WO2018043314A1 - 光学装置、投影光学系、露光装置、および物品の製造方法 - Google Patents
光学装置、投影光学系、露光装置、および物品の製造方法 Download PDFInfo
- Publication number
- WO2018043314A1 WO2018043314A1 PCT/JP2017/030458 JP2017030458W WO2018043314A1 WO 2018043314 A1 WO2018043314 A1 WO 2018043314A1 JP 2017030458 W JP2017030458 W JP 2017030458W WO 2018043314 A1 WO2018043314 A1 WO 2018043314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- actuator
- surface plate
- base surface
- mirror
- optical device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/10—Mirrors with curved faces
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
Definitions
- the present invention relates to an optical device that deforms a reflecting surface of a mirror, a projection optical system using the same, an exposure device, and an article manufacturing method.
- Patent Document 1 proposes an optical device that corrects optical aberrations of a projection optical system by applying a force to a mirror included in the projection optical system by a plurality of actuators and deforming a reflection surface of the mirror.
- a plurality of actuators are arranged between the base surface plate and the mirror, and the plurality of actuators are arranged so that the distance between the base surface plate and the mirror becomes a predetermined distance. There is something to control.
- the base is fixed by the heat generated by each of the plurality of actuators.
- the board can be gradually (transiently) deformed.
- an object of the present invention is to provide an advantageous technique for accurately deforming the reflecting surface of a mirror.
- an optical device is an optical device that deforms a reflecting surface of a mirror, the base surface plate disposed opposite to the mirror, and the base surface plate And an actuator for applying a force to the mirror, a detection unit for detecting a distance between the base surface plate and the mirror, and driving the actuator to preheat the base surface plate.
- a processing unit that performs a second process of driving the actuator so that the shape of the reflecting surface approaches a target shape.
- FIG. 1 is a view showing an exposure apparatus 100 according to the first embodiment.
- the exposure apparatus 100 of the first embodiment includes an illumination optical system 10, a mask stage 20 that can move while holding the mask 1, a projection optical system 30, a substrate stage 40 that can move while holding the substrate 2,
- the control part 50 may be included.
- the control unit 50 is configured by, for example, a computer having a CPU, a memory, and the like, and controls processing for exposing the substrate 2 (each unit of the exposure apparatus 100).
- the illumination optical system 10 shapes light emitted from a light source (not shown), for example, with a slit into an arc-shaped light long in the Y direction, and illuminates the mask 1 with the shaped light (slit light).
- the mask 1 and the substrate 2 are respectively held by the mask stage 20 and the substrate stage 40, and are optically conjugate positions (object plane and image plane positions of the projection optical system 30) via the projection optical system 30. Be placed.
- the projection optical system 30 has a predetermined projection magnification, reflects the pattern image of the mask 1 with a plurality of mirrors, and projects it onto the substrate 2.
- the mask stage 20 and the substrate stage 40 are relatively moved in a direction parallel to the object plane of the projection optical system 30 (for example, the X direction) at a speed ratio corresponding to the projection magnification of the projection optical system 30. Accordingly, the slit light is scanned on the substrate to expose the substrate 2, and the pattern formed on the mask 1 is transferred to the substrate 2.
- the projection optical system 30 can be configured to include a trapezoidal mirror 31, a concave mirror 32, and a convex mirror 33, for example, as shown in FIG.
- the light emitted from the illumination optical system 10 and transmitted through the mask 1 has its optical path bent by the surface 31 a of the trapezoidal mirror 31 and enters the upper part of the reflecting surface 32 a of the concave mirror 32.
- the light reflected by the upper part of the reflecting surface 32 a of the concave mirror 32 is reflected by the reflecting surface of the convex mirror 33 and enters the lower part of the reflecting surface 32 a of the concave mirror 32.
- the light reflected by the lower part of the reflecting surface 32 a of the concave mirror 32 is bent by the surface 31 b of the trapezoidal mirror 31 and enters the substrate 2.
- the reflection surface of the convex mirror 33 becomes an optical pupil.
- the exposure apparatus 100 is required to correct the optical aberration of the projection optical system 30 in order to improve the resolution. Therefore, the exposure apparatus 100 of the first embodiment is provided with an optical device 60 that deforms the reflecting surface 32a of the concave mirror 32 of the projection optical system 30. Then, by deforming the reflecting surface 32a of the concave mirror 32 by the optical device 60, the optical aberration of the projection optical system 30, the magnification, distortion and focus of the projected image are corrected.
- the reflective surface 32a is deformed in the X direction.
- the reflection surface 32a of the concave mirror 32 is deformed by the optical device 60 will be described.
- the reflection surface of at least one of the plurality of mirrors in the projection optical system 30 is optically used. It may be modified by the device 60.
- the optical device 60 of the present embodiment is not limited to the reflecting surface of the mirror of the projection optical system 30 and may be used, for example, to deform the reflecting surface of the mirror provided in the telescope.
- FIG. 2 is a diagram illustrating a configuration example of the optical device 60 according to the first embodiment.
- the optical device 60 of the first embodiment includes, for example, a base surface plate 61, a plurality of actuators 62, a detection unit 63, and a processing unit 64, and a concave mirror 32 (hereinafter, mirror 32) in the projection optical system 30.
- the reflecting surface 32a can be deformed.
- the base surface plate 61 is disposed to face the mirror 32.
- the processing unit 64 is configured by a computer having, for example, a CPU and a memory, and performs a process of deforming the reflection surface 32a of the mirror 32.
- the mirror 32 has a reflecting surface 32a that reflects light and a back surface 32b that is a surface opposite to the reflecting surface 32a, and a part of the mirror 32 including the center of the mirror 32 (hereinafter, center portion) is a fixing member. It is fixed to the base surface plate 61 through 65.
- the reason why the center portion of the mirror 32 is fixed to the base surface plate 61 in this way is that in the mirror 32 used in the projection optical system 30 of the exposure apparatus 100, the center portion of the mirror 32 is often not irradiated with light. This is because the necessity of deforming the central portion of 32 is small.
- the center portion of the mirror 32 is fixed to the base surface plate 61 by the fixing member 65, but even if any part of the mirror 32 is fixed to the base surface plate 61 by the fixing member 65. Good.
- each actuator 62 is a non-contact type actuator including a mover 62a and a stator 62b that are not in contact with each other, such as a voice coil motor (hereinafter referred to as VCM) or a linear motor.
- VCM voice coil motor
- a non-contact type actuator is used as each actuator 62, one of the mover 62 a and the stator 62 b is fixed to the back surface 32 b of the mirror 32, and the other of them is fixed to the base surface plate 61.
- each actuator 62 an actuator having relatively high rigidity such as a piezoelectric actuator may be used instead of the non-contact type actuator.
- each actuator 62 may be fixed to the back surface 32b of the mirror 32 via a hinge 66 as shown in FIG. If the mirror 32 can be supported by the hinge 66 and the plurality of actuators 62, the fixing member 65 may not be used.
- the detection unit 63 may include a plurality of sensors 63a (displacement meters) that detect the distance between the mirror 32 and the base surface plate 61 at a plurality of locations of the mirror 32.
- Each of the plurality of sensors 63 a is configured by, for example, a capacitance sensor, a laser interferometer, or the like, and can be disposed in the vicinity of each actuator 62.
- the processing unit 64 feedback-controls the plurality of actuators 62 so that the shape of the reflection surface 32a of the mirror 32 becomes a target shape based on the detection result of the detection unit 63 (the plurality of sensors 63a).
- the processing unit 64 determines a command value for controlling each actuator 62 so that the deviation between the distance detected by each sensor 63a and the target distance becomes small (approaching zero), and the determined command Each actuator 62 is controlled based on the value.
- the target distance is a distance between the mirror 32 and the base surface plate 61 for setting the shape of the reflection surface 32a of the mirror 32 to the target shape, and can be determined for each of a plurality of locations of the mirror 32.
- the processing unit 64 of the optical device 60 may be configured integrally with the control unit 50 of the exposure apparatus 100, but may be configured separately.
- each actuator 62 is controlled while the plurality of actuators 62 are controlled so that the shape of the reflecting surface 32a of the mirror 32 becomes the target shape (while the substrate is exposed).
- the base surface plate 61 can be gradually (transiently) deformed due to the heat generated. In this state, even if the plurality of actuators 62 are controlled based on the detection result of the detection unit 63 and the distance between the mirror 32 and the base surface plate 61 is controlled, the base surface plate 61 is deformed.
- the reflecting surface 32a of the mirror 32 is also gradually deformed. Therefore, it may be difficult to set the shape of the reflecting surface 32a of the mirror 32 to the target shape. Therefore, in the optical device 60, it is preferable to reduce the deformation of the base surface plate 61 while exposing the substrate 2 as much as possible.
- FIG. 4 is a diagram showing the relationship between the time during which the base surface plate 61 is heated with the amount of heat Q per unit time applied to the base surface plate 61 being constant, and the temperature of the base surface plate 61.
- the base surface plate 61 has a temperature change rate (temperature change per unit time) that decreases as the temperature increases, and is in a thermally stable thermal equilibrium state. In this thermal equilibrium state, since the temperature of the base surface plate 61 hardly changes, the base surface plate 61 hardly deforms. That is, as the temperature of the base surface plate 61 is higher, the rate of change in temperature becomes smaller and it becomes difficult to deform.
- the temperature drop of the base surface plate 61 during the exposure of the substrate 2 (while each of the plurality of actuators 62 is controlled so that the shape of the reflection surface 32a of the mirror 32 becomes the target shape) is substantially reduced. Small enough to be ignored. Therefore, if the base surface plate 61 is preheated and deformed, the deformation of the base surface plate 61 during the exposure of the substrate 2 can be reduced.
- the optical device 60 of the present embodiment performs the first process of preheating the base surface plate 61 to drive the plurality of actuators 62 to generate heat, thereby bringing the base surface plate 61 into a reference state. Then, after the first process, based on the shape information indicating the shape of the base surface plate 61 in the reference state and the detection result of the detection unit 63, a plurality of shapes such that the shape of the reflecting surface 32a of the mirror 32 approaches the target shape. A second process for controlling each of the actuators is performed. Thereby, the deformation
- the shape of the base surface plate 61 is a map of the position (X direction) at each of a plurality of locations on the surface (mirror side surface) of the base surface plate 61 on which the plurality of actuators 62 are arranged. .
- FIG. 5 is a flowchart showing an exposure process in the exposure apparatus 100 of the present embodiment.
- Each step of the flowchart shown in FIG. 5 can be executed by the control unit 50 (processing unit 64).
- the memory included in the processing unit 64 stores the driving conditions (predetermined driving conditions) of each actuator 62 for setting the base surface plate 61 in the reference state and the shape of the base surface plate in the reference state. Is stored.
- the memory also stores a target distance between the base surface plate 61 and the mirror 32 during exposure of the substrate 2 based on the shape information of the base surface plate 61.
- the controller 50 preheats the base surface plate 61 to a reference state as shown in FIG. 6 by driving the plurality of actuators 62 to generate heat based on the driving conditions stored in the memory (see FIG. 6).
- the shapes of the mirror 32 and the base surface plate 61 when the base surface plate 61 is set to the reference state are indicated by broken lines.
- the thermal equilibrium state is applied as the reference state, and the plurality of actuators 62 are driven so that the base surface plate 61 is in the thermal equilibrium state.
- the present invention is not limited to this.
- the state of the base surface plate 61 before the thermal equilibrium state may be set as the reference state.
- the step of S11 it is preferable to drive each actuator 62 so that the amount of heat generated by each of the plurality of actuators 62 is the same.
- the step of S11 (first process) can be performed before the first exposure process among the exposure processes for each of the plurality of shot regions formed on the substrate 2, but is not limited thereto. It may be performed before the second and subsequent exposure processes. That is, step S11 may be performed during an idling period between the exposure processes. Further, the step of S11 may be performed before the first exposure process after the exposure apparatus 100 is started up.
- the control unit 50 exposes the target shot area among the plurality of shot areas formed on the substrate 2. At this time, the control unit 50 makes the shape of the reflection surface 32a of the mirror 32 the target shape based on the shape information indicating the shape of the base surface plate 61 in the reference state and the detection result of the detection unit 63.
- Each of the plurality of actuators 62 is controlled (second process). For example, the control unit 50 uses the shape of the base surface plate 61 in the shape information (the shape of the base surface plate 61 in the reference state) as a reference, and the mirror 32 and the base for setting the shape of the reflecting surface 32a of the mirror 32 as the target shape. A target distance from the surface plate 61 is obtained for each of a plurality of locations on the mirror.
- control unit 50 feedback-controls each of the plurality of actuators 62 so that the distance between the mirror 32 and the base surface plate 61 becomes the target distance based on the detection result of the detection unit 63. Thereby, the shape of the reflecting surface 32a of the mirror 32 can be set as the target shape while the target shot region is exposed.
- the shape information stored in the memory will be described.
- the shape information can be generated (acquired) in advance, for example, based on the state of the base surface plate when each actuator 62 is driven according to a predetermined driving condition before the step of S11 (first processing).
- the base surface plate 61 is used as a reference by driving each of the plurality of actuators 62 in accordance with the predetermined driving condition used for generating the shape information.
- the driving condition can include, for example, at least one of a command value and time for driving each of the plurality of actuators 62.
- the command value for driving the actuator 62 differs depending on the type of the actuator, and is, for example, a current value or a voltage value.
- the command value for driving the actuator 62 is a current value
- d 1 is a heat loss coefficient of the VCM
- R 1 is a resistance value of the VCM
- a 1 is a current value when driving the VCM.
- the control unit 50 continues to drive each VCM with the current value A 1 (first current value), and obtains the time (first time) from the start of driving the VCM until the base surface plate is in a thermal equilibrium state.
- the shape of the reflecting surface 32a of the mirror 32 when each VCM is driven with the first current value in the first time is measured by an external measuring instrument, and the distance between the mirror 32 and the base surface plate 61 is detected. Let the part 63 detect it. Thereby, based on the measurement result of the external measuring instrument and the detection result of the detection unit 63, the shape information when each actuator 62 (each VCM) is driven with the first current value during the first time is obtained. Can be generated. When the shape information generated in this way is used, the control unit 50 (processing unit 64) drives each actuator 62 with the first current value at the first time in the step S11, thereby making the base surface plate 61. Is the thermal equilibrium state (reference state).
- the step of generating the shape information may be performed in advance before the optical device 60 is mounted on the projection optical system 30, for example.
- an external measuring instrument for example, a Shack-Hartmann sensor or the like can be used.
- the driving condition may be only time.
- the driving condition is the current value and time. .
- a driving condition for bringing the base surface plate 61 into the reference state may be determined based on a value obtained by integrating the current value with time.
- the command value for driving the actuator 62 is a voltage value.
- the piezo actuator is driven by changing the voltage of the capacitor in the piezo actuator, and generates heat when a current flows along with the voltage change.
- d 2 is a heat loss coefficient of the piezo actuator
- R 2 is a resistance value of the piezo actuator
- ⁇ V 2 is a voltage change per unit time applied to the piezo actuator.
- the control unit 50 continues to drive each piezoelectric actuator while changing the first voltage by ⁇ V 2 (continues to change the driving amount), and the time from the start of driving until the base surface plate 61 is in a thermal equilibrium state. (First time) is obtained. Then, the shape of the reflecting surface 32a of the mirror 32 when each piezo actuator is driven until the base surface plate 61 is in the reference state while changing the voltage by ⁇ V 2 is measured by an external measuring instrument, and the mirror 32 and the base surface are fixed. The distance from the board 61 is detected by the detection unit 63. Thereby, based on the measurement result of the external measuring instrument and the detection result of the detection unit, the shape information when each actuator 62 (each piezo actuator) is driven until the base surface plate 61 is in the reference state is generated. can do.
- the control unit 50 determines whether or not a shot area (next shot area) to be subjected to the exposure process next exists on the substrate. That is, the control unit 50 performs an exposure process including a second process for controlling each of the plurality of actuators 62 so that the shape of the reflecting surface 32a of the mirror 32 becomes a target shape, according to the number of shot areas on the substrate. Perform multiple times. If there is a next shot area on the substrate, the process proceeds to S14, and if there is no next shot area on the substrate, the process ends.
- the control unit 50 drives each actuator 62 so that the base surface plate 61 is in a reference state during a period when the substrate 2 is not exposed (a period between a plurality of exposure processes (second processes)). (Third process). That is, the control unit 50 drives each actuator 62 so that the shape of the base surface plate 61 becomes the shape after the deformation in the step S11 (first process) during the period when the substrate 2 is not exposed. For example, if each actuator 62 is individually controlled in the exposure of the target shot area in S12, the temperature distribution on the base surface plate 61 is uneven due to the difference in the amount of heat generated in each actuator 62 in the step S12, and the base constant is determined. The board 61 can be locally deformed.
- the reflecting surface 32a of the mirror 32 is used. It may be difficult to set the shape of the target as the target shape.
- step S14 the control unit 50 drives each actuator 62 so that the base surface plate 61 is in the reference state.
- the control unit 50 drives each actuator 62 such that the total power consumption in the step S14 (third process) and the immediately preceding step S12 (second process) is the same for each of the plurality of actuators 62.
- the plurality of actuators 62 include a first actuator and a second actuator, and the amount of heat generated by the second actuator is smaller than the amount of heat generated by the first actuator in step S12.
- control part 50 is good to control each actuator 62 so that the base surface plate 61 may be in the thermal equilibrium state as a reference
- the control unit 50 controls the actuators 62 based on the shape information generated in advance and the detection result of the detection unit 63, so that the shape of the reflection surface 32a of the mirror 32 is obtained.
- the process of S14 in this embodiment is performed after the process of S13, it may be performed simultaneously with the process of S13, or may be performed after the process of S12 and before the process of S13. Also good.
- the optical device 60 of the present embodiment drives each actuator 62 before controlling each actuator 62 (before exposing the substrate 2) so that the shape of the reflecting surface 32a of the mirror 32 becomes the target shape.
- the base surface plate 61 is preheated to a reference state. Thereby, deformation of the base surface plate 61 during the exposure of the substrate 2 can be reduced. Thereby, the shape of the reflective surface 32a can be brought close to the target shape.
- the present invention is not limited to generating shape information in advance.
- the shape information may be generated based on the driving conditions when each actuator 62 is actually driven to bring the base surface plate 61 into the reference state in the step of S11 (first process).
- the optical device (control unit 50 (processing unit 64)) of the second embodiment obtains the relationship between the driving condition of each actuator 62 and the shape of the base surface plate in advance, and finishes the first processing. Shape information is generated (obtained) based on the driving conditions of the actuator 62 up to this point. The shape information can be generated every time the first process is completed. Specifically, the control unit 50 obtains the shape of the base surface plate 61 corresponding to the driving condition when each actuator 62 is actually driven in the step of S11 (first processing) based on the relationship. Generate shape information.
- the driving conditions are the same as in the first embodiment.
- FIG. 7 is a flowchart showing a method for generating the relationship between the driving conditions of each actuator 62 and the shape of the base surface plate 61.
- the flowchart shown in FIG. 7 may be performed in advance before the optical device 60 is mounted on the projection optical system 30, for example.
- a VCM is used as the actuator 62
- a time (drive time) in which each actuator 62 (VCM) is driven with a constant current value is used as a drive condition.
- the shape of the base surface plate 61 set to the initial temperature is acquired.
- the temperature of the base surface plate 61 is set to the initial temperature
- the shape of the reflecting surface 32a of the mirror 32 at that time is measured by an external measuring instrument
- the distance between the mirror 32 and the base surface plate 61 is detected.
- the part 63 detect it.
- the shape of the base surface plate 61 set to the initial temperature can be acquired based on the measurement result of the external measuring instrument and the detection result of the detection unit 63.
- the initial temperature is preferably set to the same temperature as the ambient temperature that can be set inside the projection optical system 30, for example.
- S22 driving of each actuator 62 with a predetermined current value is started.
- S23 it is determined whether or not driving of each actuator 62 with a predetermined current value has passed a predetermined time t. If the predetermined time t has not elapsed, S23 is repeated, and if the predetermined time t has elapsed, the process proceeds to S24.
- S ⁇ b> 24 the shape of the reflection surface 32 a of the mirror 32 is measured by an external measuring instrument, and the distance between the mirror 32 and the base surface plate 61 is detected by the detection unit 63. Thereby, the shape of the base surface plate 61 can be acquired based on the measurement result of the external measuring instrument and the detection result of the detection unit 63.
- S25 it is determined whether or not the base surface plate is in a thermal equilibrium state.
- the process returns to S22, and when the base surface plate is in the thermal equilibrium state, the process proceeds to S26.
- S26 based on the shape of the base surface plate 61 obtained every predetermined time t in S21 to S25, the relationship between the driving conditions (driving time) of the plurality of actuators 62 and the shape of the base surface plate 61 (for example, a table or Expression).
- the relationship between the driving conditions of the plurality of actuators 62 and the shape of the base surface plate 61 is obtained in advance.
- shape information can be generated from the driving conditions when each actuator 62 is actually driven to bring the base surface plate 61 into the reference state in the step of S11.
- preheating the base surface plate 61 it is possible to reduce transient deformation of the base surface plate 61 while the substrate 2 is being exposed.
- the shape of the reflective surface 32a can be brought close to the target shape.
- the method for manufacturing an article according to an embodiment of the present invention is suitable for manufacturing an article such as a microdevice such as a semiconductor device or an element having a fine structure.
- a latent image pattern is formed on the photosensitive agent applied to the substrate using the above-described exposure apparatus (a step of exposing the substrate), and the latent image pattern is formed in this step.
- the manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like).
- the method for manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
ミラーの反射面を変形させる光学装置は、前記ミラーと対向して配置されたベース定盤と、前記ベース定盤と前記ミラーとの間に配置され、前記ミラーに力を加えるアクチュエータと、前記ベース定盤と前記ミラーとの間の距離を検出する検出部と、前記アクチュエータの駆動により前記ベース定盤を予熱して前記ベース定盤を基準状態とする第1処理と、該第1処理を行った後、前記基準状態の前記ベース定盤の形状を示す形状情報と前記検出部での検出結果とに基づいて、前記反射面の形状が目標形状に近づくように前記アクチュエータを駆動する第2処理とを行う処理部と、を含む。
Description
本発明は、ミラーの反射面を変形させる光学装置、それを用いた投影光学系、露光装置、および物品の製造方法に関する。
半導体デバイスなどの製造に用いられる露光装置では、解像度を向上させるため、投影光学系の光学収差を補正することが求められている。特許文献1には、投影光学系に含まれるミラーに複数のアクチュエータによって力を加え、ミラーの反射面を変形させることで、投影光学系の光学収差を補正する光学装置が提案されている。
ミラーの反射面を変形させる光学装置には、ベース定盤とミラーとの間に複数のアクチュエータを配置し、ベース定盤とミラーとの間の距離が所定の距離になるように複数のアクチュエータを制御するものがある。このように構成された光学装置では、基板の露光中において、ミラーの反射面の形状が目標形状となるように複数のアクチュエータを制御している間、複数のアクチュエータの各々での発熱によりベース定盤が徐々に(過渡的に)変形しうる。この状態では、ベース定盤とミラーとの間の距離が所定の距離になるように複数のアクチュエータを制御したとしても、ベース定盤の変形に起因してミラーの反射面も徐々に変形するため、ミラーの反射面の形状を目標形状とすることが困難になりうる。
そこで、本発明は、ミラーの反射面を精度よく変形させるために有利な技術を提供することを目的とする。
上記目的を達成するために、本発明の一側面としての光学装置は、ミラーの反射面を変形させる光学装置であって、前記ミラーと対向して配置されたベース定盤と、前記ベース定盤と前記ミラーとの間に配置され、前記ミラーに力を加えるアクチュエータと、前記ベース定盤と前記ミラーとの間の距離を検出する検出部と、前記アクチュエータの駆動により前記ベース定盤を予熱して前記ベース定盤を基準状態とする第1処理と、該第1処理を行った後、前記基準状態の前記ベース定盤の形状を示す形状情報と前記検出部での検出結果とに基づいて、前記反射面の形状が目標形状に近づくように前記アクチュエータを駆動する第2処理とを行う処理部と、を含むことを特徴とする。
本発明によれば、例えば、ミラーの反射面を精度よく変形させるために有利な技術を提供することができる。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材ないし要素については同一の参照番号を付し、重複する説明は省略する。
<第1実施形態>
本発明に係る第1実施形態の露光装置100について、図1を参照しながら説明する。図1は、第1実施形態の露光装置100を示す図である。第1実施形態の露光装置100は、照明光学系10と、マスク1を保持して移動可能なマスクステージ20と、投影光学系30と、基板2を保持して移動可能な基板ステージ40と、制御部50とを含みうる。制御部50は、例えばCPUやメモリなどを有するコンピュータによって構成され、基板2を露光する処理(露光装置100の各部)を制御する。
本発明に係る第1実施形態の露光装置100について、図1を参照しながら説明する。図1は、第1実施形態の露光装置100を示す図である。第1実施形態の露光装置100は、照明光学系10と、マスク1を保持して移動可能なマスクステージ20と、投影光学系30と、基板2を保持して移動可能な基板ステージ40と、制御部50とを含みうる。制御部50は、例えばCPUやメモリなどを有するコンピュータによって構成され、基板2を露光する処理(露光装置100の各部)を制御する。
照明光学系10は、例えばスリットにより、光源(不図示)から射出された光を、Y方向に長い円弧状の光に整形し、整形した光(スリット光)でマスク1を照明する。マスク1および基板2は、マスクステージ20および基板ステージ40によってそれぞれ保持されており、投影光学系30を介して光学的にほぼ共役な位置(投影光学系30の物体面および像面の位置)に配置される。投影光学系30は、所定の投影倍率を有し、マスク1のパターン像を複数のミラーで反射させて基板2に投影する。そして、マスクステージ20および基板ステージ40を、投影光学系30の物体面と平行な方向(例えばX方向)に、投影光学系30の投影倍率に応じた速度比で相対的に移動させる。これにより、スリット光を基板上で走査して基板2の露光を行い、マスク1に形成されたパターンを基板2に転写する。
投影光学系30は、例えば、図1に示すように、台形ミラー31と、凹面ミラー32と、凸面ミラー33とを含むように構成されうる。照明光学系10から射出されてマスク1を透過した光は、台形ミラー31の面31aにより光路を折り曲げられ、凹面ミラー32の反射面32aの上部に入射する。凹面ミラー32の反射面32aの上部で反射した光は、凸面ミラー33の反射面で反射し、凹面ミラー32の反射面32aの下部に入射する。凹面ミラー32の反射面32aの下部で反射した光は、台形ミラー31の面31bにより光路を折り曲げられ、基板2に入射する。このように構成された投影光学系30では、凸面ミラー33の反射面が光学的な瞳となる。
露光装置100では、解像度を向上させるため、投影光学系30の光学収差を補正することが求められている。そのため、第1実施形態の露光装置100には、投影光学系30の凹面ミラー32の反射面32aを変形させる光学装置60が設けられる。そして、光学装置60によって凹面ミラー32の反射面32aを変形させることにより、投影光学系30の光学収差や、投影像の倍率、歪み、フォーカスを補正する。なお、反射面32aはX方向に変形させる。ここで、第1実施形態では、光学装置60によって凹面ミラー32の反射面32aを変形させる例について説明するが、例えば、投影光学系30における複数のミラーのうち少なくとも1つのミラーの反射面を光学装置60によって変形してもよい。また、本実施形態の光学装置60は、投影光学系30のミラーの反射面に限られず、例えば、望遠鏡に設けられたミラーの反射面を変形するために用いられてもよい。
次に、第1実施形態の光学装置60について、図2を参照しながら説明する。図2は、第1実施形態の光学装置60の構成例を示す図である。第1実施形態の光学装置60は、例えば、ベース定盤61と、複数のアクチュエータ62と、検出部63と、処理部64とを含み、投影光学系30における凹面ミラー32(以下では、ミラー32と称する)の反射面32aを変形しうる。ベース定盤61は、ミラー32と対向して配置される。また、処理部64は、例えばCPUやメモリなどを有するコンピュータによって構成され、ミラー32の反射面32aを変形する処理を行う。
ミラー32は、光を反射する反射面32aと、反射面32aの反対側の面である裏面32bとを有し、ミラー32の中心を含むミラー32の一部(以下、中心部)が固定部材65を介してベース定盤61に固定されている。このようにミラー32の中心部をベース定盤61に固定するのは、露光装置100の投影光学系30に用いられるミラー32においては、ミラー32の中心部に光が照射されないことが多く、ミラー32の中心部を変形させる必要性が小さいからである。ここで、第1実施形態では、固定部材65によってミラー32の中心部をベース定盤61に固定しているが、固定部材65によってミラー32の任意の箇所をベース定盤61に固定してもよい。
複数のアクチュエータ62は、ミラー32の裏面32bに力を加えてミラー32とベース定盤61との間の距離を変更するように、ミラー32とベース定盤61との間に配置される。本実施形態では、各アクチュエータ62として、例えばボイスコイルモータ(以下、VCM)やリニアモータなど、互いに接触しない可動子62aおよび固定子62bを含む非接触型のアクチュエータを用いる例について説明する。非接触型のアクチュエータを各アクチュエータ62として用いる場合、可動子62aおよび固定子62bのうちの一方がミラー32の裏面32bに固定され、それらのうちの他方がベース定盤61に固定される。図1に示す例では、可動子62aがミラー32の裏面32bに固定され、固定子62bがベース定盤61に固定されている。ここで、各アクチュエータ62としては、非接触型のアクチュエータの代わりに、ピエゾアクチュエータなど、剛性の比較的大きいアクチュエータが用いられてもよい。この場合、各アクチュエータ62は、図3に示すように、ヒンジ66を介してミラー32の裏面32bに固定されてもよい。ヒンジ66および複数のアクチュエータ62によってミラー32を支持することができる場合には固定部材65を用いなくてもよい。
検出部63は、ミラー32の複数箇所において、ミラー32とベース定盤61との間の距離を検出する複数のセンサ63a(変位計)を含みうる。複数のセンサ63aの各々は、例えば静電容量センサやレーザ干渉計などによって構成され、各アクチュエータ62の近傍にそれぞれ配置されうる。また、処理部64は、検出部63(複数のセンサ63a)での検出結果に基づいて、ミラー32の反射面32aの形状が目標形状になるように複数のアクチュエータ62をフィードバック制御する。例えば、処理部64は、各センサ63aで検出された距離と目標距離との偏差が小さくなるように(零に近づくように)各アクチュエータ62を制御するための指令値を決定し、決定した指令値に基づいて各アクチュエータ62を制御する。目標距離とは、ミラー32の反射面32aの形状を目標形状とするためのミラー32とベース定盤61との間の距離のことであり、ミラー32の複数箇所の各々について決定されうる。ここで、第1実施形態では、光学装置60の処理部64が、露光装置100の制御部50と一体に構成されうるが、別々に構成されてもよい。
このように構成された光学装置60では、ミラー32の反射面32aの形状が目標形状となるように複数のアクチュエータ62を制御している間(基板を露光している間)、各アクチュエータ62での発熱によりベース定盤61が徐々に(過渡的に)変形しうる。この状態では、検出部63での検出結果に基づいて複数のアクチュエータ62を制御し、ミラー32とベース定盤61との間の距離を制御したとしても、ベース定盤61の変形に起因してミラー32の反射面32aも徐々に変形する。そのため、ミラー32の反射面32aの形状を目標形状とすることが困難になりうる。したがって、光学装置60では、基板2を露光している間のベース定盤61の変形を、できる限り低減させることが好ましい。
ここで、ベース定盤61の温度特性について説明する。図4は、ベース定盤61に与える単位時間あたりの熱量Qを一定としてベース定盤61を加熱した時間とベース定盤61の温度との関係を示す図である。図4に示すように、ベース定盤61は、温度が高くなるにつれて、温度変化率(単位時間当たりの温度変化)が小さくなっていき、熱的に安定した熱平衡状態となる。この熱平衡状態では、ベース定盤61の温度がほとんど変わらないため、ベース定盤61の変形もほとんど生じない。つまり、ベース定盤61は、その温度が高いほど温度変化率が小さくなり、変形しづらくなる。また、基板2を露光している間(ミラー32の反射面32aの形状が目標形状になるように複数のアクチュエータ62の各々を制御している間)におけるベース定盤61の温度低下は、ほぼ無視できる程度に小さい。したがって、ベース定盤61を予熱して変形させた状態にしておけば、基板2を露光している間におけるベース定盤61の変形を低減することができる。
そこで、本実施形態の光学装置60は、複数のアクチュエータ62を駆動して発熱させることによりベース定盤61を予熱して基準状態とする第1処理を行う。そして、第1処理の後に、基準状態におけるベース定盤61の形状を示す形状情報と検出部63での検出結果とに基づいて、ミラー32の反射面32aの形状が目標形状に近づくように複数のアクチュエータの各々を制御する第2処理を行う。これにより、第2処理(基板2の露光中)におけるベース定盤61の変形を低減することができる。ここで、ベース定盤61の形状とは、複数のアクチュエータ62が配置されたベース定盤61の面(ミラー側の面)における複数箇所の各々での位置(X方向)のマップのことである。
以下に、本実施形態の露光装置100における露光処理のフローについて、図5を参照しながら説明する。図5は、本実施形態の露光装置100における露光処理を示すフローチャートである。図5に示すフローチャートの各工程は、制御部50(処理部64)によって実行されうる。フローチャートの開始前において、処理部64に含まれるメモリには、ベース定盤61を基準状態にするための各アクチュエータ62の駆動条件(所定の駆動条件)、および、基準状態のベース定盤の形状を示す形状情報が記憶されている。また、当該メモリには、ベース定盤61の形状情報に基づく基板2の露光中のベース定盤61とミラー32との目標距離も記憶されている。
S11では、制御部50は、メモリに記憶された駆動条件に基づいて複数のアクチュエータ62を駆動して発熱させることにより、図6示すように、ベース定盤61を予熱して基準状態とする(第1処理)。図6では、ベース定盤61を基準状態としたときのミラー32およびベース定盤61の形状を破線で示している。S11の工程では、熱平衡状態を基準状態として適用し、ベース定盤61が熱平衡状態になるように複数のアクチュエータ62を駆動する。しかしながらそれに限られるものではなく、例えば熱平衡状態となる前のベース定盤61の状態を基準状態としてもよい。また、S11の工程では、複数のアクチュエータ62の各々での発熱量が同じになるように各アクチュエータ62を駆動することが好ましい。ここで、S11の工程(第1処理)は、基板2に形成された複数のショット領域の各々に対する露光処理のうち最初の露光処理の前に行われうるが、それに限られるものではなく、例えば、2番目以降の露光処理の前に行われてもよい。即ち、S11の工程は、露光処理と露光処理との間のアイドリング期間に行われてもよい。また、S11の工程は、露光装置100を立ち上げた後の最初の露光処理の前に行われてもよい。
S12では、制御部50は、基板2に形成された複数のショット領域のうちの対象ショット領域の露光を行う。このとき、制御部50は、基準状態でのベース定盤61の形状を示す形状情報と、検出部63での検出結果とに基づいて、ミラー32の反射面32aの形状が目標形状となるように複数のアクチュエータ62の各々を制御する(第2処理)。例えば、制御部50は、形状情報におけるベース定盤61の形状(基準状態でのベース定盤61の形状)を基準としてミラー32の反射面32aの形状を目標形状とするためのミラー32とベース定盤61との目標距離をミラーの複数箇所の各々について求める。そして、制御部50は、検出部63での検出結果に基づいて、ミラー32とベース定盤61との距離が当該目標距離になるように複数のアクチュエータ62の各々をフィードバック制御する。これにより、対象ショット領域の露光を行っている間において、ミラー32の反射面32aの形状を目標形状とすることができる。
ここで、メモリに記憶されている前述の形状情報について説明する。形状情報は、例えば、S11の工程(第1処理)の前に、所定の駆動条件に従って各アクチュエータ62を駆動したときのベース定盤の状態を基準状態として事前に生成(取得)されうる。このように生成された形状情報を用いる場合、S11の工程では、形状情報を生成するために用いられた当該所定の駆動条件に従って複数のアクチュエータ62の各々を駆動することによりベース定盤61を基準状態とする。駆動条件は、例えば、複数のアクチュエータ62の各々を駆動するための指令値および時間のうち少なくとも一方を含みうる。アクチュエータ62を駆動するための指令値は、アクチュエータの種類に応じて異なり、例えば電流値または電圧値である。
例えば、各アクチュエータ62としてVCMが用いられる場合、アクチュエータ62を駆動するための指令値は電流値であり、VCMの単位時間当たりの発熱量Q1は、Q1=d1・A1
2/R1で表されうる。d1はVCMの熱損失係数、R1はVCMの抵抗値、A1はVCMを駆動する際の電流値である。制御部50は、電流値A1(第1電流値)で各VCMを駆動し続け、VCMの駆動を開始してからベース定盤が熱平衡状態となるまでの時間(第1時間)を求める。そして、第1時間において第1電流値で各VCMを駆動したときのミラー32の反射面32aの形状を外部の計測器で計測するとともに、ミラー32とベース定盤61との間の距離を検出部63に検出させる。これにより、外部の計測器での計測結果と検出部63での検出結果とに基づいて、第1時間の間において第1電流値で各アクチュエータ62(各VCM)を駆動したときの形状情報を生成することができる。そして、このように生成された形状情報を用いる場合、制御部50(処理部64)は、S11の工程において、第1時間において第1電流値で各アクチュエータ62を駆動することによりベース定盤61を熱平衡状態(基準状態)とする。
ここで、形状情報を生成する工程は、例えば、光学装置60を投影光学系30に搭載する前に事前に行われるとよい。また、外部の計測器としては、例えばシャックハルトマンセンサなどが用いられうる。なお、アクチュエータ62に固定の電流値しか入力しない場合には、駆動条件は時間だけでよく、アクチュエータ62に経時変化する電流を入力することができる場合には、駆動条件は電流値および時間である。後者の倍には、電流値を時間で積分した値に基づいて、ベース定盤61を基準状態にするための駆動条件を定めてもよい。
一方、各アクチュエータ62としてピエゾアクチュエータが用いられる場合、アクチュエータ62を駆動するための指令値は電圧値である。ピエゾアクチュエータは、ピエゾアクチュエータ内のコンデンサの電圧を変化させることにより駆動し、当該電圧変化に伴い電流が流れることで発熱する。ピエゾアクチュエータの単位時間当たりの発熱量Q2は、Q2=d2・R2・ΔV2
2で表されうる。d2はピエゾアクチュエータの熱損失係数、R2はピエゾアクチュエータの抵抗値、ΔV2はピエゾアクチュエータに印加される単位時間当たりの電圧変化である。制御部50は、第1電圧をΔV2で電圧変化させながら各ピエゾアクチュエータを駆動し続け(駆動量を変化させ続け)、駆動を開始してからベース定盤61が熱平衡状態となるまでの時間(第1時間)を求める。そして、ΔV2で電圧変化させながらベース定盤61が基準状態となるまで各ピエゾアクチュエータを駆動したときのミラー32の反射面32aの形状を外部の計測器で計測するとともに、ミラー32とベース定盤61との間の距離を検出部63に検出させる。これにより、外部の計測器での計測結果と検出部での検出結果とに基づいて、ベース定盤61が基準状態となるまで各アクチュエータ62(各ピエゾアクチュエータ)を駆動したときの形状情報を生成することができる。
図5のフローチャートに戻り、S13では、制御部50は、次に露光処理を行うべきショット領域(次のショット領域)が基板上にあるか否かを判断する。即ち、制御部50は、ミラー32の反射面32aの形状が目標形状となるように複数のアクチュエータ62の各々を制御する第2処理を伴う露光処理を、基板上のショット領域の数に応じて複数回行う。基板上に次のショット領域がある場合はS14に進み、基板上に次のショット領域が無い場合は終了する。
S14では、制御部50は、基板2を露光していない期間(複数回の露光処理(第2処理)の間の期間)において、ベース定盤61が基準状態となるように各アクチュエータ62を駆動する(第3処理)。即ち、制御部50は、基板2を露光していない期間において、ベース定盤61の形状が、S11の工程(第1処理)による変形後の形状になるように各アクチュエータ62を駆動する。例えば、S12での対象ショット領域の露光において各アクチュエータ62が個別に制御されると、S12の工程における各アクチュエータ62での発熱量の差によりベース定盤61に温度分布のムラが生じ、ベース定盤61が局所的に変形しうる。このようにベース定盤61が局所的に変形した状態では、次のショット領域の露光の際、事前に生成された形状情報を用いて各アクチュエータ62を制御しても、ミラー32の反射面32aの形状を目標形状とすることが困難になりうる。
そのため、S14の工程において、制御部50は、ベース定盤61が基準状態となるように各アクチュエータ62を駆動する。例えば、制御部50は、S14の工程(第3処理)およびその直前のS12の工程(第2処理)における消費電力の合計が複数のアクチュエータ62の各々で同じになるように各アクチュエータ62を駆動するとよい。一例として、複数のアクチュエータ62が第1アクチュエータと第2アクチュエータとを含み、S12の工程において、第1アクチュエータの発熱量よりも第2アクチュエータの発熱量の方が少ないとする。この場合、その直後のS14の工程では、第2アクチュエータの発熱量よりも第1アクチュエータの発熱量の方が多くなる駆動条件で各アクチュエータ62を駆動することが好ましい。また、制御部50は、S14の工程において、ベース定盤61が基準状態としての熱平衡状態となるように各アクチュエータ62を制御するとよい。これにより、制御部50は、次のショット領域の露光において、事前に生成された形状情報および検出部63での検出結果に基づいて各アクチュエータ62を制御することで、ミラー32の反射面32a形状を目標形状とすることができる。ここで、本実施形態におけるS14の工程は、S13の工程の後に行われているが、S13の工程と同時に行われてもよいし、S12の工程の後かつS13の工程の前に行われてもよい。
このように、本実施形態の光学装置60は、ミラー32の反射面32aの形状が目標形状となるように各アクチュエータ62を制御する前(基板2を露光する前)に、各アクチュエータ62を駆動することによりベース定盤61を予熱して基準状態とする。これにより、基板2を露光している間におけるベース定盤61の変形を低減することができる。これにより、反射面32aの形状を目標形状に近づけることができる。
<第2実施形態>
第1実施形態では、所定の駆動条件に従って各アクチュエータ62を駆動することにより、基準状態(例えば熱平衡状態)でのベース定盤61の形状を示す形状情報を事前に生成する例について説明した。しかしながら、本発明は、形状情報を事前に生成することに限定されるものではない。例えば、S11の工程(第1処理)においてベース定盤61を基準状態とするために各アクチュエータ62を実際に駆動したときの駆動条件に基づいて形状情報を生成してもよい。
第1実施形態では、所定の駆動条件に従って各アクチュエータ62を駆動することにより、基準状態(例えば熱平衡状態)でのベース定盤61の形状を示す形状情報を事前に生成する例について説明した。しかしながら、本発明は、形状情報を事前に生成することに限定されるものではない。例えば、S11の工程(第1処理)においてベース定盤61を基準状態とするために各アクチュエータ62を実際に駆動したときの駆動条件に基づいて形状情報を生成してもよい。
そこで、第2実施形態の光学装置(制御部50(処理部64))は、各アクチュエータ62の駆動条件とベース定盤の形状との関係を事前に求めておき、第1処理を終えたときまでのアクチュエータ62の駆動条件に基づいて形状情報を生成する(求める)。当該形状情報は、第1処理を終えるごとに生成されうる。具体的には、制御部50は、S11の工程(第1処理)において各アクチュエータ62を実際に駆動したときの駆動条件に対応するベース定盤61の形状を、当該関係に基づいて求めることにより形状情報を生成する。駆動条件は、第1実施形態と同様である。
以下に、各アクチュエータ62の駆動条件とベース定盤61の形状との関係を生成する方法について、図7を参照しながら説明する。図7は、各アクチュエータ62の駆動条件とベース定盤61の形状との関係の生成方法を示すフローチャートである。図7に示すフローチャートは、例えば、光学装置60を投影光学系30に搭載する前に事前に行われうる。また、ここでは、アクチュエータ62としてVCMを用い、電流値を一定として各アクチュエータ62(VCM)を駆動した時間(駆動時間)を駆動条件として用いる例について説明する。
S21では、初期温度に設定されたベース定盤61の形状を取得する。例えば、ベース定盤61の温度を初期温度に設定し、そのときのミラー32の反射面32aの形状を外部の計測器で計測するとともに、ミラー32とベース定盤61との間の距離を検出部63に検出させる。これにより、外部の計測器での計測結果と検出部63での検出結果とに基づいて、初期温度に設定されたベース定盤61の形状を取得することができる。ここで、初期温度は、例えば、投影光学系30の内部において設定されうる雰囲気温度と同じ温度に設定されることが好ましい。
S22では、所定の電流値での各アクチュエータ62の駆動を開始する。S23では、所定の電流値での各アクチュエータ62の駆動が所定の時間tが経過したか否かを判断する。所定の時間tが経過していない場合はS23を繰り返し、所定の時間tが経過した場合はS24に進む。S24では、ミラー32の反射面32aの形状を外部の計測器で計測するとともに、ミラー32とベース定盤61との間の距離を検出部63に検出させる。これにより、外部の計測器での計測結果と検出部63での検出結果とに基づいて、ベース定盤61の形状を取得することができる。S25では、ベース定盤が熱平衡状態になったか否かを判断する。ベース定盤が熱平衡状態になっていない場合はS22に戻り、ベース定盤が熱平衡状態になった場合はS26に進む。S26では、S21~S25において所定の時間tごとに取得したベース定盤61の形状に基づいて、複数のアクチュエータ62の駆動条件(駆動時間)とベース定盤61の形状との関係(例えばテーブルや式)を生成する。
このように、本実施形態では、複数のアクチュエータ62の駆動条件とベース定盤61の形状との関係を事前に求めておく。これにより、S11の工程においてベース定盤61を基準状態とするために各アクチュエータ62を実際に駆動したときの駆動条件から形状情報を生成することができる。ベース定盤61に予熱を与えておくことで、基板2を露光している間におけるベース定盤61の過渡的な変形を低減することができる。これにより、反射面32aの形状を目標形状に近づけることができる。
<物品の製造方法の実施形態>
本発明の実施形態に係る物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
本発明の実施形態に係る物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
本願は、2016年9月5日提出の日本国特許出願特願2016-173121を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
Claims (12)
- ミラーの反射面を変形させる光学装置であって、
前記ミラーと対向して配置されたベース定盤と、
前記ベース定盤と前記ミラーとの間に配置され、前記ミラーに力を加えるアクチュエータと、
前記ベース定盤と前記ミラーとの間の距離を検出する検出部と、
前記アクチュエータの駆動により前記ベース定盤を予熱して前記ベース定盤を基準状態とする第1処理と、該第1処理を行った後、前記基準状態の前記ベース定盤の形状を示す形状情報と前記検出部での検出結果とに基づいて、前記反射面の形状が目標形状に近づくように前記アクチュエータを駆動する第2処理とを行う処理部と、
を含むことを特徴とする光学装置。 - 前記形状情報は、前記第1処理の前に、前記ベース定盤が前記基準状態となるまで所定の駆動条件に従って前記アクチュエータを駆動することにより生成された情報である、ことを特徴とする請求項1に記載の光学装置。
- 前記処理部は、前記アクチュエータの駆動条件と前記ベース定盤の形状との関係に基づいて、前記第1処理において前記アクチュエータを実際に駆動したときの駆動条件に対応する前記ベース定盤の形状を求めることにより前記形状情報を生成する、ことを特徴とする請求項1に記載の光学装置。
- 前記駆動条件は、前記アクチュエータを駆動するための指令値および時間のうち少なくとも一方を含む、ことを特徴とする請求項2又は3に記載の光学装置。
- 前記光学装置は複数のアクチュエータを含み、
前記処理部は、前記第1処理において、前記複数のアクチュエータの各々での発熱量が同じになるように前記複数のアクチュエータの各々を駆動する、ことを特徴とする請求項1乃至4のうちいずれか1項に記載の光学装置。 - 前記処理部は、前記ベース定盤が前記基準状態としての熱平衡状態になるように前記第1処理を行う、ことを特徴とする請求項1乃至5のうちいずれか1項に記載の光学装置。
- 前記処理部は、前記第2処理を複数回行い、複数回の前記第2処理の間の期間において、前記ベース定盤が前記基準状態となるように前記アクチュエータを駆動する第3処理を行う、ことを特徴とする請求項1乃至4のうちいずれか1項に記載の光学装置。
- 前記光学装置は複数のアクチュエータを含み、
前記複数のアクチュエータは、第1アクチュエータと、前記第3処理の直前の前記第2処理において前記第1アクチュエータよりも発熱量が少ない第2アクチュエータとを含み、
前記処理部は、前記第3処理において、前記第1アクチュエータよりも前記第2アクチュエータの発熱量が多くなるように前記第1アクチュエータおよび前記第2アクチュエータを駆動する、ことを特徴とする請求項7に記載の光学装置。 - 前記処理部は、前記ベース定盤が前記基準状態としての熱平衡状態になるように前記第3処理を行う、ことを特徴とする請求項7又は8に記載の光学装置。
- マスクのパターン像を複数のミラーで反射させて基板に投影する投影光学系であって、前記複数のミラーのうち少なくとも1つのミラーの反射面を変形させる請求項1乃至9のうちいずれか1項に記載の光学装置を含む、ことを特徴とする投影光学系。
- 基板を露光する露光装置であって、
請求項10に記載の投影光学系を含む、ことを特徴とする露光装置。 - 請求項11に記載の露光装置を用いて基板を露光する工程と、
前記工程で露光された前記基板を現像する工程と、
を含むことを特徴とする物品の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-173121 | 2016-09-05 | ||
JP2016173121A JP2018040856A (ja) | 2016-09-05 | 2016-09-05 | 光学装置、投影光学系、露光装置、および物品の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043314A1 true WO2018043314A1 (ja) | 2018-03-08 |
Family
ID=61300991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/030458 WO2018043314A1 (ja) | 2016-09-05 | 2017-08-25 | 光学装置、投影光学系、露光装置、および物品の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018040856A (ja) |
WO (1) | WO2018043314A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004056125A (ja) * | 2002-06-20 | 2004-02-19 | Nikon Corp | 個別アクチュエータを有する反射投影光学系 |
JP2005175255A (ja) * | 2003-12-12 | 2005-06-30 | Canon Inc | 露光装置 |
JP2006128699A (ja) * | 2004-10-28 | 2006-05-18 | Asml Holding Nv | 調整可能な投影系を有するリソグラフィ装置およびデバイス製造方法 |
JP2007316132A (ja) * | 2006-05-23 | 2007-12-06 | Canon Inc | 反射装置 |
JP2015050353A (ja) * | 2013-09-02 | 2015-03-16 | キヤノン株式会社 | 光学装置、投影光学系、露光装置、並びに物品の製造方法 |
-
2016
- 2016-09-05 JP JP2016173121A patent/JP2018040856A/ja active Pending
-
2017
- 2017-08-25 WO PCT/JP2017/030458 patent/WO2018043314A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004056125A (ja) * | 2002-06-20 | 2004-02-19 | Nikon Corp | 個別アクチュエータを有する反射投影光学系 |
JP2005175255A (ja) * | 2003-12-12 | 2005-06-30 | Canon Inc | 露光装置 |
JP2006128699A (ja) * | 2004-10-28 | 2006-05-18 | Asml Holding Nv | 調整可能な投影系を有するリソグラフィ装置およびデバイス製造方法 |
JP2007316132A (ja) * | 2006-05-23 | 2007-12-06 | Canon Inc | 反射装置 |
JP2015050353A (ja) * | 2013-09-02 | 2015-03-16 | キヤノン株式会社 | 光学装置、投影光学系、露光装置、並びに物品の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2018040856A (ja) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6336274B2 (ja) | 光学装置、投影光学系、露光装置、および物品の製造方法 | |
JP4571601B2 (ja) | 基板歪測定 | |
JP6168957B2 (ja) | 光学装置、投影光学系、露光装置および物品の製造方法 | |
TWI627512B (zh) | 微影裝置及器件製造方法 | |
JP2015065246A (ja) | 光学装置、光学系、露光装置及び物品の製造方法 | |
JP2015072952A (ja) | インプリント装置、および物品の製造方法 | |
JP2014170965A (ja) | リソグラフィ装置およびデバイス製造方法 | |
TWI631430B (zh) | Optical device, projection optical system, exposure device, and article manufacturing method | |
JP2016092309A (ja) | 光学装置、投影光学系、露光装置、および物品の製造方法 | |
CN109416515B (zh) | 保持装置、投影光学系统、曝光装置及物品制造方法 | |
JP2016092366A (ja) | 光学装置、投影光学系、露光装置、および物品の製造方法 | |
JP2009223034A (ja) | 光学素子保持装置、光学系、露光装置、光学特性調整方法及びデバイスの製造方法 | |
WO2018043314A1 (ja) | 光学装置、投影光学系、露光装置、および物品の製造方法 | |
JP2014529901A (ja) | リソグラフィ装置、リソグラフィ装置のセットアップ方法、及びデバイス製造方法 | |
JP4408301B2 (ja) | 流体および磁気軸受の補償技術 | |
KR102319819B1 (ko) | 광학장치, 투영 광학계, 노광장치, 및 물품 제조방법 | |
US11860554B2 (en) | Object positioner, method for correcting the shape of an object, lithographic apparatus, object inspection apparatus, device manufacturing method | |
JP6929024B2 (ja) | 光学装置、露光装置及び物品の製造方法 | |
CN108227401B (zh) | 光学装置、曝光装置以及物品的制造方法 | |
WO2012160728A1 (ja) | 照明方法、照明光学装置、及び露光装置 | |
KR102476743B1 (ko) | 노광 장치, 및 물품의 제조 방법 | |
KR102230464B1 (ko) | 광학 소자, 노광 장치, 및 물품의 제조 방법 | |
JP2015079811A (ja) | 露光方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846319 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17846319 Country of ref document: EP Kind code of ref document: A1 |