WO2018043875A1 - 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치 - Google Patents

화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치 Download PDF

Info

Publication number
WO2018043875A1
WO2018043875A1 PCT/KR2017/006135 KR2017006135W WO2018043875A1 WO 2018043875 A1 WO2018043875 A1 WO 2018043875A1 KR 2017006135 W KR2017006135 W KR 2017006135W WO 2018043875 A1 WO2018043875 A1 WO 2018043875A1
Authority
WO
WIPO (PCT)
Prior art keywords
bypass diode
solar cell
unit
thermal fuse
failure
Prior art date
Application number
PCT/KR2017/006135
Other languages
English (en)
French (fr)
Inventor
고석환
강기환
주영철
송희은
황혜미
소정훈
정영석
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020170081323A priority Critical patent/KR20180025803A/ko
Publication of WO2018043875A1 publication Critical patent/WO2018043875A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic device having a fire prevention function and a failure diagnosis function.
  • a failure occurs in the bypass diode of the solar cell module
  • the fire of the solar cell module is prevented due to a rise in the temperature of the bypass diode, and a power generation loss occurs due to a failure state of the bypass diode.
  • It relates to a photovoltaic device that prevents the thing.
  • the output of the entire module is greatly reduced. Since the solar cell module has a configuration in which several solar cells are connected in series, when there is a solar cell that is hidden due to a shadow and there is no output, current passing through the corresponding solar cell becomes difficult, so that the overall output is reduced. Junction boxes with built-in bypass diodes are usually attached to the solar cell module to prevent shadow loss.
  • bypass diode is connected in reverse bias to the series cells of the solar cell.
  • Bypass diodes allow current to flow through cells or groups of cells whose output has been degraded by shadows, and the reduction in output can be limited to only those parts of a cell or group of cells obscured by the shadows to maintain output.
  • the bypass diode may prevent a fire from occurring by generating a hot spot by a crack of the solar cell.
  • the bypass diode used in the solar cell module may be damaged by repeating the switching between the forward operation state and the reverse bias state in poor environmental conditions such as lightning (surge) and insufficient heat emission inside the junction box.
  • the building integrated photovoltaic (BIPV) module has a high frequency of continuous shadowing, which increases the probability of failure of the bypass diode.
  • a short circuit When the bypass diode is damaged in the configuration of the solar cell module, a short circuit is configured internally, and current may continuously flow through the bypass diode to generate heat. At this time, when the system does not operate and a high amount of solar radiation is applied, a short-circuit current flows in the reverse direction of the bypass diode so that the temperature of the diode rises by 200 ° C or more, and this temperature melts the material of the junction box. There is a risk of fire occurring in the solar cell module due to short circuit of the solar cell.
  • Patent Document 1 Republic of Korea Patent No. 1600962 (junction box for solar power module)
  • An object of the present invention is to prevent the fire of the solar cell module due to the temperature rise of the bypass diode when the bypass diode of the solar cell module occurs.
  • Another object of the present invention is to diagnose the state of the bypass diode to prevent fire of the solar cell module.
  • an object of the present invention is to monitor the failure of the bypass diode in order to prevent the bypass diode failure leading to a decrease in the amount of power generation of the solar cell module.
  • a solar cell module including a solar cell string in which a plurality of solar cells are connected in series, and a current blocking unit connected in parallel with the solar cell string are provided. And a junction box having a junction box, wherein the current blocking unit includes a bypass diode connected to one end of the solar cell string, and a thermal fuse connected between the other end of the bypass diode and the other end of the solar cell string. It is characterized by doing.
  • the apparatus further includes a failure diagnosis unit measuring a voltage at both ends of the current blocking unit to diagnose damage of the bypass diode.
  • the failure diagnosis unit diagnoses damage to the bypass diode by measuring a temperature inside the junction box.
  • the fault diagnosis unit measures a voltage at both ends and a temperature inside the junction box to distinguish a shade state of the solar cell module from a fault state of the bypass diode.
  • the thermal fuse blocks a reverse short circuit current applied to the bypass diode when the bypass diode exceeds an allowable temperature as a short circuit fault occurs in the bypass diode and a reverse short circuit current flows.
  • the allowable temperature is a temperature at which the mechanism of the junction box does not melt when the short circuit current of the solar cell is applied to the bypass diode in a short circuit failure state in the reverse direction of the diode.
  • the allowable temperature is the saturation temperature of the bypass diode when the short circuit current of the solar cell flows in the reverse direction of the diode to the damaged bypass diode, and the thermal fuse is burned out at the allowable temperature.
  • the thermal fuse prevents the temperature inside the junction box from rising by performing a short-circuit current application blocking operation to the bypass diode. do.
  • the internal temperature of the junction box and the voltage at both ends of the current blocking unit may be measured to determine whether the failure is diagnosed due to the shadow state and damage of the bypass diode. For this reason, in the case of a short circuit failure of the bypass diode, it is possible to prevent fire by limiting the heat generation of the bypass diode due to burnout of the thermal fuse.
  • the fuse of the fuse and the failure of the bypass diode can be recognized, and energy loss can be prevented through the troubleshooting.
  • whether the bypass diode is broken or whether the thermal fuse is broken can be visually checked through the LED output, thereby improving the maintenance efficiency of the photovoltaic device.
  • FIG. 1 is a view showing a schematic structure of a photovoltaic device having a fire prevention function and a failure diagnosis function according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a schematic structure of a monitoring unit formed in a photovoltaic device having a fire prevention function and a failure diagnosis function according to an embodiment of the present invention.
  • FIG 3 shows the temperature characteristics of the normal bypass diode according to the forward and reverse currents, and the fault current of the faulty bypass diode, respectively.
  • FIG. 4A illustrates a characteristic in which current flows to a bypass diode in a shaded state.
  • the solar cell apparatus 100 includes a solar cell module 102 and a junction box 104.
  • the solar cell module 102 includes a solar cell string 108 in which a plurality of solar cell cells 106 are connected in series.
  • the junction box 104 includes a current interrupter 110 and a fault detector 116.
  • the current blocking unit 110 includes a bypass diode 112, a thermal fuse 114, a first resistor 1131, a second resistor 1132, a first LED 1151, and a second LED 1152. And is connected in parallel with the solar cell string 108.
  • One end of the bypass diode 112 is connected to one end of the solar cell string 108, and the thermal fuse 114 is connected between the other end of the bypass diode 112 and the other end of the solar cell string 108.
  • the first resistor 1131 is connected in parallel to the thermal fuse 114, and the first LED 1151 is connected to one end of the first resistor 1131.
  • the second resistor 1132 is connected in parallel to the bypass diode 112, and the second LED 1152 is connected to one end of the second resistor 1132.
  • the current blocking unit 110 is connected in series with the same number as the solar cell string 108.
  • the thermal fuse 114 has a short circuit failure in the bypass diode 112, and the reverse short circuit is applied to the bypass diode 112 when the bypass diode 112 exceeds the allowable temperature as the reverse short circuit current flows. Shut off the current.
  • the allowable temperature is a temperature at which the mechanism of the junction box 104 does not melt when the short circuit current of the solar cell 106 is applied to the bypass diode in the short circuit failure state in the reverse direction of the diode.
  • the allowable temperature is the saturation temperature of the bypass diode 112 when the short circuit current of the solar cell 106 flows in the reverse direction of the diode to the damaged bypass diode, and the thermal fuse 114 is burned out at the allowable temperature.
  • the first resistor 1131 and the second resistor 1132 may be configured with a resistance of 10 M ⁇ , and the first LED 1151 is turned on when the thermal fuse 114 is burned out and the thermal fuse 114 is turned on. Is off when the solar cell 106 is operating normally.
  • the second LED 1152 is turned on when the bypass diode 112 is operating normally, that is, when no current flows in the bypass diode 112, and the shadow, snow, When the current operates in the bypass diode 112 due to contamination or the like, it is turned off.
  • the first LED 1151 is composed of a red LED
  • the second LED 1152 is composed of a green LED, so that the thermal fuse 114 and the bypass diode 112 are normally operated, that is, they are easily broken. You can check it.
  • the failure diagnosis unit 116 measures voltages at both ends of the first current breaker and the last current breaker.
  • the failure diagnosis unit 116 measures the voltages at both ends of the current blocking unit 110 and the temperature inside the junction box 104 to determine the shade state of the solar cell module 102 and the failure state of the bypass diode 112. Separate.
  • the photovoltaic device 100 may further include an inverter, a surge protection device, and the like, but in this specification, only the configuration of the solar cell module 102 and the current blocking unit 110 will be described in detail. The operations to be understood will be understood as the scope of the known art.
  • the solar cell module 102 receives solar light and performs photovoltaic power generation, and outputs a current. As illustrated in FIG. 1, the solar cell module 102 may be configured by connecting three solar cell strings in series by connecting 20 solar cells in series. One current interrupter is connected in parallel to one solar cell string.
  • the current blocking unit 110 includes a bypass diode 112 and a thermal fuse 114 connected in series.
  • the current blocking unit 110 includes a bypass diode depending on whether or not the allowable temperature of the bypass diode 112 is exceeded. Shut off current flow to 112).
  • the current blocking unit 110 is a current applied to the bypass diode 112 as the bypass diode 112 exceeds the allowable temperature due to a short circuit failure of the bypass diode 112 constituting the current blocking unit 110. To block. If the bypass diode 112 of the current blocking unit 110 has a short circuit failure due to a lightning or leakage current, a reverse short circuit current flows in the bypass diode 112 to exceed the allowable temperature in the bypass diode 112. High fever will occur.
  • the junction box 104 may be melted.
  • a fire may occur in the solar cell module 102 as a high solar radiation is applied during the daytime period.
  • the thermal fuse 114 of the current blocking unit 110 cuts off the current to the bypass diode 112 according to the excess temperature of the bypass diode 112 by the reverse short circuit current applied to the bypass diode 112. Will perform the action. Accordingly, damage to the junction box 104 due to a short circuit failure of the bypass diode 112 may be prevented, and a fire of the solar cell module 102 may also be prevented.
  • FIG. 2 is a block diagram illustrating a schematic structure of a monitoring unit formed in a photovoltaic device having a fire prevention function and a failure diagnosis function according to an embodiment of the present invention.
  • the monitoring unit 200 formed in the photovoltaic device having a fire prevention function and a failure diagnosis function according to the present embodiment is a portion added to the photovoltaic device 100, the determination unit 210 It includes a notification output unit 220, and the communication unit 230.
  • the determination unit 220 compares the temperature inside the junction box from the failure diagnosis unit 116 with the temperature inside the other junction box received from the communication unit 240, and receives the voltage measurement result from the failure diagnosis unit 116. A determination result for determining whether the pass diode 112 or the thermal fuse 113 is broken is generated and transmitted to the notification output unit 230 and the communication unit 240.
  • the determination unit 220 is the junction when the temperature inside the junction box received from the failure diagnosis unit 116 is 10 °C or more higher than the temperature inside the other junction box or when the temperature inside the junction box is 100 °C or more. A determination result is generated that determines that the bypass diode and the thermal fuse inside the box are faulty.
  • the determination unit 220 may be configured to be connected to each of the plurality of failure diagnosis units 116 to determine whether a specific photovoltaic device 100 has a failure, and for this purpose, each of the different failure diagnosis units 116 may be used. When a unique identification number is assigned and each measurement value is received from the failure diagnosis unit 116, the unique identification number may be received together to determine whether a specific photovoltaic device 100 has failed.
  • the determination unit 220 If the voltage measurement value received from the failure diagnosis unit 116 has a characteristic of the voltage measurement value when a short circuit failure of the bypass diode occurs, the determination unit 220 generates a determination result for determining that the bypass diode is a failure. .
  • the notification output unit 230 receives the determination result from the determination unit 220 and notifies the user as a text, an image, or a sound, and may be configured as a display device for outputting a text or an image or a speaker for outputting a sound.
  • the communication unit 240 receives the determination result from the determination unit 220 and transmits it to an external server or mobile terminal through wireless communication.
  • the determination unit 220, the notification output unit 230, and the communication unit 240 may be configured to be formed outside the photovoltaic device 100.
  • FIG 3 shows the temperature characteristics of the normal bypass diode according to the forward and reverse currents, and the fault current of the faulty bypass diode, respectively.
  • the solar radiation applied to the solar cell module 102 is 1000W / m 2 , the short circuit current of 10A bypass diode When applied to (112), it can be inferred that the temperature of the bypass diode 112 will reach about 200 °C from [Table 1].
  • the photovoltaic device 100 since the current blocking unit 110 includes the bypass diode 112 and the thermal fuse 114, the photovoltaic device 100 may be applied to the bypass diode 112.
  • the short-circuit current can be effectively blocked without a separate manual operation, it is possible to prevent the phenomenon that high heat occurs in the bypass diode 112 described with reference to Table 1 and FIG.
  • the fault diagnosis unit 116 may generate a reverse voltage at both ends of the current blocking unit 110 to diagnose a fuse burnout and a failure of the bypass diode. Accordingly, it is possible to prevent the fire of the solar cell module and to prevent the loss of the system when the administrator fails to take quick action.
  • the thermal fuse 114 always flows only in the negative salt state and the failure of the bypass diode 112, so that the thermal fuse 114 can be used for a long time.
  • the burnout of the thermal fuse 114 is operated only when a high temperature occurs due to a short circuit current applied in the reverse direction of the bypass diode 112.
  • FIG. 4A illustrates a current flowing through the bypass diode in a shaded state
  • FIG. 4B illustrates a current characteristic when a short circuit fault occurs in the bypass diode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치에 관한 것이다. 본 발명의 태양광 발전 장치는 복수의 태양전지 셀이 직렬 연결된 태양전지 스트링을 구비하는 태양전지 모듈과, 상기 태양전지 스트링과 병렬 연결된 전류 차단부를 구비하는 정션박스를 포함하며, 상기 전류 차단부는 상기 태양전지 스트링의 일단에 일단이 연결되는 바이패스 다이오드와, 상기 바이패스 다이오드의 타단과 상기 태양전지 스트링의 타단의 사이에 연결되는 써멀퓨즈와, 상기 써멀퓨즈에 병렬 연결되어 상기 써멀퓨즈의 구동 상태에 따라 온 또는 오프되는 제1 LED와, 상기 바이패스 다이오드에 병렬 연결되어 상기 바이패스 다이오드의 구동 상태에 따라 온 또는 오프되는 제2 LED를 구비한다. 본 발명은 태양전지 모듈의 바이패스 다이오드에 고장이 발생하였을 때 바이패스 다이오드의 온도 상승에 의해 태양전지 모듈에 화재가 발생하는 것을 방지할 수 있고, 써멀퓨즈와 바이패스 다이오드의 고장여부를 육안으로 확인할 수 있어 고장에 따라 전력 발전량의 손실로 이어지는 것을 예방할 수 있다.

Description

화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치
본 발명은 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치에 관한 것이다. 특히, 태양전지 모듈의 바이패스 다이오드에 고장이 발생하였을 때 바이패스 다이오드의 온도 상승에 의해 태양전지 모듈에 화재가 발생하는 것을 방지하고, 바이패스 다이오드의 고장상태에 따라 전력 발전량의 손실이 발생하는 것을 방지하는 태양광 발전 장치에 관한 것이다.
태양전지 모듈은 아주 적은 일부가 그림자로 인해 가려지더라도 모듈 전체의 출력이 크게 저하된다. 태양전지 모듈은 여러 개의 태양전지가 직렬로 연결된 구성이기 때문에, 그림자로 인해 가려져 출력이 없는 태양전지가 있는 경우 해당 태양전지에서 전류 통과가 어렵게 되어 전체적인 출력이 저하하게 된다. 그림자에 의한 손실을 예방하기 위해 일반적으로 바이패스 다이오드가 내장된 정션박스가 태양전지 모듈에 부착된다.
바이패스 다이오드는 태양전지의 직렬 연결된 셀에 역바이어스 방향으로 연결된다. 바이패스 다이오드는 그림자로 인해 출력이 저하된 셀 또는 셀 그룹을 우회해 전류가 흐르도록 하고, 이를 통한 출력 감소는 오직 그림자에 의해 가려진 셀 또는 셀 그룹에 해당되는 부분으로 제한해 출력을 유지할 수 있다. 또한, 바이패스 다이오드는 태양전지 셀의 크랙에 의해 핫 스팟(hot-spot)이 발생하여 화재가 일어나는 것을 방지할 수 있다.
한편, 태양전지 모듈에 사용되는 바이패스 다이오드는 낙뢰(써지), 정션박스 내부 열배출 미비 등의 열악한 환경 조건에서 순방향 동작 상태와 역바이어스 상태 사이의 전환을 반복함에 따라 파손될 수 있다. 특히, 건물 일체형 태양광(Building Integrated Photovoltaic: BIPV) 모듈의 경우 상시 음영 발생 빈도가 높아 바이패스 다이오드의 고장 확률이 높아진다.
태양전지 모듈의 구성에서 바이패스 다이오드가 파손될 경우 내부적으로 단락 회로가 구성되고, 바이패스 다이오드를 통하여 상시적으로 전류가 흐르게 되어 열이 발생할 수 있다. 이때, 시스템이 동작하지 않고, 높은 일사량이 인가되는 경우 바이패스 다이오드의 역방향으로 단락 전류가 흐르게 되어 다이오드의 온도가 200℃ 이상 상승하게 되며, 이 온도는 정션박스의 재질을 녹이고, 경우에 따라서는 태양전지 셀이 단락 되어 태양전지 모듈에서 화재가 발생할 위험이 있다.
따라서 태양전지 모듈에서 바이패스 다이오드의 상태를 진단하는 것은 매우 중요한 문제이다. 태양전지 모듈의 진단은 대부분 전문가에 의하여 이루어지며, 설치된 태양전지 모듈의 대부분의 바이패스 다이오드에 대해 진단을 수행하고 있지 않기 때문에 이에 대한 대책이 요구되고 있다. 또한 태양전지 모듈의 유지보수 전문가가 도착하기 이전에 화재가 발생될 수도 있기 때문에 화재 예방을 위한 추가적인 대책이 필요하다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 제1600962호(태양광 발전 모듈용 정션박스)
본 발명은 태양전지 모듈의 바이패스 다이오드에 고장이 발생하였을 때 바이패스 다이오드의 온도 상승에 의해 태양전지 모듈에 화재가 발생하는 것을 방지하는 것을 목적으로 한다.
또한 본 발명은 바이패스 다이오드의 상태를 진단하여 태양전지 모듈의 화재를 예방하는 것을 다른 목적으로 한다.
그리고, 본 발명은 바이패스 다이오드 고장이 태양전지 모듈의 발전량 저하로 이어지는 것을 예방하기 위해, 바이패스 다이오드의 고장여부를 모니터링하는 것을 목적으로 한다.
전술한 바와 같은 목적을 달성하기 위해 도출된 본 발명은 태양광 발전 장치에 있어서, 복수의 태양전지 셀이 직렬 연결된 태양전지 스트링을 구비하는 태양전지 모듈과, 상기 태양전지 스트링과 병렬 연결된 전류 차단부를 구비하는 정션박스를 포함하며, 상기 전류 차단부는 상기 태양전지 스트링의 일단에 일단이 연결되는 바이패스 다이오드와, 상기 바이패스 다이오드의 타단과 상기 태양전지 스트링의 타단의 사이에 연결되는 써멀퓨즈를 구비하는 것을 일 특징으로 한다.
바람직하게는, 상기 전류 차단부의 양단의 전압을 측정하여 상기 바이패스 다이오드의 손상을 진단하는 고장 진단부를 더 포함한다. 또한 상기 고장 진단부는 상기 정션박스 내부의 온도를 측정하여 상기 바이패스 다이오드의 손상을 진단한다. 상기 고장 진단부는 양단 전압과 상기 정션박스의 내부의 온도를 측정하여 상기 태양전지 모듈의 음영 상태와 상기 바이패스 다이오드의 고장 상태를 구분한다.
바람직하게는, 상기 써멀퓨즈는 상기 바이패스 다이오드에 단락 고장이 발생하여 역방향 단락전류가 흐름에 따라 상기 바이패스 다이오드가 허용온도를 초과하는 경우 상기 바이패스 다이오드에 인가되는 역방향 단락전류를 차단한다. 상기 허용온도는 단락고장 상태인 바이패스 다이오드에 상기 태양전지 셀의 단락전류를 다이오드 역방향으로 인가할 때 상기 정션박스의 기구부가 녹지 않는 온도이다. 또는 상기 허용온도는 손상된 바이패스 다이오드에 상기 태양전지 셀의 단락전류가 다이오드 역방향으로 흐를 때 상기 바이패스 다이오드의 포화 온도이고, 상기 허용온도에서 써멀퓨즈가 소손된다.
이러한 본 발명에 의하면 바이패스 다이오드에 단락 고장이 발생하여 바이패스 다이오드가 최대 발열온도 이상일 때, 써멀퓨즈가 바이패스 다이오드로의 단락전류 인가 차단 동작을 수행하여 정션박스 내부의 온도가 상승하는 것을 방지한다. 또한, 바이패스 다이오드의 고장 유무를 상시 진단할 수 있다. 정션박스의 내부온도와, 전류 차단부의 양단 전압을 측정하여 음영 상태와 바이패스 다이오드의 손상에 따른 고장진단 여부를 판정할 수 있다. 이로 인해, 바이패스 다이오드의 단락 고장시 써멀퓨즈의 소손에 의해 바이패스 다이오드의 발열을 제한하여 화재 예방이 가능하다. 또한 전류 차단부의 양단에 역전압이 발생 시 퓨즈의 소손 및 바이패스 다이오드의 고장을 인지할 수 있으며, 고장 처리를 통한 에너지 손실을 예방할 수 있다.
그리고, 본 발명에 의하면 바이패스 다이오드의 고장여부 및 써멀 퓨즈의 고장여부를 LED 출력을 통해 육안으로 확인할 수 있어 태양광 발전 장치의 유지 보수 효율을 향상할 수 있다.
도 1은 본 발명의 일 실시예에 따른 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치의 개략적인 구조를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치에 형성되는 모니터링부의 개략적인 구조를 나타낸 블록도이다.
도 3은 정상 바이패스 다이오드의 정방향 및 역방향 전류에 따른 각각의 온도 특성과, 고장 바이패스 다이오드의 역방향 전류에 따른 온도 특성을 나타낸다.
도 4a는 음영 상태에서 바이패스 다이오드로 전류가 흐르는 특성을 나타낸다.
도 4b는 바이패스 다이오드에 단락 고장이 발생한 경우의 전류 특성을 나타낸다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
도 1은 본 발명의 일 실시예에 따른 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치(100)의 개략적인 구조를 나타낸 도면이다. 도시된 바와 같이, 본 실시예에 따른 태양광 발전 장치(100)는 태양전지 모듈(102)과 정션박스(104)를 구비한다.
태양전지 모듈(102)은 복수의 태양전지 셀(106)이 직렬 연결된 태양전지 스트링(108)을 구비한다.
정션박스(104)는 전류 차단부(110)와 고장 진단부(FD: fault detector)(116)를 구비한다. 전류 차단부(110)는 바이패스 다이오드(112), 써멀퓨즈(114), 제1 저항(1131), 제2 저항(1132), 제1 LED(1151), 그리고 제2 LED(1152)를 구비하며, 태양전지 스트링(108)과 병렬 연결된다. 바이패스 다이오드(112)의 일단은 태양전지 스트링(108)의 일단에 연결되고, 써멀퓨즈(114)는 바이패스 다이오드(112)의 타단과 태양전지 스트링(108)의 타단의 사이에 연결된다. 제1 저항(1131)은 써멀퓨즈(114)에 병렬 연결되고, 제1 LED(1151)는 제1 저항(1131)의 일단에 연결된다. 제2 저항(1132)는 바이패스 다이오드(112)에 병렬 연결되고, 제2 LED(1152)는 제2 저항(1132)의 일단에 연결된다. 전류 차단부(110)는 태양전지 스트링(108)과 동일한 개수가 직렬로 연결된다.
써멀퓨즈(114)는 바이패스 다이오드(112)에 단락 고장이 발생하여 역방향 단락전류가 흐름에 따라 바이패스 다이오드(112)가 허용온도를 초과하는 경우, 바이패스 다이오드(112)에 인가되는 역방향 단락전류를 차단한다. 상기 허용온도는 단락고장 상태인 바이패스 다이오드에 태양전지 셀(106)의 단락전류를 다이오드 역방향으로 인가할 때 정션박스(104)의 기구부가 녹지 않는 온도이다. 또는 상기 허용온도는 손상된 바이패스 다이오드에 태양전지 셀(106)의 단락전류가 다이오드 역방향으로 흐를 때 바이패스 다이오드(112)의 포화 온도이고, 상기 허용온도에서 써멀퓨즈(114)가 소손된다.
제1 저항(1131) 및 제2 저항(1132)는 10MΩ의 저항으로 구성될 수 있고, 제1 LED(1151)는 써멀퓨즈(114)가 소손 상태일 때 온(on) 되고, 써멀퓨즈(114)가 정상 상태일 때, 즉, 태양전지 셀(106)이 정상작동 중인 경우 오프(off) 상태이다.
제2 LED(1152)는 바이패스 다이오드(112)가 정상 작동하는 경우, 즉, 바이패스 다이오드(112)에 전류가 흐르지 않는 경우 온(on) 되고, 태양전지 셀(106)의 음영, 적설, 오염 등에 의해 바이패스 다이오드(112)에 전류가 흐르도록 동작하는 경우 오프(off) 된다.
제1 LED(1151)는 빨간색 LED로 구성되고, 제2 LED(1152)는 초록색 LED로 구성되어 써멀퓨즈(114) 및 바이패스 다이오드(112)의 정상 동작 여부, 즉, 고장여부를 육안으로 용이하게 확인할 수 있다.
고장 진단부(116)는 첫번째 전류 차단부와 마지막 전류 차단부의 양단의 전압을 측정한다. 고장 진단부(116)는 전류 차단부(110)의 양단의 전압과, 정션박스(104) 내부의 온도를 측정하여 태양전지 모듈(102)의 음영 상태와 바이패스 다이오드(112)의 고장 상태를 구분한다.
태양광 발전 장치(100)는 인버터, 서지보호장치 등을 더 포함하여 형성되지만, 본 명세서에서는 태양전지 모듈(102)과, 전류 차단부(110)의 구성에 대해서만 자세하게 설명하도록 하며, 인버터와 관련되는 동작들은 공지 기술의 범위로서 이해되어야 할 것이다.
태양전지 모듈(102)은 태양광을 제공받아 태양광 발전을 수행하고, 전류를 출력한다. 태양전지 모듈(102)는 도 1에 예시한 것처럼, 20개의 태양전지 셀을 직렬 연결하여 구성한 태양전지 스트링을 3개 직렬 연결하여 구성할 수 있다. 하나의 태양전지 스트링에는 하나의 전류 차단부가 병렬 연결된다.
전류 차단부(110)는 바이패스 다이오드(112)와 써멀퓨즈(114)가 직렬 연결되어 구성되는데, 전류 차단부(110)는 바이패스 다이오드(112)의 허용온도 초과 여부에 따라 바이패스 다이오드(112)로의 전류 흐름을 차단한다. 전류 차단부(110)는 전류 차단부(110)를 구성하는 바이패스 다이오드(112)의 단락 고장에 의해 바이패스 다이오드(112)가 허용온도를 초과함에 따라 바이패스 다이오드(112)에 인가되는 전류를 차단한다. 전류 차단부(110)의 바이패스 다이오드(112)가 낙뢰 또는 누설전류에 의해 단락 고장이 발생하는 경우 바이패스 다이오드(112)에 역방향 단락전류가 흐르게 되어 바이패스 다이오드(112)에 허용온도를 초과하는 고열이 발생하게 된다.
이와 같이, 바이패스 다이오드(112)에 허용온도를 초과하는 고열이 발생하는 경우 정션박스(104) 재질이 녹을 수 있다. 또한, 주간시간대에 고 일사량이 인가됨에 따라 태양전지 모듈(102)에 화재가 발생할 수 있다. 바이패스 다이오드(112)에 역방향 단락전류가 인가됨에 의한 바이패스 다이오드(112)의 허용온도 초과에 따라 전류 차단부(110)의 써멀퓨즈(114)가 바이패스 다이오드(112)로의 전류를 차단하는 동작을 수행하게 된다. 이에 따라, 바이패스 다이오드(112)의 단락 고장에 따른 정션박스(104) 손상을 방지할 수 있어 태양전지 모듈(102)의 화재발생 또한 방지할 수 있다.
도 2는 본 발명의 일 실시예에 따른 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치에 형성되는 모니터링부의 개략적인 구조를 나타낸 블록도이다. 도시된 바와 같이, 본 실시예에 따른 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치에 형성되는 모니터링부(200)는 태양광 발전 장치(100)에 부가되는 부분으로서, 판단부(210), 알림 출력부(220), 그리고 통신부(230)를 포함한다.
판단부(220)는 고장 진단부(116)로부터 정션박스 내부의 온도와 통신부(240)로부터 전달받은 다른 정션박스 내부의 온도를 비교하고, 고장 진단부(116)로부터 전압측정결과를 전달받아 바이패스 다이오드(112) 또는 써멀퓨즈(113)의 고장여부를 판단하는 판단결과를 생성하여 알림 출력부(230) 및 통신부(240)로 전달한다.
한 예에서, 판단부(220)는 고장 진단부(116)로부터 전달받은 정션박스 내부의 온도가 다른 정션박스 내부의 온도보다 10℃ 이상 높은 경우 또는 정션박스 내부의 온도가 100℃ 이상인 경우 해당 정션박스 내부의 바이패스 다이오드 및 써멀퓨즈가 고장인 것으로 판단하는 판단결과를 생성한다.
판단부(220)는 복수 개의 고장 진단부(116)와 각각 연결되어 특정 태양광 발전장치(100)의 고장여부를 판단하도록 구성될 수 있고, 이를 위해서, 서로 다른 고장 진단부(116)에 각각 고유 식별번호를 부여하고 각 고장 진단부(116)로부터 측정값을 전달받을 때 고유 식별번호를 함께 전달받아 특정 태양광 발전장치(100)의 고장여부를 판단할 수 있다.
그리고, 판단부(220)는 고장 진단부(116)로부터 전달받은 전압 측정값이 바이패스 다이오드의 단락고장 발생시 전압 측정값의 특성을 갖는 경우 바이패스 다이오드가 고장인 것으로 판단하는 판단결과를 생성한다.
알림 출력부(230)는 판단부(220)로부터 판단결과를 전달받아 텍스트, 이미지 또는 소리로서 알리는 부분으로서, 텍스트나 이미지를 출력하기 위한 디스플레이 장치 또는 소리를 출력하기 위한 스피커로 구성될 수 있다.
통신부(240)는 판단부(220)로부터 판단결과를 전달받아 이를 무선통신을 통해 외부의 서버 또는 휴대단말로 전송한다.
판단부(220), 알림 출력부(230), 그리고 통신부(240)는 태양광 발전장치(100)의 외측에 형성되도록 구성될 수 있다.
도 3은 정상 바이패스 다이오드의 정방향 및 역방향 전류에 따른 각각의 온도 특성과, 고장 바이패스 다이오드의 역방향 전류에 따른 온도 특성을 나타낸다.
[표 1] 및 도 3을 참조하여 태양광 발생 장치(100)의 동작을 좀더 자세히 설명하면, 태양전지 모듈(102)에 인가되는 일사량이 1000W/m2이고, 10A의 단락전류가 바이패스 다이오드(112)에 인가되는 경우, 바이패스 다이오드(112)의 온도는 [표 1]로부터 약 200℃에 이를 것으로 유추할 수 있다.
Forward direction for normal diode(음영 시 다이오드 순방향 온도특성) Reverse direction for damaged diode(고장 시 다이오드 역방향 온도특성)
Current (A) Temperature(℃) Current (A) Temperature(℃)
2 41.6 2 35.1
4 62.4 4 56.4
6 79.5 6 91.7
8 100.6 8 139.7
10 120.2 10 219.2
상기 [표 1]과 같이, 음영 시 바이패스 다이오드(112)에 순방향 전류가 흐르는 경우 10A의 전류가 바이패스 다이오드(112)에 인가되어도 120℃ 정도로 온도가 상승하지만, 바이패스 다이오드(112)에 단락 고장이 발생하여 역방향 전류가 흐르는 경우 200℃가 넘게 되어 이는 정션박스(104)의 허용온도를 초과하게 된다.
그러나, 본 실시예에 따른 태양광 발전 장치(100)는 전류 차단부(110)가 바이패스 다이오드(112)와 써멀퓨즈(114)를 구비하고 있어, 바이패스 다이오드(112)에 인가될 수 있는 단락전류를 별도의 수동 동작 없이 효과적으로 차단할 수 있어, 표 1 및 도 2를 참고로 하여 설명한 바이패스 다이오드(112)에서 고열이 발생하는 현상을 방지할 수 있다. 또한, 고장 진단부(116)는 써멀퓨즈(114)가 소손될 경우 전류 차단부(110)의 양단에 역전압이 생성되어 퓨즈소손 및 바이패스 다이오드의 고장을 진단할 수 있다. 이에 따라, 관리자의 빠른 조치 미비 시 태양전지 모듈의 화재를 예방할 수 있으며, 시스템의 손실을 방지할 수 있다.
이때, 써멀퓨즈(114)는 음염 상태 및 바이패스 다이오드(112)의 고장 시에만 상시 전류가 흐르게 되어 써멀퓨즈(114)의 장시간 사용이 가능하다. 써멀퓨즈(114)의 소손은 바이패스 다이오드(112)의 역방향으로 단락전류가 인가되어 고열이 발생할 때만 동작된다.
도 4a는 음영 상태에서 바이패스 다이오드로 전류가 흐르는 특성을 나타내며, 도 4b는 바이패스 다이오드에 단락 고장이 발생한 경우의 전류 특성을 나타낸다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
100: 태양광 발전 장치
102: 태양전지 모듈
104: 정션박스
106: 태양전지 셀
108: 태양전지 스트링
110: 전류 차단부
112: 바이패스 다이오드
114: 써멀퓨즈
116: 고장 진단부
200 : 모니터링부
210 : 판단부
220 : 알림 출력부
230 : 통신부

Claims (10)

  1. 복수의 태양전지 셀이 직렬 연결된 태양전지 스트링을 구비하는 태양전지 모듈과,
    상기 태양전지 스트링과 병렬 연결된 전류 차단부를 구비하는 정션박스를
    포함하며,
    상기 전류 차단부는
    상기 태양전지 스트링의 일단에 일단이 연결되는 바이패스 다이오드와,
    상기 바이패스 다이오드의 타단과 상기 태양전지 스트링의 타단의 사이에 연결되는 써멀퓨즈와,
    상기 써멀퓨즈에 병렬 연결되어 상기 써멀퓨즈의 구동 상태에 따라 온 또는 오프되는 제1 LED와,
    상기 바이패스 다이오드에 병렬 연결되어 상기 바이패스 다이오드의 구동 상태에 따라 온 또는 오프되는 제2 LED를
    구비하여 상기 제1 LED 및 제2 LED의 빛 출력 여부를 통해 상기 써멀퓨즈 및 상기 바이패스 다이오드의 고장여부를 진단할 수 있는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
  2. 제1항에 있어서,
    상기 전류 차단부의 양단의 전압을 측정하여 상기 바이패스 다이오드의 손상을 진단하는 고장 진단부를 더 포함하는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
  3. 제2항에 있어서,
    상기 고장 진단부는 상기 정션박스 내부의 온도를 측정하여 상기 바이패스 다이오드의 손상을 진단하는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
  4. 제1항에 있어서,
    상기 써멀퓨즈는 상기 바이패스 다이오드에 단락 고장이 발생하여 역방향 단락전류가 흐름에 따라 상기 바이패스 다이오드가 허용온도를 초과하는 경우 상기 바이패스 다이오드에 인가되는 역방향 단락전류를 차단하는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
  5. 제4항에 있어서,
    상기 허용온도는 단락고장 상태인 바이패스 다이오드에 상기 태양전지 셀의 단락전류를 다이오드 역방향으로 인가할 때 상기 정션박스의 기구부가 녹지 않는 온도인 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
  6. 제4항에 있어서,
    상기 허용온도는 손상된 바이패스 다이오드에 상기 태양전지 셀의 단락전류가 다이오드 역방향으로 흐를 때 상기 바이패스 다이오드의 포화 온도이고, 상기 허용온도에서 써멀퓨즈가 소손되는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
  7. 제2항에 있어서,
    상기 고장 진단부는 양단 전압과 상기 정션박스의 내부의 온도를 측정하여 상기 태양전지 모듈의 음영 상태와 상기 바이패스 다이오드의 고장 상태를 구분하는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
  8. 제3항에 있어서,
    상기 정션박스에 연결되고,
    상기 고장 진단부로부터 상기 정션박스 내부의 온도를 전달받아 상기 바이패스 다이오드 및 상기 써멀퓨즈의 고장여부를 판단결과로서 생성하는 판단부와,
    상기 판단부로부터 상기 판단결과를 전달받아 상기 바이패스 다이오드 및 상기 써멀퓨즈의 고장여부를 출력하는 알림 출력부를 포함하는 모니터링부
    를 더 포함하는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
  9. 제8항에 있어서,
    상기 알림 출력부는 상기 판단부로부터 전달받은 상기 판단결과를 텍스트 또는 이미지로 출력하기 위한 디스플레이 장치 또는 상기 판단결과를 소리로 출력하기 위한 스피커를 포함하는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치
  10. 제8항에 있어서,
    상기 모니터링부는,
    상기 판단부로부터 전달받은 상기 판단결과를 외부의 서버 또는 휴대단말로 전송하는 통신부
    를 더 포함하는 것을 특징으로 하는 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치.
PCT/KR2017/006135 2016-09-01 2017-06-13 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치 WO2018043875A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170081323A KR20180025803A (ko) 2016-09-01 2017-06-27 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0112793 2016-09-01
KR20160112793 2016-09-01

Publications (1)

Publication Number Publication Date
WO2018043875A1 true WO2018043875A1 (ko) 2018-03-08

Family

ID=61301286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006135 WO2018043875A1 (ko) 2016-09-01 2017-06-13 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치

Country Status (2)

Country Link
KR (1) KR20180025803A (ko)
WO (1) WO2018043875A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077476A (zh) * 2020-01-02 2020-04-28 湖南金泰环保科技有限公司 一种设备短路或漏电故障点的检测方法
CN111697098A (zh) * 2020-07-15 2020-09-22 苏州腾晖光伏技术有限公司 一种太阳能电池组件
WO2023279754A1 (zh) * 2021-07-09 2023-01-12 上海数明半导体有限公司 光伏组件、光伏发电系统以及电子设备
US11870391B2 (en) * 2021-09-29 2024-01-09 Weidmüller Interface GmbH & Co. KG Photovoltaic module and connection arrangement for a photovoltaic module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102366428B1 (ko) * 2021-04-19 2022-02-23 조현석 태양광 회전식 모듈
KR102326571B1 (ko) * 2021-05-06 2021-11-15 (주)신한티이씨 태양전지별로 고장진단이 가능한 태양광 발전 모니터링 시스템 및 그 방법
KR20230017615A (ko) * 2021-07-28 2023-02-06 현대에너지솔루션(주) 태양광 모듈
US20230335651A1 (en) * 2022-04-15 2023-10-19 Northrop Grumman Systems Corporation Reconfigurable solar array for stable output voltage over a range of temperatures with high operational efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183532B1 (ko) * 2012-03-02 2012-09-20 주식회사 유비테크 태양광발전 채널별 감시 및 개별 모니터링 시스템
KR20130131515A (ko) * 2012-05-24 2013-12-04 (주)엠케이에너지 태양전지 보호회로와 네트워킹을 포함한 모니터링 신호 송출 장치
KR101456241B1 (ko) * 2012-12-04 2014-11-03 한국남부발전 주식회사 태양전지 모듈 이상상태 감지장치
KR101560345B1 (ko) * 2015-06-12 2015-10-20 (주)세진엔지니어링 태양광 발전시스템
KR101598205B1 (ko) * 2015-02-13 2016-03-02 한국에너지기술연구원 태양전지모듈 모니터링을 위한 온도검출 기능을 가지는 정션박스, 상기 정션박스를 구비한 태양전지모듈 모니터링 장치 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183532B1 (ko) * 2012-03-02 2012-09-20 주식회사 유비테크 태양광발전 채널별 감시 및 개별 모니터링 시스템
KR20130131515A (ko) * 2012-05-24 2013-12-04 (주)엠케이에너지 태양전지 보호회로와 네트워킹을 포함한 모니터링 신호 송출 장치
KR101456241B1 (ko) * 2012-12-04 2014-11-03 한국남부발전 주식회사 태양전지 모듈 이상상태 감지장치
KR101598205B1 (ko) * 2015-02-13 2016-03-02 한국에너지기술연구원 태양전지모듈 모니터링을 위한 온도검출 기능을 가지는 정션박스, 상기 정션박스를 구비한 태양전지모듈 모니터링 장치 및 그 방법
KR101560345B1 (ko) * 2015-06-12 2015-10-20 (주)세진엔지니어링 태양광 발전시스템

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077476A (zh) * 2020-01-02 2020-04-28 湖南金泰环保科技有限公司 一种设备短路或漏电故障点的检测方法
CN111077476B (zh) * 2020-01-02 2022-03-08 湖南金泰环保科技有限公司 一种设备短路或漏电故障点的检测方法
CN111697098A (zh) * 2020-07-15 2020-09-22 苏州腾晖光伏技术有限公司 一种太阳能电池组件
WO2023279754A1 (zh) * 2021-07-09 2023-01-12 上海数明半导体有限公司 光伏组件、光伏发电系统以及电子设备
US11870391B2 (en) * 2021-09-29 2024-01-09 Weidmüller Interface GmbH & Co. KG Photovoltaic module and connection arrangement for a photovoltaic module

Also Published As

Publication number Publication date
KR20180025803A (ko) 2018-03-09

Similar Documents

Publication Publication Date Title
WO2018043875A1 (ko) 화재 예방 기능 및 고장 진단 기능을 갖는 태양광 발전 장치
JP5590475B2 (ja) 逆電流センサ
KR101560345B1 (ko) 태양광 발전시스템
CN102939661B (zh) 用于在危险情况下限制光伏设备发电机电压的方法和光伏设备
KR101496199B1 (ko) 전력 차단 기능을 구비한 태양 전지 시스템 및 그 제어 방법
US10680443B2 (en) Solar power generation system
US20090101191A1 (en) Photovoltaic system
US20120160297A1 (en) Solar power generation system and power lines for solar power generation system
EP2315328A2 (en) String and system employing direct current electrical generating modules and a number of string protectors
Wohlgemuth et al. How can we make PV modules safer?
WO2018155848A1 (ko) 태양광 발전 설비의 전기화재 예방 시스템
KR102262547B1 (ko) 태양광 접속반 사고관리시스템
KR101879742B1 (ko) 아크 종류와 위치 검출 및 열화 방지 기능을 구비한 태양광 발전 시스템
KR101712823B1 (ko) 화재 예방을 위한 바이패스 기능을 가지는 태양광 접속반
WO2015163583A1 (ko) 태양광발전 시스템
WO2019088550A1 (ko) 일체형 전력변환 및 계통연계 시스템
KR101429421B1 (ko) 태양광발전용 지능형 접속반 유니트
CN207232304U (zh) 电池保险丝熔断检测电路
CN113659929A (zh) 一种光伏发电系统、光伏组件的状态检测装置以及异常定位方法
KR102010315B1 (ko) 고전압 스위칭 보드를 구비한 태양광 발전 시스템
WO2017003162A1 (ko) 태양전지 모니터링장치
CN101943724A (zh) 浪涌保护器的在线检测装置
KR101569199B1 (ko) 임피던스 측정과 우회회로를 통한 화재방지형 태양광 발전 시스템.
KR102440143B1 (ko) 태양광 모듈의 음영 및 고장을 감지하기 위한 장치
WO2016085009A1 (ko) 직렬 연결된 태양광 모듈 스트링에서의 이상 모듈 진단 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846800

Country of ref document: EP

Kind code of ref document: A1