KR20240021736A - Epoxy resin, curable resin composition and cured product thereof - Google Patents

Epoxy resin, curable resin composition and cured product thereof Download PDF

Info

Publication number
KR20240021736A
KR20240021736A KR1020237031690A KR20237031690A KR20240021736A KR 20240021736 A KR20240021736 A KR 20240021736A KR 1020237031690 A KR1020237031690 A KR 1020237031690A KR 20237031690 A KR20237031690 A KR 20237031690A KR 20240021736 A KR20240021736 A KR 20240021736A
Authority
KR
South Korea
Prior art keywords
parts
epoxy resin
resin composition
weight
curable resin
Prior art date
Application number
KR1020237031690A
Other languages
Korean (ko)
Inventor
마사타카 나카니시
케이타 요시다
마사유키 이타이
마사토 세키
Original Assignee
니폰 가야꾸 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니폰 가야꾸 가부시끼가이샤 filed Critical 니폰 가야꾸 가부시끼가이샤
Publication of KR20240021736A publication Critical patent/KR20240021736A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

본 발명은 그 경화물이 내열성 및 내트래킹 특성이 우수한 에폭시 수지, 경화성 수지 조성물을 제공한다. 하기 식 (1)로 나타내고, 에폭시당량(g/eq.)을 연화점(℃)으로 나눈 값이 2.0 이상 2.2 미만인 에폭시 수지.
[화학식 1]

(식 (1) 중, 복수 존재하는 R은 독립적으로 존재하고, 메틸기 또는 수소 원자를 나타낸다. n은 반복 수의 평균값이며, 1 ~ 10의 실수이다.)
The present invention provides an epoxy resin and curable resin composition whose cured product has excellent heat resistance and tracking resistance. An epoxy resin represented by the following formula (1), where the value obtained by dividing the epoxy equivalent (g/eq.) by the softening point (°C) is 2.0 or more and less than 2.2.
[Formula 1]

(In formula (1), multiple R exists independently and represents a methyl group or a hydrogen atom. n is the average value of the number of repetitions and is a real number from 1 to 10.)

Description

에폭시 수지, 경화성 수지 조성물 및 그 경화물Epoxy resin, curable resin composition and cured product thereof

본 발명은 특정 구조를 갖는 에폭시 수지, 경화성 수지 조성물, 및 그 경화물에 관한 것이다. The present invention relates to an epoxy resin having a specific structure, a curable resin composition, and a cured product thereof.

에폭시 수지는 전기적 성질(유전율·유전 정접, 절연성), 기계적 성질, 접착성, 열적 성질(내열성 등) 등이 우수하기 때문에 주형품, 적층판, IC 밀봉 재료 등의 전기·전자 분야, 구조용 재료, 접착제, 도료 등의 분야에서 폭넓게 사용되고 있다. Epoxy resin has excellent electrical properties (dielectric constant, dielectric loss tangent, insulation), mechanical properties, adhesiveness, and thermal properties (heat resistance, etc.), so it is used in the electrical and electronic fields such as molded products, laminates, IC sealing materials, structural materials, and adhesives. It is widely used in fields such as paints.

최근, 전기·전자 분야에서는 수지 조성물의 난연성, 내습성, 밀착성, 유전 특성 등의 성능 향상, 고순도화, 필러(무기 또는 유기 충전제)를 고충전시키기 위한 저점도화, 성형 사이클을 짧게 하기 위한 반응성 향상 등의 여러 특성의 한층 더 향상이 요구되고 있다(특허문헌 1). 또한, 구조용 재료로서는 항공 우주 재료, 레저·스포츠 기구 용도 등에 있어서 경량으로 기계 물성이 우수한 재료가 요구되고 있다. Recently, in the electrical and electronic fields, performance improvements such as flame retardancy, moisture resistance, adhesion, and dielectric properties of resin compositions, high purity, low viscosity for high filler (inorganic or organic filler), and improved reactivity to shorten the molding cycle are achieved. Further improvement of various characteristics such as these is required (Patent Document 1). In addition, as structural materials, materials that are lightweight and have excellent mechanical properties are required in aerospace materials, leisure/sports equipment applications, etc.

반도체 밀봉 분야, 기판(기판 자체, 또는 그 주변 재료)에 있어서는 그 반도체의 변천에 따라, 박층화, 스택화, 시스템화, 3차원화로 복잡해져 가고, 매우 높은 수준의 내열성이나 고유동성과 같은 요구 특성이 요구된다. 특히 플라스틱 패키지의 차재 용도로의 확대에 동반하여 내열성의 향상 요구가 더욱 엄격해지고 있다. 구체적으로는 반도체의 구동 온도의 상승에 의해 매우 높은 내열성이 요구되게 되어 왔고, 최근의 고와이드갭 반도체로의 이행의 움직임도 있어 175℃ 나아가서는 200℃ 이상의 구동 온도에 대한 대응도 필요해지고 있다. 이들 구동 온도에 대하여 주변 부재에는 충분한 내열성(유리 전이 온도(Tg), 특히 열기계 특성(TMA)에 있어서의 Tg)이 요구되고 있다. 구체적으로는 구동 온도보다 10% 정도 높은 온도가 요구되고(200℃의 경우 220℃ 이상의 Tg, 예를 들면 225℃가 요구된다), 그 요구는 해마다 높아지고 있다(비특허문헌 1).In the field of semiconductor encapsulation, substrates (the substrate itself or its surrounding materials) become more complex with thinning, stacking, systemization, and three-dimensionalization in accordance with the evolution of the semiconductor, and required characteristics such as extremely high level heat resistance and high fluidity are required. It is required. In particular, with the expansion of plastic packages into automotive applications, requirements for improved heat resistance are becoming more stringent. Specifically, extremely high heat resistance has been required due to the increase in the driving temperature of semiconductors, and with the recent movement toward high-wide gap semiconductors, it is also necessary to respond to driving temperatures of 175°C and even 200°C or higher. For these driving temperatures, the surrounding members are required to have sufficient heat resistance (glass transition temperature (Tg), especially Tg in thermomechanical properties (TMA)). Specifically, a temperature that is approximately 10% higher than the operating temperature is required (in the case of 200°C, a Tg of 220°C or higher, for example, 225°C is required), and the demand is increasing every year (Non-patent Document 1).

또한, 최근 전기 자동차 등의 요구에 있어서, 고전압의 파워 디바이스의 요구가 급격히 증가하고 있고, 내트래킹 특성이 중요시되고 있다. 또한, 태양광 발전이나 풍력 발전, EV 등의 용도에 있어서도 내트래킹 특성이 중요시되고 있고, 특히 엄격한 용도에서는 비교 트래킹 지수(CTI)가 600을 초과하는 것이 요구되고 있다In addition, in recent years, in demand for electric vehicles, etc., the demand for high-voltage power devices has rapidly increased, and anti-tracking characteristics have become important. In addition, anti-tracking characteristics are considered important in applications such as solar power generation, wind power generation, and EV, and in particularly strict applications, a comparative tracking index (CTI) exceeding 600 is required.

특허문헌 1: 일본 특허공개 2019-001841호 공보Patent Document 1: Japanese Patent Publication No. 2019-001841

비특허문헌 1: 후지전기기보 2016 vol. 89 No. 4 247-250페이지Non-patent Document 1: Fuji Electric Press 2016 vol. 89No. 4 pages 247-250

일반적으로 수지 조성물의 내열성을 향상시킬 목적으로 방향족 가교 유닛을 도입하는 경우가 있지만, 이 경우 주골격이 방향족이기 때문에 탄화되기 쉽고, 내트래킹 특성은 저하된다. 또한, 고분자량화에 의해 내열성을 향상시킨 경우에는 분자량이 커짐으로써 열분해 온도가 상승하여 내트래킹 특성이 저하된다. 즉, 내열성과 트래킹 특성은 트레이드 오프의 관계가 있기 때문에 내열성을 유지하면서 이 트래킹 특성을 클리어하는 것은 매우 어렵다. 나아가서는 난연성 등의 특성을 부여하기 위해 다감(多感) 방향족 화합물을 함유하는 수지를 배합한 경우 내트래킹 특성은 악화되기 쉽고, 높은 내트래킹 특성과 난연성을 양립하는 것은 어렵다. In general, an aromatic crosslinking unit is sometimes introduced for the purpose of improving the heat resistance of the resin composition, but in this case, since the main skeleton is aromatic, it is prone to carbonization and the tracking resistance deteriorates. In addition, when heat resistance is improved by increasing the molecular weight, the thermal decomposition temperature increases as the molecular weight increases, and the tracking resistance decreases. In other words, since heat resistance and tracking characteristics have a trade-off relationship, it is very difficult to clear the tracking characteristics while maintaining heat resistance. Furthermore, when a resin containing a polyaromatic compound is blended to provide properties such as flame retardancy, the tracking resistance tends to deteriorate, and it is difficult to achieve both high tracking resistance and flame retardancy.

일반적으로 CTI의 값에 따라 performance level category (PLC)가 설정된다. PLC가 보다 작은 클래스에 속함으로써 그 디바이스의 설계의 사이즈(연면 거리) 등을 작게 할 수 있기 때문에 PLC는 3 이하인 것이 바람직하고, 1 이하인 것이 특히 바람직하다.Generally, a performance level category (PLC) is set according to the value of CTI. Since the size (creep distance) of the device design can be reduced by the PLC belonging to a smaller class, it is preferable that the PLC is 3 or less, and it is especially preferable that the PLC is 1 or less.

또한 PLC와 CTI는 이하의 관계에 있다.Additionally, PLC and CTI have the following relationship.

PLC1: CTI600 이상, PLC2: CTI400 이상 600 미만, PLC3: 250 이상 400 미만, PLC4: 100 이상 175 미만, PLC5: 100 미만.PLC1: CTI600 or more, PLC2: CTI400 or more but less than 600, PLC3: 250 or more but less than 400, PLC4: 100 or more but less than 175, PLC5: less than 100.

본 발명은 이러한 상황을 감안하여 이루어진 것으로, 그 경화물이 내열성 및 내트래킹 특성이 우수한 에폭시 수지, 경화성 수지 조성물을 제공하는 것을 목적으로 한다. The present invention was made in consideration of this situation, and its purpose is to provide an epoxy resin and curable resin composition whose cured product has excellent heat resistance and tracking resistance properties.

본 발명자들은 상기 과제를 해결하기 위해 예의 연구한 결과, 본 발명을 완성시키기에 이르렀다. 즉, 본 발명은 이하의 [1] ~ [3]에 관한 것이다. 또한, 본원에 있어서 「(수치 1) ~ (수치 2)」는 상하한값을 포함하는 것을 나타낸다.As a result of intensive research to solve the above problems, the present inventors have completed the present invention. That is, the present invention relates to the following [1] to [3]. In addition, in this application, “(numerical value 1) to (numerical value 2)” indicates that the upper and lower limits are included.

[1][One]

하기 식 (1)로 나타내고, 에폭시당량(g/eq.)을 연화점(℃)으로 나눈 값이 2.0 이상 2.2 미만인 에폭시 수지.An epoxy resin represented by the following formula (1), where the value obtained by dividing the epoxy equivalent (g/eq.) by the softening point (°C) is 2.0 or more and less than 2.2.

(식(1) 중, 복수 존재하는 R은 독립적으로 존재하고, 메틸기 또는 수소 원자를 나타낸다. n은 반복 수의 평균값이며, 1 ~ 10의 실수이다.)(In formula (1), multiple R exists independently and represents a methyl group or a hydrogen atom. n is the average value of the number of repetitions and is a real number from 1 to 10.)

[2][2]

전항 [1]에 기재된 에폭시 수지를 함유하는 경화성 수지 조성물.A curable resin composition containing the epoxy resin according to the preceding paragraph [1].

[3][3]

경화성 수지 조성물 총량 중, 무기 충전제의 함유량이 74중량% 이상 95중량% 이하인 전항 [2]에 기재된 경화성 수지 조성물.The curable resin composition according to the preceding paragraph [2], wherein the content of the inorganic filler is 74% by weight or more and 95% by weight or less in the total amount of the curable resin composition.

[4][4]

전항 [2] 또는 [3]에 기재된 경화성 수지 조성물을 경화한 경화물.A cured product obtained by curing the curable resin composition according to the preceding item [2] or [3].

본 발명은 특정 구조를 갖는 에폭시 수지, 경화성 수지 조성물 및 그 경화물에 관한 것으로, 그 경화물은 내열성 및 내트래킹 특성이 우수하다. The present invention relates to an epoxy resin, a curable resin composition, and a cured product thereof having a specific structure, and the cured product has excellent heat resistance and tracking resistance properties.

따라서, 본 발명은 전기 전자 부품용 절연 재료(고신뢰성 반도체 밀봉 재료 등) 및 적층판(프린트 배선판, 빌드 업 기판 등)이나 CFRP를 비롯한 각종 복합 재료, 접착제, 도료 등에 유용하다. Therefore, the present invention is useful for insulating materials for electrical and electronic components (high-reliability semiconductor encapsulation materials, etc.), laminated boards (printed wiring boards, build-up boards, etc.), various composite materials including CFRP, adhesives, paints, etc.

도 1은 합성예 1의 GPC 차트를 나타낸다.
도 2는 합성예 2의 GPC 차트를 나타낸다.
도 3은 합성예 3의 GPC 차트를 나타낸다.
도 4는 실시예 1의 GPC 차트를 나타낸다.
도 5는 실시예 2의 GPC 차트를 나타낸다.
도 6은 실시예 3의 GPC 차트를 나타낸다.
도 7은 비교 합성예 1의 GPC 차트를 나타낸다.
도 8은 비교 합성예 2의 GPC 차트를 나타낸다.
도 9는 FAE-2500의 GPC 차트를 나타낸다.
도 10은 실시예 4, 5, 비교예 1, 2의 TMA 차트를 나타낸다.
도 11은 합성예 4의 GPC 차트를 나타낸다.
도 12는 실시예 7의 GPC 차트를 나타낸다.
도 13은 실시예 10 ~ 13, 비교예 5 ~ 8의 CTI 측정 결과를 나타낸다.
Figure 1 shows the GPC chart of Synthesis Example 1.
Figure 2 shows the GPC chart of Synthesis Example 2.
Figure 3 shows the GPC chart of Synthesis Example 3.
Figure 4 shows the GPC chart of Example 1.
Figure 5 shows the GPC chart of Example 2.
Figure 6 shows the GPC chart of Example 3.
Figure 7 shows the GPC chart of Comparative Synthesis Example 1.
Figure 8 shows the GPC chart of Comparative Synthesis Example 2.
Figure 9 shows the GPC chart of FAE-2500.
Figure 10 shows TMA charts of Examples 4 and 5 and Comparative Examples 1 and 2.
Figure 11 shows the GPC chart of Synthesis Example 4.
Figure 12 shows the GPC chart of Example 7.
Figure 13 shows the CTI measurement results of Examples 10 to 13 and Comparative Examples 5 to 8.

본 발명의 에폭시 수지는 하기 식 (1)로 나타내고, 에폭시당량(g/eq.)을 연화점(℃)으로 나눈 값이 2.0 이상 2.2 미만이다.The epoxy resin of the present invention is represented by the following formula (1), and the epoxy equivalent (g/eq.) divided by the softening point (°C) is 2.0 or more and less than 2.2.

(식(1) 중, 복수 존재하는 R은 독립적으로 존재하고, 메틸기 또는 수소 원자를 나타낸다. n은 반복 수의 평균값이며, 1 ~ 10의 실수이다.)(In formula (1), multiple R exists independently and represents a methyl group or a hydrogen atom. n is the average value of the number of repetitions and is a real number from 1 to 10.)

상기 식 (1) 중, n은 겔 투과 크로마토그래피(GPC, 검출기: UV 254nm)의 측정에 의해 구해진 수평균 분자량, 혹은 분리한 피크 각각의 면적비로부터 산출할 수 있다. n은 1 ~ 5의 실수인 것이 더욱 바람직하고, 2 ~ 4의 실수인 것이 특히 바람직하다.In the formula (1), n can be calculated from the number average molecular weight determined by gel permeation chromatography (GPC, detector: UV 254 nm) or the area ratio of each separated peak. It is more preferable that n is a real number of 1 to 5, and it is especially preferable that it is a real number of 2 to 4.

상기 식 (1)의 n=1은 50면적% 미만이 바람직하고, 더욱 바람직하게는 45면적% 미만이다. 또한, 그 하한은 25 면적%이며, 25 면적%를 밑도는 경우에는 수지의 유동성이 나쁘고, 밀봉재로서 사용하는 경우에는 생산성이 악화된다. 유동성의 지표로서는 수지에 있어서의 용융 점도가 지표가 되고, 150℃에서의 콘플레이트법에 의한 점도 측정(ICI 용융 점도)에 있어서는 2Pa·s 이하의 점도인 것이 바람직하다. 또한, 점도가 지나치게 낮으면 성형시에 공기 등을 권취 보이드가 생길 가능성이 있고, 액상 수지 등의 배합(혹은 변성)시의 블로킹 등이 있기 때문에 0.4Pa·s 이상인 것이 바람직하다. 또한, 내열성과 열분해 특성의 밸런스를 고려하여 0.45Pa·s 이상인 것이 더욱 바람직하고, 0.5Pa·s 이상인 것이 특히 바람직하다.n=1 in the above formula (1) is preferably less than 50 area%, and more preferably less than 45 area%. In addition, the lower limit is 25 area%. If it is less than 25 area%, the fluidity of the resin is poor, and when used as a sealing material, productivity deteriorates. The melt viscosity of the resin serves as an index of fluidity, and in viscosity measurement by the corn plate method at 150°C (ICI melt viscosity), the viscosity is preferably 2 Pa·s or less. Additionally, if the viscosity is too low, there is a possibility that voids may occur during molding to trap air, etc., and there may be blocking during mixing (or modification) of liquid resin, etc., so it is preferably 0.4 Pa·s or more. Furthermore, considering the balance between heat resistance and thermal decomposition characteristics, it is more preferable that it is 0.45 Pa·s or more, and it is especially preferable that it is 0.5 Pa·s or more.

또한, 상기 식 (1)의 n=1 미만의 화합물은 0.5 ~ 10면적%의 비율로 함유하는 것이 바람직하고, 보다 바람직하게는 0.5 ~ 5면적%이며, 특히 바람직하게는 0.5 ~ 2.5면적%이다. n=1 미만의 화합물은 3관능 미만의 구조를 갖는 화합물, 혹은 터셔리 부틸메틸페놀의 에폭시 수지이기 때문에, n=1 미만의 화합물이 10면적%를 초과하는 경우, 내열성의 저하가 시사될 뿐만 아니라, 취급시의 악취, 혹은 인체에의 악영향이 우려된다. 한편, n=1 미만의 화합물이 0.5면적% 미만인 경우, 네트워크가 너무 밀화되어 버리기 때문에 열분해에 의한 중량 감소가 커져 열분해 특성에 악영향을 미치는 것(나아가는 트래킹 특성에 악영향을 미친다고 상정된다.)이 우려된다.In addition, the compound of formula (1) with n = 1 or less is preferably contained in a ratio of 0.5 to 10 area%, more preferably 0.5 to 5 area%, and particularly preferably 0.5 to 2.5 area%. . Since compounds with less than n = 1 are compounds with a structure less than trifunctional or epoxy resins of tertiary butylmethylphenol, if the amount of compounds with less than n = 1 exceeds 10 area%, a decrease in heat resistance is suggested. However, there are concerns about bad odor during handling or adverse effects on the human body. On the other hand, if the compound with n = 1 is less than 0.5 area%, the network becomes too dense, so the weight loss due to thermal decomposition increases, which adversely affects the thermal decomposition characteristics (it is assumed to have a negative effect on the further tracking characteristics). I'm concerned.

본 발명의 에폭시 수지는 통상은 상온에서 고체의 수지상이며, 그 연화점은 90℃ 이상인 것이 바람직하고, 더욱 바람직하게는 95℃ 이상이다. 또한, 그 상한은 150℃이다. 연화점이 150℃보다 높은 경우 수지 취출시에 용제가 남기 쉬워, 경화시에 보이드가 되기 쉽다. 또한 용제 증류시에 발포하기 쉬워지는 등, 생산상의 과제도 크다. 한편, 연화점이 90℃ 이하인 경우, 내열성이나 내열분해 특성에 악영향이 있다. 또한, 에폭시당량은 200 ~ 300g/eq.인 것이 바람직하고, 더욱 바람직하게는 205 내지 250g/eq.이다. 에폭시당량이 200g/eq.를 밑도는 경우, 에피클로로히드린의 잔류나 불순물인 에폭시화물이 많이 잔류하고 있어 특성 악화의 가능성이 있다는 것. 또한 300g/eq.을 초과하는 경우 내열성의 저하가 과제가 된다.The epoxy resin of the present invention is usually in a solid dendritic state at room temperature, and its softening point is preferably 90°C or higher, and more preferably 95°C or higher. Additionally, the upper limit is 150°C. If the softening point is higher than 150°C, the solvent is likely to remain when the resin is taken out, and voids are likely to form during curing. In addition, there are also significant production challenges, such as the possibility of foaming during solvent distillation. On the other hand, when the softening point is 90°C or lower, heat resistance and thermal decomposition resistance are adversely affected. Additionally, the epoxy equivalent is preferably 200 to 300 g/eq., and more preferably 205 to 250 g/eq. If the epoxy equivalent weight is less than 200 g/eq., there is a possibility of deterioration of properties due to the residual epichlorohydrin or epoxide impurities remaining in large quantities. Additionally, if it exceeds 300 g/eq., a decrease in heat resistance becomes an issue.

본 발명에 있어서, 에폭시당량은 JIS K-7236에 준한 방법으로 측정하였다. 연화점은 METLER TOLEDO사 연화점 측정기 FP90을 사용하여 측정하였다.In the present invention, the epoxy equivalent was measured by a method according to JIS K-7236. The softening point was measured using a softening point measuring instrument FP90 from METLER TOLEDO.

본 발명의 에폭시 수지는 연화점이 높고, 또한 단위 분자량당의 관능기수가 많은 것이 바람직하다. 연화점은 분자량이 클수록 높아지는 경향이 있다. 이것은 가열했을 때의 수지의 유동성을 보고 있는 것이 연화점이며, 분자량이 클수록 분자가 움직이기 어렵다, 즉 연화점이 오른다는 것을 의미한다. 한편, 일반적으로 연화점이 커지면 내열성이 향상된다고 알려져 있지만, 그 내열성의 상승은 단위 중량당의 관능기수의 향상이 유효하고, 에폭시당량이 그 관능기수에 관련된 값이 된다.The epoxy resin of the present invention preferably has a high softening point and a large number of functional groups per unit molecular weight. The softening point tends to increase as the molecular weight increases. This means that the softening point refers to the fluidity of the resin when heated, and the larger the molecular weight, the more difficult it is for the molecules to move, that is, the softening point rises. On the other hand, it is generally known that heat resistance improves as the softening point increases, but the increase in heat resistance is effectively due to the improvement in the number of functional groups per unit weight, and the epoxy equivalent becomes a value related to the number of functional groups.

연화점이 작고 에폭시당량이 큰 경우, 1분자당의 관능기가 적은 것이 시사되고, 반대로 연화점이 높고 에폭시당량이 작은 경우는 1분자당의 관능기가 많은 것을 알 수 있다. 따라서, 연화점이 높고 에폭시당량이 작은 화합물이 바람직하다.When the softening point is low and the epoxy equivalent is large, it suggests that there are few functional groups per molecule. Conversely, when the softening point is high and the epoxy equivalent is small, it can be seen that there are many functional groups per molecule. Therefore, compounds with a high softening point and a low epoxy equivalent weight are preferable.

본 발명에 있어서는 에폭시당량(g/eq.)을 연화점(℃)으로 나눈 값을 파라미터 A로 하고, 파라미터 A가 2.0 이상 2.2 미만인 것이 바람직하다. 파라미터 A가 2.0 미만인 경우, 에폭시당량이 너무 작기 때문에 어떠한 불순물의 잔존을 생각할 수 있고, 반대로 2.2 이상인 경우는 에폭시당량이 크고, 에폭시당량의 값에 비해 연화점이 낮다는 것을 의미하고, 내열성과 열분해 특성을 양립할 수 없다.In the present invention, the value obtained by dividing the epoxy equivalent (g/eq.) by the softening point (°C) is taken as parameter A, and it is preferable that parameter A is 2.0 or more and less than 2.2. If the parameter A is less than 2.0, the epoxy equivalent is too small, so some impurities may be present. Conversely, if it is 2.2 or more, it means that the epoxy equivalent is large and the softening point is low compared to the epoxy equivalent, and heat resistance and thermal decomposition characteristics are low. cannot be compatible.

여기서, 열분해 특성은 내트래킹 특성에 영향을 미치는 파라미터라고 여기고 있고, 트렁킹 시험에 있어서 열분해 온도가 낮을수록 전극간의 도통을 하기 곤란하기 때문에 고전압까지 견딜 수 있다고 생각된다. 통상, 고분자량화하면 열분해 온도가 상승하는 경향이 있지만, 본 발명에서는 고분자량화해도 열분해 온도에 큰 차이가 없고, 높은 내트래킹 특성을 유지할 수 있다고 생각된다.Here, thermal decomposition characteristics are considered to be a parameter that affects anti-tracking characteristics, and in a trunking test, the lower the thermal decomposition temperature, the more difficult it is to establish conduction between electrodes, so it is thought that it can withstand high voltages. Normally, when the molecular weight is increased, the thermal decomposition temperature tends to increase, but in the present invention, there is no significant difference in the thermal decomposition temperature even when the molecular weight is increased, and it is believed that high tracking resistance can be maintained.

본 발명의 에폭시 수지의 제법은 특별히 한정되지 않지만, 예를 들어 하기 식 (2)로 표시되는 페놀 수지와 에피할로히드린을 용제, 촉매의 존재하에 부가 또는 폐환 반응시킴으로써 얻을 수 있다.The production method of the epoxy resin of the present invention is not particularly limited, but can be obtained, for example, by subjecting a phenol resin and epihalohydrin represented by the following formula (2) to an addition or ring closure reaction in the presence of a solvent and a catalyst.

(식(2) 중, 복수 존재하는 R은 독립적으로 존재하고, 메틸기 또는 수소 원자를 나타낸다. n은 반복 수의 평균값이며, 1 ~ 10의 실수이다.)(In formula (2), multiple R exists independently and represents a methyl group or a hydrogen atom. n is the average value of the number of repetitions and is a real number from 1 to 10.)

상기 식 (2) 중, n은 겔 투과 크로마토그래피(GPC, 검출기: UV 254nm)의 측정에 의해 구해진 수평균 분자량, 혹은 분리한 피크 각각의 면적비로부터 산출할 수 있다. n은 1 ~ 5인 것이 더욱 바람직하고, 1 ~ 3인 것이 특히 바람직하다.In the formula (2), n can be calculated from the number average molecular weight determined by gel permeation chromatography (GPC, detector: UV 254 nm) or the area ratio of each separated peak. As for n, it is more preferable that it is 1-5, and it is especially preferable that it is 1-3.

상기 식 (2)의 페놀 수지의 수산기당량은 140 ~ 180g/eq.인 것이 바람직하고, 보다 바람직하게는 140 ~ 165g/eq.이다. 또한, n=1의 화합물의 양은 30 ~ 60면적%인 것이 바람직하고, 보다 바람직하게는 40 ~ 60면적%이다. 또한 n=2 이상 화합물의 총계는 25 ~ 40면적%인 것이 바람직하다.The hydroxyl equivalent weight of the phenol resin of the above formula (2) is preferably 140 to 180 g/eq., and more preferably 140 to 165 g/eq. Additionally, the amount of the n=1 compound is preferably 30 to 60 area%, more preferably 40 to 60 area%. In addition, it is preferable that the total of n=2 or more compounds is 25 to 40 area%.

여기서, 상기 식 (2)로 표시되는 페놀 수지의 제조 방법을 설명한다.Here, a method for producing the phenol resin represented by the above formula (2) will be described.

상기 식 (2)로 표시되는 페놀 수지의 제법은 특별히 한정되지 않지만, 구체적으로는 알킬페놀(3-메틸-6-t-부틸페놀 및 4-메틸-2-t-부틸페놀)과 p-히드록시벤즈알데히드를 산성 조건에서 중축합을 행하고, 노볼락화를 행한다. 알킬페놀(3-메틸6-t-부틸페놀 및 4-메틸-2-t-부틸페놀)과 p-히드록시벤즈알데히드의 비율을 3:2 ~ 2:1의 비율로 반응시키는 것이 바람직하다. 3-메틸-6-t-부틸페놀과 4-메틸-2-t-부틸페놀의 비율은 알킬페놀 중 90중량% 이상이 3-메틸6-t-부틸페놀인 것이 바람직하고, 이 비율은 페놀 수지의 제조시에 배합하는 알킬 페놀의 양으로 조정한다. 구체적으로는 목적으로 하는 알킬페놀의 도입 비율대로 원료가 되는 알킬페놀을 투입한다.The production method of the phenol resin represented by the above formula (2) is not particularly limited, but specifically, alkylphenol (3-methyl-6-t-butylphenol and 4-methyl-2-t-butylphenol) and p-hyde Roxybenzaldehyde is polycondensed under acidic conditions and novolakized. It is preferable to react alkylphenol (3-methyl6-t-butylphenol and 4-methyl-2-t-butylphenol) and p-hydroxybenzaldehyde at a ratio of 3:2 to 2:1. The ratio of 3-methyl-6-t-butylphenol to 4-methyl-2-t-butylphenol is preferably 90% by weight or more of the alkylphenol is 3-methyl6-t-butylphenol, and this ratio is phenol It is adjusted according to the amount of alkyl phenol mixed during production of the resin. Specifically, alkyl phenol as a raw material is added according to the target alkyl phenol introduction ratio.

얻어지는 페놀 수지의 수산기당량은 140 ~ 170g/eq.인 것이 바람직하고, 더욱 바람직하게는 145 ~ 165g/eq. 특히 바람직하게는 150 ~ 160g/eq.이다.The hydroxyl equivalent weight of the obtained phenol resin is preferably 140 to 170 g/eq., more preferably 145 to 165 g/eq. Particularly preferably, it is 150 to 160 g/eq.

상기 식 (2)로 표시되는 페놀 수지를 합성할 때에 사용하는 산성 촉매는 염산, 인산, 황산, 포름산, 염화아연, 염화제이철, 염화알루미늄, p-톨루엔술폰산, 메탄술폰산, 활성 백토, 이온 교환 수지 등을 들 수 있다. 이들은 단독으로도 2종 이상 병용해도 된다. 촉매의 사용량은 사용하는 페놀성 수산기에 대하여 0.1 ~ 50중량%, 바람직하게는 1 ~ 30중량%이며, 너무 많으면 폐기물이 늘어나 버리고, 너무 적으면 반응의 진행이 늦어진다.Acidic catalysts used when synthesizing the phenol resin represented by the above formula (2) include hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid, activated clay, and ion exchange resin. etc. can be mentioned. These may be used alone or in combination of two or more types. The amount of catalyst used is 0.1 to 50% by weight, preferably 1 to 30% by weight, based on the phenolic hydroxyl group used. If it is too much, waste increases, and if it is too small, the progress of the reaction is slowed.

반응은 필요에 따라 유기 용제를 사용하여 행해도 되고, 무용제로 행해도 된다. 단, 반응시에 정제하는 물을 공비 탈수시킴으로써 보다 반응을 효율적으로 진행시킬 수 있기 때문에 물과의 공비를 할 수 있는 용제를 이용하는 것이 바람직하다. 본 발명에서는 특히 톨루엔이나 크실렌 등의 탄화수소계 유기 용제의 사용이 바람직하다.The reaction may be performed using an organic solvent as needed, or may be performed without a solvent. However, since the reaction can proceed more efficiently by azeotropically dehydrating the water to be purified during the reaction, it is preferable to use a solvent that can form an azeotrope with water. In the present invention, the use of hydrocarbon-based organic solvents such as toluene and xylene is particularly preferable.

그 후, 수세나 중화 등의 공정을 행하고, 용제 유거 후 수지 취출, 또는 재침전이나 재결정 등의 수법에 의해 수지를 취출할 수 있다. 상기 식 (2)로 표시되는 페놀 수지의 연화점이 매우 높기 때문에 재침전이나 재결정 등의 수법에 의해 취출하는 것이 바람직하고, 예를 들어 용제를 빈용제로 치환함으로써 석출시키는 등의 수법을 적용할 수 있다.After that, a process such as water washing or neutralization is performed, and the resin can be taken out after solvent distillation, or by a method such as reprecipitation or recrystallization. Since the softening point of the phenol resin represented by the above formula (2) is very high, it is preferable to extract it by methods such as reprecipitation or recrystallization. For example, methods such as precipitation by replacing the solvent with a poor solvent can be applied. there is.

상기 식 (2)로 표시되는 페놀 수지는 결정 또는 수지 고체이며, 그 때의 GPC에 있어서의 n=1의 비율은 60% 미만인 것이 바람직하다. 특히 55면적% 이하, 나아가서는 50면적% 이하이다. 잔류하는 원료 모노머는 총계로 5면적% 이하가 바람직하고, 각각의 피크가 1.5면적% 미만인 것이 바람직하다. 본 모노머량은 에폭시 수지의 저분자량의 잔류량에 영향을 주고, 이 양이 내열성 등에 영향을 준다.The phenol resin represented by the above formula (2) is a crystal or solid resin, and the ratio of n=1 in GPC at that time is preferably less than 60%. In particular, it is less than 55 area%, and even less than 50 area%. The total amount of remaining raw material monomer is preferably 5 area% or less, and each peak is preferably less than 1.5 area%. This monomer amount affects the residual amount of low molecular weight epoxy resin, and this amount affects heat resistance, etc.

이어서, 본 발명의 에폭시 수지의 제조 방법을 설명한다.Next, the manufacturing method of the epoxy resin of the present invention is explained.

상술한 바와 같이, 본 발명의 에폭시 수지의 제법은 특별히 한정되지 않지만, 예를 들면 상기 식 (2)로 표시되는 페놀 수지와 에피할로히드린을 용제, 촉매의 존재하에 부가 또는 폐환 반응시킴으로써 얻을 수 있다.As described above, the method for producing the epoxy resin of the present invention is not particularly limited, but for example, it can be obtained by adding or ring-closing a phenol resin represented by the above formula (2) and epihalohydrin in the presence of a solvent and a catalyst. You can.

에피할로히드린의 사용량은 페놀 수지의 페놀성 수산기 1몰에 대하여 통상 1.0 ~ 20.0몰, 바람직하게는 1.5 ~ 10.0몰이다.The amount of epihalohydrin used is usually 1.0 to 20.0 mol, preferably 1.5 to 10.0 mol, per mole of phenolic hydroxyl group of the phenol resin.

에폭시화 반응에 사용할 수 있는 알칼리 금속 수산화물로서는 수산화나트륨, 수산화칼륨 등을 들 수 있다. 알칼리 금속 수산화물은 고형물이이어도, 그 수용액을 사용해도 된다. 수용액을 사용하는 경우에는 그 알칼리 금속 수산화물의 수용액을 연속적으로 반응계 내에 첨가함과 더불어 감압하, 또는 상압하 연속적으로 물 및 에피할로히드린을 유출시키고, 추가로 분액하여 물을 제거하고 에피할로히드린을 반응계 내로 연속적으로 되돌리는 방법이어도 된다. 알칼리 금속 수산화물의 사용량은 페놀 수지의 페놀성 수산기 1몰에 대하여 통상 0.9 ~ 2.5몰이고, 바람직하게는 0.95 ~ 1.5몰이다. 알칼리 금속 수산화물의 사용량이 적으면 반응이 충분히 진행되지 않는다. 한편, 페놀 수지의 페놀성 수산기 1몰에 대하여 2.5몰을 초과하는 알칼리 금속 수산화물의 과잉 사용은 불필요한 폐기물의 부생을 초래한다.Alkali metal hydroxides that can be used in the epoxidation reaction include sodium hydroxide and potassium hydroxide. The alkali metal hydroxide may be solid or its aqueous solution may be used. When using an aqueous solution, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, water and epihalohydrin are continuously distilled out under reduced pressure or normal pressure, and water is further separated to remove epihalohydrin. A method of continuously returning lohydrin to the reaction system may be used. The amount of alkali metal hydroxide used is usually 0.9 to 2.5 mol, preferably 0.95 to 1.5 mol, per mole of phenolic hydroxyl group of the phenol resin. If the amount of alkali metal hydroxide used is small, the reaction does not proceed sufficiently. On the other hand, excessive use of alkali metal hydroxide in excess of 2.5 moles per mole of phenolic hydroxyl group of the phenolic resin causes unnecessary by-products.

상기 반응을 촉진하기 위해서 테트라메틸암모늄클로라이드, 테트라메틸암모늄브로마이드, 트리메틸벤질암모늄클로라이드 등의 4급 암모늄염을 촉매로서 첨가해도 된다. 4급 암모늄염의 사용량으로서는 페놀 수지의 페놀성 수산기 1몰에 대하여 통상 0.1 ~ 15g이며, 바람직하게는 0.2 ~ 10g이다. 사용량이 지나치게 적으면 충분한 반응 촉진 효과를 얻을 수 없고, 사용량이 지나치게 많으면 에폭시 수지 중에 잔존하는 4급 암모늄염량이 증가해 버리기 때문에 전기 신뢰성을 악화시키는 원인이 될 수도 있다.In order to promote the above reaction, quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide, and trimethylbenzylammonium chloride may be added as a catalyst. The amount of quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per mole of phenolic hydroxyl group of the phenol resin. If the amount used is too small, a sufficient reaction promotion effect cannot be obtained, and if the amount used is too large, the amount of quaternary ammonium salt remaining in the epoxy resin increases, which may cause deterioration of electrical reliability.

에폭시화 반응시에 메탄올, 에탄올, 이소프로필알코올 등의 알코올류, 디메틸술폰, 디메틸술폭시드, 테트라히드로푸란, 디옥산 등의 비양성자성 극성 용매 등을 첨가하여 반응을 행하는 것이 반응 진행상 바람직하다. 알코올류를 사용하는 경우, 그 사용량은 에피할로히드린의 사용량에 대하여 통상 2 ~ 50중량%, 바람직하게는 4 ~ 20중량%이다. 또한, 비양성자성 극성 용매를 사용하는 경우는 에피할로히드린의 사용량에 대하여 통상 5 ~ 100중량%, 바람직하게는 10 ~ 80중량%이다. 반응 온도는 통상 30 ~ 90℃이고, 바람직하게는 35 ~ 80℃이다. 반응 시간은 통상 0.5 ~ 100시간이고, 바람직하게는 1 ~ 30시간이다.During the epoxidation reaction, it is preferable for the reaction to proceed by adding alcohols such as methanol, ethanol, and isopropyl alcohol, and aprotic polar solvents such as dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, and dioxane. When alcohols are used, the amount used is usually 2 to 50% by weight, preferably 4 to 20% by weight, relative to the amount of epihalohydrin used. Additionally, when an aprotic polar solvent is used, it is usually 5 to 100% by weight, preferably 10 to 80% by weight, based on the amount of epihalohydrin used. The reaction temperature is usually 30 to 90°C, preferably 35 to 80°C. The reaction time is usually 0.5 to 100 hours, preferably 1 to 30 hours.

반응 종료 후, 반응물을 수세 후, 또는 수세 없이 가열감압 하에서 에피할로히드린이나 용매 등을 제거한다. 또한, 가수분해성 할로겐이 적은 에폭시 수지로 하기 위해서 회수한 에폭시 수지를 톨루엔, 메틸이소부틸케톤 등의 용제에 용해하고, 수산화나트륨, 수산화칼륨 등의 알칼리 금속 수산화물의 수용액을 가하여 반응을 행하고 폐환을 확실하게 할 수도 있다. 이 경우 알칼리 금속 수산화물의 사용량은 글리시딜화에 사용한 페놀 수지의 페놀성 수산기 1몰에 대하여 통상 0.01 ~ 0.3몰, 바람직하게는 0.05 ~ 0.2몰이다. 반응 온도는 통상 50 ~ 120℃, 반응 시간은 통상 0.5 ~ 24시간이다. 반응 종료 후, 생성된 염을 여과, 수세 등에 의해 제거하고, 가열 감압하에 용매를 추가로 증류제거함으로써 본 발명의 에폭시 수지를 얻을 수 있다.After completion of the reaction, the epihalohydrin, solvent, etc. are removed under heat and reduced pressure, with or without washing the reactant with water. Additionally, in order to make an epoxy resin with less hydrolyzable halogen, the recovered epoxy resin is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added for reaction to ensure ring closure. You can also do it. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, per mole of phenolic hydroxyl group of the phenol resin used for glycidylation. The reaction temperature is usually 50 to 120°C and the reaction time is usually 0.5 to 24 hours. After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is further distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.

이하, 본 발명의 경화성 수지 조성물에 대하여 설명한다.Hereinafter, the curable resin composition of the present invention is explained.

본 발명의 경화성 수지 조성물에 사용하는 에폭시 수지는 상기 식 (1)로 표시되는 에폭시 수지를 단독으로 사용해도 되지만, 다른 에폭시 수지와 병용하여 사용할 수도 있다. 병용하는 경우, 상기 식 (1)로 표시되는 에폭시 수지가 전체 에폭시 수지 중에 차지하는 비율은 10 ~ 98중량%인 것이 바람직하고, 보다 바람직하게는 30 ~ 95중량%, 더욱 바람직하게는 60 ~ 95중량%이다. 상기 식(1)로 표시되는 에폭시 수지의 첨가량을 10% 이상으로 함으로써 탄성률 향상이나 저흡수성을 발현할 수 있다.The epoxy resin used in the curable resin composition of the present invention may be an epoxy resin represented by the above formula (1), which may be used alone, or may be used in combination with another epoxy resin. When used together, the proportion of the epoxy resin represented by the above formula (1) to the total epoxy resin is preferably 10 to 98% by weight, more preferably 30 to 95% by weight, and still more preferably 60 to 95% by weight. %am. By setting the addition amount of the epoxy resin represented by the above formula (1) to 10% or more, the elastic modulus can be improved and low water absorption can be achieved.

상기 식 (1)로 표시되는 에폭시 수지와 병용할 수 있는 다른 에폭시 수지의 구체예로서는 비스페놀류(비스페놀 A, 비스페놀 F, 비스페놀 S, 비페놀, 비스페놀 AD 등) 또는 페놀류(페놀, 알킬 치환 페놀, 방향족 치환 페놀, 나프톨, 알킬 치환 나프톨, 디히드록시벤젠, 알킬 치환 디히드록시벤젠, 디히드록시나프탈렌 등)과 각종 알데히드(포름알데히드, 아세트알데히드, 알킬알데히드, 벤즈알데히드, 알킬 치환 벤즈알데히드, 히드록시벤즈알데히드, 나프토알데히드, 글루타르알데히드, 프탈알데히드, 크로톤알데히드, 신남알데히드 등)과의 중축합물; 상기 페놀류와 각종 디엔화합물(디시클로펜타디엔, 테르펜류, 비닐시클로헥센, 노르보르나디엔, 비닐노르보르넨, 테트라히드로인덴, 디비닐벤젠, 디비닐비페닐, 디소프로페닐비페닐, 부타디엔, 이소프렌 등)과의 중합물; 상기 페놀류와 케톤류(아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 아세토페논, 벤조페논 등)와의 중축합물; 상기 페놀류와 방향족 디메탄올류(벤젠디메탄올, 비페닐디메탄올 등)과의 중축합물; 상기 페놀류와 방향족 디클로로메틸류(α,α'-디클로록시렌, 비스클로로메틸비페닐 등)의 중축합물; 상기 페놀류와 방향족 비스알콕시메틸류(비스메톡시메틸벤젠, 비스메톡시메틸비페닐, 비스페녹시메틸비페닐 등)와의 중축합물; 상기 비스페놀류와 각종 알데히드의 중축합물 또는 알코올류 등을 글리시딜화한 글리시딜에테르계 에폭시 수지, 지환식 에폭시 수지, 글리시딜아민계 에폭시 수지, 글리시딜에스테르계 에폭시 수지 등을 들 수 있지만, 통상 사용되는 에폭시 수지라면 이들에 한정되는 것은 아니다. 이들은 단독으로 사용해도 되고, 2종 이상을 사용해도 된다.Specific examples of other epoxy resins that can be used in combination with the epoxy resin represented by the formula (1) include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols (phenol, alkyl-substituted phenol, aromatic Substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, polycondensates with naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.); The above phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, disopropenylbiphenyl, butadiene, isoprene, etc.); polycondensates of the above phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.); Polycondensates of the above-mentioned phenols and aromatic dimethanols (benzenedimethanol, biphenyldimethanol, etc.); polycondensates of the above phenols and aromatic dichloromethyls (α,α'-dichloroxyrene, bischloromethylbiphenyl, etc.); Polycondensates of the above-mentioned phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc.); Examples include glycidyl ether-based epoxy resins, alicyclic epoxy resins, glycidylamine-based epoxy resins, and glycidyl ester-based epoxy resins obtained by glycidylating polycondensates of the above-mentioned bisphenols and various aldehydes or alcohols. However, it is not limited to commonly used epoxy resins. These may be used individually, or two or more types may be used.

본 발명의 경화성 수지 조성물에 사용할 수 있는 경화제로서는 아민계 경화제, 산무수물계 경화제, 아미드계 경화제, 페놀계 경화제 등을 들 수 있다. 사용할 수 있는 경화제의 구체예로서는 예를 들면 o-페닐렌디아민, m-페닐렌디아민, p-페닐렌디아민, 4,4'-디아미노디페닐술폰, 3,4'-디아미노디페닐술폰, 3,3'-디아미노 디페닐술폰, 2,2'-디아미노디페닐술폰, 디에틸톨루엔디아민, 디메틸티오톨루엔디아민, 디아미노디페닐메탄, 3,3'-디메틸-4,4'-디아미노디페닐메탄, 3,3'-디에틸-4,4' -디아미노디페닐메탄, 4,4'-디아미노-3,3'-디에틸-5,5'-디메틸디페닐메탄, 4,4'-디아미노-3,3',5,5'-테트라메틸디페닐메탄, 4,4'-디아미노-3,3',5,5'-테트라에틸디페닐메탄, 4,4'-디아미노-3,3',5,5'-테트라이소프로필디페닐메탄, 4,4'-메틸렌비스(N-메틸아닐린), 비스(아미노페닐)플루오렌, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 2,2'-비스[4-(4-아미노페녹시)페닐]프로판, 비스[4-(4-아미노페녹시)페닐]설폰, 1,3'-비스(4-아미노페녹시)벤젠, 1,4'-비스(4-아미노페녹시)벤젠, 1,4'-비스(4-아미노페녹시)비페닐, 4,4'-(1,3-페닐렌디소프로필리덴)비스아닐린, 4,4'-(1,4-페닐렌디소프로필리덴)비스아닐린, 나프탈렌디아민, 벤지딘, 디메틸벤지딘, 국제공개 제2017/170551호 합성예 1 및 합성예 2에 기재된 방향족 아민 화합물 등의 방향족 아민 화합물, 1,3-비스(아미노메틸)사이클로헥산, 이소포론디아민, 4,4'-메틸렌비스(시클로헥실아민), 노르보르난디아민, 에틸렌디아민, 프로판디아민, 테트라메틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 다이머디아민, 트리에틸렌테트라민 등의 지방족 아민 등을 들 수 있지만, 이에 한정되지 않고, 조성물에 부여하고 싶은 특성에 따라 적합하게 사용할 수 있다. 포트 라이프를 확보하기 위해서는 방향족 아민을 사용하는 것이 바람직하고, 즉경화성을 부여하고 싶은 경우에는 지방족 아민을 사용하는 것이 바람직하다. 2관능 성분을 주성분으로서 함유하는 아민계 화합물을 경화제로서 사용함으로써, 경화 반응시에 직선성이 높은 네트워크를 구축할 수 있고, 특히 우수한 강인성을 발현할 수 있다. 또한, 디시안디아미드, 리놀렌산의 2량체와 에틸렌디아민으로부터 합성되는 폴리아미드 수지 등의 아미드계 화합물; 무수 프탈산, 무수트리메리트산, 무수피로메리트산, 무수말레인산, 테트라히드로무수프탈산, 메틸테트라히드로무수프탈산, 무수메틸나직산, 헥사히드로 무수프탈산, 메틸헥사히드로 무수프탈산 등의 산 무수물계 화합물; 비스페놀류(비스페놀 A, 비스페놀 F, 비스페놀 S, 비페놀, 비스페놀 AD 등) 혹은 페놀류(페놀, 알킬 치환 페놀, 방향족 치환 페놀, 나프톨, 알킬 치환 나프톨, 디히드록시벤젠, 알킬 치환 디히드록시벤젠, 디히드록시나프탈렌 등)과 각종 알데히드(포름알데히드, 아세트알데히드, 알킬알데히드, 벤즈알데히드, 알킬 치환 벤즈알데히드, 히드록시벤즈알데히드, 나프토알데히드, 글루타르알데히드, 프탈알데히드, 크로톤알데히드, 신남알데히드 등)과의 중축합물, 또는 상기 페놀류와 각종 디엔 화합물(디시클로펜타디엔, 테르펜류, 비닐시클로헥센, 노르보르나디엔, 비닐노르보르넨, 테트라히드로인덴, 디비닐벤젠, 디비닐비페닐, 디소프로페닐비페닐, 부타디엔, 이소프렌 등)과의 중합물, 또는 상기 페놀류와 케톤류(아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 아세토페논, 벤조페논 등)와의 중축합물, 또는 상기 페놀류와 방향족 디메탄올류(벤젠디메탄올, 비페닐디메탄올 등)와의 중축합물, 또는 상기 페놀류와 방향족 디클로로메틸류(α,α'-디클로록시렌, 비스클로로메틸비페닐 등)과의 중축합물, 또는 상기 페놀류와 방향족 비스알콕시메틸류(비스메톡시메틸벤젠, 비스메톡시메틸비페닐, 비스페녹시메틸비페닐 등)와의 중축합물, 또는 상기 비스페놀류와 각종 알데히드의 중축합물, 및 이들의 변성물 등의 페놀계 화합물; 이미다졸, 트리플루오로보란-아민 착체, 구아니딘 유도체 등을 들 수 있지만, 이들에 한정되는 것은 아니다.Examples of curing agents that can be used in the curable resin composition of the present invention include amine-based curing agents, acid anhydride-based curing agents, amide-based curing agents, and phenol-based curing agents. Specific examples of curing agents that can be used include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,2'-diaminodiphenylsulfone, diethyltoluenediamine, dimethylthiotoluenediamine, diaminodiphenylmethane, 3,3'-dimethyl-4,4'- Diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane , 4,4'-diamino-3,3',5,5'-tetramethyldiphenylmethane, 4,4'-diamino-3,3',5,5'-tetraethyldiphenylmethane, 4 ,4'-Diamino-3,3',5,5'-tetraisopropyldiphenylmethane, 4,4'-methylenebis(N-methylaniline), bis(aminophenyl)fluorene, 3,4' -diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 2,2'-bis[4-(4-aminophenoxy)phenyl]propane, bis[4-(4-aminophenoxy)phenyl ] Sulfone, 1,3'-bis(4-aminophenoxy)benzene, 1,4'-bis(4-aminophenoxy)benzene, 1,4'-bis(4-aminophenoxy)biphenyl, 4 ,4'-(1,3-phenylenedisopropylidene)bisaniline, 4,4'-(1,4-phenylenedisopropylidene)bisaniline, naphthalenediamine, benzidine, dimethylbenzidine, International Publication No. 2017/ No. 170551 Aromatic amine compounds such as those described in Synthesis Example 1 and Synthesis Example 2, 1,3-bis(aminomethyl)cyclohexane, isophorone diamine, 4,4'-methylenebis(cyclohexylamine), nor Aliphatic amines such as bornanediamine, ethylenediamine, propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, dimerdiamine, triethylenetetramine, etc. are included, but are not limited to these and the properties desired to be imparted to the composition. It can be used appropriately. In order to ensure pot life, it is preferable to use an aromatic amine, and when it is desired to provide immediate curing, it is preferable to use an aliphatic amine. By using an amine-based compound containing a bifunctional component as a main component as a curing agent, a network with high linearity can be constructed during the curing reaction, and particularly excellent toughness can be exhibited. In addition, amide-based compounds such as dicyandiamide, polyamide resin synthesized from a dimer of linolenic acid and ethylenediamine; acid anhydride compounds such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnagic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride; Bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols (phenol, alkyl substituted phenol, aromatic substituted phenol, naphthol, alkyl substituted naphthol, dihydroxybenzene, alkyl substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.) Compounds, or the above phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, disopropenyl Biphenyl, butadiene, isoprene, etc.), or polycondensates of the above phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.), or the above phenols and aromatic dimethanol (benzene) Dimethanol, biphenyl dimethanol, etc.), or polycondensates of the above phenols and aromatic dichloromethyls (α,α'-dichloroxyrene, bischloromethylbiphenyl, etc.), or polycondensates of the above phenols and aromatic bis. Phenolic products such as polycondensates with alkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc.), polycondensates of the above-mentioned bisphenols with various aldehydes, and modified products thereof. compound; Examples include, but are not limited to, imidazole, trifluoroboran-amine complex, and guanidine derivative.

본 발명의 경화성 수지 조성물에 있어서 경화제의 사용량은 에폭시 수지의 에폭시기 1당량에 대하여 0.5 ~ 1.5당량인 것이 바람직하고, 0.6 ~ 1.2당량인 것이 특히 바람직하다. 0.5 ~ 1.5당량으로 함으로써 양호한 경화물성을 얻을 수 있다.In the curable resin composition of the present invention, the amount of the curing agent used is preferably 0.5 to 1.5 equivalents, and particularly preferably 0.6 to 1.2 equivalents, based on 1 equivalent of the epoxy group of the epoxy resin. Good cured properties can be obtained by adjusting the weight to 0.5 to 1.5 equivalents.

상기 경화제를 사용하여 경화 반응을 행할 때에는 경화 촉진제를 병용해도 지장이 없다. 사용할 수 있는 경화 촉진제로서는 예를 들어 2-메틸이미다졸, 2-에틸이미다졸, 2-페닐이미다졸, 2-에틸-4-메틸이미다졸 등의 이미다졸류, 2-(디메틸아미노메틸)페놀, 트리에틸렌디아민, 트리에탄올아민, 1,8-디아자비시클로(5,4,0)운데센-7 등의 제3급 아민류, 트리페닐포스핀, 디페닐포스핀, 트리부틸포스핀 등의 유기포스핀류, 옥틸산주석 등의 금속 화합물, 테트라페닐포스포늄·테트라페닐보레이트, 테트라페닐포스포늄·에틸트리페닐보레이트 등의 테트라 치환 포스포늄·테트라 치환 보레이트, 2-에틸-4-메틸이미다졸·테트라페닐보레이트, N-메틸모르폴린·테트라페닐보레이트 등의 테트라페닐보론염, 벤조산, 프탈산, 이소프탈산, 테레프탈산, 나프토에산, 살리실산 등의 카르복실산 화합물 등을 들 수 있다. 아민계 화합물과 에폭시 수지의 경화 반응을 촉진하는 관점에서 살리실산 등의 카르복실산계 화합물이 바람직하다. 경화 촉진제는 에폭시 수지 100 중량부에 대하여 0.01 ~ 15 중량부가 필요에 따라 사용된다.When performing a curing reaction using the above curing agent, there is no problem in using a curing accelerator together. Curing accelerators that can be used include, for example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, and 2-ethyl-4-methylimidazole, and 2-(dimethyl Aminomethyl)phenol, triethylenediamine, triethanolamine, tertiary amines such as 1,8-diazabicyclo(5,4,0)undecen-7, triphenylphosphine, diphenylphosphine, and tributylphos Organic phosphines such as pin, metal compounds such as tin octylate, tetra-substituted phosphonium and tetra-substituted borates such as tetraphenylphosphonium, tetraphenyl borate, tetraphenylphosphonium, ethyltriphenyl borate, 2-ethyl-4- Tetraphenyl boron salts such as methylimidazole, tetraphenyl borate, N-methylmorpholine, and tetraphenyl borate, and carboxylic acid compounds such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthoic acid, and salicylic acid. there is. From the viewpoint of promoting the curing reaction between the amine compound and the epoxy resin, carboxylic acid compounds such as salicylic acid are preferable. The curing accelerator is used in an amount of 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin.

나아가, 본 발명의 경화성 수지 조성물에는 필요에 따라 무기 충전제를 첨가할 수 있다. 무기 충전제로서는 결정 실리카, 용융 실리카, 알루미나, 지르콘, 규산칼슘, 탄산칼슘, 탄화규소, 질화규소, 질화붕소, 지르코니아, 포스테라이트, 스테아타이트, 스피넬, 티타니아, 탈크 등의 분체 또는 이들을 구형화한 비드 등을 들 수 있지만, 이들에 한정되는 것은 아니다. 이들은 단독으로 사용해도 되고, 2종 이상을 사용해도 된다. 이들 무기 충전제는 용도에 따라 그 사용량은 다르지만, 예를 들면 반도체의 밀봉제 용도에 사용하는 경우에는 경화성 수지 조성물의 경화물의 내열성, 내습성, 역학적 성질, 난연성 등 의 면으로부터 경화성 수지 조성물 중에서 20중량% 이상 차지하는 비율로 사용하는 것이 바람직하고, 보다 바람직하게는 30중량% 이상이며, 특히 리드프레임과의 선팽창률을 향상시키기 위해 70 ~ 95중량%를 차지하는 비율로 사용하는 것이 더욱 바람직하다.Furthermore, inorganic fillers can be added to the curable resin composition of the present invention as needed. Inorganic fillers include powders such as crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, forsterite, steatite, spinel, titania, and talc, or spherical beads thereof. These may be mentioned, but are not limited to these. These may be used individually, or two or more types may be used. The amount of these inorganic fillers used varies depending on the application, but for example, when used as a sealant for semiconductors, they should be used in 20 weight of the curable resin composition in terms of heat resistance, moisture resistance, mechanical properties, flame retardancy, etc. of the cured product of the curable resin composition. It is preferable to use it in a proportion of % or more, more preferably 30% by weight or more, and especially to improve the linear expansion rate with the lead frame, it is more preferable to use it in a proportion of 70 to 95% by weight.

또한, 본 발명에 있어서 특히 내트래킹 성능을 향상시키는데 있어서 무기 충전제의 함유량이 중요해진다. 내트래킹 성능을 가미한 경우, 본 발명의 경화성 수지 조성물 총량 중 무기 충전제의 바람직한 함유량은 74 중량% 이상 95 중량% 이하이고, 특히 바람직하게는 78 중량% 이상 95 중량% 이하이다. 본 발명의 에폭시 수지 구조의 경우 74중량% 이상이면 내트래킹 성능이 크게 향상되는 것을 확인할 수 있고, 74중량% 미만인 경우, 예를 들면 70중량% 미만인 경우 트래킹 성능은 다른 에폭시 수지와 우위성이 작아진다.In addition, in the present invention, the content of inorganic filler becomes important, especially in improving anti-tracking performance. When anti-tracking performance is taken into consideration, the preferred content of the inorganic filler in the total amount of the curable resin composition of the present invention is 74% by weight or more and 95% by weight or less, and particularly preferably 78% by weight or more and 95% by weight or less. In the case of the epoxy resin structure of the present invention, if it is 74% by weight or more, it can be seen that the tracking resistance is greatly improved, and if it is less than 74% by weight, for example, if it is less than 70% by weight, the tracking performance is less superior to other epoxy resins. .

본 발명의 경화성 수지 조성물에는 성형시의 금형과의 이형을 좋게 하기 위해 이형제를 배합할 수 있다. 이형제로서는 종래 공지의 것 중 어느 것도 사용할 수 있지만, 예를 들면 카르나바 왁스, 몬탄 왁스 등의 에스테르계 왁스, 스테아르산, 파르티민산 등의 지방산 및 이들의 금속염, 산화 폴리에틸렌, 비산화 폴리에틸렌 등의 폴리올레핀계 왁스 등을 들 수 있다. 이들은 단독으로 사용해도, 2종 이상 병용해도 된다. 이들 이형제의 배합량은 전체 유기 성분에 대하여 0.5 ~ 3중량%가 바람직하다. 이것보다 너무 적으면 금형으로부터의 이형이 나빠지고, 너무 많으면 리드프레임 등과의 접착이 나빠진다.A mold release agent may be added to the curable resin composition of the present invention to improve mold release during molding. Any known release agent can be used. For example, ester waxes such as carnava wax and montan wax, fatty acids such as stearic acid and partyminic acid and metal salts thereof, oxidized polyethylene, non-oxidized polyethylene, etc. Polyolefin-based wax, etc. can be mentioned. These may be used individually or two or more types may be used together. The mixing amount of these release agents is preferably 0.5 to 3% by weight based on the total organic components. If it is too less than this, release from the mold will deteriorate, and if it is too much, adhesion to the lead frame, etc. will deteriorate.

본 발명의 경화성 수지 조성물에는 무기 충전제와 수지 성분의 접착성을 높이기 위해 커플링제를 배합할 수 있다. 커플링제로서는 종래 공지된 것을 어느 것이든 사용할 수 있지만, 예를 들면 비닐알콕시실란, 에포키알콕시실란, 스티릴알콕시실란, 메타크릴옥시알콕시실란, 아크릴옥시알콕시실란, 아미노알콕시실란, 메르캅토알콕시실란, 이소시아네이트알콕시 실란 등의 각종 알콕시실란 화합물, 알콕시티탄 화합물, 알루미늄 킬레이트류 등을 들 수 있다. 이들은 단독으로 사용해도 2종 이상 병용해도 된다. 커플링제의 첨가 방법은 커플링제로 미리 무기 충전제 표면을 처리한 후, 수지와 혼련해도 되고, 수지에 커플링제를 혼합하고 나서 무기 충전제를 혼련해도 된다.A coupling agent may be added to the curable resin composition of the present invention to increase the adhesion between the inorganic filler and the resin component. Any conventionally known coupling agent can be used, for example, vinyl alkoxysilane, epokyalkoxysilane, styrylalkoxysilane, methacryloxyalkoxysilane, acryloxyalkoxysilane, aminoalkoxysilane, mercaptoalkoxysilane. , various alkoxysilane compounds such as isocyanate alkoxy silane, alkoxy titanium compounds, and aluminum chelates. These may be used individually or in combination of two or more types. The method of adding the coupling agent may be performed by previously treating the surface of the inorganic filler with the coupling agent and then kneading it with the resin, or by mixing the coupling agent with the resin and then kneading the inorganic filler.

나아가, 본 발명의 경화성 수지 조성물에는 필요에 따라 공지의 첨가제를 배합할 수 있다. 사용할 수 있는 첨가제의 구체예로서는 폴리부타디엔 및 이의 변성물, 아크릴로니트릴 공중합체의 변성물, 폴리페닐렌에테르, 폴리스티렌, 폴리에틸렌, 폴리이미드, 불소 수지, 말레이미드계 화합물, 시아네이트에스테르계 화합물, 실리콘 겔, 실리콘 오일과, 카본 블랙, 프탈로시아닌 블루, 프탈로시아닌 그린 등의 착색제 등을 들 수 있다.Furthermore, known additives can be blended into the curable resin composition of the present invention as needed. Specific examples of additives that can be used include polybutadiene and its modifications, acrylonitrile copolymer modifications, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, cyanate ester compounds, and silicone. Gels, silicone oils, and colorants such as carbon black, phthalocyanine blue, and phthalocyanine green can be mentioned.

본 발명의 경화성 수지 조성물은 상기 각 성분을 균일하게 혼합함으로써 얻어진다. 본 발명의 경화성 수지 조성물은 종래 알려진 방법과 동일한 방법으로 용이하게 그 경화물로 할 수 있다. 예를 들면, 에폭시 수지와 경화제, 및 필요에 따라 경화 촉진제, 무기 충전제, 이형제, 실란 커플링제 및 첨가제를 필요에 따라 압출기, 니더, 롤 등을 사용하여 균일해질 때까지 충분히 혼합함으로써 본 발명의 경화성 수지 조성물을 얻고 이것을 용융 주형법 혹은 트랜스퍼 성형법이나 인젝션 성형법, 압축 성형법 등에 의해 성형하고, 또한 80 ~ 200℃에서 2 ~ 10 시간 가열함으로써 경화물을 얻을 수 있다.The curable resin composition of the present invention is obtained by uniformly mixing the above components. The curable resin composition of the present invention can be easily converted into a cured product by the same method as a conventionally known method. For example, the curability of the present invention can be improved by sufficiently mixing the epoxy resin, the curing agent, and, if necessary, the curing accelerator, inorganic filler, mold release agent, silane coupling agent, and additives using an extruder, kneader, roll, etc., as needed, until uniform. A cured product can be obtained by obtaining a resin composition, molding it by a melt casting method, transfer molding method, injection molding method, compression molding method, etc., and further heating it at 80 to 200°C for 2 to 10 hours.

또한, 본 발명의 경화성 수지 조성물은 필요에 따라 용제를 함유하고 있어도 된다. 용제를 포함하는 경화성 수지 조성물(에폭시 수지 바니시)은 유리 섬유, 탄소 섬유, 폴리에스테르 섬유, 폴리아미드 섬유, 알루미나 섬유, 종이 등의 섬유상 물질(기재)에 함침시켜 가열 건조하여 얻은 프리프레그를 열 프레스 성형함으로써 본 발명의 경화성 수지 조성물의 경화물로 할 수 있다. 이 경화성 수지 조성물의 용제 함량은 내부 분할로 통상 10 ~ 70중량%, 바람직하게는 15 ~ 70중량% 정도이다. 용매로서는 예를 들면 γ-부티로락톤류, N-메틸피롤리돈, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N,N-디메틸이미다졸리디논 등의 아미드계 용제; 테트라메틸렌설폰 등의 술폰류; 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르모노아세테이트, 프로필렌글리콜모노부틸에테르 등의 에테르계 용제, 바람직하게는 저급(탄소수 1 ~ 3) 알킬렌글리콜의 모노 또는 디저급(탄소수 1 ~ 3) 알킬에테르; 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤계 용제, 바람직하게는 2개의 알킬기가 동일해도 상이해도 된다. 디저급(탄소수 1 ~ 3) 알킬케톤; 톨루엔, 크실렌 등의 방향족계 용제 등을 들 수 있다. 이들은 단독이어도 되고, 2 이상의 혼합 용매이어도 된다.Additionally, the curable resin composition of the present invention may contain a solvent as needed. A curable resin composition (epoxy resin varnish) containing a solvent is impregnated into a fibrous material (base material) such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper, and the prepreg obtained by heat drying is heat pressed. By molding, a cured product of the curable resin composition of the present invention can be obtained. The solvent content of this curable resin composition is usually about 10 to 70% by weight, preferably about 15 to 70% by weight, based on internal division. Examples of solvents include amide-based solvents such as γ-butyrolactone, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, and N,N-dimethylimidazolidinone; Sulfones such as tetramethylene sulfone; Ether-based solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, and propylene glycol monobutyl ether, preferably lower (1 to 3 carbon atoms) alkylene. Mono or desiccant (carbon number 1 to 3) alkyl ethers of glycols; A ketone solvent such as methyl ethyl ketone or methyl isobutyl ketone, preferably the two alkyl groups may be the same or different. Dieser-grade (carbon number 1 to 3) alkyl ketone; Aromatic solvents such as toluene and xylene can be mentioned. These may be used alone or as a mixed solvent of two or more.

또한, 박리 필름 상에 상기 에폭시 수지 바니시를 도포하고 가열 하에서 용제를 제거하고, B 스테이지화를 행함으로써 시트상의 접착제를 얻을 수 있다. 이 시트상 접착제는 다층 기판 등의 층간 절연층으로서 사용할 수 있다.Additionally, a sheet-like adhesive can be obtained by applying the above-mentioned epoxy resin varnish on a release film, removing the solvent under heating, and performing B-staging. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.

본 발명에서 얻어지는 경화물은 각종 용도에 사용할 수 있다. 상세하게는 에폭시 수지 등의 열경화성 수지가 사용되는 일반적인 용도를 들 수 있고, 예를 들면 접착제, 도료, 코팅제, 성형 재료(시트, 필름, FRP 등을 포함), 절연 재료(프린트 기판, 전선 피복 등을 포함함), 밀봉제 외에 다른 수지 등에의 첨가제 등을 들 수 있다.The cured product obtained in the present invention can be used for various purposes. In detail, general applications for which thermosetting resins such as epoxy resins are used include adhesives, paints, coatings, molding materials (including sheets, films, FRP, etc.), and insulating materials (printed boards, wire coatings, etc.). (including), additives to other resins in addition to the sealant, etc.

접착제로는 토목용, 건축용, 자동차용, 일반 사무용, 의료용 접착제 외에 전자재료용 접착제를 들 수 있다. 이들 중 전자재료용의 접착제로서는 빌드업 기판 등의 다층 기판의 층간 접착제, 다이 본딩제, 언더필 등의 반도체용 접착제, BGA 보강용 언더필, 이방성 도전성 필름(ACF), 이방성 도전성 페이스트(ACP) 등의 실장용 접착제 등을 들 수 있다.Adhesives include adhesives for civil engineering, construction, automotive, general office, and medical applications, as well as adhesives for electronic materials. Among these, adhesives for electronic materials include interlayer adhesives for multilayer boards such as build-up boards, die bonding agents, semiconductor adhesives such as underfills, underfills for BGA reinforcement, anisotropic conductive films (ACF), and anisotropic conductive pastes (ACP). Adhesives for mounting, etc. can be mentioned.

밀봉제로는 콘덴서, 트랜지스터, 다이오드, 발광 다이오드, IC, LSI용 등의 포팅, 디핑, 트랜스퍼 몰드 밀봉, IC, LSI류의 COB, COF, TAB 등용과 같은 포팅 밀봉, 플립칩용 언더필, QFP, BGA, CSP 등의 IC 패키지류 실장시의 밀봉(보강용 언더필을 포함함) 등을 들 수 있다.Sealants include potting, dipping and transfer mold sealing for condensers, transistors, diodes, light emitting diodes, ICs and LSIs, potting sealing for ICs and LSIs such as COB, COF and TAB, underfill for flip chips, QFP, BGA, etc. Examples include sealing (including reinforcing underfill) when mounting IC packages such as CSP.

실 시 예Example

다음에 본 발명을 실시예에 의해 더욱 구체적으로 설명하지만, 이하에 있어서 부는 특별히 언급하지 않는 한 중량부이다. 또한 본 발명은 이들 실시예에 한정되지 않는다.Next, the present invention will be described in more detail by way of examples, but hereinafter, parts refer to parts by weight unless otherwise specified. Additionally, the present invention is not limited to these examples.

ㆍ에폭시당량ㆍEpoxy equivalent

JIS K-7236에 준한 방법으로 측정했다.Measured by a method according to JIS K-7236.

ㆍ연화점ㆍYeonhwa Branch

METLER TOLEDO사 연화점 측정기 FP90을 사용하여 측정하였다.It was measured using a softening point measuring instrument FP90 from METLER TOLEDO.

ㆍ수산기당량ㆍHydroxyl equivalent

샘플을 피리딘 용액 중, 무수 아세트산을 사용하여 아세틸화를 행하고, 아세틸화 완료 후에 물로 잔존하는 산 무수물을 분해. 이것을 0.5N의 KOH 에탄올 용액을 사용하여 전위차 적정기로 적정함으로써 유리의 아세트산량을 측정하고, 그 결과로부터 수산기당량을 구했다.The sample is acetylated using acetic anhydride in a pyridine solution, and the remaining acid anhydride is decomposed with water after acetylation is completed. The amount of acetic acid in the free was measured by titrating this with a 0.5N KOH ethanol solution using a potentiometric titrator, and the hydroxyl equivalent amount was obtained from the results.

ㆍGPC(겔 투과 크로마토그래피)ㆍGPC (Gel Permeation Chromatography)

(측정 조건 1)(Measurement condition 1)

장치 Waters e2695Device Waters e2695

컬럼:SHODEX GPC KF-401HQ, KF-402HQ, KF-403HQ, KF-404HQ 합계 4개  Column: SHODEX GPC KF-401HQ, KF-402HQ, KF-403HQ, KF-404HQ total 4

유속 0.3 ml/minFlow rate 0.3 ml/min

컬럼 온도: 40℃Column temperature: 40℃

사용 용제: THF(테트라히드로푸란)Solvent used: THF (tetrahydrofuran)

검출기: UV 254nmDetector: UV 254nm

(측정 조건 2)(Measurement condition 2)

장치 토소주식회사 HLC-8220GPCDevice Tosoh Corporation HLC-8220GPC

칼럼: 토소주식회사 TSK gel G3000HXL 1개 TSK gel G2000HXL 2개 Column: Tosoh Corporation TSK gel G3000HXL 1 piece TSK gel G2000HXL 2 pieces

합계 3개Total 3

유속 1.065ml/minFlow rate 1.065ml/min

컬럼 온도: 40℃Column temperature: 40℃

사용 용제: THF(테트라히드로푸란)Solvent used: THF (tetrahydrofuran)

검출기: UV 254nmDetector: UV 254nm

(측정 조건 3)(Measurement condition 3)

장치 토소주식회사 HLC-8420GPCDevice Tosoh Corporation HLC-8420GPC

칼럼:토소주식회사 TSK gel G3000HXL 1개 TSK gel G2000HXL 2개 Column: Tosoh Corporation TSK gel G3000HXL 1 piece TSK gel G2000HXL 2 pieces

합계 3개Total 3

유속 1.065ml/minFlow rate 1.065ml/min

컬럼 온도: 40℃Column temperature: 40℃

사용 용제: THF(테트라히드로푸란)Solvent used: THF (tetrahydrofuran)

검출기: UV 254nmDetector: UV 254nm

표준 폴리스티렌(토소주식회사)Standard polystyrene (Tosoh Corporation)

PStQuickC, PStQuickD (분자량 측정시에는 내부 표준으로서 스티렌을 첨가하여 보정하였다)PStQuickC, PStQuickD (molecular weight measurement was corrected by adding styrene as an internal standard)

[합성예 1][Synthesis Example 1]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 3-메틸-6-t-부틸페놀 137.2부, 4-메틸-2-t-부틸페놀 0.16부, p-히드록시벤즈알데히드 60부, 톨루엔 142부, p-톨루엔술폰산 1.4부를 가하고, 110 ~ 115℃에서 8 시간 반응을 행했다. 반응 종료 후, 25% NaOH 물을 가한 후, 톨루엔을 공비탈수로 증류제거하였다. 그 후, 75% 황산을 첨가하고, pH를 5 ~ 7로 조정하고, 석출한 수지 분체를 여과하고, 60℃에서 건조함으로써 페놀 수지(P1) 186부를 얻었다. 얻어진 페놀 수지(PI)는 분말상이며, 연화점 150℃ 이상, 수산기당량 155g/eq.이며, GPC에 의한 n=1은 48.8면적%였다. GPC 차트(측정 조건 1)를 도 1에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, cooling pipe, flow pipe, and stirrer, 137.2 parts of 3-methyl-6-t-butylphenol, 0.16 parts of 4-methyl-2-t-butylphenol, and p-hydroxy 60 parts of benzaldehyde, 142 parts of toluene, and 1.4 parts of p-toluenesulfonic acid were added, and reaction was performed at 110 to 115°C for 8 hours. After completion of the reaction, 25% NaOH water was added, and toluene was distilled off by azeotropic dehydration. After that, 75% sulfuric acid was added, the pH was adjusted to 5 to 7, and the precipitated resin powder was filtered and dried at 60°C to obtain 186 parts of phenol resin (P1). The obtained phenol resin (PI) was in powder form, had a softening point of 150°C or higher, a hydroxyl equivalent weight of 155 g/eq., and n=1 by GPC was 48.8 area%. The GPC chart (measurement condition 1) is shown in Figure 1.

[합성예 2][Synthesis Example 2]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 3-메틸-6-t-부틸페놀 153.1부, 4-메틸-2-t-부틸페놀 0.17부, p-히드록시벤즈알데히드 60부, 톨루엔 142부, p-톨루엔술폰산 0.6부를 가하고, 100 ~ 105℃에서 6 시간 반응을 행했다. 반응 종료 후, 25% NaOH 물을 가한 후, 톨루엔을 공비탈수로 증류제거하였다. 그 후, 75% 황산을 가하고, pH를 5 ~ 7로 조정하고, 석출한 수지 분체를 여과하고, 60℃에서 건조함으로써 페놀 수지(P2) 198부를 얻었다. 얻어진 페놀 수지(P2)는 분말상이며, 연화점 150℃ 이상, 수산기당량 144g/eq.이고, GPC에 의한 n=1은 51.7면적%였다. GPC 차트(측정 조건 1)를 도 2에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, cooling pipe, flow pipe, and stirrer, 153.1 parts of 3-methyl-6-t-butylphenol, 0.17 parts of 4-methyl-2-t-butylphenol, and p-hydroxy 60 parts of benzaldehyde, 142 parts of toluene, and 0.6 parts of p-toluenesulfonic acid were added, and reaction was performed at 100 to 105°C for 6 hours. After completion of the reaction, 25% NaOH water was added, and toluene was distilled off by azeotropic dehydration. After that, 75% sulfuric acid was added, the pH was adjusted to 5 to 7, and the precipitated resin powder was filtered and dried at 60°C to obtain 198 parts of phenol resin (P2). The obtained phenol resin (P2) was in powder form, had a softening point of 150°C or higher, a hydroxyl equivalent weight of 144 g/eq., and n=1 by GPC was 51.7 area%. The GPC chart (measurement condition 1) is shown in Figure 2.

[합성예 3][Synthesis Example 3]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 3-메틸-6-t-부틸페놀 137.2부, 4-메틸-2-t-부틸페놀 0.16부, p 히드록시벤즈알데히드 60부, 톨루엔 142부, p 톨루엔술폰산 1.4부를 가하고, 110 ~ 115 ℃에서 8 시간 반응을 행했다. 반응 종료 후, 25% NaOH 물을 가한 후, 톨루엔을 공비탈수로 증류제거하였다. 그 후, 75% 황산을 첨가하고, pH를 5 ~ 7로 조정하고, 석출한 수지 분체를 여과하고, 60℃에서 건조함으로써 페놀 수지(P3) 180부를 얻었다. 얻어진 페놀 수지(P3)는 분말상이며, 연화점 150℃ 이상, 수산기당량 153g/eq.이며, GPC에 의한 n=1은 47.6면적%였다. GPC 차트(측정 조건 1)를 도 3에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, cooling pipe, flow pipe, and stirrer, 137.2 parts of 3-methyl-6-t-butylphenol, 0.16 parts of 4-methyl-2-t-butylphenol, and p-hydroxybenzaldehyde were added. 60 parts, 142 parts of toluene, and 1.4 parts of p-toluenesulfonic acid were added, and reaction was performed at 110 to 115°C for 8 hours. After completion of the reaction, 25% NaOH water was added, and toluene was distilled off by azeotropic dehydration. After that, 75% sulfuric acid was added, the pH was adjusted to 5 to 7, and the precipitated resin powder was filtered and dried at 60°C to obtain 180 parts of phenol resin (P3). The obtained phenol resin (P3) was in powder form, had a softening point of 150°C or higher, a hydroxyl equivalent weight of 153 g/eq., and n=1 by GPC was 47.6 area%. The GPC chart (measurement condition 1) is shown in Figure 3.

[실시예 1][Example 1]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 합성예 1에서 얻어진 페놀 수지(P1) 310부, 에피클로로히드린 973부, 디메틸술폭시드 274부, 물 15부를 가하고, 내온을 45℃까지 승온했다. 수산화나트륨 16부를 1.5시간에 걸쳐 분할첨가 후, 45℃에서 2시간, 70℃에서 1시간 반응시켰다. 가열감압 하에서 미반응의 에피클로로히드린 및 용매를 증류제거하였다. MIBK 1040부를 가하고, 물 440부로 유기층을 1회 세정하였다. 유기층을 반응용기에 되돌리고, 30중량% 수산화나트륨 수용액 20부를 가하고, 70℃에서 2시간 반응시켰다. 방냉 후, 물 130부로 유기층을 4회 세정하고, 가열감압 하 용제를 증류제거하여 고형 수지로서 에폭시 수지(E1)를 170부 얻었다. 에폭시당량은 214g/eq., ICI 점도(150℃)는 0.57Pa·s, 연화점은 100℃이고, 파라미터 A는 2.14이었다. GPC(검출기 UV 254 nm)로부터 대략계산된 평균 반복단위 n은 2.4, n=1은 42.3면적%, n=1 미만은 1.57면적%였다. GPC 차트(측정 조건 2)를 도 4에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, cooling pipe, flow pipe, and stirrer, 310 parts of the phenol resin (P1) obtained in Synthesis Example 1, 973 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, and 15 parts of water were added. , the internal temperature was raised to 45°C. 16 parts of sodium hydroxide was added in portions over 1.5 hours, and then reacted at 45°C for 2 hours and at 70°C for 1 hour. Unreacted epichlorohydrin and solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK were added, and the organic layer was washed once with 440 parts of water. The organic layer was returned to the reaction container, 20 parts of 30% by weight sodium hydroxide aqueous solution was added, and reaction was performed at 70°C for 2 hours. After cooling, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 170 parts of epoxy resin (E1) as a solid resin. The epoxy equivalent was 214 g/eq., the ICI viscosity (150°C) was 0.57 Pa·s, the softening point was 100°C, and the parameter A was 2.14. The average repeat unit n roughly calculated from GPC (detector UV 254 nm) was 2.4, n = 1 was 42.3 area%, and n = 1 was 1.57 area%. The GPC chart (measurement condition 2) is shown in Figure 4.

[실시예 2][Example 2]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 합성예 1에서 얻어진 페놀 수지(P1) 310부, 에피클로로히드린 584부, 디메틸술폭시드 274부, 물 15부를 가하고, 내온을 45℃까지 승온했다. 수산화나트륨 16부를 1.5시간에 걸쳐 분할 첨가한 후, 45℃에서 2시간, 70℃에서 1시간 반응시켰다. 가열감압 하에서 미반응의 에피클로로히드린 및 용매를 증류제거하였다. MIBK 1040부를 가하고, 물 440부로 유기층을 1회 세정하였다. 유기층을 반응용기에 되돌리고, 30wt% 수산화나트륨 수용액 20부를 가하고, 70℃에서 2시간 반응시켰다. 방냉 후, 물 130부로 유기층을 4회 세정하고, 가열감압 하, 용제를 증류제거하여 고형 수지로서 에폭시 수지(E2)를 141부 얻었다. 에폭시당량은 225g/eq., ICI 점도(150℃)는 1.92Pa·s, 연화점은 110℃이고, 파라미터 A는 2.05였다. GPC (검출기 UV 254nm)로부터 대략계산된 평균 반복단위 n은 2.9, n=1은 31.1면적%, n=1 미만은 1.28면적%였다. GPC 차트(측정 조건 2)를 도 5에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, a cooling tube, a flow pipe, and a stirrer, 310 parts of the phenol resin (P1) obtained in Synthesis Example 1, 584 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, and 15 parts of water were added. , the internal temperature was raised to 45°C. After adding 16 parts of sodium hydroxide in portions over 1.5 hours, it was reacted at 45°C for 2 hours and at 70°C for 1 hour. Unreacted epichlorohydrin and solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK were added, and the organic layer was washed once with 440 parts of water. The organic layer was returned to the reaction vessel, 20 parts of 30 wt% sodium hydroxide aqueous solution was added, and reaction was performed at 70°C for 2 hours. After standing to cool, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 141 parts of epoxy resin (E2) as a solid resin. The epoxy equivalent was 225 g/eq., the ICI viscosity (150°C) was 1.92 Pa·s, the softening point was 110°C, and the parameter A was 2.05. The average repeat unit n roughly calculated from GPC (detector UV 254 nm) was 2.9, n = 1 was 31.1 area%, and n = 1 was 1.28 area%. The GPC chart (measurement condition 2) is shown in Figure 5.

[실시예 3][Example 3]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 합성예 3에서 얻어진 페놀 수지(P3) 310부, 에피클로로히드린 778부, 디메틸술폭시드 274부, 물 15부를 첨가하고, 내온을 45℃까지 승온했다. 수산화나트륨 16부를 1.5시간에 걸쳐 분할첨가한 후, 45℃에서 2시간, 70℃에서 1시간 반응시켰다. 가열감압 하에서 미반응의 에피클로로히드린 및 용제를 증류제거하였다. MIBK 1040부를 가하고, 물 440부로 유기층을 1회 세정하였다. 유기층을 반응용기에 되돌리고, 30중량% 수산화나트륨 수용액 20부를 가하고, 70℃에서 2시간 반응시켰다. 방냉 후, 물 130부로 유기층을 4회 세정하고, 가열감압 하, 용제를 증류제거하여 고형 수지로서 에폭시 수지(E3)를 303부 얻었다. 에폭시당량은 216g/eq., 전체 염소는 440ppm(ISO21627-3 준거), 무기 염소 이온 농도 0.3ppm, ICI 점도(150℃)는 0.64Pa·s, 연화점은 100℃이고, 파라미터 A는 2.16이었다. GPC(검출기 UV 254nm)로부터 대략계산된 Mn은 1059, Mw는 2001(폴리스티렌 환산), n=1은 39.5면적%, n=1 미만은 1.95면적%였다. GPC 차트(측정 조건 3)를 도 6에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, a cooling tube, a flow pipe, and a stirrer, 310 parts of the phenol resin (P3) obtained in Synthesis Example 3, 778 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, and 15 parts of water were added. And the internal temperature was raised to 45°C. 16 parts of sodium hydroxide was added in portions over 1.5 hours, and then reacted at 45°C for 2 hours and at 70°C for 1 hour. Unreacted epichlorohydrin and solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK were added, and the organic layer was washed once with 440 parts of water. The organic layer was returned to the reaction container, 20 parts of 30% by weight sodium hydroxide aqueous solution was added, and reaction was performed at 70°C for 2 hours. After cooling, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 303 parts of epoxy resin (E3) as a solid resin. The epoxy equivalent was 216 g/eq., the total chlorine was 440 ppm (based on ISO21627-3), the inorganic chlorine ion concentration was 0.3 ppm, the ICI viscosity (150°C) was 0.64 Pa·s, the softening point was 100°C, and the parameter A was 2.16. Mn roughly calculated from GPC (detector UV 254nm) was 1059, Mw was 2001 (polystyrene conversion), n=1 was 39.5 area%, and less than n=1 was 1.95 area%. The GPC chart (measurement condition 3) is shown in Figure 6.

[비교 합성예 1][Comparative Synthesis Example 1]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 합성예 2에서 얻어진 페놀 수지(P2) 288부, 에피클로로히드린 584부, 디메틸술폭시드 274부, 물 15부를 가하고, 내온을 45℃까지 승온했다. 수산화나트륨 16부를 1.5시간에 걸쳐 분할첨가한 후, 45℃에서 2시간, 70℃에서 1시간 반응시켰다. 가열감압 하에서 미반응의 에피클로로히드린 및 용제를 증류제거하였다. MIBK 1040부를 가하고, 물 440부로 유기층을 1회 세정하였다. 유기층을 반응용기에 되돌리고, 30중량% 수산화나트륨 수용액 20부를 가하고, 70℃에서 2시간 반응시켰다. 방냉 후, 물 130부로 유기층을 4회 세정하고, 가열감압 하 용제를 증류제거하여 고형 수지로서 에폭시 수지(E4)를 165부 얻었다. 에폭시당량은 223g/eq., ICI 점도(150℃)는 0.60Pa·s, 연화점은 99.7℃이고, 파라미터 A는 2.24이었다. GPC로부터 대략계산되는 평균 반복단위 n은 2.4, n=1은 43.9면적%, n=1 미만은 1.9면적%였다. GPC 차트(측정 조건 2)를 도 7에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, cooling pipe, flow pipe, and stirrer, 288 parts of the phenol resin (P2) obtained in Synthesis Example 2, 584 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, and 15 parts of water were added. , the internal temperature was raised to 45°C. 16 parts of sodium hydroxide was added in portions over 1.5 hours, and then reacted at 45°C for 2 hours and at 70°C for 1 hour. Unreacted epichlorohydrin and solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK were added, and the organic layer was washed once with 440 parts of water. The organic layer was returned to the reaction container, 20 parts of 30% by weight sodium hydroxide aqueous solution was added, and reaction was performed at 70°C for 2 hours. After cooling, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 165 parts of epoxy resin (E4) as a solid resin. The epoxy equivalent was 223 g/eq., the ICI viscosity (150°C) was 0.60 Pa·s, the softening point was 99.7°C, and the parameter A was 2.24. The average repeat unit n roughly calculated from GPC was 2.4, n=1 was 43.9 area%, and n=1 or less was 1.9 area%. The GPC chart (measurement condition 2) is shown in Figure 7.

[비교 합성예 2][Comparative Synthesis Example 2]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 합성예 2에서 얻어진 페놀 수지(P2) 288부, 에피클로로히드린 487부, 디메틸술폭시드 274부, 물 15부를 가하고, 내온을 45℃까지 승온했다. 수산화나트륨 16부를 1.5시간에 걸쳐 분할첨가한 후, 45℃에서 2시간, 70℃에서 1시간 반응시켰다. 가열감압 하에서 미반응의 에피클로로히드린 및 용제를 증류제거하였다. MIBK 1040부를 첨가하고, 물 440부로 유기층을 1회 세정하였다. 유기층을 반응용기에 되돌리고, 30중량% 수산화나트륨 수용액 20부를 첨가하고, 70℃에서 2시간 반응시켰다. 방냉 후, 물 130부로 유기층을 4회 세정하고, 가열감압 하 용제를 증류제거하여 고형 수지로서 에폭시 수지(E5)를 161부 얻었다. 에폭시당량은 224g/eq., ICI 점도(150℃)는 0.66Pa·s, 연화점은 100.9℃이고, 파라미터 A는 2.22였다. GPC로부터 추정되는 평균 반복단위 n은 2.3, n=1은 43면적%, n=1 미만은 2.1면적%였다. GPC 차트(측정 조건 2)를 도 8에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, cooling pipe, flow pipe, and stirrer, 288 parts of the phenol resin (P2) obtained in Synthesis Example 2, 487 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, and 15 parts of water were added. , the internal temperature was raised to 45°C. 16 parts of sodium hydroxide was added in portions over 1.5 hours, and then reacted at 45°C for 2 hours and at 70°C for 1 hour. Unreacted epichlorohydrin and solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK were added, and the organic layer was washed once with 440 parts of water. The organic layer was returned to the reaction container, 20 parts of 30% by weight sodium hydroxide aqueous solution was added, and reaction was performed at 70°C for 2 hours. After cooling, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 161 parts of epoxy resin (E5) as a solid resin. The epoxy equivalent was 224 g/eq., the ICI viscosity (150°C) was 0.66 Pa·s, the softening point was 100.9°C, and the parameter A was 2.22. The average repeat unit n estimated from GPC was 2.3, n = 1 was 43 area%, and less than n = 1 was 2.1 area%. The GPC chart (measurement condition 2) is shown in Figure 8.

[실시예 4, 5, 비교예 1, 2][Examples 4 and 5, Comparative Examples 1 and 2]

실시예, 합성예에서 얻어진 에폭시 수지 E1, E2, E4 및 E6로서 FAE-2500(일본화약 제조, 분석 결과는 후술), 경화제로서 트리스페놀메탄형 페놀 수지(일본화약 제조 KAYAHARD KTG-105)를 이용하고 촉매로서 트리페닐포스핀을 이용하여 트리스페놀메탄형 페놀 수지를 에폭시 수지에 대해 등당량, 트리페닐포스핀을 에폭시 수지에 대하여 1phr.배합하고, 믹싱 롤을 사용하여 균일하게 혼합·혼련하고, 또한 탈형 후, 160℃에서 2시간, 180℃에서 6시간의 조건으로 경화하여 평가용 시험편을 얻었다.As the epoxy resins E1, E2, E4 and E6 obtained in the examples and synthesis examples, FAE-2500 (manufactured by Nippon Explosives, analysis results are described later) was used, and trisphenolmethane type phenol resin (KAYAHARD KTG-105, manufactured by Nippon Explosives) was used as a curing agent. Using triphenylphosphine as a catalyst, trisphenolmethane-type phenol resin was mixed in an equivalent amount with respect to the epoxy resin, and triphenylphosphine was mixed in an equivalent amount with respect to the epoxy resin, and mixed and kneaded uniformly using a mixing roll. Additionally, after demolding, it was cured at 160°C for 2 hours and at 180°C for 6 hours to obtain a test piece for evaluation.

FAE-2500의 에폭시당량은 213g/eq., ICI 점도(150℃)는 0.30Pa·s, 연화점은 93.5℃이고, 파라미터 A는 2.28이었다. GPC 차트(측정 조건 2)를 도 9에 나타낸다.The epoxy equivalent of FAE-2500 was 213 g/eq., the ICI viscosity (150°C) was 0.30 Pa·s, the softening point was 93.5°C, and the parameter A was 2.28. The GPC chart (measurement condition 2) is shown in Figure 9.

평가용 시험편을 하기 조건으로 측정한 결과를 표 1에 나타낸다. 또한, TMA 차트는 도 10에 나타낸다.The results of measuring the test pieces for evaluation under the following conditions are shown in Table 1. Additionally, the TMA chart is shown in Figure 10.

<동적 점탄성 측정(DMA)><Dynamic viscoelasticity measurement (DMA)>

동적 점탄성 시험기를 사용하여 유리 전이 온도(tanδ가 최대값일 때의 온도) 및 그 때의 tanδ의 값을 측정하였다.The glass transition temperature (temperature at which tanδ is at its maximum value) and the value of tanδ at that time were measured using a dynamic viscoelasticity tester.

ㆍ동적 점탄성 측정기:TA-instruments 제조 DMA-2980ㆍDynamic viscoelasticity measuring instrument: DMA-2980 manufactured by TA-instruments

ㆍ승온 속도: 2℃/분ㆍTemperature increase rate: 2℃/min

<열기계 특성 측정(TMA)><Thermomechanical property measurement (TMA)>

열기계 특성 측정 장치를 이용하여 유리 전이 온도(Tg), 선팽창 변화율(CTE)을 평가하였다.Glass transition temperature (Tg) and change in linear expansion (CTE) were evaluated using a thermomechanical property measurement device.

<열중량 시차열 측정(TG-DTA)><Thermogravimetric differential thermal measurement (TG-DTA)>

TG-DTA를 사용하여 열분해 온도 및 500℃에서의 잔류 탄소량을 측정하였다.The pyrolysis temperature and residual carbon amount at 500°C were measured using TG-DTA.

측정 샘플: 분말상(100㎛ 메쉬 통과, 75㎛ 메쉬온) 5 ~ 10mg 사용Measurement sample: 5 to 10 mg powder (through 100㎛ mesh, 75㎛ mesh on)

측정 조건: 승온 속도 10℃/min Air flow 200mlMeasurement conditions: Temperature increase rate 10℃/min Air flow 200ml

[실시예 6, 비교예 3][Example 6, Comparative Example 3]

에폭시 수지(E1), 에폭시 수지(E6, FAE-2500(일본화약 제조)), 경화제로서 자일록형 페놀 수지(메이와카세이 제조 MEHC-7800SS), 촉매로서 트리페닐포스핀(TPP, 도쿄카세이사 제조), 무기 충전제로서 실리카겔(용융 실리카 MSR-2212, 타츠모리 제조), 이형제로서 카르나바 왁스(세라리카노다 제조), 첨가제로서 실란 커플링제(상품명: KBM-303 신에츠화학공업 제조)를 사용하고, 믹싱 롤을 이용하여 균일하게 혼합·혼련하여 경화성 수지 조성물을 얻었다.Epoxy resin (E1), epoxy resin (E6, FAE-2500 (manufactured by Nippon Explosives)), xyloc-type phenolic resin (MEHC-7800SS manufactured by Meiwa Kasei) as a curing agent, and triphenylphosphine (TPP, manufactured by Tokyo Kasei) as a catalyst. ), silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an inorganic filler, carnava wax (manufactured by Cerarikanoda) as a mold release agent, and a silane coupling agent (product name: KBM-303 manufactured by Shin-Etsu Chemical Industry) as an additive. A curable resin composition was obtained by uniformly mixing and kneading using a mixing roll.

이 경화성 수지 조성물을 분쇄 후, 태블릿 머신으로 태블릿화하였다. 태블릿화한 경화성 수지 조성물을 트랜스퍼 성형(175℃ 60 ~ 150분)하고, 탈형 후 160℃×2시간 + 180℃×6시간의 조건으로 경화, 평가용 시험편을 얻었다. 본 시험편을 사용하여 이하의 평가를 행하였다. 측정 결과는 표 2에 기재한다.This curable resin composition was pulverized and tableted using a tablet machine. The tableted curable resin composition was transfer molded (175°C for 60 to 150 minutes), and after demolding, it was cured under the conditions of 160°C x 2 hours + 180°C x 6 hours to obtain a test piece for evaluation. The following evaluation was performed using this test piece. The measurement results are listed in Table 2.

<내트래킹성 시험><Testing resistance to tracking>

적합 규격 IEC-Pub. 60112-2003(제4판) 및 JIS-C2134-2007Compliance standard IEC-Pub. 60112-2003 (4th edition) and JIS-C2134-2007

대상 시험 전압 400V ~ 600VTarget test voltage 400V ~ 600V

시험액 염화암모늄 0.1% 수용액Test solution ammonium chloride 0.1% aqueous solution

적하수 50방울 50방울 미만으로 시험편이 파괴된 경우는 NG라고 판정하였다. If the test piece was destroyed with less than 50 drops of dripping water, it was judged to be NG.

시험실의 온도와 습도 21℃ ~ 23℃ 40 ~ 45%RHTest room temperature and humidity 21℃ ~ 23℃ 40 ~ 45%RH

시험장치 야마요시험기 유한회사 제조 YST-112형 내트래킹 시험기Testing device YST-112 type anti-tracking tester manufactured by Yamayo Testing Machine Co., Ltd.

시험 샘플 형상 직경 50mm 두께 3mmTest sample shape diameter 50mm thickness 3mm

1장당 1점 측정Measure 1 point per sheet

표 1의 결과로부터, 본 발명의 에폭시 수지는 높은 내열성과 함께 치수 안정성(선팽창이 낮음)을 확인하였다. 또한 표 2의 결과로부터, 본 발명의 에폭시 수지는 높은 내트래킹 성능인 것을 확인하였다.From the results in Table 1, the epoxy resin of the present invention was confirmed to have high heat resistance and dimensional stability (low linear expansion). Additionally, from the results in Table 2, it was confirmed that the epoxy resin of the present invention has high anti-tracking performance.

[합성예 4][Synthesis Example 4]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 3-메틸-6-t-부틸페놀 130.3부, 4-메틸-2-t-부틸페놀 0.2부, p 히드록시벤즈알데히드 60부, 톨루엔 142부, p 톨루엔술폰산 1.4부를 가하고, 110 ~ 115℃에서 8 시간 반응을 행했다. 반응 종료 후, 25% NaOH 물을 가한 후, 톨루엔을 공비탈수에 의해 증류제거하였다. 그 후, 75% 황산을 가하고, pH를 5 ~ 7로 조정하고, 석출한 수지 분체를 여과하고, 60℃에서 건조함으로써 페놀 수지(P4) 186부를 얻었다. 얻어진 페놀 수지(P4)는 분말상이며, 연화점 200℃ 이상, 수산기당량 160g/eq.이며, GPC에 의한 n=1은 37.0면적%였다. GPC 차트(측정 조건 1)를 도 11에 나타낸다.While purging nitrogen into a flask equipped with a thermometer, cooling pipe, flow pipe, and stirrer, 130.3 parts of 3-methyl-6-t-butylphenol, 0.2 parts of 4-methyl-2-t-butylphenol, and p-hydroxybenzaldehyde were added. 60 parts, 142 parts of toluene, and 1.4 parts of p-toluenesulfonic acid were added, and reaction was performed at 110 to 115°C for 8 hours. After completion of the reaction, 25% NaOH water was added, and toluene was distilled off by azeotropic dehydration. After that, 75% sulfuric acid was added, the pH was adjusted to 5 to 7, and the precipitated resin powder was filtered and dried at 60°C to obtain 186 parts of phenol resin (P4). The obtained phenol resin (P4) was in powder form, had a softening point of 200°C or higher, a hydroxyl equivalent weight of 160 g/eq., and n=1 by GPC was 37.0 area%. The GPC chart (measurement condition 1) is shown in Figure 11.

[실시예 7][Example 7]

온도계, 냉각관, 분류관, 교반기를 장착한 플라스크에 질소 퍼지를 실시하면서, 합성예 4에서 얻어진 페놀 수지(P4) 320부, 에피클로로히드린 973부, 디메틸술폭시드 274부, 물 15부를 가하고, 내온을 45℃까지 승온했다. 수산화나트륨 16부를 1.5시간에 걸쳐 분할첨가한 후, 45℃에서 2시간, 70℃에서 1시간 반응시켰다. 가열감압 하에서 미반응의 에피클로로히드린 및 용제를 증류제거하였다. MIBK 1040부를 가하고, 물 440부로 유기층을 1회 세정하였다. 유기층을 반응용기에 되돌리고, 30중량% 수산화나트륨 수용액 20부를 가하고, 70℃에서 2시간 반응시켰다. 방냉 후, 물 130부로 유기층을 4회 세정하고, 가열감압 하, 용제를 증류제거하여 고형 수지로서 에폭시 수지(E7)를 107부 얻었다. 에폭시당량은 220g/eq., ICI 점도(150℃)는 0.8Pa·s 이상, 연화점은 108.5℃이고, 파라미터 A는 2.03이었다. GPC (검출기 UV 254 nm)로부터 대략계산된 평균 반복단위 n은 3.4, n=1은 24.9면적%, n=1 미만은 2.91면적%였다. GPC 차트(측정 조건 3)를 도 12에 나타낸다. 또한 각각의 피크는 리텐션 타임이 35.619분인 것이 1.75%, 그 이외의 피크는 1.5면적% 이하였다.While purging nitrogen into a flask equipped with a thermometer, cooling pipe, flow pipe, and stirrer, 320 parts of the phenol resin (P4) obtained in Synthesis Example 4, 973 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, and 15 parts of water were added. , the internal temperature was raised to 45°C. 16 parts of sodium hydroxide was added in portions over 1.5 hours, and then reacted at 45°C for 2 hours and at 70°C for 1 hour. Unreacted epichlorohydrin and solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK were added, and the organic layer was washed once with 440 parts of water. The organic layer was returned to the reaction container, 20 parts of 30% by weight sodium hydroxide aqueous solution was added, and reaction was performed at 70°C for 2 hours. After cooling, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 107 parts of epoxy resin (E7) as a solid resin. The epoxy equivalent was 220 g/eq., the ICI viscosity (150°C) was 0.8 Pa·s or more, the softening point was 108.5°C, and the parameter A was 2.03. The average repeat unit n roughly calculated from GPC (detector UV 254 nm) was 3.4, n=1 was 24.9 area%, and less than n=1 was 2.91 area%. The GPC chart (measurement condition 3) is shown in FIG. 12. In addition, each peak had a retention time of 35.619 minutes, which accounted for 1.75%, and other peaks accounted for less than 1.5 area%.

[실시예 8, 9][Example 8, 9]

상기 실시예에서 얻어진 에폭시 수지 E3, E7, 경화제로서 트리스페놀메탄형 페놀 수지(일본화약 제조 KAYAHARD KTG-105 수산기당량 102g/eq.), 비페닐아랄킬형 페놀 수지(일본화약 제조 KAYAHARD GPH-65 경화제 수산기당량 200g/eq.), 촉매로서 트리페닐포스핀(TPP, 도쿄카세이사 제조), 무기 충전제로서 실리카겔(용융 실리카 MSR-2212, 타츠모리 제조), 이형제로서 카르나바 왁스 (세라리카노다 제조), 첨가제로서 실란 커플링제(상품명: KBM-303 신에츠화학공업 제조)를 사용하고, 표 3의 비율(중량부)로 배합하고, 믹싱 롤을 사용하여 균일하게 혼합·혼련하고, 또한 탈형 후, 160℃에서 2시간, 180℃에서 6시간의 조건으로 경화하여 평가용 시험편을 얻었다. 본 시험편을 이용하여 내트래킹성 시험을 행하였다. 측정 결과는 표 3에 기재한다.Epoxy resins E3 and E7 obtained in the above examples, trisphenolmethane type phenolic resin (KAYAHARD KTG-105 hydroxyl equivalent 102 g/eq. manufactured by Nippon Explosives), and biphenyl aralkyl type phenol resin (KAYAHARD GPH-65 curing agent manufactured by Nippon Explosives) as a curing agent. Hydroxyl equivalent weight 200 g/eq.), triphenylphosphine (TPP, manufactured by Tokyo Kasei Co., Ltd.) as a catalyst, silica gel (fused silica MSR-2212, manufactured by Tatsumori Co., Ltd.) as an inorganic filler, and carnaba wax (produced by Cerarikanoda Co., Ltd.) as a release agent. , using a silane coupling agent (trade name: KBM-303 manufactured by Shin-Etsu Chemical Industry) as an additive, mixing it in the ratio (parts by weight) in Table 3, mixing and kneading uniformly using a mixing roll, and after demoulding, 160 A test piece for evaluation was obtained by curing under conditions of 2 hours at ℃ and 6 hours at 180℃. A tracking resistance test was conducted using this test piece. The measurement results are listed in Table 3.

[실시예 9, 비교예 4][Example 9, Comparative Example 4]

상기 실시예에서 얻어진 에폭시 수지 E1, 비페닐아랄킬형 에폭시 수지, (일본화약 제조, NC-3000), 경화제로서 자일록형 페놀 수지(메이와카세이 제조 MEHC-7800SS), 촉매로서 트리페닐포스핀(TPP, 도쿄카세이사 제조), 무기 충전제로서 실리카겔(용융 실리카 MSR-2212, 타츠모리 제조), 이형제로서 카르나바 왁스(세라리카노다 제조), 첨가제로서 실란 커플링제(상품명:KBM-303 신에츠화학공업 제조)를 사용하고 믹싱 롤을 사용하여 균일하게 혼합·혼련하고, 경화성 수지 조성물을 얻었다.Epoxy resin E1 obtained in the above example, biphenyl aralkyl type epoxy resin (NC-3000 manufactured by Nippon Explosives), xyloc type phenolic resin (MEHC-7800SS manufactured by Meiwa Kasei) as a curing agent, and triphenylphosphine (TPP) as a catalyst. , manufactured by Tokyo Kasei Co., Ltd.), silica gel (fused silica MSR-2212, manufactured by Tatsumori Co., Ltd.) as an inorganic filler, carnava wax (produced by Cerarikanoda Co., Ltd.) as a mold release agent, and silane coupling agent (product name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) as an additive. ) and uniformly mixed and kneaded using a mixing roll to obtain a curable resin composition.

이 경화성 수지 조성물을 분쇄 후, 태블릿 머신으로 태블릿화하였다. 태블릿화한 경화성 수지 조성물을 트랜스퍼 성형(175℃ 60 ~ 15분)하고, 또한 탈형 후 160℃×2시간 + 180℃×6시간의 조건으로 경화, 평가용 시험편을 얻었다. 본 시험편을 이용하여 내트래킹성 시험을 행하였다. 측정 결과는 표 4에 기재한다.This curable resin composition was pulverized and tableted using a tablet machine. The tableted curable resin composition was subjected to transfer molding (175°C, 60 to 15 minutes), and after demolding, it was cured under the conditions of 160°C x 2 hours + 180°C x 6 hours, and a test piece for evaluation was obtained. A tracking resistance test was conducted using this test piece. The measurement results are listed in Table 4.

[실시예 10 ~ 13, 비교예 5 ~ 8][Examples 10 to 13, Comparative Examples 5 to 8]

상기 실시예에서 얻어진 에폭시 수지 E1, 비페닐아랄킬형 에폭시 수지, (일본화약 제조, NC-3000), 경화제로서 자일록형 페놀 수지(메이와카세이 제조 MEHC-7800SS), 비페닐아랄킬형 페놀 수지(일본화약 제조 KAYAHARD GPH-65), 촉매로서 트리페닐포스핀(TPP, 도쿄카세이사 제조), 무기 충전제로서 실리카겔(용융 실리카 MSR-2212, 타츠모리 제조), 이형제로서 카르나바 왁스(셀라리카노다 제조), 첨가제로서 실란 커플링제(상품명: KBM-303 신에츠화학공업 제조)를 사용하고, 믹싱 롤을 이용하여 균일하게 혼합·혼련하고, 경화성 수지 조성물을 얻었다.Epoxy resin E1 obtained in the above example, biphenyl aralkyl type epoxy resin (NC-3000, manufactured by Nippon Explosives), and as a curing agent, xyloc type phenol resin (MEHC-7800SS, manufactured by Meiwa Kasei), and biphenyl aralkyl type phenol resin (Japan) KAYAHARD GPH-65 manufactured by Gunpowder), triphenylphosphine (TPP, manufactured by Tokyo Kasei Co., Ltd.) as a catalyst, silica gel (fused silica MSR-2212, manufactured by Tatsumori Co., Ltd.) as an inorganic filler, and carnaba wax (produced by Celarikanoda) as a mold release agent. , a silane coupling agent (trade name: KBM-303 manufactured by Shin-Etsu Chemical Industry) was used as an additive, and the mixture was uniformly mixed and kneaded using a mixing roll to obtain a curable resin composition.

이 경화성 수지 조성물을 분쇄 후, 태블릿 머신으로 태블릿화하였다. 태블릿화한 경화성 수지 조성물을 트랜스퍼 성형(175℃ 60 ~ 15분)하고, 또한 탈형 후 160℃×2시간 + 180℃×6시간의 조건으로 경화, 평가용 시험편을 얻었다. 본 시험편을 이용하여 내트래킹성 시험을 행하였다. 특히 CTI에 관해서는 IEC-Pub. 60112-2003(제4판)에 준거한 측정법을 이용하여 측정을 행하였다. 측정 결과는 표 5, 도 13에 나타낸다.This curable resin composition was pulverized and tableted using a tablet machine. The tableted curable resin composition was subjected to transfer molding (175°C, 60 to 15 minutes), and after demolding, it was cured under the conditions of 160°C x 2 hours + 180°C x 6 hours, and a test piece for evaluation was obtained. A tracking resistance test was conducted using this test piece. Especially regarding CTI, IEC-Pub. Measurements were performed using a measurement method based on 60112-2003 (4th edition). The measurement results are shown in Table 5 and Figure 13.

상기 결과로부터 본 발명의 에폭시 수지를 이용한 경화물은 비교적 높은 CTI를 유지하고, 특히 무기 충전제 배합량이 74중량% 이상, 보다 바람직하게는 78중량% 이상의 배합으로 다른 조성에 비해 CTI의 상승률이 높아지는 것을 확인했다.From the above results, the cured product using the epoxy resin of the present invention maintains a relatively high CTI, and in particular, the rate of increase in CTI increases compared to other compositions when the inorganic filler content is 74% by weight or more, more preferably 78% by weight or more. Confirmed.

본 발명의 에폭시 수지는 차재용 재료, 특히 파워 디바이스 주변 재료의 용도로 유용하고, 특히 내열성과 높은 비교 트래킹 지수(CTI)를 요구하는 용도에 유효하다. The epoxy resin of the present invention is useful for automotive materials, especially materials surrounding power devices, and is particularly effective for applications requiring heat resistance and a high comparative tracking index (CTI).

Claims (4)

하기 식 (1)로 나타내고, 에폭시당량(g/eq.)을 연화점(℃)으로 나눈 값이 2.0 이상 2.2 미만인 에폭시 수지.
[화학식 1]

(식 (1) 중, 복수 존재하는 R은 독립적으로 존재하고, 메틸기 또는 수소 원자를 나타낸다. n은 반복 수의 평균값이며, 1 ~ 10의 실수이다.)
An epoxy resin represented by the following formula (1), where the value obtained by dividing the epoxy equivalent (g/eq.) by the softening point (°C) is 2.0 or more and less than 2.2.
[Formula 1]

(In formula (1), multiple R exists independently and represents a methyl group or a hydrogen atom. n is the average value of the number of repetitions and is a real number from 1 to 10.)
 청구항 1에 기재된 에폭시 수지를 함유하는 경화성 수지 조성물.A curable resin composition containing the epoxy resin according to claim 1.  청구항 2에 있어서, 경화성 수지 조성물 총량 중 무기 충전제의 함유량이 74중량% 이상 95중량% 이하인 경화성 수지 조성물.The curable resin composition according to claim 2, wherein the content of the inorganic filler is 74% by weight or more and 95% by weight or less based on the total amount of the curable resin composition. 청구항 2 또는 청구항 3에 기재된 경화성 수지 조성물을 경화한 경화물.A cured product obtained by curing the curable resin composition according to claim 2 or claim 3.
KR1020237031690A 2021-06-18 2022-06-17 Epoxy resin, curable resin composition and cured product thereof KR20240021736A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2021-101988 2021-06-18
JP2021101988 2021-06-18
PCT/JP2022/024317 WO2022265096A1 (en) 2021-06-18 2022-06-17 Epoxy resin, curable resin composition, and cured object therefrom

Publications (1)

Publication Number Publication Date
KR20240021736A true KR20240021736A (en) 2024-02-19

Family

ID=84527126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237031690A KR20240021736A (en) 2021-06-18 2022-06-17 Epoxy resin, curable resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP7230285B1 (en)
KR (1) KR20240021736A (en)
CN (1) CN117043215A (en)
TW (1) TW202313751A (en)
WO (1) WO2022265096A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001841A (en) 2017-06-12 2019-01-10 信越化学工業株式会社 Epoxy resin composition and semiconductor device having cured product of composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121979B2 (en) * 1987-12-16 1995-12-25 住友化学工業株式会社 Glycidyl ethers of polyhydric phenols and compositions thereof
JPH0791360B2 (en) * 1987-12-26 1995-10-04 住友化学工業株式会社 Process for producing glycidyl ether of polyphenol
JP2874547B2 (en) * 1994-03-24 1999-03-24 住友化学工業株式会社 Manufacturing method of epoxy resin
JP3460164B2 (en) * 1995-03-27 2003-10-27 日本化薬株式会社 Manufacturing method of epoxy resin
JPH1149766A (en) * 1997-07-31 1999-02-23 Sumitomo Chem Co Ltd Partially etherified compound, its production, epoxy resin composition, and product using the same composition
JP2001089546A (en) * 1999-09-27 2001-04-03 Sumitomo Chem Co Ltd Production of phenol-aldehyde resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001841A (en) 2017-06-12 2019-01-10 信越化学工業株式会社 Epoxy resin composition and semiconductor device having cured product of composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
비특허문헌 1: 후지전기기보 2016 vol. 89 No. 4 247-250페이지

Also Published As

Publication number Publication date
WO2022265096A9 (en) 2023-01-19
JP7230285B1 (en) 2023-02-28
CN117043215A (en) 2023-11-10
WO2022265096A1 (en) 2022-12-22
TW202313751A (en) 2023-04-01
JPWO2022265096A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP5030297B2 (en) Laminate resin composition, prepreg and laminate
JP6366504B2 (en) Epoxy resin, epoxy resin composition and cured product
JP5019585B2 (en) Epoxy resin composition, cured product thereof, and fiber-reinforced composite material
JP5273762B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP5386352B2 (en) Liquid epoxy resin, epoxy resin composition, and cured product
JP2013082785A (en) Phenol resin, epoxy resin, and cured product of the same
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
TWI739976B (en) Alkenyl-containing resin, curable resin composition and hardened product
JP7268256B1 (en) Epoxy resin, curable resin composition, and cured product thereof
JP7185383B2 (en) Curable resin composition and its cured product
JP7185384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
WO2022209642A1 (en) Epoxy resin and production method therefor, curable resin composition, and cured product thereof
JP7240989B2 (en) Curable resin composition and its cured product
JP7230285B1 (en) Epoxy resin, curable resin composition, and cured product thereof
WO2022107678A1 (en) Epoxy resin, curable resin composition, and cured object therefrom
JPWO2018199156A1 (en) Methallyl group-containing resin, curable resin composition and cured product thereof
JP2022147099A (en) Epoxy resin, curable resin composition, and cured product thereof
TW202307055A (en) Epoxy resin mixture, epoxy resin composition and cured product of same