WO2018043380A1 - Maleimide resin mold, method for manufacturing maleimide resin mold, maleimide resin composition, and cured product thereof - Google Patents

Maleimide resin mold, method for manufacturing maleimide resin mold, maleimide resin composition, and cured product thereof Download PDF

Info

Publication number
WO2018043380A1
WO2018043380A1 PCT/JP2017/030694 JP2017030694W WO2018043380A1 WO 2018043380 A1 WO2018043380 A1 WO 2018043380A1 JP 2017030694 W JP2017030694 W JP 2017030694W WO 2018043380 A1 WO2018043380 A1 WO 2018043380A1
Authority
WO
WIPO (PCT)
Prior art keywords
maleimide resin
maleimide
film
resin composition
molded article
Prior art date
Application number
PCT/JP2017/030694
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 遠島
政隆 中西
一貴 松浦
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020227024381A priority Critical patent/KR102601953B1/en
Priority to KR1020197005653A priority patent/KR20190046815A/en
Priority to JP2018537246A priority patent/JP7011589B2/en
Priority to CN201780050109.8A priority patent/CN109641984A/en
Publication of WO2018043380A1 publication Critical patent/WO2018043380A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/04Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a maleimide resin molding, a method for producing a maleimide resin molding, a maleimide resin composition, and a cured product thereof.
  • a maleimide resin molding for high-reliability semiconductor encapsulant use, electrical / electronic component insulation material use, and various composite materials use such as laminate (printed wiring glass fiber reinforced composite material) and CFRP (carbon fiber reinforced composite material), Useful for various adhesive applications, various paint applications, structural members, etc., with excellent workability and productivity, with less environmental exposure, maleimide resin moldings, methods for producing maleimide resin moldings, maleimide resin compositions and cured products thereof .
  • Maleimide resin is a compound having heat resistance exceeding that of epoxy resin, moldability equivalent to that of epoxy resin, and also having properties of low linear expansion coefficient and high Tg.
  • Polymaleimide compounds can be cross-linked alone or reacted with various maleimide compounds or cross-linking agents to give materials with excellent heat resistance and flame retardancy, sealing materials, base materials, insulating materials, etc. Has been used in various applications. High heat resistant base materials, flexible substrate materials, high heat resistant low dielectric materials, high heat resistant CFRP materials (carbon fiber composite materials), high power for automotive SiC power devices, especially where extremely high heat resistance and moldability are required Used for heat-resistant sealing materials.
  • Patent Document 1 discloses a method for melting and taking out a maleimide resin solution using an evaporator.
  • Patent Document 2 Although there was no significant change on a small scale, when the amount of synthesis is increased, it takes a long time to evaporate the solvent, and thus self-polymerization may proceed during that time. Therefore, in the production in actual production, there is a problem from the viewpoint of moldability and stable productivity, such that the risk of polymerization and gelation is extremely high, the viscosity increases due to the increase in molecular weight, and the characteristics differ every time it is produced. Also, if the solvent recovery temperature is lowered to suppress this polymerization, particularly in the case of a maleimide resin having a softening point of 50 ° C. or higher, it becomes difficult to remove the solvent, and the residual solvent increases (especially, the residual solvent exceeding 30000 ppm).
  • an object of the present invention is to provide a maleimide resin molded article that is excellent in workability and productivity and has little environmental exposure.
  • the present inventors are excellent in workability, productivity, etc. by taking out as a film-like or flake-like molded body instead of the conventional crystalline or powdery form, and the environment. It has been found that exposure is reduced, and the present invention has been completed.
  • the present invention [1] A maleimide resin molded article containing a maleimide resin and an organic solvent and having a film shape or flake shape, [2] The maleimide resin molded article according to [1], wherein the content of the organic solvent is 30000 ppm or less, [3] The maleimide resin molded article according to [1] or [2], wherein the organic solvent is at least one selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers, [4] The maleimide resin molded article according to any one of [1] to [3], wherein the thickness is 10 ⁇ m to 3 mm.
  • the maleimide resin molding of the present invention is molded in the form of a film or flakes, the organic solvent content can be suppressed, the workability and productivity are excellent, and a maleimide resin molding with less environmental exposure is provided. be able to. Furthermore, since the amount of the organic solvent can be suppressed, generation of voids and cracks during molding can be prevented.
  • FIG. 2 is a view showing a molecular weight distribution of a maleimide resin molded body (M1) obtained from Example 1.
  • M1 a maleimide resin molded body obtained from Example 1.
  • B1 the molecular weight distribution of the maleimide resin (B1) after the solvent distillation at the time of mass synthesis obtained from Comparative Example 1.
  • B1 the molecular weight distribution of the maleimide resin (B1) after the solvent distillation at the time of mass synthesis obtained from Comparative Example 1.
  • the maleimide resin molding of the present invention contains a maleimide resin and an organic solvent, and is characterized by being molded in a film or flake shape. Compared with the maleimide resin that has been generally supplied in the form of crystals or powder, it can be supplied in the form of a film or flake, which causes problems such as dust in terms of workability. It is extremely easy to handle. That is, the maleimide resin molding of the present invention can easily prepare a maleimide resin composition.
  • the resin molded body refers to a resin solution that has been applied on the surface of the support, and then removed from the support while removing the solvent under superheated drying conditions.
  • the film form means a form of a sheet having an average thickness of 10 ⁇ m to 3 mm.
  • the flake shape refers to a state in which a film-like molded body is crushed.
  • the flake shape is not particularly limited as long as it is a size that does not scatter like a powder during handling operations, but specifically, the average of the long diameter portion is preferably 0.1 cm to 5 cm. More preferably, it is 0.1 to 3 cm.
  • the average thickness can be obtained by stacking a plurality of sheets or films, measuring arbitrary 10 points with calipers, and dividing the obtained thickness by the number of stacked sheets.
  • the maleimide resin molding of the present invention is obtained by coating a solution of maleimide resin in an organic solvent (hereinafter also referred to as “maleimide resin solution” or “resin solution”) on the surface of the support to form a film or a sheet. After molding, it can be obtained by removing the solvent under heating conditions (under reduced pressure if necessary) and peeling the film from the support. That is, the manufacturing method of the maleimide resin molding of the present invention is performed by a step of applying a resin solution on the surface of a support, a step of heat drying, and a step of peeling from the support.
  • maleimide resin As the maleimide resin that can be used in the present invention, known ones can be used, but from the viewpoint of viscosity and softening point, a novolak-type maleimide resin having a repeating unit having an average functional group number of 2 to 20 is preferable. As maleimide resin which can be used in this invention, it has a structure represented by following formula (1), for example.
  • R's are present independently and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group.
  • X is represented by the following structural formulas (a) to (e)).
  • n is an average value and represents 1 ⁇ n ⁇ 5).
  • the method for producing the maleimide resin represented by the formula (1) is not particularly limited, and may be produced by any method known as a method for synthesizing the maleimide resin.
  • a method for synthesizing the maleimide resin for example, a method such as Japanese Patent Application Laid-Open No. 2009-001783 is preferably used.
  • the maleimide resin solution in the present invention means a solution obtained by dissolving the maleimide resin in an organic solvent.
  • the maleimide resin solution is not particularly limited as long as the maleimide resin is dissolved in an organic solvent.
  • a solid state resin is polymerized during the polymerization. A part of the polymer may be precipitated, or a polymer may be precipitated by adding a precipitating agent to the polymerized solution.
  • the organic solvent that can be used is not particularly limited. For example, at least one organic solvent selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers is preferable. Moreover, it is preferable to process the reaction liquid after polymerization, such as washing with water.
  • the amount of the organic solvent used is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of maleimide resin and the solvent.
  • a maleimide resin having a melting point and a softening point can be used.
  • it when it has a melting point, it is preferably 200 ° C. or lower, and when it has a softening point, it is preferably 50 to 150 ° C.
  • the viscosity (cone plate method, 150 ° C. melt viscosity) of the maleimide resin solution is preferably 5.0 mPa ⁇ s to 10,000 Pa ⁇ s, more preferably 10 mPa ⁇ s to 100 Pa ⁇ s, and particularly preferably 10 mPa ⁇ s to 10 Pa ⁇ s. If the 150 ° C. melt viscosity in the corn plate method is 10000 Pa ⁇ s or less, the coating workability is not lowered, which is preferable.
  • the obtained maleimide resin solution is applied to the surface of the support and molded into a film or sheet.
  • the support on which the maleimide resin solution is applied is not particularly limited as long as the surface is smooth, but preferably includes a metal, a PET film not subjected to a release treatment, an imide film, and the like.
  • the film thickness and area when applied to the surface of the support are preferably such that the dry film thickness is 10 ⁇ m to 3 mm and the area is 100 cm 2 or less per 100 cm 2 of the surface of the support.
  • the WET film thickness of the film during coating is preferably 10 ⁇ m to 5 mm, more preferably 10 ⁇ m to 4.5 mm, and particularly preferably 200 ⁇ m to 4.3 mm. If the above range is exceeded, the residual solvent reducing effect may not be sufficiently obtained, and if it is below the productivity of the maleimide resin molded product, the productivity may be lowered.
  • the drying temperature is preferably 80 to 250 ° C, preferably 80 to 200 ° C, particularly preferably 100 to 200 ° C. If the drying temperature exceeds 250 ° C., the deterioration of the resin is likely to proceed, so that the drying temperature is set according to the required processing characteristics. If the temperature is lower than 80 ° C., it is difficult to remove the solvent, and the remaining amount of the solvent increases. Therefore, voids and cracks at the time of molding and stickiness are formed, the shape of the film cannot be maintained, and it may be peeled off and pulverized. There are cases where it is not possible.
  • the film thickness of the film-like maleimide resin molding that is peeled off from the surface of the support is not particularly limited, but is preferably 10 ⁇ m to 3 mm, more preferably 30 ⁇ m to 1 mm. When the film thickness exceeds 3 mm, the effect of reducing the residual solvent amount cannot be obtained sufficiently. Moreover, the obtained film-like maleimide resin molding can be used as a flake-shaped maleimide resin molding by pulverization.
  • the maleimide resin molding obtained by the above process has a residual solvent of 30000 ppm or less. Preferably it is 5000 ppm or less, More preferably, it is 3000 ppm or less, Especially preferably, it is 1000 ppm or less, Especially 600 ppm or less is preferable. Note that the lower limit of the measurement detection limit is 5 ppm. Moreover, it is preferable that the obtained maleimide resin molding is soluble in a solvent. The complete dissolution means that the maleimide resin has not progressed in the high molecular weight reaction.
  • the maleimide resin molding obtained in this way is superior in workability and productivity compared to the maleimide resin supplied in the conventional crystalline or powder form, so that a maleimide resin composition can be easily prepared. Can do.
  • the maleimide resin composition of the present invention can contain a compound capable of undergoing a crosslinking reaction with the maleimide resin molded article.
  • the crosslinkable compound causes a cross-linking reaction with the maleimide resin molding and acts as a curing agent for the maleimide resin.
  • the crosslinkable compound include compounds having an amino group, a cyanate group, a phenolic hydroxyl group, an alcoholic hydroxyl group, an allyl group, a methallyl group, an acrylic group, a methacryl group, a vinyl group, or a conjugated diene group.
  • an amine compound is preferably blended when heat resistance is required, and a cyanate ester compound is blended when dielectric properties are required.
  • the maleimide resin can be self-polymerized and can be used alone.
  • the maleimide resin composition of the present invention can be blended with a curing catalyst (curing accelerator) as necessary.
  • a curing catalyst curing accelerator
  • imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, triethylamine
  • Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) -7-undecene, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine , Phosphines such as tributylphosphine and trioctylphosphine, organometallic salts such as tin octylate, zinc oct
  • An organic solvent can be added to the maleimide resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish).
  • the maleimide resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone to obtain a maleimide resin composition varnish, and carbon fiber.
  • a cured product of the maleimide resin composition of the present invention by hot press molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating.
  • the solvent at this time usually accounts for 10 to 70% by weight, preferably 15 to 70% by weight, in the mixture of the maleimide resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, the hardened
  • the maleimide resin composition of the present invention can also be used as a modifier for film-type compositions. Specifically, it can be used to improve the flexibility of the B-stage.
  • a film-type resin composition is formed by applying the maleimide resin composition of the present invention on the release film as the maleimide resin composition varnish, removing the solvent under heating, and then performing B-stage formation. Obtained as an adhesive.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
  • a prepreg can be obtained by heating and melting the maleimide resin composition of the present invention to lower the viscosity and impregnating the fiber with a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber. Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.
  • a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber.
  • the maleimide resin composition of the present invention is heated to 60 to 110 ° C, A hot melt method of impregnation in a fluid state is preferred.
  • the proportion of the maleimide resin composition in the prepreg obtained (impregnated with the maleimide resin composition in the reinforcing fiber) is usually 20% by weight to 80% by weight, preferably 25% by weight, although it depends on the form of the reinforcing fiber.
  • the content is 65% by weight or less, more preferably 30% by weight or more and 50% or less. If the ratio of the maleimide resin composition is larger than this range, a sufficient reinforcing effect cannot be obtained because the ratio of the reinforcing fibers is relatively reduced. Conversely, if the maleimide resin composition is small, the moldability may be impaired. .
  • This prepreg can be cured by a known method to obtain a final molded product.
  • a prepreg can be laminated, pressurized to 2 to 10 kgf / cm 2 in an autoclave, and cured by heating at 150 ° C. to 200 ° C. for 30 minutes to 3 hours. Therefore, a fiber reinforced composite material molded article can be obtained by treating for 1 hour to 12 hours while heating stepwise in the temperature range of 180 ° C. to 280 ° C. as a post cure.
  • the above prepreg is cut into the desired shape, laminated with copper foil if necessary, and then the maleimide resin composition for laminates is heated and cured while applying pressure to the laminate by press molding, autoclave molding, sheet winding molding, etc.
  • a laminated board can be obtained. Furthermore, a circuit can be formed on a laminated board made by superimposing copper foil on the surface, and a multilayer circuit board can be obtained by superimposing a prepreg or copper foil thereon and repeating the above operation.
  • the cured product of the prepreg of the present invention is required to have light weight, high strength, and high heat resistance, such as a robot hand for transferring a liquid crystal glass substrate, a disk for transferring a silicon wafer, an aerospace member, and an automobile engine member. It can be widely applied to members.
  • maleimide resin composition of the present invention include adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials for electronic materials (including printed boards, wire coatings, etc.)
  • an encapsulant, a cyanate resin composition for a substrate), and an additive for other resins such as an acrylate ester resin as a curing agent for a resist.
  • the use of solvent-free has greatly progressed due to environmental considerations and the problem of eliminating defects due to voids.
  • problems such as voids during molding, molding defects, and low voltage resistance, there is an environment where the solvent cannot enter the process even for semiconductor sealing applications.
  • the softening point and melt viscosity were measured by the following methods.
  • -Softening point measured by a method according to JISK-7234-Melt viscosity: Viscosity at 150 ° C by cone plate method-Residual solvent amount was determined using a gas chromatograph GC-2010 manufactured by Shimadzu Corporation.
  • DB-WAX manufactured by Agilent Technologies having a length of 30 m and an inner diameter of 0.25 mm was used.
  • the reaction is carried out at the same temperature for 2 hours, 2 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 10 hours while dehydrating.
  • 120 parts of toluene was added, and washing with water was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, followed by heating to remove water from the system by azeotropy.
  • the reaction solution was concentrated to obtain a maleimide resin solution (V1) containing 70% maleimide resin.
  • V1 a maleimide resin solution
  • the separated lower aqueous layer was removed, and the reaction solution was washed with water until the washing solution became neutral. Subsequently, 280 parts of aromatic amine resin (A2) was obtained by distilling off excess aniline and toluene from the oil layer under heating and reduced pressure.
  • the aromatic amine resin (A2) was a semi-solid resin.
  • the reaction is carried out at the same temperature for 2 hours, 2 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 10 hours while dehydrating.
  • 120 parts of toluene was added, and washing with water was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, followed by heating to remove water from the system by azeotropy.
  • the reaction solution was concentrated to obtain a maleimide resin solution (V2) containing 70% maleimide resin.
  • Example 1 (Support: Imide film)
  • the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 ⁇ m) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator. The solvent was removed by drying the resulting resin film at 180 ° C. for 15 minutes.
  • the obtained maleimide resin molding was in the form of a film having a thickness of 125 ⁇ m, and was peeled off and pulverized to obtain a maleimide resin molding (M1) of the present invention having a flake shape.
  • the residual solvent of the obtained maleimide resin molding (M1) was 0.236% (2360 ppm).
  • Example 2 (Support: Imide film)
  • the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 ⁇ m) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator. The solvent was removed by drying the resulting resin film at 200 ° C. for 15 minutes.
  • the obtained maleimide resin molding was in the form of a film having a thickness of 125 ⁇ m, and was peeled off and pulverized to obtain a maleimide resin molding (M2) of the present invention having a flake shape.
  • the residual solvent of the obtained maleimide resin molding (M2) was 0.293% (2930 ppm).
  • the change of molecular weight distribution by this process was not seen (measurement by GPC).
  • Example 3 (Support: Imide film)
  • the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 ⁇ m) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator. The solvent was removed by drying the resulting resin film at 200 ° C. for 10 minutes.
  • the obtained maleimide resin molding was a film having a thickness of 125 ⁇ m, and was peeled off and pulverized to obtain a maleimide resin molding (M3) of the present invention having a flake shape.
  • the residual solvent of the obtained maleimide resin molding (M3) was 0.398% (3980 ppm).
  • the change of molecular weight distribution by this process was not seen (measurement by GPC).
  • Example 4 (Support: Imide film)
  • the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 ⁇ m) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator. The solvent was removed by drying the resulting resin film at 200 ° C. for 5 minutes.
  • the obtained maleimide resin molding was a film having a thickness of 125 ⁇ m, and was peeled off and pulverized to obtain a maleimide resin molding (M4) of the present invention having a flake shape.
  • the residual solvent of the obtained maleimide resin molding (M4) was 0.0901% (901 ppm).
  • the change of molecular weight distribution by this process was not seen (measurement by GPC).
  • Example 5 (Support: SUS plate)
  • the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied to a SUS plate using an applicator (WET film thickness 200 ⁇ m), and the applied resin film was dried at 180 ° C. for 15 minutes to obtain a solvent. Was removed.
  • the obtained maleimide resin molding was a film having a thickness of 113 ⁇ m, and was peeled off and pulverized to obtain a maleimide resin molding (M5) of the present invention having a flake shape.
  • the residual solvent of the obtained maleimide resin molding (M5) was 0.163% (1638 ppm).
  • the change of molecular weight distribution by this process was not seen (measurement by GPC).
  • Example 6 (Support: SUS plate)
  • the maleimide resin solution (V2) obtained in Synthesis Example 4 was cast applied to a SUS plate using an applicator (WET film thickness 200 ⁇ m), and the applied resin film was dried at 180 ° C. for 15 minutes to obtain a solvent. Was removed.
  • the obtained maleimide resin molded body was a film having a thickness of 113 ⁇ m, and was peeled off and pulverized to obtain a maleimide resin molded body (M6) of the present invention having a flake shape.
  • the residual solvent of the obtained maleimide resin molding (M6) was 0.3% ⁇ (3000 ppm ⁇ ).
  • the change of molecular weight distribution by this process was not seen (measurement by GPC).
  • Example 7 (Support: Mirror surface copper foil)
  • the maleimide resin solution (V1) obtained in Synthesis Example 2 is casted onto the mirror surface of electrolytic copper berth (18 ⁇ electrolytic copper foil CF-T9FZ-HTE manufactured by Fukuda Metal Foil Powder Co., Ltd.) using an applicator (WET)
  • the solvent was removed by drying the applied resin film at 180 ° C. for 15 minutes.
  • the obtained maleimide resin molding was a film having a thickness of 152 ⁇ m, and was peeled off and pulverized to obtain a maleimide resin molding (M7) of the present invention having a flaky shape.
  • the residual solvent of the obtained maleimide resin molding (M6) was 0.0728% (728 ppm).
  • the change of molecular weight distribution by this process was not seen (measurement by GPC).
  • Example 8 (Support: PET film)
  • the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast-applied (WET film thickness 200 ⁇ m) onto a PET film (Lumirror 38-S10 manufactured by Panac Co., Ltd.) that was not subjected to release treatment using an applicator.
  • the applied resin film was dried at 160 ° C. for 1 hour to remove the solvent.
  • the obtained maleimide resin molding was a film having a thickness of 146 ⁇ m, and was peeled off and pulverized to obtain a maleimide resin molding (M7) of the present invention having a flake shape.
  • the residual solvent of the obtained maleimide resin molding (M8) was 0.0571% (571 ppm).
  • the change of molecular weight distribution by this process was not seen (measurement by GPC).
  • Example 3 ⁇ Comparison of drying temperature in the manufacturing method of maleimide resin molding> (Comparative Example 3)
  • the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator (WET).
  • the solvent was removed by heating and drying the applied resin film with hot air at 50 ° C. for 1 hour.
  • the obtained maleimide resin molding was sticky, could not maintain the shape of the film, and could not be peeled off and pulverized.
  • Example 4 As in Example 1, the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator (WET). The solvent was removed by heating and drying the applied resin film with hot air at 250 ° C. for 1 hour. The obtained maleimide resin molding was in the form of a film and was peeled off and formed into flakes, but the molecular weight increased and became insoluble in various solvents such as acetone.
  • Kapton registered trademark
  • WET applicator
  • Example 9 Comparative Example 5
  • the maleimide resin molding (M1) obtained in Example 1 and 4,4′-bismaleimide diphenylmethane (manufactured by TCI, hereinafter referred to as C1) were prepared for comparison, and the odors were compared.
  • the acetic acid was quantified using a gas chromatograph GC-2010Plus manufactured by Shimadzu Corporation, and a DB-WAX (Agilene Technologies) length 30 m and an inner diameter of 0.25 mm were used as a column.
  • As the temperature raising program a program was used that was held at 60 ° C. for 7 minutes, heated to 220 ° C. at a temperature rising rate of 20 ° C./min, and held at 220 ° C. for 5 minutes.
  • Example 15 10 parts of the maleimide resin molding (M1) obtained in Example 1 and 0.21 part of 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator were mixed and mixed uniformly by stirring. -Kneaded to obtain a maleimide resin composition of the present invention.
  • This maleimide resin composition was cast applied (WET film thickness 200 ⁇ m) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator, and the applied resin film was cured under a curing condition 160.
  • a cured product was obtained by curing while removing the solvent at °C ⁇ 2 h + 180 °C ⁇ 6 h. Table 1 shows the results of evaluating the physical properties of the obtained cured product.
  • ⁇ DMA Measurement items storage elastic modulus at 30 ° C, 200 ° C, 250 ° C, : Glass transition temperature (temperature at maximum of tan ⁇ ) Measuring method: Dynamic viscoelasticity measuring instrument TA-instruments, Q-800 Measurement temperature range: 30 ° C-350 ° C Temperature rate: 2 ° C / min Test piece size: A material cut into 5 mm ⁇ 50 mm was used (thickness was about 800 ⁇ m).
  • the cured product of the maleimide resin composition of the present invention can be molded under the same curing conditions as the epoxy resin, and the obtained cured product is compared with the case where a high heat-resistant epoxy resin is used. It can be seen that there is little change in elastic modulus at high temperatures.
  • the maleimide resin molding of the present invention can easily prepare a maleimide resin composition, and is a high heat resistant substrate material, a flexible substrate material, a high heat resistant low dielectric material, a high heat resistant CFRP material (carbon fiber composite material), and a vehicle-mounted material. It is extremely useful for a wide range of applications such as a high heat resistant sealing material for SiC power devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided are a maleimide resin mold, a maleimide resin composition, and a cured product thereof with less environmental exposure which have excellent workability and production efficiency, for example, in highly reliable semiconductor sealing material applications, electric and electronic part insulating material applications, various composite material applications including laminates (printed wiring glass fiber reinforced composite material) and carbon fiber reinforced composite material (CFRP), various adhesive applications, various coating applications, and structural members. The maleimide resin mold includes a maleimide resin and an organic solvent, and is film-shaped or flake-shaped.

Description

マレイミド樹脂成型体、マレイミド樹脂成型体の製造方法、マレイミド樹脂組成物及びその硬化物Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof
 本発明は、マレイミド樹脂成型体、マレイミド樹脂成型体の製造方法、マレイミド樹脂組成物及びその硬化物に関する。詳しくは、高信頼性半導体封止材用途、電気・電子部品絶縁材料用途、及び積層板(プリント配線ガラス繊維強化複合材料)やCFRP(炭素繊維強化複合材料)を始めとする各種複合材料用途、各種接着剤用途、各種塗料用途、構造用部材等に有用な作業性、生産性に優れ、環境暴露の少ないマレイミド樹脂成型体、マレイミド樹脂成型体の製造方法、マレイミド樹脂組成物及びその硬化物に関する。 The present invention relates to a maleimide resin molding, a method for producing a maleimide resin molding, a maleimide resin composition, and a cured product thereof. Specifically, for high-reliability semiconductor encapsulant use, electrical / electronic component insulation material use, and various composite materials use such as laminate (printed wiring glass fiber reinforced composite material) and CFRP (carbon fiber reinforced composite material), Useful for various adhesive applications, various paint applications, structural members, etc., with excellent workability and productivity, with less environmental exposure, maleimide resin moldings, methods for producing maleimide resin moldings, maleimide resin compositions and cured products thereof .
 マレイミド樹脂は、エポキシ樹脂を超える耐熱性を有するとともに、エポキシ樹脂と同等の成型性を有し、更に低線膨張係数、高Tgという性質も有する化合物である。ポリマレイミド化合物は単独で架橋させるか、または各種のマレイミド化合物もしくは架橋剤と反応させることにより、耐熱性、難燃性に優れた材料を与えることができ、封止材料、基盤材料、絶縁材料等の各種用途に使用されてきた。特に極めて高い耐熱性および成型性を両立することが必要な、高耐熱基盤材料、フレキシブル基板材料、高耐熱低誘電材料、高耐熱CFRP用材料(炭素繊維複合材料)、車載向けSiCパワーデバイス用高耐熱封止材料用途に使用される。 Maleimide resin is a compound having heat resistance exceeding that of epoxy resin, moldability equivalent to that of epoxy resin, and also having properties of low linear expansion coefficient and high Tg. Polymaleimide compounds can be cross-linked alone or reacted with various maleimide compounds or cross-linking agents to give materials with excellent heat resistance and flame retardancy, sealing materials, base materials, insulating materials, etc. Has been used in various applications. High heat resistant base materials, flexible substrate materials, high heat resistant low dielectric materials, high heat resistant CFRP materials (carbon fiber composite materials), high power for automotive SiC power devices, especially where extremely high heat resistance and moldability are required Used for heat-resistant sealing materials.
 従来、マレイミド樹脂は、自己反応性を有するため、その取り出しにおいては再結晶など結晶粉体での取り出し、あるいは再沈殿による樹脂粉末状として市販されているものが多く(特許文献1を参照)、使用の際には粉が舞うなどにより作業性・生産性だけでなく、環境への汚染(汚れ、および人体への吸入)などの問題があった。さらには結晶化、沈殿の際に溶剤等の取り込みがあり、除去しきれないという課題があり、製造時に使用する酢酸類が取り込まれ、できた製品に酢酸の臭気が残り、作業者の安全性に関わる課題となる。このような背景から、作業性、生産性、環境安全性に優れるマレイミド成型体が望まれている。例えば、特許文献2は、エバポレータを使用したマレイミド樹脂溶液の溶融取り出し方法を開示している。 Conventionally, since maleimide resin has self-reactivity, in many cases it is commercially available as a resin powder by taking out a crystal powder such as recrystallization or by reprecipitation (see Patent Document 1). When used, there were problems such as contamination of the environment (dirt and inhalation to the human body) as well as workability and productivity due to powder flying. Furthermore, there is a problem that solvent and other substances are taken up during crystallization and precipitation, and cannot be completely removed. Acetic acids used during production are taken in, and the odor of acetic acid remains in the resulting product. It becomes a problem related to. From such a background, a maleimide molded article excellent in workability, productivity, and environmental safety is desired. For example, Patent Document 2 discloses a method for melting and taking out a maleimide resin solution using an evaporator.
日本国特公平6-86425号公報Japanese Patent Publication No. 6-86425 日本国特開2009-001783号公報Japanese Unexamined Patent Publication No. 2009-001783
 しかしながら、特許文献2では、少量スケールでは大きな変化はなかったものの、合成量を多くした場合、溶媒留去に長時間を要するため、その間に自己重合が進行する恐れがある。したがって、実生産での製造においては、重合やゲル化のリスクが極めて大きく、分子量増加による粘度の上昇および生産する度に特性が異なる等の、成型性・安定生産性の観点から課題がある。また、この重合を抑えるために溶剤回収温度を下げると、特に50℃以上の軟化点を有するマレイミド樹脂の場合、溶剤の除去が困難となり、溶剤の残留が多くなる(特に30000ppmを超える溶剤の残留)ため、成型時のボイドやクラックの生成のおそれ、および作業者への暴露など安全性にも問題がある。さらに、これらマレイミド樹脂の合成においては酢酸やトルエン、キシレンといった人体への影響のある物質を使用する場合があるため、溶剤の残留は特に問題となる。
 そこで、本発明は、作業性・生産性に優れ、環境暴露の少ないマレイミド樹脂成型体を提供することを目的とする。
However, in Patent Document 2, although there was no significant change on a small scale, when the amount of synthesis is increased, it takes a long time to evaporate the solvent, and thus self-polymerization may proceed during that time. Therefore, in the production in actual production, there is a problem from the viewpoint of moldability and stable productivity, such that the risk of polymerization and gelation is extremely high, the viscosity increases due to the increase in molecular weight, and the characteristics differ every time it is produced. Also, if the solvent recovery temperature is lowered to suppress this polymerization, particularly in the case of a maleimide resin having a softening point of 50 ° C. or higher, it becomes difficult to remove the solvent, and the residual solvent increases (especially, the residual solvent exceeding 30000 ppm). Therefore, there is a problem in safety such as the possibility of generation of voids and cracks during molding and exposure to workers. Furthermore, in the synthesis of these maleimide resins, there are cases where substances having an effect on the human body such as acetic acid, toluene, and xylene are used, so that the remaining of the solvent becomes a problem.
Therefore, an object of the present invention is to provide a maleimide resin molded article that is excellent in workability and productivity and has little environmental exposure.
 本発明者らは、上記課題を解決するために鋭意検討した結果、従来の結晶状や粉末状ではなく、フィルム状もしくはフレーク状の成型体として取り出すことで作業性、生産性等に優れ、環境暴露が少なくなることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors are excellent in workability, productivity, etc. by taking out as a film-like or flake-like molded body instead of the conventional crystalline or powdery form, and the environment. It has been found that exposure is reduced, and the present invention has been completed.
 すなわち、本発明は、
[1]マレイミド樹脂と有機溶剤を含有し、フィルム状またはフレーク状であるマレイミド樹脂成型体、
[2]前記有機溶剤の含有量が30000ppm以下である前項[1]に記載のマレイミド樹脂成型体、
[3]前記有機溶剤が、炭素数3~10の芳香族炭化水素、ケトン類、エステル類及びエーテル類から選ばれる少なくとも一種である前項[1]又は[2]に記載のマレイミド樹脂成型体、
[4]厚みが10μm~3mmである前項[1]~[3]のいずれか一項に記載のマレイミド樹脂成型体、
[5]前記マレイミド樹脂が、平均官能基数が2~20である繰り返し単位を有するノボラック型マレイミド樹脂である前項[1]~[4]のいずれか一項に記載のマレイミド樹脂成型体、
[6]前記マレイミド樹脂の軟化点が50~150℃である前項[1]~[5]のいずれか一項に記載のマレイミド樹脂成型体、
[7]マレイミド樹脂を有機溶剤に溶解した溶液を、支持体の表面上に塗布し、乾燥する、マレイミド化合物成型体の製造方法、
[8]前記有機溶剤が炭素数3~10の芳香族炭化水素、ケトン類、エステル類、エーテル類から選ばれる少なくとも一種である前項[7]に記載のマレイミド化合物成型体の製造方法、
[9]乾燥温度が80~200℃である前項[7]又は[8]に記載のマレイミド化合物成型体の製造方法、
[10]前項[7]~[9]のいずれか一項に記載の製造方法により得られたマレイミド樹脂成型体、
[11]前項[1]~[6]並びに前項[10]のいずれか一項に記載のマレイミド樹脂成型体を含むマレイミド樹脂組成物、
[12]さらに、マレイミド樹脂と架橋反応可能な化合物及び硬化促進剤から選ばれる少なくともいずれかを含む前項[11]に記載のマレイミド樹脂組成物、
[13] 前項[11]又は[12]に記載のマレイミド樹脂組成物の硬化物、
に関する。
That is, the present invention
[1] A maleimide resin molded article containing a maleimide resin and an organic solvent and having a film shape or flake shape,
[2] The maleimide resin molded article according to [1], wherein the content of the organic solvent is 30000 ppm or less,
[3] The maleimide resin molded article according to [1] or [2], wherein the organic solvent is at least one selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers,
[4] The maleimide resin molded article according to any one of [1] to [3], wherein the thickness is 10 μm to 3 mm.
[5] The maleimide resin molded article according to any one of [1] to [4], wherein the maleimide resin is a novolak maleimide resin having a repeating unit having an average functional group number of 2 to 20.
[6] The maleimide resin molding according to any one of [1] to [5] above, wherein the softening point of the maleimide resin is 50 to 150 ° C.
[7] A method for producing a maleimide compound molded body, in which a solution obtained by dissolving a maleimide resin in an organic solvent is applied on the surface of a support and dried.
[8] The method for producing a maleimide compound molded article according to [7], wherein the organic solvent is at least one selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers,
[9] The method for producing a maleimide compound molded article according to the above [7] or [8], wherein the drying temperature is 80 to 200 ° C.
[10] A maleimide resin molded article obtained by the production method according to any one of [7] to [9],
[11] A maleimide resin composition comprising the maleimide resin molded article according to any one of [1] to [6] and [10]
[12] The maleimide resin composition according to [11] above, further comprising at least one selected from a compound capable of crosslinking reaction with a maleimide resin and a curing accelerator,
[13] A cured product of the maleimide resin composition according to [11] or [12],
About.
 本発明のマレイミド樹脂成型体は、フィルム状もしくはフレーク状で成型されているため、有機溶剤含有量を抑えることができ、作業性・生産性に優れ、環境暴露の少ないマレイミド樹脂成型体を提供することができる。さらに、有機溶剤の量を抑えることができることから、成型時のボイドやクラックの生成を防ぐことができる。 Since the maleimide resin molding of the present invention is molded in the form of a film or flakes, the organic solvent content can be suppressed, the workability and productivity are excellent, and a maleimide resin molding with less environmental exposure is provided. be able to. Furthermore, since the amount of the organic solvent can be suppressed, generation of voids and cracks during molding can be prevented.
合成例2より得られた重合反応終了時のマレイミド樹脂溶液(V1)の分子量分布を表す図である。It is a figure showing molecular weight distribution of the maleimide resin solution (V1) at the time of completion | finish of the polymerization reaction obtained from the synthesis example 2. FIG. 実施例1より得られたマレイミド樹脂成型体(M1)の分子量分布を表す図である。2 is a view showing a molecular weight distribution of a maleimide resin molded body (M1) obtained from Example 1. FIG. 比較例1より得られた大量合成時溶媒留去後のマレイミド樹脂(B1)の分子量分布を表す図である。It is a figure showing the molecular weight distribution of the maleimide resin (B1) after the solvent distillation at the time of mass synthesis obtained from Comparative Example 1. 比較例4のマレイミド樹脂(C1)の酢酸の定量を表す図である。It is a figure showing fixed_quantity | quantitative_assay of the acetic acid of the maleimide resin (C1) of the comparative example 4.
 以下、本発明を詳細に説明する。
 本発明のマレイミド樹脂成型体は、マレイミド樹脂と有機溶剤を含有し、フィルム状またはフレーク状で成型されていることを特徴とする。
 従来一般的に結晶状もしくは粉末状で供給されていたマレイミド樹脂と比較して、フィルム状もしくはフレーク状の成型体で供給することが可能であるため、作業性の面において粉塵等の問題が起こらずきわめて取り扱いが容易である。すなわち本発明のマレイミド樹脂成型体は容易にマレイミド樹脂組成物を調製することができる。
Hereinafter, the present invention will be described in detail.
The maleimide resin molding of the present invention contains a maleimide resin and an organic solvent, and is characterized by being molded in a film or flake shape.
Compared with the maleimide resin that has been generally supplied in the form of crystals or powder, it can be supplied in the form of a film or flake, which causes problems such as dust in terms of workability. It is extremely easy to handle. That is, the maleimide resin molding of the present invention can easily prepare a maleimide resin composition.
 樹脂成型体とは、樹脂溶液を支持体の表面上に塗布した後、過熱乾燥条件下で、溶剤を除去し、支持体から形状を維持したまま剥離したものをいい、例えば、フィルム状、シート状、繊維状、板状、棒状等が挙げられる。
 ここで、フィルム状とは、平均厚みが10μm~3mmの厚みのシートの形態をいう。フレーク状とはフィルム状の成型体を破砕した状態をいう。なお、フレーク状とは、取扱作業時に粉末状のように飛散しない程度の大きさであれば、特に限定されないが、具体的には、長径部分の平均が0.1cm~5cmであることが好ましく、より好ましくは、0.1~3cmである。
 なお、平均厚みは、シートもしくはフィルムを複数枚重ね、任意の10点をノギスで測定し、得られた厚みを重ねた枚数で除することで求めることができる。
The resin molded body refers to a resin solution that has been applied on the surface of the support, and then removed from the support while removing the solvent under superheated drying conditions. For example, a film or sheet Shape, fiber shape, plate shape, rod shape and the like.
Here, the film form means a form of a sheet having an average thickness of 10 μm to 3 mm. The flake shape refers to a state in which a film-like molded body is crushed. The flake shape is not particularly limited as long as it is a size that does not scatter like a powder during handling operations, but specifically, the average of the long diameter portion is preferably 0.1 cm to 5 cm. More preferably, it is 0.1 to 3 cm.
The average thickness can be obtained by stacking a plurality of sheets or films, measuring arbitrary 10 points with calipers, and dividing the obtained thickness by the number of stacked sheets.
 次に、説明の便宜上、本発明のマレイミド樹脂成型体の製造方法について説明する。
 本発明のマレイミド樹脂成型体は、マレイミド樹脂を有機溶剤に溶解した溶液(以下、「マレイミド樹脂溶液」または「樹脂溶液」とも称する)を支持体の表面上に塗布し、フィルム状もしくはシート状に成型した後、加熱条件下、(必要に応じて減圧条件下)溶剤を除去し、支持体からフィルムを剥離することにより得ることができる。すわなち、本発明のマレイミド樹脂成型体の製造方法は、樹脂溶液を支持体の表面上に塗布する工程と、加熱乾燥する工程と、支持体から剥離する工程により行われる。
Next, the manufacturing method of the maleimide resin molding of this invention is demonstrated for convenience of explanation.
The maleimide resin molding of the present invention is obtained by coating a solution of maleimide resin in an organic solvent (hereinafter also referred to as “maleimide resin solution” or “resin solution”) on the surface of the support to form a film or a sheet. After molding, it can be obtained by removing the solvent under heating conditions (under reduced pressure if necessary) and peeling the film from the support. That is, the manufacturing method of the maleimide resin molding of the present invention is performed by a step of applying a resin solution on the surface of a support, a step of heat drying, and a step of peeling from the support.
(マレイミド樹脂)
 本発明において用いることができるマレイミド樹脂としては公知のものを用いることができるが、粘度、軟化点の観点から、平均官能基数が2~20である繰り返し単位を有するノボラック型のマレイミド樹脂が好ましい。
 本発明において用いることができるマレイミド樹脂としては、例えば、下記式(1)で表される構造を有する。
(Maleimide resin)
As the maleimide resin that can be used in the present invention, known ones can be used, but from the viewpoint of viscosity and softening point, a novolak-type maleimide resin having a repeating unit having an average functional group number of 2 to 20 is preferable.
As maleimide resin which can be used in this invention, it has a structure represented by following formula (1), for example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1~10のアルキル基もしくはフェニル基を表す。Xは下記構造式(a)~(e)で表される。nは平均値であり1<n≦5を表す。)。 (Wherein a plurality of R's are present independently and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group. X is represented by the following structural formulas (a) to (e)). n is an average value and represents 1 <n ≦ 5).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 または、マレイミド樹脂の混合物も挙げられるが、本発明は、これらに限定されるものではない。 Alternatively, a mixture of maleimide resins may also be mentioned, but the present invention is not limited to these.
 前記式(1)で表されるマレイミド樹脂の製法は、特に限定されず、マレイミド樹脂の合成法として公知のいかなる方法で製造してもよい。具体的な製造方法としては例えば、日本国特開2009-001783号公報のような方法を用いることが好ましい。 The method for producing the maleimide resin represented by the formula (1) is not particularly limited, and may be produced by any method known as a method for synthesizing the maleimide resin. As a specific manufacturing method, for example, a method such as Japanese Patent Application Laid-Open No. 2009-001783 is preferably used.
(マレイミド樹脂溶液)
 本発明におけるマレイミド樹脂溶液とは、前記マレイミド樹脂を有機溶媒に溶解したものを意味する。
 マレイミド樹脂溶液は、マレイミド樹脂を有機溶媒に溶解したものであれば特に限定されず、公知の溶液重合法や種々の制御重合法により合成された重合体溶液の他に、重合中に固体状重合体が一部析出したものであってもよいし、重合が終了した溶液に沈殿剤を添加して重合体を沈殿させたものであってもよい。
 用いることができる有機溶媒としては、特に限定されず、例えば、炭素数3~10の芳香族炭化水素、ケトン類、エステル類、エーテル類から選ばれる少なくとも一種の有機溶剤が好ましい。また、重合後の反応液に水洗等の処理をすることが好ましい。
 有機溶剤の使用量は、マレイミド樹脂と該溶剤の混合物中で通常10~70重量%であり、好ましくは15~70重量%である。
(Maleimide resin solution)
The maleimide resin solution in the present invention means a solution obtained by dissolving the maleimide resin in an organic solvent.
The maleimide resin solution is not particularly limited as long as the maleimide resin is dissolved in an organic solvent. In addition to a polymer solution synthesized by a known solution polymerization method or various control polymerization methods, a solid state resin is polymerized during the polymerization. A part of the polymer may be precipitated, or a polymer may be precipitated by adding a precipitating agent to the polymerized solution.
The organic solvent that can be used is not particularly limited. For example, at least one organic solvent selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers is preferable. Moreover, it is preferable to process the reaction liquid after polymerization, such as washing with water.
The amount of the organic solvent used is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of maleimide resin and the solvent.
 マレイミド樹脂は融点、軟化点を有するものを用いることができる。特に融点を有する場合は200℃以下が好ましく、また軟化点を有する場合は50~150℃であることが好ましい。
 マレイミド樹脂溶液の粘度(コーンプレート法、150℃溶融粘度)は5.0mPa・s~10000Pa・sが好ましく、10mPa・s~100Pa・sがより好ましく、10mPa・s~10Pa・sが特に好ましい。コーンプレート法での150℃溶融粘度が10000Pa・s以下であれば塗布作業性が低下することがなく好ましい。
A maleimide resin having a melting point and a softening point can be used. In particular, when it has a melting point, it is preferably 200 ° C. or lower, and when it has a softening point, it is preferably 50 to 150 ° C.
The viscosity (cone plate method, 150 ° C. melt viscosity) of the maleimide resin solution is preferably 5.0 mPa · s to 10,000 Pa · s, more preferably 10 mPa · s to 100 Pa · s, and particularly preferably 10 mPa · s to 10 Pa · s. If the 150 ° C. melt viscosity in the corn plate method is 10000 Pa · s or less, the coating workability is not lowered, which is preferable.
(支持体表面上に塗布する工程)
 次に、得られたマレイミド樹脂溶液を支持体の表面に塗布し、フィルム状もしくはシート状に成型する。
 マレイミド樹脂溶液を塗布する支持体としては、表面が平滑であれば特に限定されないが、好ましくは金属、離形処理を施していないPETフィルム、イミドフィルム等が挙げられる。
(Process to apply on the support surface)
Next, the obtained maleimide resin solution is applied to the surface of the support and molded into a film or sheet.
The support on which the maleimide resin solution is applied is not particularly limited as long as the surface is smooth, but preferably includes a metal, a PET film not subjected to a release treatment, an imide film, and the like.
 支持体の表面に塗布する際の膜厚および面積が、支持体の表面100cm当たりそれぞれ、乾燥膜厚10μm~3mm、面積100cm以下となるように行うことが好ましい。 The film thickness and area when applied to the surface of the support are preferably such that the dry film thickness is 10 μm to 3 mm and the area is 100 cm 2 or less per 100 cm 2 of the surface of the support.
 塗布時のフィルムのWET膜厚は10μm~5mmが好ましく、10μm~4.5mmがより好ましく、200μm~4.3mmが特に好ましい。上記範囲を超えると残溶剤低減効果が十分に得られない場合があり、下回るとマレイミド樹脂成型体の生産性が下がる場合がある。 The WET film thickness of the film during coating is preferably 10 μm to 5 mm, more preferably 10 μm to 4.5 mm, and particularly preferably 200 μm to 4.3 mm. If the above range is exceeded, the residual solvent reducing effect may not be sufficiently obtained, and if it is below the productivity of the maleimide resin molded product, the productivity may be lowered.
(加熱乾燥する工程と支持体の表面から剥離する工程)
 次に、支持体の表面にマレイミド樹脂溶液を塗布した後、加熱乾燥条件下、(必要に応じて減圧条件下)溶剤を除去し、支持体の表面からフィルム状もしくはシート状に成型した乾燥塗膜を剥離し、取り出す。
(Process to heat dry and process to peel from the surface of the support)
Next, after applying the maleimide resin solution to the surface of the support, the solvent is removed under heating and drying conditions (under reduced pressure if necessary), and the dried coating is formed into a film or sheet from the surface of the support. The film is peeled off and removed.
 乾燥温度は80~250℃が好ましく、好ましくは80℃~200℃、特に100℃~200℃が好ましい。乾燥温度は、250℃超えると樹脂の劣化が進行し易いため、必要とする加工特性に応じて設定される。また80℃未満では溶剤の除去が困難であり、溶剤の残量が多くなるため、成型時のボイドやクラックの生成、べた付きがあり、フィルムの形状を維持できず、引き剥がし粉砕することができない場合がある。 The drying temperature is preferably 80 to 250 ° C, preferably 80 to 200 ° C, particularly preferably 100 to 200 ° C. If the drying temperature exceeds 250 ° C., the deterioration of the resin is likely to proceed, so that the drying temperature is set according to the required processing characteristics. If the temperature is lower than 80 ° C., it is difficult to remove the solvent, and the remaining amount of the solvent increases. Therefore, voids and cracks at the time of molding and stickiness are formed, the shape of the film cannot be maintained, and it may be peeled off and pulverized. There are cases where it is not possible.
 支持体の表面から剥離し、取り出したフィルム状のマレイミド樹脂成型体の膜厚は特に限定されないが、好ましくは10μm~3mm、より好ましくは30μm~1mmである。膜厚が3mmを超えると、残溶剤量の低減効果が十分に得られない。
 また得られたフィルム状のマレイミド樹脂成型体は、粉砕することでフレーク状の形状のマレイミド樹脂成型体として用いることもできる。
The film thickness of the film-like maleimide resin molding that is peeled off from the surface of the support is not particularly limited, but is preferably 10 μm to 3 mm, more preferably 30 μm to 1 mm. When the film thickness exceeds 3 mm, the effect of reducing the residual solvent amount cannot be obtained sufficiently.
Moreover, the obtained film-like maleimide resin molding can be used as a flake-shaped maleimide resin molding by pulverization.
 上記工程により得られたマレイミド樹脂成型体は、残溶剤が30000ppm以下である。好ましくは5000ppm以下であり、より好ましくは3000ppm以下であり、特に好ましくは1000ppm以下であり、特に600ppm以下が好ましい。なお測定検出限界として下限値は5ppmである。
 また、得られたマレイミド樹脂成型体は溶剤に可溶であることが好ましい。完全溶解するということはマレイミド樹脂が、高分子量化反応が進んでいないことを意味する。
The maleimide resin molding obtained by the above process has a residual solvent of 30000 ppm or less. Preferably it is 5000 ppm or less, More preferably, it is 3000 ppm or less, Especially preferably, it is 1000 ppm or less, Especially 600 ppm or less is preferable. Note that the lower limit of the measurement detection limit is 5 ppm.
Moreover, it is preferable that the obtained maleimide resin molding is soluble in a solvent. The complete dissolution means that the maleimide resin has not progressed in the high molecular weight reaction.
 このようにして得られるマレイミド樹脂成型体は、従来の結晶状もしくは粉末状で供給されているマレイミド樹脂と比較して、作業性・生産性に優れるため、容易にマレイミド樹脂組成物を調製することができる。 The maleimide resin molding obtained in this way is superior in workability and productivity compared to the maleimide resin supplied in the conventional crystalline or powder form, so that a maleimide resin composition can be easily prepared. Can do.
 次に、本発明のマレイミド樹脂組成物について説明する。
 本発明のマレイミド樹脂組成物はマレイミド樹脂成型体と架橋反応可能な化合物を含むことができる。架橋可能な化合物はマレイミド樹脂成型体と架橋反応を起こし、マレイミド樹脂の硬化剤として作用する。架橋可能な化合物としては、アミノ基、シアネート基、フェノール性水酸基、アルコール性水酸基、アリル基、メタリル基、アクリル基、メタクリル基、ビニル基、共役ジエン基を有する化合物等が挙げられる。例えば、耐熱性が必要なときはアミン化合物、誘電特性が必要なときはシアネートエステル化合物を配合することが好ましい。マレイミド樹脂は自己重合も可能なので単独使用も可能である。
Next, the maleimide resin composition of the present invention will be described.
The maleimide resin composition of the present invention can contain a compound capable of undergoing a crosslinking reaction with the maleimide resin molded article. The crosslinkable compound causes a cross-linking reaction with the maleimide resin molding and acts as a curing agent for the maleimide resin. Examples of the crosslinkable compound include compounds having an amino group, a cyanate group, a phenolic hydroxyl group, an alcoholic hydroxyl group, an allyl group, a methallyl group, an acrylic group, a methacryl group, a vinyl group, or a conjugated diene group. For example, an amine compound is preferably blended when heat resistance is required, and a cyanate ester compound is blended when dielectric properties are required. The maleimide resin can be self-polymerized and can be used alone.
 本発明のマレイミド樹脂組成物には、必要に応じて硬化用の触媒(硬化促進剤)を配合することができる。例えば2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール類、トリエチルアミン、トリエチレンジアミン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)-7-ウンデセン、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン類、オクチル酸スズ、オクチル酸亜鉛、ジブチルスズジマレエート、ナフテン酸亜鉛、ナフテン酸コバルト、オレイン酸スズ等の有機金属塩、塩化亜鉛、塩化アルミニウム、塩化スズなどの金属塩化物、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイドなどの有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物、塩酸、硫酸、リン酸などの鉱酸、三フッ化ホウ素などのルイス酸、炭酸ナトリウムや塩化リチウム等の塩類などが挙げられる。硬化用の触媒の配合量は、本発明のマレイミド樹脂成型体100重量部に対して好ましくは10重量部以下、より好ましくは5重量部以下の範囲である。 The maleimide resin composition of the present invention can be blended with a curing catalyst (curing accelerator) as necessary. For example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, triethylamine, Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) -7-undecene, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine , Phosphines such as tributylphosphine and trioctylphosphine, organometallic salts such as tin octylate, zinc octylate, dibutyltin dimaleate, zinc naphthenate, cobalt naphthenate, tin oleate, zinc chloride, aluminum chloride Metal chlorides such as tin chloride, organic peroxides such as di-tert-butyl peroxide and dicumyl peroxide, azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile, hydrochloric acid, sulfuric acid, Examples thereof include mineral acids such as phosphoric acid, Lewis acids such as boron trifluoride, and salts such as sodium carbonate and lithium chloride. The amount of the curing catalyst is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the maleimide resin molding of the present invention.
 本発明のマレイミド樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。本発明のマレイミド樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、マレイミド樹脂組成物ワニスとし、炭素繊維、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のマレイミド樹脂組成物の硬化物とすることができる。
 この際の溶剤は、本発明のマレイミド樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有するマレイミド樹脂組成物の硬化物を得ることもできる。
An organic solvent can be added to the maleimide resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish). If necessary, the maleimide resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone to obtain a maleimide resin composition varnish, and carbon fiber. A cured product of the maleimide resin composition of the present invention by hot press molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating. It can be.
The solvent at this time usually accounts for 10 to 70% by weight, preferably 15 to 70% by weight, in the mixture of the maleimide resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, the hardened | cured material of the maleimide resin composition which contains a carbon fiber by RTM system as it is can also be obtained as it is.
 また、本発明のマレイミド樹脂組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明のマレイミド樹脂組成物を前記マレイミド樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。 The maleimide resin composition of the present invention can also be used as a modifier for film-type compositions. Specifically, it can be used to improve the flexibility of the B-stage. Such a film-type resin composition is formed by applying the maleimide resin composition of the present invention on the release film as the maleimide resin composition varnish, removing the solvent under heating, and then performing B-stage formation. Obtained as an adhesive. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
 本発明のマレイミド樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。
 また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
A prepreg can be obtained by heating and melting the maleimide resin composition of the present invention to lower the viscosity and impregnating the fiber with a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber.
Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.
 これらの強化繊維に本発明のマレイミド樹脂組成物を含浸させる方法にも特に制限はないが、溶剤を使用しない方法が好ましいため、本発明のマレイミド樹脂組成物を60~110℃に加温し、流動性がある状態で含浸させるホットメルト法が好ましい。 There is no particular limitation on the method for impregnating the maleimide resin composition of the present invention into these reinforcing fibers, but since a method that does not use a solvent is preferable, the maleimide resin composition of the present invention is heated to 60 to 110 ° C, A hot melt method of impregnation in a fluid state is preferred.
 得られるプリプレグ(強化繊維にマレイミド樹脂組成物を含浸させたもの)に占めるマレイミド樹脂組成物の割合は、強化繊維の形態にもよるが通常20重量%以上80重量%以下、好ましくは25重量%以上65重量%以下、より好ましくは30重量%以上50% 以下である。この範囲よりもマレイミド樹脂組成物の割合が多いと相対的に強化繊維の割合が減ることにより十分な補強効果が得られず、逆にマレイミド樹脂組成物が少ないと成型性が損なわれる場合がある。 The proportion of the maleimide resin composition in the prepreg obtained (impregnated with the maleimide resin composition in the reinforcing fiber) is usually 20% by weight to 80% by weight, preferably 25% by weight, although it depends on the form of the reinforcing fiber. The content is 65% by weight or less, more preferably 30% by weight or more and 50% or less. If the ratio of the maleimide resin composition is larger than this range, a sufficient reinforcing effect cannot be obtained because the ratio of the reinforcing fibers is relatively reduced. Conversely, if the maleimide resin composition is small, the moldability may be impaired. .
 このプリプレグは公知の手法により硬化させて最終成型品とすることができる。例えば、プリプレグを積層して、オートクレーブ中で2ないし10kgf/cmに加圧し、150℃から200℃で30分ないし3時間加熱硬化させて成型体とすることができるが、さらに耐熱性を向上させるため、ポストキュアとして180℃ないし280℃の温度範囲で温度をステップ的に加温しながら1時間ないし12時間処理することにより繊維強化複合材成型品とすることができる。
 上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら積層板用マレイミド樹脂組成物を加熱硬化させることにより積層板を得ることができる。
 更に、表面に銅箔を重ねてできた積層板に回路を形成し、その上にプリプレグや銅箔等を重ねて上記の操作を繰り返して多層の回路基板を得ることができる。
This prepreg can be cured by a known method to obtain a final molded product. For example, a prepreg can be laminated, pressurized to 2 to 10 kgf / cm 2 in an autoclave, and cured by heating at 150 ° C. to 200 ° C. for 30 minutes to 3 hours. Therefore, a fiber reinforced composite material molded article can be obtained by treating for 1 hour to 12 hours while heating stepwise in the temperature range of 180 ° C. to 280 ° C. as a post cure.
The above prepreg is cut into the desired shape, laminated with copper foil if necessary, and then the maleimide resin composition for laminates is heated and cured while applying pressure to the laminate by press molding, autoclave molding, sheet winding molding, etc. By doing so, a laminated board can be obtained.
Furthermore, a circuit can be formed on a laminated board made by superimposing copper foil on the surface, and a multilayer circuit board can be obtained by superimposing a prepreg or copper foil thereon and repeating the above operation.
 本発明のプリプレグの硬化物は、液晶ガラス基板搬送用ロボットハンド用途、シリコンウェハー搬送用ディスク用途、航空宇宙向け部材用途、自動車のエンジン部材用途など、軽量で高強度かつ高耐熱性が要求される部材に広く適用することができる。 The cured product of the prepreg of the present invention is required to have light weight, high strength, and high heat resistance, such as a robot hand for transferring a liquid crystal glass substrate, a disk for transferring a silicon wafer, an aerospace member, and an automobile engine member. It can be widely applied to members.
 本発明のマレイミド樹脂組成物の具体的な用途としては、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、電子材料用絶縁材料(プリント基板、電線被覆等を含む、封止材の他、封止材、基板用のシアネート樹脂組成物)や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。特にFRP用途においては環境への配慮、およびボイドによる欠陥の排除の問題から近年無溶剤化が大きく進んでいる。さらには成型時のボイドや成型不良、耐電圧性低下等の問題から、半導体封止の用途においても溶剤が工程中に入ることができない環境がある。 Specific uses of the maleimide resin composition of the present invention include adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials for electronic materials (including printed boards, wire coatings, etc.) In addition to the encapsulant, an encapsulant, a cyanate resin composition for a substrate), and an additive for other resins such as an acrylate ester resin as a curing agent for a resist. In particular, in the FRP application, in recent years, the use of solvent-free has greatly progressed due to environmental considerations and the problem of eliminating defects due to voids. Furthermore, due to problems such as voids during molding, molding defects, and low voltage resistance, there is an environment where the solvent cannot enter the process even for semiconductor sealing applications.
 以下に実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれによって限定されるものではない。尚、本文中「部」及び「%」は、特に断わりのない限り、それぞれ「重量部」及び「重量%」を表す。実施例中、軟化点及び溶融粘度は下記の方法で測定した。
・軟化点:JISK-7234に準じた方法で測定
・溶融粘度:コーンプレート法での150℃における粘度
・残溶剤量の定量は島津製作所社製ガスクロマトグラフGC-2010を用いて行い、カラムとしてはDB-WAX(Agilene Technologies社製)長さ30m、内径0.25mmを用いた。
昇温プログラムとしては、70℃で5分保持し、10℃/minの昇温速度で140℃まで昇温後、20℃/minの昇温速度で220℃まで昇温し、220℃で5分保持するプログラムを用いた。
・分子量のデータ取得には、ゲルパーミエーションクロマトグラフィー(GPC 島津製作所社製LC-20AD)を用いた。カラムにはKF-603,KF-602.5,KF-602,KF-601を使用し、カラム温度40℃、移動相をTHFとし、流速 0.5ml/minの条件にて、RI検出器により測定を行った。
The contents of the present invention will be specifically described below based on examples, but the present invention is not limited thereto. In the text, “part” and “%” represent “part by weight” and “% by weight”, respectively, unless otherwise specified. In the examples, the softening point and melt viscosity were measured by the following methods.
-Softening point: measured by a method according to JISK-7234-Melt viscosity: Viscosity at 150 ° C by cone plate method-Residual solvent amount was determined using a gas chromatograph GC-2010 manufactured by Shimadzu Corporation. DB-WAX (manufactured by Agilent Technologies) having a length of 30 m and an inner diameter of 0.25 mm was used.
As a temperature raising program, hold at 70 ° C. for 5 minutes, raise the temperature to 140 ° C. at a temperature raising rate of 10 ° C./min, then increase the temperature to 220 ° C. at a temperature raising rate of 20 ° C./min, A minute retention program was used.
-Gel permeation chromatography (LC-20 AD manufactured by Shimadzu Corporation) was used for molecular weight data acquisition. KF-603, KF-602.5, KF-602, KF-601 are used for the column, the column temperature is 40 ° C., the mobile phase is THF, and the flow rate is 0.5 ml / min. Measurements were made.
(合成例1)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン559部とトルエン500部を仕込み、室温で35%塩酸167部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル251部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を190~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液500部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂335部(A1)を得た。芳香族アミン樹脂(A1)の軟化点は59℃、溶融粘度は0.05Pa・sであった。
(Synthesis Example 1)
A flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 559 parts of aniline and 500 parts of toluene, and 167 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the organic layer of toluene was returned to the system for dehydration. Next, 251 parts of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining the temperature at 60 to 70 ° C., and the reaction was further carried out at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to bring the system to 190 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. Thereafter, while cooling, 500 parts of a 30% aqueous sodium hydroxide solution was slowly added dropwise so that the system did not vigorously reflux, and toluene distilled off at 80 ° C. or lower was returned to the system and allowed to stand at 70 ° C. to 80 ° C. The separated lower aqueous layer was removed, and the reaction solution was washed with water until the washing solution became neutral. Subsequently, 335 parts of aromatic amine resin (A1) was obtained by distilling off excess aniline and toluene from the oil layer under heating and reduced pressure. The softening point of the aromatic amine resin (A1) was 59 ° C., and the melt viscosity was 0.05 Pa · s.
(合成例2)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸88部とトルエン300部を仕込み、加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次に、芳香族アミン樹脂(A1)116部をN-メチル-2-ピロリドン116部に溶解した樹脂溶液を、系内を80~85℃に保ちながら1時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸2部を加えて、還流条件で共沸してくる縮合水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら10時間反応を行った。反応終了後、トルエンを120部追加し、水洗を繰り返してp-トルエンスルホン酸及び過剰の無水マレイン酸を除去し、加熱して共沸により水を系内から除いた。次いで反応溶液を濃縮して、マレイミド樹脂を70%含有するマレイミド樹脂溶液(V1)を得た。得られたマレイミド樹脂溶液(V1)の分子量分布をGPCによって測定したところ、図1に示す結果が得られた。
(Synthesis Example 2)
A flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap, and stirrer was charged with 88 parts of maleic anhydride and 300 parts of toluene, and heated to cool and separate the azeotropic water and toluene. Then, only toluene which is an organic layer was returned to the system for dehydration. Next, a resin solution in which 116 parts of the aromatic amine resin (A1) was dissolved in 116 parts of N-methyl-2-pyrrolidone was added dropwise over 1 hour while maintaining the system at 80 to 85 ° C. After completion of dropping, the reaction is carried out at the same temperature for 2 hours, 2 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 10 hours while dehydrating. After completion of the reaction, 120 parts of toluene was added, and washing with water was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, followed by heating to remove water from the system by azeotropy. Next, the reaction solution was concentrated to obtain a maleimide resin solution (V1) containing 70% maleimide resin. When the molecular weight distribution of the obtained maleimide resin solution (V1) was measured by GPC, the result shown in FIG. 1 was obtained.
(合成例3)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン559部とトルエン500部を仕込み、室温で35%塩酸167部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ベンゼン175部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を190~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液500部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂280部(A2)を得た。芳香族アミン樹脂(A2)は半固形の樹脂状であった。
(Synthesis Example 3)
A flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 559 parts of aniline and 500 parts of toluene, and 167 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the organic layer of toluene was returned to the system for dehydration. Subsequently, 175 parts of 4,4′-bis (chloromethyl) benzene was added over 1 hour while maintaining the temperature at 60 to 70 ° C., and the reaction was further carried out at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to bring the system to 190 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. Thereafter, while cooling, 500 parts of a 30% aqueous sodium hydroxide solution was slowly added dropwise so that the system did not vigorously reflux, and toluene distilled off at 80 ° C. or lower was returned to the system and allowed to stand at 70 ° C. to 80 ° C. The separated lower aqueous layer was removed, and the reaction solution was washed with water until the washing solution became neutral. Subsequently, 280 parts of aromatic amine resin (A2) was obtained by distilling off excess aniline and toluene from the oil layer under heating and reduced pressure. The aromatic amine resin (A2) was a semi-solid resin.
(合成例4)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸88部とトルエン300部を仕込み、加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次に、芳香族アミン樹脂(A2)91.7部をN-メチル-2-ピロリドン91.7部に溶解した樹脂溶液を、系内を80~85℃に保ちながら1時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸2部を加えて、還流条件で共沸してくる縮合水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら10時間反応を行った。反応終了後、トルエンを120部追加し、水洗を繰り返してp-トルエンスルホン酸及び過剰の無水マレイン酸を除去し、加熱して共沸により水を系内から除いた。次いで反応溶液を濃縮して、マレイミド樹脂を70%含有するマレイミド樹脂溶液(V2)を得た。
(Synthesis Example 4)
A flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap, and stirrer was charged with 88 parts of maleic anhydride and 300 parts of toluene, and heated to cool and separate the azeotropic water and toluene. Then, only toluene which is an organic layer was returned to the system for dehydration. Next, a resin solution obtained by dissolving 91.7 parts of the aromatic amine resin (A2) in 91.7 parts of N-methyl-2-pyrrolidone was added dropwise over 1 hour while maintaining the system at 80 to 85 ° C. After completion of dropping, the reaction is carried out at the same temperature for 2 hours, 2 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 10 hours while dehydrating. After completion of the reaction, 120 parts of toluene was added, and washing with water was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, followed by heating to remove water from the system by azeotropy. Next, the reaction solution was concentrated to obtain a maleimide resin solution (V2) containing 70% maleimide resin.
(実施例1)(支持体:イミドフィルム)
 合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を180℃で15分乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体は厚さ125μmのフィルム状であり、引き剥がし、粉砕することでフレーク状の形状の本発明のマレイミド樹脂成型体(M1)とした。
 得られたマレイミド樹脂成型体(M1)の残溶剤は0.236%(2360ppm)であった。得られたマレイミド樹脂成型体(M1)の分子量分布をGPCによって測定したところ、図2に示す結果が得られた。合成例2により得られたマレイミド樹脂溶液(V1)のGPCにより測定された分子量分布(図1)と比較したところ、本工程による分子量分布の変化は見られなかった(GPCによる測定)。
(Example 1) (Support: Imide film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 μm) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator. The solvent was removed by drying the resulting resin film at 180 ° C. for 15 minutes.
The obtained maleimide resin molding was in the form of a film having a thickness of 125 μm, and was peeled off and pulverized to obtain a maleimide resin molding (M1) of the present invention having a flake shape.
The residual solvent of the obtained maleimide resin molding (M1) was 0.236% (2360 ppm). When the molecular weight distribution of the obtained maleimide resin molding (M1) was measured by GPC, the result shown in FIG. 2 was obtained. When compared with the molecular weight distribution (FIG. 1) measured by GPC of the maleimide resin solution (V1) obtained in Synthesis Example 2, no change in the molecular weight distribution was observed in this step (measurement by GPC).
(実施例2)(支持体:イミドフィルム)
 合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を200℃で15分乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体は厚さ125μmのフィルム状であり、引き剥がし、粉砕することでフレーク状の形状の本発明のマレイミド樹脂成型体(M2)とした。
 得られたマレイミド樹脂成型体(M2)の残溶剤は0.293%(2930ppm)であった。なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)。
(Example 2) (Support: Imide film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 μm) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator. The solvent was removed by drying the resulting resin film at 200 ° C. for 15 minutes.
The obtained maleimide resin molding was in the form of a film having a thickness of 125 μm, and was peeled off and pulverized to obtain a maleimide resin molding (M2) of the present invention having a flake shape.
The residual solvent of the obtained maleimide resin molding (M2) was 0.293% (2930 ppm). In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).
(実施例3)(支持体:イミドフィルム)
 合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を200℃で10分乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体は厚さ125μmのフィルム状であり、引き剥がし、粉砕することでフレーク状の形状の本発明のマレイミド樹脂成型体(M3)とした。
 得られたマレイミド樹脂成型体(M3)の残溶剤は0.398%(3980ppm)であった。なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)。
(Example 3) (Support: Imide film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 μm) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator. The solvent was removed by drying the resulting resin film at 200 ° C. for 10 minutes.
The obtained maleimide resin molding was a film having a thickness of 125 μm, and was peeled off and pulverized to obtain a maleimide resin molding (M3) of the present invention having a flake shape.
The residual solvent of the obtained maleimide resin molding (M3) was 0.398% (3980 ppm). In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).
(実施例4)(支持体:イミドフィルム)
 合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を200℃で5分乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体は厚さ125μmのフィルム状であり、引き剥がし、粉砕することでフレーク状の形状の本発明のマレイミド樹脂成型体(M4)とした。
 得られたマレイミド樹脂成型体(M4)の残溶剤は0.0901%(901ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)。
(Example 4) (Support: Imide film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 μm) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator. The solvent was removed by drying the resulting resin film at 200 ° C. for 5 minutes.
The obtained maleimide resin molding was a film having a thickness of 125 μm, and was peeled off and pulverized to obtain a maleimide resin molding (M4) of the present invention having a flake shape.
The residual solvent of the obtained maleimide resin molding (M4) was 0.0901% (901 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).
(実施例5)(支持体:SUS板)
 合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いてSUS板へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を180℃で15分乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体は厚さ113μmのフィルム状であり、引き剥がし、粉砕することでフレーク状の形状の本発明のマレイミド樹脂成型体(M5)とした。
 得られたマレイミド樹脂成型体(M5)の残溶剤は0.163%(1638ppm)であった。
 なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)。
(Example 5) (Support: SUS plate)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied to a SUS plate using an applicator (WET film thickness 200 μm), and the applied resin film was dried at 180 ° C. for 15 minutes to obtain a solvent. Was removed.
The obtained maleimide resin molding was a film having a thickness of 113 μm, and was peeled off and pulverized to obtain a maleimide resin molding (M5) of the present invention having a flake shape.
The residual solvent of the obtained maleimide resin molding (M5) was 0.163% (1638 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).
(実施例6)(支持体:SUS板)
 合成例4により得られたマレイミド樹脂溶液(V2)を、アプリケータを用いてSUS板へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を180℃で15分乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体は厚さ113μmのフィルム状であり、引き剥がし、粉砕することでフレーク状の形状の本発明のマレイミド樹脂成型体(M6)とした。
 得られたマレイミド樹脂成型体(M6)の残溶剤は0.3%≦(3000ppm≦)であった。なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)。
(Example 6) (Support: SUS plate)
The maleimide resin solution (V2) obtained in Synthesis Example 4 was cast applied to a SUS plate using an applicator (WET film thickness 200 μm), and the applied resin film was dried at 180 ° C. for 15 minutes to obtain a solvent. Was removed.
The obtained maleimide resin molded body was a film having a thickness of 113 μm, and was peeled off and pulverized to obtain a maleimide resin molded body (M6) of the present invention having a flake shape.
The residual solvent of the obtained maleimide resin molding (M6) was 0.3% ≦ (3000 ppm ≦). In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).
(実施例7)(支持体:鏡面銅箔)
 合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて電解銅泊(福田金属箔粉工業株式会社製 18μ電解銅箔CF-T9FZ-HTE)の鏡面へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を180℃で15分乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体は厚さ152μmのフィルム状であり、引き剥がし、粉砕することでフレーク状の形状の本発明のマレイミド樹脂成型体(M7)とした。
 得られたマレイミド樹脂成型体(M6)の残溶剤は0.0728%(728ppm)であった。
 なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)。
(Example 7) (Support: Mirror surface copper foil)
The maleimide resin solution (V1) obtained in Synthesis Example 2 is casted onto the mirror surface of electrolytic copper berth (18μ electrolytic copper foil CF-T9FZ-HTE manufactured by Fukuda Metal Foil Powder Co., Ltd.) using an applicator (WET) The solvent was removed by drying the applied resin film at 180 ° C. for 15 minutes.
The obtained maleimide resin molding was a film having a thickness of 152 μm, and was peeled off and pulverized to obtain a maleimide resin molding (M7) of the present invention having a flaky shape.
The residual solvent of the obtained maleimide resin molding (M6) was 0.0728% (728 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).
(実施例8)(支持体:PETフィルム)
 合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形処理していないPETフィルム(パナック株式会社製 ルミラー38-S10)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を160℃で1時間分乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体は厚さ146μmのフィルム状であり、引き剥がし、粉砕することでフレーク状の形状の本発明のマレイミド樹脂成型体(M7)とした。
 得られたマレイミド樹脂成型体(M8)の残溶剤は0.0571%(571ppm)であった。なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)。
(Example 8) (Support: PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast-applied (WET film thickness 200 μm) onto a PET film (Lumirror 38-S10 manufactured by Panac Co., Ltd.) that was not subjected to release treatment using an applicator. The applied resin film was dried at 160 ° C. for 1 hour to remove the solvent.
The obtained maleimide resin molding was a film having a thickness of 146 μm, and was peeled off and pulverized to obtain a maleimide resin molding (M7) of the present invention having a flake shape.
The residual solvent of the obtained maleimide resin molding (M8) was 0.0571% (571 ppm). In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).
(比較例1)
 合成例2により得られたマレイミド樹脂溶液(V1)300mLを、ロータリーエバポレータを用い、加熱減圧下160℃で溶剤を留去し、マレイミド樹脂(B1)を樹脂ブロック状で得た。得られたマレイミド樹脂(B1)の分子量分布をGPCによって測定したところ、図3に示す結果が得られた。合成例2により得られたマレイミド樹脂溶液(V1)のGPCにより測定された分子量分布(図1)と比較したところ、大量合成時溶媒留去後のマレイミド樹脂(B1)が高分子量化していることを確認した。得られたマレイミド樹脂(B1)の残溶剤は0.1%(1000ppm)以下であった。
(Comparative Example 1)
300 mL of the maleimide resin solution (V1) obtained in Synthesis Example 2 was distilled off using a rotary evaporator at 160 ° C. under heating and reduced pressure to obtain a maleimide resin (B1) in the form of a resin block. When the molecular weight distribution of the obtained maleimide resin (B1) was measured by GPC, the result shown in FIG. 3 was obtained. When compared with the molecular weight distribution (FIG. 1) measured by GPC of the maleimide resin solution (V1) obtained in Synthesis Example 2, the maleimide resin (B1) after evaporation of the solvent during mass synthesis has a high molecular weight. It was confirmed. The residual solvent of the obtained maleimide resin (B1) was 0.1% (1000 ppm) or less.
(比較例2)
 合成例2により得られたマレイミド樹脂溶液(V1)1.0Lを、ロータリーエバポレータを用い、加熱減圧下180℃で溶剤を留去したところゲル化していることが確認できた。得られたマレイミド樹脂(B2)は流動性がなくなった。
(Comparative Example 2)
It was confirmed that 1.0 L of the maleimide resin solution (V1) obtained in Synthesis Example 2 was gelated when the solvent was distilled off at 180 ° C. under heating and reduced pressure using a rotary evaporator. The obtained maleimide resin (B2) lost fluidity.
<マレイミド樹脂成型体の製造方法における乾燥温度の比較>
(比較例3)
 実施例1と同様に、合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を50℃の熱風にて1時間、加熱・乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体はべた付きがあり、フィルムの形状を維持できず、引き剥がし粉砕することができなかった。
<Comparison of drying temperature in the manufacturing method of maleimide resin molding>
(Comparative Example 3)
As in Example 1, the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator (WET). The solvent was removed by heating and drying the applied resin film with hot air at 50 ° C. for 1 hour.
The obtained maleimide resin molding was sticky, could not maintain the shape of the film, and could not be peeled off and pulverized.
(比較例4)
 実施例1と同様に、合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を250℃の熱風にて1時間、加熱・乾燥させることにより溶媒を除去した。
 得られたマレイミド樹脂成型体はフィルム状でありかつ、引きはがしてフレーク化できたものの、高分子量化が進行し、アセトン等の各種溶剤に不溶となった。
(Comparative Example 4)
As in Example 1, the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator (WET). The solvent was removed by heating and drying the applied resin film with hot air at 250 ° C. for 1 hour.
The obtained maleimide resin molding was in the form of a film and was peeled off and formed into flakes, but the molecular weight increased and became insoluble in various solvents such as acetone.
<臭気の比較>
(実施例9、比較例5)
 実施例1で得られたマレイミド樹脂成型体(M1)および比較用に4,4’-ビスマレイミドジフェニルメタン(TCI社製 以下C1とする)を用意し、臭気の比較を行った。
 なお、酢酸の定量は島津製作所社製ガスクロマトグラフGC-2010Plusを用いて行い、カラムとしてはDB-WAX(Agilene Technologies社製)長さ30m、内径0.25mmを用いた。昇温プログラムとしては、60℃で7分保持し、20℃/minの昇温速度で220℃まで昇温し、220℃で5分保持するプログラムを用いた。
<Odor comparison>
(Example 9, Comparative Example 5)
The maleimide resin molding (M1) obtained in Example 1 and 4,4′-bismaleimide diphenylmethane (manufactured by TCI, hereinafter referred to as C1) were prepared for comparison, and the odors were compared.
The acetic acid was quantified using a gas chromatograph GC-2010Plus manufactured by Shimadzu Corporation, and a DB-WAX (Agilene Technologies) length 30 m and an inner diameter of 0.25 mm were used as a column. As the temperature raising program, a program was used that was held at 60 ° C. for 7 minutes, heated to 220 ° C. at a temperature rising rate of 20 ° C./min, and held at 220 ° C. for 5 minutes.
 その結果、比較例5では酢酸の臭気がすることを確認し、実施例9では臭気は感じられなかった。
 また、ガスクロマトグラフィーにて測定したところ、比較例5では酢酸が検出された(図4を参照。 保持時間11.298分)。また、酸価を測定したところ、酸価10mgKOH/gとなり、酢酸1%相当に該当することを確認した。
As a result, it was confirmed that the odor of acetic acid was found in Comparative Example 5, and no odor was felt in Example 9.
Further, when measured by gas chromatography, acetic acid was detected in Comparative Example 5 (see FIG. 4, retention time 11.298 minutes). Moreover, when the acid value was measured, it was confirmed that the acid value was 10 mgKOH / g, corresponding to 1% acetic acid.
<形状および溶剤溶解性の比較>
(実施例10~14、比較例6、7)
 実施例1、5、6、7、8で得られたマレイミド樹脂成型体(M1、M5~M8)および比較用にマレイミド樹脂C1、比較例2に記載のマレイミド樹脂(B2)を用いてアセトンへの溶解試験を行った。
 樹脂濃度50%にそろえて検討をしたところマレイミド樹脂成型体M1、M5~M8は完全溶解したが、マレイミド樹脂(C1)とマレイミド樹脂(B2)は完全溶解しなかった。
<Comparison of shape and solvent solubility>
(Examples 10 to 14, Comparative Examples 6 and 7)
Using maleimide resin moldings (M1, M5 to M8) obtained in Examples 1, 5, 6, 7, and 8 and maleimide resin C1 for comparison and maleimide resin (B2) described in Comparative Example 2 to acetone The dissolution test was conducted.
As a result of investigations with a resin concentration of 50%, the maleimide resin moldings M1 and M5 to M8 were completely dissolved, but the maleimide resin (C1) and the maleimide resin (B2) were not completely dissolved.
 以上より、実施例10~14では完全溶解したことからマレイミド樹脂成型体(M1、M5~M8)は高分子量化反応が進んでいないことがわかる。一方、比較例6と7では完全溶解できなかったことからマレイミド樹脂(C1、B2)は高分子量化反応が進んでいることがわかる。 From the above, it can be seen that in Examples 10 to 14, the maleimide resin moldings (M1, M5 to M8) did not undergo a high molecular weight reaction because they were completely dissolved. On the other hand, since it was not able to completely dissolve in Comparative Examples 6 and 7, it can be seen that the maleimide resin (C1, B2) is undergoing a high molecular weight reaction.
<マレイミド樹脂組成物の調製、硬化物特性の比較>
(実施例15)
 実施例1により得られたマレイミド樹脂成型体(M1)を10部、硬化促進剤として2-エチル-4-メチルイミダゾール(2E4MZ 四国化成株式会社製)を0.21部配合し撹拌により均一に混合・混練し、本発明のマレイミド樹脂組成物を得た。このマレイミド樹脂組成物を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を硬化条件160℃×2h+180℃×6hで溶媒を取り除きながら硬化させることにより硬化物を得た。得られた硬化物の物性を評価した結果を表1に示す。
<Preparation of maleimide resin composition, comparison of cured product properties>
(Example 15)
10 parts of the maleimide resin molding (M1) obtained in Example 1 and 0.21 part of 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator were mixed and mixed uniformly by stirring. -Kneaded to obtain a maleimide resin composition of the present invention. This maleimide resin composition was cast applied (WET film thickness 200 μm) onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator, and the applied resin film was cured under a curing condition 160. A cured product was obtained by curing while removing the solvent at ℃ × 2 h + 180 ℃ × 6 h. Table 1 shows the results of evaluating the physical properties of the obtained cured product.
(比較例8)
 EPPN-502H(日本化薬製 エポキシ当量169g/eq.軟化点67.5℃EP1)を61部、フェノールノボラック(明和化成社製 H-1、水酸基当量106g/eq.)38重量部、トリフェニルホスフィン(TPP純正化学 試薬)1重量部を配合し、ミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物をタブレット化後、トランスファー成形で樹脂組成物成形体を調製し、硬化条件160℃×2h+180℃×6hで硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表1に示す。
(Comparative Example 8)
EPPN-502H (Nippon Kayaku Epoxy equivalent 169g / eq. Softening point 67.5 ° C EP1) 61 parts, phenol novolac (Maywa Kasei Co., Ltd. H-1, hydroxyl group equivalent 106g / eq.) 38 parts by weight, triphenyl 1 part by weight of phosphine (TPP Pure Chemical Reagent) was blended and uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition. After making this epoxy resin composition into a tablet, a resin composition molded body was prepared by transfer molding, and a cured product was obtained under curing conditions of 160 ° C. × 2 h + 180 ° C. × 6 h. The following physical properties of the obtained cured product were evaluated. The results are shown in Table 1.
(比較例9)
 EOCN-1020-55(日本化薬製エポキシ当量194g/eq. 軟化点54.8℃ EP2)を65部、フェノールノボラック(明和化成社製 H-1、水酸基当量106g/eq.)34重量部、TPP(純正化学 試薬)1重量部を配合しミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物をタブレット化後、トランスファー成形で樹脂組成物成形体を調製し、硬化条件160℃×2h+180℃×6hで硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表1に示す。
(Comparative Example 9)
EOCN-1020-55 (Nippon Kayaku Epoxy equivalent 194 g / eq. Softening point 54.8 ° C. EP2) 65 parts, phenol novolac (Maywa Kasei Co., Ltd. H-1, hydroxyl group equivalent 106 g / eq.) 34 parts by weight, 1 part by weight of TPP (Pure Chemical Reagent) was blended and uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition. After making this epoxy resin composition into a tablet, a resin composition molded body was prepared by transfer molding, and a cured product was obtained under curing conditions of 160 ° C. × 2 h + 180 ° C. × 6 h. The following physical properties of the obtained cured product were evaluated. The results are shown in Table 1.
 得られた硬化物について下記の測定を実施した。
・DMA
 測定項目:30℃、200℃、250℃の貯蔵弾性率、
     :ガラス転移温度(tanδ最大時の温度)
測定方法:動的粘弾性測定器TA-instruments製、Q-800
測定温度範囲:30℃~350℃
温速度:2℃/min
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
The following measurement was implemented about the obtained hardened | cured material.
・ DMA
Measurement items: storage elastic modulus at 30 ° C, 200 ° C, 250 ° C,
: Glass transition temperature (temperature at maximum of tan δ)
Measuring method: Dynamic viscoelasticity measuring instrument TA-instruments, Q-800
Measurement temperature range: 30 ° C-350 ° C
Temperature rate: 2 ° C / min
Test piece size: A material cut into 5 mm × 50 mm was used (thickness was about 800 μm).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から、本発明のマレイミド樹脂組成物の硬化物は、エポキシ樹脂と同様の硬化条件で成形可能であり、また、得られた硬化物は高耐熱エポキシ樹脂を用いた場合と比較して、高温での弾性率変化が少ないことがわかる。 From Table 1, the cured product of the maleimide resin composition of the present invention can be molded under the same curing conditions as the epoxy resin, and the obtained cured product is compared with the case where a high heat-resistant epoxy resin is used. It can be seen that there is little change in elastic modulus at high temperatures.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2016年8月31日付で出願された日本国特許出願(特願2016-169417)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on August 31, 2016 (Japanese Patent Application No. 2016-169417), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 本発明のマレイミド樹脂成型体は容易にマレイミド樹脂組成物を調製することができ、高耐熱基板材料、フレキシブル基板材料、高耐熱低誘電材料、高耐熱CFRP用材料(炭素繊維複合材料)、車載向けSiCパワーデバイス用高耐熱封止材料用途等の広範囲の用途に極めて有用である。
 
The maleimide resin molding of the present invention can easily prepare a maleimide resin composition, and is a high heat resistant substrate material, a flexible substrate material, a high heat resistant low dielectric material, a high heat resistant CFRP material (carbon fiber composite material), and a vehicle-mounted material. It is extremely useful for a wide range of applications such as a high heat resistant sealing material for SiC power devices.

Claims (13)

  1.  マレイミド樹脂と有機溶剤を含有し、フィルム状またはフレーク状であるマレイミド樹脂成型体。 A maleimide resin molding containing a maleimide resin and an organic solvent and having a film or flake shape.
  2.  前記有機溶剤の含有量が30000ppm以下である請求項1に記載のマレイミド樹脂成型体。 The maleimide resin molded article according to claim 1, wherein the content of the organic solvent is 30000 ppm or less.
  3.  前記有機溶剤が、炭素数3~10の芳香族炭化水素、ケトン類、エステル類及びエーテル類から選ばれる少なくとも一種である請求項1又は請求項2に記載のマレイミド樹脂成型体。 3. The maleimide resin molding according to claim 1, wherein the organic solvent is at least one selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters and ethers.
  4.  厚みが10μm~3mmである請求項1~請求項3のいずれか一項に記載のマレイミド樹脂成型体。 The maleimide resin molded article according to any one of claims 1 to 3, wherein the thickness is 10 袖 m to 3 mm.
  5.  前記マレイミド樹脂が、平均官能基数が2~20である繰り返し単位を有するノボラック型マレイミド樹脂である請求項1~請求項4のいずれか一項に記載のマレイミド樹脂成型体。 The maleimide resin molded article according to any one of claims 1 to 4, wherein the maleimide resin is a novolac maleimide resin having a repeating unit having an average functional group number of 2 to 20.
  6.  前記マレイミド樹脂の軟化点が50~150℃である請求項1~請求項5のいずれか一項に記載のマレイミド樹脂成型体。 The maleimide resin molding according to any one of claims 1 to 5, wherein the softening point of the maleimide resin is 50 to 150 ° C.
  7.  マレイミド樹脂を有機溶剤に溶解した溶液を、支持体の表面上に塗布し、乾燥する、マレイミド化合物成型体の製造方法。 A method for producing a maleimide compound molded body, in which a solution obtained by dissolving a maleimide resin in an organic solvent is applied on the surface of a support and dried.
  8.  前記有機溶剤が炭素数3~10の芳香族炭化水素、ケトン類、エステル類、エーテル類から選ばれる少なくとも一種である請求項7に記載のマレイミド化合物成型体の製造方法。 The method for producing a maleimide compound molded article according to claim 7, wherein the organic solvent is at least one selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers.
  9.  乾燥温度が80~200℃である請求項7又は請求項8に記載のマレイミド化合物成型体の製造方法。 The method for producing a maleimide compound molded article according to claim 7 or 8, wherein the drying temperature is 80 to 200 ° C.
  10.  請求項7~請求項9のいずれか一項に記載の製造方法により得られたマレイミド樹脂成型体。 A maleimide resin molded article obtained by the production method according to any one of claims 7 to 9.
  11.  請求項1~請求項6並びに請求項10のいずれか一項に記載のマレイミド樹脂成型体を含むマレイミド樹脂組成物。 A maleimide resin composition comprising the maleimide resin molded article according to any one of claims 1 to 6 and claim 10.
  12.  さらに、マレイミド樹脂と架橋反応可能な化合物及び硬化促進剤から選ばれる少なくともいずれかを含む請求項11に記載のマレイミド樹脂組成物。 The maleimide resin composition according to claim 11, further comprising at least one selected from a compound capable of undergoing a crosslinking reaction with the maleimide resin and a curing accelerator.
  13.  請求項11又は請求項12に記載のマレイミド樹脂組成物の硬化物。
     
    A cured product of the maleimide resin composition according to claim 11 or 12.
PCT/JP2017/030694 2016-08-31 2017-08-28 Maleimide resin mold, method for manufacturing maleimide resin mold, maleimide resin composition, and cured product thereof WO2018043380A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227024381A KR102601953B1 (en) 2016-08-31 2017-08-28 Maleimide resin mold, method for manufacturing maleimide resin mold, maleimide resin composition, and cured product thereof
KR1020197005653A KR20190046815A (en) 2016-08-31 2017-08-28 Maleimide resin molded article, method of producing maleimide resin molded article, maleimide resin composition and cured product thereof
JP2018537246A JP7011589B2 (en) 2016-08-31 2017-08-28 Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof
CN201780050109.8A CN109641984A (en) 2016-08-31 2017-08-28 Maleimide resin formed body, the manufacturing method of maleimide resin formed body, maleimide resin constituent and its solidfied material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016169417 2016-08-31
JP2016-169417 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043380A1 true WO2018043380A1 (en) 2018-03-08

Family

ID=61300725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030694 WO2018043380A1 (en) 2016-08-31 2017-08-28 Maleimide resin mold, method for manufacturing maleimide resin mold, maleimide resin composition, and cured product thereof

Country Status (5)

Country Link
JP (1) JP7011589B2 (en)
KR (2) KR20190046815A (en)
CN (1) CN109641984A (en)
TW (1) TWI724229B (en)
WO (1) WO2018043380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024115722A1 (en) 2022-12-02 2024-06-06 Arxada Ag Asymmetrical phenylene bis imides and their preparation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328232A (en) * 2001-05-02 2002-11-15 Kanegafuchi Chem Ind Co Ltd Film, protective film for polarizer and polarizing plate
JP2002331574A (en) * 2001-05-11 2002-11-19 Kanegafuchi Chem Ind Co Ltd Manufacturing method for optical film
JP2004189828A (en) * 2002-12-10 2004-07-08 Tosoh Corp Method for manufacturing transparent film
JP2004231857A (en) * 2003-01-31 2004-08-19 Tosoh Corp Resin composition and optical member using it
WO2005100457A1 (en) * 2004-03-31 2005-10-27 Teijin Dupont Films Japan Limited Oriented film, process for producing the same and laminate thereof
JP2006348298A (en) * 2005-06-15 2006-12-28 E I Du Pont De Nemours & Co Composition patternable by using amplified light, and useful as application example of electronic circuit type, and method and composition associated therewith
JP2008287226A (en) * 2007-04-18 2008-11-27 Tosoh Corp Optical compensation film and process for producing the same
JP2011082559A (en) * 2010-12-24 2011-04-21 Hitachi Chem Co Ltd Adhesive film for semiconductor
JP2017071738A (en) * 2015-10-09 2017-04-13 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758109B2 (en) 1992-08-31 1998-05-28 矢崎総業株式会社 Lock structure
TW473493B (en) * 1996-11-13 2002-01-21 Mitsui Chemicals Inc Polymaleimide resin composition and laminate plate for semiconductor substrate using it
JP5030297B2 (en) 2007-05-18 2012-09-19 日本化薬株式会社 Laminate resin composition, prepreg and laminate
TWI594882B (en) * 2011-07-22 2017-08-11 Lg化學股份有限公司 Thermosetting resin composition and prepreg and metal clad laminate using the same
KR101668855B1 (en) * 2013-09-30 2016-10-28 주식회사 엘지화학 Thermosetting resin composition for semiconductor pakage and Prepreg and Metal Clad laminate using the same
WO2015152007A1 (en) * 2014-04-02 2015-10-08 日本化薬株式会社 Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof
JP6482511B2 (en) 2016-08-31 2019-03-13 日本化薬株式会社 Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328232A (en) * 2001-05-02 2002-11-15 Kanegafuchi Chem Ind Co Ltd Film, protective film for polarizer and polarizing plate
JP2002331574A (en) * 2001-05-11 2002-11-19 Kanegafuchi Chem Ind Co Ltd Manufacturing method for optical film
JP2004189828A (en) * 2002-12-10 2004-07-08 Tosoh Corp Method for manufacturing transparent film
JP2004231857A (en) * 2003-01-31 2004-08-19 Tosoh Corp Resin composition and optical member using it
WO2005100457A1 (en) * 2004-03-31 2005-10-27 Teijin Dupont Films Japan Limited Oriented film, process for producing the same and laminate thereof
JP2006348298A (en) * 2005-06-15 2006-12-28 E I Du Pont De Nemours & Co Composition patternable by using amplified light, and useful as application example of electronic circuit type, and method and composition associated therewith
JP2008287226A (en) * 2007-04-18 2008-11-27 Tosoh Corp Optical compensation film and process for producing the same
JP2011082559A (en) * 2010-12-24 2011-04-21 Hitachi Chem Co Ltd Adhesive film for semiconductor
JP2017071738A (en) * 2015-10-09 2017-04-13 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024115722A1 (en) 2022-12-02 2024-06-06 Arxada Ag Asymmetrical phenylene bis imides and their preparation

Also Published As

Publication number Publication date
TW201815919A (en) 2018-05-01
CN109641984A (en) 2019-04-16
JPWO2018043380A1 (en) 2019-06-24
KR20190046815A (en) 2019-05-07
KR20220106227A (en) 2022-07-28
TWI724229B (en) 2021-04-11
JP7011589B2 (en) 2022-01-26
KR102601953B1 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
CN112334513B (en) Maleimide resin, curable resin composition, and cured product thereof
JP6074830B2 (en) Thermosetting resin composition, adhesive sheet, cured product and printed wiring board
TWI512008B (en) A method for producing a compatible resin, a thermosetting resin composition, a prepreg, and a laminate
WO2007046316A1 (en) Epoxy resin, curable resin composition and cured product thereof
TWI786271B (en) Phosphorus-containing phenoxy resin, resin composition thereof, and cured product thereof
JP6978371B2 (en) Curable resin composition and laminate
JP4058672B2 (en) Epoxy resin composition and cured product thereof
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
TW201806985A (en) Thermosetting resin composition, prepreg and cured product thereof
TW201641583A (en) Epoxy resin composition, semi-hardened epoxy resin composition, resin sheet and prepreg
JP6675183B2 (en) Thermosetting resin composition, thermosetting resin film, printed wiring board, and semiconductor device
WO2018043380A1 (en) Maleimide resin mold, method for manufacturing maleimide resin mold, maleimide resin composition, and cured product thereof
JP6482511B2 (en) Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof
JP6863679B2 (en) Solution, its manufacturing method, epoxy resin composition and laminate
WO2013080936A1 (en) Phenol novolak resin and epoxy resin composition using same
CN116670199A (en) Epoxy resin, method for producing same, curable resin composition, and cured product thereof
KR20100057777A (en) Thermosetting resin composition and cured product thereof
JP2010209150A (en) Epoxy resin composition
JP4702764B2 (en) Epoxy resin composition and cured product thereof
JP4509539B2 (en) Epoxy resin composition sheet
TWI837297B (en) Ester compounds, resin compositions, hardeners, and build-up films
JP2019052258A (en) Polyhydric hydroxy resin, method for producing the same, curing agent for epoxy resin, epoxy resin, epoxy resin composition, cured product of the same, semiconductor sealing material and laminated plate
JP2019143106A (en) Modified polyphenylene ether resin-based polymer compound, and resin composition containing the polymer compound
JP4453899B2 (en) Epoxy resin composition
TW202106748A (en) Multifunctional active ester compound, resin composition, cured product and buildup film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537246

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197005653

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846385

Country of ref document: EP

Kind code of ref document: A1