WO2019088550A1 - 일체형 전력변환 및 계통연계 시스템 - Google Patents
일체형 전력변환 및 계통연계 시스템 Download PDFInfo
- Publication number
- WO2019088550A1 WO2019088550A1 PCT/KR2018/012578 KR2018012578W WO2019088550A1 WO 2019088550 A1 WO2019088550 A1 WO 2019088550A1 KR 2018012578 W KR2018012578 W KR 2018012578W WO 2019088550 A1 WO2019088550 A1 WO 2019088550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power conversion
- power
- grid
- integrated power
- transformer
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 145
- 238000000034 method Methods 0.000 claims description 13
- 238000005192 partition Methods 0.000 claims description 12
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000003063 flame retardant Substances 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- 238000000638 solvent extraction Methods 0.000 claims description 2
- 238000009434 installation Methods 0.000 description 15
- 238000010248 power generation Methods 0.000 description 14
- 238000001816 cooling Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/32—Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/36—Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
- H05K7/1432—Housings specially adapted for power drive units or power converters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20909—Forced ventilation, e.g. on heat dissipaters coupled to components
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to an integrated power conversion and grid connection system constituting a series of devices such as a power conversion device, a protection facility, a metering facility, and a device for power grid connection, which are provided in a renewable energy generation system or an ESS .
- a system such as an ESS (energy storage system) or a solar power generation system may be a power conversion device that converts power stored in a battery or power generated by a solar panel, a device for coupling the power meter, A weighing equipment for weighing the whole amount, and a protection facility for protecting the above-mentioned various devices and equipments.
- ESS energy storage system
- solar power generation system may be a power conversion device that converts power stored in a battery or power generated by a solar panel, a device for coupling the power meter, A weighing equipment for weighing the whole amount, and a protection facility for protecting the above-mentioned various devices and equipments.
- the above-mentioned various devices and various facilities are manufactured in units of independent apparatuses and installed individually in the field. Thereafter, the ESS or the photovoltaic power generation system can be configured through a method of connecting a power cable or a communication cable between devices.
- the installation area for installing each device is increased, and wiring work for cable installation and cable trenching process are added to each device, so that the installation period is increased and the field test period is also excessively .
- the size of the product increases, and a separate enclosure is manufactured according to the characteristics of the product, which leads to an increase in cost, and there is also a difficulty in maintenance after installation of the devices.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a power conversion system, a protection facility, a weighing facility, and a power system, which are provided between a renewable energy generation system and a power system, And to provide an integrated power conversion and system linkage system that integrally constitutes a series of devices such as a device for linkage.
- the integrated power conversion and grid connection system includes a power conversion unit for performing power conversion between DC power and AC power, a transformer for converting the voltage of the AC power, A switchgear unit for performing a cutoff operation based on the state of the line, and a container in which the power conversion unit, the transformer, and the switch gear unit are installed.
- the container may include a plurality of sections in which the power conversion section, the transformer, and the switch gear section are separately installed.
- the container includes a plurality of partitions partitioning the plurality of sections, and each of the plurality of partitions is provided with connection means for line connection between the power conversion section, the transformer, May be formed.
- each of the plurality of partitions may be embodied as a heat insulating material comprising a flame retardant urethane foam or a sandwich panel.
- each of the plurality of sections may have different waterproof and dustproof grades based on the installed configuration.
- the container enclosure of each of the plurality of sections may be provided with at least one of a door, a vent, and a window based on the configuration provided in each of the plurality of sections.
- the power converter includes a power conversion system (PCS) connected to a battery and converting DC power stored in the battery into AC power
- PCS power conversion system
- the container enclosure of the section may be provided with intake vents and exhaust vents.
- the inlet port may be installed in the container enclosure of the first section so as to face the inlet port provided in the PCS, and the exhaust port may be installed on the upper side of the PCS.
- the battery may be installed in the container.
- the power converter may include a PV inverter that converts the DC power supplied from the solar panel to AC power.
- the integrated power conversion and grid connection system is configured to connect a plurality of integrated power conversion and grid connection systems and to transmit power supplied from each of the plurality of integrated power conversion and grid connection systems to a mains room or power grid, To an integrated power conversion and grid connection system.
- a power conversion and grid connection system including a configuration of a power conversion unit, a low-voltage switchgear unit, a transformer, a high-voltage switchgear unit, and the like can be implemented integrally in one container. Since the container implemented as one unit is transported and installed in the field, the transportation and installation of the system can be facilitated and the occupied space can be minimized.
- the configurations of the power conversion and grid connection systems are separately installed in the sections in the container, so that the environment within the sections can be optimized according to the types of the configurations.
- FIG. 1 is a schematic block diagram illustrating an overall system including an integrated power conversion and grid connection system in accordance with an embodiment of the present invention.
- FIG. 2 is a block diagram showing the configuration of an integrated power conversion and grid connection system according to an embodiment of the present invention.
- FIG. 3 is a perspective view showing the appearance of an integrated power conversion and grid connection system according to an embodiment of the present invention.
- FIG. 4 is a right side view and a left side view of the integrated power conversion and grid connection system shown in FIG.
- FIG. 5 is a top view of the integrated power conversion and grid connection system shown in FIG.
- FIG. 6 is a cross-sectional view taken along the line A-A of the integrated power conversion and grid connection system shown in Fig.
- FIG. 7 is a B-B cross-sectional view for explaining a flow path formed for cooling the power conversion apparatus included in the integrated power conversion and system interconnecting system according to the embodiment of the present invention.
- FIG. 8 is a top view of an integrated power conversion and grid connection system in accordance with another embodiment of the present invention.
- FIG. 9 is a top view of an integrated power conversion and grid interconnect system in accordance with another embodiment of the present invention.
- FIG. 10 is a view for explaining a photovoltaic power generation system equipped with the integrated power conversion and grid connection system shown in FIG.
- FIG. 1 is a schematic block diagram illustrating an overall system including an integrated power conversion and grid connection system in accordance with an embodiment of the present invention.
- the power conversion system 10 may be configured as an integrated power conversion and grid connection system 10, which includes not only a power conversion device but also a device for grid connection.
- Such a power conversion and grid connection system 10 may be included in an energy storage system (ESS), a solar power generation system, a wind power generation system, and the like.
- ESS energy storage system
- solar power generation system solar power generation system
- wind power generation system and the like.
- the power conversion and grid connection system 10 may be provided between the battery 20a and the power grid 30.
- the power conversion and grid connection system 10 can convert AC power supplied from the power system 30 into DC power and provide it to the battery 20a.
- the power conversion and system interconnecting system 10 converts the DC type power stored in the battery 20a into the AC type power and transmits it to the power system 30, so that the power stored in the battery 20a Enabling sales.
- the power conversion and grid connection system 10 When the power conversion and grid connection system 10 is included in the solar power generation system, the power conversion and grid connection system 10 may be provided between the solar panel 20b and the power system 30.
- FIG. The power conversion and grid connection system 10 can convert the DC power supplied from the solar panel 20b into the AC power and transmit it to the power system 30.
- a power conversion and grid connection system 10 when a power conversion and grid connection system 10 is included in a wind power generation system, a power conversion and grid connection system 10 may be provided between the wind turbine 20c and the power system 30.
- the power conversion and grid connection system 10 is capable of boosting the alternating current power provided from the wind turbine 20c and transmitting it to the power system 30.
- FIG. 2 is a block diagram illustrating the configuration of a power conversion and grid connection system according to an embodiment of the present invention.
- the power conversion and system linkage system 10 includes a power conversion unit 11, a low voltage switchgear (LV SWGR) 13, a transformer 15, and a high voltage switchgear unit medium voltage (MV) SWGR; 17).
- LV SWGR low voltage switchgear
- MV medium voltage
- the power conversion unit 11 may include a power conversion unit 112 and a power management system (PMS) 114.
- the power conversion device 112 may be implemented as a power conversion system (PCS) 112a when the power conversion and grid connection system 10 is included in the ESS.
- PCS power conversion system
- the power inverter 112 may be implemented as a PV inverter 112b.
- the PCS 112a may include a plurality of inverters and converters.
- the PCS 112a can convert DC power stored in the battery 20a into AC power and transmit it to the power system 30.
- the PCS 112a may convert AC power supplied from the power system 30 into DC power and store it in the battery 20a.
- the PV inverter 112b can convert the DC power supplied according to the solar power generation of the solar panel 20b into the AC power.
- the converted AC power can be supplied (sold) to the power system 30.
- the PMS 114 may control the overall operation of the power conversion and grid interconnect system 10. [ In addition, the PMS 114 acquires the operation state, the presence / absence of abnormality, the amount of the power transmission and the quantity of the received power of the various components included in the power conversion and grid connection system 10, Or the like.
- the server 40 may provide information received from the PMS 114 to an administrator or user of the system to provide monitoring functions for information related to the operation of the power conversion and grid connection system 10.
- the LV SWGR 13 is provided between the power conversion unit 11 and the transformer 15 and can cut off the line when an accident such as a short-circuit of the low-voltage line occurs or an abnormality occurs.
- the LV SWGR 13 may include an air circuit breaker (ACB) 132 and a protection relay 134.
- ACB air circuit breaker
- the ACB 132 may block the line using compressed air if an abnormal condition occurs in the line.
- the ACB 132 may protect the power conversion and grid connection system 10 by rapidly detecting elements such as overcurrent, overvoltage, undervoltage, short circuit, ground fault, etc. in conjunction with the protective relay 134 to shut off the line.
- the transformer 15 converts low-voltage alternating-current power converted by the power conversion device 112 into high-voltage alternating-current power corresponding to the voltage of the power system 30, or alternatively converts high-voltage alternating-current power supplied from the power system 30 To the low-voltage alternating-current power.
- the transformer 15 may be implemented as an inflow transformer or a mold transformer, but is not limited thereto.
- the MV SWGR 17 may be provided between the transformer 15 and the power system 30.
- the MV SWGR 17 includes a metering outfit 174 for measuring the amount of power received from the power system 30, the amount of power transmitted from the power inverter 112, the transformer 15 and the power system 30, A VCB 172 and a protective relay 178 for shutting off the line when an abnormal state of the high-voltage line occurs, and a load break switch 176 for opening / closing the rated current of the line.
- each of the LV SWGR 13 and MV SWGR 17 may further include a surge arrestor for protecting the components from overvoltage and surge current due to lightning or the like.
- the power conversion unit 11 Since the power conversion unit 11, the LV SWGR 13, the transformer 15, and the MV SWGR 17 are fabricated in units of individual devices, it is possible to increase installation area and installation time, There was an inconvenience such as additional work for installation.
- FIG. 3 is a perspective view showing the appearance of an integrated power conversion and grid connection system according to an embodiment of the present invention
- FIG. 4 is a right side view and a left side view of the integrated power conversion and grid connection system shown in FIG.
- FIG. 5 is a plan view of the integrated power conversion and grid connection system shown in FIG. 3
- FIG. 6 is a cross-sectional view taken along line A-A of the integrated power conversion and grid connection system shown in FIG.
- the power conversion and grid interconnect system 10 will be described with reference to FIGS. 3 to 8 as an example of a power conversion and grid interconnect system for ESS. That is, the power conversion device 112 of the power conversion and grid connection system 10 may correspond to the PCS 112a.
- the integrated meaning means that the components of the power conversion and system interconnecting system 10 described above in Fig. 2 are installed in a single base frame, and the structure of the enclosure is constructed as a single structure, This means that the structure can be transported and installed in a completely assembled state, and the structure and structure of the internal components are not damaged.
- the power conversion and grid connection system 10 can be manufactured in a form accommodated in one container 100. That is, the container 100 may correspond to a base frame and an outer configuration of the power conversion and grid connection system 10. For example, the container 100 may have a higher environmental resistance and durability than a conventional outdoor unit for a power facility by having a specification defined by an international standardization organization (ISO).
- ISO international standardization organization
- the power conversion and grid connection system 10 of the present invention is a system in which the power converter 11, the LV SWGR 13, the transformer 15, and the MV SWGR 17 are both housed and accommodated in one container 100, Mounted and transported and installed in the field as a whole, thereby facilitating the transportation and installation of the system and minimizing the occupied space.
- the power cable connection between the devices is performed in the container 100, additional cable installation work in the field is unnecessary.
- Each component of the power conversion and grid connection system 10 can be separately arranged in each of a plurality of sections in the container 100.
- the container enclosure of each section may be provided with ventilation openings (intake and exhaust openings), doors, and the like, based on the types of components provided in the sections.
- the ingress protection (IP) rating of each section may be different based on the components provided in each section. That is, since the components are separately installed in each of the sections, it is possible to provide an optimized intra-section environment for each component.
- the container 100 includes a first section 101 having a power conversion section 11, a second section 103 having an LV SWGR 13, a transformer A third section 105 having the MV SWGR 17 and a fourth section 107 having the MV SWGR 17.
- the container enclosure of the first section 101 may be provided with an intake port 101a and an exhaust port 101b for cooling when the power conversion apparatus 112 is driven.
- Each of the intake port 101a and the exhaust port 101b may be implemented as a louver or a gallery window.
- the intake port 101a and the exhaust port 101b may be provided with a filter or mesh for protecting the internal power converter 112 from dust, foreign matter, or the like. Accordingly, the inside of the first section 101 can maintain a predetermined IP rating (for example, IP 54 rating).
- a flow path for natural cooling of the power conversion device 112 can be formed by the intake port 101a and the exhaust port 101b provided in the container enclosure of the first section 101. [ This will be described later with reference to FIG.
- the container enclosure of the third section 105 may be provided with doors 105a and 105b for maintenance of the transformer 15.
- the doors 105a and 105b may be realized in the form of a gallery window or the like in order to prevent performance degradation due to the heat generation of the transformer 15.
- the third section 105 may be provided with a filter or mesh for maintaining the IP rating according to the type of transformer 15 installed. For example, when an inflow transformer is installed, the inflow transformer itself is generally manufactured to have a predetermined IP rating, so that the filter, the mesh, and the like may not be provided. On the other hand, since the mold transformer is vulnerable to external influences, the filter, the mesh, and the like may be provided for maintaining the inside of the third section 105 in a state having a predetermined IP rating.
- the doors 103a, 103b, 107a, and 107b which are accessible by the administrator for maintenance of the LV SWGR 13 and the MV SWGR 17, are installed in the container enclosures of the second section 103 and the fourth section 107 .
- the interior of the second section 103 and the fourth section 107 may also have a predetermined IP rating.
- the PCS 112a and the PMS 114 are provided in the first section 101 and the LV SWGR 13 is provided in the second section 103, as described above.
- a transformer 15 may be provided in the third section 105 and a MV SWGR 17 may be provided in the fourth section 107.
- the capacity of the power conversion device 11 that can be provided in the first section 101 may be about 3 MW.
- the capacity of the ESS or the photovoltaic power generation system exceeds 3 MW, a plurality of power conversion and grid connection systems 10 may be connected to each other.
- the sections 101, 103, 105, and 107 of the container 100 may be partitioned by the partition walls 102, 104, and 106, respectively.
- Each of the partitions 102, 104 and 106 enables insulation between the sections 101, 103, 105 and 107 such that the performance of a particular component is reduced due to heat generation from other components, Can be prevented.
- the barrier ribs 102, 104, and 106 may be embodied as a heat insulating material such as a flame retardant urethane foam, a sandwich panel, or the like.
- the components 11, 13, 15, 17 of the power conversion and grid connection system 10 may be interconnected within the container 100.
- the partition walls 102, 104, and 106 may be formed with openings through which connection means, such as various cables or bus bars, pass.
- connection means such as various cables or bus bars
- the PCS 112a and the LV SWGR 13 are connected to each other by the connecting means passing through the opening formed in the first partition 102, and to the connecting means passing through the opening formed in the second partition 104
- the LV SWGR 13 and the transformer 15 can be connected to each other.
- the transformer 15 and the MV SWGR 17 can be connected to each other by the connecting means passing through the opening formed in the third bank 106.
- the PMS 114 installed in the first section 101 can be connected to the components 13, 15, and 17 installed in the remaining sections 103, 105, and 107, respectively.
- the PCS 112a may be connected to the battery 20a through connection means passing through the front or side of the container 100 or battery connection terminals provided on the front or side of the container 100, And may be connected to the power system 30 through connection means passing through the rear surface or the side surface of the power unit 100, or power system connection terminals provided on the rear surface or the side surface.
- the container 100 may further include doors 108 and 109 on the front and rear, respectively. Through the doors 108 and 109, the administrator of the power conversion and grid connection system 10 can manage the management of the components 112a, 114, and 17 provided in the first section 101 and the fourth section 107 Can be performed.
- FIG. 7 is a B-B cross-sectional view for explaining a flow path formed for cooling the power conversion apparatus included in the integrated power conversion and system interconnecting system according to the embodiment of the present invention.
- the PCS 112a may include an intake port 1121 and a fan 1122.
- the intake port 101a provided in the container enclosure of the first section 101 may be installed so as to face the intake port 1121, corresponding to the position of the intake port 1121 of the PCS 112a.
- the exhaust port 101b may be located above the PCS 112a.
- the fan 1122 can rotate. As the fan 1122 rotates, the intake port 101a provided in the container enclosure of the first section 101, the intake port 1121 of the PCS 112a, and the exhaust port 101b provided in the container enclosure of the first section 101 ) Can be formed.
- air can be introduced into the first section 101 through the intake port 101a.
- the air introduced into the first section 101 flows into the PCS 112a through the intake port 1121 of the PCS 112a and flows into the upper portion of the PCS 112a and the exhaust port Lt;
- RTI ID 0.0 > 101b. ≪ / RTI >
- the container 100 which forms the appearance of the power conversion and system interconnecting system 10, includes a first section 101 having a high heat generating power conversion device 112,
- the container enclosure may include an intake port 101a and an exhaust port 101b.
- the provision of the intake port 101a and the exhaust port 101b enables efficient cooling of the PCS 112a through air circulation. Therefore, it is possible to save the space because no separate cooling device or HVAC for cooling the PCS 112a may be provided, and it is possible to prevent additional power consumption due to the cooling device or the air conditioner can do.
- FIG. 8 is a top view of an integrated power conversion and grid connection system in accordance with another embodiment of the present invention.
- the container 100 may further include a battery 20a connected to the PCS 112a of the power conversion and grid connection system 10.
- a partition 201 may be provided between the battery 20a and the power conversion unit 11, but not necessarily, the battery 20a and the power conversion unit 11 may be provided in the same section.
- the power supply is interrupted due to occurrence of various abnormal situations, etc., or a portable power supply for supplying emergency power by being transported to a facility, a building, System can play a role.
- the MV SWGR 17 of the power conversion and grid connection system 10 may be connected to a power supply line of the facility, building or place.
- the power conversion and grid connection system 10 can supply the electric power stored in the battery 20a of the container 100 to various devices or devices of the facility, building, or place.
- FIG. 9 is a top view of an integrated power conversion and grid interconnect system in accordance with another embodiment of the present invention.
- the power conversion and grid connection system 10 shown in Figures 9 and 10 can be implemented in a solar power generation system.
- the power conversion and grid interconnect system 10 embodied in the PV system may include a PV inverter 112b, a PMS 114, an LV SWGR 13, a transformer 15, and a MV SWGR 17 .
- the PV inverter 112b, the PMS 114, and the PMS 114 are installed in the first section 201 in the container 200 in the case of the power conversion and grid connection system 10 implemented in the solar power generation system, And the LV SWGR 13 may be installed together.
- a transformer 15 may be installed in the second section 203 and a MV SWGR 17 or a ring main unit 18 may be installed in the third section 205.
- the power conversion and grid connection system 10 may include a ring main unit (RMU) 18 instead of the MV SWGR 17, as shown in FIG.
- RMU ring main unit
- the RMU 18 is capable of establishing a connection between a plurality of power conversion and grid connection systems 10, thereby configuring a network of a plurality of power conversion and grid connection systems 10. This will be described below with reference to FIG.
- FIG. 10 is a view for explaining a photovoltaic power generation system equipped with the integrated power conversion and grid connection system shown in FIG.
- the power conversion and grid connection system 10 implemented in one container 200 can transmit power generated from the solar panel 20b to the power system 30.
- each power conversion and grid interconnect system 10 is connected to each other via the RMU 18,
- the transformation and grid connection system 10 may be coupled to the main electrical room 300. Accordingly, any one of the power conversion and grid connection systems 10 can use the RMU 18 to power the power supplied from the plurality of power conversion and grid connection systems 10 to the main electric room 300 or the power system 30, or may be forwarded to other power conversion and grid linkage systems 10.
- a plurality of power conversion and grid interconnect systems 10 and main power room 300, or a plurality of power conversion and grid interconnect systems 10 and power system 30 may be configured to form a loop Lt; / RTI >
- the main electrical room 300 may be located between the power system 30 and a plurality of power conversion and grid connection systems 10.
- the main electric room 300 may be equipped with various kinds of weighing equipment, main disconnecting devices, and the like.
- main electrical room 300 converts AC power of high voltage (e.g., 22.9 kV) transmitted from a plurality of power conversion and grid interconnect systems 10 to AC power of ultra high voltage (e.g., 154 kV) To the system (30).
- high voltage e.g., 22.9 kV
- ultra high voltage e.g., 154 kV
- connection means for connection between the power conversion and grid connection systems and the power system 30 can be minimized, the installation cost or installation time for installation of the connection means, Can be effectively saved.
- the present invention can be applied to an integrated power conversion and grid connection system constituting a series of devices such as a power conversion device, a protection facility, a metering facility, and a device for power grid connection provided in a renewable energy generation system or an ESS .
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
본 발명의 실시 예에 따른 일체형 전력변환 및 계통연계 시스템은, 직류 전력과 교류 전력 간의 전력 변환을 수행하는 전력변환부, 상기 교류 전력의 전압을 변환하는 변압기, 상기 일체형 전력변환 및 계통연계 시스템 내의 선로의 상태에 기초한 차단 동작을 수행하는 스위치 기어부, 및 상기 전력변환부, 상기 변압기, 및 상기 스위치 기어부가 내부에 설치되는 컨테이너를 포함한다.
Description
본 발명은 신재생에너지 발전 시스템이나 ESS에 구비되는 전력변환장치, 보호설비, 계량설비, 및 전력계통 연계를 위한 장치와 같은 일련의 장치들을 일체로서 구성하는 일체형 전력변환 및 계통연계 시스템에 관한 것이다.
ESS(energy storage system)나 태양광 발전 시스템과 같은 시스템은, 배터리에 저장된 전력 또는 태양광 패널에 의해 발전되는 전력을 변환하는 전력변환장치, 전력계통과의 연계를 위한 장치, 전력의 송전량이나 수전량을 계량하기 위한 계량설비, 및 상술한 각종 장치 및 설비의 보호를 위한 보호설비를 포함할 수 있다.
종래의 경우, 상기 각종 장치와 각종 설비는 독립된 기기단위로 제작되어, 현장에서 각각 개별적으로 설치된다. 이후, 기기간의 전력 케이블이나 통신 케이블 등을 결선하는 방식을 통해, 상기 ESS나 태양광 발전 시스템이 구성될 수 있다.
이러한 종래의 방식에 따르면, 각 기기를 설치하기 위한 설치 면적이 증가하게 되고, 각 기기 간의 케이블 포설을 위한 배선 작업이나 케이블 트랜치 공정 등이 추가되므로, 설치기간이 증가하고 현장 시험기간 또한 과다하게 소요될 수 있다. 또한, 기기들 각각을 옥외형으로 제작함에 따라 제품의 사이즈가 증가하고, 제품의 특성에 따라 별도의 외함을 각각 제작하므로 비용의 상승 또한 초래하며, 기기들의 설치 후 유지 보수에도 어려움이 존재한다.
본 발명이 해결하고자 하는 과제는, 신재생에너지 발전 시스템이나 ESS에서, 신재생에너지 발전 장치와 전력 계통 사이, 또는 배터리와 전력 계통 사이에 구비되는 전력변환장치, 보호설비, 계량설비, 및 전력계통 연계를 위한 장치와 같은 일련의 장치들을 일체로서 구성하는 일체형 전력변환 및 계통연계 시스템을 제공하는 것이다.
본 발명의 실시 예에 따른 일체형 전력변환 및 계통연계 시스템은, 직류 전력과 교류 전력 간의 전력 변환을 수행하는 전력변환부, 상기 교류 전력의 전압을 변환하는 변압기, 상기 일체형 전력변환 및 계통연계 시스템 내의 선로의 상태에 기초한 차단 동작을 수행하는 스위치 기어부, 및 상기 전력변환부, 상기 변압기, 및 상기 스위치 기어부가 내부에 설치되는 컨테이너를 포함한다.
실시 예에 따라, 상기 컨테이너는 상기 전력변환부, 상기 변압기, 및 상기 스위치 기어부가 서로 구분되어 설치되는 복수의 섹션들을 포함할 수 있다.
실시 예에 따라, 상기 컨테이너는 상기 복수의 섹션들을 구획하는 복수의 격벽들을 포함하고, 상기 복수의 격벽들 각각에는, 상기 전력변환부, 상기 변압기, 및 상기 스위치 기어부 간의 선로 연결을 위한 연결 수단이 통과하는 개구부가 형성될 수 있다.
실시 예에 따라, 상기 복수의 격벽들 각각은, 난연성 우레탄 폼 또는 샌드위치 패널을 포함하는 단열 소재로 구현될 수 있다.
실시 예에 따라, 상기 복수의 섹션들 각각은, 설치된 구성에 기초하여 서로 다른 방수방진 등급을 가질 수 있다.
실시 예에 따라, 상기 복수의 섹션들 각각의 컨테이너 외함에는, 상기 복수의 섹션들 각각에 설치된 구성에 기초하여, 도어, 환기구, 및 창 중 적어도 하나가 설치될 수 있다.
실시 예에 따라, 상기 전력변환부는, 배터리와 연결되어, 상기 배터리에 저장된 직류 전력을 교류 전력으로 변환하는 PCS(power conversion system)를 포함하고, 상기 복수의 섹션들 중 상기 전력변환부가 설치된 제1 섹션의 컨테이너 외함에는 흡기구 및 배기구가 설치될 수 있다.
상기 흡기구는 상기 PCS에 구비된 흡기구를 마주보도록 상기 제1 섹션의 컨테이너 외함에 설치되고, 상기 배기구는 상기 PCS의 상측에 위치하도록 설치될 수 있다.
실시 예에 따라, 상기 배터리는 상기 컨테이너 내에 설치될 수 있다.
실시 예에 따라, 상기 전력변환부는 태양광 패널로부터 공급되는 직류 전력을 교류 전력으로 변환하는 PV 인버터를 포함할 수 있다.
상기 일체형 전력변환 및 계통연계 시스템은, 복수의 일체형 전력변환 및 계통연계 시스템들을 연결하고, 상기 복수의 일체형 전력변환 및 계통연계 시스템들 각각으로부터 공급되는 전력을 주 전기실 또는 전력 계통으로 전송하거나, 다른 일체형 전력변환 및 계통연계 시스템으로 전달하는 RMU를 더 포함할 수 있다.
상기 스위치 기어부는, 상기 전력변환부와 상기 변압기 사이의 저압 선로에 대하여, 상기 저압 선로의 상태에 기초한 차단 동작을 수행하는 저압 스위치 기어부, 및 상기 변압기와 상기 전력 계통 사이의 고압 선로에 대하여, 상기 고압 선로의 상태에 기초한 차단 동작을 수행하는 고압 스위치 기어부를 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면, 전력변환부, 저압 스위치 기어부, 변압기, 고압 스위치 기어부 등의 구성을 포함하는 전력변환 및 계통연계 시스템이 하나의 컨테이너 내에 일체로서 구현될 수 있다. 이러한 일체로서 구현된 컨테이너가 현장으로 운송 및 설치됨으로써, 시스템의 운반 및 설치가 용이해지고, 점유 공간 또한 최소화될 수 있다.
또한, 각 구성들 간의 선로 연결이 컨테이너 내에서 이미 이루어진 상태이므로, 현장에서의 추가적인 케이블 포설 작업 등이 불필요하므로, 설치 시간이 효과적으로 절약될 수 있다.
뿐만 아니라, 전력변환 및 계통연계 시스템의 구성들이 컨테이너 내의 섹션들에 서로 구분되어 설치됨으로써, 상기 구성들의 종류에 따라 섹션 내의 환경을 최적화할 수 있다.
도 1은 본 발명의 실시 예에 따른 일체형 전력변환 및 계통연계 시스템을 포함하는 전반적인 시스템을 나타내는 개략적인 블록도이다.
도 2는 본 발명의 실시 예에 따른 일체형 전력변환 및 계통연계 시스템의 구성을 나타내는 블록도이다.
도 3은 본 발명의 일 실시 예에 따른 일체형 전력변환 및 계통연계 시스템의 외관을 보여주는 사시도이다.
도 4는 도 3에 도시된 일체형 전력변환 및 계통연계 시스템의 우측면도와 좌측면도이다.
도 5는 도 3에 도시된 일체형 전력변환 및 계통연계 시스템의 평면도이다.
도 6은 도 5에 도시된 일체형 전력변환 및 계통연계 시스템의 A-A 단면도이다.
도 7은 본 발명의 실시 예에 따른 일체형 전력변환 및 계통연계 시스템에 포함된 전력변환장치의 냉각을 위해 형성되는 유로를 설명하기 위한 B-B 단면도이다.
도 8은 본 발명의 다른 실시 예에 따른 일체형 전력변환 및 계통연계 시스템의 평면도이다.
도 9는 본 발명의 또 다른 실시 예에 따른 일체형 전력변환 및 계통연계 시스템의 평면도이다.
도 10은 도 9에 도시된 일체형 전력변환 및 계통연계 시스템이 구비된 태양광 발전 시스템을 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 명세서에 첨부된 도면들을 참조하여 본 발명의 실시 예들을 상세히 설명한다.
도 1은 본 발명의 실시 예에 따른 일체형 전력변환 및 계통연계 시스템을 포함하는 전반적인 시스템을 나타내는 개략적인 블록도이다.
도 1을 참조하면, 전력 변환 시스템(10)은 전력변환장치 뿐만 아니라 계통연계를 위한 장치까지도 일체로서 포함하는, 일체형 전력변환 및 계통연계 시스템(10)으로서 구성될 수 있다.
이러한 전력변환 및 계통연계 시스템(10)은, ESS(energy storage system), 태양광 발전 시스템, 풍력 발전 시스템 등에 포함될 수 있다.
전력변환 및 계통연계 시스템(10)이 ESS에 포함되는 경우, 전력변환 및 계통연계 시스템(10)은 배터리(20a) 및 전력 계통(30) 사이에 구비될 수 있다. 전력변환 및 계통연계 시스템(10)은 전력 계통(30)으로부터 공급되는 교류 형태의 전력을 직류 형태의 전력으로 변환하여 배터리(20a)로 제공할 수 있다. 실시 예에 따라, 전력변환 및 계통연계 시스템(10)은 배터리(20a)에 저장된 직류 형태의 전력을 교류 형태의 전력으로 변환하여 전력 계통(30)으로 송전함으로써, 배터리(20a)에 저장된 전력의 판매를 가능하게 한다.
전력변환 및 계통연계 시스템(10)이 태양광 발전 시스템에 포함되는 경우, 전력변환 및 계통연계 시스템(10)은 태양광 패널(20b)과 전력 계통(30) 사이에 구비될 수 있다. 전력변환 및 계통연계 시스템(10)은 태양광 패널(20b)로부터 제공되는 직류 형태의 전력을 교류 형태의 전력으로 변환하여 전력 계통(30)으로 송전할 수 있다. 이와 유사하게, 전력변환 및 계통연계 시스템(10)이 풍력 발전 시스템에 포함되는 경우, 전력변환 및 계통연계 시스템(10)은 풍력 터빈(20c)과 전력 계통(30) 사이에 구비될 수 있다. 전력변환 및 계통연계 시스템(10)은 풍력 터빈(20c)으로부터 제공되는 교류 형태의 전력을 승압하여 전력 계통(30)으로 송전할 수 있다.
도 2는 본 발명의 실시 예에 따른 전력변환 및 계통연계 시스템의 구성을 나타내는 블록도이다.
도 2를 참조하면, 전력변환 및 계통연계 시스템(10)은 전력변환부(11), 저압 스위치 기어부(low voltage switchgear(LV SWGR); 13), 변압기(15), 및 고압 스위치 기어부(medium voltage(MV) SWGR; 17)를 포함할 수 있다.
전력변환부(11)는 전력변환장치(112)와 PMS(power management system; 114)를 포함할 수 있다. 전력변환장치(112)는, 전력변환 및 계통연계 시스템(10)이 ESS에 포함되는 경우 PCS(power conversion system; 112a)으로 구현될 수 있다. 한편, 전력변환 및 계통연계 시스템(10)이 태양광 발전 시스템에 포함되는 경우, 전력변환장치(112)는 PV 인버터(112b)로 구현될 수 있다.
PCS(112a)는, 복수의 인버터 및 컨버터를 포함할 수 있다. 예컨대, PCS(112a)는 배터리(20a)에 저장된 직류 전력을 교류 전력으로 변환하여 전력 계통(30)으로 송전할 수 있다. 실시 예에 따라, PCS(112a)는 전력 계통(30)으로부터 공급되는 교류 전력을 직류 전력으로 변환하여 배터리(20a)에 저장할 수도 있다.
PV 인버터(112b)는, 태양광 패널(20b)의 태양광 발전에 따라 공급되는 직류 전력을 교류 전력으로 변환할 수 있다. 변환된 교류 전력은 전력 계통(30)으로 제공(판매)될 수 있다.
PMS(114)는, 전력변환 및 계통연계 시스템(10)의 전반적인 동작을 제어할 수 있다. 또한, PMS(114)는 전력변환 및 계통연계 시스템(10)에 포함된 각종 구성요소들의 동작 상태, 이상 유무, 송전량 및 수전량 정보 등을 획득하고, 획득된 정보를 외부의 서버(40) 등으로 전송할 수 있다. 서버(40)는 PMS(114)로부터 수신되는 정보를 시스템의 관리자 또는 사용자 등에게 제공함으로써, 전력변환 및 계통연계 시스템(10)의 동작과 관련된 정보에 대한 모니터링 기능을 제공할 수 있다.
LV SWGR(13)는 전력변환부(11)와 변압기(15) 사이에 구비되어, 저압 선로의 단락 등의 사고나 이상의 발생 시 선로를 차단할 수 있다. 이를 위해, LV SWGR(13)는 ACB(air circuit breaker; 132), 및 보호 계전기(134)를 포함할 수 있다.
ACB(132)는 선로에 이상 상태가 발생하는 경우, 압축공기를 사용하여 선로를 차단시킬 수 있다. ACB(132)는 보호 계전기(134)와 연계하여 과전류, 과전압, 부족전압, 단락, 지락 등의 요소를 신속히 검출하여 선로를 차단함으로써, 전력변환 및 계통연계 시스템(10)을 보호할 수 있다.
변압기(15)는 전력변환장치(112)에 의해 변환되는 저압의 교류 전력을 전력 계통(30)의 전압에 해당하는 고압의 교류 전력으로 변환하거나, 전력 계통(30)으로부터 공급되는 고압의 교류 전력을 저압의 교류 전력으로 변환할 수 있다. 예컨대, 변압기(15)는 유입변압기 또는 몰드변압기로 구현될 수 있으나, 이에 한정되는 것은 아니다.
MV SWGR(17)는, 변압기(15)와 전력 계통(30) 사이에 구비될 수 있다. 예컨대, MV SWGR(17)는 전력 계통(30)으로부터의 수전량이나, 전력변환장치(112)로부터의 송전량을 계측하는 MOF(metering outfit; 174), 변압기(15)와 전력 계통(30) 사이의 고압 선로의 이상 상태 발생시 선로를 차단하는 VCB(172) 및 보호 계전기(178), 선로의 정격전류를 개폐하는 LBS(load break switch; 176)를 포함할 수 있다.
실시 예에 따라, LV SWGR(13) 및 MV SWGR(17) 각각은, 낙뢰 등으로 인한 과전압 및 서지 전류로부터 구성 요소들을 보호하기 위한 서지 어레스터를 더 포함할 수 있다.
종래의 경우, 전력변환부(11), LV SWGR(13), 변압기(15), 및 MV SWGR(17) 각각은 개별 기기 단위로 제작되므로, 현장에서 설치 시 설치 면적 및 설치 시간의 증가, 케이블 포설을 위한 추가적인 작업 등과 같은 불편함이 존재하였다.
이하에서는, 상기와 같은 종래의 문제점을 해결하기 위한 본 발명의 실시 예에 따른 일체형 전력변환 및 계통연계 시스템(10)에 대해 보다 구체적으로 설명하기로 한다.
도 3은 본 발명의 일 실시 예에 따른 일체형 전력변환 및 계통연계 시스템의 외관을 보여주는 사시도이고, 도 4는 도 3에 도시된 일체형 전력변환 및 계통연계 시스템의 우측면도와 좌측면도이다. 도 5는 도 3에 도시된 일체형 전력변환 및 계통연계 시스템의 평면도이고, 도 6은 도 5에 도시된 일체형 전력변환 및 계통연계 시스템의 A-A 단면도이다.
이하, 도 3 내지 도 8에서는, 전력변환 및 계통연계 시스템(10)이 ESS용 전력변환 및 계통연계 시스템인 경우를 예로 들어 설명한다. 즉, 전력변환 및 계통연계 시스템(10)의 전력변환장치(112)는 PCS(112a)에 해당할 수 있다.
본 명세서에서 일체형의 의미는, 단일 베이스 프레임 내에 도 2에서 상술한 전력변환 및 계통연계 시스템(10)의 구성 요소들이 설치되고, 외함의 구조체가 단일 구조로 구성됨을 의미하며, 모든 구성 요소 및 외형구성체가 완전 조립된 상태로 일괄 운송 및 설치가 가능하며, 이때 구조적 변형이나 내부구성품의 이상이 발생하지 않는 구조를 의미할 수 있다.
도 3을 참조하면, 본 발명의 실시 예에 따른 전력변환 및 계통연계 시스템(10)은, 하나의 컨테이너(100) 내에 수용되는 형태로 제작될 수 있다. 즉, 컨테이너(100)는 전력변환 및 계통연계 시스템(10)의 베이스 프레임 및 외형구성체에 해당할 수 있다. 예컨대, 컨테이너(100)는 국제표준화기구(international standardization organization (ISO))에 의해 규정된 규격을 가짐으로써, 종래의 전력설비용 옥외함에 비해 내환경성 및 내구성이 높을 수 있다.
즉, 본 발명의 전력변환 및 계통연계 시스템(10)은 하나의 컨테이너(100) 내에 전력변환부(11), LV SWGR(13), 변압기(15), 및 MV SWGR(17)가 모두 수용 및 장착되어 일체로서 현장으로 운송 및 설치됨으로써, 시스템의 운반 및 설치를 용이하게 하고, 점유 공간을 최소화할 수 있다. 또한, 각 기기들 간의 전력 케이블 연결은 컨테이너(100) 내에서 모두 이루어진 상태이므로, 현장에서의 추가적인 케이블 포설 작업 등이 불필요하다.
전력변환 및 계통연계 시스템(10)의 각 구성요소는 컨테이너(100) 내의 복수의 섹션들 각각에 서로 구분되어 배치될 수 있다. 각 섹션의 컨테이너 외함에는, 섹션 내에 구비된 구성 요소의 종류에 기초하여 환기구(흡기구와 배기구)나 도어 등이 설치될 수 있다. 실시 예에 따라, 각 섹션의 방수방진(Ingress Protection(IP)) 등급은 각 섹션에 구비된 구성 요소에 기초하여 서로 다를 수 있다. 즉, 구성 요소들이 섹션들 각각에 서로 구분되어 설치됨으로써, 각 구성 요소에 최적화된 섹션 내 환경을 제공할 수 있다.
이와 관련하여 도 4와 도 5를 참조하면, 컨테이너(100)는 전력변환부(11)가 구비되는 제1 섹션(101), LV SWGR(13)가 구비되는 제2 섹션(103), 변압기(15)가 구비되는 제3 섹션(105), 및 MV SWGR(17)가 구비되는 제4 섹션(107)으로 구분될 수 있다.
예컨대, 제1 섹션(101)의 컨테이너 외함에는, 전력변환장치(112)의 구동 시 냉각을 위한 흡기구(101a)와 배기구(101b)가 설치될 수 있다. 흡기구(101a)와 배기구(101b) 각각은 루버(louver)나 갤러리 창 등으로 구현될 수 있다. 실시 예에 따라, 흡기구(101a)와 배기구(101b)에는 내부의 전력변환장치(112)를 먼지나 이물 등으로부터 보호하기 위한 필터나 메쉬 등이 구비될 수 있다. 이에 따라, 제1 섹션(101) 내부는 소정의 IP 등급(예컨대, IP 54 등급)을 유지할 수 있다.
제1 섹션(101)의 컨테이너 외함에 설치된 흡기구(101a)와 배기구(101b)에 의해, 전력변환장치(112)의 자연냉각을 위한 유로가 형성될 수 있다. 이에 대해서는 추후 도 7을 참조하여 설명하기로 한다.
제3 섹션(105)의 컨테이너 외함에는 변압기(15)의 유지보수를 위한 도어(105a, 105b)가 설치될 수 있다. 도어(105a, 105b)는 변압기(15)의 발열에 따른 성능 저하를 방지하기 위해 갤러리 창 등의 형태로 구현될 수 있다. 실시 예에 따라, 제3 섹션(105)은 설치되는 변압기(15)의 타입에 따라 IP 등급을 유지하기 위한 필터나 메쉬 등을 구비할 수 있다. 예컨대, 유입변압기가 설치되는 경우, 일반적으로 유입변압기는 자체적으로 소정 IP 등급을 갖도록 제조되므로, 상기 필터나 메쉬 등이 구비되지 않을 수 있다. 반면, 몰드변압기의 경우 외부의 영향으로부터 취약하므로, 제3 섹션(105) 내부를 소정의 IP 등급을 갖는 상태로 유지하기 위한 상기 필터나 메쉬 등이 구비될 수 있다.
제2 섹션(103)과 제4 섹션(107)의 컨테이너 외함에는, LV SWGR(13)와 MV SWGR(17)의 유지 보수를 위해 관리자가 출입가능한 도어(103a, 103b, 107a, 107b)가 설치될 수 있다. 실시 예에 따라, 제2 섹션(103)과 제4 섹션(107)의 내부 또한 소정 IP 등급을 가질 수도 있다.
도 5와 도 6을 참조하면, 상술한 바와 같이 제1 섹션(101) 내에는 PCS(112a)와 PMS(114)가 구비되고, 제2 섹션(103) 내에는 LV SWGR(13)가 구비될 수 있다. 제3 섹션(105) 내에는 변압기(15)가 구비되고, 제4 섹션(107) 내에는 MV SWGR(17)가 구비될 수 있다.
예컨대, 상술한 바와 같은 ISO 규격의 컨테이너(100)를 사용하는 경우, 제1 섹션(101) 내에 구비가능한 전력변환장치(11)의 용량은 약 3MW 내일 수 있다. 이 때, ESS나 태양광 발전 시스템의 용량이 3MW를 초과하는 경우에는, 복수의 전력변환 및 계통연계 시스템(10)이 서로 연결되어 구성될 수 있다.
컨테이너(100)의 각 섹션들(101, 103, 105, 107)은 격벽(102, 104, 106)에 의해 서로 구획될 수 있다. 격벽(102, 104, 106) 각각은 섹션들(101, 103, 105, 107) 간의 단열을 가능하게 함으로써, 특정 구성 요소가 다른 구성 요소로부터의 발열에 의해 동작 성능이나 효율이 저하되거나 이상이 발생하는 것을 방지할 수 있다. 예컨대, 격벽(102, 104, 106)은 난연성 우레탄 폼이나 샌드위치 패널(sandwich panel) 등과 같은 단열 소재로서 구현될 수 있다.
전력변환 및 계통연계 시스템(10)의 구성 요소들(11, 13, 15, 17)은 컨테이너(100) 내에서 서로 연결될 수 있다. 예컨대, 각 격벽(102, 104, 106)에는 각종 케이블이나 부스바(bus bar) 등으로 구현되는 연결 수단이 통과하는 개구부가 형성될 수 있다. 구체적으로, 제1 격벽(102)에 형성된 개구부를 통과하는 연결 수단에 의해, PCS(112a)와 LV SWGR(13)가 서로 연결되고, 제2 격벽(104)에 형성된 개구부를 통과하는 연결 수단에 의해, LV SWGR(13)와 변압기(15)가 서로 연결될 수 있다. 또한, 제3 격벽(106)에 형성된 개구부를 통과하는 연결 수단에 의해, 변압기(15)와 MV SWGR(17)가 연결될 수 있다. 또한, 상기 개구부들을 통해, 제1 섹션(101)에 설치된 PMS(114)는 나머지 섹션들(103, 105, 107) 각각에 설치된 구성 요소들(13, 15, 17)과 연결될 수 있다.
한편, PCS(112a)는 컨테이너(100)의 전면 또는 측면을 통과하는 연결 수단이나, 전면 또는 측면에 구비되는 배터리 연결 단자 등을 통해 배터리(20a)와 연결될 수 있고, MV SWGR(17)는 컨테이너(100)의 후면 또는 측면을 통과하는 연결 수단이나, 후면 또는 측면에 구비되는 전력 계통 연결 단자 등을 통해 전력 계통(30)과 연결될 수 있다.
실시 예에 따라, 컨테이너(100)는 전면과 후면에 각각 도어(108, 109)를 더 포함할 수 있다. 도어(108, 109)를 통해, 전력변환 및 계통연계 시스템(10)의 관리자는 제1 섹션(101) 및 제4 섹션(107)에 구비된 구성 요소들(112a, 114, 17)의 관리 동작을 수행할 수 있다.
도 7은 본 발명의 실시 예에 따른 일체형 전력변환 및 계통연계 시스템에 포함된 전력변환장치의 냉각을 위해 형성되는 유로를 설명하기 위한 B-B 단면도이다.
도 7을 참조하면, PCS(112a)는 흡기구(1121) 및 팬(1122)을 포함할 수 있다. 이 때, 제1 섹션(101)의 컨테이너 외함에 설치되는 흡기구(101a)는, PCS(112a)의 흡기구(1121)의 위치에 대응하여, 흡기구(1121)를 마주보도록 설치될 수 있다. 또한, 배기구(101b)는 PCS(112a)의 상측으로 위치할 수 있다. PCS(112a)의 구동 시, 또는 PCS(112a) 내부의 온도가 기준 온도보다 높아지는 경우, 팬(1122)이 회전할 수 있다. 팬(1122)이 회전함에 따라, 제1 섹션(101)의 컨테이너 외함에 설치된 흡기구(101a), PCS(112a)의 흡기구(1121), 및 제1 섹션(101)의 컨테이너 외함에 설치된 배기구(101b)를 연결하는 유로가 형성될 수 있다. 이에 따라, 흡기구(101a)를 통해 공기가 제1 섹션(101) 내로 유입될 수 있다. 제1 섹션(101) 내로 유입된 공기는 PCS(112a)의 흡기구(1121)를 통해 PCS(112a) 내로 유입되고, PCS(112a)의 상부 및 제1 섹션(101)의 컨테이너 외함에 설치된 배기구(101b)를 통해 외부로 배출될 수 있다.
즉, 도 7에 도시된 실시 예의 경우, 전력변환 및 계통연계 시스템(10)의 외관을 형성하는 컨테이너(100)는, 발열이 높은 전력변환장치(112)가 구비된 제1 섹션(101)의 컨테이너 외함에 흡기구(101a)와 배기구(101b)를 포함할 수 있다. 흡기구(101a)와 배기구(101b)가 구비됨에 따라, 공기순환을 통한 PCS(112a)의 효과적인 냉각이 가능할 수 있다. 따라서, PCS(112a)의 냉각을 위한 별도의 냉각장치나 공기조화설비(HVAC)가 구비되지 않을 수 있으므로 공간의 절약이 가능하며, 상기 냉각장치나 공기조화설비의 구동에 따른 추가적인 전력 소모를 방지할 수 있다.
도 8은 본 발명의 다른 실시 예에 따른 일체형 전력변환 및 계통연계 시스템의 평면도이다.
도 8을 참조하면, 컨테이너(100)는 전력변환 및 계통연계 시스템(10)의 PCS(112a)와 연결되는 배터리(20a)를 더 포함할 수 있다. 예컨대, 배터리(20a)와 전력변환부(11) 사이에는 격벽(201)이 구비될 수 있으나, 반드시 그러한 것은 아니고, 배터리(20a)와 전력변환부(11)가 동일한 섹션 내에 구비될 수도 있다.
도 8의 형태로 구현되는 컨테이너(100)의 경우, 각종 이상 상황의 발생 등으로 인해 전력 공급이 중단되거나, 전력의 공급이 필요한 시설이나 건물, 장소 등으로 운반되어 비상 전력을 공급하는 이동형 전력공급 시스템의 역할을 수행할 수 있다. 전력변환 및 계통연계 시스템(10)의 MV SWGR(17)은 해당 시설이나 건물, 장소의 전력 공급라인과 연결될 수 있다. 이 경우, 전력변환 및 계통연계 시스템(10)은 컨테이너(100)의 배터리(20a) 내에 저장된 전력을 상기 시설, 건물, 또는 장소의 각종 장치나 기기로 공급할 수 있다.
도 9는 본 발명의 또 다른 실시 예에 따른 일체형 전력변환 및 계통연계 시스템의 평면도이다.
도 9 및 도 10에 도시된 전력변환 및 계통연계 시스템(10)은, 태양광 발전 시스템 내에 구현될 수 있다.
태양광 발전 시스템 내에 구현되는 전력변환 및 계통연계 시스템(10)은 PV 인버터(112b), PMS(114), LV SWGR(13), 변압기(15), 및 MV SWGR(17)를 포함할 수 있다. 도 9에 도시된 바와 같이, 태양광 발전 시스템 내에 구현되는 전력변환 및 계통연계 시스템(10)의 경우, 컨테이너(200) 내의 제1 섹션(201)에 PV인버터(112b), PMS(114), 및 LV SWGR(13)가 함께 설치될 수도 있다. 또한, 제2 섹션(203)에는 변압기(15)가 설치되고, 제3 섹션(205)에는 MV SWGR(17) 또는 RMU(ring main unit; 18)가 설치될 수 있다.
태양광 발전 시스템의 용량이 높을수록, 태양광 발전 시스템에 구현되는 전력변환 및 계통연계 시스템(10)의 수가 증가할 수 있다. 이 경우, 많은 수의 전력변환 및 계통연계 시스템(10) 각각을 전력 계통(30)에 연결시키기 위해서는 다수의 케이블 등이 구비되고, 케이블들 각각의 포설 작업이 수행되어야 하므로, 설치비용 및 설치시간이 증가하게 될 수 있다.
이러한 문제를 해결하기 위해, 전력변환 및 계통연계 시스템(10)은 도 9에 도시된 바와 같이, MV SWGR(17) 대신 RMU(ring main unit; 18)을 포함할 수 있다.
RMU(18)는 복수의 전력변환 및 계통연계 시스템(10) 간의 연결을 가능하도록 하여, 복수의 전력변환 및 계통연계 시스템(10)에 대한 일종의 네트워크를 구성할 수 있다. 이에 대해서는 이하 도 10을 참조하여 설명한다.
도 10은 도 9에 도시된 일체형 전력변환 및 계통연계 시스템이 구비된 태양광 발전 시스템을 설명하기 위한 도면이다.
도 10을 참조하면, 하나의 컨테이너(200) 내에 구현되는 전력변환 및 계통연계 시스템(10)은 태양광 패널(20b)로부터 발전되는 전력을 전력 계통(30)으로 송전할 수 있다. 상술한 바와 같이 태양광 발전 시스템 내에 복수의 전력변환 및 계통연계 시스템(10)이 포함되는 경우, 각 전력변환 및 계통연계 시스템(10)은 RMU(18)를 통해 서로 연결되고, 어느 하나의 전력변환 및 계통연계 시스템(10)이 주 전기실(300)과 연결될 수 있다. 이에 따라, 상기 어느 하나의 전력변환 및 계통연계 시스템(10)은 RMU(18)를 이용하여, 복수의 전력변환 및 계통연계 시스템(10)으로부터 공급되는 전력을 주 전기실(300) 또는 전력 계통(30)으로 전송하거나, 다른 전력변환 및 계통연계 시스템(10)으로 전달할 수 있다. 실시 예에 따라, 복수의 전력변환 및 계통연계 시스템(10)과 주 전기실(300), 또는 복수의 전력변환 및 계통연계 시스템(10)과 전력 계통(30)은 일종의 루프(loop)를 형성하도록 연결될 수도 있다.
주 전기실(300)은 전력 계통(30)과 복수의 전력변환 및 계통연계 시스템(10) 사이에 위치할 수 있다. 주 전기실(300)에는 각종 계량 설비나, 메인 차단 장치 등이 구비될 수 있다. 실시 예에 따라, 주 전기실(300)은 복수의 전력변환 및 계통연계 시스템(10)으로부터 전송되는 고압(예컨대, 22.9kV)의 교류 전력을, 초고압(예컨대, 154kV)의 교류 전력으로 변환하여 전력 계통(30)으로 송전할 수도 있다.
즉, 도 10에 도시된 실시 예에 따르면, 전력변환 및 계통연계 시스템들과 전력 계통(30)간의 연결을 위한 연결 수단이 최소화될 수 있으므로, 상기 연결 수단의 포설 등을 위한 설치 비용이나 설치 시간을 효과적으로 절약할 수 있다.
본 발명은 신재생에너지 발전 시스템이나 ESS에 구비되는 전력변환장치, 보호설비, 계량설비, 및 전력계통 연계를 위한 장치와 같은 일련의 장치들을 일체로서 구성하는 일체형 전력변환 및 계통연계 시스템에 이용될 수 있다.
Claims (12)
- 일체형 전력변환 및 계통연계 시스템에 있어서,직류 전력과 교류 전력 간의 전력 변환을 수행하는 전력변환부;상기 교류 전력의 전압을 변환하는 변압기;상기 일체형 전력변환 및 계통연계 시스템 내의 선로의 상태에 기초한 차단 동작을 수행하는 스위치 기어부; 및상기 전력변환부, 상기 변압기, 및 상기 스위치 기어부가 내부에 설치되는 컨테이너를 포함하는일체형 전력변환 및 계통연계 시스템.
- 제1항에 있어서,상기 컨테이너는,상기 전력변환부, 상기 변압기, 및 상기 스위치 기어부가 서로 구분되어 설치되는 복수의 섹션들을 포함하는일체형 전력변환 및 계통연계 시스템.
- 제2항에 있어서,상기 컨테이너는,상기 복수의 섹션들을 구획하는 복수의 격벽들을 포함하고,상기 복수의 격벽들 각각에는,상기 전력변환부, 상기 변압기, 및 상기 스위치 기어부 간의 선로 연결을 위한 연결 수단이 통과하는 개구부가 형성되는일체형 전력변환 및 계통연계 시스템.
- 제3항에 있어서,상기 복수의 격벽들 각각은,난연성 우레탄 폼 또는 샌드위치 패널로 구현되는일체형 전력변환 및 계통연계 시스템.
- 제2항에 있어서,상기 복수의 섹션들 각각은,설치된 구성에 기초하여 서로 다른 방수방진 등급을 갖는일체형 전력변환 및 계통연계 시스템.
- 제2항에 있어서,상기 복수의 섹션들 각각의 컨테이너 외함에는,상기 복수의 섹션들 각각에 설치된 구성에 기초하여, 도어, 환기구, 및 창 중 적어도 하나가 설치되는일체형 전력변환 및 계통연계 시스템.
- 제2항에 있어서,상기 전력변환부는,배터리와 연결되어, 상기 배터리에 저장된 직류 전력을 교류 전력으로 변환하는 PCS(power conversion system)를 포함하고,상기 복수의 섹션들 중 상기 전력변환부가 설치된 제1 섹션의 컨테이너 외함에는 흡기구 및 배기구가 설치되는일체형 전력변환 및 계통연계 시스템.
- 제7항에 있어서,상기 흡기구는 상기 PCS에 구비된 흡기구를 마주보도록 상기 제1 섹션의 컨테이너 외함에 설치되고,상기 배기구는 상기 PCS의 상측에 위치하도록 설치되는일체형 전력변환 및 계통연계 시스템.
- 제7항에 있어서,상기 배터리는 상기 컨테이너 내에 설치되는일체형 전력변환 및 계통연계 시스템.
- 제1항에 있어서,상기 전력변환부는,태양광 패널로부터 공급되는 직류 전력을 교류 전력으로 변환하는 PV 인버터를 포함하는일체형 전력변환 및 계통연계 시스템.
- 제10항에 있어서,복수의 일체형 전력변환 및 계통연계 시스템들을 연결하고, 상기 복수의 일체형 전력변환 및 계통연계 시스템들 각각으로부터 공급되는 전력을 주 전기실 또는 전력 계통으로 전송하거나, 다른 일체형 전력변환 및 계통연계 시스템으로 전달하는 RMU를 더 포함하는일체형 전력변환 및 계통연계 시스템.
- 제1항에 있어서,상기 스위치 기어부는,상기 전력변환부와 상기 변압기 사이의 저압 선로에 대하여, 상기 저압 선로의 상태에 기초한 차단 동작을 수행하는 저압 스위치 기어부; 및상기 변압기와 상기 전력 계통 사이의 고압 선로에 대하여, 상기 고압 선로의 상태에 기초한 차단 동작을 수행하는 고압 스위치 기어부를 포함하는일체형 전력변환 및 계통연계 시스템.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880060307.7A CN111133663A (zh) | 2017-10-30 | 2018-10-23 | 一体式电力转换及并网系统 |
JP2020505200A JP2020529819A (ja) | 2017-10-30 | 2018-10-23 | 一体型電力変換及び系統連携システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0142589 | 2017-10-30 | ||
KR1020170142589A KR20190048081A (ko) | 2017-10-30 | 2017-10-30 | 일체형 전력변환 및 계통연계 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019088550A1 true WO2019088550A1 (ko) | 2019-05-09 |
Family
ID=66332087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/012578 WO2019088550A1 (ko) | 2017-10-30 | 2018-10-23 | 일체형 전력변환 및 계통연계 시스템 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2020529819A (ko) |
KR (1) | KR20190048081A (ko) |
CN (1) | CN111133663A (ko) |
WO (1) | WO2019088550A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4050977A1 (en) * | 2021-02-26 | 2022-08-31 | Sungrow Power Supply Co., Ltd. | Inverting and boosting device and power generation system |
WO2023096171A1 (ko) * | 2021-11-29 | 2023-06-01 | 주식회사 넥스트스퀘어 | 독립형 마이크로 그리드 시스템 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210123553A (ko) | 2020-04-03 | 2021-10-14 | 엘에스일렉트릭(주) | 가스 냉각 장치를 포함하는 배전반 |
KR102215075B1 (ko) * | 2020-06-26 | 2021-02-10 | 황성태 | 컨테이너형 수배전반 시스템 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4455428B2 (ja) * | 2005-06-29 | 2010-04-21 | 株式会社日立製作所 | 電力供給装置およびその組立方法 |
US20110282807A1 (en) * | 2008-10-07 | 2011-11-17 | Premium Power Corporation | System And Method For Transporting Energy |
CN102420451A (zh) * | 2011-12-14 | 2012-04-18 | 北京普莱德新能源电池科技有限公司 | 移动能源系统 |
KR101580662B1 (ko) * | 2015-07-14 | 2015-12-29 | (주)서전기전 | 외부 환경 변화에 적응하는 친환경 하우스형 배전반 |
JP2017153341A (ja) * | 2016-02-24 | 2017-08-31 | 台達電子工業股▲ふん▼有限公司Deltaelectronics,Inc. | コンテナ型蓄電システム |
-
2017
- 2017-10-30 KR KR1020170142589A patent/KR20190048081A/ko not_active IP Right Cessation
-
2018
- 2018-10-23 JP JP2020505200A patent/JP2020529819A/ja not_active Withdrawn
- 2018-10-23 WO PCT/KR2018/012578 patent/WO2019088550A1/ko active Application Filing
- 2018-10-23 CN CN201880060307.7A patent/CN111133663A/zh not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4455428B2 (ja) * | 2005-06-29 | 2010-04-21 | 株式会社日立製作所 | 電力供給装置およびその組立方法 |
US20110282807A1 (en) * | 2008-10-07 | 2011-11-17 | Premium Power Corporation | System And Method For Transporting Energy |
CN102420451A (zh) * | 2011-12-14 | 2012-04-18 | 北京普莱德新能源电池科技有限公司 | 移动能源系统 |
KR101580662B1 (ko) * | 2015-07-14 | 2015-12-29 | (주)서전기전 | 외부 환경 변화에 적응하는 친환경 하우스형 배전반 |
JP2017153341A (ja) * | 2016-02-24 | 2017-08-31 | 台達電子工業股▲ふん▼有限公司Deltaelectronics,Inc. | コンテナ型蓄電システム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4050977A1 (en) * | 2021-02-26 | 2022-08-31 | Sungrow Power Supply Co., Ltd. | Inverting and boosting device and power generation system |
WO2023096171A1 (ko) * | 2021-11-29 | 2023-06-01 | 주식회사 넥스트스퀘어 | 독립형 마이크로 그리드 시스템 |
Also Published As
Publication number | Publication date |
---|---|
CN111133663A (zh) | 2020-05-08 |
KR20190048081A (ko) | 2019-05-09 |
JP2020529819A (ja) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019088550A1 (ko) | 일체형 전력변환 및 계통연계 시스템 | |
US9462707B2 (en) | Power distribution module form factor | |
CA2787726C (en) | Integrated safety disconnects for power systems | |
US20150236507A1 (en) | Electrical power distribution unit | |
WO2014163238A1 (ko) | 수평 조절이 가능한 방진용 수배전반 | |
WO2019172519A1 (ko) | 전력선 통신을 이용한 배전반 내 차단기의 계통 분석 시스템 | |
WO2015009089A1 (ko) | 태양광 발전시설의 종합보호 시스템 | |
US20150357798A1 (en) | Integrated bus duct and ups systems | |
US11289921B1 (en) | Energy storage system employing second-life electric vehicle batteries | |
US12034308B2 (en) | Power generation system | |
US20220224152A1 (en) | Communication power supply system | |
WO2022025632A1 (ko) | 태양광발전 접속함 | |
US11073925B1 (en) | Touch screen electrical box | |
WO2021235632A1 (ko) | 태양광 발전 장치용 스마트 접속반 | |
CN114629248A (zh) | 一种微电网应用的电化学储能一体机 | |
CN217444879U (zh) | 一种分布式配网终端二次箱 | |
CN219287931U (zh) | 适合快速部署的电信控一体化机柜 | |
CN111162466A (zh) | 一种组合式便捷检修配电箱 | |
JPH09191579A (ja) | 屋外集積形太陽光エネルギ−活用発電設備 | |
CN220822286U (zh) | 一种储能控制汇流柜 | |
CN116317180B (zh) | 储能装置及其控制方法 | |
KR101947560B1 (ko) | 패드형 수배전반 시스템 | |
CN218482525U (zh) | 一种智能配电箱 | |
KR102713564B1 (ko) | 인버터 일체형 수배전반 | |
CN219123764U (zh) | 一种低压综合配电箱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18873369 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020505200 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18873369 Country of ref document: EP Kind code of ref document: A1 |