of tetrakis(2-ethylhexyl) titanate; the remaining 40% by weight of terephthalic acid is put into the reaction vessel, and tetrakis(2-ethylhexyl) titanate is added.
  • a total of 30% by weight of tetrakis(2-ethylhexyl) titanate the temperature is raised to 220-230 ° C for 2-3 hours; then the remaining tetrakis(2-ethylhexyl) titanate is added, within 2 hours
  • the pressure in the reactor was evacuated to 100 Pa.
  • the reaction is carried out at 230-260 ° C for 2-4 hours, the stirring is stopped, the reaction vessel is filled with high-purity nitrogen gas, and the resin is extruded from the reaction vessel to be granulated, thereby obtaining polyterephthalate-co-ruthenium. Diester resin.
  • Diester resin By changing the amount of azelaic acid and terephthalic acid, a resin of a different structure can be obtained.
  • the fraction of sebacic acid was 26.52, the fraction of 1,4-butanediol was 42.71, the fraction of terephthalic acid was 30.71, and the fraction of tetrakis(2-ethylhexyl) titanate was 0.06.
  • the fraction of sebacic acid was 30.27, the fraction of 1,4-butanediol was 42.41, the fraction of terephthalic acid was 27.26, and the fraction of tetrakis(2-ethylhexyl)titanate was 0.06.
  • the fraction of sebacic acid was 21.86, the fraction of 1,4-butanediol was 43.08, the fraction of terephthalic acid was 35.00, and the fraction of tetrakis(2-ethylhexyl) titanate was 0.06.
  • the fraction of sebacic acid was 30.85, the fraction of 1,4-butanediol was 42.6, the fraction of terephthalic acid was 26.49, and the fraction of tetrakis(2-ethylhexyl) titanate was 0.06.
  • the fraction of sebacic acid was 20.55, the fraction of 1,4-butanediol was 43.19, the fraction of terephthalic acid was 36.2, and the fraction of tetrakis(2-ethylhexyl)titanate was 0.06.
  • the fraction of sebacic acid was 33.55, the fraction of 1,4-butanediol was 42.15, the fraction of terephthalic acid was 24.24, and the fraction of tetrakis(2-ethylhexyl) titanate was 0.06.
  • the fraction of sebacic acid was 17.54, the fraction of 1,4-butanediol was 43.43, the fraction of terephthalic acid was 38.97, and the fraction of tetrakis(2-ethylhexyl) titanate was 0.06.
  • the fraction of sebacic acid was 39.88, the fraction of 1,4-butanediol was 41.64, the fraction of terephthalic acid was 18.42, and the fraction of tetrakis(2-ethylhexyl) titanate was 0.06.
  • the metered sebacic acid and 1,4-butanediol are put into the reaction kettle, and the temperature is raised to 160-180 ° C for 20-40 min; the terephthalic acid is put into the reaction kettle, and four (four) are added.
  • 2-ethylhexyl) titanate heated to 200-220 ° C reaction 1- 2 hours, and then the temperature is raised to 220-230 ° C for 2-3 hours; then the pressure in the reactor is evacuated to 100 Pa or less within 2 hours, and reacted at 230-260 ° C for 2-4 hours, stirring is stopped, and the reaction is stopped.
  • the high-purity nitrogen gas was charged, and the resin was extruded from the reactor to be granulated to obtain a polyethylene terephthalate-co-succinate resin.
  • the fraction of sebacic acid was 17.54, the fraction of 1,4-butanediol was 43.43, the fraction of terephthalic acid was 38.97, and the fraction of tetrakis(2-ethylhexyl) titanate was 0.06.
  • the fraction of sebacic acid is 39.88
  • the fraction of 1,4-butanediol is 41.64
  • the fraction of terephthalic acid is 18.42
  • the fraction of tetrakis(2-ethylhexyl) titanate is 0.06.
  • the hydrogen on the S ⁇ conjugated carbon chain is the total integrated area of the peaks of the hydrogen on the conjugated carbon chain in the 1 H NMR spectrum, and the hydrogen on the S ⁇ saturated carbon chain is 1.2-2.4 as the hydrogen on the saturated carbon chain in the 1 H NMR spectrum and The total area of peak integration of chemical shifts between 1.2 and 2.4 ppm.
  • Nuclear magnetic test After the sample was dissolved in deuterated chloroform, it was tested at 25 ° C at room temperature using a German Bruker DRX-400 NMR spectrometer.
  • Water vapor transmission rate test method The polyethylene terephthalate-co-diester resin is made into a film of 25 ⁇ 1 ⁇ m, and is used in an environment of 40° C. and a relative humidity of 60% by ASTM E96 standard. The water vapor transmission rate of the film was measured by a wet cup weight loss method. The performance test results are shown in Table 1.
  • Test method for carboxyl content Test according to the method A of GB/T14190-2008.
  • Test method for water content Test according to the method B of GB/T12006.2-2009.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Wrappers (AREA)

Abstract

一种聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足如下关系式:Sδ共轭碳链上氢/S δ饱和碳链上氢1.2-2.4=0.1-0.35;其中,所述Sδ共轭碳链上氢1H NMR谱图中共轭碳链上氢的峰积分总面积,Sδ饱和碳链上氢1.2-2.4为 1H NMR谱图中饱和碳链上且化学位移在1.2-2.4ppm之间的氢的峰积分总面积。所述聚对苯二甲酸酯-共-癸二酸酯树脂在制成25±1μm厚度的薄膜时,其水蒸气透过率为100-1500g/m 2/d,具有较好的透湿性能。

Description

[根据细则37.2由ISA制定的发明名称] 聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法 技术领域
本发明属于高分子合成领域,具体涉及一种聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法。
背景技术
聚对苯二甲酸酯-共-癸二酸酯树脂是由癸二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物,聚对苯二甲酸酯-共-癸二酸酯树脂中含柔性的脂肪链和刚性的芳香链因而具有高韧性和耐高温性,而由于酯键的存在,促使其同时具有生物可降解性,是目前生物降解塑料研究中非常活跃和市场应用最好降解材料之一。
然而聚对苯二甲酸酯-共-癸二酸酯树脂也存在如下缺陷:当聚对苯二甲酸酯-共-癸二酸酯树脂做成膜材时,膜材的透湿性能较差,影响膜材的应用。目前通常膜材的透湿性主要是用膜的厚度来调节,如PE膜,而这种调节方式具有一定的缺陷,太厚容易造成材料浪费,太薄可能牺牲材料的力学性能。本发明通过研究发现,当聚对苯二甲酸酯-共-癸二酸酯树脂的结构Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4在特定范围内,由于有效的控制了分子链的重复单元序列长度和序列无规度,因而聚对苯二甲酸酯-共-癸二酸酯树脂展现出较好的透湿性能。
发明内容
本发明的首要目的在于提供一种聚对苯二甲酸酯-共-癸二酸酯树脂,该聚对苯二甲酸酯-共-癸二酸酯树脂的Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4在特定范围内,具有明显改善的透湿性能。
本发明的另一目的在于提供上述聚对苯二甲酸酯-共-癸二酸酯树脂的制备方法。
本发明是通过以下技术方案实现的:
一种聚对苯二甲酸酯-共-癸二酸酯树脂,其特征在于,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足如下关系式:
Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.1-0.35;
其中,所述Sδ共轭碳链上氢1H NMR谱图中共轭碳链上氢的峰积分总面积,Sδ饱和碳链上氢 1.2-2.41H NMR谱图中饱和碳链上且化学位移在1.2-2.4ppm之间的氢的峰积分总面积。
Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4的比值是指分子结构中共轭碳链上氢与饱和碳链上且化学位移在1.2-2.4ppm之间的氢的物质的量的关系,其反映的聚对苯二甲酸酯-共-癸二酸酯分子链的重复单元序列长度和序列无规度。影响Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4的比值的因素有很多,比如原料单体结构或比例的不同,单体自聚程度的大小,分子量和分子链序列结构的变化,分 子链段是否均匀,分子链的缠结或支化程度的高低,高分子链的重复单元序列长度和序列无规度,分子定向排列与结晶结构及制备工艺过程(如催化剂的不同等)等诸多因素,都会影响最终制备得到的聚对苯二甲酸酯-共-癸二酸酯的分子链结构存在较大区别,从而导致Sδ共轭 碳链上氢/Sδ饱和碳链上氢1.2-2.4的比值存在明显差异。
本发明通过研究发现,当聚对苯二甲酸酯-共-癸二酸酯树脂的Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2- 2.4=0.1-0.35时,
分子结构中共轭碳链上氢与饱和碳链上且化学位移在1.2-2.4ppm之间的氢的物质的量比例合适,,由于有效的控制了高分子链的重复单元序列长度和序列无规度,将聚对苯二甲酸酯-共-癸二酸酯树脂在制成25±1μm厚度的薄膜时,其水蒸气透过率为100-1500g/m2/d,从而使膜材表现出较好的透湿性能,当Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4低于0.1时,则饱和碳链上且化学位移在1.2-2.4ppm之间氢的物质的量较高,水蒸气透过率过高,对开发防潮要求过高的包装产品不利,对开发保水性能要求过高的农用地膜等产品也不利,当Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4高于0.35时,分子结构中共轭碳链上氢的物质的量较高,水蒸气透过率过低,对于开发食品保鲜膜材不利。
优选的,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足关系式:
Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.15-0.3,
更优选的,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足关系式:
Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.17-0.28,
最优选的,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足关系式:
Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.18-0.22。
优选的,所述聚对苯二甲酸酯-共-癸二酸酯树脂中的羧基含量为50摩尔/吨以下。优选的为30摩尔/吨以下,最优选的为25摩尔/吨以下。该羧基含量变多时,聚对苯二甲酸酯-共-癸二酸酯树脂保存或加工时耐水性变差,使产品质量有变差的倾向,羧基含量过低时工艺路线变得复杂,设备投入过高,在经济上不利。
优选的,基于整个聚对苯二甲酸酯-共-癸二酸酯树脂的总质量,所述聚对苯二甲酸酯-共-癸二酸酯树脂中的水含量为1~1000ppm。相对于该聚对苯二甲酸酯-共-癸二酸酯,以质量计其水含量的下限并无没有特别限定,但通常为1ppm以上,优选为10ppm-900ppm,最优选为50ppm-800ppm。水含量过少时,工艺路线变得复杂,烘干时间也过长,在经济上不利,且可能对颜色及其它品种产生负面影响。另一方面,水含量过高时,聚对苯二甲酸酯-共-癸二酸酯树脂保存时水解,使产品质量有变差的倾向。
本发明所述的聚对苯二甲酸酯-共-癸二酸酯树脂在制成25±1μm厚度的薄膜时,其水蒸气透过率为100-1500g/m2/d,优选为150-1200g/m2/d,更优选为180-1000g/m2/d,最优选为200-900g/m2/d。
本发明还提供了上述的一种聚对苯二甲酸酯-共-癸二酸酯树脂的制备方法,包括如下步骤:
(1)在高纯氮气保护下,将计量的癸二酸、1,4-丁二醇投入反应釜中,升温至160-180℃反应20-40min;
(2)将对苯二甲酸投入反应釜中,加入四(2-乙基己基)钛酸酯,升温至200-220℃反应1-2小时,其中,对苯二甲酸的加入量占对苯二甲酸总量40-60wt%,四(2-乙基己基)钛酸酯的加入量占四(2-乙基己基)钛酸酯总量的20-30wt%;
(3)将剩余的对苯二甲酸投入反应釜中,加入占四(2-乙基己基)钛酸酯总量20-30wt%的四(2-乙基己基)钛酸酯,升温至220-230℃反应2-3小时;
(4)再加入剩余的四(2-乙基己基)钛酸酯,在2小时内将反应釜内压力抽真空至100Pa以下,于230-260℃反应2-4小时,停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出造粒,即得到聚对苯二甲酸酯-共-癸二酸酯树脂。
本发明与现有技术相比,具有如下有益效果:
本发明通过研究发现,本发明的聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足关系式:Sδ共轭 碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.1-0.35,由于有效的控制了高分子链的重复单元序列长度和序列无规度,将聚对苯二甲酸酯-共-癸二酸酯树脂在制成25±1μm厚度的薄膜时,其水蒸气透过率为100-1500g/m2/d,使制备得到的聚对苯二甲酸酯-共-癸二酸酯树脂表现出较好的透湿性能。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
聚对苯二甲酸酯-共-癸二酸酯树脂的合成:
在高纯氮气保护下,将计量的癸二酸、1,4-丁二醇投入反应釜中,升温至160-180℃反应20-40min;将对苯二甲酸投入反应釜中,加入四(2-乙基己基)钛酸酯,升温至200-220℃反应1-2小时,其中,对苯二甲酸的加入量占对苯二甲酸总量60wt%,四(2-乙基己基)钛酸酯的加入量占四(2-乙基己基)钛酸酯总量的30wt%;将剩余40wt%的对苯二甲酸投入反应釜中,加入占四(2-乙基己基)钛酸酯总量30wt%的四(2-乙基己基)钛酸酯,升温至220-230℃反应2-3小时;再加入剩余的四(2-乙基己基)钛酸酯,在2小时内将反应釜内压力抽真空至100Pa以 下,于230-260℃反应2-4小时,停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出造粒,即得到聚对苯二甲酸酯-共-癸二酸酯树脂。改变癸二酸和对苯二甲酸的投料量,即可得到不同结构的树脂。
实施例1:
癸二酸的份数为26.52、1,4-丁二醇份数为42.71、对苯二甲酸份数为30.71、四(2-乙基己基)钛酸酯份数为0.06。
实施例2:
癸二酸的份数为30.27、1,4-丁二醇份数为42.41、对苯二甲酸份数为27.26、四(2-乙基己基)钛酸酯份数为0.06。
实施例3:
癸二酸的份数为21.86、1,4-丁二醇份数为43.08、对苯二甲酸份数为35.00、四(2-乙基己基)钛酸酯份数为0.06。
实施例4:
癸二酸的份数为30.85、1,4-丁二醇份数为42.6、对苯二甲酸份数为26.49、四(2-乙基己基)钛酸酯份数为0.06。
实施例5:
癸二酸的份数为20.55、1,4-丁二醇份数为43.19、对苯二甲酸份数为36.2、四(2-乙基己基)钛酸酯份数为0.06。
实施例6:
癸二酸的份数为33.55、1,4-丁二醇份数为42.15、对苯二甲酸份数为24.24、四(2-乙基己基)钛酸酯份数为0.06。
实施例7:
癸二酸的份数为17.54、1,4-丁二醇份数为43.43、对苯二甲酸份数为38.97、四(2-乙基己基)钛酸酯份数为0.06。
实施例8:
癸二酸的份数为39.88、1,4-丁二醇份数为41.64、对苯二甲酸份数为18.42、四(2-乙基己基)钛酸酯份数为0.06。
对比例1:
在高纯氮气保护下,将计量的癸二酸、1,4-丁二醇投入反应釜中,升温至160-180℃反应20-40min;将对苯二甲酸投入反应釜中,加入四(2-乙基己基)钛酸酯,升温至200-220℃反应1- 2小时,再升温至220-230℃反应2-3小时;然后在2小时内将反应釜内压力抽真空至100Pa以下,于230-260℃反应2-4小时,停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出造粒,即得到聚对苯二甲酸酯-共-癸二酸酯树脂。
其中,
癸二酸的份数为17.54、1,4-丁二醇份数为43.43、对苯二甲酸份数为38.97、四(2-乙基己基)钛酸酯份数为0.06。
对比例2:
其中,癸二酸的份数为39.88、1,4-丁二醇份数为41.64、对苯二甲酸份数为18.42、四(2-乙基己基)钛酸酯份数为0.06,制备工艺同对比例1。
1谱的测试方法:
Sδ共轭碳链上氢1H NMR谱图中共轭碳链上氢的峰积分总面积,Sδ饱和碳链上氢1.2-2.41H NMR谱图中饱和碳链上的氢且化学位移在1.2-2.4ppm之间的峰积分总面积。核磁测试将样品用氘代氯仿溶解后,用德国Bruker DRX-400型核磁共振波谱仪,在室温为25℃进行测试。
水蒸气透过率测试方法:将聚对苯二甲酸酯-共-癸二酸酯树脂制成25±1μm的薄膜,采用ASTM E96标准在40℃、相对湿度60%的环境下,用透湿杯减重法测试膜材的水蒸气透过率。性能测试结果如表1所示。
羧基含量的测试方法:按GB/T14190-2008中方法A规定进行测试。
水含量的测试方法:按GB/T12006.2-2009中方法B规定进行测试。
表1实施例1-8及对比例1-2聚对苯二甲酸酯-共-癸二酸酯树脂的性能测试结果
Figure PCTCN2017100368-appb-000001
从表1中从实施例1-8和对比例1-2可以看出,聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足关系式:Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.1-0.35,聚对苯二甲酸酯-共-癸二酸酯树脂在制成25±1μm厚度的薄膜时,其水蒸气透过率为100-1500g/m2/d。当Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4值大于0.35或小于0.1时,聚对苯二甲酸酯-共-癸二酸酯树脂在制成25±1μm厚度的薄膜时,其水蒸气透过率过低或过高,表现出较差的透湿性能。

Claims (7)

  1. 一种聚对苯二甲酸酯-共-癸二酸酯树脂,其特征在于,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足如下关系式:
    Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.1-0.35;
    其中,所述Sδ共轭碳链上氢1H NMR谱图中共轭碳链上氢的峰积分总面积,Sδ饱和碳链上氢1.2-2.41H NMR谱图中饱和碳链上且化学位移在1.2-2.4ppm之间的氢的峰积分总面积。
  2. 根据权利要求1所述的一种聚对苯二甲酸酯-共-癸二酸酯树脂,其特征在于,1H NMR谱的测试方法为将样品用氘代氯仿溶解后,用德国Bruker DRX-400型核磁共振波谱仪,在室温为25℃进行测试。
  3. 根据权利要求1所述的一种聚对苯二甲酸酯-共-癸二酸酯树脂,其特征在于,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足关系式:
    Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.15-0.3,优选的,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足关系式:
    Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.17-0.28,更优选的,所述聚对苯二甲酸酯-共-癸二酸酯树脂的结构满足关系式:
    Sδ共轭碳链上氢/Sδ饱和碳链上氢1.2-2.4=0.18-0.22。
  4. 根据权利要求1所述的一种聚对苯二甲酸酯-共-癸二酸酯树脂,其特征在于,所述聚对苯二甲酸酯-共-癸二酸酯中的羧基含量为50摩尔/吨以下,优选为30摩尔/吨以下,更优选为25摩尔/吨以下,羧基含量的测试方法按GB/T14190-2008中方法A规定进行测试。
  5. 根据权利要求1所述的一种聚对苯二甲酸酯-共-癸二酸酯树脂,其特征在于,基于整个聚对苯二甲酸酯-共-癸二酸酯树脂的总质量,聚对苯二甲酸酯-共-癸二酸酯中的水含量为1~1000ppm,优选为10ppm-900ppm,最优选为50ppm-800ppm,水含量的测试方法按GB/T12006.2-2009中方法B规定进行测试。
  6. 根据权利要求1-5任一项所述的一种聚酯树脂,其特征在于,所述PBAT树脂在制成25±1μm厚度的薄膜时,其水蒸气透过率为100-1500g/m2/d,优选为150-1200g/m2/d,更优选为180-1000g/m2/d,最优选为200-900g/m2/d。
  7. 根据权利要求1-5任一项所述的一种聚对苯二甲酸酯-共-癸二酸酯树脂的制备方法,其特征在于,包括如下步骤:
    (1)在高纯氮气保护下,将计量的癸二酸、1,4-丁二醇投入反应釜中,升温至160-180℃反应20-40min;
    (2)将对苯二甲酸投入反应釜中,加入四(2-乙基己基)钛酸酯,升温至200-220℃反应1-2 小时,其中,对苯二甲酸的加入量占对苯二甲酸总量40-60wt%,四(2-乙基己基)钛酸酯的加入量占四(2-乙基己基)钛酸酯总量的20-30wt%;
    (3)将剩余的对苯二甲酸投入反应釜中,加入占四(2-乙基己基)钛酸酯总量20-30wt%的四(2-乙基己基)钛酸酯,升温至220-230℃反应2-3小时;
    (4)再加入剩余的四(2-乙基己基)钛酸酯,在2小时内将反应釜内压力抽真空至100Pa以下,于230-260℃反应2-4小时,停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出造粒,即得到聚对苯二甲酸酯-共-癸二酸酯树脂。
PCT/CN2017/100368 2016-09-09 2017-09-04 聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法 WO2018045929A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17848102.4A EP3511358B1 (en) 2016-09-09 2017-09-04 Polyester terephthalate-co-sebate resin and preparation method therefor
ES17848102T ES2857685T3 (es) 2016-09-09 2017-09-04 Resina de poliéster de tereftalato-co-sebato y método de preparación para la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610813868.2A CN106397748A (zh) 2016-09-09 2016-09-09 一种聚对苯二甲酸酯‑共‑癸二酸酯树脂及其制备方法
CN201610813868.2 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018045929A1 true WO2018045929A1 (zh) 2018-03-15

Family

ID=57999010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100368 WO2018045929A1 (zh) 2016-09-09 2017-09-04 聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法

Country Status (4)

Country Link
EP (1) EP3511358B1 (zh)
CN (2) CN106397748A (zh)
ES (1) ES2857685T3 (zh)
WO (1) WO2018045929A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303389A (zh) * 2016-09-09 2020-06-19 珠海万通化工有限公司 一种聚酯树脂及其制备方法
CN106397748A (zh) * 2016-09-09 2017-02-15 珠海万通化工有限公司 一种聚对苯二甲酸酯‑共‑癸二酸酯树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807485A (zh) * 2004-12-30 2006-07-26 中国石油化工股份有限公司 可生物降解的线性无规共聚酯及其制备方法和应用
CN101142256A (zh) * 2005-03-18 2008-03-12 诺瓦蒙特股份公司 可生物降解的脂族-芳族聚酯
US20110187029A1 (en) * 2008-09-29 2011-08-04 Basf Se Aliphatic-aromatic polyester
CN105524261A (zh) * 2014-10-23 2016-04-27 中国石油化工股份有限公司 一种聚酯弹性体及其制备方法
CN106397748A (zh) * 2016-09-09 2017-02-15 珠海万通化工有限公司 一种聚对苯二甲酸酯‑共‑癸二酸酯树脂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024030B2 (ja) 1992-12-07 2000-03-21 ポリプラスチックス株式会社 加水分解安定性の優れたポリブチレンテレフタレート重合体の製造方法
KR20140018468A (ko) * 2012-07-30 2014-02-13 삼성정밀화학 주식회사 방향족 디카르복실산 화합물의 분할 투입에 의한 생분해성 폴리에스테르 공중합체의 제조방법
CN106471060B (zh) 2014-05-09 2018-10-12 巴斯夫欧洲公司 通过热成型制造的制品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807485A (zh) * 2004-12-30 2006-07-26 中国石油化工股份有限公司 可生物降解的线性无规共聚酯及其制备方法和应用
CN101142256A (zh) * 2005-03-18 2008-03-12 诺瓦蒙特股份公司 可生物降解的脂族-芳族聚酯
US20110187029A1 (en) * 2008-09-29 2011-08-04 Basf Se Aliphatic-aromatic polyester
CN105524261A (zh) * 2014-10-23 2016-04-27 中国石油化工股份有限公司 一种聚酯弹性体及其制备方法
CN106397748A (zh) * 2016-09-09 2017-02-15 珠海万通化工有限公司 一种聚对苯二甲酸酯‑共‑癸二酸酯树脂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3511358A4 *

Also Published As

Publication number Publication date
CN106397748A (zh) 2017-02-15
EP3511358A4 (en) 2020-04-15
EP3511358B1 (en) 2021-01-27
ES2857685T3 (es) 2021-09-29
CN113185675A (zh) 2021-07-30
EP3511358A1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
TWI608031B (zh) 聚酯及其製造方法
JP6217173B2 (ja) ガスバリア積層体
CN112375214B (zh) 一种含杂原子高阻隔生物降解共聚酯及其制备方法和应用
CN107266667B (zh) 衍生自芳香族二羧酸和脂肪族二醇的共聚酯酰亚胺及由其制成的膜
WO2018045929A1 (zh) 聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法
WO2018045930A1 (zh) 聚酯树脂及其制备方法
CN115418085A (zh) 一种生物可降解pbat/pla共混薄膜
JP6507640B2 (ja) 積層ポリエステルフィルム
WO2018045931A1 (zh) 一种pbat树脂及其制备方法
Zhou et al. Degradable photo-crosslinked starch-based films with excellent shape memory property
EP3553109A1 (en) Polyterephthalate-co-sebacate resin and method for preparing same
CN113817148A (zh) 聚乳酸共聚物及其制备方法和应用、共混薄膜的制备方法
Keshk et al. Preparation and characterization of starch/cellulose composite
CN114349946A (zh) 一种具有水蒸气阻隔性能的环保PBSeT共聚酯材料及其制备方法
CN103102647A (zh) 高热收缩率聚酯薄膜的制备方法
JP2013536265A (ja) フィルムまたはプレート
WO2019080525A1 (zh) 可生物降解聚酯及其应用
CN115449059B (zh) 一种可降解聚己二酸对苯二甲酸丁二醇酯的制备方法及应用
CN111019171B (zh) 一种改性硅铝酸盐掺杂羧基化壳聚糖的抗菌阻隔性pet保护膜的制备方法
WO2010143882A2 (en) Biaxially oriented polyester film and preparation method thereof
CN115710410A (zh) 一种聚己二酸对苯二甲酸丁二醇酯材料的制备方法及应用
Zhang et al. Synergistic plasticization and anti-aging effect of hyperbranched poly (1, 4-butanediol citrate)/glycerol on corn starch
TWI595022B (zh) 聚酯薄膜及其製備方法
Ren et al. Influence of Complex Plasticizers Containing Urea and Triethanolamin on the Characteristics of SPI/PVA Films
US20230416454A1 (en) Method for synthesizing pef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017848102

Country of ref document: EP

Effective date: 20190409