WO2015152007A1 - Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof - Google Patents

Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof Download PDF

Info

Publication number
WO2015152007A1
WO2015152007A1 PCT/JP2015/059441 JP2015059441W WO2015152007A1 WO 2015152007 A1 WO2015152007 A1 WO 2015152007A1 JP 2015059441 W JP2015059441 W JP 2015059441W WO 2015152007 A1 WO2015152007 A1 WO 2015152007A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic amine
resin
maleimide
amine resin
diphenylamine
Prior art date
Application number
PCT/JP2015/059441
Other languages
French (fr)
Japanese (ja)
Inventor
窪木 健一
昌照 木村
政隆 中西
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020167020369A priority Critical patent/KR102254945B1/en
Priority to CN201580013821.1A priority patent/CN106103534B/en
Priority to JP2016511597A priority patent/JP6429862B2/en
Publication of WO2015152007A1 publication Critical patent/WO2015152007A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking

Definitions

  • the present invention relates to an aromatic amine resin and a maleimide resin derived therefrom, a curable resin composition using the same, and a cured product thereof, such as a semiconductor encapsulant, a printed wiring board, and a build-up laminate.
  • -It is suitably used for lightweight high-strength materials such as electronic parts, carbon fiber reinforced plastics, and glass fiber reinforced plastics.
  • a wiring board using BT resin which is a resin in which a bisphenol A type cyanate ester compound and a bismaleimide compound described in Patent Document 1 are used in combination, has excellent heat resistance, chemical resistance, electrical characteristics, etc.
  • BT resin which is a resin in which a bisphenol A type cyanate ester compound and a bismaleimide compound described in Patent Document 1 are used in combination
  • it has been widely used as a wiring board, it needs to be improved in a situation where higher performance is required as described above.
  • the weight reduction of airplanes, automobiles, trains, ships, etc. has been progressing due to the need for energy saving.
  • studies have been made in particular in the field of vehicles in which a metal material is replaced with a lightweight and high-strength carbon fiber composite material.
  • An object of the present invention is to provide an aromatic amine resin with a low content of diphenylamine as a by-product, a maleimide resin derived therefrom, a curable resin composition using these, and a heat resistance and low moisture absorption obtained by curing the resin. It is to provide a cured product having excellent properties, low dielectric properties, flame retardancy, and toughness.
  • an aromatic amine resin containing a compound represented by the following formula (1) obtained by reacting aniline with a bishalogenomethylaralkyl derivative or an aralkyl alcohol derivative, and containing diphenylamine as a by-product An aromatic amine resin having a content of 1% by weight or less.
  • n is an average value and represents 1 ⁇ n ⁇ 10.
  • the curable resin composition of the present invention is a useful material for sealing electrical and electronic parts, circuit boards, carbon fiber composites, and the like.
  • the aromatic amine resin of the present invention contains a compound represented by the formula (1) or (2), and the content of diphenylamine by-produced during production is 1% by weight or less, preferably 0.5% by weight. In the following, it is more preferably controlled to 0.2% by weight or less.
  • the manufacturing method of the compound of Formula (1) or Formula (2) is not specifically limited.
  • Japanese Patent Publication No. 8-16151 and Japanese Patent No. 5030297 describe the reaction of aniline with a bishalogenomethylaralkyl derivative or an aralkyl alcohol derivative.
  • a compound of formula (1) or formula (2) is obtained by reacting aniline with a bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative.
  • bishalogenomethylaralkyl derivatives or aralkyl alcohol derivatives used include 1,4-bischloromethylbenzene, 1,3-bischloromethylbenzene, 1,2-bischloromethylbenzene, 1,4-bisbromomethylbenzene 1,3-bisbromomethylbenzene, 1,2-bisbromomethylbenzene, 1,4-dimethoxymethylbenzene, 1,3-dimethoxymethylbenzene, 1,2-dimethoxymethylbenzene, 1,4-diethoxymethyl Benzene, 1,3-diethoxymethylbenzene, 1,2-diethoxymethylbenzene, 1,4-dihydroxymethylbenzene, 1,3-dihydroxymethylbenzene, 1,2-dihydroxymethylbenzene, 2,6-dihydroxymethyl Naphthalene, 1,5-dihydroxymethyl Phthalene, 2,6-dimethoxymethylnaphthalene, 1,5-dimethoxymethylnaphthalene, 4,4′-bis (chloromethyl) bi
  • the amount of the bishalogenomethylaralkyl derivative or aralkyl alcohol derivative to be used is generally 0.05 to 0.8 mol, preferably 0.1 to 0.6 mol, per 1 mol of aniline used.
  • an acidic catalyst such as hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid and the like may be used. These may be used alone or in combination of two or more.
  • the amount of the catalyst used is usually 0.1 to 0.8 mol, preferably 0.2 to 0.7 mol, relative to 1 mol of aniline used. If the amount is too large, the viscosity of the reaction solution may be too high and stirring may be difficult. If the amount is too small, the progress of the reaction may be delayed.
  • the reaction may be carried out using an organic solvent such as toluene or xylene, if necessary, or without solvent.
  • an organic solvent such as toluene or xylene
  • the water is removed from the system by azeotropic distillation.
  • the bishalogenomethylaralkyl derivative or aralkyl alcohol derivative is added over 1 to 5 hours, preferably 2 to 4 hours at 40 to 100 ° C., preferably 50 to 80 ° C., and then the temperature is raised while removing the solvent from the system.
  • the reaction is carried out at 180 to 240 ° C., preferably 190 to 220 ° C. for 5 to 30 hours, preferably 5 to 20 hours.
  • diphenylamine which is a by-product at this stage, varies depending on the amount of catalyst, the ratio of raw materials used, temperature, time, etc. Usually 2 to 10% by weight is contained in the resin. Diphenylamine cannot be removed under conditions where aniline is distilled off. Diphenylamine can be removed by blowing steam or an inert gas such as a large amount of nitrogen gas under reduced pressure by heating at a temperature equal to or higher than the boiling point of aniline.
  • diphenylamine When diphenylamine is contained in the curable resin composition, for example, when used for a curing reaction with an epoxy resin, it becomes the terminal end of the molecular chain. The strength is significantly reduced.
  • diphenylamine when diphenylamine is contained in the aromatic amine resin, diphenylamine remains as it is after maleimidation, and remains in the cured product as it is without contributing to the reaction. Decreases. Accordingly, the diphenylamine content is required to be 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.2% by weight or less.
  • the softening point of the aromatic amine resin of the present invention is preferably 65 ° C. or lower, more preferably 60 ° C. or lower.
  • the softening point is higher than 65 ° C., the viscosity of the maleimidized resin becomes high, and it becomes difficult to impregnate carbon fibers or glass fibers. If the dilution solvent is increased to lower the viscosity, the resin may not adhere sufficiently.
  • the maleimide resin of the present invention can be obtained by reacting an aromatic amine resin containing the compound of formula (1) or formula (2) with maleic acid or maleic anhydride in the presence of a solvent and a catalyst.
  • the methods described in Japanese Laid-Open Patent Publication No. 3-100016 and Japanese Patent Laid-Open No. 61-229863 may be employed. In that case, since it is necessary to remove the water produced
  • aromatic solvents such as toluene and xylene
  • aliphatic solvents such as cyclohexane and n-hexane
  • ethers such as diethyl ether and diisopropyl ether
  • ester solvents such as ethyl acetate and butyl acetate, methyl isobutyl ketone and cyclopentanone
  • water-insoluble solvent an aprotic polar solvent may be used in combination.
  • Examples thereof include dimethyl sulfone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, etc., and two or more kinds may be used in combination.
  • an aprotic polar solvent it is preferable to use a solvent having a higher boiling point than the water-insoluble solvent used in combination.
  • the catalyst is not particularly limited, and examples thereof include acidic catalysts such as p-toluenesulfonic acid, hydroxy-p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, and phosphoric acid.
  • maleic acid is dissolved in toluene, an N-methylpyrrolidone solution of an aromatic amine resin containing the compound of formula (1) or formula (2) is added with stirring, and then p-toluenesulfonic acid is added and refluxed. The reaction is carried out while removing water produced under the conditions from the system.
  • Examples of the compound capable of crosslinking reaction with the aromatic amine resin which is one of the essential components of the curable resin composition of the present invention include epoxy group, maleimide group, aldehyde group, ketone group, acid anhydride group, isocyanate group, carbonyl
  • the compound is not particularly limited as long as it is a compound having a functional group (or structure) capable of crosslinking reaction with an aromatic amine resin such as a group.
  • the maleimide resin As a compound capable of crosslinking reaction with the maleimide resin which is one of the essential components of the curable resin composition of the present invention, amino group, cyanate group, phenolic hydroxyl group, alcoholic hydroxyl group, allyl group, acrylic group, methacryl group,
  • the compound is not particularly limited as long as it is a compound having a functional group (or structure) capable of crosslinking with a maleimide resin such as a vinyl group or a conjugated diene group. Since the amine compound and the maleimide compound undergo a crosslinking reaction, the aromatic amine resin and the maleimide resin of the present invention may be used in combination.
  • the maleimide resin can be self-polymerized and can be used alone.
  • the content of the aromatic amine resin or maleimide resin of the present invention in the curable resin composition of the present invention is usually 10% by weight or more, preferably 15% by weight or more, more preferably 20% by weight or more. is there.
  • amine compound that can be blended in the curable resin composition of the present invention a conventionally known amine compound can be used.
  • Specific examples of the amine compound include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, isophoronediamine, 1,3-bisaminomethyl.
  • Cyclohexane bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone, dicyandiamide, polyoxypropylene Examples include diamine, polyoxypropylene triamine, N-aminoethylpiperazine, and aniline / formalin resin. Not intended to be. These may be used alone or in combination of two or more.
  • the compounding amount of the amine compound is preferably not more than 5 times, more preferably not more than 2 times the weight of the aromatic amine resin of the present invention.
  • maleimide compound that can be blended in the curable resin composition of the present invention
  • a conventionally known maleimide compound can be used.
  • the maleimide compound include 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3 '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and the like, but are not limited thereto. These may be used alone or in combination of two or more.
  • the blending amount of the maleimide compound is
  • the curable resin composition of the present invention can also contain a cyanate ester compound.
  • a conventionally well-known cyanate ester compound can be used as a cyanate ester compound which can be mix
  • Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Examples include, but are not limited to, cyanate ester compounds obtained by reacting a product with cyanogen halide. These may be used alone or in combination of two or more.
  • phenols examples include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
  • aldehydes examples include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, and cinnamaldehyde.
  • Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
  • cyanate ester compounds described in Japanese Patent Application Laid-Open No. 2005-264154 are particularly preferable as cyanate ester compounds because they are excellent in low moisture absorption, flame retardancy, and dielectric properties.
  • An epoxy resin can also be mix
  • an epoxy resin that can be blended in the curable resin composition of the present invention any conventionally known epoxy resin can be used.
  • Specific examples of epoxy resins include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, polycondensates of bisphenols and various aldehydes.
  • glycidyl ether epoxy resins obtained by glycidylation of alcohols, alicyclic epoxies such as 4-vinyl-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4′-epoxycyclohexanecarboxylate
  • the resin include, but are not limited to, glycidylamine epoxy resins and glycidyl ester epoxy resins such as tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol. These may be used alone or in combination of two or more.
  • a phenol aralkyl resin obtained by condensation reaction of phenols and the above-mentioned bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative, and an epoxy resin obtained by dehydrochlorination reaction with epichlorohydrin are low hygroscopic, Since it is excellent in a flame retardance and a dielectric characteristic, it is especially preferable as an epoxy resin.
  • a phenol resin can also be mix
  • Any conventionally known phenol resin can be used as the phenol resin that can be blended in the curable resin composition of the present invention.
  • Specific examples of phenolic resins include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.), phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl Substituted polyhydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalalde
  • a phenol aralkyl resin obtained by a condensation reaction of a phenol and the above bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative is particularly preferable as a phenol resin because it is excellent in low moisture absorption, flame retardancy, and dielectric properties. .
  • the curable resin composition of the present invention may contain a compound having an acid anhydride group.
  • Any conventionally known compound having an acid anhydride group that can be blended in the curable resin composition of the present invention can be used.
  • Specific examples of the compound having an acid anhydride group include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3, 4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, pyromellitic anhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl- 3-cyclohexene-1,2-dicarboxylic acid anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride,
  • the compounds having an acid anhydride group can be used alone or in combination of two or more.
  • the acid anhydride group and amine react to form an amic acid, but when heated at 200 ° C. to 300 ° C., an imide structure is formed by a dehydration reaction, resulting in a material with excellent heat resistance.
  • a curing catalyst can be blended with the curable resin composition of the present invention as necessary.
  • imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, triethylamine
  • Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo [5.4.0] undecene-7, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine, Phosphines such as tributylphosphine and trioctylphosphine, tin octylate, zinc octylate, dibutyltin dimaleate, zinc naphthenate, cobalt naphth
  • the curable resin composition of the present invention can be made into a varnish-like composition (hereinafter simply referred to as varnish) by adding an organic solvent.
  • the solvent used include amide solvents such as ⁇ -butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone.
  • ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone
  • Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned.
  • the solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by weight, preferably 20 to 70% by weight.
  • the curable resin composition of the present invention can contain known additives as required.
  • additives that can be used include curing agents for epoxy resins, polybutadiene and modified products thereof, modified products of acrylonitrile copolymers, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, cyanate ester compounds , Silicone gel, silicone oil, inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, silane cup Coloring agents such as a surface treatment agent for a filler such as a ring agent, a release agent, carbon black, phthalocyanine blue, and phthalocyanine green can be used.
  • the amount of these additives is preferably 1,000 parts by weight or less, more preferably 700 parts by weight or less, with respect to 100 parts by weight of the curable resin composition.
  • the method for preparing the curable resin composition of the present invention is not particularly limited, but each component may be mixed evenly or prepolymerized.
  • a maleimide resin and a cyanate ester compound are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • the aromatic amine resin of the present invention and / or the maleimide resin of the present invention and, if necessary, an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound and other additives are added. And may be prepolymerized.
  • an extruder, a kneader, or a roll can be used in the absence of a solvent, and a reaction kettle with a stirring device can be used in the presence of a solvent.
  • a prepreg can be obtained by heating and melting the curable resin composition of the present invention to lower the viscosity and impregnating it with reinforcing fibers such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, and alumina fiber. Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating. The above prepreg is cut into a desired shape, laminated with copper foil as necessary, and then the curable resin composition is heated and cured while applying pressure to the laminate by a press molding method, autoclave molding method, sheet winding molding method, etc. Thus, an electric / electronic laminate (printed wiring board) and a carbon fiber reinforcing material can be obtained.
  • reinforcing fibers such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, and alumina fiber.
  • a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.
  • the above prepreg is cut into a desired shape
  • Example 1 A flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 372 parts of aniline and 200 parts of toluene, and 146 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the organic layer of toluene was returned to the system for dehydration. Subsequently, 125 parts of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining the temperature at 60 to 70 ° C., and the reaction was further carried out at the same temperature for 2 hours.
  • toluene was distilled off while raising the temperature to bring the inside of the system to 195 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. Then, with cooling, 330 parts of 30% aqueous sodium hydroxide solution was slowly added dropwise so that the system did not circulate vigorously, and the toluene distilled off at a temperature of 80 ° C. or lower was returned to the system and allowed to stand at 70 ° C. to 80 ° C. I put it. The separated lower aqueous layer was removed, and the reaction solution was washed with water until the washing solution became neutral.
  • aromatic amine resin (a1) was obtained by distilling off excess aniline and toluene from the oil layer with a rotary evaporator under heating and reduced pressure (200 ° C., 0.6 KPa). Diphenylamine in the aromatic amine resin (a1) was 2.0%. The obtained resin was again dripped in small amounts in place of steam blowing in a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa). As a result, 166 parts of aromatic amine resin (A1) was obtained. The aromatic amine resin (A1) obtained had a softening point of 56 ° C., a melt viscosity of 0.035 Pa ⁇ s, and diphenylamine of 0.1% or less.
  • Example 2 The same operation was performed except that 372 parts of aniline was changed to 457 parts in Example 1, and 181 parts of aromatic amine resin (a2) was obtained. Diphenylamine in the aromatic amine resin (a2) was 3.0%. The obtained resin was again dripped in small amounts in place of steam blowing in a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa). As a result, 166 parts of aromatic amine resin (A2) was obtained. The aromatic amine resin (A2) obtained had a softening point of 53 ° C., a melt viscosity of 0.025 Pa ⁇ s, and diphenylamine of 0.1% or less.
  • Example 3 The same operation was performed except that 372 parts of aniline was changed to 186 parts in Example 1, and 181 parts of aromatic amine resin (A3) was obtained.
  • the aromatic amine resin (A3) obtained had a softening point of 64 ° C., a melt viscosity of 0.1 Pa ⁇ s, and diphenylamine of 0.16%.
  • Example 4 After adding 147 parts of maleic anhydride and 300 parts of toluene to a flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap, and stirrer, cooling and separating the water and toluene azeotropically heated. Then, only toluene which is an organic layer was returned to the system for dehydration. Next, a resin solution obtained by dissolving 195 parts of the aromatic amine resin (A1) obtained in Example 1 in 195 parts of N-methyl-2-pyrrolidone was added over 1 hour while maintaining the system at 80 to 85 ° C. It was dripped.
  • A1 aromatic amine resin
  • the reaction is carried out at the same temperature for 2 hours, 3 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 20 hours while dehydrating.
  • 120 parts of toluene was added, and washing with water was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, followed by heating to remove water from the system by azeotropy.
  • the reaction solution was concentrated to obtain a resin solution containing 70% of maleimide resin (M1).
  • the diphenylamine content in the maleimide resin (M1) was 0.1% or less.
  • Glass transition temperature Temperature measured by a dynamic viscoelasticity tester and tan ⁇ is a maximum value.
  • Moisture absorption Weight increase rate after 24 hours at 121 ° C./100%.
  • the test piece is a disk having a diameter of 50 mm and a thickness of 4 mm.
  • -Izod impact test value Measured in accordance with JIS K7110.
  • Example 7 Comparative Example 4 50 parts of 2,2-bis (4-cyanatophenyl) propane was dissolved in 643 parts of the maleimide resin (M1) obtained in Example 4 and the maleimide resin (m1) solution obtained in Comparative Example 1. A prepolymer was obtained by pre-reaction at 10 ° C. for 10 hours. To this, 150 parts of the aforementioned epoxy resin (E2) and 2 parts of zinc octylate were added and mixed uniformly. The solution thus obtained was thinly applied on a glass plate and cured at 170 ° C. for 2 hours and 250 ° C. for 1 hour.
  • the obtained cured product was pulverized, the particle size was adjusted to 42 mesion and 60 mesh pass, 5 parts each was collected and dispersed in 50 parts of ion exchange water, and a pressure cooker test was performed at 121 ° C. for 20 hours.
  • Table 2 shows the results of removing the powder and measuring the electrical conductivity of the extracted water.
  • Example 8 Comparative Example 5 Using the aromatic amine resins (A1) and (a1) obtained in Example 1, blended in proportions (parts by weight) shown in Table 3, kneaded with mixing rolls, tableted, and then molded by transfer molding. It was prepared and cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours. Table 3 shows the results of measuring the physical properties of the cured product thus obtained for the following items.
  • ⁇ Flame retardancy test Flame retardant judgment Conforms to UL94. The sample size was 12.5 mm wide ⁇ 150 mm long, and the thickness was 0.8 mm. Afterflame time: Total afterflame time of 0.8mm test piece
  • Filler fused silica (manufactured by Tatsumori Industry Co., Ltd. MSR-2212)
  • Curing accelerator Salicylic acid (manufactured by Tokyo Chemical Industry)
  • the examples with less diphenylamine content have higher glass transition temperatures and Izod impact test values and stronger crosslink networks than the comparative examples.
  • the example of the cured maleimide resin derived from the aromatic amine resin having a low diphenylamine content has a lower electrical conductivity of the extracted water than the comparative example, and it can be used for electric / electronic parts. When used, it is considered that defects are unlikely to occur even in various usage environments.
  • the example using the aromatic amine resin with less diphenylamine content has better flame retardancy and better thermal decomposition resistance than the comparative example, and when used in electrical / electronic parts, etc., safety Is considered high.
  • the curable resin composition containing the aromatic amine resin and maleimide resin of the present invention is cured, the cured product is excellent in heat resistance, low moisture absorption, low dielectric properties, flame retardancy, and toughness. It is useful for use in electrical and electronic parts such as semiconductor encapsulants, printed wiring boards, build-up laminates, and lightweight high-strength materials such as carbon fiber reinforced plastic and glass fiber reinforced plastic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention addresses the problem of providing: an aromatic amine resin containing diphenylamine, which is a by-product, in a reduced amount; a maleimide resin induced from the aromatic amine resin; a curable resin composition produced using the aromatic amine resin and the maleimide resin; and a cured article which is produced by curing the curable resin composition and has excellent heat resistance, low hygroscopicity, low dielectric properties, flame retardancy and toughness. The aromatic amine resin according to the present invention is an aromatic amine resin containing a compound represented by formula (1), and wherein the compound is produced by reacting aniline with a bishalogenomethyl aralkyl derivative or an aralkyl alcohol derivative, wherein diphenylamine, which is a by-product, is contained in an amount of 1% by weight or less. (In the formula, X represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms; and n represents an average value and falls within the range from 1 to 10 inclusive (i.e., 1 ≤ n ≤ 10)).

Description

芳香族アミン樹脂、マレイミド樹脂、硬化性樹脂組成物およびその硬化物Aromatic amine resin, maleimide resin, curable resin composition and cured product thereof
 本発明は、芳香族アミン樹脂およびこれから誘導されるマレイミド樹脂、これらを用いた硬化性樹脂組成物並びにその硬化物に関するものであり、半導体封止材、プリント配線基板、ビルドアップ積層板などの電気・電子部品や、炭素繊維強化プラスティック、ガラス繊維強化プラスティックなどの軽量高強度材料に好適に使用される。 The present invention relates to an aromatic amine resin and a maleimide resin derived therefrom, a curable resin composition using the same, and a cured product thereof, such as a semiconductor encapsulant, a printed wiring board, and a build-up laminate. -It is suitably used for lightweight high-strength materials such as electronic parts, carbon fiber reinforced plastics, and glass fiber reinforced plastics.
 近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。例えば従来、半導体チップは金属製のリードフレームに搭載することが主流であったが、CPUなどの高度な処理能力のある半導体チップは高分子材料で作られる積層板に搭載されることが多くなっている。CPU等の素子の高速化が進みクロック周波数が高くなるにつれ、信号伝搬遅延や伝送損失が問題となり、配線板に低誘電率化、低誘電正接化が求められるようになっている。同時に素子の高速化に伴い、チップの発熱が大きくなっているため耐熱性を高める必要も生じている。また、近年携帯電話などのモバイル電子機器が普及してきており、精密電子機器が屋外環境や人体の極近傍で使用・携帯されるようになってきているため、外的環境(特に耐湿熱)に対する耐性が必要とされる。更に自動車分野においては急速に電子化が進み、エンジン近くに精密電子機器が配置されることもあり耐熱・耐湿性がより高いレベルで要求されるようになっている。一方自動車用途や携帯機器などに用いられる為、難燃性等の安全性もよりいっそう重要となっているが、近年の環境問題意識の向上によりハロゲン系の難燃剤を使用することが忌避されてきており、ハロゲンを使用しないで難燃性を付与する必要が増している。 In recent years, the required characteristics of laminated boards carrying electrical / electronic components have been broadened and advanced due to the expansion of their fields of use. For example, in the past, semiconductor chips were mainly mounted on metal lead frames, but semiconductor chips with high processing capability such as CPUs are often mounted on laminates made of polymer materials. ing. As the speed of elements such as CPUs increases and the clock frequency increases, signal propagation delay and transmission loss become a problem, and the wiring board is required to have a low dielectric constant and a low dielectric loss tangent. At the same time, as the device speed increases, the heat generated by the chip has increased, and it has become necessary to increase the heat resistance. In recent years, mobile electronic devices such as mobile phones have become widespread, and precision electronic devices have been used and carried in the outdoor environment and in the immediate vicinity of the human body, so that they can withstand external environments (especially moisture and heat resistance). Tolerance is required. Furthermore, in the automobile field, computerization is rapidly progressing, and precision electronic devices are arranged near the engine, so that a higher level of heat resistance and moisture resistance is required. On the other hand, since it is used for automobiles and portable devices, safety such as flame retardancy is even more important, but the use of halogenated flame retardants has been avoided due to the recent increase in awareness of environmental issues. Therefore, there is an increasing need to impart flame retardancy without using halogen.
 従来、例えば特許文献1に記載されるビスフェノールA型シアネートエステル化合物とビスマレイミド化合物を併用した樹脂であるBTレジンを使用した配線板が耐熱性や耐薬品、電気特性などに優れており、高性能配線板として幅広く使用されてきたが、上記のように更なる高性能を要求される状況下において改善が必要となっている。
 また、近年省エネの必要から飛行機、自動車、列車、船舶等の軽量化が進んでいる。従来は金属材料を用いていたものを、軽量で高強度な炭素繊維複合材料に置き換える検討が乗物分野で特に行われている。例を挙げれば、ボーイング787においては複合材料の比率を上げることで軽量化を行い、燃費効率を大幅にアップしている。自動車分野では一部ではあるが複合材料製のプロペラシャフトを搭載しており、また高級車向けに車体を複合材料で作る動きもある。
 従来はエポキシ樹脂のビスフェノールAジグリシジルエーテルやテトラグリシジルジアミノジフェニルメタンなどと、硬化剤としてジアミノジフェニルメタン、ジアミノジフェニルスルホンなどを使用した複合材料が用いられてきたが、より軽量化を進めるためには複合材料の適用を広げる必要があり、そのために従来の樹脂では達成できない特性を求められるようになってきている。
Conventionally, for example, a wiring board using BT resin, which is a resin in which a bisphenol A type cyanate ester compound and a bismaleimide compound described in Patent Document 1 are used in combination, has excellent heat resistance, chemical resistance, electrical characteristics, etc. Although it has been widely used as a wiring board, it needs to be improved in a situation where higher performance is required as described above.
In recent years, the weight reduction of airplanes, automobiles, trains, ships, etc. has been progressing due to the need for energy saving. In the field of vehicles, studies have been made in particular in the field of vehicles in which a metal material is replaced with a lightweight and high-strength carbon fiber composite material. For example, in Boeing 787, the weight is reduced by increasing the ratio of the composite material, and the fuel efficiency is greatly improved. In the automotive field, it is equipped with a propeller shaft made of composite material, but there is also a movement to make the vehicle body with composite material for luxury cars.
Conventionally, composite materials using epoxy resins such as bisphenol A diglycidyl ether and tetraglycidyl diaminodiphenylmethane and curing agents such as diaminodiphenylmethane and diaminodiphenylsulfone have been used. Therefore, characteristics that cannot be achieved by conventional resins have been demanded.
日本国特公昭54-30440号公報Japanese Patent Publication No.54-30440 日本国特公平8-16151号公報Japanese Patent Publication No.8-16151 日本国特許第5030297号公報Japanese Patent No. 5030297
 本発明の目的は、副生物であるジフェニルアミンの含量が少ない芳香族アミン樹脂、これから誘導されるマレイミド樹脂、これらを使用した硬化性樹脂組成物およびこれを硬化することにより得られる耐熱性、低吸湿性、低誘電特性、難燃性、強靭性に優れた硬化物を提供することにある。 An object of the present invention is to provide an aromatic amine resin with a low content of diphenylamine as a by-product, a maleimide resin derived therefrom, a curable resin composition using these, and a heat resistance and low moisture absorption obtained by curing the resin. It is to provide a cured product having excellent properties, low dielectric properties, flame retardancy, and toughness.
 本発明者らは上記課題を解決するために鋭意研究した結果、本発明を完成させるに到った。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
 すなわち本発明は、下記[1]~[7]を提供するものである。
[1]アニリンとビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを反応させて得られる下記式(1)で表される化合物を含む芳香族アミン樹脂であって、副生成物であるジフェニルアミンの含有量が1重量%以下である芳香族アミン樹脂。
That is, the present invention provides the following [1] to [7].
[1] An aromatic amine resin containing a compound represented by the following formula (1) obtained by reacting aniline with a bishalogenomethylaralkyl derivative or an aralkyl alcohol derivative, and containing diphenylamine as a by-product An aromatic amine resin having a content of 1% by weight or less.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Xは炭素数6~18の置換又は無置換の芳香族炭化水素基を表す。nは平均値であり1≦n≦10を表す。)
[2]アニリンとビスハロゲノメチルビフェニル誘導体またはビフェニルアルコール誘導体とを反応させて得られる下記式(2)で表される化合物を含む芳香族アミン樹脂であって、副生成物であるジフェニルアミンの含有量が1重量%以下である[1]に記載の芳香族アミン樹脂。
(In the formula, X represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms. N is an average value and represents 1 ≦ n ≦ 10.)
[2] An aromatic amine resin containing a compound represented by the following formula (2) obtained by reacting aniline with a bishalogenomethylbiphenyl derivative or a biphenyl alcohol derivative, and containing diphenylamine as a by-product The aromatic amine resin according to [1], wherein is 1% by weight or less.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、nは平均値であり1≦n≦10を表す。)
[3]軟化点が65℃以下である[1]または[2]に記載の芳香族アミン樹脂。
[4][1]~[3]のいずれか一項に記載の芳香族アミン樹脂と、マレイン酸またはマレイン酸無水物とを反応させることにより得られるマレイミド樹脂。
[5]ジフェニルアミンの含有量が1重量%以下である[4]に記載のマレイミド樹脂。
[6][1]~[3]のいずれか一項に記載の芳香族アミン樹脂および[4]もしくは[5]に記載のマレイミド樹脂の少なくとも一方を含む硬化性樹脂組成物。
[7][6]に記載の硬化性樹脂組成物を硬化してなる硬化物。
(In the formula, n is an average value and represents 1 ≦ n ≦ 10.)
[3] The aromatic amine resin according to [1] or [2], which has a softening point of 65 ° C. or lower.
[4] A maleimide resin obtained by reacting the aromatic amine resin according to any one of [1] to [3] with maleic acid or maleic anhydride.
[5] The maleimide resin according to [4], wherein the content of diphenylamine is 1% by weight or less.
[6] A curable resin composition comprising at least one of the aromatic amine resin according to any one of [1] to [3] and the maleimide resin according to [4] or [5].
[7] A cured product obtained by curing the curable resin composition according to [6].
 本発明の芳香族アミン樹脂、マレイミド樹脂を含む硬化性樹脂組成物を硬化することにより、高耐熱性、低吸湿性、低誘電特性、難燃性、強靭性に優れた特性を併せ持つ硬化物を提供することができる。本発明の硬化性樹脂組成物は、電気電子部品の封止や回路基板、炭素繊維複合材などに有用な材料である。 By curing the curable resin composition containing the aromatic amine resin and maleimide resin of the present invention, a cured product having excellent properties such as high heat resistance, low moisture absorption, low dielectric properties, flame retardancy, and toughness is obtained. Can be provided. The curable resin composition of the present invention is a useful material for sealing electrical and electronic parts, circuit boards, carbon fiber composites, and the like.
 本発明の芳香族アミン樹脂は式(1)または式(2)で表される化合物を含み、製造中に副生されるジフェニルアミンの含有量が1重量%以下に、好ましくは0.5重量%以下に、より好ましくは0.2重量%以下に制御されたものである。 The aromatic amine resin of the present invention contains a compound represented by the formula (1) or (2), and the content of diphenylamine by-produced during production is 1% by weight or less, preferably 0.5% by weight. In the following, it is more preferably controlled to 0.2% by weight or less.
 式(1)または式(2)の化合物の製法は特に限定されない。例えば日本国特公平8-16151号公報や日本国特許第5030297号公報にはアニリンとビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体との反応が記載されているが、これらと同様の方法を採用してアニリンとビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体を反応させることにより式(1)または式(2)の化合物が得られる。
 使用されるビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体としては、1,4-ビスクロロメチルベンゼン、1,3-ビスクロロメチルベンゼン、1,2-ビスクロロメチルベンゼン、1,4-ビスブロモメチルベンゼン、1,3-ビスブロモメチルベンゼン、1,2-ビスブロモメチルベンゼン、1,4-ジメトキシメチルベンゼン、1,3-ジメトキシメチルベンゼン、1,2-ジメトキシメチルベンゼン、1,4-ジエトキシメチルベンゼン、1,3-ジエトキシメチルベンゼン、1,2-ジエトキシメチルベンゼン、1,4-ジヒドロキシメチルベンゼン、1,3-ジヒドロキシメチルベンゼン、1,2-ジヒドロキシメチルベンゼン、2,6-ジヒドロキシメチルナフタレン、1,5-ジヒドロキシメチルナフタレン、2,6-ジメトキシメチルナフタレン、1,5-ジメトキシメチルナフタレン、4,4’-ビス(クロロメチル)ビフェニル、4,4’-ビス(ブロモメチル)ビフェニル、4,4’-ビス(フルオロメチル)ビフェニル、4,4’-ビス(ヨードメチル)ビフェニル、4,4’-ジメトキシメチルビフェニル、4,4’-ジエトキシメチルビフェニル、4,4’-ジプロポキシメチルビフェニル、4,4’-ジイソプロポキシメチルビフェニル、4,4’-ジイソブトキシメチルビフェニル、4,4’-ジブトキシメチルビフェニル、4,4’-ジ-tert-ブトキシメチルビフェニル、4,4’-ジヒドロキシメチルビフェニルなどが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。ビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体の使用量は、使用されるアニリン1モルに対して通常0.05~0.8モルであり、好ましくは0.1~0.6モルである。
The manufacturing method of the compound of Formula (1) or Formula (2) is not specifically limited. For example, Japanese Patent Publication No. 8-16151 and Japanese Patent No. 5030297 describe the reaction of aniline with a bishalogenomethylaralkyl derivative or an aralkyl alcohol derivative. A compound of formula (1) or formula (2) is obtained by reacting aniline with a bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative.
Examples of bishalogenomethylaralkyl derivatives or aralkyl alcohol derivatives used include 1,4-bischloromethylbenzene, 1,3-bischloromethylbenzene, 1,2-bischloromethylbenzene, 1,4-bisbromomethylbenzene 1,3-bisbromomethylbenzene, 1,2-bisbromomethylbenzene, 1,4-dimethoxymethylbenzene, 1,3-dimethoxymethylbenzene, 1,2-dimethoxymethylbenzene, 1,4-diethoxymethyl Benzene, 1,3-diethoxymethylbenzene, 1,2-diethoxymethylbenzene, 1,4-dihydroxymethylbenzene, 1,3-dihydroxymethylbenzene, 1,2-dihydroxymethylbenzene, 2,6-dihydroxymethyl Naphthalene, 1,5-dihydroxymethyl Phthalene, 2,6-dimethoxymethylnaphthalene, 1,5-dimethoxymethylnaphthalene, 4,4′-bis (chloromethyl) biphenyl, 4,4′-bis (bromomethyl) biphenyl, 4,4′-bis (fluoromethyl) ) Biphenyl, 4,4′-bis (iodomethyl) biphenyl, 4,4′-dimethoxymethylbiphenyl, 4,4′-diethoxymethylbiphenyl, 4,4′-dipropoxymethylbiphenyl, 4,4′-diiso Examples include propoxymethyl biphenyl, 4,4′-diisobutoxymethyl biphenyl, 4,4′-dibutoxymethyl biphenyl, 4,4′-di-tert-butoxymethyl biphenyl, 4,4′-dihydroxymethyl biphenyl, and the like. These may be used alone or in combination of two or more. The amount of the bishalogenomethylaralkyl derivative or aralkyl alcohol derivative to be used is generally 0.05 to 0.8 mol, preferably 0.1 to 0.6 mol, per 1 mol of aniline used.
 反応の際、必要により塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p-トルエンスルホン酸、メタンスルホン酸等の酸性触媒を使用しても良い。これらは単独でも二種以上併用しても良い。触媒の使用量は、使用されるアニリン1モルに対して通常0.1~0.8モルであり、好ましくは0.2~0.7モルである。多すぎると反応溶液の粘度が高すぎて攪拌が困難になる恐れがあり、少なすぎると反応の進行が遅くなる恐れがある。
 反応は必要によりトルエン、キシレンなどの有機溶剤を使用して行っても、無溶剤で行っても良い。例えば、アニリンと溶剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除く。しかる後に40~100℃、好ましくは50~80℃でビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体を1~5時間、好ましくは2~4時間かけて添加し、その後溶剤を系内から除きながら昇温して180~240℃、好ましくは190~220℃で5~30時間、好ましくは5~20時間反応を行う。反応終了後、アルカリ水溶液で酸性触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返す。日本国特公平8-16151号公報や日本国特許第5030297号公報においては言及されていないが、この段階で副生成物であるジフェニルアミンは、触媒量・原料使用比率・温度・時間等により異なるが、通常樹脂中に2~10重量%含まれる。ジフェニルアミンは、アニリンを留去する条件では除去できない。少なくともアニリンの沸点以上の温度での加熱減圧下での水蒸気や、大量の窒素ガス等の不活性ガスの吹き込みを行うことでジフェニルアミンを除去することができる。
In the reaction, if necessary, an acidic catalyst such as hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid and the like may be used. These may be used alone or in combination of two or more. The amount of the catalyst used is usually 0.1 to 0.8 mol, preferably 0.2 to 0.7 mol, relative to 1 mol of aniline used. If the amount is too large, the viscosity of the reaction solution may be too high and stirring may be difficult. If the amount is too small, the progress of the reaction may be delayed.
The reaction may be carried out using an organic solvent such as toluene or xylene, if necessary, or without solvent. For example, after adding an acidic catalyst to a mixed solution of aniline and a solvent, when the catalyst contains water, the water is removed from the system by azeotropic distillation. Thereafter, the bishalogenomethylaralkyl derivative or aralkyl alcohol derivative is added over 1 to 5 hours, preferably 2 to 4 hours at 40 to 100 ° C., preferably 50 to 80 ° C., and then the temperature is raised while removing the solvent from the system. The reaction is carried out at 180 to 240 ° C., preferably 190 to 220 ° C. for 5 to 30 hours, preferably 5 to 20 hours. After completion of the reaction, the acidic catalyst is neutralized with an aqueous alkaline solution, and then a water-insoluble organic solvent is added to the oil layer, and washing with water is repeated until the wastewater becomes neutral. Although not mentioned in Japanese Patent Publication No. 8-16151 and Japanese Patent No. 5030297, diphenylamine, which is a by-product at this stage, varies depending on the amount of catalyst, the ratio of raw materials used, temperature, time, etc. Usually 2 to 10% by weight is contained in the resin. Diphenylamine cannot be removed under conditions where aniline is distilled off. Diphenylamine can be removed by blowing steam or an inert gas such as a large amount of nitrogen gas under reduced pressure by heating at a temperature equal to or higher than the boiling point of aniline.
 硬化性樹脂組成物にジフェニルアミンが含まれていると、例えばエポキシ樹脂との硬化反応に使用する場合、分子鎖の終末端となってしまい、含量が多いと硬化網目が十分に形成されず、機械強度を著しく落としてしまう。また、芳香族アミン樹脂中にジフェニルアミンが含まれると、マレイミド化後もジフェニルアミンがそのまま残存し、反応に寄与せずにそのまま硬化物中に残るため、長期使用中にブリードアウトをし、耐熱分解性が低下する。したがって、ジフェニルアミン含量は1重量%以下、好ましくは0.5重量%以下、より好ましくは0.2重量%以下にすることが求められる。 When diphenylamine is contained in the curable resin composition, for example, when used for a curing reaction with an epoxy resin, it becomes the terminal end of the molecular chain. The strength is significantly reduced. In addition, when diphenylamine is contained in the aromatic amine resin, diphenylamine remains as it is after maleimidation, and remains in the cured product as it is without contributing to the reaction. Decreases. Accordingly, the diphenylamine content is required to be 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.2% by weight or less.
 本発明の芳香族アミン樹脂の軟化点は65℃以下が好ましく、60℃以下がより好ましい。軟化点が65℃より高いとマレイミド化した樹脂の粘度が高くなって、炭素繊維やガラス繊維へ含浸し難くなる。希釈溶剤を増やして粘度を下げれば、樹脂が十分に付着しない可能性がある。 The softening point of the aromatic amine resin of the present invention is preferably 65 ° C. or lower, more preferably 60 ° C. or lower. When the softening point is higher than 65 ° C., the viscosity of the maleimidized resin becomes high, and it becomes difficult to impregnate carbon fibers or glass fibers. If the dilution solvent is increased to lower the viscosity, the resin may not adhere sufficiently.
 本発明のマレイミド樹脂は式(1)または式(2)の化合物を含む芳香族アミン樹脂にマレイン酸またはマレイン酸無水物を溶剤、触媒の存在下に反応させて得られるが、例えば日本国特開平3-100016号公報や日本国特開昭61-229863号公報に記載の方法等を採用すればよい。その場合、反応中に生成する水を系内から除去する必要があるため、反応で使用する溶剤は非水溶性の溶剤を使用する。例えばトルエン、キシレンなどの芳香族溶剤、シクロヘキサン、n-ヘキサンなどの脂肪族溶剤、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル系溶剤、メチルイソブチルケトン、シクロペンタノンなどのケトン系溶剤などが挙げられるがこれらに限定されるものではなく、2種以上を併用しても良い。また、前記非水溶性溶剤に加えて非プロトン性極性溶剤を併用することもできる。例えば、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどが挙げられ、2種以上を併用しても良い。非プロトン性極性溶剤を使用する場合は、併用する非水溶性溶剤よりも沸点の高いものを使用することが好ましい。触媒は特に限定されないが、p-トルエンスルホン酸、ヒドロキシ-p-トルエンスルホン酸、メタンスルホン酸、硫酸、リン酸等の酸性触媒が挙げられる。
 例えばマレイン酸をトルエンに溶解し、撹拌下で式(1)または式(2)の化合物を含む芳香族アミン樹脂のN-メチルピロリドン溶液を添加し、その後p-トルエンスルホン酸を加えて、還流条件下で生成する水を系内から除去しながら反応を行う。
The maleimide resin of the present invention can be obtained by reacting an aromatic amine resin containing the compound of formula (1) or formula (2) with maleic acid or maleic anhydride in the presence of a solvent and a catalyst. The methods described in Japanese Laid-Open Patent Publication No. 3-100016 and Japanese Patent Laid-Open No. 61-229863 may be employed. In that case, since it is necessary to remove the water produced | generated during reaction from the inside of a system, the solvent used by reaction uses a water-insoluble solvent. For example, aromatic solvents such as toluene and xylene, aliphatic solvents such as cyclohexane and n-hexane, ethers such as diethyl ether and diisopropyl ether, ester solvents such as ethyl acetate and butyl acetate, methyl isobutyl ketone and cyclopentanone However, it is not limited to these, and two or more kinds may be used in combination. In addition to the water-insoluble solvent, an aprotic polar solvent may be used in combination. Examples thereof include dimethyl sulfone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, etc., and two or more kinds may be used in combination. When using an aprotic polar solvent, it is preferable to use a solvent having a higher boiling point than the water-insoluble solvent used in combination. The catalyst is not particularly limited, and examples thereof include acidic catalysts such as p-toluenesulfonic acid, hydroxy-p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, and phosphoric acid.
For example, maleic acid is dissolved in toluene, an N-methylpyrrolidone solution of an aromatic amine resin containing the compound of formula (1) or formula (2) is added with stirring, and then p-toluenesulfonic acid is added and refluxed. The reaction is carried out while removing water produced under the conditions from the system.
 本発明の硬化性樹脂組成物の必須成分の一つである芳香族アミン樹脂と架橋反応可能な化合物としては、エポキシ基、マレイミド基、アルデヒド基、ケトン基、酸無水物基、イソシアネート基、カルボニル基などの芳香族アミン樹脂と架橋反応し得る官能基(或いは構造)を有する化合物であれば特に限定されない。
 本発明の硬化性樹脂組成物の必須成分の一つであるマレイミド樹脂と架橋反応可能な化合物としては、アミノ基、シアネート基、フェノール性水酸基、アルコール性水酸基、アリル基、アクリル基、メタクリル基、ビニル基、共役ジエン基などのマレイミド樹脂と架橋反応し得る官能基(或いは構造)を有する化合物であれば特に限定されない。
 アミン化合物とマレイミド化合物は架橋反応するので、本発明の芳香族アミン樹脂とマレイミド樹脂を併用しても良い。マレイミド樹脂は自己重合も可能なので単独使用も可能である。また、本発明の芳香族アミン樹脂以外のアミン化合物または本発明のマレイミド樹脂以外のマレイミド化合物を併用してもかまわない。
 本発明の硬化性樹脂組成物中の本発明の芳香族アミン樹脂またはマレイミド樹脂の含有量は、通常10重量%以上であり、好ましくは15重量%以上であり、より好ましくは20重量%以上である。
Examples of the compound capable of crosslinking reaction with the aromatic amine resin which is one of the essential components of the curable resin composition of the present invention include epoxy group, maleimide group, aldehyde group, ketone group, acid anhydride group, isocyanate group, carbonyl The compound is not particularly limited as long as it is a compound having a functional group (or structure) capable of crosslinking reaction with an aromatic amine resin such as a group.
As a compound capable of crosslinking reaction with the maleimide resin which is one of the essential components of the curable resin composition of the present invention, amino group, cyanate group, phenolic hydroxyl group, alcoholic hydroxyl group, allyl group, acrylic group, methacryl group, The compound is not particularly limited as long as it is a compound having a functional group (or structure) capable of crosslinking with a maleimide resin such as a vinyl group or a conjugated diene group.
Since the amine compound and the maleimide compound undergo a crosslinking reaction, the aromatic amine resin and the maleimide resin of the present invention may be used in combination. The maleimide resin can be self-polymerized and can be used alone. Moreover, you may use together amine compounds other than the aromatic amine resin of this invention, or maleimide compounds other than the maleimide resin of this invention.
The content of the aromatic amine resin or maleimide resin of the present invention in the curable resin composition of the present invention is usually 10% by weight or more, preferably 15% by weight or more, more preferably 20% by weight or more. is there.
 本発明の硬化性樹脂組成物に配合し得るアミン化合物としては従来公知のアミン化合物を使用することができる。アミン化合物の具体例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン、N-アミノエチルピペラジン、アニリン・ホルマリン樹脂などが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。アミン化合物の配合量は、重量比で本発明の芳香族アミン樹脂の好ましくは5倍以下、より好ましくは2倍以下の範囲である。 As the amine compound that can be blended in the curable resin composition of the present invention, a conventionally known amine compound can be used. Specific examples of the amine compound include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, isophoronediamine, 1,3-bisaminomethyl. Cyclohexane, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone, dicyandiamide, polyoxypropylene Examples include diamine, polyoxypropylene triamine, N-aminoethylpiperazine, and aniline / formalin resin. Not intended to be. These may be used alone or in combination of two or more. The compounding amount of the amine compound is preferably not more than 5 times, more preferably not more than 2 times the weight of the aromatic amine resin of the present invention.
 本発明の硬化性樹脂組成物に配合し得るマレイミド化合物としては従来公知のマレイミド化合物を使用することができる。マレイミド化合物の具体例としては、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼンなどが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。マレイミド化合物の配合量は、重量比で本発明のマレイミド樹脂の好ましくは5倍以下、より好ましくは2倍以下の範囲である。 As the maleimide compound that can be blended in the curable resin composition of the present invention, a conventionally known maleimide compound can be used. Specific examples of the maleimide compound include 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3 '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and the like, but are not limited thereto. These may be used alone or in combination of two or more. The blending amount of the maleimide compound is preferably 5 times or less, more preferably 2 times or less of the maleimide resin of the present invention by weight ratio.
 本発明の硬化性樹脂組成物には、シアネートエステル化合物を配合することもできる。
 本発明の硬化性樹脂組成物に配合し得るシアネートエステル化合物としては従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
The curable resin composition of the present invention can also contain a cyanate ester compound.
A conventionally well-known cyanate ester compound can be used as a cyanate ester compound which can be mix | blended with the curable resin composition of this invention. Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Examples include, but are not limited to, cyanate ester compounds obtained by reacting a product with cyanogen halide. These may be used alone or in combination of two or more.
 上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。
 上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
 上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
 上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
 また、日本国特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
Examples of the phenols include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
Examples of the various aldehydes include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, and cinnamaldehyde.
Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
In addition, cyanate ester compounds described in Japanese Patent Application Laid-Open No. 2005-264154 are particularly preferable as cyanate ester compounds because they are excellent in low moisture absorption, flame retardancy, and dielectric properties.
 本発明の硬化性樹脂組成物には、エポキシ樹脂を配合することもできる。
 本発明の硬化性樹脂組成物に配合し得るエポキシ樹脂としては、従来公知のエポキシ樹脂のいずれも使用することができる。エポキシ樹脂の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物及びアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4-ビニル-1-シクロヘキセンジエポキシドや3,4-エポキシシクロヘキシルメチル-3,4’-エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル-p-アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 また、フェノール類と前記のビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを縮合反応させることにより得られるフェノールアラルキル樹脂を原料とし、エピクロルヒドリンと脱塩酸反応させることにより得られるエポキシ樹脂は、低吸湿性、難燃性、誘電特性に優れているためエポキシ樹脂として特に好ましい。
An epoxy resin can also be mix | blended with the curable resin composition of this invention.
As an epoxy resin that can be blended in the curable resin composition of the present invention, any conventionally known epoxy resin can be used. Specific examples of epoxy resins include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, polycondensates of bisphenols and various aldehydes. And glycidyl ether epoxy resins obtained by glycidylation of alcohols, alicyclic epoxies such as 4-vinyl-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4′-epoxycyclohexanecarboxylate Examples of the resin include, but are not limited to, glycidylamine epoxy resins and glycidyl ester epoxy resins such as tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol. These may be used alone or in combination of two or more.
Further, a phenol aralkyl resin obtained by condensation reaction of phenols and the above-mentioned bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative, and an epoxy resin obtained by dehydrochlorination reaction with epichlorohydrin are low hygroscopic, Since it is excellent in a flame retardance and a dielectric characteristic, it is especially preferable as an epoxy resin.
 本発明の硬化性樹脂組成物には、フェノール樹脂を配合することもできる。
 本発明の硬化性樹脂組成物に配合し得るフェノール樹脂としては、従来公知のフェノール樹脂のいずれも使用することができる。フェノール樹脂の具体例としてはビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、α,α,α’,α’-ベンゼンジメタノール、ビフェニルジメタノール、α,α,α’,α’-ビフェニルジメタノール等)との重縮合物、フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、及びこれらの変性物が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 また、フェノール類と前記のビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを縮合反応させることにより得られるフェノールアラルキル樹脂は、低吸湿性、難燃性、誘電特性に優れているためフェノール樹脂として特に好ましい。
A phenol resin can also be mix | blended with the curable resin composition of this invention.
Any conventionally known phenol resin can be used as the phenol resin that can be blended in the curable resin composition of the present invention. Specific examples of phenolic resins include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.), phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl Substituted polyhydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.) Phenols and various diene compounds (dicyclopentadiene, terpenes, vinyl Polymers with lohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.), phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.) Polycondensates with, phenols and aromatic dimethanols (benzenedimethanol, α, α, α ', α'-benzenedimethanol, biphenyldimethanol, α, α, α', α'-biphenyldimethanol Etc.), polycondensates of phenols and aromatic dichloromethyls (α, α'-dichloroxylene, bischloromethylbiphenyl, etc.), polycondensates of bisphenols and various aldehydes, and these These include modified products The present invention is not limited. These may be used alone or in combination of two or more.
In addition, a phenol aralkyl resin obtained by a condensation reaction of a phenol and the above bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative is particularly preferable as a phenol resin because it is excellent in low moisture absorption, flame retardancy, and dielectric properties. .
 本発明の硬化性樹脂組成物には、酸無水物基を有する化合物を配合することもできる。
 本発明の硬化性樹脂組成物に配合し得る酸無水物基を有する化合物としては、従来公知のいずれも使用することができる。酸無水物基を有する化合物の具体例としては1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ピロメリット酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等が挙げられる。
 酸無水物基を有する化合物は単独又は2種以上混合して用いることができる。また、酸無水物基とアミンが反応した結果、アミック酸となるが、さらに200℃~300℃で加熱すると脱水反応によりイミド構造となり、耐熱性に非常に優れた材料となる。
The curable resin composition of the present invention may contain a compound having an acid anhydride group.
Any conventionally known compound having an acid anhydride group that can be blended in the curable resin composition of the present invention can be used. Specific examples of the compound having an acid anhydride group include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3, 4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, pyromellitic anhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl- 3-cyclohexene-1,2-dicarboxylic acid anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride, etc. Can be mentioned.
The compounds having an acid anhydride group can be used alone or in combination of two or more. In addition, the acid anhydride group and amine react to form an amic acid, but when heated at 200 ° C. to 300 ° C., an imide structure is formed by a dehydration reaction, resulting in a material with excellent heat resistance.
 本発明の硬化性樹脂組成物には必要に応じて硬化用の触媒(硬化促進剤)を配合することができる。例えば2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール類、トリエチルアミン、トリエチレンジアミン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン類、オクチル酸スズ、オクチル酸亜鉛、ジブチルスズジマレエート、ナフテン酸亜鉛、ナフテン酸コバルト、オレイン酸スズ等の有機金属塩、塩化亜鉛、塩化アルミニウム、塩化スズなどの金属塩化物、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイドなどの有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物、塩酸、硫酸、リン酸などの鉱酸、三フッ化ホウ素などのルイス酸、炭酸ナトリウムや塩化リチウム等の塩類などが挙げられる。硬化用の触媒の配合量は、硬化性樹脂組成物の合計100重量部に対して好ましくは10重量部以下、より好ましくは5重量部以下の範囲である。 A curing catalyst (curing accelerator) can be blended with the curable resin composition of the present invention as necessary. For example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, triethylamine, Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo [5.4.0] undecene-7, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine, Phosphines such as tributylphosphine and trioctylphosphine, tin octylate, zinc octylate, dibutyltin dimaleate, zinc naphthenate, cobalt naphthenate, tin oleate, zinc chloride, aluminum chloride Metal chlorides such as tin chloride, organic peroxides such as di-tert-butyl peroxide and dicumyl peroxide, azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile, hydrochloric acid, sulfuric acid, phosphorus Examples include mineral acids such as acids, Lewis acids such as boron trifluoride, and salts such as sodium carbonate and lithium chloride. The amount of the curing catalyst is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the total curable resin composition.
 本発明の硬化性樹脂組成物は、有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。用いられる溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常10~80重量%、好ましくは20~70重量%となる範囲で使用する。 The curable resin composition of the present invention can be made into a varnish-like composition (hereinafter simply referred to as varnish) by adding an organic solvent. Examples of the solvent used include amide solvents such as γ-butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone. Sulfones, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned. The solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by weight, preferably 20 to 70% by weight.
 更に本発明の硬化性樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、エポキシ樹脂用硬化剤、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末等の無機充填材、シランカップリング剤等の充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、硬化性樹脂組成物100重量部に対して好ましくは1,000重量部以下、より好ましくは700重量部以下の範囲である。 Furthermore, the curable resin composition of the present invention can contain known additives as required. Specific examples of additives that can be used include curing agents for epoxy resins, polybutadiene and modified products thereof, modified products of acrylonitrile copolymers, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, cyanate ester compounds , Silicone gel, silicone oil, inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, silane cup Coloring agents such as a surface treatment agent for a filler such as a ring agent, a release agent, carbon black, phthalocyanine blue, and phthalocyanine green can be used. The amount of these additives is preferably 1,000 parts by weight or less, more preferably 700 parts by weight or less, with respect to 100 parts by weight of the curable resin composition.
 本発明の硬化性樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えばマレイミド樹脂とシアネートエステル化合物を触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化する。同様に、本発明の芳香族アミン樹脂および/または本発明のマレイミド樹脂と、必要によりエポキシ樹脂、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の不存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用することができる。 The method for preparing the curable resin composition of the present invention is not particularly limited, but each component may be mixed evenly or prepolymerized. For example, a maleimide resin and a cyanate ester compound are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent. Similarly, the aromatic amine resin of the present invention and / or the maleimide resin of the present invention and, if necessary, an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound and other additives are added. And may be prepolymerized. For mixing or prepolymerization of each component, for example, an extruder, a kneader, or a roll can be used in the absence of a solvent, and a reaction kettle with a stirring device can be used in the presence of a solvent.
 本発明の硬化性樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。
 また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
 上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
A prepreg can be obtained by heating and melting the curable resin composition of the present invention to lower the viscosity and impregnating it with reinforcing fibers such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, and alumina fiber.
Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.
The above prepreg is cut into a desired shape, laminated with copper foil as necessary, and then the curable resin composition is heated and cured while applying pressure to the laminate by a press molding method, autoclave molding method, sheet winding molding method, etc. Thus, an electric / electronic laminate (printed wiring board) and a carbon fiber reinforcing material can be obtained.
 以下、実施例、比較例により本発明を具体的に説明する。尚、本文中「部」及び「%」は、それぞれ「重量部」及び「重量%」を表す。軟化点及び溶融粘度は下記の方法で測定した。
・軟化点:JIS K-7234に準じた方法で測定
・溶融粘度:コーンプレート法での150℃における粘度
・ジフェニルアミン含量:ガスクロマトグラフィーで測定
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In the text, “parts” and “%” represent “parts by weight” and “% by weight”, respectively. The softening point and melt viscosity were measured by the following methods.
・ Softening point: measured by a method according to JIS K-7234 ・ Melt viscosity: Viscosity at 150 ° C. by cone plate method ・ Diphenylamine content: measured by gas chromatography
実施例1
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン372部とトルエン200部を仕込み、室温で35%塩酸146部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル125部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を195~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液330部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で昇温時に留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下(200℃、0.6KPa)において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂(a1)173部を得た。芳香族アミン樹脂(a1)中のジフェニルアミンは2.0%であった。
 得られた樹脂を、再びロータリーエバポレーターで加熱減圧下(200℃、4KPa)において水蒸気吹き込みの代わりに水を少量づつ滴下した。その結果、芳香族アミン樹脂(A1)166部を得た。得られた芳香族アミン樹脂(A1)の軟化点は56℃、溶融粘度は0.035Pa・s、ジフェニルアミンは0.1%以下であった。
Example 1
A flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 372 parts of aniline and 200 parts of toluene, and 146 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the organic layer of toluene was returned to the system for dehydration. Subsequently, 125 parts of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining the temperature at 60 to 70 ° C., and the reaction was further carried out at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to bring the inside of the system to 195 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. Then, with cooling, 330 parts of 30% aqueous sodium hydroxide solution was slowly added dropwise so that the system did not circulate vigorously, and the toluene distilled off at a temperature of 80 ° C. or lower was returned to the system and allowed to stand at 70 ° C. to 80 ° C. I put it. The separated lower aqueous layer was removed, and the reaction solution was washed with water until the washing solution became neutral. Subsequently, 173 parts of aromatic amine resin (a1) was obtained by distilling off excess aniline and toluene from the oil layer with a rotary evaporator under heating and reduced pressure (200 ° C., 0.6 KPa). Diphenylamine in the aromatic amine resin (a1) was 2.0%.
The obtained resin was again dripped in small amounts in place of steam blowing in a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa). As a result, 166 parts of aromatic amine resin (A1) was obtained. The aromatic amine resin (A1) obtained had a softening point of 56 ° C., a melt viscosity of 0.035 Pa · s, and diphenylamine of 0.1% or less.
実施例2
 実施例1においてアニリン372部を457部に変えた以外は同様の操作を行ったところ芳香族アミン樹脂(a2)181部を得た。芳香族アミン樹脂(a2)中のジフェニルアミンは3.0%であった。得られた樹脂を、再びロータリーエバポレーターで加熱減圧下(200℃、4KPa)において水蒸気吹き込みの代わりに水を少量づつ滴下した。その結果、芳香族アミン樹脂(A2)166部を得た。得られた芳香族アミン樹脂(A2)の軟化点は53℃、溶融粘度は0.025Pa・s、ジフェニルアミンは0.1%以下であった。
Example 2
The same operation was performed except that 372 parts of aniline was changed to 457 parts in Example 1, and 181 parts of aromatic amine resin (a2) was obtained. Diphenylamine in the aromatic amine resin (a2) was 3.0%. The obtained resin was again dripped in small amounts in place of steam blowing in a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa). As a result, 166 parts of aromatic amine resin (A2) was obtained. The aromatic amine resin (A2) obtained had a softening point of 53 ° C., a melt viscosity of 0.025 Pa · s, and diphenylamine of 0.1% or less.
実施例3
 実施例1においてアニリン372部を186部に変えた以外は同様の操作を行ったところ芳香族アミン樹脂(A3)181部を得た。得られた芳香族アミン樹脂(A3)の軟化点は64℃、溶融粘度は0.1Pa・s、ジフェニルアミンは0.16%であった。
Example 3
The same operation was performed except that 372 parts of aniline was changed to 186 parts in Example 1, and 181 parts of aromatic amine resin (A3) was obtained. The aromatic amine resin (A3) obtained had a softening point of 64 ° C., a melt viscosity of 0.1 Pa · s, and diphenylamine of 0.16%.
実施例4
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部を仕込み、加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次に、実施例1で得られた芳香族アミン樹脂(A1)195部をN-メチル-2-ピロリドン195部に溶解した樹脂溶液を、系内を80~85℃に保ちながら1時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸3部を加えて、還流条件で共沸してくる縮合水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら20時間反応を行った。反応終了後、トルエンを120部追加し、水洗を繰り返してp-トルエンスルホン酸及び過剰の無水マレイン酸を除去し、加熱して共沸により水を系内から除いた。次いで反応溶液を濃縮して、マレイミド樹脂(M1)を70%含有する樹脂溶液を得た。マレイミド樹脂(M1)中のジフェニルアミン含量は0.1%以下であった。
Example 4
After adding 147 parts of maleic anhydride and 300 parts of toluene to a flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap, and stirrer, cooling and separating the water and toluene azeotropically heated. Then, only toluene which is an organic layer was returned to the system for dehydration. Next, a resin solution obtained by dissolving 195 parts of the aromatic amine resin (A1) obtained in Example 1 in 195 parts of N-methyl-2-pyrrolidone was added over 1 hour while maintaining the system at 80 to 85 ° C. It was dripped. After completion of the dropping, the reaction is carried out at the same temperature for 2 hours, 3 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 20 hours while dehydrating. After completion of the reaction, 120 parts of toluene was added, and washing with water was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, followed by heating to remove water from the system by azeotropy. Next, the reaction solution was concentrated to obtain a resin solution containing 70% of maleimide resin (M1). The diphenylamine content in the maleimide resin (M1) was 0.1% or less.
比較例1
 実施例4において芳香族アミン樹脂(A1)を芳香族アミン樹脂(a1)に変えた以外は同様の操作を行ったところ、マレイミド樹脂(m1)の70%樹脂溶液を得た。マレイミド樹脂(m1)中のジフェニルアミン含量は1.4%であった。
Comparative Example 1
When a similar operation was performed except that the aromatic amine resin (A1) was changed to the aromatic amine resin (a1) in Example 4, a 70% resin solution of the maleimide resin (m1) was obtained. The diphenylamine content in the maleimide resin (m1) was 1.4%.
実施例5~6、比較例2~3
 実施例1で得られた芳香族アミン樹脂(A1)および(a1)を使用し、各種のエポキシ樹脂を表1の割合(重量部)で配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、160℃で2時間、更に180℃で8時間硬化させた。また、組成物が室温で液状であるものは各成分を金属容器中で加熱溶融混合してそのまま金型に流し込み、160℃で2時間、更に180℃で8時間硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した結果を表1に示す。
・ガラス転移温度:動的粘弾性試験機により測定し、tanδが最大値のときの温度。
・吸湿率:121℃/100%で24時間後の重量増加率。試験片は直径50mm×厚み4mmの円盤。
・アイゾッド衝撃試験値:JIS K7110に準拠して行った。
Examples 5-6, Comparative Examples 2-3
Using the aromatic amine resins (A1) and (a1) obtained in Example 1, various epoxy resins were blended in the proportions (parts by weight) shown in Table 1, kneaded with mixing rolls, tableted, and transfer molded. A resin molded body was prepared and cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours. When the composition was liquid at room temperature, each component was heated, melted and mixed in a metal container, poured into a mold as it was, and cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours. The results of measuring the physical properties of the cured product thus obtained for the following items are shown in Table 1.
Glass transition temperature: Temperature measured by a dynamic viscoelasticity tester and tan δ is a maximum value.
Moisture absorption: Weight increase rate after 24 hours at 121 ° C./100%. The test piece is a disk having a diameter of 50 mm and a thickness of 4 mm.
-Izod impact test value: Measured in accordance with JIS K7110.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
注)
(E1):NC-3000(日本化薬製 エポキシ当量270g/eq)
(E2):jER-828(JER製 エポキシ当量185)
(A1)、(a1):実施例1で合成した芳香族アミン樹脂
note)
(E1): NC-3000 (manufactured by Nippon Kayaku Epoxy equivalent 270 g / eq)
(E2): jER-828 (manufactured by JER, epoxy equivalent 185)
(A1), (a1): Aromatic amine resin synthesized in Example 1
実施例7、比較例4
 2,2-ビス(4-シアナートフェニル)プロパン50部を実施例4で得られたマレイミド樹脂(M1)、および比較例1で得られたマレイミド樹脂(m1)溶液643部に溶解し、130℃で10時間予備反応させてプレポリマーを得た。これに前述のエポキシ樹脂(E2)150部、オクチル酸亜鉛2部を加えて均一に混合した。このようにして得られた溶液をガラス板上に薄く塗布し、170℃で2時間、250℃で1時間硬化させた。得られた硬化物を粉砕し、粒径を42メッシオン、60メッシュパスに揃え、各々5部を採取して50部のイオン交換水に分散させ、121℃で20時間プレッシャークッカーテストを行った。その後粉末を取り除き、抽出水の電気伝導度を測定した結果を表2に示す。
Example 7, Comparative Example 4
50 parts of 2,2-bis (4-cyanatophenyl) propane was dissolved in 643 parts of the maleimide resin (M1) obtained in Example 4 and the maleimide resin (m1) solution obtained in Comparative Example 1. A prepolymer was obtained by pre-reaction at 10 ° C. for 10 hours. To this, 150 parts of the aforementioned epoxy resin (E2) and 2 parts of zinc octylate were added and mixed uniformly. The solution thus obtained was thinly applied on a glass plate and cured at 170 ° C. for 2 hours and 250 ° C. for 1 hour. The obtained cured product was pulverized, the particle size was adjusted to 42 mesion and 60 mesh pass, 5 parts each was collected and dispersed in 50 parts of ion exchange water, and a pressure cooker test was performed at 121 ° C. for 20 hours. Table 2 shows the results of removing the powder and measuring the electrical conductivity of the extracted water.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例8、比較例5
 実施例1で得られた芳香族アミン樹脂(A1)および(a1)を使用し、表3の割合(重量部)で配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、160℃で2時間、更に180℃で8時間硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した結果を表3に示す。
・難燃性試験
 難燃性の判定:UL94に準拠。サンプルサイズは幅12.5mm×長さ150mmとし、厚さは0.8mmで試験を行った。
 残炎時間:0.8mmの試験片のトータル残炎時間
Example 8, Comparative Example 5
Using the aromatic amine resins (A1) and (a1) obtained in Example 1, blended in proportions (parts by weight) shown in Table 3, kneaded with mixing rolls, tableted, and then molded by transfer molding. It was prepared and cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours. Table 3 shows the results of measuring the physical properties of the cured product thus obtained for the following items.
・ Flame retardancy test Flame retardant judgment: Conforms to UL94. The sample size was 12.5 mm wide × 150 mm long, and the thickness was 0.8 mm.
Afterflame time: Total afterflame time of 0.8mm test piece
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
注)
 フィラー:溶融シリカ(龍森工業社製 MSR-2212)
 硬化促進剤:サリチル酸(東京化成製)
note)
Filler: fused silica (manufactured by Tatsumori Industry Co., Ltd. MSR-2212)
Curing accelerator: Salicylic acid (manufactured by Tokyo Chemical Industry)
 表1から、ジフェニルアミン含量が少ない実施例の方が、比較例に比べてガラス転移温度およびアイゾッド衝撃試験値が高く、架橋網目が強固であることが推察される。また表2から、ジフェニルアミン含量の少ない芳香族アミン樹脂から誘導されたマレイミド樹脂の硬化物である実施例の方が、比較例に比べて抽出水の電気伝導度が低く、電気・電子部品等に使用した場合、様々な使用環境でも不良が起こり難いと考えられる。表3から、ジフェニルアミン含量の少ない芳香族アミン樹脂を用いた実施例の方が、比較例に比べて難燃性が良好で耐熱分解性に優れ、電気・電子部品等に使用した場合、安全性が高いと考えられる。 From Table 1, it can be inferred that the examples with less diphenylamine content have higher glass transition temperatures and Izod impact test values and stronger crosslink networks than the comparative examples. Also, from Table 2, the example of the cured maleimide resin derived from the aromatic amine resin having a low diphenylamine content has a lower electrical conductivity of the extracted water than the comparative example, and it can be used for electric / electronic parts. When used, it is considered that defects are unlikely to occur even in various usage environments. From Table 3, the example using the aromatic amine resin with less diphenylamine content has better flame retardancy and better thermal decomposition resistance than the comparative example, and when used in electrical / electronic parts, etc., safety Is considered high.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2014年4月2日付で出願された日本国特許出願(特願2014-076160)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2014-076160) filed on April 2, 2014, and is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 本発明の芳香族アミン樹脂、マレイミド樹脂を含む硬化性樹脂組成物は、硬化することにより得られるその硬化物が、耐熱性、低吸湿性、低誘電特性、難燃性、強靭性に優れるので、半導体封止材、プリント配線基板、ビルドアップ積層板などの電気・電子部品や、炭素繊維強化プラスティック、ガラス繊維強化プラスティックなどの軽量高強度材料への使用に有用である。 Since the curable resin composition containing the aromatic amine resin and maleimide resin of the present invention is cured, the cured product is excellent in heat resistance, low moisture absorption, low dielectric properties, flame retardancy, and toughness. It is useful for use in electrical and electronic parts such as semiconductor encapsulants, printed wiring boards, build-up laminates, and lightweight high-strength materials such as carbon fiber reinforced plastic and glass fiber reinforced plastic.

Claims (7)

  1.  アニリンとビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを反応させて得られる下記式(1)で表される化合物を含む芳香族アミン樹脂であって、
     副生成物であるジフェニルアミンの含有量が1重量%以下である芳香族アミン樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは炭素数6~18の置換又は無置換の芳香族炭化水素基を表す。nは平均値であり1≦n≦10を表す。)
    An aromatic amine resin containing a compound represented by the following formula (1) obtained by reacting aniline with a bishalogenomethylaralkyl derivative or an aralkyl alcohol derivative,
    An aromatic amine resin in which the content of diphenylamine as a by-product is 1% by weight or less.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms. N is an average value and represents 1 ≦ n ≦ 10.)
  2.  アニリンとビスハロゲノメチルビフェニル誘導体またはビフェニルアルコール誘導体とを反応させて得られる下記式(2)で表される化合物を含む芳香族アミン樹脂であって、
     副生成物であるジフェニルアミンの含有量が1重量%以下である請求項1に記載の芳香族アミン樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは平均値であり1≦n≦10を表す。)
    An aromatic amine resin containing a compound represented by the following formula (2) obtained by reacting aniline with a bishalogenomethylbiphenyl derivative or a biphenyl alcohol derivative,
    The aromatic amine resin according to claim 1, wherein the content of diphenylamine as a by-product is 1% by weight or less.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, n is an average value and represents 1 ≦ n ≦ 10.)
  3.  軟化点が65℃以下である請求項1または2に記載の芳香族アミン樹脂。 The aromatic amine resin according to claim 1 or 2, which has a softening point of 65 ° C or lower.
  4.  請求項1~3のいずれか一項に記載の芳香族アミン樹脂と、マレイン酸またはマレイン酸無水物とを反応させることにより得られるマレイミド樹脂。 A maleimide resin obtained by reacting the aromatic amine resin according to any one of claims 1 to 3 with maleic acid or maleic anhydride.
  5.  ジフェニルアミンの含有量が1重量%以下である請求項4に記載のマレイミド樹脂。 The maleimide resin according to claim 4, wherein the content of diphenylamine is 1% by weight or less.
  6.  請求項1~3のいずれか一項に記載の芳香族アミン樹脂および請求項4もしくは5に記載のマレイミド樹脂の少なくとも一方を含む硬化性樹脂組成物。 A curable resin composition comprising at least one of the aromatic amine resin according to any one of claims 1 to 3 and the maleimide resin according to claim 4 or 5.
  7. 請求項6に記載の硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition according to claim 6.
PCT/JP2015/059441 2014-04-02 2015-03-26 Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof WO2015152007A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167020369A KR102254945B1 (en) 2014-04-02 2015-03-26 Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof
CN201580013821.1A CN106103534B (en) 2014-04-02 2015-03-26 Aromatic amine resin, maleimide resin, hardening resin composition and its solidfied material
JP2016511597A JP6429862B2 (en) 2014-04-02 2015-03-26 Aromatic amine resin, maleimide resin, curable resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-076160 2014-04-02
JP2014076160 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015152007A1 true WO2015152007A1 (en) 2015-10-08

Family

ID=54240333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059441 WO2015152007A1 (en) 2014-04-02 2015-03-26 Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP6429862B2 (en)
KR (1) KR102254945B1 (en)
CN (1) CN106103534B (en)
TW (1) TWI648303B (en)
WO (1) WO2015152007A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208667A1 (en) * 2015-06-25 2016-12-29 日本化薬株式会社 Epoxy resin composition and cured product thereof
WO2017099193A1 (en) * 2015-12-11 2017-06-15 日本化薬株式会社 Epoxy resin composition, epoxy resin composition compact, cured article, and semiconductor device
WO2017099194A1 (en) * 2015-12-11 2017-06-15 日本化薬株式会社 Epoxy resin composition, prepreg, epoxy resin composition molded body, and cured product thereof
JP2017137492A (en) * 2016-02-04 2017-08-10 日本化薬株式会社 Maleimide resin composition, prepreg and cured product thereof
WO2017170844A1 (en) * 2016-04-01 2017-10-05 日本化薬株式会社 Thermosetting resin composition, prepreg and cured product thereof
WO2017170551A1 (en) * 2016-03-29 2017-10-05 日本化薬株式会社 Maleimide resin, curable resin composition and cured product of same
US20170313854A1 (en) * 2014-11-06 2017-11-02 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
WO2019022251A1 (en) 2017-07-28 2019-01-31 三菱瓦斯化学株式会社 Novel (poly)amine compound, resin, and cured product
WO2020054526A1 (en) * 2018-09-12 2020-03-19 日本化薬株式会社 Maleimide resin, curable resin composition, and cured product thereof
JP2021054967A (en) * 2019-09-30 2021-04-08 積水化学工業株式会社 Resin film and multilayer printed board
WO2023176883A1 (en) * 2022-03-18 2023-09-21 東レ株式会社 Epoxy resin composition, prepreg, and fiber-reinforced composite material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209237A1 (en) * 2016-06-03 2017-12-07 Dic株式会社 Substituted or unsubstituted allyl group-containing maleimide compound, production method therefor, and composition and cured product using said compound
JP7011589B2 (en) * 2016-08-31 2022-01-26 日本化薬株式会社 Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof
JP6689475B1 (en) * 2018-09-12 2020-04-28 日本化薬株式会社 Maleimide resin, curable resin composition and cured product thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208201A (en) * 2007-02-26 2008-09-11 Nippon Kayaku Co Ltd Epoxy resin composition, cured material of the same and fiber-reinforced composite material
JP2009001783A (en) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd Resin composition for laminate, prepreg and laminate
JP2010006897A (en) * 2008-06-25 2010-01-14 Nippon Kayaku Co Ltd Polyhydric phenol resin, epoxy resin composition, and its cured product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030297B1 (en) 1969-09-30 1975-09-30
JPS5430440A (en) 1977-08-10 1979-03-06 Japan Storage Battery Co Ltd Inverter
JPH0816151A (en) 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd Image enlargement/reduction processing method
JP2004035702A (en) 2002-07-03 2004-02-05 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for manufacturing fiber-reinforced composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208201A (en) * 2007-02-26 2008-09-11 Nippon Kayaku Co Ltd Epoxy resin composition, cured material of the same and fiber-reinforced composite material
JP2009001783A (en) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd Resin composition for laminate, prepreg and laminate
JP2010006897A (en) * 2008-06-25 2010-01-14 Nippon Kayaku Co Ltd Polyhydric phenol resin, epoxy resin composition, and its cured product

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170313854A1 (en) * 2014-11-06 2017-11-02 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
JPWO2016208667A1 (en) * 2015-06-25 2018-04-05 日本化薬株式会社 Epoxy resin composition and cured product thereof
WO2016208667A1 (en) * 2015-06-25 2016-12-29 日本化薬株式会社 Epoxy resin composition and cured product thereof
WO2017099193A1 (en) * 2015-12-11 2017-06-15 日本化薬株式会社 Epoxy resin composition, epoxy resin composition compact, cured article, and semiconductor device
WO2017099194A1 (en) * 2015-12-11 2017-06-15 日本化薬株式会社 Epoxy resin composition, prepreg, epoxy resin composition molded body, and cured product thereof
CN108291009A (en) * 2015-12-11 2018-07-17 日本化药株式会社 Epoxy resin component, prepreg, epoxy resin component formed body and its hardening thing
CN108368239A (en) * 2015-12-11 2018-08-03 日本化药株式会社 Epoxy resin component, epoxy resin component formed body, hardening thing and semiconductor device
JP2017137492A (en) * 2016-02-04 2017-08-10 日本化薬株式会社 Maleimide resin composition, prepreg and cured product thereof
JPWO2017170551A1 (en) * 2016-03-29 2019-02-07 日本化薬株式会社 Maleimide resin, curable resin composition and cured product thereof
CN108884212B (en) * 2016-03-29 2020-12-29 日本化药株式会社 Maleimide resin, curable resin composition and cured product thereof
WO2017170551A1 (en) * 2016-03-29 2017-10-05 日本化薬株式会社 Maleimide resin, curable resin composition and cured product of same
CN108884212A (en) * 2016-03-29 2018-11-23 日本化药株式会社 Maleimide resin, hardening resin composition and its hardening thing
CN108884302A (en) * 2016-04-01 2018-11-23 日本化药株式会社 Heat-curing resin constituent, prepreg and their solidfied material
JPWO2017170844A1 (en) * 2016-04-01 2019-02-14 日本化薬株式会社 Thermosetting resin composition, prepreg and cured product thereof
WO2017170844A1 (en) * 2016-04-01 2017-10-05 日本化薬株式会社 Thermosetting resin composition, prepreg and cured product thereof
CN108884302B (en) * 2016-04-01 2023-03-28 日本化药株式会社 Thermosetting resin composition, prepreg, and cured product thereof
WO2019022251A1 (en) 2017-07-28 2019-01-31 三菱瓦斯化学株式会社 Novel (poly)amine compound, resin, and cured product
KR20200032104A (en) 2017-07-28 2020-03-25 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Novel (poly) amine compounds, resins, and cured products
WO2020054526A1 (en) * 2018-09-12 2020-03-19 日本化薬株式会社 Maleimide resin, curable resin composition, and cured product thereof
JP2021054967A (en) * 2019-09-30 2021-04-08 積水化学工業株式会社 Resin film and multilayer printed board
JP7027382B2 (en) 2019-09-30 2022-03-01 積水化学工業株式会社 Resin film and multi-layer printed wiring board
JP2022069462A (en) * 2019-09-30 2022-05-11 積水化学工業株式会社 Resin film and multilayer printed board
WO2023176883A1 (en) * 2022-03-18 2023-09-21 東レ株式会社 Epoxy resin composition, prepreg, and fiber-reinforced composite material

Also Published As

Publication number Publication date
CN106103534B (en) 2019-04-02
JP6429862B2 (en) 2018-11-28
KR20160140586A (en) 2016-12-07
TW201605923A (en) 2016-02-16
JPWO2015152007A1 (en) 2017-04-13
CN106103534A (en) 2016-11-09
TWI648303B (en) 2019-01-21
KR102254945B1 (en) 2021-05-24

Similar Documents

Publication Publication Date Title
JP6429862B2 (en) Aromatic amine resin, maleimide resin, curable resin composition and cured product thereof
JP6689475B1 (en) Maleimide resin, curable resin composition and cured product thereof
JP6752390B1 (en) Maleimide resin, curable resin composition and cured product thereof
JP5030297B2 (en) Laminate resin composition, prepreg and laminate
JP6764470B2 (en) Maleimide resin, curable resin composition and cured product thereof
JP7005821B1 (en) Maleimide resin and its production method, maleimide solution, and curable resin composition and its cured product.
TWI739976B (en) Alkenyl-containing resin, curable resin composition and hardened product
TW201902977A (en) Maleic imide resin composition, prepreg and cured product thereof
JP7464474B2 (en) Maleimide resin, curable resin composition and cured product thereof
JP6715249B2 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
KR20240021736A (en) Epoxy resin, curable resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511597

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167020369

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773511

Country of ref document: EP

Kind code of ref document: A1