WO2017099193A1 - Epoxy resin composition, epoxy resin composition compact, cured article, and semiconductor device - Google Patents

Epoxy resin composition, epoxy resin composition compact, cured article, and semiconductor device Download PDF

Info

Publication number
WO2017099193A1
WO2017099193A1 PCT/JP2016/086627 JP2016086627W WO2017099193A1 WO 2017099193 A1 WO2017099193 A1 WO 2017099193A1 JP 2016086627 W JP2016086627 W JP 2016086627W WO 2017099193 A1 WO2017099193 A1 WO 2017099193A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
aniline
curing
acid
Prior art date
Application number
PCT/JP2016/086627
Other languages
French (fr)
Japanese (ja)
Inventor
政隆 中西
窪木 健一
一貴 松浦
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201680071257.3A priority Critical patent/CN108368239A/en
Priority to KR1020187009699A priority patent/KR20180092933A/en
Priority to JP2017555141A priority patent/JPWO2017099193A1/en
Publication of WO2017099193A1 publication Critical patent/WO2017099193A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an epoxy resin composition, an epoxy resin composition molded article, a cured product, and a semiconductor device suitable for electrical and electronic material applications that require heat resistance, flame retardancy, and low water absorption.
  • Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.
  • the resin composition has high purity, moisture resistance, adhesion, dielectric properties, low viscosity for high filling with filler (inorganic or organic filler), and reactivity for shortening the molding cycle. Further improvement of various characteristics such as up is required (Non-Patent Document 1).
  • a material that is lightweight and has excellent mechanical properties is required for aerospace materials, leisure / sports equipment applications, and the like.
  • Non-patent Document 2 Especially in the field of semiconductor encapsulating materials and substrates (substrate itself or its peripheral materials), as the semiconductor transitions, it becomes increasingly complex with thinning, stacking, systematization, and three-dimensionalization. Characteristics such as heat resistance and high fluidity are required. Furthermore, with the expansion of plastic packages to in-vehicle applications, heat resistance requirements are becoming more severe, and it is necessary to cope with solder reflow with high Tg and low linear expansion resin. At the same time, reduction or maintenance of water absorption is required (Non-patent Document 2).
  • heat resistance One of the characteristics particularly required for high functionality is heat resistance.
  • communication devices typified by smartphones
  • heat resistance is required to improve dimensional stability as a method for reducing warpage.
  • dielectric properties at higher frequencies are required, and not only heat resistance but also electrical reliability is very important.
  • the heat resistance is increased, the dielectric properties are deteriorated, and thus the electrical reliability is lowered in exchange for the heat resistance. Therefore, it is strongly desired to maintain higher heat resistance and electrical characteristics.
  • a method using an amine-based curing agent with a high crosslinking density can be considered.
  • solid sealing materials do not use an amine-based curing agent, but are cured with a phenol resin. Is common. These amine-based compounds were used for sealing materials several decades ago, but the chemical resistance and hygroscopic / water-absorbing and dielectric properties deteriorated. Residual organic bond chlorine (generally expressed as hydrolyzable chlorine, etc.) is extracted by the nucleophilicity of amines, and there is a problem of deteriorating electrical reliability, and current high functionality and high reliability are required. As a generation, it is only used for liquid sealing that is difficult to replace by others, and there is an environment in which liquid phenolic resin is required in order to improve reliability even in its use ( Patent Document 1).
  • the present invention (1) a bifunctional or higher functional epoxy resin (component A), an aniline resin (component B) having a biphenylene novolak structure, and an inorganic filler containing at least one selected from silica gel and alumina, An epoxy resin composition having a content of 50 to 95% by weight of the total amount of the three components A to C; (2) The epoxy resin composition according to item (1), wherein the aniline resin has a structure represented by the following formula (1) and a softening point is 50 to 180 ° C.
  • a plurality of R's each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • N is an integer, and the average value (A) of n represents 1 ⁇ A ⁇ 5.
  • the epoxy resin composition of the present invention and the molded body thereof have an insulating material for electrical and electronic parts and a laminate (printed wiring) because the cured product has excellent heat resistance, water absorption characteristics, electrical reliability, and flame retardancy. Plate, build-up substrate, etc.) and various composite materials including CFRP, adhesives, paints, etc., and particularly useful as a semiconductor sealing material.
  • the epoxy resin composition of the present invention comprises a bifunctional or higher functional epoxy resin (component A), an aniline resin (component B) having a biphenylene novolak structure, and an inorganic filler (component C) containing at least one selected from silica gel and alumina.
  • Bifunctional or higher functional epoxy resins (component A) used in the present invention include bisphenol type epoxy resins (bisphenol A, bisphenol F, bisphenol C, bisphenol E, bisphenol TMC, bisphenol Z, etc.), biphenyl type epoxy resins (tetramethylbiphenyl).
  • Cycloaliphatic epoxy resins such as 4-ether-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, tetraglycidyldiaminodiphenylmethane (TGDDM)
  • glycidylamine-based epoxy resins such as triglycidyl-p-aminophenol, glycidyl ester-based epoxy resins, and the like, but are not limited thereto as long as they are usually used epoxy resins. These may be used alone or in combination of two or more.
  • biphenyl type epoxy resins such as tetramethylbiphenyl diglycidyl ether and bisglycidyloxybiphenyl, tetramethylbis F type epoxy, crystalline bisphenol A type epoxy resin, tetrahydroanthracene type epoxy resin, dihydroxynaphthalene type epoxy resin, Those having a bifunctional and solid shape such as a funolphthalein type epoxy resin, a phenolphthalimide type epoxy resin, a bisphenolfluorene type epoxy resin (softening point or melting point of 50 ° C. or higher and lower than 200 ° C., more preferably 50 ° C.
  • heat resistance is increased by introducing an alicyclic epoxy resin or the like, but in the present invention, since an amine-based curing agent is used, the reactivity with the alicyclic epoxy resin may be deteriorated.
  • the use of bifunctional or polyfunctional glycidyl ether epoxy resins as preferred above is preferred.
  • the bifunctional or higher functional epoxy resin used in the present invention preferably has a total chlorine content and hydrolyzable chlorine content of 1000 ppm or less.
  • the total amount of chlorine and the total amount of hydrolyzable chlorine in the mixture are preferably 1000 ppm or less. Particularly preferably, it is 700 ppm or less.
  • amine-based compounds may extract chlorine at the time of curing, and the total chlorine of the epoxy resin used is preferably as low as possible, and a large amount is not preferable because it may lead to deterioration of electrical reliability.
  • the aniline resin (component B) having a biphenyllene novolak structure used in the present invention is a resin in which aromatic amines (anilines) are connected by bisalkylene biphenyl to have a molecular weight distribution in a novolak form.
  • anilines aniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline, 2,3-dimethylaniline, 2,4 -Dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-propylaniline, 3-propylaniline, 4-propylaniline, 2-isopropyl Aniline, 3-isopropylaniline, 4-isopropylaniline, 2-ethyl-6-methylaniline, 2-sec-butylaniline, 2-tert-butylaniline, 4-butylaniline, 4-sec-butylaniline, 4-tert -Butylaniline, 2,3-diethylaniline, 2,4-diethi Aniline, 2,5-diethylaniline, 2,6-diethylaniline, 2-isopropyl-6
  • aniline, 2-methylaniline, and 2,6-dimethylaniline are preferable, and aniline is particularly preferable from the viewpoint that a cured product having more excellent heat resistance, impact resistance, and flame retardancy can be obtained as the epoxy resin composition. preferable.
  • Disubstituted methylbiphenyls that can be used include 4,4'-bis (chloromethyl) biphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-bis (phenylaminomethyl) biphenyl Is mentioned. These may be used alone or in combination of two or more.
  • the amount of disubstituted methylbiphenyls used is usually 0.05 to 0.8 mol, preferably 0.1 to 0.6 mol, relative to 1 mol of the anilines used.
  • an acidic catalyst can be used as necessary.
  • the acidic catalyst that can be used include hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid and the like. These may be used alone or in combination of two or more.
  • the amount of the catalyst used is 0.1 to 0.8 mol, preferably 0.5 to 0.7 mol, based on 1 mol of the aniline used. If the amount is too large, the viscosity of the reaction solution is too high and stirring is performed. If the amount is too small, the progress of the reaction may be slow.
  • aniline, disubstituted methylbiphenyl, and a catalyst / solvent aromatic or alicyclic hydrocarbons such as toluene, xylene, cyclohexane, etc. are preferable
  • a catalyst / solvent aromatic or alicyclic hydrocarbons such as toluene, xylene, cyclohexane, etc. are preferable
  • acidic catalyst for example, in the case of the aforementioned 4,4′-bischloromethylbiphenyl, the following procedure can be mentioned. After adding the acidic catalyst to the mixed solution of the aniline derivative and the solvent, when the catalyst contains water, the water is removed from the system by azeotropic distillation.
  • 4,4′-bischloromethylbiphenyl is usually added at 40 to 100 ° C., preferably 50 to 80 ° C. over 1 to 5 hours, preferably 2 to 4 hours, and then the solvent is removed from the system.
  • the temperature is further raised, and the reaction is carried out at a temperature of usually 180 to 240 ° C., preferably 190 to 220 ° C. for 5 to 30 hours, preferably 10 to 20 hours.
  • neutralize the acidic catalyst with an aqueous alkaline solution add a water-insoluble organic solvent to the oil layer and repeat washing with water until the wastewater becomes neutral, and then distill off excess aniline derivative and organic solvent under heating and reduced pressure.
  • an aniline resin is obtained.
  • a specific structural formula of the aniline resin obtained by the method is an aniline resin as described in the following formula (1).
  • a plurality of R's each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • N is an integer, and the average value (A) of n represents 1 ⁇ A ⁇ 5.
  • the amine equivalent of the aniline resin (aromatic amine resin) used in the present invention is 180 to 300 g / eq. Is preferred, 190 to 250 g / eq. Is particularly preferred.
  • the softening point of the aniline resin (aromatic amine resin) used in the present invention is preferably 50 ° C. or higher and lower than 180 ° C., more preferably 150 ° C. or lower, from the viewpoint of moldability.
  • the melt viscosity is preferably 0.005 to 1.5 Pa ⁇ s, and particularly preferably 0.01 to 1.0 Pa ⁇ s.
  • the extraction is below 10 ppm, preferably below 5 ppm.
  • the amount of the aniline resin used is preferably 0.30 to 0.50 equivalent (amine equivalent) relative to the epoxy equivalent of epoxy resin (average epoxy equivalent when mixed).
  • a curing catalyst (curing accelerator) can be used in combination.
  • the curing catalyst include pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, tetrazole 2-methylimidazole, 2-phenylimidazole.
  • Salts polyvalent carboxylic acids or salts with phosphinic acids, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide , Trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium Ammonium salts such as monium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate, phosphines such as triphenylphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide,
  • phosphonium salts, ammonium salts, and metal compounds are particularly preferable from the viewpoint of coloring during curing and changes thereof.
  • a salt with a halogen leaves the cured product with a halogen, which is not preferable from the viewpoint of electrical reliability and environmental problems.
  • the used amount of the curing catalyst is 0.01 to 5.0 parts by weight with respect to the epoxy resin 100 as required.
  • a phenol resin is preferable from the viewpoint of electrical reliability.
  • the phenol resin include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [1, 1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols ( Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldeh
  • the epoxy resin composition of the present invention contains at least one inorganic filler (inorganic filler) (component C) selected from silica gel and alumina.
  • inorganic fillers may be used in combination.
  • Other inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, etc.
  • beads obtained by spheroidizing these may be used, but the present invention is not limited thereto.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the content of these inorganic fillers is used within the range of 50 to 95% by weight of the total amount of the three components A to C in the epoxy resin composition of the present invention.
  • silica gels such as crystals, melting and crushing, and aluminas are preferable, and the particle size is preferably 50 microns or less from the viewpoint of line width.
  • the epoxy resin composition of the present invention includes an antioxidant, a light stabilizer, a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, carnauba wax, carbon black, pigment, etc.
  • the various compounding agents and various thermosetting resins can be added. Especially about a coupling agent, addition of the coupling agent which has an epoxy group is preferable.
  • the epoxy resin composition of the present invention contains an inorganic filler containing at least one selected from a bifunctional or higher functional epoxy resin and an aniline resin having a biphenylene novolac structure, silica gel, and alumina, and a curing accelerator as necessary. It can be obtained by uniformly mixing the above-described additive components. As a uniform mixing method, mixing is performed by kneading using a device such as a kneader, a roll, or a planetary mixer at a temperature in the range of 50 to 110 ° C. to obtain a uniform epoxy resin composition.
  • the obtained epoxy resin composition is pulverized and then molded into a cylindrical tablet by a molding machine such as a tablet machine, or a granular powder, or a powdery molded body, or these compositions are formed on a surface support. And then molded into a sheet having a thickness of 0.05 mm to 10 mm to obtain a molded product of the epoxy resin composition of the present invention.
  • the resulting molded product becomes a non-sticky molded product at 0 to 20 ° C., and even when stored at ⁇ 25 to 0 ° C. for 1 week or longer, the fluidity and curability are hardly deteriorated.
  • the molded epoxy resin composition of the present invention preferably has a pigment or carbon black added at the stage of the composition, and is preferably colored at the stage of molding.
  • the obtained molded body is molded into a cured product using a transfer molding machine or a compression molding machine.
  • the molding temperature is 100 to 300 ° C, particularly preferably 130 to 255 ° C.
  • the cured product thus molded exhibits a heat resistance (Tg) of 100 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • the epoxy resin composition of the present invention or a molded product thereof can be used as a semiconductor element sealing material (a semiconductor package material that protects a semiconductor by curing around a semiconductor element such as silicon, silicon carbide, or gallium nitride).
  • a semiconductor element sealing material a semiconductor package material that protects a semiconductor by curing around a semiconductor element such as silicon, silicon carbide, or gallium nitride.
  • the semiconductor device of the invention is obtained.
  • the flow rate is 0.5 ml / min.
  • Column temperature is 40 ° C
  • Dynamic viscoelasticity measuring instrument manufactured by TA-instruments, DMA-2980 Measurement temperature range: -30 ° C to 280 ° C Temperature rate: 2 ° C./min
  • Test piece size 5 mm ⁇ 50 mm cut out (thickness is about 800 ⁇ m).
  • aromatic amine resin (A) was obtained by distilling off excess aniline and toluene from the oil layer with a rotary evaporator under heating and reduced pressure (200 ° C., 0.6 KPa). The obtained resin was again dripped little by little on the rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa) instead of steam blowing. As a result, 166 parts of aromatic amine resin (A1) was obtained.
  • the aromatic amine resin (A1) obtained had a softening point of 56 ° C., a melt viscosity of 0.035 Pa ⁇ s, and diphenylamine of 0.1% or less.
  • the amine equivalent was 195 g / eq. Met.
  • Example 1 Comparative Examples 1 and 2 Epoxy resin 1 (Nippon Kayaku NC-3000 Epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or lower and referred to as “EP1”), aromatic amine resin (A1) obtained in Synthesis Example 1 as a curing agent, comparison Trisphenol methane type phenol resin (P-1 KAYAHARD KTG-105 hydroxyl equivalent 104 g / eq.), Phenol novolak (P-2 Meiwa Kasei H-1, hydroxyl equivalent 106 g / eq.
  • the epoxy resin composition of the present invention can be tableted in the same manner as a normal epoxy resin composition without stickiness at the stage of the epoxy resin composition molding, and the cured product has high heat resistance and high water resistance. It was found to have High water resistance contributes to electrical reliability because ion migration is reduced. Moreover, when the flame retardance was confirmed, it confirmed that it had high flame retardance.
  • a silane coupling agent (trade name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as an additive, and the ratio (part by weight) shown in Table 2 was used.
  • the mixture was uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition.
  • the epoxy resin composition was pulverized and tableted with a tablet machine. Using the tableted epoxy resin composition molding, the maximum torque (hereinafter referred to as MH) and gel time were measured with a curastometer.
  • Curing meter V-type manufactured by Nichigo Shoji Co., Ltd., trade name
  • Curing meter V-type is used to set the curing torque for each of the above sealants under the conditions of a temperature of 175 ° C., a resin die P-200 and an amplitude angle of ⁇ 1 °.
  • the point at which the curing torque rises is defined as the gel time (unit: second), and the value of the curing torque (unit: N ⁇ m) in seconds shown in Table 2 from the start of measurement is set as the curability (strength and hardness at demolding). ).
  • the epoxy resin composition of the present invention has a higher maximum torque value and excellent demoldability compared to an epoxy resin composition using a phenol resin as a curing agent with a combined gel time. It was confirmed that it was effective for productivity when used as a semiconductor encapsulant.
  • silica gel inorganic filler
  • silica MSR-2212 manufactured by Tatsumori
  • carnauba wax manufactured by Celerica Noda
  • silane coupling agent trade name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the epoxy resin composition was pulverized and tableted with a tablet machine. This tableted epoxy resin composition molded body is transfer molded (175 ° C. for 60 seconds to 15 minutes), and after demolding, cured under the conditions of 160 ° C. ⁇ 2 hours + 180 ° C. ⁇ 6 hours to obtain a test piece for evaluation. It was.
  • Examples 5 and 6 have a long gel time, they have high heat resistance and low water absorption characteristics, respectively, and are found to be effective in heat resistance and electrical reliability.
  • Synthesis example 2 A phenol resin produced in accordance with International Publication No. 2007/007827 while performing nitrogen purging on a flask equipped with a stirrer, a reflux condenser, and a stirrer (the following formula (2)
  • Example 7 Comparative Example 5 Epoxy resins “EP1” and “EP3” Aromatic amine resin (A1) obtained in Synthesis Example 1 as a curing agent, phenolic resin “P4” As curing accelerators, salicylic acid (C-1), triphenylphosphine (C— 2) Silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an inorganic filler, carnauba wax (manufactured by Celerica Noda) as a release agent, and a silane coupling agent (trade name: KBM-303, manufactured by Shin-Etsu Chemical) as an additive Were mixed in the proportions (parts by weight) shown in Table 4, and mixed and kneaded uniformly using a mixing roll to obtain an epoxy resin composition.
  • phenolic resin “P4” As curing accelerators, salicylic acid (C-1), triphenylphosphine (C— 2) Silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an
  • the epoxy resin composition was pulverized and tableted with a tablet machine. This tableted epoxy resin composition molded body was transfer molded (175 ° C. for 60 to 15 minutes), and after demolding, cured under conditions of 160 ° C. ⁇ 2 hours + 180 ° C. ⁇ 6 hours to obtain a test piece for evaluation. .
  • the epoxy resin composition of the present invention was confirmed to have high heat resistance, low hygroscopicity and flame retardancy even when compared to the case of using a polyfunctional phenol resin having a similar skeleton.
  • Example 8 Test Examples 1 and 2 Using the following cured product, after pulverizing with a cyclomill, 20 parts of Millipore water is used for 1 part of the pulverized sample, and extraction is performed at 121 ° C. for 24 hours with a PCT extraction device, and chlorine ions contained in water are ion chromatographed. The chlorine ion content extracted under high temperature conditions was measured.
  • Example 8 Cured product of Example 1 Test example 1: Cured product of Comparative Example 2 Test example 2: After pulverizing the composition used in Comparative Example 3, it was tableted on a tablet machine, and this tableted epoxy resin was used. A cured product obtained by transfer molding (175 ° C.
  • Example 8 0.5 ppm Test Example 1: 0.9 ppm Test example 2: 0.4 ppm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are an epoxy resin composition, cured articles of which have excellent heat resistance, water absorbing characteristics, electrical reliability, and flame retardancy; a compact thereof; a cured article thereof; and a semiconductor device composed of the cured article. The epoxy resin composition contains (A) a bifunctional or higher functional epoxy resin, (B) an aniline resin having a biphenylene novolac structure, and (C) an organic filler containing at least one material selected from silica gel and alumina, the content of the organic filler being equivalent to 50-95 wt% of the total amount of the three components A to C.

Description

エポキシ樹脂組成物、エポキシ樹脂組成物成型体、硬化物および半導体装置Epoxy resin composition, epoxy resin composition molded body, cured product, and semiconductor device
 本発明は耐熱性と難燃性、低吸水性が要求される電気電子材料用途に好適なエポキシ樹脂組成物、エポキシ樹脂組成物成型体、硬化物および半導体装置に関する。 The present invention relates to an epoxy resin composition, an epoxy resin composition molded article, a cured product, and a semiconductor device suitable for electrical and electronic material applications that require heat resistance, flame retardancy, and low water absorption.
 エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。 Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.
 近年、電気・電子分野においては電子機器の高機能化、小型化、高速化に伴い、LSI半導体はますます高性能化、多機能化、小型化が進んでいる。それに伴い、樹脂組成物においても高純度化をはじめ耐湿性、密着性、誘電特性、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている(非特許文献1)。また、構造材としては航空宇宙用材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に半導体封止材分野、基板(基板自体、もしくはその周辺材料)においては、その半導体の変遷に従い、薄層化、スタック化、システム化、三次元化と複雑になっていき、非常に高いレベルの耐熱性や高流動性といった特性が求められる。さらに、プラスチックパッケージの車載用途への拡大に伴い、耐熱性の要求がいっそう厳しくなっており、高Tgで低線膨張率の樹脂で、かつ当然ながら半田リフローへの対応が必要となっており、同時に吸水率の低下、もしくは維持が求められる(非特許文献2)。 In recent years, in the electric and electronic fields, LSI semiconductors have become increasingly sophisticated, multifunctional, and miniaturized as electronic devices become more functional, smaller, and faster. As a result, the resin composition has high purity, moisture resistance, adhesion, dielectric properties, low viscosity for high filling with filler (inorganic or organic filler), and reactivity for shortening the molding cycle. Further improvement of various characteristics such as up is required (Non-Patent Document 1). In addition, as a structural material, a material that is lightweight and has excellent mechanical properties is required for aerospace materials, leisure / sports equipment applications, and the like. Especially in the field of semiconductor encapsulating materials and substrates (substrate itself or its peripheral materials), as the semiconductor transitions, it becomes increasingly complex with thinning, stacking, systematization, and three-dimensionalization. Characteristics such as heat resistance and high fluidity are required. Furthermore, with the expansion of plastic packages to in-vehicle applications, heat resistance requirements are becoming more severe, and it is necessary to cope with solder reflow with high Tg and low linear expansion resin. At the same time, reduction or maintenance of water absorption is required (Non-patent Document 2).
日本国特開2013-67794号公報Japanese Unexamined Patent Publication No. 2013-67794
 高機能化で特に要求される特性のひとつとして耐熱性が挙げられる。例えば、スマートフォンに代表される通信機器の発達により、薄型化が進み、反り低減の手法として寸法安定性の向上のために、耐熱性が求められる。さらにはこのような材料においては、通信速度の高速化が近年格段に進歩しており、より高周波での誘電特性が求められ、耐熱性だけでなく、電気信頼性が非常に重要視されている。しかしながら耐熱性を上げると誘電特性が悪化することから、耐熱性と引き換えに電気信頼性を低下させることとなる。したがってさらなる高い耐熱性と電気特性の維持が強く望まれている。
 耐熱性の向上のためには架橋密度の高いアミン系の硬化剤を使用する手法が考えられるが一般的に固形の封止材においてはアミン系の硬化剤は使用せず、フェノール樹脂での硬化が一般的である。数十年以上前の封止材にはこういったアミン系の化合物を使用されることはあったが、耐薬品特性とともに吸湿性・吸水特性、誘電特性の悪化、さらには硬化時にエポキシ樹脂に残留する有機結合塩素(一般的に加水分解性塩素等と表現される)がアミンの求核性によって引き抜かれ、電気信頼性を悪化させるという課題があり、現在の高機能・高信頼性が求められる世代となっては、他では置き換えが困難な液状封止に使用される程度となっており、その用途においても信頼性向上のため、液状のフェノール樹脂が要求されているという環境にある(特許文献1)。
 さらに、近年の半導体封止材においては環境への配慮からハロゲン系の難燃剤なしの難燃性が強く求められる。一般的なアミン系の硬化剤の場合、その架橋密度が高いことからグリシジル基が開環した際にできる脂肪鎖がネットワーク上に多くできてしまう事、また炭素-炭素の結合に対し、炭素-窒素の結合が分極の問題から弱いことから熱分解特性、およびそれが影響して難燃性が悪化する傾向にあり、現在の要求特性を満たすことが難しく、使用されていないのが実情である。
One of the characteristics particularly required for high functionality is heat resistance. For example, with the development of communication devices typified by smartphones, thinning has progressed, and heat resistance is required to improve dimensional stability as a method for reducing warpage. Furthermore, in such materials, the increase in communication speed has been remarkably advanced in recent years, dielectric properties at higher frequencies are required, and not only heat resistance but also electrical reliability is very important. . However, when the heat resistance is increased, the dielectric properties are deteriorated, and thus the electrical reliability is lowered in exchange for the heat resistance. Therefore, it is strongly desired to maintain higher heat resistance and electrical characteristics.
In order to improve heat resistance, a method using an amine-based curing agent with a high crosslinking density can be considered. Generally, solid sealing materials do not use an amine-based curing agent, but are cured with a phenol resin. Is common. These amine-based compounds were used for sealing materials several decades ago, but the chemical resistance and hygroscopic / water-absorbing and dielectric properties deteriorated. Residual organic bond chlorine (generally expressed as hydrolyzable chlorine, etc.) is extracted by the nucleophilicity of amines, and there is a problem of deteriorating electrical reliability, and current high functionality and high reliability are required. As a generation, it is only used for liquid sealing that is difficult to replace by others, and there is an environment in which liquid phenolic resin is required in order to improve reliability even in its use ( Patent Document 1).
Furthermore, recent semiconductor encapsulants are strongly required to have flame retardancy without halogen-based flame retardants in consideration of the environment. In the case of a general amine-based curing agent, since the crosslinking density is high, a large number of fatty chains are formed on the network when the glycidyl group is ring-opened, and in addition to carbon-carbon bonds, carbon- Since the bond of nitrogen is weak due to the problem of polarization, the thermal decomposition characteristics, and it tends to deteriorate the flame retardancy, it is difficult to meet the current required characteristics and it is actually not used .
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
 すなわち本発明は、
(1)二官能以上のエポキシ樹脂(A成分)と、ビフェニレンノボラック構造を有するアニリン樹脂(B成分)と、シリカゲルおよびアルミナから選ばれる少なくとも一方を含有する無機フィラーとを含有し、当該無機フィラーの含有量が前記A~Cの3成分の総量の50~95重量%であるエポキシ樹脂組成物、
(2)前記アニリン樹脂が下記式(1)に記載の構造であり、かつ軟化点が50~180℃である前項(1)に記載のエポキシ樹脂組成物、
As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention
(1) a bifunctional or higher functional epoxy resin (component A), an aniline resin (component B) having a biphenylene novolak structure, and an inorganic filler containing at least one selected from silica gel and alumina, An epoxy resin composition having a content of 50 to 95% by weight of the total amount of the three components A to C;
(2) The epoxy resin composition according to item (1), wherein the aniline resin has a structure represented by the following formula (1) and a softening point is 50 to 180 ° C.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、複数存在するRはそれぞれ独立して水素原子、炭素数1~5のアルキル基を表す。nは整数であり、nの平均値(A)が1≦A≦5を表す。)
(3)前項(1)又は(2)に記載のエポキシ樹脂組成物をタブレット状、粉状、顆粒状、シート状のいずれかに成型したエポキシ樹脂組成物成型体、
(4)前項(1)もしくは(2)に記載のエポキシ樹脂組成物、又は前項(3)に記載のエポキシ樹脂組成物成型体を硬化した硬化物、
(5)前項(1)もしくは(2)に記載のエポキシ樹脂組成物、前項(3)に記載のエポキシ樹脂組成物成型体又は前項(4)に記載の硬化物のいずれかとシリコン、シリコンカーバイドおよび窒化ガリウムから選ばれる少なくともいずれか一種の半導体素子とで構成した半導体装置、
に関する。
(In the formula, a plurality of R's each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. N is an integer, and the average value (A) of n represents 1 ≦ A ≦ 5.)
(3) An epoxy resin composition molded body obtained by molding the epoxy resin composition according to the above item (1) or (2) into one of a tablet shape, a powder shape, a granule shape, and a sheet shape,
(4) The cured product obtained by curing the epoxy resin composition according to (1) or (2), or the epoxy resin composition molded article according to (3),
(5) The epoxy resin composition according to (1) or (2) above, the epoxy resin composition molded article according to (3) above or the cured product according to (4) above, silicon, silicon carbide, and A semiconductor device composed of at least one kind of semiconductor element selected from gallium nitride,
About.
 本発明のエポキシ樹脂組成物及びその成型体は、その硬化物が耐熱性、吸水特性、電気信頼性、および難燃性に優れた特性を有するため電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用であり、特に半導体の封止材として有用である。 The epoxy resin composition of the present invention and the molded body thereof have an insulating material for electrical and electronic parts and a laminate (printed wiring) because the cured product has excellent heat resistance, water absorption characteristics, electrical reliability, and flame retardancy. Plate, build-up substrate, etc.) and various composite materials including CFRP, adhesives, paints, etc., and particularly useful as a semiconductor sealing material.
 以下に、本発明のエポキシ樹脂組成物について説明する。
 本発明のエポキシ樹脂組成物は、二官能以上のエポキシ樹脂(A成分)と、ビフェニレンノボラック構造を有するアニリン樹脂(B成分)と、シリカゲルおよびアルミナから選ばれる少なくとも一方を含有する無機フィラー(C成分)とを含有する。
 本発明に用いられる二官能以上のエポキシ樹脂(A成分)としてはビスフェノール型エポキシ樹脂(ビスフェノールA、ビスフェノールF、ビスフェノールC、ビスフェノールE、ビスフェノールTMC、ビスフェノールZなど)、ビフェニル型エポキシ樹脂(テトラメチルビフェニルジグリシジルエーテル、ビスグリシジルオキシビフェニルなど)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン、フルオレノン等)との重縮合物、フェノール類とビスハロゲノメチルベンゼン類、ビスハロゲノメチルビフェニル類との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、アルコール類、等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4-ビニル-1-シクロヘキセンジエポキシドや3,4-エポキシシクロヘキシルメチル-3,4’-エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル-p-アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
Below, the epoxy resin composition of this invention is demonstrated.
The epoxy resin composition of the present invention comprises a bifunctional or higher functional epoxy resin (component A), an aniline resin (component B) having a biphenylene novolak structure, and an inorganic filler (component C) containing at least one selected from silica gel and alumina. ) And.
Bifunctional or higher functional epoxy resins (component A) used in the present invention include bisphenol type epoxy resins (bisphenol A, bisphenol F, bisphenol C, bisphenol E, bisphenol TMC, bisphenol Z, etc.), biphenyl type epoxy resins (tetramethylbiphenyl). Diglycidyl ether, bisglycidyloxybiphenyl, etc.), phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde) , Alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthoal Polycondensates with hydride, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc., phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinyl Biphenyl, diisopropenyl biphenyl, butadiene, isoprene, etc.), phenols and polycondensates of ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, fluorenone, etc.), phenols and bishalogenomethyl Glycidylated glycidylated polycondensates of benzenes, bishalogenomethylbiphenyls, polycondensates of bisphenols and various aldehydes, alcohols, etc. Cycloaliphatic epoxy resins such as 4-ether-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, tetraglycidyldiaminodiphenylmethane (TGDDM) And glycidylamine-based epoxy resins such as triglycidyl-p-aminophenol, glycidyl ester-based epoxy resins, and the like, but are not limited thereto as long as they are usually used epoxy resins. These may be used alone or in combination of two or more.
 本発明においては特にテトラメチルビフェニルジグリシジルエーテル、ビスグリシジルオキシビフェニルなどのビフェニル型エポキシ樹脂、テトラメチルビスF型エポキシ、結晶型ビスフェノールA型エポキシ樹脂、テトラヒドロアントラセン型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、フノールフタレイン型エポキシ樹脂、フェノールフタルイミド型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂などの2官能でかつ固形の形状を有するもの(軟化点あるいは融点が50℃以上200℃未満、より好ましくは50℃以上120℃未満、特に好ましくは50℃以上100℃未満)のエポキシ樹脂、フェノールジシクロペンタジエン縮合物のエポキシ樹脂、また、ザイロック型、フェノールビフェニレンアラル型、ジヒドロキシベンゼン(レゾルシン、ハイドロキノン、カテコール)-フェノールビフェニレンアラルキル型などのフェノールアラルキル型エポキシ樹脂、クレゾールノボラック、フェノールノボラックなどのノボラックエポキシ樹脂(軟化点あるいは融点が50℃以上200℃未満であることが好ましく、50℃から120℃未満がより好ましく、特に好ましくは50℃から100℃未満)を少なくとも含むことが好ましい。
 一般に脂環式エポキシ樹脂などを導入することで耐熱性が高くなるが、本発明においてはアミン系の硬化剤を使用するため、脂環式エポキシ樹脂とは反応性が悪くなるおそれがあるため、前述で好ましいとするような2官能もしくは多官能のグリシジルエーテルエポキシ樹脂の使用が好ましい。
In the present invention, in particular, biphenyl type epoxy resins such as tetramethylbiphenyl diglycidyl ether and bisglycidyloxybiphenyl, tetramethylbis F type epoxy, crystalline bisphenol A type epoxy resin, tetrahydroanthracene type epoxy resin, dihydroxynaphthalene type epoxy resin, Those having a bifunctional and solid shape such as a funolphthalein type epoxy resin, a phenolphthalimide type epoxy resin, a bisphenolfluorene type epoxy resin (softening point or melting point of 50 ° C. or higher and lower than 200 ° C., more preferably 50 ° C. or higher) Epoxy resin of less than 120 ° C., particularly preferably 50 ° C. or more and less than 100 ° C., epoxy resin of phenol dicyclopentadiene condensate, zylock type, phenol biphenylene arral type, diester Droxybenzene (resorcin, hydroquinone, catechol) -phenol aralkyl type epoxy resin such as phenol biphenylene aralkyl type, novolac epoxy resin such as cresol novolak, phenol novolak (softening point or melting point is preferably 50 ° C. or higher and lower than 200 ° C. 50 ° C. to less than 120 ° C., more preferably 50 ° C. to less than 100 ° C.).
Generally, heat resistance is increased by introducing an alicyclic epoxy resin or the like, but in the present invention, since an amine-based curing agent is used, the reactivity with the alicyclic epoxy resin may be deteriorated. The use of bifunctional or polyfunctional glycidyl ether epoxy resins as preferred above is preferred.
 さらに本発明において使用する二官能以上のエポキシ樹脂は全塩素量及び加水分解性塩素量が1000ppm以下であることが好ましい。エポキシ樹脂を複数種使用する場合はその混合物における全塩素量及び加水分解性塩素の総量が1000ppm以下であることが好ましい。特に好ましくは700ppm以下である。前述のようにアミン系の化合物は硬化時に塩素を引き抜いてしまう可能性があり、使用するエポキシ樹脂の全塩素はできるだけ低いほうが好ましく、多いと電気信頼性の悪化につながることがあるため好ましくない。 Furthermore, the bifunctional or higher functional epoxy resin used in the present invention preferably has a total chlorine content and hydrolyzable chlorine content of 1000 ppm or less. When using multiple types of epoxy resins, the total amount of chlorine and the total amount of hydrolyzable chlorine in the mixture are preferably 1000 ppm or less. Particularly preferably, it is 700 ppm or less. As described above, amine-based compounds may extract chlorine at the time of curing, and the total chlorine of the epoxy resin used is preferably as low as possible, and a large amount is not preferable because it may lead to deterioration of electrical reliability.
 次に、本発明で用いられるビフェニルレンノボラック構造を有するアニリン樹脂(B成分)について説明する。
 本発明のビフェニレンノボラック構造を有するアニリン樹脂とは芳香族アミン(アニリン)類をビスアルキレンビフェニルでつなぎ、ノボラック状に分子量分布を持たせた樹脂である。
 一般的にはアニリン類としてはアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、2-エチルアニリン、3-エチルアニリン、4-エチルアニリン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-プロピルアニリン、3-プロピルアニリン、4-プロピルアニリン、2-イソプロピルアニリン、3-イソプロピルアニリン、4-イソプロピルアニリン、2-エチル-6-メチルアニリン、2-sec-ブチルアニリン、2-tert-ブチルアニリン、4-ブチルアニリン、4-sec-ブチルアニリン、4-tert-ブチルアニリン、2,3-ジエチルアニリン、2,4-ジエチルアニリン、2,5-ジエチルアニリン、2,6-ジエチルアニリン、2-イソプロピル-6-メチルアニリン、4-アミノビフェニルなどが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 また、エポキシ樹脂組成物として、より耐熱性、耐衝撃性、難燃性に優れる硬化物を得ることができる点から、アニリン、2-メチルアニリン、2,6-ジメチルアニリンが好ましく、特にアニリンが好ましい。
Next, the aniline resin (component B) having a biphenyllene novolak structure used in the present invention will be described.
The aniline resin having a biphenylene novolak structure according to the present invention is a resin in which aromatic amines (anilines) are connected by bisalkylene biphenyl to have a molecular weight distribution in a novolak form.
In general, as anilines, aniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline, 2,3-dimethylaniline, 2,4 -Dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-propylaniline, 3-propylaniline, 4-propylaniline, 2-isopropyl Aniline, 3-isopropylaniline, 4-isopropylaniline, 2-ethyl-6-methylaniline, 2-sec-butylaniline, 2-tert-butylaniline, 4-butylaniline, 4-sec-butylaniline, 4-tert -Butylaniline, 2,3-diethylaniline, 2,4-diethi Aniline, 2,5-diethylaniline, 2,6-diethylaniline, 2-isopropyl-6-methylaniline, 4-aminobiphenyl, and the like. These may be used alone or in combination of two or more.
In addition, aniline, 2-methylaniline, and 2,6-dimethylaniline are preferable, and aniline is particularly preferable from the viewpoint that a cured product having more excellent heat resistance, impact resistance, and flame retardancy can be obtained as the epoxy resin composition. preferable.
 ビスアルキレンビフェニルでつなげる手法としては、ジ置換メチルビフェニル類と上記のアニリン類との反応が挙げられる。
 使用できるジ置換メチルビフェニルとしては4,4’-ビス(クロロメチル)ビフェニル、4,4’-ジメトキシメチルビフェニル、4,4’-ジメトキシメチルビフェニル、4,4’-ビス(フェニルアミノメチル)ビフェニルが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 ジ置換メチルビフェニル類の使用量は、使用されるアニリン類1モルに対して通常0.05~0.8モルであり、好ましくは0.1~0.6モルである。
As a method of connecting with bisalkylenebiphenyl, a reaction of disubstituted methylbiphenyls with the above anilines can be mentioned.
Disubstituted methylbiphenyls that can be used include 4,4'-bis (chloromethyl) biphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-bis (phenylaminomethyl) biphenyl Is mentioned. These may be used alone or in combination of two or more.
The amount of disubstituted methylbiphenyls used is usually 0.05 to 0.8 mol, preferably 0.1 to 0.6 mol, relative to 1 mol of the anilines used.
 反応の際には必要に応じて酸性触媒を使用することができる。使用することができる酸性触媒としては、例えば塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p-トルエンスルホン酸、メタンスルホン酸等が挙げられる。これらは単独でも二種以上併用しても良い。
 触媒の使用量は、使用されるアニリン類1モルに対して0.1~0.8モル、好ましくは0.5~0.7モルであり、多すぎると反応溶液の粘度が高すぎて攪拌が困難になることがあり、少なすぎると反応の進行が遅くなることがある。
In the reaction, an acidic catalyst can be used as necessary. Examples of the acidic catalyst that can be used include hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid and the like. These may be used alone or in combination of two or more.
The amount of the catalyst used is 0.1 to 0.8 mol, preferably 0.5 to 0.7 mol, based on 1 mol of the aniline used. If the amount is too large, the viscosity of the reaction solution is too high and stirring is performed. If the amount is too small, the progress of the reaction may be slow.
 反応手法としては酸性条件下で、アニリン類、ジ置換メチルビフェニル、必要に応じて触媒・溶剤(トルエン、キシレン、シクロヘキサン等の芳香族、もしくは脂環式の炭化水素類が好ましい)を加熱攪拌することで得られるが、具体的な手法としてはたとえば、前述の4,4’-ビスクロロメチルビフェニルの場合、以下のような手順があげられる。
 アニリン誘導体と溶剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除く。しかる後に通常40~100℃、好ましくは50~80℃で4,4’-ビスクロロメチルビフェニルを通常1~5時間、好ましくは2~4時間かけて添加し、その後溶剤を系内から除きながらさらに昇温して通常180~240℃、好ましくは190~220℃の温度で5~30時間、好ましくは10~20時間反応を行う。反応終了後、アルカリ水溶液で酸性触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返し、加熱減圧下で過剰のアニリン誘導体や有機溶剤を留去することによりアニリン樹脂が得られる。
 当該手法により得られる具体的なアニリン樹脂の構造式としては下記式(1)に記載するようなアニリン樹脂である。
As the reaction method, aniline, disubstituted methylbiphenyl, and a catalyst / solvent (aromatic or alicyclic hydrocarbons such as toluene, xylene, cyclohexane, etc. are preferable) are heated and stirred as necessary under acidic conditions. As a specific method, for example, in the case of the aforementioned 4,4′-bischloromethylbiphenyl, the following procedure can be mentioned.
After adding the acidic catalyst to the mixed solution of the aniline derivative and the solvent, when the catalyst contains water, the water is removed from the system by azeotropic distillation. Thereafter, 4,4′-bischloromethylbiphenyl is usually added at 40 to 100 ° C., preferably 50 to 80 ° C. over 1 to 5 hours, preferably 2 to 4 hours, and then the solvent is removed from the system. The temperature is further raised, and the reaction is carried out at a temperature of usually 180 to 240 ° C., preferably 190 to 220 ° C. for 5 to 30 hours, preferably 10 to 20 hours. After the reaction is complete, neutralize the acidic catalyst with an aqueous alkaline solution, add a water-insoluble organic solvent to the oil layer and repeat washing with water until the wastewater becomes neutral, and then distill off excess aniline derivative and organic solvent under heating and reduced pressure. As a result, an aniline resin is obtained.
A specific structural formula of the aniline resin obtained by the method is an aniline resin as described in the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、複数存在するRはそれぞれ独立して水素原子、炭素数1~5のアルキル基を表す。nは整数であり、nの平均値(A)が1≦A≦5を表す。) (In the formula, a plurality of R's each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. N is an integer, and the average value (A) of n represents 1 ≦ A ≦ 5.)
 本発明で用いられるアニリン樹脂(芳香族アミン樹脂)のアミン当量は180~300g/eq.が好ましく、190~250g/eq.が特に好ましい。
 また、本発明で用いられるアニリン樹脂(芳香族アミン樹脂)の軟化点はその成形性の観点から、50℃以上180℃未満が好ましく、150℃以下がより好ましい。
 さらに、溶融粘度は0.005~1.5Pa・sが好ましく、0.01~1.0Pa・sであることが特に好ましい。
 なお、特に4,4’-ビスクロロメチルビフェニルのような化合物を使用した場合、残留塩素が残る可能性があり、塩素イオンは電気信頼性に大きな影響を及ぼすおそれがあることから、塩素イオンは抽出で10ppm、好ましくは5ppmを下回ることが好ましい。
The amine equivalent of the aniline resin (aromatic amine resin) used in the present invention is 180 to 300 g / eq. Is preferred, 190 to 250 g / eq. Is particularly preferred.
The softening point of the aniline resin (aromatic amine resin) used in the present invention is preferably 50 ° C. or higher and lower than 180 ° C., more preferably 150 ° C. or lower, from the viewpoint of moldability.
Further, the melt viscosity is preferably 0.005 to 1.5 Pa · s, and particularly preferably 0.01 to 1.0 Pa · s.
In particular, when a compound such as 4,4'-bischloromethylbiphenyl is used, residual chlorine may remain, and chlorine ions may greatly affect electrical reliability. It is preferred that the extraction is below 10 ppm, preferably below 5 ppm.
 本発明のエポキシ樹脂組成物において、アニリン樹脂の使用量はエポキシ樹脂のエポキシ当量(混合する場合は平均のエポキシ当量)に対し、0.30~0.50当量(アミン当量)が好ましい。 In the epoxy resin composition of the present invention, the amount of the aniline resin used is preferably 0.30 to 0.50 equivalent (amine equivalent) relative to the epoxy equivalent of epoxy resin (average epoxy equivalent when mixed).
 本発明のエポキシ樹脂組成物において、硬化触媒(硬化促進剤)を併用することができる。本発明に使用できる硬化触媒の具体例としてはピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種等の複素環式化合物類、及び、それら複素環式化合物類とフタル酸、イソフタル酸、テレフタル酸、サリチル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等のアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、カルボン酸金属塩(2-エチルヘキサン酸、ステアリン酸、ベヘン酸、ミスチリン酸などの亜鉛塩、スズ塩、ジルコニウム塩)やリン酸エステル金属(オクチルリン酸、ステアリルリン酸等の亜鉛塩)、アルコキシ金属塩(トリブチルアルミニウム、テトラプロピルジルコニウム等)、アセチルアセトン塩(アセチルアセトンジルコニウムキレート、アセチルアセトンチタンキレート等)等の金属化合物等が挙げられる。
 本発明においては特にホスホニウム塩やアンモニウム塩、金属化合物類が硬化時の着色やその変化の観点から特に好ましい。また4級塩を使用する場合、ハロゲンとの塩はその硬化物にハロゲンを残すことになり、電気信頼性および環境問題の観点から好ましくない。
 硬化触媒の使用量は、エポキシ樹脂100に対して0.01~5.0重量部が必要に応じ用いられる。
In the epoxy resin composition of the present invention, a curing catalyst (curing accelerator) can be used in combination. Specific examples of the curing catalyst that can be used in the present invention include pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, tetrazole 2-methylimidazole, 2-phenylimidazole. 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1 -Cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2'-methylimidazole (1 ')) ethyl-s-triazine, 2,4-diamino-6 ( 2'-Undecylimidazole (1 ')) Eth Ru-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-methylimidazole (1 ′) )) Ethyl-s-triazine / isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole, 2-phenyl Various heterocyclic compounds such as -4-hydroxymethyl-5-methylimidazole and 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole, and these heterocyclic compounds and phthalic acid, isophthalic acid Acid, terephthalic acid, salicylic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, malein Acids, salts with polyvalent carboxylic acids such as oxalic acid, amides such as dicyandiamide, diaza compounds such as 1,8-diaza-bicyclo (5.4.0) undecene-7 and their tetraphenylborate, phenol novolac, etc. Salts, polyvalent carboxylic acids or salts with phosphinic acids, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide , Trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium Ammonium salts such as monium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate, phosphines such as triphenylphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, Phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, amine adducts, carboxylic acid metal salts (zinc salts, tin salts, zirconium salts such as 2-ethylhexanoic acid, stearic acid, behenic acid, mytilic acid) ), Phosphate ester metals (zinc salts such as octyl phosphate and stearyl phosphate), alkoxy metal salts (such as tributylaluminum and tetrapropylzirconium), acetyla Tonshio (acetylacetone zirconium chelate, acetylacetone titanium chelate) metal compounds such like.
In the present invention, phosphonium salts, ammonium salts, and metal compounds are particularly preferable from the viewpoint of coloring during curing and changes thereof. When a quaternary salt is used, a salt with a halogen leaves the cured product with a halogen, which is not preferable from the viewpoint of electrical reliability and environmental problems.
The used amount of the curing catalyst is 0.01 to 5.0 parts by weight with respect to the epoxy resin 100 as required.
 本発明のエポキシ樹脂組成物において他の硬化剤を併用することができる。使用できる他の硬化剤としては、電気信頼性の問題からフェノール樹脂が好ましい。フェノール樹脂としてはビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン又は1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのフェノール樹脂;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。 In the epoxy resin composition of the present invention, other curing agents can be used in combination. As another curing agent that can be used, a phenol resin is preferable from the viewpoint of electrical reliability. Examples of the phenol resin include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [1, 1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols ( Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydro Cyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, Polycondensates with 1,4′-bis (chloromethyl) benzene or 1,4′-bis (methoxymethyl) benzene and their modified products, halogenated bisphenols such as tetrabromobisphenol A, terpenes and phenols Phenol resins such as condensates thereof; imidazole, trifluoroborane-amine complexes, guanidine derivative compounds, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
 本発明のエポキシ樹脂組成物は、シリカゲルおよびアルミナから選ばれる少なくとも一方の無機充填剤(無機フィラー)(C成分)を含有する。他の無機充填剤を併用してもよい。
 他の無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら無機充填剤は、単独で用いてもよく、2種以上を用いてもよい。
 これら無機充填剤の含有量は、本発明のエポキシ樹脂組成物中において、前記A~Cの3成分の総量の50~95重量%の範囲内で用いられる。
 本発明においては結晶、溶融、破砕等のシリカゲル類、アルミナ類が好ましく、その粒径は線幅の問題から50ミクロン以下が好ましい。
The epoxy resin composition of the present invention contains at least one inorganic filler (inorganic filler) (component C) selected from silica gel and alumina. Other inorganic fillers may be used in combination.
Other inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, etc. Alternatively, beads obtained by spheroidizing these may be used, but the present invention is not limited thereto. These inorganic fillers may be used alone or in combination of two or more.
The content of these inorganic fillers is used within the range of 50 to 95% by weight of the total amount of the three components A to C in the epoxy resin composition of the present invention.
In the present invention, silica gels such as crystals, melting and crushing, and aluminas are preferable, and the particle size is preferably 50 microns or less from the viewpoint of line width.
 更に本発明のエポキシ樹脂組成物には、酸化防止剤、光安定剤、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、カルナバワックス等の離型剤、カーボンブラック、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。特にカップリング剤についてはエポキシ基を有するカップリング剤の添加が好ましい。 Furthermore, the epoxy resin composition of the present invention includes an antioxidant, a light stabilizer, a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, carnauba wax, carbon black, pigment, etc. The various compounding agents and various thermosetting resins can be added. Especially about a coupling agent, addition of the coupling agent which has an epoxy group is preferable.
 本発明のエポキシ樹脂組成物は、二官能以上のエポキシ樹脂とビフェニレンノボラック構造を有するアニリン樹脂、シリカゲル、アルミナから選ばれる少なくとも一方を含有する無機フィラーを含有し、必要に応じて硬化促進剤等、上述する添加剤各成分を均一に混合することにより得られる。
 均一に混合する手法としては50~110℃の範囲内の温度でニーダー、ロール、プラネタリーミキサー等の装置を用いて練りこむように混合し、均一なエポキシ樹脂組成物とする。
 得られたエポキシ樹脂組成物は粉砕後、タブレットマシーン等の成型機で円柱のタブレット状に成型、もしくは顆粒状の紛体、もしくは粉状の成型体とする、もしくはこれら組成物を表面支持体の上で溶融し0.05mm~10mmの厚みのシート状に成型し、本発明のエポキシ樹脂組成物成型体とすることができる。得られた成型体は0~20℃でべたつきのない成型体となり、-25~0℃で1週間以上保管しても流動性、硬化性をほとんど低下させない。本発明のエポキシ樹脂組成物成型体は顔料もしくはカーボンブラックを組成物の段階で添加されていることが好ましく、成型された段階で着色していることが好ましい。
The epoxy resin composition of the present invention contains an inorganic filler containing at least one selected from a bifunctional or higher functional epoxy resin and an aniline resin having a biphenylene novolac structure, silica gel, and alumina, and a curing accelerator as necessary. It can be obtained by uniformly mixing the above-described additive components.
As a uniform mixing method, mixing is performed by kneading using a device such as a kneader, a roll, or a planetary mixer at a temperature in the range of 50 to 110 ° C. to obtain a uniform epoxy resin composition.
The obtained epoxy resin composition is pulverized and then molded into a cylindrical tablet by a molding machine such as a tablet machine, or a granular powder, or a powdery molded body, or these compositions are formed on a surface support. And then molded into a sheet having a thickness of 0.05 mm to 10 mm to obtain a molded product of the epoxy resin composition of the present invention. The resulting molded product becomes a non-sticky molded product at 0 to 20 ° C., and even when stored at −25 to 0 ° C. for 1 week or longer, the fluidity and curability are hardly deteriorated. The molded epoxy resin composition of the present invention preferably has a pigment or carbon black added at the stage of the composition, and is preferably colored at the stage of molding.
 得られた成型体についてトランスファー成型機、コンプレッション成型機にて硬化物に成型する。成型温度は100~300℃であり、特に好ましくは130~255℃である。
 このように成型された硬化物は耐熱性(Tg)で100℃以上を示す。特に好ましくは150℃以上である。
The obtained molded body is molded into a cured product using a transfer molding machine or a compression molding machine. The molding temperature is 100 to 300 ° C, particularly preferably 130 to 255 ° C.
The cured product thus molded exhibits a heat resistance (Tg) of 100 ° C. or higher. Especially preferably, it is 150 degreeC or more.
 本発明のエポキシ樹脂組成物またはその成型体は半導体素子用封止材(シリコン、シリコンカーバイド、窒化ガリウム等の半導体素子周辺で硬化させ、半導体を守る半導体パッケージ材料)として使用することができる。金型上/内にダイ、パッケージ基板(サブストレート、子基板)、表面支持体(フィルム等)にセットされた半導体素子の上で100~300℃溶融・硬化させることで半導体素子を含有する本発明の半導体装置が得られる。 The epoxy resin composition of the present invention or a molded product thereof can be used as a semiconductor element sealing material (a semiconductor package material that protects a semiconductor by curing around a semiconductor element such as silicon, silicon carbide, or gallium nitride). A book containing a semiconductor element by melting and curing at 100 to 300 ° C. on a semiconductor element set on / into a mold, a die, a package substrate (substrate, sub-substrate), and a surface support (film, etc.) The semiconductor device of the invention is obtained.
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。
 以下に実施例で用いた各種分析方法について記載する。
アミン当量:JIS K-7236 付属書Aに記載された方法に準拠
ジフェニルアミン含量:ガスクロマトグラフィーで測定
エポキシ当量: JIS K 7236 (ISO 3001) に準拠
ICI溶融粘度: JIS K 7117-2 (ISO 3219) に準拠
軟化点: JIS K 7234 に準拠
全塩素: JIS K 7243-3 (ISO 21672-3) に準拠
鉄分: ICP発光分光分析
GPC: 
 カラム(Shodex KF-603、KF-602x2、KF-601x2)
 連結溶離液はテトラヒドロフラン
 流速は0.5ml/min.
 カラム温度は40℃
 検出:RI(示差屈折検出器)
DMA測定条件
動的粘弾性測定器:TA-instruments製、DMA-2980
測定温度範囲:-30℃~280℃
温速度:2℃/分
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
解析条件
 Tg:DMA測定に於けるTanδのピーク点(tanδMAX)をTgとした。
 ガラス転移点(Tg):
 TMA 熱機械測定装置:真空理工(株)製 TM-7000
     昇温速度:2℃/min.
 タブレット成型体のべた付き/触感
 難燃性
・難燃性の判定:UL94に準拠して行った。ただし、サンプルサイズは幅12.5mm×長さ150mmとし、厚さは0.8mmで試験を行った。
・残炎時間:5個1組のサンプルに10回接炎したあとの残炎時間の合計
吸水率
 直径5cm×厚み4mmの円盤状の試験片を100℃の水中で24時間煮沸した後の重量増加率(%)
EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples.
The various analysis methods used in the examples are described below.
Amine equivalent: JIS K-7236 Conforms to the method described in Appendix A Diphenylamine content: Measured by gas chromatography Epoxy equivalent: Conforms to JIS K 7236 (ISO 3001) ICI Melt viscosity: JIS K 7117-2 (ISO 3219) Softening point: Conforming to JIS K 7234 Total chlorine: Conforming to JIS K 7243-3 (ISO 21672-3) Iron: ICP emission spectroscopic analysis GPC:
Column (Shodex KF-603, KF-602x2, KF-601x2)
The coupled eluent is tetrahydrofuran. The flow rate is 0.5 ml / min.
Column temperature is 40 ° C
Detection: RI (differential refraction detector)
DMA measurement conditions Dynamic viscoelasticity measuring instrument: manufactured by TA-instruments, DMA-2980
Measurement temperature range: -30 ° C to 280 ° C
Temperature rate: 2 ° C./min Test piece size: 5 mm × 50 mm cut out (thickness is about 800 μm).
Analysis conditions Tg: Tan δ peak point (tan δ MAX) in DMA measurement was defined as Tg.
Glass transition point (Tg):
TMA thermomechanical measuring device: TM-7000 manufactured by Vacuum Riko Co., Ltd.
Temperature increase rate: 2 ° C./min.
Stickiness / tactile sensation of tablet molded body Determination of flame retardancy and flame retardancy: Performed according to UL94. However, the test was conducted with a sample size of 12.5 mm wide × 150 mm long and a thickness of 0.8 mm.
-Afterflame time: the total water absorption of the afterflame time after contacting a set of five samples 10 times Weight after boiling a disk-shaped test piece having a diameter of 5 cm and a thickness of 4 mm in water at 100 ° C for 24 hours Increase rate (%)
(合成例1)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン372部とトルエン200部を仕込み、室温で35%塩酸146部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル125部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を195~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液330部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で昇温時に留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下(200℃、0.6KPa)において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂(A)173部を得た。得られた樹脂を、再びロータリーエバポレーターで加熱減圧下(200℃、4KPa)において水蒸気吹き込みの代わりに水を少量ずつ滴下した。その結果、芳香族アミン樹脂(A1)166部を得た。得られた芳香族アミン樹脂(A1)の軟化点は56℃、溶融粘度は0.035Pa・s、ジフェニルアミンは0.1%以下であった。またアミン当量は195g/eq.であった。
(Synthesis Example 1)
A flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 372 parts of aniline and 200 parts of toluene, and 146 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the organic layer of toluene was returned to the system for dehydration. Subsequently, 125 parts of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining the temperature at 60 to 70 ° C., and the reaction was further carried out at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to bring the inside of the system to 195 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. Then, with cooling, 330 parts of 30% aqueous sodium hydroxide solution was slowly added dropwise so that the system did not circulate vigorously, and the toluene distilled off at a temperature of 80 ° C. or lower was returned to the system and allowed to stand at 70 ° C. to 80 ° C. I put it. The separated lower aqueous layer was removed, and the reaction solution was washed with water until the washing solution became neutral. Subsequently, 173 parts of aromatic amine resin (A) was obtained by distilling off excess aniline and toluene from the oil layer with a rotary evaporator under heating and reduced pressure (200 ° C., 0.6 KPa). The obtained resin was again dripped little by little on the rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa) instead of steam blowing. As a result, 166 parts of aromatic amine resin (A1) was obtained. The aromatic amine resin (A1) obtained had a softening point of 56 ° C., a melt viscosity of 0.035 Pa · s, and diphenylamine of 0.1% or less. The amine equivalent was 195 g / eq. Met.
実施例1、比較例1、2
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)、硬化剤として合成例1で得られた芳香族アミン樹脂(A1)、比較用の硬化剤としてトリスフェノールメタン型フェノール樹脂(P-1 日本化薬製 KAYAHARD KTG-105 水酸基当量104g/eq.)、フェノールノボラック(P-2 明和化成製 H-1、水酸基当量106g/eq.)、硬化促進剤としてサリチル酸(C-1 純正化学 試薬)、トリフェニルホスフィン(C-2 TPP 北興化学工業製)、無機充填剤としてシリカゲル(溶融シリカ MSR-2212、龍森製)、離型剤としてカルナバワックス1号(セラリカ野田製)、添加剤としてシランカップリング剤(商品名:KBM-403 信越化学製)を使用し、表1の割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物を粉砕後、タブレットマシーンにてタブレット化した。このタブレット化されたエポキシ樹脂組成物をトランスファー成型(175℃×60秒)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。
Example 1, Comparative Examples 1 and 2
Epoxy resin 1 (Nippon Kayaku NC-3000 Epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or lower and referred to as “EP1”), aromatic amine resin (A1) obtained in Synthesis Example 1 as a curing agent, comparison Trisphenol methane type phenol resin (P-1 KAYAHARD KTG-105 hydroxyl equivalent 104 g / eq.), Phenol novolak (P-2 Meiwa Kasei H-1, hydroxyl equivalent 106 g / eq. ), Salicylic acid (C-1 Pure Chemical Reagent) as a curing accelerator, triphenylphosphine (C-2 TPP manufactured by Hokuko Chemical Co., Ltd.), silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an inorganic filler, mold release agent As carnauba wax No. 1 (manufactured by Celalica Noda) and as additive silane coupling agent (trade name: KBM-403) Shin-Etsu Chemical Co., Ltd.) was used and blended in the proportions (parts by weight) shown in Table 1, and mixed and kneaded uniformly using a mixing roll to obtain an epoxy resin composition. The epoxy resin composition was pulverized and tableted with a tablet machine. The tableted epoxy resin composition was transfer-molded (175 ° C. × 60 seconds), and after demolding, cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours to obtain a test piece for evaluation.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果から本発明のエポキシ樹脂組成物はエポキシ樹脂組成物成型物の段階でのべたつきもなく通常のエポキシ樹脂組成物同様にタブレット化でき、かつ、その硬化物は高い耐熱性と高い耐水特性を有することが分かった。耐水性が高いことはイオンの移動が少なくなるため、電気信頼性にも寄与する。また難燃性を確認したところ、高い難燃性を有することを確認した。 From the above results, the epoxy resin composition of the present invention can be tableted in the same manner as a normal epoxy resin composition without stickiness at the stage of the epoxy resin composition molding, and the cured product has high heat resistance and high water resistance. It was found to have High water resistance contributes to electrical reliability because ion migration is reduced. Moreover, when the flame retardance was confirmed, it confirmed that it had high flame retardance.
実施例2、3、比較例3、4
 エポキシ樹脂「EP1」、エポキシ樹脂2(日本化薬製 EOCN-1020-70 エポキシ当量198g/eq.軟化点70.3℃ 以下「EP2」という。)、硬化剤として合成例1で得られた芳香族アミン樹脂(A1)、比較用の硬化剤としてビフェニルアラルキル樹脂(P-3 日本化薬製 KAYAHARD GPH-65 軟化点65℃、水酸基当量200g/eq.)、硬化促進剤としてサリチル酸(C-1 純正化学 試薬)、トリフェニルホスフィン(C-2 TPP 北興化学工業製)、無機充填剤としてシリカゲル(溶融シリカ MSR-2212、龍森製)、離型剤としてカルナバワックス1号(セラリカ野田製)、添加剤としてシランカップリング剤(商品名:KBM-303 信越化学製)を使用し、表2の割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物を粉砕後、タブレットマシーンにてタブレット化した。このタブレット化されたエポキシ樹脂組成物成型体を用いてキュラストメータでトルクの最大値(以下 MH)とゲルタイムを測定した。
<硬化性(硬化トルク)>
 キュラストメータV型(日合商事社製、商品名)を使用して、温度175℃、樹脂用ダイスP-200および振幅角度±1°の条件で、それぞれの上記封止剤について硬化トルクを測定し、硬化トルクの立ち上がる点をゲルタイム(単位は秒)として、測定開始から表2に記載の秒後の硬化トルクの値(単位はN・m)を硬化性(脱型時の強度および硬度)の指標とした。
Examples 2 and 3 and Comparative Examples 3 and 4
Epoxy resin “EP1”, epoxy resin 2 (EOCN-1020-70 manufactured by Nippon Kayaku, epoxy equivalent 198 g / eq. Softening point 70.3 ° C. or lower and referred to as “EP2”), aromatic obtained in Synthesis Example 1 as a curing agent Group amine resin (A1), biphenyl aralkyl resin (P-3 Nippon Kayaku KAYAHARD GPH-65, softening point 65 ° C., hydroxyl group equivalent 200 g / eq.) As a curing agent for comparison, salicylic acid (C-1) as a curing accelerator Pure Chemical Reagent), Triphenylphosphine (C-2 TPP, manufactured by Hokuko Chemical Co., Ltd.), silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an inorganic filler, carnauba wax No. 1 (manufactured by Celalica Noda) as a release agent, A silane coupling agent (trade name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as an additive, and the ratio (part by weight) shown in Table 2 was used. The mixture was uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition. The epoxy resin composition was pulverized and tableted with a tablet machine. Using the tableted epoxy resin composition molding, the maximum torque (hereinafter referred to as MH) and gel time were measured with a curastometer.
<Curing property (curing torque)>
Curing meter V-type (manufactured by Nichigo Shoji Co., Ltd., trade name) is used to set the curing torque for each of the above sealants under the conditions of a temperature of 175 ° C., a resin die P-200 and an amplitude angle of ± 1 °. The point at which the curing torque rises is defined as the gel time (unit: second), and the value of the curing torque (unit: N · m) in seconds shown in Table 2 from the start of measurement is set as the curability (strength and hardness at demolding). ).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果から、本発明のエポキシ樹脂組成物は、ゲルタイムを合わせた、フェノール樹脂を硬化剤として用いたエポキシ樹脂組成物と比較し、トルクの最大値が高く、脱型性に優れていることが確認でき、半導体封止材とした際の生産性に有効であることが確認できた。 From the above results, the epoxy resin composition of the present invention has a higher maximum torque value and excellent demoldability compared to an epoxy resin composition using a phenol resin as a curing agent with a combined gel time. It was confirmed that it was effective for productivity when used as a semiconductor encapsulant.
実施例4~6
 エポキシ樹脂「EP1」、硬化剤として合成例1で得られた芳香族アミン樹脂(A1)、硬化促進剤としてサリチル酸(C-1)、トリフェニルホスフィン(C-2)、無機充填剤としてシリカゲル(溶融シリカ MSR-2212、龍森製)、離型剤としてカルナバワックス(セラリカ野田製)、添加剤としてシランカップリング剤(商品名:KBM-303 信越化学製)を使用し、表3の割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、本発明のエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を粉砕後、タブレットマシーンにてタブレット化した。このタブレット化されたエポキシ樹脂組成物成型体をトランスファー成型(175℃ 60秒~15分)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。
Examples 4-6
Epoxy resin “EP1”, aromatic amine resin (A1) obtained in Synthesis Example 1 as a curing agent, salicylic acid (C-1), triphenylphosphine (C-2) as a curing accelerator, silica gel (inorganic filler) Fused silica MSR-2212 (manufactured by Tatsumori), carnauba wax (manufactured by Celerica Noda) as the mold release agent, and silane coupling agent (trade name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) as additives, the proportions in Table 3 Parts by weight) and uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition of the present invention. The epoxy resin composition was pulverized and tableted with a tablet machine. This tableted epoxy resin composition molded body is transfer molded (175 ° C. for 60 seconds to 15 minutes), and after demolding, cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours to obtain a test piece for evaluation. It was.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上の結果より、実施例5、6はゲルタイムが長いものの、各々高い耐熱性と低吸水特性を持っており、耐熱性、電機信頼性において有効であることが分かった。 From the above results, although Examples 5 and 6 have a long gel time, they have high heat resistance and low water absorption characteristics, respectively, and are found to be effective in heat resistance and electrical reliability.
合成例2
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら国際公報2007/007827号に準拠して製造したフェノール樹脂(下記式(2)
Synthesis example 2
A phenol resin produced in accordance with International Publication No. 2007/007827 while performing nitrogen purging on a flask equipped with a stirrer, a reflux condenser, and a stirrer (the following formula (2)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(n=1.5 水酸基当量134g/eq. 軟化点93℃ 以下P-4))134部、エピクロロヒドリン450部、メタノール54部を加え、撹拌下で溶解し、70℃にまで昇温した。次いでフレーク状の水酸化ナトリウム42.5部を90分かけて分割添加した後、更に70℃で1時間反応を行った。反応終了後,水洗し、塩を除いた後、得られた有機層をロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン500部を加え溶解し、撹拌下で30重量%の水酸化ナトリウム水溶液17部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することでエポキシ樹脂(EP3 下記式(3) (N = 1.5 hydroxyl group equivalent 134 g / eq. Softening point 93 ° C., hereinafter referred to as P-4)) 134 parts, 450 parts of epichlorohydrin and 54 parts of methanol are added, dissolved under stirring, and heated to 70 ° C. did. Next, 42.5 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further carried out at 70 ° C. for 1 hour. After completion of the reaction, the mixture was washed with water to remove the salt, and then the resulting organic layer was distilled off excess solvent such as epichlorohydrin under reduced pressure using a rotary evaporator. Add 500 parts of methyl isobutyl ketone to the residue, dissolve, add 17 parts of 30% by weight aqueous sodium hydroxide solution under stirring, react for 1 hour, and then wash with water until the washing water of the oil layer becomes neutral. Then, by distilling off methyl isobutyl ketone and the like from the obtained solution under reduced pressure using a rotary evaporator, an epoxy resin (EP3: Formula (3) below)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Gはグリシジル基を表す。)195部を得た。得られたエポキシ樹脂のエポキシ当量は211g/eq.軟化点71℃、150℃における溶融粘度(ICI溶融粘度 コーン#1)は0.34Pa・sであった。 (In the formula, G represents a glycidyl group.) 195 parts were obtained. The epoxy equivalent of the obtained epoxy resin is 211 g / eq. The melt viscosity (ICI melt viscosity cone # 1) at a softening point of 71 ° C. and 150 ° C. was 0.34 Pa · s.
実施例7、比較例5
 エポキシ樹脂「EP1」、「EP3」 硬化剤として合成例1で得られた芳香族アミン樹脂(A1)、フェノール樹脂「P4」 硬化促進剤として、サリチル酸(C-1)、トリフェニルホスフィン(C-2)、無機充填剤としてシリカゲル(溶融シリカ MSR-2212、龍森製)、離型剤としてカルナバワックス(セラリカ野田製)、添加剤としてシランカップリング剤(商品名:KBM-303 信越化学製)を使用し、表4の割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。
 このエポキシ樹脂組成物を粉砕後、タブレットマシーンにてタブレット化した。このタブレット化されたエポキシ樹脂組成物成型体をトランスファー成型(175℃ 60~15分)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。
Example 7, Comparative Example 5
Epoxy resins “EP1” and “EP3” Aromatic amine resin (A1) obtained in Synthesis Example 1 as a curing agent, phenolic resin “P4” As curing accelerators, salicylic acid (C-1), triphenylphosphine (C— 2) Silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an inorganic filler, carnauba wax (manufactured by Celerica Noda) as a release agent, and a silane coupling agent (trade name: KBM-303, manufactured by Shin-Etsu Chemical) as an additive Were mixed in the proportions (parts by weight) shown in Table 4, and mixed and kneaded uniformly using a mixing roll to obtain an epoxy resin composition.
The epoxy resin composition was pulverized and tableted with a tablet machine. This tableted epoxy resin composition molded body was transfer molded (175 ° C. for 60 to 15 minutes), and after demolding, cured under conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours to obtain a test piece for evaluation. .
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明のエポキシ樹脂組成物は類似骨格の多官能フェノール樹脂を用いた場合と比較しても高い耐熱性とともに低吸湿性、難燃性を有することが確認できた。 The epoxy resin composition of the present invention was confirmed to have high heat resistance, low hygroscopicity and flame retardancy even when compared to the case of using a polyfunctional phenol resin having a similar skeleton.
実施例8、試験例1、2
 以下の硬化物を用いて、サイクロミルで粉砕後、粉砕したサンプル1部につきミリポア水20部を用い、PCT抽出装置で121℃24時間抽出作業を行い、水分中に含まれる塩素イオンをイオンクロマトで分析することにより、高温条件下で抽出される塩素イオン分を測定した。
 実施例8 : 実施例1の硬化物
 試験例1 : 比較例2の硬化物
 試験例2 : 比較例3で使用した組成物を粉砕後、タブレットマシーンにてタブレット化し、このタブレット化されたエポキシ樹脂組成物をトランスファー成型(175℃ 60~15分)した後、更に脱型後160℃×2時間+180℃×6時間の条件で硬化して得られた硬化物
その結果硬化物換算で以下の塩素分を確認した。
 実施例8: 0.5ppm
 試験例1: 0.9ppm
 試験例2: 0.4ppm
Example 8, Test Examples 1 and 2
Using the following cured product, after pulverizing with a cyclomill, 20 parts of Millipore water is used for 1 part of the pulverized sample, and extraction is performed at 121 ° C. for 24 hours with a PCT extraction device, and chlorine ions contained in water are ion chromatographed. The chlorine ion content extracted under high temperature conditions was measured.
Example 8: Cured product of Example 1 Test example 1: Cured product of Comparative Example 2 Test example 2: After pulverizing the composition used in Comparative Example 3, it was tableted on a tablet machine, and this tableted epoxy resin was used. A cured product obtained by transfer molding (175 ° C. for 60 to 15 minutes), further demolding, and then cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours. Checked minutes.
Example 8: 0.5 ppm
Test Example 1: 0.9 ppm
Test example 2: 0.4 ppm
 以上の結果から、腐食の要因となる塩素イオンの抽出量がフェノール樹脂硬化剤と同様の結果であり、アミン系の材料であっても抽出量が少なく、電気信頼性に優れる硬化物であることが確認できた。 From the above results, the extraction amount of chlorine ions that cause corrosion is the same result as the phenolic resin curing agent, and even if it is an amine-based material, the extraction amount is small and the cured product has excellent electrical reliability. Was confirmed.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2015年12月11日付で出願された日本国特許出願(特願2015-242468)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on December 11, 2015 (Japanese Patent Application No. 2015-242468), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (5)

  1.  二官能以上のエポキシ樹脂(A成分)と、ビフェニレンノボラック構造を有するアニリン樹脂(B成分)と、シリカゲルおよびアルミナから選ばれる少なくとも一方を含有する無機フィラー(C成分)とを含有し、当該無機フィラーの含有量が前記A~Cの3成分の総量の50~95重量%であるエポキシ樹脂組成物。 A bifunctional or higher epoxy resin (component A), an aniline resin (component B) having a biphenylene novolak structure, and an inorganic filler (component C) containing at least one selected from silica gel and alumina, the inorganic filler An epoxy resin composition having a content of 50 to 95% by weight of the total amount of the three components A to C.
  2.  前記アニリン樹脂が下記式(1)に記載の構造であり、かつ軟化点が50~180℃である請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、複数存在するRはそれぞれ独立して水素原子、炭素数1~5のアルキル基を表す。nは整数であり、nの平均値(A)が1≦A≦5を表す。)
    The epoxy resin composition according to claim 1, wherein the aniline resin has a structure represented by the following formula (1) and has a softening point of 50 to 180 ° C.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, a plurality of R's each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. N is an integer, and the average value (A) of n represents 1 ≦ A ≦ 5.)
  3.  請求項1又は請求項2に記載のエポキシ樹脂組成物を、タブレット状、粉状、顆粒状、シート状のいずれかに成型したエポキシ樹脂組成物成型体。 An epoxy resin composition molded body obtained by molding the epoxy resin composition according to claim 1 or 2 into one of a tablet shape, a powder shape, a granule shape, and a sheet shape.
  4.  請求項1もしくは請求項2に記載のエポキシ樹脂組成物、又は請求項3に記載のエポキシ樹脂組成物成型体を硬化した硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 1 or 2, or the epoxy resin composition molded article according to claim 3.
  5.  請求項1もしくは請求項2に記載のエポキシ樹脂組成物、請求項3に記載のエポキシ樹脂組成物成型体又は請求項4に記載の硬化物のいずれかと、シリコン、シリコンカーバイドおよび窒化ガリウムから選ばれる少なくともいずれかの半導体素子とで構成した半導体装置。 The epoxy resin composition according to claim 1 or 2, the epoxy resin composition molded article according to claim 3, or the cured product according to claim 4, and selected from silicon, silicon carbide and gallium nitride. A semiconductor device comprising at least one semiconductor element.
PCT/JP2016/086627 2015-12-11 2016-12-08 Epoxy resin composition, epoxy resin composition compact, cured article, and semiconductor device WO2017099193A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680071257.3A CN108368239A (en) 2015-12-11 2016-12-08 Epoxy resin component, epoxy resin component formed body, hardening thing and semiconductor device
KR1020187009699A KR20180092933A (en) 2015-12-11 2016-12-08 Epoxy resin composition, molded article of epoxy resin composition, cured product and semiconductor device
JP2017555141A JPWO2017099193A1 (en) 2015-12-11 2016-12-08 Epoxy resin composition, epoxy resin composition molded body, cured product, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-242468 2015-12-11
JP2015242468 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017099193A1 true WO2017099193A1 (en) 2017-06-15

Family

ID=59013276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086627 WO2017099193A1 (en) 2015-12-11 2016-12-08 Epoxy resin composition, epoxy resin composition compact, cured article, and semiconductor device

Country Status (5)

Country Link
JP (1) JPWO2017099193A1 (en)
KR (1) KR20180092933A (en)
CN (1) CN108368239A (en)
TW (1) TW201734126A (en)
WO (1) WO2017099193A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208201A (en) * 2007-02-26 2008-09-11 Nippon Kayaku Co Ltd Epoxy resin composition, cured material of the same and fiber-reinforced composite material
WO2015152007A1 (en) * 2014-04-02 2015-10-08 日本化薬株式会社 Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG115811A1 (en) * 2004-03-31 2005-10-28 Nitto Denko Corp Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2007308678A (en) * 2005-11-02 2007-11-29 Shin Etsu Chem Co Ltd Liquid state epoxy resin composition
JP5305452B2 (en) * 2009-06-12 2013-10-02 信越化学工業株式会社 Resin composition for optical semiconductor element sealing
JP2013067794A (en) 2011-09-09 2013-04-18 Hokko Chem Ind Co Ltd Epoxy resin-based composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208201A (en) * 2007-02-26 2008-09-11 Nippon Kayaku Co Ltd Epoxy resin composition, cured material of the same and fiber-reinforced composite material
WO2015152007A1 (en) * 2014-04-02 2015-10-08 日本化薬株式会社 Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof

Also Published As

Publication number Publication date
TW201734126A (en) 2017-10-01
CN108368239A (en) 2018-08-03
KR20180092933A (en) 2018-08-20
JPWO2017099193A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6366590B2 (en) Epoxy resin mixture, epoxy resin composition, cured product, and semiconductor device
JP6366504B2 (en) Epoxy resin, epoxy resin composition and cured product
JP6233307B2 (en) Phenolic resin composition
JPWO2014199659A1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP6238845B2 (en) Phenol resin, phenol resin mixture, epoxy resin, epoxy resin composition and cured products thereof
TWI618744B (en) Epoxy resin mixture, epoxy resin composition, hardened material, and semiconductor device
JPWO2017099194A1 (en) Epoxy resin composition, prepreg, molded epoxy resin composition and cured product thereof
JP2017071706A (en) Epoxy resin composition, curable resin composition and cured product thereof
JP2011001447A (en) Epoxy resin composition
JP2009120815A (en) Epoxy resin composition and semiconductor device
JP2005171188A (en) Epoxy resin composition
JP6576001B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
WO2017099193A1 (en) Epoxy resin composition, epoxy resin composition compact, cured article, and semiconductor device
JP6302280B2 (en) Epoxy resin, curable resin composition and cured product
JP7230285B1 (en) Epoxy resin, curable resin composition, and cured product thereof
JP2010053293A (en) Epoxy resin composition
JP5299976B2 (en) Modified epoxy resin and epoxy resin composition
JP2010275479A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP6414845B2 (en) Phenolic resin, epoxy resin, epoxy resin composition, and cured products thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555141

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187009699

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873086

Country of ref document: EP

Kind code of ref document: A1