JP6715249B2 - Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof - Google Patents

Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP6715249B2
JP6715249B2 JP2017534411A JP2017534411A JP6715249B2 JP 6715249 B2 JP6715249 B2 JP 6715249B2 JP 2017534411 A JP2017534411 A JP 2017534411A JP 2017534411 A JP2017534411 A JP 2017534411A JP 6715249 B2 JP6715249 B2 JP 6715249B2
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
resin composition
weight
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017534411A
Other languages
Japanese (ja)
Other versions
JPWO2017026396A1 (en
Inventor
窪木 健一
健一 窪木
政隆 中西
政隆 中西
一貴 松浦
一貴 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JPWO2017026396A1 publication Critical patent/JPWO2017026396A1/en
Application granted granted Critical
Publication of JP6715249B2 publication Critical patent/JP6715249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1405Polycondensates modified by chemical after-treatment with inorganic compounds
    • C08G59/1411Polycondensates modified by chemical after-treatment with inorganic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment

Description

本発明は、エポキシ樹脂、変性エポキシ樹脂、エポキシ樹脂組成物およびその硬化物に関するものであり、半導体封止材、液晶封止材、EL封止材、プリント配線板、ビルドアップ積層板などの電気・電子部品や、炭素繊維強化プラスティック、ガラス繊維強化プラスティックなどの軽量高強度材料に好適に使用される。 The present invention relates to an epoxy resin, a modified epoxy resin, an epoxy resin composition, and a cured product thereof, which can be used for semiconductor encapsulating materials, liquid crystal encapsulating materials, EL encapsulating materials, printed wiring boards, build-up laminated boards, and other electrical materials. -Suitable for electronic parts and lightweight high strength materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics.

近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。例えば従来、半導体チップは金属製のリードフレームに搭載することが主流であったが、CPUなどの高度な処理能力のある半導体チップは高分子材料で作られる積層板に搭載されることが多くなっている。CPU等の素子の高速化が進みクロック周波数が高くなるにつれ、信号伝搬遅延や伝送損失が問題となり、配線板に低誘電率化、低誘電正接化が求められるようになっている。同時に素子の高速化に伴い、チップの発熱が大きくなっているため耐熱性を高める必要も生じている。
また、近年携帯電話などのモバイル電子機器が普及してきており、精密電子機器が屋外環境や人体の極近傍で使用・携帯されるようになってきているため、外的環境(特に耐湿熱)に対する耐性が必要とされる。
更に自動車分野においては電子化が進み、エンジンの近くに精密電子機器が配置されることもあるため耐熱・耐湿性がより高いレベルで要求されるようになっている。
また、近年省エネの必要から飛行機、自動車、列車、船舶等の軽量化が進んでいる。従来は金属材料を用いていたものを、軽量で高強度な炭素繊維複合材料に置き換える検討が乗物分野で特に行われている。例を挙げれば、ボーイング787においては複合材料の比率を上げることで軽量化を行い、燃費効率を大幅に改善している。自動車分野では一部ではあるが複合材料製のシャフトを搭載しており、また高級車向けに車体を複合材料で作る動きもある。これらの要求に対して、エポキシ樹脂及びこれを含有する樹脂組成物について多くの提案がなされている(特許文献1、特許文献2)。特許文献3には、アリル基含有するビスフェノールA構造のエポキシ樹脂が開示されている(特許文献3)
2. Description of the Related Art In recent years, a laminated board on which electric/electronic components are mounted has been required to have a wide range of required characteristics due to the expansion of its application field. For example, conventionally, semiconductor chips have been mainly mounted on metal lead frames, but semiconductor chips with high processing capabilities such as CPUs are often mounted on laminated plates made of polymer materials. ing. As the speed of devices such as CPU increases and the clock frequency increases, signal propagation delay and transmission loss become a problem, and wiring boards are required to have low dielectric constant and low dielectric loss tangent. At the same time, as the speed of the device increases, the heat generation of the chip increases, so that it is necessary to increase the heat resistance.
In addition, mobile electronic devices such as mobile phones have become widespread in recent years, and precision electronic devices have come to be used and carried in outdoor environments or in the immediate vicinity of the human body. Tolerance is needed.
Further, in the field of automobiles, computerization is progressing, and precision electronic devices may be arranged near the engine, so that heat resistance and humidity resistance are required at a higher level.
Further, in recent years, the weight of airplanes, automobiles, trains, ships and the like has been reduced due to the need for energy saving. In the field of vehicles, a study is being made in particular to replace a metal material that has been used in the past with a lightweight and high-strength carbon fiber composite material. For example, in the Boeing 787, the ratio of the composite material is increased to reduce the weight, and the fuel efficiency is significantly improved. In the automobile field, although it is partly equipped with a shaft made of composite material, there is also a movement to make the body of the composite material for luxury cars. In response to these requirements, many proposals have been made on epoxy resins and resin compositions containing the same (Patent Documents 1 and 2). Patent Document 3 discloses an epoxy resin having an allyl group-containing bisphenol A structure (Patent Document 3).

日本国特開平11−140163号公報Japanese Patent Laid-Open No. 11-140163 日本国特開平11−255866号公報Japanese Patent Laid-Open No. 11-255866 日本国特開2004−107501号公報Japanese Patent Laid-Open No. 2004-107501

しかしながら、特許文献3アリル基含有するビスフェノールS構造を有するエポキシ樹脂では、性能として未だ十分とはいえず、更なる改良が求められている。そこで、本発明は、その硬化物において優れた低吸湿性(低吸水性)耐熱性、強度を示すエポキシ樹脂、変性エポキシ樹脂、エポキシ樹脂組成物およびその硬化物を提供することを目的とする。 However, the epoxy resin having a bisphenol S structure containing an allyl group in Patent Document 3 is still insufficient in performance, and further improvement is required. Then, an object of the present invention is to provide an epoxy resin, a modified epoxy resin, an epoxy resin composition which shows excellent low hygroscopicity (low water absorption) heat resistance and strength in the cured product, and a cured product thereof.

本発明者らは上記課題を解決するために鋭意研究した結果、プロペニル基を含むビスフェノール構造を有するエポキシ樹脂が優れた低吸湿性(低吸水性)、耐熱性や弾性率に優れることを見出し、本発明を完成させるに到った。 The present inventors have conducted extensive studies to solve the above problems, and found that the epoxy resin having a bisphenol structure containing a propenyl group has excellent low hygroscopicity (low water absorption), excellent heat resistance and elastic modulus, The present invention has been completed.

すなわち本発明は、
[1]下記式(1)
That is, the present invention is
[1] The following formula (1)

Figure 0006715249
Figure 0006715249

(式中、複数存在するRはそれぞれ独立してアリル基またはプロペニル基を表し、全Rの10%以上がプロペニル基である。Gはグリシジル基を表す。複数存在するXはそれぞれ独立して水素原子またはグリシジル基を表す。nは0〜10であり、その平均値は0〜10の実数を表す。)で表されるエポキシ樹脂、
[2]前項[1]記載のエポキシ樹脂とビスフェノール類とを重合した変性エポキシ樹脂、
[3]前項[1]記載のエポキシ樹脂または前項[2]記載の変性エポキシ樹脂を含有するエポキシ樹脂組成物、
[4]硬化剤を含有する前項[3]に記載のエポキシ樹脂組成物、
[5]硬化促進剤を含有する前項[3]又は[4]に記載のエポキシ樹脂組成物、
[6]ラジカル重合開始剤を含有する前項[3]〜[5]のいずれか一項に記載のエポキシ樹脂組成物、
[7]前項[3]〜[6]のいずれか一項に記載のエポキシ樹脂組成物を硬化した硬化物
を、提供するものである。
(In the formula, plural Rs independently represent an allyl group or a propenyl group, and 10% or more of all Rs are propenyl groups. G represents a glycidyl group. Plural Xs independently represent hydrogen. Represents an atom or a glycidyl group, n is 0 to 10, and the average value thereof represents a real number of 0 to 10.),
[2] A modified epoxy resin obtained by polymerizing the epoxy resin described in [1] above and a bisphenol.
[3] An epoxy resin composition containing the epoxy resin described in [1] above or the modified epoxy resin described in [2] above,
[4] The epoxy resin composition according to the above [3], which contains a curing agent,
[5] The epoxy resin composition according to the above [3] or [4], which contains a curing accelerator,
[6] The epoxy resin composition according to any one of items [3] to [5], which contains a radical polymerization initiator,
[7] A cured product obtained by curing the epoxy resin composition according to any one of [3] to [6] above is provided.

本発明は、その硬化物において優れた低吸湿性(低吸水性)、耐熱性(耐半田リフロー性)を示す電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、接着剤(導電性接着剤など)やCFRPを始めとする各種複合材料用、塗料等に有用なエポキシ樹脂、変性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物を提供するものである。 The present invention provides an insulating material (such as a highly reliable semiconductor encapsulating material) for electric and electronic parts, which exhibits excellent low hygroscopicity (low water absorption) and heat resistance (solder reflow resistance) in its cured product, and a laminate (print). Wiring boards, BGA substrates, build-up substrates, etc.), adhesives (conductive adhesives, etc.), CFRP and other composite materials, epoxy resins useful for paints, modified epoxy resins, epoxy resin compositions and The cured product is provided.

以下、本発明のエポキシ樹脂について詳細に説明する。
本発明のエポキシ樹脂は、下記式(1)で表される。
Hereinafter, the epoxy resin of the present invention will be described in detail.
The epoxy resin of the present invention is represented by the following formula (1).

Figure 0006715249
Figure 0006715249

(式中、複数存在するRはそれぞれ独立してアリル基またはプロペニル基(プロペニル基は、1−プロペニル基を表すが、以下、プロペニル基と表記する)を表し、全Rの10%以上がプロペニル基である。Gはグリシジル基を表す。複数存在するXはそれぞれ独立して水素原子またはグリシジル基を表す。nは0〜10であり、その平均値は0〜10の実数を表す。) (In the formula, a plurality of Rs each independently represent an allyl group or a propenyl group (a propenyl group represents a 1-propenyl group, but hereinafter referred to as a propenyl group), and 10% or more of all Rs are propenyl. G is a glycidyl group, plural X's each independently represent a hydrogen atom or a glycidyl group, n is 0 to 10, and the average value thereof is a real number of 0 to 10.)

エポキシ樹脂は硬化反応において、架橋点部分に極性基(水酸基やエステル基)を生成するが、これの親水性が吸湿性に大きく影響することが知られている。硬化物の低吸湿化策としては、その極性基濃度を低減するための低エポキシ基濃度化(高エポキシ当量化)が有効に機能する。しかしその反面、架橋密度の低下に起因するガラス転移温度の低下を伴う場合が多くなる。
本発明のエポキシ樹脂は、アリル基の一部または全てをより反応性の高いプロペニル基に変換しており、その結果、硬化過程において、(アリル基は架橋しないのに対し)プロペニル基同士の反応がおこるため、架橋密度が上がり耐熱性(ガラス転移温度)が向上する。一方、エポキシ基の反応と異なり極性基が発生しないため、耐熱性向上に伴う吸水(湿)性の悪化が少なくて済む。
Epoxy resins produce polar groups (hydroxyl groups and ester groups) at the cross-linking points during the curing reaction, and it is known that their hydrophilicity greatly affects hygroscopicity. As a measure for lowering moisture absorption of the cured product, lowering the concentration of the polar group (increasing the epoxy equivalent) effectively works. However, on the other hand, in many cases, the glass transition temperature is lowered due to the decrease in crosslink density.
The epoxy resin of the present invention converts a part or all of the allyl group to a more reactive propenyl group, and as a result, the reaction between propenyl groups (while the allyl group does not crosslink) in the curing process. As a result, the crosslink density is increased and the heat resistance (glass transition temperature) is improved. On the other hand, unlike the reaction of the epoxy group, a polar group is not generated, so that the deterioration of water absorption (wetness) accompanying the improvement of heat resistance can be reduced.

本発明のエポキシ樹脂は、前記式(1)中、Rはそれぞれアリル基またはプロペニル基を表し、全Rの10%以上がプロペニル基であり、より好ましくは20%以上、特に好ましくは30%以上である。10%未満の場合、耐熱性の向上が十分ではないおそれがある。
また前式(1)中、nは0〜10が好ましく、特に0〜5が好ましい。nの平均値は0〜10であり、好ましくは0〜5である。
In the epoxy resin of the present invention, in the above formula (1), each R represents an allyl group or a propenyl group, 10% or more of all Rs are propenyl groups, more preferably 20% or more, particularly preferably 30% or more. Is. If it is less than 10%, the heat resistance may not be sufficiently improved.
In the formula (1), n is preferably 0-10, and particularly preferably 0-5. The average value of n is 0 to 10, preferably 0 to 5.

本発明のエポキシ樹脂のエポキシ当量は221〜8100g/eq.が好ましく、より好ましくは、221〜4300g/eq.である。エポキシ当量が8100g/eq.を超えると単位構造当たりのエポキシ基の量が少なくなることを示し、エポキシ基の数が少なくなることを意味する。したがって耐熱性の面で好ましくないことがある。 The epoxy equivalent of the epoxy resin of the present invention is 221 to 8100 g/eq. Is preferable, and more preferably, 221 to 4300 g/eq. Is. Epoxy equivalent is 8100 g/eq. When it exceeds, it means that the amount of epoxy groups per unit structure decreases, which means that the number of epoxy groups decreases. Therefore, it may not be preferable in terms of heat resistance.

反応により得られた本発明のエポキシ樹脂に残存している全塩素量としては1500ppm以下が好ましく、より好ましくは1000ppm以下であり、特に500ppm以下であることが好ましい。 The total chlorine content remaining in the epoxy resin of the present invention obtained by the reaction is preferably 1500 ppm or less, more preferably 1000 ppm or less, and particularly preferably 500 ppm or less.

本発明のエポキシ樹脂は軟化点を有する樹脂状の形態を有する。ここで、軟化点としては50〜100℃が好ましい。軟化点が低すぎると溶剤に溶解して使用する場合は全く問題ないが、固形樹脂として取り扱う場合ブロッキングがおこりタックもあるため、ハンドリングが悪くなる。逆に、軟化点が高すぎる場合、他の樹脂との混練の際に、ハンドリングが悪くなる等の問題が生じることがある。
また、溶融粘度は0.01〜5Pa・s(ICI 溶融粘度 150℃ コーンプレート法)が好ましく、より好ましくは0.02〜4Pa・sであり、特に0.02〜3Pa・sであることが好ましい。粘度が小さすぎる場合、フィラー等の充填剤を多量に配合しても流動性が良い利点があり、一方でブロッキングの発生やタックがある。
The epoxy resin of the present invention has a resin-like form having a softening point. Here, the softening point is preferably 50 to 100°C. If the softening point is too low, there will be no problem when it is used by dissolving it in a solvent, but when it is handled as a solid resin, blocking occurs and tack may occur, resulting in poor handling. On the other hand, if the softening point is too high, problems such as poor handling may occur during kneading with other resins.
The melt viscosity is preferably 0.01 to 5 Pa·s (ICI melt viscosity 150° C. cone plate method), more preferably 0.02 to 4 Pa·s, and particularly preferably 0.02 to 3 Pa·s. preferable. When the viscosity is too low, even if a large amount of a filler such as a filler is blended, it has the advantage of good fluidity, while causing blocking and tacking.

次に、本発明のエポキシ樹脂の製造方法について説明する。
まず上記(1)記載の本発明のエポキシ樹脂は下記式(2)
Next, a method for producing the epoxy resin of the present invention will be described.
First, the epoxy resin of the present invention described in (1) above has the following formula (2)

Figure 0006715249
Figure 0006715249

(式中、Rはそれぞれ独立してアリル基またはプロペニル基を表す。)で表される化合物にエピハロヒドリン類を反応させることによって得られる。前記式(2)の化合物の具体例としては、2,2’−ジアリル−4,4’−スルホニルジフェノール、2−アリル−2’−プロペニル−4,4’−スルホニルジフェノール、2,2’−ジプロペニル−4,4’−スルホニルジフェノール、2,2’−ジアリル−6,6’−スルホニルジフェノール、2−アリル−2’−プロペニル−6,6’−スルホニルジフェノール、2,2’−ジプロペニル−6,6’−スルホニルジフェノールなどが挙げられ、プロペニル基/(プロペニル基+アリル基)≧0.1となるような配合比で使用する。 (In the formula, each R independently represents an allyl group or a propenyl group.) It is obtained by reacting a compound represented by epihalohydrin. Specific examples of the compound of the formula (2) include 2,2′-diallyl-4,4′-sulfonyldiphenol, 2-allyl-2′-propenyl-4,4′-sulfonyldiphenol, 2,2. '-Dipropenyl-4,4'-sulfonyldiphenol, 2,2'-diallyl-6,6'-sulfonyldiphenol, 2-allyl-2'-propenyl-6,6'-sulfonyldiphenol, 2,2 Examples include'-dipropenyl-6,6'-sulfonyldiphenol and the like, and the compounding ratio is such that propenyl group/(propenyl group+allyl group)≧0.1.

前記式(2)の化合物とエピハロヒドリン類との反応に使用されるエピハロヒドリン類としては、エピクロルヒドリン、エピブロムヒドリン、エピヨードヒドリン、β−メチルエピクロルヒドリン、β−メチルエピブロムヒドリン、β−エチルエピクロルヒドリン等があるが、工業的に入手し易く安価なエピクロルヒドリンが好ましい。この反応は従来公知の方法に準じて行うことが出来る。 The epihalohydrins used in the reaction of the compound of the formula (2) with epihalohydrins include epichlorohydrin, epibromhydrin, epiiodohydrin, β-methylepichlorohydrin, β-methylepibromohydrin, β-ethyl. Although epichlorohydrin and the like are available, epichlorohydrin, which is industrially easily available and inexpensive, is preferable. This reaction can be performed according to a conventionally known method.

例えば前記式(2)の化合物とエピハロヒドリン類の混合物に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を一括または徐々に添加しながら20〜120℃で1〜20時間反応させる。この際アルカリ金属水酸化物は水溶液を使用してもよく、その場合は該アルカリ金属水酸化物を連続的に添加すると共に反応系内から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ更に分液し水は除去しエピハロヒドリン類は反応系内に連続的に戻す方法でもよい。 For example, a solid of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added all at once or gradually to a mixture of the compound of the formula (2) and epihalohydrin and reacted at 20 to 120° C. for 1 to 20 hours. At this time, an aqueous solution may be used as the alkali metal hydroxide, in which case the alkali metal hydroxide is continuously added and water and epihalohydrins are continuously added from the reaction system under reduced pressure or normal pressure. It is also possible to use a method of distilling the water, further separating the water, removing the water, and continuously returning the epihalohydrins to the reaction system.

上記の方法においてエピハロヒドリン類の使用量は前記式(2)の化合物の水酸基1当量に対して通常0.5〜20モル、好ましくは0.7〜10モルである。アルカリ金属水酸化物の使用量は前記式(2)の化合物の水酸基1当量に対し通常0.5〜1.5モル、好ましくは0.7〜1.2モルの範囲である。また、上記反応においてジメチルスルホン、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン等の非プロトン性極性溶媒を添加することにより加水分解性ハロゲン濃度の低いエポキシ樹脂が得られ、電子材料封止材としての用途に適し、例えば全塩素濃度で1500ppm以下、より好ましくは1000ppm以下であることが好ましい。非プロトン性極性溶媒の使用量はエピハロヒドリン類の重量に対し5〜200重量%、好ましくは10〜100重量%の範囲である。また前記の溶媒以外にもメタノール、エタノール等のアルコール類を添加することによっても反応が進み易くなる。またトルエン、キシレン、ジオキサン等も使用することができる。 In the above method, the amount of epihalohydrin used is usually 0.5 to 20 mol, preferably 0.7 to 10 mol, per 1 equivalent of the hydroxyl group of the compound of the formula (2). The amount of the alkali metal hydroxide used is usually 0.5 to 1.5 mol, preferably 0.7 to 1.2 mol, based on 1 equivalent of the hydroxyl group of the compound of the above formula (2). Further, in the above reaction, an epoxy resin having a low hydrolyzable halogen concentration can be obtained by adding an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide (DMSO), dimethylformamide, and 1,3-dimethyl-2-imidazolidinone. It is obtained and suitable for use as an electronic material encapsulant. For example, the total chlorine concentration is preferably 1500 ppm or less, more preferably 1000 ppm or less. The amount of the aprotic polar solvent used is in the range of 5 to 200% by weight, preferably 10 to 100% by weight, based on the weight of the epihalohydrin. The reaction can be facilitated by adding alcohols such as methanol and ethanol in addition to the above solvents. Further, toluene, xylene, dioxane and the like can also be used.

また、前記式(2)で表される化合物と過剰のエピハロヒドリン類の混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライドなどの第四級アンモニウム塩を触媒として使用し、50℃〜150℃で1〜20時間反応させて得られた前記式(2)の化合物のハロヒドリンエーテルに水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体または水溶液を加え、20〜120℃で1〜20時間反応させてハロヒドリンエーテルを閉環させて本発明のエポキシ樹脂を得ることもできる。この場合の第四級アンモニウム塩の使用量は前記式(2)の化合物の水酸基1当量に対して通常0.001〜0.2モル、好ましくは0.05〜0.1モルである。 In addition, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide and trimethylbenzylammonium chloride is used as a catalyst in a mixture of the compound represented by the formula (2) and an excess of epihalohydrins at 50° C. A solid or aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to the halohydrin ether of the compound of the formula (2) obtained by reacting at 150° C. for 1 to 20 hours, and then 20 to 120. The epoxy resin of the present invention can be obtained by ring-closing the halohydrin ether by reacting at 1° C. for 1 to 20 hours. In this case, the amount of the quaternary ammonium salt used is usually 0.001 to 0.2 mol, preferably 0.05 to 0.1 mol, relative to 1 equivalent of the hydroxyl group of the compound of the formula (2).

通常、これらの反応物は水洗後、または水洗無しに加熱減圧下過剰のエピハロヒドリン類を除去した後、トルエン、キシレン、メチルイソブチルケトン等の溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて再び反応を行う。この場合アルカリ金属水酸化物の使用量は前記式(2)の化合物の水酸基1当量に対して通常0.01〜0.2モル、好ましくは0.05〜0.15モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。 Usually, these reaction products are washed with water or after removing excess epihalohydrin under heating and reduced pressure without water washing, and then dissolved in a solvent such as toluene, xylene or methyl isobutyl ketone, and then alkali sodium such as sodium hydroxide or potassium hydroxide. The reaction is carried out again by adding an aqueous solution of metal hydroxide. In this case, the amount of the alkali metal hydroxide used is usually 0.01 to 0.2 mol, preferably 0.05 to 0.15 mol, relative to 1 equivalent of the hydroxyl group of the compound of the formula (2). The reaction temperature is usually 50 to 120° C., and the reaction time is usually 0.5 to 2 hours.

反応終了後副生した塩をろ過、水洗などにより除去し、さらに加熱減圧下トルエン、キシレン、メチルイソブチルケトン等の溶媒を留去することにより加水分解性ハロゲンの少ないエポキシ樹脂を得ることができる。 After the completion of the reaction, the by-produced salt is removed by filtration, washing with water and the like, and the solvent such as toluene, xylene and methyl isobutyl ketone is distilled off under heating and reduced pressure to obtain an epoxy resin having less hydrolyzable halogen.

また、一旦得られた前記式(1)のエポキシ樹脂を、前記式(2)の化合物と重合させることにより、nの値の大きい前記式(1)のエポキシ樹脂を得ることができる。重合は、必要によりトルエン、キシレン、メチルイソブチルケトン等の溶媒に前記式(1)のエポキシ樹脂及び前記式(2)の化合物を溶解し、水酸化ナトリウム、トリフェニルホスフィン、三級アンモニウム塩等の触媒を添加して加熱する事により行う。前記式(1)のエポキシ樹脂と前記式(2)の化合物の使用比率は、通常エポキシ基が当量比で水酸基よりも多くなるように仕込む。 Further, the epoxy resin of the formula (1) once obtained is polymerized with the compound of the formula (2) to obtain the epoxy resin of the formula (1) having a large value of n. Polymerization is carried out by dissolving the epoxy resin of the above formula (1) and the compound of the above formula (2) in a solvent such as toluene, xylene or methyl isobutyl ketone, if necessary, and then adding sodium hydroxide, triphenylphosphine, a tertiary ammonium salt or the like. It is carried out by adding a catalyst and heating. The epoxy resin of the formula (1) and the compound of the formula (2) are usually used so that the epoxy group is more than the hydroxyl group in an equivalent ratio.

以上のように得られたエポキシ樹脂は、前記式(1)において、全てのXが水素原子であるエポキシ樹脂であるが、更にエピハロヒドリンと2級のアルコール性水酸基との反応を行うことにより、Xの全てないしは一部がグリシジル基である多官能のエポキシ樹脂を得ることができる。 The epoxy resin obtained as described above is an epoxy resin in which all Xs are hydrogen atoms in the above formula (1), but by further reacting epihalohydrin with a secondary alcoholic hydroxyl group, X It is possible to obtain a polyfunctional epoxy resin in which all or a part of these are glycidyl groups.

その具体的な方法としては、このエポキシ樹脂の2級アルコール性水酸基とエピハロヒドリンとを、DMSO、第4級アンモニウム塩、1,3−ジメチル−2−イミダゾリジノンまたは環状エーテル類とアルカリ金属水酸化物の共存下で反応させることにより、エポキシ化をおこなうことができ、更にアルカリ金属水酸化物の量を調節することによりXがグリシジル基である割合を任意に制御することが可能である。 As a specific method, the secondary alcoholic hydroxyl group of this epoxy resin and epihalohydrin are treated with DMSO, a quaternary ammonium salt, 1,3-dimethyl-2-imidazolidinone or cyclic ethers and an alkali metal hydroxide. By reacting in the presence of a substance, epoxidation can be performed, and by adjusting the amount of the alkali metal hydroxide, the proportion of X being a glycidyl group can be arbitrarily controlled.

DMSOあるいは1,3−ジメチル−2−イミダゾリジノン、環状エーテル類の使用量は、式(1)で全てのXが水素原子であるエポキシ樹脂に対して5〜300重量%が好ましい。第4級アンモニウム塩としてはテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイドなどが挙げられ、その使用量は前記式(1)でXが水素原子のエポキシ樹脂の2級アルコール性水酸基1当量に対して0.3〜50gが好ましく、特に0.5〜20gが好ましい。 The amount of DMSO, 1,3-dimethyl-2-imidazolidinone, or cyclic ether used is preferably 5 to 300% by weight with respect to the epoxy resin in which all X in the formula (1) are hydrogen atoms. Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetramethylammonium bromide and the like, and the amount thereof is 0 with respect to 1 equivalent of the secondary alcoholic hydroxyl group of the epoxy resin in which X is a hydrogen atom in the formula (1). 0.3 to 50 g is preferable, and 0.5 to 20 g is particularly preferable.

この反応に使用されるエピハロヒドリンとしては、前記と同様にエピクロルヒドリン、エピブロムヒドリン、エピヨードヒドリンなどがあるが、工業的に入手し易く安価なエピクロルヒドリンが好ましい。その使用量は前記式(1)で全てのXが水素原子であるエポキシ樹脂の2級アルコール性水酸基1当量に対して1当量以上であることが好ましい。 As the epihalohydrin used in this reaction, there are epichlorohydrin, epibromhydrin, epiiodohydrin and the like as described above, but epichlorohydrin which is industrially easily available and inexpensive is preferable. The amount used is preferably 1 equivalent or more with respect to 1 equivalent of the secondary alcoholic hydroxyl group of the epoxy resin in which all X are hydrogen atoms in the formula (1).

アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、等が使用できるが水酸化ナトリウムが好ましい。アルカリ金属水酸化物の使用量は前記式(1)で全てのXが水素原子であるエポキシ樹脂のエポキシ化させたい2級アルコール性水酸基1当量に対して好ましくは1〜10倍当量、特に好ましくは1〜2倍当量使用すればよい。アルカリ金属水酸化物は固形でも水溶液でもかまわない。また、水溶液を使用する場合は反応中、反応系内の水は常圧下、減圧下において反応系外に留去しながら反応を行うこともできる。 As the alkali metal hydroxide, sodium hydroxide, potassium hydroxide and the like can be used, but sodium hydroxide is preferable. The amount of the alkali metal hydroxide used is preferably 1 to 10 times, particularly preferably 1 to 10 times the equivalent of the secondary alcoholic hydroxyl group to be epoxidized in the epoxy resin in which all X are hydrogen atoms in the formula (1). 1 to 2 times equivalent may be used. The alkali metal hydroxide may be solid or aqueous solution. Further, when an aqueous solution is used, the reaction can be carried out during the reaction while distilling the water in the reaction system out of the reaction system under normal pressure or reduced pressure.

反応温度は30〜100℃が好ましい。反応終了後、過剰のエピハロヒドリン及び溶剤類を減圧下蒸留回収した後、有機溶剤に樹脂を溶解させ、アルカリ金属水酸化物で脱ハロゲン化水素反応を行うこともできる。一方、反応終了後、水洗分離を行い副生塩及び溶剤類を分離し、油層より過剰のエピハロヒドリン及び溶剤類を減圧下蒸留回収した後、有機溶剤に樹脂を溶解させ、アルカリ金属水酸化物で脱ハロゲン化水素反応を行ってもよい。有機溶剤としては、メチルイソブチルケトン、ベンゼン、トルエン、キシレン等が使用できるが、メチルイソブチルケトンが好ましい。それらは単独もしくは混合系でも使用できる。かくして、前記式(1)でXの一部ないしは全部がグリシジル基であるエポキシ樹脂が得られる。 The reaction temperature is preferably 30 to 100°C. After completion of the reaction, excess epihalohydrin and solvents may be distilled and recovered under reduced pressure, the resin may be dissolved in an organic solvent, and a dehydrohalogenation reaction may be carried out with an alkali metal hydroxide. On the other hand, after the reaction is complete, the product is washed with water to separate by-product salts and solvents, and excess epihalohydrin and solvents from the oil layer are recovered by distillation under reduced pressure, and then the resin is dissolved in an organic solvent and alkali metal hydroxide is added. A dehydrohalogenation reaction may be performed. As the organic solvent, methyl isobutyl ketone, benzene, toluene, xylene and the like can be used, but methyl isobutyl ketone is preferable. They can be used alone or in a mixed system. Thus, an epoxy resin in which a part or all of X in the above formula (1) is a glycidyl group is obtained.

また、本発明のエポキシ樹脂の製造においてはエポキシ化とアリル基のプロペニル基への転位を同時に行うこともできる。この場合、エピハロヒドリンにジメチルスルホン、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン等の非プロトン性極性溶媒を添加することが必要となる。
例えば前記式(2)の化合物とエピハロヒドリン類及び非プロトン性極性溶媒の混合物に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を一括または徐々に添加しながら20〜70℃、好ましくは20〜40℃で1〜20時間反応させる。この場合のアルカリ金属水酸化物の使用量は前記式(2)の化合物の水酸基1当量に対し通常1.0〜2.0モル、好ましくは1.0〜1.8モルの範囲である。
通常、これらの反応物は水洗後、または水洗無しに加熱減圧下過剰のエピハロヒドリン類及び非プロトン性極性溶媒を除去した後、トルエン、キシレン、メチルイソブチルケトン等の溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて再び反応を行う。この場合アルカリ金属水酸化物の使用量は前記式(2)の化合物の水酸基1当量に対して通常0.01〜0.2モル、好ましくは0.05〜0.15モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。
反応終了後副生した塩をろ過、水洗などにより除去し、さらに加熱減圧下トルエン、キシレン、メチルイソブチルケトン等の溶媒を留去することにより、アリル基の一部または全部がプロペニル基に転換したエポキシ樹脂を得ることができる。
Further, in the production of the epoxy resin of the present invention, epoxidation and rearrangement of an allyl group to a propenyl group can be carried out simultaneously. In this case, it is necessary to add an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide (DMSO), dimethylformamide, 1,3-dimethyl-2-imidazolidinone to epihalohydrin.
For example, a solid of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added all at once or gradually to a mixture of the compound of the formula (2), epihalohydrin and an aprotic polar solvent at 20 to 70° C., preferably Is reacted at 20-40°C for 1-20 hours. In this case, the amount of the alkali metal hydroxide used is usually in the range of 1.0 to 2.0 mol, preferably 1.0 to 1.8 mol per 1 equivalent of the hydroxyl group of the compound of the formula (2).
Usually, these reaction products are washed with water, or after removing excess epihalohydrins and aprotic polar solvent under heating and reduced pressure without washing with water, toluene, xylene, dissolved in a solvent such as methyl isobutyl ketone, sodium hydroxide, The reaction is carried out again by adding an aqueous solution of an alkali metal hydroxide such as potassium hydroxide. In this case, the amount of the alkali metal hydroxide used is usually 0.01 to 0.2 mol, preferably 0.05 to 0.15 mol, relative to 1 equivalent of the hydroxyl group of the compound of the formula (2). The reaction temperature is usually 50 to 120° C., and the reaction time is usually 0.5 to 2 hours.
After the completion of the reaction, the salt produced as a by-product is removed by filtration, washing with water, etc., and a solvent such as toluene, xylene and methyl isobutyl ketone is distilled off under heating and reduced pressure, whereby a part or all of the allyl group is converted to a propenyl group. An epoxy resin can be obtained.

以下、上記[2]記載の本発明の変性エポキシ樹脂につき説明する。
上記[2]の変性エポキシ樹脂(以下、変性エポキシ樹脂)は、一旦得られた上記式(1)のエポキシ樹脂を、ビスフェノール類と重合させることにより得ることができる。重合は、必要によりトルエン、キシレン、メチルイソブチルケトン等の溶媒に上記式(1)のエポキシ樹脂及びビスフェノール類を溶解し、水酸化ナトリウム、トリフェニルホスフィン、三級アンモニウム塩等の触媒を添加して加熱する事により行う。上記式(1)のエポキシ樹脂とビスフェノール類の使用比率は、通常エポキシ基が当量比で水酸基よりも多くなるように仕込む。
この場合に使用されるビスフェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールZ、ビスフェノールS、テトラブロモビスフェノールA、テトラブロモビスフェノールF、ビフェノール、ジヒドロキシベンゼン、ジヒドロキシフェニルスルフィド、ジヒドロキシフェニルエーテル等が挙げられるがこれらに限定されることはない。また、これらは単独でも2種以上併用しても良い。
この反応に際しても、2級アルコール性水酸基が生成するが、この水酸基も前述のような方法によりその全てまたは一部をグリシジル化することができる。
The modified epoxy resin of the present invention described in [2] above will be described below.
The modified epoxy resin of the above [2] (hereinafter, modified epoxy resin) can be obtained by polymerizing the once obtained epoxy resin of the above formula (1) with bisphenols. Polymerization is carried out by dissolving the epoxy resin of the above formula (1) and bisphenols in a solvent such as toluene, xylene or methyl isobutyl ketone, and adding a catalyst such as sodium hydroxide, triphenylphosphine or a tertiary ammonium salt, if necessary. It is done by heating. The epoxy resin of the above formula (1) and the bisphenol are used in such a ratio that the epoxy group is usually larger than the hydroxyl group in an equivalent ratio.
Examples of the bisphenols used in this case include bisphenol A, bisphenol F, bisphenol AD, bisphenol Z, bisphenol S, tetrabromobisphenol A, tetrabromobisphenol F, biphenol, dihydroxybenzene, dihydroxyphenyl sulfide, dihydroxyphenyl ether. However, the present invention is not limited to these. These may be used alone or in combination of two or more.
During this reaction, a secondary alcoholic hydroxyl group is also formed, and this hydroxyl group can be glycidylated in whole or in part by the method described above.

また、本発明のエポキシ樹脂または変性エポキシ樹脂はエポキシアクリレート樹脂の原料としても使用することができる。 The epoxy resin or modified epoxy resin of the present invention can also be used as a raw material for an epoxy acrylate resin.

本発明のエポキシ樹脂組成物において、本発明の式(1)のエポキシ樹脂または変性エポキシ樹脂は単独でまたは他のエポキシ樹脂と併用することが出来る。併用する場合、本発明の式(1)のエポキシ樹脂または変性エポキシ樹脂の全エポキシ樹脂中に占める割合は20重量%以上が好ましく、特に30重量%以上が好ましい。 In the epoxy resin composition of the present invention, the epoxy resin of the formula (1) or the modified epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of formula (1) or the modified epoxy resin of the present invention in the total epoxy resin is preferably 20% by weight or more, and particularly preferably 30% by weight or more.

式(1)のエポキシ樹脂または変性エポキシ樹脂と併用されうるエポキシ樹脂としては、従来公知のエポキシ樹脂のいずれも使用することができる。エポキシ樹脂の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物及びアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4−ビニル−1−シクロヘキセンジエポキシドや3,4−エポキシシクロヘキシルメチル−3,4´−エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル−p−アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
また、フェノール類と前記のビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを縮合反応させることにより得られるフェノールアラルキル樹脂を原料とし、エピクロルヒドリンと脱塩酸反応させることにより得られるエポキシ樹脂は、低吸湿性、難燃性、誘電特性に優れているためエポキシ樹脂として特に好ましい。
As the epoxy resin of the formula (1) or the epoxy resin which can be used in combination with the modified epoxy resin, any conventionally known epoxy resin can be used. Specific examples of the epoxy resin include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, polycondensates of bisphenols and various aldehydes. And alicyclic epoxy represented by glycidyl ether-based epoxy resin obtained by glycidylating alcohols and the like, 4-vinyl-1-cyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, and the like. Examples of the resin include, but are not limited to, a glycidylamine-based epoxy resin represented by tetraglycidyldiaminodiphenylmethane (TGDDM), triglycidyl-p-aminophenol, and the like, a glycidyl ester-based epoxy resin, and the like. These may be used alone or in combination of two or more.
Further, a phenol aralkyl resin obtained by subjecting a phenol and the bishalogenomethylaralkyl derivative or the aralkyl alcohol derivative to a condensation reaction as a raw material, an epoxy resin obtained by reacting with epichlorohydrin and dehydrochlorination has low hygroscopicity, It is particularly preferable as an epoxy resin because it has excellent flame retardancy and dielectric properties.

本発明のエポキシ樹脂組成物においてはシアネートエステル樹脂を含有させても良い。
本発明のエポキシ樹脂組成物に配合し得るシアネートエステル化合物としては従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。
上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
シアネートエステル樹脂の具体例としては、ジシアナートベンゼン、トリシアナートベンゼン、ジシアナートナフタレン、ジシアナートビフェニル、2、2’−ビス(4−シアナートフェニル)プロパン、ビス(4−シアナートフェニル)メタン、ビス(3,5−ジメチル−4−シアナートフェニル)メタン、2,2’−ビス(3,5−ジメチル−4−シアナートフェニル)プロパン、2,2’−ビス(4−シアナートフェニル)エタン、2,2’−ビス(4−シアナートフェニル)ヘキサフロロプロパン、ビス(4−シアナートフェニル)スルホン、ビス(4−シアナートフェニル)チオエーテル、フェノールノボラックシアナート、フェノール・ジシクロペンタジエン共縮合物の水酸基をシアネート基に変換したもの等が挙げられるがこれらに限定されるものではない。
また、日本国特開2004−041055号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
The epoxy resin composition of the present invention may contain a cyanate ester resin.
As the cyanate ester compound that can be added to the epoxy resin composition of the present invention, a conventionally known cyanate ester compound can be used. Specific examples of the cyanate ester compound include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Examples thereof include cyanate ester compounds obtained by reacting compounds with cyanogen halide, but are not limited thereto. These may be used alone or in combination of two or more.
Examples of the phenols include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene and dihydroxynaphthalene.
Examples of the various aldehydes include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde and the like.
Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene and isoprene.
Examples of the above-mentioned ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
Specific examples of the cyanate ester resin include dicyanate benzene, tricyanate benzene, dicyanate naphthalene, dicyanate biphenyl, 2,2'-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl). ) Methane, bis(3,5-dimethyl-4-cyanatophenyl)methane, 2,2'-bis(3,5-dimethyl-4-cyanatophenyl)propane, 2,2'-bis(4-cya) Natophenyl)ethane, 2,2'-bis(4-cyanatophenyl)hexafluoropropane, bis(4-cyanatophenyl)sulfone, bis(4-cyanatophenyl)thioether, phenol novolac cyanate, phenol di Examples thereof include cyclopentadiene cocondensation products in which hydroxyl groups are converted to cyanate groups, but are not limited thereto.
Further, the cyanate ester compound whose synthesis method is described in Japanese Patent Application Laid-Open No. 2004-041055 is particularly preferable as a cyanate ester compound because it has low hygroscopicity, flame retardancy and dielectric properties.

本発明のエポキシ樹脂組成物には、シアネート樹脂を含む場合、必要に応じてシアネート基を三量化させてsym−トリアジン環を形成するために、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸鉛、オクチル酸亜鉛、オクチル酸錫、鉛アセチルアセトナート、ジブチル錫マレエート等の触媒を含有させることもできる。触媒は、エポキシ樹脂組成物の合計重量100重量部に対して通常0.0001〜0.10重量部、好ましくは0.00015〜0.0015重量部使用する。 In the case where the epoxy resin composition of the present invention contains a cyanate resin, zinc naphthenate, cobalt naphthenate, copper naphthenate, and naphthene are used in order to trimerize the cyanate group to form a sym-triazine ring, if necessary. A catalyst such as lead acid salt, zinc octylate, tin octylate, lead acetylacetonate, and dibutyltin maleate may be contained. The catalyst is generally used in an amount of 0.0001 to 0.10 parts by weight, preferably 0.00015 to 0.0015 parts by weight, based on 100 parts by weight of the total weight of the epoxy resin composition.

本発明のエポキシ樹脂組成物においてはマレイミド化合物を含有させても良い。
本発明のエポキシ樹脂組成物に配合し得るマレイミド化合物としては従来公知のマレイミド化合物を使用することができる。マレイミド化合物の具体例としては、4,4´−ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m−フェニレンビスマレイミド、2,2´−ビス〔4−(4−マレイミドフェノキシ)フェニル〕プロパン、3,3´−ジメチル−5,5´−ジエチル−4,4´−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、4,4´−ジフェニルエーテルビスマレイミド、4,4´−ジフェニルスルフォンビスマレイミド、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、1,3−ビス(4−マレイミドフェノキシ)ベンゼンなどが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。マレイミド化合物の配合量は、重量比で本発明のエポキシ樹脂の好ましくは5倍以下、より好ましくは2倍以下の範囲である。
また、日本国特開2004−107501号公報(特許文献3)に記載されているマレイミド化合物は、低吸湿性、難燃性、誘電特性に優れているためマレイミド化合物として特に好ましい。
The epoxy resin composition of the present invention may contain a maleimide compound.
As the maleimide compound that can be blended with the epoxy resin composition of the present invention, a conventionally known maleimide compound can be used. Specific examples of the maleimide compound include 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2′-bis[4-(4-maleimidophenoxy)phenyl]propane, 3,3. ′-Dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4′-diphenyl ether bismaleimide, 4,4′-diphenyl sulfone bismaleimide 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, and the like, but are not limited thereto. These may be used alone or in combination of two or more. The blending amount of the maleimide compound is preferably in the range of 5 times or less, more preferably 2 times or less, the weight of the epoxy resin of the present invention.
Further, the maleimide compound described in Japanese Patent Application Laid-Open No. 2004-107501 (Patent Document 3) is particularly preferable as the maleimide compound because of its low hygroscopicity, flame retardancy and dielectric properties.

本発明のエポキシ樹脂組成物において、式(1)のエポキシ樹脂のプロペニル基同士や、プロペニル基とマレイミド基を反応させるためにラジカル重合開始剤を使用することが好ましい。用い得るラジカル重合開始剤の具体例としては、メチルエチルケトンパーオキサイド、過酸化ベンゾイル、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、ラウロイルパーオキサイド等の有機過酸化物やアゾビスイソブチロニトリル、4,4’−アゾビス(4−シアノ吉草酸)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物の公知の硬化促進剤が挙げられるが、これらに特に限定されるものではない。エポキシ樹脂と硬化剤の合計量100重量部に対して0.01〜5重量部が好ましく、0.01〜3重量部が特に好ましい。 In the epoxy resin composition of the present invention, it is preferable to use a radical polymerization initiator for reacting the propenyl groups of the epoxy resin of the formula (1) with each other or with the propenyl group and the maleimide group. Specific examples of the radical polymerization initiator that can be used include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxy octoate, t-butyl peroxy. Organic peroxides such as benzoate and lauroyl peroxide, azobisisobutyronitrile, 4,4′-azobis(4-cyanovaleric acid), 2,2′-azobis(2,4-dimethylvaleronitrile), etc. Known curing accelerators for azo compounds may be mentioned, but the curing accelerators are not particularly limited thereto. 0.01 to 5 parts by weight is preferable, and 0.01 to 3 parts by weight is particularly preferable, based on 100 parts by weight of the total amount of the epoxy resin and the curing agent.

本発明のエポキシ樹脂組成物は、その好ましい実施態様において硬化剤を含有する。硬化剤としてはアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などが使用できる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビスフェノール類、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類と芳香族ジメチロールとの重縮合物、ビフェノール類及びこれらの変性物、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体などが挙げられる。硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5〜1.5当量が好ましく、0.6〜1.2当量が特に好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。The epoxy resin composition of the present invention contains a curing agent in a preferred embodiment thereof. As the curing agent, amine compounds, acid anhydride compounds, amide compounds, phenol compounds and the like can be used. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid and ethylenediamine, phthalic anhydride, and trianhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic acid anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bisphenols, phenols (phenol, alkyl-substituted) (Phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and polycondensates of various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and aromatic dimethylol, biphenols and These modified products, imidazole, BF 3 -amine complex, guanidine derivative and the like can be mentioned. The amount of the curing agent used is preferably 0.5 to 1.5 equivalents, and particularly preferably 0.6 to 1.2 equivalents, relative to 1 equivalent of the epoxy groups of the epoxy resin. If the amount is less than 0.5 equivalents or more than 1.5 equivalents to 1 equivalent of the epoxy group, curing may be incomplete and good cured physical properties may not be obtained.

本発明のエポキシ樹脂組成物には必要に応じてエポキシ樹脂硬化用の触媒(硬化促進剤)を配合することができる。例えば2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾールなどのイミダゾール類、トリエチルアミン、トリエチレンジアミン、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン類などが挙げられる。硬化用の触媒の配合量は、硬化性樹脂組成物の合計100重量部に対して好ましくは10重量部以下、より好ましくは5重量部以下の範囲である。 A catalyst (curing accelerator) for curing an epoxy resin can be blended in the epoxy resin composition of the present invention, if necessary. For example, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole and other imidazoles, triethylamine, Amines such as triethylenediamine, 2-(dimethylaminomethyl)phenol, 1,8-diaza-bicyclo(5,4,0)undecene-7, tris(dimethylaminomethyl)phenol, benzyldimethylamine, triphenylphosphine, Examples thereof include phosphines such as tributylphosphine and trioctylphosphine. The compounding amount of the curing catalyst is preferably 10 parts by weight or less, and more preferably 5 parts by weight or less based on 100 parts by weight of the total curable resin composition.

さらに、本発明のエポキシ樹脂組成物には、必要に応じて溶融シリカ、結晶シリカ、多孔質シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化珪素、窒化珪素、窒化ホウ素、ジルコニア、窒化アルミニウム、フォルステライト、ステアタイト、スピネル、ムライト、チタニア、タルク等の粉体、またはこれらを球形状あるいは破砕状にした無機充填材やシランカップリング剤、離型剤、顔料等種々の配合剤、各種熱硬化性樹脂などを添加することができる。また、特に半導体封止用のエポキシ樹脂組成物を得る場合、上記の無機充填材の使用量はエポキシ樹脂組成物中、通常80〜92重量%、好ましくは83〜90重量%の範囲である。 Further, the epoxy resin composition of the present invention, if necessary, fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, aluminum nitride, Forsterite, steatite, spinel, mullite, titania, talc, and other powders, or spherical or crushed inorganic fillers, silane coupling agents, release agents, various compounding agents such as pigments, and various heat A curable resin or the like can be added. Further, particularly when an epoxy resin composition for semiconductor encapsulation is obtained, the amount of the inorganic filler used is usually 80 to 92% by weight, preferably 83 to 90% by weight in the epoxy resin composition.

本発明のエポキシ樹脂組成物は、上記各成分を所定の割合で均一に混合することにより得られ、通常130〜180℃で30〜500秒の範囲で予備硬化し、更に、150〜200℃で2〜15時間、後硬化することにより充分な硬化反応が進行し、本発明の硬化物が得られる。又、エポキシ樹脂組成物の成分を溶剤等に均一に分散または溶解させ、溶媒を除去した後硬化させることもできる。 The epoxy resin composition of the present invention is obtained by uniformly mixing the above components in a predetermined ratio, and is usually pre-cured at 130 to 180° C. for 30 to 500 seconds, and further at 150 to 200° C. By post-curing for 2 to 15 hours, a sufficient curing reaction proceeds to obtain the cured product of the present invention. It is also possible to uniformly disperse or dissolve the components of the epoxy resin composition in a solvent or the like, remove the solvent, and then cure.

こうして得られる本発明の硬化物は、耐湿性、耐熱性、高接着性を有する。従って、本発明のエポキシ樹脂組成物は、耐湿性、耐熱性、高接着性の要求される広範な分野で用いることが出来る。具体的には、絶縁材料、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、封止材料、レジスト等あらゆる電気・電子部品用材料として有用である。又、成形材料、複合材料の他、塗料材料、接着剤等の分野にも用いることが出来る。特に半導体封止においては、耐ハンダリフロー性が有益なものとなる。 The thus obtained cured product of the present invention has moisture resistance, heat resistance, and high adhesiveness. Therefore, the epoxy resin composition of the present invention can be used in a wide range of fields where moisture resistance, heat resistance, and high adhesiveness are required. Specifically, it is useful as an insulating material, a laminated board (printed wiring board, BGA substrate, build-up substrate, etc.), a sealing material, a resist, or any other material for electric/electronic parts. Further, in addition to molding materials and composite materials, it can be used in fields such as coating materials and adhesives. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial.

本発明のエポキシ樹脂組成物は半導体装置の封止に使用することができる。本発明のエポキシ樹脂組成物を封止に使用する半導体装置は、本発明のエポキシ樹脂組成物の硬化物を有するものとなる。本発明のエポキシ樹脂組成物を封止に使用する半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。 The epoxy resin composition of the present invention can be used for sealing a semiconductor device. A semiconductor device using the epoxy resin composition of the present invention for sealing has a cured product of the epoxy resin composition of the present invention. As a semiconductor device using the epoxy resin composition of the present invention for sealing, for example, DIP (dual inline package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), SOP (small). Outline package), TSOP (thin small outline package), TQFP (think quad flat package) and the like.

本発明のエポキシ樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。用いられる溶剤としては、例えばγ−ブチロラクトン類、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常10〜80重量%、好ましくは20〜70重量%となる範囲で使用する。 An organic solvent may be added to the epoxy resin composition of the present invention to form a varnish-like composition (hereinafter, simply referred to as varnish). Examples of the solvent used include amide solvents such as γ-butyrolactone, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylimidazolidinone, and tetramethylene sulfone. Sulfones, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, and ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone Examples of the solvent include aromatic solvents such as toluene and xylene. The solvent is used in such a range that the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by weight, preferably 20 to 70% by weight.

更に本発明のエポキシ樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末等の無機充填材、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、エポキシ樹脂組成物100重量部に対して好ましくは1,000重量部以下、より好ましくは700重量部以下の範囲である。 Further, known additives can be added to the epoxy resin composition of the present invention, if necessary. Specific examples of additives that can be used include polybutadiene and its modified products, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, silicone gel, silicone oil, and silica, alumina, calcium carbonate, Quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, inorganic powder such as glass powder, surface treatment agent for filler such as silane coupling agent, release agent , Carbon black, phthalocyanine blue, phthalocyanine green, and the like. The amount of these additives to be blended is preferably 1,000 parts by weight or less, more preferably 700 parts by weight or less, relative to 100 parts by weight of the epoxy resin composition.

本発明のエポキシ樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えばマレイミド樹脂とシアネートエステル化合物を触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化する。同様に、芳香族アミン樹脂および/またはマレイミド樹脂と、必要によりエポキシ樹脂、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の不存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。 The method for preparing the epoxy resin composition of the present invention is not particularly limited, but each component may be uniformly mixed or prepolymerized. For example, the maleimide resin and the cyanate ester compound are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent. Similarly, an aromatic amine resin and/or a maleimide resin and, if necessary, an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound and other additives may be prepolymerized. Good. In the absence of a solvent, for example, an extruder, a kneader, or a roll is used for mixing or prepolymerization of each component, and in the presence of a solvent, a reaction vessel equipped with a stirrer is used.

本発明のエポキシ樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。
また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
A prepreg can be obtained by heating and melting the epoxy resin composition of the present invention to reduce its viscosity and impregnating it with reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers and alumina fibers.
Further, a prepreg can be obtained by impregnating the varnish with a reinforcing fiber and heating and drying.
Cutting the above prepreg into a desired shape, laminating with a copper foil or the like if necessary, and then heat-curing the curable resin composition while applying pressure to the laminate by a press molding method, an autoclave molding method, a sheet winding molding method, or the like. Thus, a laminated board for electric/electronics (printed wiring board) or a carbon fiber reinforced material can be obtained.

以下、本発明を実施例により詳細に説明する。尚、本発明はこれら実施例に限定される物ではない。また実施例において、エポキシ当量、溶融粘度、軟化点、全塩素濃度は以下の条件で測定した。
エポキシ当量:JIS K−7236に準じた方法で測定。
溶融粘度:150℃におけるコーンプレート法における溶融粘度。
軟化点:JIS K−7234に準じた方法で測定。
全R中のプロペニル基の割合:NMRにより測定。
Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to these examples. In the examples, the epoxy equivalent, melt viscosity, softening point and total chlorine concentration were measured under the following conditions.
Epoxy equivalent: measured by a method according to JIS K-7236.
Melt viscosity: Melt viscosity in the cone and plate method at 150°C.
Softening point: Measured by a method according to JIS K-7234.
Ratio of propenyl groups in total R: measured by NMR.

参考例1
2,2’−ジアリル−4,4’−スルホニルジフェノール(日本化薬(株)製 TG−SH)165重量部、メタノール200重量部を反応容器に仕込み、撹拌、溶解後、粒状の水酸化カリウム(純度85%)105重量部添加した。添加後、加熱しながらメタノールを留去し、内温を100℃に保持しながら4時間反応を行った。塩酸で中和を行った後、メチルイソブチルケトンを330重量部加え、水洗を繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することにより、2,2’−ジプロペニル−4,4’−スルホニルジフェノールを161重量部得た。得られた2,2’−ジプロペニル−4,4’−スルホニルジフェノールの軟化点は81℃であった。
Reference example 1
165 parts by weight of 2,2'-diallyl-4,4'-sulfonyldiphenol (TG-SH manufactured by Nippon Kayaku Co., Ltd.) and 200 parts by weight of methanol were charged into a reaction vessel, stirred, dissolved, and then granular hydroxylated. 105 parts by weight of potassium (purity 85%) was added. After the addition, methanol was distilled off while heating, and the reaction was carried out for 4 hours while maintaining the internal temperature at 100°C. After neutralizing with hydrochloric acid, 330 parts by weight of methyl isobutyl ketone was added and washing with water was repeated. Then, methyl isobutyl ketone was distilled off from the oil layer under heating and reduced pressure to obtain 161 parts by weight of 2,2′-dipropenyl-4,4′-sulfonyldiphenol. The softening point of the obtained 2,2′-dipropenyl-4,4′-sulfonyldiphenol was 81° C.

実施例1
参考例1で得られた2,2’−ジプロペニル−4,4’−スルホニルジフェノール165重量部、エピクロルヒドリン510重量部、ジメチルスルホキシド130重量部を反応容器に仕込み、加熱、撹拌、溶解後、温度を45℃に保持しながら、フレーク状水酸化ナトリウム41重量部を1.5時間かけて連続的に添加した。水酸化ナトリウム添加完了後、45℃で2時間、70℃で1時間反応を行った。ついで加熱減圧下において過剰のエピクロルヒドリンとジメチルスルホキシドを留去し、残留物に330重量部のメチルイソブチルケトンを添加し残留物を溶解させた。このメチルイソブチルケトン溶液から水洗によって副生塩を除去した後、30%水酸化ナトリウム水溶液10重量部を添加し、70℃で1時間反応させた後、反応液の水洗を洗浄液が中性となるまで繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することにより本発明のエポキシ樹脂(E1)207重量部を得た。得られたエポキシ樹脂(E1)のエポキシ当量は236g/eq、軟化点64℃、溶融粘度0.09Pa・s、式(1)における全R中のプロペニル基の割合は100%であった。
Example 1
The reaction vessel was charged with 165 parts by weight of 2,2'-dipropenyl-4,4'-sulfonyldiphenol obtained in Reference Example 1, 510 parts by weight of epichlorohydrin, 130 parts by weight of dimethyl sulfoxide, and the mixture was heated, stirred and dissolved, and then the temperature was changed. Was maintained at 45° C., 41 parts by weight of flaky sodium hydroxide was continuously added over 1.5 hours. After the addition of sodium hydroxide was completed, the reaction was carried out at 45°C for 2 hours and at 70°C for 1 hour. Then, excess epichlorohydrin and dimethyl sulfoxide were distilled off under heating and reduced pressure, and 330 parts by weight of methyl isobutyl ketone was added to the residue to dissolve the residue. After removing the by-product salt from this methyl isobutyl ketone solution by washing with water, 10 parts by weight of a 30% aqueous sodium hydroxide solution was added and reacted at 70° C. for 1 hour, followed by washing the reaction solution with water to make the washing solution neutral. Repeated until. Then, 207 parts by weight of the epoxy resin (E1) of the present invention was obtained by distilling off methyl isobutyl ketone from the oil layer under heating and reduced pressure. The epoxy equivalent of the obtained epoxy resin (E1) was 236 g/eq, the softening point was 64° C., the melt viscosity was 0.09 Pa·s, and the proportion of propenyl groups in all R in the formula (1) was 100%.

実施例2
実施例1において、2,2’−ジプロペニル−4,4’−スルホニルジフェノール165重量部を17重量部に変え、更に2,2’−ジアリル−4,4’−スルホニルジフェノール148重量部を加えた以外は同様の操作を行ったところ、本発明のエポキシ樹脂(E2)204重量部を得た。得られたエポキシ樹脂(E2)のエポキシ当量は237g/eq、室温で高粘調な液状、式(1)における全R中のプロペニル基の割合は11%であった。
Example 2
In Example 1, 165 parts by weight of 2,2'-dipropenyl-4,4'-sulfonyldiphenol was changed to 17 parts by weight, and further 148 parts by weight of 2,2'-diallyl-4,4'-sulfonyldiphenol was added. A similar operation was performed except that the epoxy resin (E2) of the present invention was obtained in an amount of 204 parts by weight. The epoxy equivalent of the obtained epoxy resin (E2) was 237 g/eq, a highly viscous liquid at room temperature, and the proportion of propenyl groups in all R in the formula (1) was 11%.

実施例3
実施例1において、2,2’−ジプロペニル−4,4’−スルホニルジフェノール165重量部を107重量部に変え、更に2,2’−ジアリル−4,4’−スルホニルジフェノール58重量部を加えた以外は同様の操作を行ったところ、本発明のエポキシ樹脂(E3)200重量部を得た。得られたエポキシ樹脂(E3)のエポキシ当量は243g/eq、軟化点56℃、式(1)における全R中のプロペニル基の割合は67%であった。
Example 3
In Example 1, 165 parts by weight of 2,2'-dipropenyl-4,4'-sulfonyldiphenol was changed to 107 parts by weight, and 58 parts by weight of 2,2'-diallyl-4,4'-sulfonyldiphenol was further added. When the same operation was performed except that the addition was performed, 200 parts by weight of the epoxy resin (E3) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin (E3) was 243 g/eq, the softening point was 56° C., and the proportion of propenyl groups in all Rs in the formula (1) was 67%.

実施例4
実施例1において、2,2’−ジプロペニル−4,4’−スルホニルジフェノール165重量部を135重量部に変え、更に2,2’−ジアリル−4,4’−スルホニルジフェノール30重量部を加えた以外は同様の操作を行ったところ、エポキシ樹脂(E4)203重量部を得た。得られたエポキシ樹脂(E4)のエポキシ当量は239g/eq、軟化点64℃、式(1)における全R中のプロペニル基の割合は85%であった。
Example 4
In Example 1, 165 parts by weight of 2,2'-dipropenyl-4,4'-sulfonyldiphenol was changed to 135 parts by weight, and further 30 parts by weight of 2,2'-diallyl-4,4'-sulfonyldiphenol was added. A similar operation was performed except that the epoxy resin (E4) was added in an amount of 203 parts by weight. The epoxy equivalent of the obtained epoxy resin (E4) was 239 g/eq, the softening point was 64° C., and the proportion of propenyl groups in all Rs in the formula (1) was 85%.

比較合成例1
実施例1において、2,2’−ジプロペニル−4,4’−スルホニルジフェノール165重量部を2,2’−ジアリル−4,4’−スルホニルジフェノール165重量部に変えた以外は同様の操作を行ったところ、エポキシ樹脂(ER2)200重量部を得た。得られたエポキシ樹脂(ER2)のエポキシ当量は224g/eq、室温で半固形であった。式(1)における全R中のプロペニル基の割合は10%未満であった。
Comparative Synthesis Example 1
The same operation as in Example 1 except that 165 parts by weight of 2,2′-dipropenyl-4,4′-sulfonyldiphenol was changed to 165 parts by weight of 2,2′-diallyl-4,4′-sulfonyldiphenol. Then, 200 parts by weight of an epoxy resin (ER2) was obtained. The epoxy equivalent of the obtained epoxy resin (ER2) was 224 g/eq, and it was semi-solid at room temperature. The proportion of propenyl groups in all Rs in the formula (1) was less than 10%.

実施例5〜6、比較例1
各種成分を下記表1の割合で配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、160℃で2時間、更に180℃で8時間硬化させ、硬化物の物性を測定した。
・ガラス転位温度(TMA):真空理工(株)製 TM−7000
昇温速度 2℃/min
・吸水率:直径5cm×厚み4mmの円盤状の試験片を100℃の水中で24時間煮沸した前後の重量増加率(%)
Examples 5-6, Comparative Example 1
Various components are mixed in the proportions shown in Table 1 below, kneaded with a mixing roll, tabletted, and then transfer molded to prepare a resin molded product, which is cured at 160°C for 2 hours and further at 180°C for 8 hours, and the physical properties of the cured product Was measured.
-Glass transition temperature (TMA): manufactured by Vacuum Riko Co., Ltd. TM-7000
Temperature rising rate 2℃/min
Water absorption rate: Weight increase rate (%) before and after boiling a disc-shaped test piece having a diameter of 5 cm and a thickness of 4 mm in water at 100° C. for 24 hours

Figure 0006715249
Figure 0006715249

P1:カヤハードGPH(日本化薬株式会社製)
C1:2−エチル−4−メチルイミダゾール(東京化成工業株式会社製)
R1:ジクミルパーオキサイド(化薬アクゾ株式会社製)
ER1:ジグリシジルビスフェノールA(三菱化学株式会社製 jER−1001)
P1: Kayahard GPH (manufactured by Nippon Kayaku Co., Ltd.)
C1:2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.)
R1: Dicumyl peroxide (manufactured by Kayaku Akzo Co., Ltd.)
ER1: diglycidyl bisphenol A (Mitsubishi Chemical Corporation jER-1001)

実施例8〜9、比較例2〜3
各種成分を下記表2の割合で配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、160℃で2時間、更に180℃で6時間硬化させ、硬化物の物性を測定した。
・動的粘弾性測定
測定項目:30℃での貯蔵弾性率
:ガラス転移温度(tanδ最大時の温度)
・曲げ弾性試験
測定項目:弾性率
JIS K 6911に準拠 室温でテストを行った。
Examples 8-9, Comparative Examples 2-3
The various components are blended in the proportions shown in Table 2 below, kneaded with a mixing roll, tabletted, and then transfer molded to prepare a resin molded body, which is cured at 160° C. for 2 hours and further at 180° C. for 6 hours to obtain the physical properties of the cured product. Was measured.
・Dynamic viscoelasticity measurement Measurement item: Storage elastic modulus at 30°C
: Glass transition temperature (temperature at maximum tan δ)
Bending elasticity test Measurement item: Modulus of elasticity According to JIS K 6911 A test was performed at room temperature.

Figure 0006715249
Figure 0006715249

表1から、本発明のエポキシ樹脂を用いた硬化物は、比較例に比べて優れた低吸湿性(低吸水性)、耐熱性(耐半田リフロー性)を示すことが確認できる。
また表2から、本発明のプロペニル基を含有するエポキシ樹脂を用いた硬化物は、プロペニル基のない比較例のエポキシ樹脂を用いた硬化物と比較して、優れた耐熱性(ガラス転移温度)、強度(弾性率)を示すことが確認できる。また、ラジカル開始剤を用いて硬化させると、更に高い耐熱性、強度の硬化物が得られることが確認できる。
From Table 1, it can be confirmed that the cured product using the epoxy resin of the present invention exhibits excellent low hygroscopicity (low water absorption) and heat resistance (solder reflow resistance) as compared with Comparative Examples.
Further, from Table 2, the cured product using the epoxy resin containing a propenyl group of the present invention has excellent heat resistance (glass transition temperature) as compared with the cured product using the epoxy resin of the comparative example having no propenyl group. , It can be confirmed that the strength (elastic modulus) is exhibited. Moreover, it can be confirmed that a cured product having higher heat resistance and strength can be obtained by curing using a radical initiator.

本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2015年8月7日付で出願された日本国特許出願(特願2015−156589)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the present invention has been described in detail with reference to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on the Japanese patent application (Japanese Patent Application No. 2015-156589) filed on August 7, 2015, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated in their entirety.

本発明のエポキシ樹脂は、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、接着剤(導電性接着剤など)やCFRPを始めとする各種複合材料用、塗料等の用途に有用である。
The epoxy resin of the present invention is used as an insulating material for electric and electronic parts (such as a highly reliable semiconductor encapsulating material), a laminated board (such as a printed wiring board, a board for BGA and a build-up board), and an adhesive (such as a conductive adhesive). It is useful for various composite materials including CFRP and CFRP, and for applications such as paints.

Claims (5)

下記式(1)
Figure 0006715249
(式中、複数存在するRはそれぞれ独立してアリル基または1−プロペニル基を表し、全Rの10%以上が1−プロペニル基である。Gはグリシジル基を表す。複数存在するXはそれぞれ独立して水素原子またはグリシジル基を表す。nは0〜10の数であり、その平均値は0〜10の実数を表す。)で表され、エポキシ当量が236〜2151g/eq.であるエポキシ樹脂、フェノール系化合物である硬化剤、及びラジカル重合開始剤を含有するエポキシ樹脂組成物。
Formula (1) below
Figure 0006715249
(In the formula, a plurality of Rs each independently represent an allyl group or a 1-propenyl group, and 10% or more of all Rs are 1-propenyl groups. G represents a glycidyl group. Each independently represent a hydrogen atom or a glycidyl group, n is a number from 0 to 10, and the average value thereof represents a real number from 0 to 10), and the epoxy equivalent is 236 to 2151 g/eq. An epoxy resin composition containing the epoxy resin , a curing agent which is a phenolic compound , and a radical polymerization initiator .
下記式(1)
Figure 0006715249
(式中、複数存在するRはそれぞれ独立してアリル基または1−プロペニル基を表し、全Rの10%以上が1−プロペニル基である。Gはグリシジル基を表す。複数存在するXはそれぞれ独立して水素原子またはグリシジル基を表す。nは0〜10の数であり、その平均値は0〜10の実数を表す。)で表され、エポキシ当量が236〜2151g/eq.であるエポキシ樹脂とビスフェノール類とを重合した変性エポキシ樹脂、及び硬化剤を含有するエポキシ樹脂組成物。
Formula (1) below
Figure 0006715249
(In the formula, a plurality of Rs each independently represent an allyl group or a 1-propenyl group, and 10% or more of all Rs are 1-propenyl groups. G represents a glycidyl group. Each independently represent a hydrogen atom or a glycidyl group, n is a number from 0 to 10, and its average value represents a real number from 0 to 10), and the epoxy equivalent is 236 to 2151 g/eq. Epoxy resin composition containing a epoxy resin and polymerized modified epoxy resin and a bisphenol, and a curing agent at.
ラジカル重合開始剤を含有する請求項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 2 , which contains a radical polymerization initiator. 硬化促進剤を含有する請求項1〜請求項3のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, which contains a curing accelerator. 請求項1〜請求項4のいずれか一項に記載のエポキシ樹脂組成物を硬化した硬化物。 A cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 4.
JP2017534411A 2015-08-07 2016-08-05 Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof Active JP6715249B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015156589 2015-08-07
JP2015156589 2015-08-07
PCT/JP2016/073104 WO2017026396A1 (en) 2015-08-07 2016-08-05 Epoxy resin, modified epoxy resin, and epoxy resin composition and cured material of same

Publications (2)

Publication Number Publication Date
JPWO2017026396A1 JPWO2017026396A1 (en) 2018-06-07
JP6715249B2 true JP6715249B2 (en) 2020-07-01

Family

ID=57983535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017534411A Active JP6715249B2 (en) 2015-08-07 2016-08-05 Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP6715249B2 (en)
KR (1) KR20180038415A (en)
CN (1) CN107849221A (en)
TW (1) TW201712068A (en)
WO (1) WO2017026396A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239835B (en) * 2023-05-11 2023-07-25 江苏佳润管业有限公司 High-strength polyethylene water supply pipe and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2901685A1 (en) * 1978-01-20 1979-07-26 Ciba Geigy Ag EPOXY COMPOUNDS AND THEIR POLYMERIZATION
US4789711A (en) * 1986-12-02 1988-12-06 Ciba-Geigy Corporation Multifunctional epoxide resins
JPH02621A (en) * 1987-11-06 1990-01-05 Shell Internatl Res Maatschappij Bv Glycidyl ether of 2,2-bis-(3-allyl or propenyl)-4-hydroxyphenyl) compound, and resin obtained therefrom
JP4259834B2 (en) * 2002-09-19 2009-04-30 日本化薬株式会社 Epoxy resin, epoxy resin composition and cured product thereof

Also Published As

Publication number Publication date
TW201712068A (en) 2017-04-01
WO2017026396A1 (en) 2017-02-16
CN107849221A (en) 2018-03-27
JPWO2017026396A1 (en) 2018-06-07
KR20180038415A (en) 2018-04-16

Similar Documents

Publication Publication Date Title
JP6429569B2 (en) Epoxy resin composition and cured product thereof
KR20210056997A (en) Maleimide resin, curable resin composition and cured product thereof
JP5386352B2 (en) Liquid epoxy resin, epoxy resin composition, and cured product
JP6963565B2 (en) Alkenyl group-containing resin, curable resin composition and cured product thereof
WO2019198606A1 (en) Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom
JPWO2008020594A1 (en) Modified liquid epoxy resin, and epoxy resin composition and cured product using the same
WO2019198607A1 (en) Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom
JP6715249B2 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
JP4259834B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
WO2010052877A1 (en) Phenolic resin mixture, epoxy resin mixture, epoxy resin composition, and cured article
KR20230161416A (en) Epoxy resin and its production method, curable resin composition, and cured product thereof
TWI754743B (en) Methallyl-containing resin, curable resin composition and cured product thereof
JP5170724B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP7185383B2 (en) Curable resin composition and its cured product
JP7128598B1 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JP7464474B2 (en) Maleimide resin, curable resin composition and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP4033449B2 (en) Epoxy resin and method for producing the same
KR20240037177A (en) Epoxy resin, curable resin composition and cured product thereof
JP2024054289A (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
TW202330685A (en) Epoxy resin, method for producing the same, curable resin composition, cured product, and carbon fiber reinforced composite material wherein the epoxy resin is excellent in heat resistance, mechanical strength, and low water absorption
KR20230107539A (en) Epoxy resin, curable resin composition, and cured product thereof
TW202330694A (en) Epoxy resin, curable resin composition, cured product and carbon-fiber-reinforced composite material having excellent thermal resistance, mechanical strength, and low water absorption
JP4338062B2 (en) Resin and curable resin composition
CN116507659A (en) Epoxy resin mixture, method for producing same, epoxy resin composition, and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6715249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250