WO2018043267A1 - 車両用の学習システム及び学習方法 - Google Patents
車両用の学習システム及び学習方法 Download PDFInfo
- Publication number
- WO2018043267A1 WO2018043267A1 PCT/JP2017/030258 JP2017030258W WO2018043267A1 WO 2018043267 A1 WO2018043267 A1 WO 2018043267A1 JP 2017030258 W JP2017030258 W JP 2017030258W WO 2018043267 A1 WO2018043267 A1 WO 2018043267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- learning
- vehicle
- sensor
- magnetic
- magnetic marker
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0017—Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/123—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
- G08G1/133—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams within the vehicle ; Indicators inside the vehicles or at stops
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0023—Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
- G01R33/0035—Calibration of single magnetic sensors, e.g. integrated calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/063—Magneto-impedance sensors; Nanocristallin sensors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
- G06F2218/10—Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
Definitions
- the present invention relates to a learning system for a vehicle and a learning method for learning a neutral point of a measurement sensor equipped on the vehicle.
- a steering angle sensor for measuring the steering angle of a steered wheel
- a yaw rate sensor for measuring a yaw rate that is a change speed of a rotation angle in a turning direction of a vehicle.
- the measurement sensor is installed. If the steering angle and yaw rate of the vehicle are measured with high accuracy, it is possible to accurately predict the course of the vehicle, grasp the behavior, etc., and use it for various controls (see, for example, Patent Document 1).
- the steering angle corresponding to straight travel differs slightly from vehicle to vehicle due to individual differences such as the axle mounting error with respect to the vehicle body, or due to the unbalance of the air pressure of each tire.
- the steering angle corresponding to straight travel may fluctuate, which may impair measurement accuracy.
- drift may occur in the sensor measurement value depending on the external environment such as temperature, and measurement accuracy may be impaired.
- the present invention has been made in view of the above-described conventional problems, and is intended to provide a vehicle learning system and a learning method for accurately learning a neutral point of a measurement sensor mounted on a vehicle. is there.
- One aspect of the present invention is a system for a vehicle for learning a neutral point of a measurement sensor equipped on a vehicle using a magnetic marker disposed on a travel path, detecting the magnetic marker, A marker detector for measuring the amount of lateral deviation of the vehicle relative to the marker; A route information acquisition unit for acquiring route information representing the shape of the travel path; A learning determination unit that determines whether or not a learning condition, which is a condition for executing the learning of a neutral point of the measurement sensor, The learning condition is set such that at least a fluctuation range of the lateral deviation amount measured by the marker detection unit when the vehicle is traveling on a learning road that is a traveling road having a constant shape is equal to or less than a predetermined threshold.
- a learning condition which is a condition for executing the learning of a neutral point of the measurement sensor, The learning condition is set such that at least a fluctuation range of the lateral deviation amount measured by the marker detection unit when the vehicle is traveling on a learning road that is a traveling road having a constant shape is
- One aspect of the present invention is a method for learning a neutral point of a measurement sensor equipped in a vehicle using a magnetic marker disposed on a traveling road, Detecting a magnetic marker and measuring a lateral deviation amount with respect to the magnetic marker; Obtaining route information representing the shape of the travel path; Determining the success or failure of a learning condition that is a condition for performing the learning of a neutral point of the measurement sensor, As the learning condition, a vehicle in which at least a fluctuation range of a lateral deviation amount measured when the vehicle is traveling on a learning road having a constant shape is equal to or less than a predetermined threshold value is set. There is a learning method for.
- learning conditions for executing the neutral point learning of the measurement sensor are set.
- the learning conditions it is set that a fluctuation range of the lateral deviation amount is not more than a predetermined threshold when the vehicle is traveling on a learning road having a constant shape.
- the fluctuation range of the lateral deviation amount is equal to or less than a predetermined threshold, it can be determined that the vehicle is traveling along a straight line or a curve having a certain curvature. .
- the situation where such a determination is possible is suitable for learning a neutral point because the sensor measurement value obtained by the measurement sensor approaches stability.
- the present invention by setting, as one of the learning conditions, that the fluctuation range of the lateral deviation amount of the vehicle when traveling on the learning road is equal to or less than a predetermined threshold, Highly accurate neutral point learning is possible.
- FIG. 1 is a block diagram showing an electrical configuration of a learning system in Embodiment 1.
- FIG. 1 is a configuration diagram of a learning system in Embodiment 1.
- FIG. 3 is a block diagram illustrating a configuration of a magnetic sensor in the first embodiment.
- FIG. 3 is an explanatory diagram illustrating temporal changes in the magnetic distribution in the vehicle width direction when passing through a magnetic marker in the first embodiment.
- FIG. 3 is an explanatory diagram illustrating a temporal change in a peak value of a magnetic measurement value when passing through a magnetic marker in the first embodiment. Explanatory drawing of the measuring method of the lateral deviation
- FIG. 3 is a flowchart showing a flow of neutral point learning in the first embodiment.
- FIG. The block diagram of the learning system in Example 2.
- FIG. Explanatory drawing of the example of installation of the magnetic marker which provides path
- FIG. 9 is a side end view showing a magnetic marker including an RFID tag in Example 3.
- neutral point learning is learning called zero point learning for ensuring the accuracy of the measurement sensor.
- neutral point learning for a steering angle sensor that measures the angle of a steering wheel of a vehicle is learning for handling a sensor measurement value corresponding to zero steering angle when traveling straight as a neutral point (zero point).
- the neutral point learning for the yaw rate sensor that measures the change speed (yaw rate) of the rotation angle in the turning direction of the vehicle is learning for handling the sensor measurement value when the yaw rate is zero as the neutral point.
- highly accurate measurement can be realized by learning the neutral point of the sensor measurement value.
- the marker detection units in the vehicle learning system of the present invention are arranged in at least two locations separated from each other in the front-rear direction of the vehicle, and the difference between the lateral deviation amounts measured for the same magnetic marker by two marker detection units having different positions in the front-rear direction Is preferably set as one of the learning conditions.
- the measurement sensor may be a yaw rate sensor for measuring a change speed of a rotation angle in a turning direction of the vehicle
- the learning path may be a straight path or a curved path with a constant curvature.
- the sensor may be a steering angle sensor that measures a steering angle of a steering wheel of the vehicle, and the learning path may be a straight road.
- the situation where the vehicle is traveling on the straight road is ideal for learning the neutral point of the steering angle sensor because the steering angle is ideally zero. If the neutral point of the steering angle sensor can be learned with high accuracy, for example, the accuracy of course prediction using the steering angle can be improved. If the predicted course is highly accurate, for example, a preceding vehicle to be followed can be identified with high certainty from preceding vehicles captured by an active sensor such as a laser radar, and follow-up control (ACC: Adaptive Cruise Control) for the preceding vehicle can be performed. Accuracy can be improved.
- ACC Adaptive Cruise Control
- the route information acquisition unit may acquire the route information from the magnetic marker.
- a method of providing the route information from the magnetic marker for example, a method of providing route information such as a straight path or a curved path using the polarity of the magnetic marker, or a route information using the arrangement interval of the magnetic marker.
- route information such as a straight path or a curved path using the polarity of the magnetic marker, or a route information using the arrangement interval of the magnetic marker.
- a wireless tag may be attached to the magnetic marker, and a tag reader or the like corresponding to the wireless tag may be provided on the vehicle side as the route information acquisition unit. If a communication device such as a wireless tag is used, more information including the route information can be provided to the vehicle side.
- Example 1 This example is an example of a learning system 1 and a learning method for a vehicle that enables neutral point learning of a measurement sensor using a magnetic marker 10 laid on a road. The contents will be described with reference to FIGS.
- the vehicle learning system 1 stores a sensor unit (marker detection unit) 11 including a magnetic sensor Cn (n is an integer of 1 to 15) and map data including route information of a traveling path.
- a sensor unit (marker detection unit) 11 including a magnetic sensor Cn (n is an integer of 1 to 15) and map data including route information of a traveling path.
- a combination of the map database 122 and the control unit 12 that specifies the timing of neutral point learning using the magnetic marker 10 is included.
- the sensor unit 11, the map database 122, the control unit 12, and the like constituting the learning system 1 will be described.
- the magnetic marker 10 (FIGS. 2 and 3) is a road marker laid on the road surface 100S along the center of the lane 100 in which the vehicle 5 travels.
- the magnetic marker 10 has a columnar shape with a diameter of 20 mm and a height of 28 mm, and can be accommodated in a hole provided in the road surface 100S.
- the magnetic marker 10 is laid while being accommodated in a hole formed in the road surface 100S.
- the magnetic marker 10 can act with a magnetic flux density of 8 ⁇ T (8 ⁇ 10 ⁇ 6 T, T: Tesla) at an upper limit of 250 mm, which is an upper limit of a range of 100 to 250 mm assumed as a mounting height of the magnetic sensor Cn.
- the sensor unit 11 is a unit that is attached to a vehicle body floor 50 that contacts the bottom surface of the vehicle 5.
- the sensor unit 11 is attached near the inside of the front bumper, for example.
- the mounting height based on the road surface 100S is 200 mm.
- the sensor unit 11 includes 15 magnetic sensors Cn arranged in a straight line along the vehicle width direction, and a detection processing circuit 110 incorporating a CPU (not shown).
- the detection processing circuit 110 is an arithmetic circuit that executes various arithmetic processes such as a marker detection process for detecting the magnetic marker 10.
- the detection processing circuit 110 is configured by using an element such as a ROM (read only memory) or a RAM (random access memory), in addition to a CPU (central processing unit) that executes various operations. .
- the detection processing circuit 110 acquires a sensor signal output from each magnetic sensor Cn and executes marker detection processing and the like.
- the detection results of the magnetic marker 10 calculated by the detection processing circuit 110 are all input to the control unit 12 including the measured lateral deviation amount.
- the sensor unit 11 can execute the marker detection process at a cycle of 3 kHz.
- the MI element 21 is an element including an amorphous wire 211 made of a CoFeSiB alloy and having substantially zero magnetostriction, and a pickup coil 213 wound around the amorphous wire 211.
- the magnetic sensor Cn detects magnetism acting on the amorphous wire 211 by measuring a voltage generated in the pickup coil 213 when a pulse current is applied to the amorphous wire 211.
- the MI element 21 has detection sensitivity in the axial direction of the amorphous wire 211 that is a magnetic sensitive body. In each magnetic sensor Cn of the sensor unit 11 of this example, an amorphous wire 211 is disposed along the vertical direction.
- the drive circuit is an electronic circuit including a pulse circuit 23 that supplies a pulse current to the amorphous wire 211 and a signal processing circuit 25 that samples and outputs a voltage generated in the pickup coil 213 at a predetermined timing.
- the pulse circuit 23 is a circuit including a pulse generator 231 that generates a pulse signal that is a source of a pulse current.
- the signal processing circuit 25 is a circuit that takes out an induced voltage of the pickup coil 213 through a synchronous detection 251 that is opened and closed in conjunction with a pulse signal, and amplifies it with a predetermined amplification factor by an amplifier 253.
- the signal amplified by the signal processing circuit 25 is output to the outside as a sensor signal.
- the magnetic sensor Cn is a highly sensitive sensor having a magnetic flux density measurement range of ⁇ 0.6 mT and a magnetic flux resolution within the measurement range of 0.02 ⁇ T. Such high sensitivity is realized by the MI element 21 utilizing the MI effect that the impedance of the amorphous wire 211 changes sensitively according to the external magnetic field. Further, the magnetic sensor Cn can perform high-speed sampling at a cycle of 3 kHz, and is compatible with high-speed driving of the vehicle. In this example, the period of magnetic measurement by the sensor unit 11 is set to 3 kHz. The sensor unit 11 inputs a detection result to the control unit 12 every time the magnetic measurement is performed.
- Table 2 shows a part of the specifications of the magnetic sensor Cn.
- the magnetic marker 10 can act with magnetism having a magnetic flux density of 8 ⁇ T (8 ⁇ 10 ⁇ 6 T) or more in the range of 100 to 250 mm assumed as the mounting height of the magnetic sensor Cn. If the magnetic marker 10 acts on magnetism having a magnetic flux density of 8 ⁇ T or more, it can be detected with high reliability using the magnetic sensor Cn having a magnetic flux resolution of 0.02 ⁇ T.
- the map database 122 is a database storing map data. Absolute position information is linked to the map data, and the vehicle side can acquire map data around the own vehicle using the absolute position information. Further, in the map database 122, route information including type information of traveling roads such as automobile-only roads and ordinary roads, and information indicating the shape of the traveling roads such as a curvature radius and a vehicle width is linked with absolute position information. Stored. On the vehicle side, it is possible to specify the route information of the travel path on which the host vehicle is traveling using the absolute position information.
- the map database 122 may be a database shared with an in-vehicle navigation system (not shown) that displays a map around the host vehicle on a display and performs route guidance to a target value.
- the control unit 12 is a unit that outputs a learning signal that teaches the timing of the neutral point learning of the steering angle sensor 181 (measurement sensor) that the vehicle 5 is equipped with.
- a GPS (Global Positioning System) antenna 120, a vehicle ECU 15 and the like are electrically connected to the control unit 12.
- the learning signal output from the control unit 12 is input to the vehicle ECU that executes signal processing related to the sensor signal output from the steering angle sensor 181 and the like.
- the vehicle ECU 15 When the vehicle ECU 15 is receiving the learning signal, the vehicle ECU 15 performs neutral point learning for the steering angle sensor 181 that is an example of a measurement sensor.
- the control unit 12 includes an electronic board (not shown) on which a CPU that executes various calculations, a GPS module that executes positioning calculations by GPS, and memory elements such as ROM and RAM are mounted.
- the control unit 12 determines whether or not the timing is suitable for neutral point learning based on the acquisition information (detection result, lateral deviation amount) from the sensor unit 11 and the route information representing the shape of the travel route acquired from the map database 122. To do. If the timing is suitable for neutral point learning, a learning signal indicating that is output to the outside. 2 and 3, illustration of the vehicle ECU 15 and the steering angle sensor 181 is omitted.
- the control unit 12 has the following functions.
- (1) marker detection processing for the sensor unit 11 to detect the magnetic marker 10 and measure the amount of lateral deviation will be described, and then (2) the flow of operation of the vehicle learning system 1 will be described.
- (1) Marker detection processing The sensor unit 11 executes marker detection processing at a cycle of 3 kHz.
- the sensor unit 11 obtains a magnetic distribution in the vehicle width direction by sampling the magnetic measurement values represented by the sensor signals of the 15 magnetic sensors Cn at every execution period (p1 to p7) of the marker detection process (see FIG. 5). ).
- the magnitude of the peak value in the magnetic distribution in the vehicle width direction changes with time as shown in the figure, and becomes maximum at the timing of passing the magnetic marker 10 (period p4 in FIG. 5).
- the peak value of the magnetic distribution in the vehicle width direction is the magnetic marker 10 as shown in FIG. It grows with every pass.
- a threshold value determination regarding this peak value is executed, and it is determined that the magnetic marker 10 has been detected when it is equal to or greater than a predetermined threshold value.
- the sensor unit 11 specifies the position in the vehicle width direction of the peak value of the magnetic distribution in the vehicle width direction, which is the distribution of the magnetic measurement values of the magnetic sensor Cn, when detecting the magnetic marker 10. If the position of the peak value in the vehicle width direction is used, the lateral deviation amount of the vehicle 5 with respect to the magnetic marker 10 can be calculated. In the vehicle 5, the sensor unit 11 is attached so that the central magnetic sensor C 8 is positioned on the center line of the vehicle 5. Therefore, the deviation of the position in the vehicle width direction of the peak value with respect to the magnetic sensor C 8 is the magnetic marker 10. The amount of lateral displacement of the vehicle 5 with respect to
- the sensor unit 11 performs curve approximation (secondary approximation) on the magnetic distribution in the vehicle width direction, which is the distribution of the magnetic measurement values of the magnetic sensor Cn, and the vehicle width direction of the peak value of the approximate curve
- the position of is specified. If the approximate curve is used, the position of the peak value can be specified with an accuracy finer than the interval between the 15 magnetic sensors, and the lateral deviation amount of the vehicle 5 with respect to the magnetic marker 10 can be measured with high accuracy.
- the control unit 12 calculates absolute position information using satellite radio waves received via the GPS antenna 120 (S101). Then, the map database 122 is referred to using the absolute position information representing the position of the own vehicle, and route information including the curvature radius representing the shape of the traveling road is acquired (S102). The control unit 12 executes a threshold value determination on the radius of curvature included in the route information and determines whether or not the road is a straight road (S103). Note that a sufficiently large value corresponding to the curvature radius of the straight road is set as the threshold for the radius of curvature, and the straight road is determined when the curvature radius included in the route information is equal to or greater than the threshold.
- the control unit 12 detects two magnetic markers 10 (FIG. 3) in succession until the lateral deviation amount can be measured for each.
- the marker detection process is repeatedly executed (S104: NO).
- the control unit 12 calculates the fluctuation amount that is the difference between the lateral deviation amounts (S105). .
- the control unit 12 performs a threshold judgment on the amount of change in the lateral shift amount (S106).
- the control unit 12 determines that the vehicle 5 is traveling straight along the traveling path if the variation amount of the lateral deviation amount is equal to or less than the predetermined threshold (S106: YES), and the neutral point learning learning condition is A learning signal is output as satisfied (S107).
- the control unit 12 determines that the vehicle 5 is traveling along the traveling path, and the above steps S101 to S106 are performed. Repeat the process.
- a threshold value regarding the amount of fluctuation of the lateral deviation amount a threshold value that can be determined to be traveling straight along a straight path that is a traveling path may be set.
- threshold value processing is performed on the fluctuation range of the lateral deviation amount for three or more magnetic markers, and it is determined whether the vehicle is traveling along the traveling path using the lateral deviation amounts for three or more magnetic markers. You may do it.
- the vehicle ECU 15 performs neutral point learning of the steering angle sensor 181 when the learning signal of the control unit 12 is received. Specifically, the steering angle during reception of the learning signal is regarded as zero degrees corresponding to straight travel, and the sensor measurement value represented by the sensor signal output from the steering angle sensor 181 at that time is learned as a neutral point (zero point). . As described above, when the vehicle ECU 15 performs neutral point learning of the steering angle sensor 181, the accuracy of the steering angle based on the sensor measurement value represented by the sensor signal of the steering angle sensor 181 is improved.
- the learning method for a vehicle by the learning system 1 as described above specifies a driving situation suitable for neutral point learning with high accuracy, and enables high-precision measurement by a measurement sensor through neutral point learning under the driving situation. This is a useful method.
- this learning method the amount of lateral deviation in the vehicle width direction is measured using the magnetic marker 10, and a traveling situation suitable for neutral point learning is specified with high certainty.
- a vehicle 5 that measures the distance to a preceding vehicle with a laser radar sensor and executes follow-up control (adaptive cruise control), as shown in FIG. 9, among the preceding vehicles 51 and 52 detected by the laser radar sensor, The preceding vehicle 51 to be tracked on the predicted course R of the host vehicle based on the steering angle can be identified with high certainty, and highly accurate tracking control can be realized.
- follow-up control adaptive cruise control
- a yaw rate sensor may be used in addition to the steering angle sensor 181.
- neutral point learning is possible using the learning signal of this example.
- a curved path with a constant curvature can be included in the learning path.
- the curvature radius included in the route information read from the map database 122 it is possible to determine whether or not the curved road has a certain curvature. If the neutral point of the yaw rate sensor is learned with high accuracy, the change speed of the rotation angle in the turning direction of the vehicle can be measured with high accuracy. Accurate yaw rate is effective for ensuring the accuracy of various vehicle controls that reflect vehicle behavior, such as brake control and throttle control.
- the configuration in which the sensor unit 11 executes the marker detection process and inputs the detection result including the lateral deviation amount to the control unit 12 is illustrated.
- a configuration in which the control unit 12 that takes in the sensor signal of the magnetic sensor Cn performs the marker detection process may be employed.
- the sensor unit 11 is caused by common noise, which is magnetic noise that is nearly uniform, due to a large magnetic source such as an iron bridge or another vehicle. is doing.
- common noise is highly likely to act uniformly on each magnetic sensor Cn of the sensor unit 11. Therefore, it is also possible to detect the magnetic marker 10 using the difference value of the magnetic measurement values of the magnetic sensors Cn arranged in the vehicle width direction. With this difference value representing the magnetic gradient in the vehicle width direction, it is possible to effectively suppress common noise acting uniformly on each magnetic sensor Cn.
- the magnetic sensor Cn having sensitivity in the vertical direction is adopted, but a magnetic sensor having sensitivity in the traveling direction may be used, or a magnetic sensor having sensitivity in the vehicle width direction may be used. Further, for example, a magnetic sensor having sensitivity in the biaxial direction of the vehicle width direction and the traveling direction, the biaxial direction of the vehicle width direction and the vertical direction, or the biaxial direction of the traveling direction and the vertical direction may be employed. A magnetic sensor having sensitivity in the three axial directions of the vehicle width direction, the traveling direction, and the vertical direction may be employed. If a magnetic sensor having sensitivity in a plurality of axial directions is used, the magnetic action direction can be measured together with the magnitude of the magnetism, and a magnetic vector can be generated. It is also possible to distinguish between the magnetism of the magnetic marker 10 and the disturbance magnetism using the difference of the magnetic vectors and the rate of change in the traveling direction of the difference.
- a magnetic marker of a ferrite plastic magnet is illustrated, but a magnetic marker of a ferrite rubber magnet may be used.
- the radius of curvature is illustrated as an example of route information representing the shape of the traveling road. Instead, attribute information such as a straight road, a curved road (having a constant curvature), etc. may be used as route information representing the shape of the traveling road.
- Example 2 This example is an example of a vehicle learning system 1 in which sensor units 11 are provided in front of and behind a vehicle based on the first embodiment. The contents will be described with reference to FIG.
- an unstable behavior occurs in the vehicle 5 in addition to the learning condition that the variation amount of the lateral deviation amount when the vehicle 5 is traveling on the straight road is equal to or less than the threshold value.
- a learning condition is not added.
- the presence or absence of unstable behavior of the vehicle 5 is determined using the front and rear sensor units 11. Specifically, paying attention to the difference value between the lateral deviation amount measured by the front sensor unit 11 and the lateral deviation amount measured by the rear sensor unit 11, when this difference value is larger than a threshold value, Judge that there is a possibility that behavior such as understeer has occurred. By avoiding neutral point learning in a situation where such unstable behavior may occur, the steering angle can be detected with high accuracy.
- the learning condition additionally set in this example it is possible to avoid the execution of neutral point learning in a situation where the vehicle 5 is understeering or the like, and the accuracy of the measurement sensor may be impaired. Can be avoided.
- Other configurations and operational effects are the same as those in the first embodiment.
- Example 3 This example is an example in which the method for obtaining the route information of the travel path is changed based on the vehicle learning system of the first embodiment.
- the route information acquisition unit of the learning system of this example is configured to acquire route information from the magnetic marker 10 side. The contents will be described with reference to FIGS.
- the magnetic marker 10 laid on the traveling path has a different polarity depending on whether it is a straight path or a curved path suitable for the neutral point learning of the measurement sensor, or otherwise.
- a magnetic marker 10S with an S pole on the top surface (appropriately referred to as an S pole magnetic marker) 10S and a magnetic marker 10N with an N pole on the top surface (appropriately referred to as an N pole magnetic marker) 10N alternate.
- the magnetic marker 10 is laid such that a combination of three magnetic markers 10 in which one N-pole magnetic marker 10N appears after two S-pole magnetic markers 10S continue is repeated. .
- an N-pole magnetic marker 10N is laid.
- the vehicle-side route information acquisition unit acquires route information such as a straight road, a curved road, and other travel roads by detecting the polarity of the detected magnetic marker 10.
- an RFID tag (wireless tag) 101 may be attached to the magnetic marker 10 on the traveling path as shown in FIG.
- a sheet-like RFID tag (wireless tag) 101 may be laminated on the end surface of the magnetic marker 10 on the ground side.
- the route information acquisition unit on the vehicle side may be configured to include a tag reader that receives information wirelessly transmitted by the RFID tag 101.
- the tag reader operates the RFID tag 101 by wireless power feeding and receives information transmitted from the RFID tag 101.
- the information transmitted by the RFID tag 101 may include route information such as a radius of curvature and a curvature representing the shape of the traveling road.
- magnetic markers 10 may be placed in a specific pattern at the start point and end point of a travel path that can be used as a learning path such as a straight path or a curved path (with a constant curvature).
- a plurality of magnetic markers 10 may be arranged in the vehicle width direction at the start point and the end point.
- two magnetic markers may be arranged in the vehicle width direction at the start point of a straight road and three magnetic markers in the vehicle width direction at a start point of a curved road.
- the arrangement interval of the magnetic markers 10 in the longitudinal direction of the travel path may be varied.
- the interval may be 1 ⁇ 2 at the start point of a straight road, and the interval may be 3 at the start point of a curved road.
- Other configurations and operational effects are the same as those in the first embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Traffic Control Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Navigation (AREA)
Abstract
走行路に配設された磁気マーカを利用して車両が装備する計測センサの中立点を学習するための車両用の学習システム(1)は、磁気マーカを検出し、磁気マーカに対する車両の横ずれ量を計測するセンサユニット(11)と、走行路の形状を表す経路情報を取得する経路情報取得部と、計測センサの中立点の学習を実行するための条件である学習条件の成否を判断する学習判断部と、を有し、学習条件としては、少なくとも、形状が一定の走行路である学習路を車両が走行しているときにセンサユニット(11)が計測した横ずれ量の変動幅が所定の閾値以下であること、が設定されている。
Description
本発明は、車両が装備する計測センサの中立点を学習するための車両用の学習システム及び学習方法に関する。
近年の電子制御化が進んだ車両には、操舵輪の舵角を計測する操舵角センサ(ステアリングセンサ)や、車両の旋回方向の回転角の変化速度であるヨーレイトを計測するヨーレイトセンサ等の各種の計測センサが搭載されている。車両の操舵角やヨーレイトを精度高く計測すれば、車両の進路予測や挙動把握などを精度高く実現でき、各種の制御に役立てることができる(例えば、特許文献1参照。)。
しかしながら、操舵角センサについては、例えば車体に対する車軸の取付誤差などの個体差に起因して直進に対応する操舵角が車両毎に微妙に異なっていたり、各タイヤの空気圧のアンバランスなどに起因して直進に対応する操舵角が変動することもあり、計測精度が損なわれるおそれがある。ヨーレイトセンサについては、温度等の外部環境に応じてセンサ計測値にドリフト等が生じて計測精度が損なわれることがある。
本発明は、前記従来の問題点に鑑みてなされたものであり、車両に搭載された計測センサの中立点を精度高く学習するための車両用の学習システム及び学習方法を提供しようとするものである。
本発明の一態様は、走行路に配設された磁気マーカを利用して車両が装備する計測センサの中立点を学習するための車両用のシステムであって
前記磁気マーカを検出し、該磁気マーカに対する車両の横ずれ量を計測するマーカ検出部と、
前記走行路の形状を表す経路情報を取得する経路情報取得部と、
前記計測センサの中立点の学習を実行するための条件である学習条件の成否を判断する学習判断部と、を有し、
前記学習条件としては、少なくとも、形状が一定の走行路である学習路を車両が走行しているときに前記マーカ検出部が計測した横ずれ量の変動幅が所定の閾値以下であること、が設定されている車両用の学習システムにある。
前記磁気マーカを検出し、該磁気マーカに対する車両の横ずれ量を計測するマーカ検出部と、
前記走行路の形状を表す経路情報を取得する経路情報取得部と、
前記計測センサの中立点の学習を実行するための条件である学習条件の成否を判断する学習判断部と、を有し、
前記学習条件としては、少なくとも、形状が一定の走行路である学習路を車両が走行しているときに前記マーカ検出部が計測した横ずれ量の変動幅が所定の閾値以下であること、が設定されている車両用の学習システムにある。
本発明の一態様は、走行路に配設された磁気マーカを利用して車両が装備する計測センサの中立点を学習するための方法であって、
磁気マーカを検出し、該磁気マーカに対する横ずれ量を計測するステップと、
走行路の形状を表す経路情報を取得するステップと、
前記計測センサの中立点の学習を実行するための条件である学習条件の成否を判断するステップと、を含み、
前記学習条件としては、少なくとも、形状が一定の走行路である学習路を車両が走行しているときに計測された横ずれ量の変動幅が所定の閾値以下であること、が設定されている車両用の学習方法にある。
磁気マーカを検出し、該磁気マーカに対する横ずれ量を計測するステップと、
走行路の形状を表す経路情報を取得するステップと、
前記計測センサの中立点の学習を実行するための条件である学習条件の成否を判断するステップと、を含み、
前記学習条件としては、少なくとも、形状が一定の走行路である学習路を車両が走行しているときに計測された横ずれ量の変動幅が所定の閾値以下であること、が設定されている車両用の学習方法にある。
本発明の車両用の学習システム及び学習方法では、計測センサの中立点の学習を実行するための学習条件が設定されている。この学習条件のひとつとしては、形状が一定である学習路を車両が走行しているときの前記横ずれ量の変動幅が所定の閾値以下であること、が設定されている。
形状が一定の学習路を走行中の車両について、前記横ずれ量の変動幅が所定の閾値以下であれば、直線あるいは一定の曲率の曲線に沿って走行中の状況であるという判断が可能である。このような判断が可能な状況は、計測センサによるセンサ計測値が安定に近づくため、中立点の学習に適している。
このように本発明では、前記学習路を走行しているときの車両の横ずれ量の変動幅が所定の閾値以下であること、を前記学習条件のひとつとして設定することで、適切なタイミングでの高精度な中立点の学習を可能としている。
本発明における中立点の学習(中立点学習)とは、計測センサの精度を確保するためのゼロ点学習とも呼ばれる学習である。例えば車両の操舵輪の角度を計測する操舵角センサについての中立点学習は、直進時の操舵角ゼロに対応するセンサ計測値を中立点(ゼロ点)として取り扱うための学習である。また例えば車両の旋回方向の回転角の変化速度(ヨーレイト)を計測するヨーレイトセンサについての中立点学習は、ヨーレイトがゼロのときのセンサ計測値を中立点として取り扱うための学習である。計測センサによる計測では、センサ計測値の中立点を学習することで高精度な計測を実現できる。
本発明の車両用の学習システムにおけるマーカ検出部は、車両の前後方向の離隔した少なくとも2箇所に配置され、前後方向の位置が異なる2つのマーカ検出部が同じ磁気マーカについて計測した横ずれ量の差分が所定の閾値以下であることが、前記学習条件のひとつとして設定されていると良い。
車両の前後方向に離隔して位置するマーカ検出部が同じ磁気マーカについて計測した横ずれ量が過大である場合には、車両にオーバーステアやアンダーステア等の挙動が発生している可能性がある。このような状況は、車両の挙動が安定していない可能性があるので、前記計測センサの中立点の学習には適していない。そこで、前後方向の位置が異なる2つのマーカ検出部が同じ磁気マーカについて計測した横ずれ量の変動幅が所定の閾値以下であること、を前記学習条件のひとつとして設定すれば、上記の学習に不適な状況の排除が可能になる。
前記計測センサは、車両の旋回方向の回転角の変化速度を計測するためのヨーレイトセンサであり、前記学習路は、直線路あるいは一定曲率の曲線路であっても良い。
直線路のほか、一定曲率の曲線路に沿って車両が走行する状態では、理想的には、車両の旋回方向の回転角の変化速度がゼロになる。したがって、前記直線路あるいは前記曲線路に沿って車両が走行している状況は、前記ヨーレイトセンサの中立点の学習に適している。
直線路のほか、一定曲率の曲線路に沿って車両が走行する状態では、理想的には、車両の旋回方向の回転角の変化速度がゼロになる。したがって、前記直線路あるいは前記曲線路に沿って車両が走行している状況は、前記ヨーレイトセンサの中立点の学習に適している。
前記センサは、車両の操舵輪の操舵角を計測する操舵角センサであり、前記学習路は直線路であっても良い。
前記直線路を走行している状況は、理想的には操舵角がゼロになるため、前記操舵角センサの中立点の学習に適している。前記操舵角センサの中立点を精度高く学習できれば、例えば前記操舵角を利用した進路予測の精度を向上できる。予測進路が高精度であれば、例えば、レーザーレーダ等のアクティブセンサが捕捉した先行車両の中から追従対象の先行車両を確実性高く特定でき、先行車両に対する追従制御(ACC:アダプティブクルーズコントロール)の精度を向上できる。
前記直線路を走行している状況は、理想的には操舵角がゼロになるため、前記操舵角センサの中立点の学習に適している。前記操舵角センサの中立点を精度高く学習できれば、例えば前記操舵角を利用した進路予測の精度を向上できる。予測進路が高精度であれば、例えば、レーザーレーダ等のアクティブセンサが捕捉した先行車両の中から追従対象の先行車両を確実性高く特定でき、先行車両に対する追従制御(ACC:アダプティブクルーズコントロール)の精度を向上できる。
前記経路情報取得部は、前記磁気マーカから前記経路情報を取得すると良い。
前記磁気マーカから前記経路情報を提供する方法としては、例えば、磁気マーカの極性を利用して直線路や曲線路等の経路情報を提供する方法、磁気マーカの配置間隔を利用して経路情報を提供する方法など、さまざまな方法がある。さらに、磁気マーカに対して無線タグを付設する一方、無線タグに対応するタグリーダ等を前記経路情報取得部として車両側に設けることも良い。無線タグ等の通信デバイスを利用すれば、前記経路情報をはじめとして、より多くの情報を車両側に提供可能である。
前記磁気マーカから前記経路情報を提供する方法としては、例えば、磁気マーカの極性を利用して直線路や曲線路等の経路情報を提供する方法、磁気マーカの配置間隔を利用して経路情報を提供する方法など、さまざまな方法がある。さらに、磁気マーカに対して無線タグを付設する一方、無線タグに対応するタグリーダ等を前記経路情報取得部として車両側に設けることも良い。無線タグ等の通信デバイスを利用すれば、前記経路情報をはじめとして、より多くの情報を車両側に提供可能である。
本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
本例は、道路に敷設された磁気マーカ10を利用して計測センサの中立点学習を可能にする車両用の学習システム1及び学習方法の例である。この内容について、図1~図9を用いて説明する。
(実施例1)
本例は、道路に敷設された磁気マーカ10を利用して計測センサの中立点学習を可能にする車両用の学習システム1及び学習方法の例である。この内容について、図1~図9を用いて説明する。
車両用の学習システム1は、図1のごとく、磁気センサCn(nは1~15の整数)を含むセンサユニット(マーカ検出部)11と、走行路の経路情報を含む地図データが格納された地図データベース122と、磁気マーカ10を利用して中立点学習のタイミングを特定する制御ユニット12と、の組み合わせを含めて構成されている。以下、磁気マーカ10を概説した後、学習システム1を構成するセンサユニット11、地図データベース122、制御ユニット12等を説明する。
磁気マーカ10(図2及び図3)は、車両5が走行する車線100の中央に沿うように路面100Sに敷設される道路マーカである。この磁気マーカ10は、直径20mm、高さ28mmの柱状をなし、路面100Sに設けた孔への収容が可能である。磁気マーカ10をなす磁石は、磁性材料である酸化鉄の磁粉を基材である高分子材料中に分散させた等方性フェライトプラスチックマグネットであり、最大エネルギー積(BHmax)=6.4kJ/m3という特性を備えている。この磁気マーカ10は、路面100Sに穿設された孔に収容された状態で敷設される。
本例の磁気マーカ10の仕様の一部を表1に示す。
この磁気マーカ10は、磁気センサCnの取付け高さとして想定する範囲100~250mmの上限の250mm高さにおいて、8μT(8×10-6T、T:テスラ)の磁束密度の磁気を作用できる。
次に、車両用の学習システム1を構成するセンサユニット11、地図データベース122及び制御ユニット12について説明する。
センサユニット11は、図1~図3のごとく、車両5の底面に当たる車体フロア50に取り付けられるユニットである。センサユニット11は、例えば、フロントバンパーの内側付近に取り付けられる。本例のセダンタイプの車両5の場合、路面100Sを基準とした取付け高さがいずれも200mmとなっている。
センサユニット11は、図1~図3のごとく、車両5の底面に当たる車体フロア50に取り付けられるユニットである。センサユニット11は、例えば、フロントバンパーの内側付近に取り付けられる。本例のセダンタイプの車両5の場合、路面100Sを基準とした取付け高さがいずれも200mmとなっている。
センサユニット11は、図1のごとく、車幅方向に沿って一直線上に配列された15個の磁気センサCnと、図示しないCPU等を内蔵した検出処理回路110と、を備えている。
検出処理回路110は、磁気マーカ10を検出するためのマーカ検出処理などの各種の演算処理を実行する演算回路である。この検出処理回路110は、各種の演算を実行するCPU(central processing unit)のほか、ROM(read only memory)やRAM(random access memory)などのメモリ素子等の素子を利用して構成されている。
検出処理回路110は、磁気マーカ10を検出するためのマーカ検出処理などの各種の演算処理を実行する演算回路である。この検出処理回路110は、各種の演算を実行するCPU(central processing unit)のほか、ROM(read only memory)やRAM(random access memory)などのメモリ素子等の素子を利用して構成されている。
検出処理回路110は、各磁気センサCnが出力するセンサ信号を取得してマーカ検出処理等を実行する。検出処理回路110が演算した磁気マーカ10の検出結果は、計測された横ずれ量を含めて全て制御ユニット12に入力される。なお、センサユニット11は3kHz周期でマーカ検出処理を実行可能である。
ここで、磁気センサCn(図1)の構成を説明しておく。本例では、図4のごとく、磁気センサCnとして、MI素子21と駆動回路とが一体化された1チップのMIセンサを採用している。MI素子21は、CoFeSiB系合金製のほぼ零磁歪であるアモルファスワイヤ211と、このアモルファスワイヤ211の周囲に巻回されたピックアップコイル213と、を含む素子である。磁気センサCnは、アモルファスワイヤ211にパルス電流を印加したときにピックアップコイル213に発生する電圧を計測することで、アモルファスワイヤ211に作用する磁気を検出する。MI素子21は、感磁体であるアモルファスワイヤ211の軸方向に検出感度を有している。本例のセンサユニット11の各磁気センサCnでは、鉛直方向に沿ってアモルファスワイヤ211が配設されている。
駆動回路は、アモルファスワイヤ211にパルス電流を供給するパルス回路23と、ピックアップコイル213で生じた電圧を所定タイミングでサンプリングして出力する信号処理回路25と、を含む電子回路である。パルス回路23は、パルス電流の元となるパルス信号を生成するパルス発生器231を含む回路である。信号処理回路25は、パルス信号に連動して開閉される同期検波251を介してピックアップコイル213の誘起電圧を取り出し、増幅器253により所定の増幅率で増幅する回路である。この信号処理回路25で増幅された信号がセンサ信号として外部に出力される。
磁気センサCnは、磁束密度の測定レンジが±0.6mTであって、測定レンジ内の磁束分解能が0.02μTという高感度のセンサである。このような高感度は、アモルファスワイヤ211のインピーダンスが外部磁界に応じて敏感に変化するというMI効果を利用するMI素子21により実現されている。さらに、この磁気センサCnは、3kHz周期での高速サンプリングが可能で、車両の高速走行にも対応している。本例では、センサユニット11による磁気計測の周期が3kHzに設定されている。センサユニット11は、磁気計測を実施する毎に検出結果を制御ユニット12に入力する。
上記のように、磁気マーカ10は、磁気センサCnの取付け高さとして想定する範囲100~250mmにおいて8μT(8×10-6T)以上の磁束密度の磁気を作用できる。磁束密度8μT以上の磁気を作用する磁気マーカ10であれば、磁束分解能が0.02μTの磁気センサCnを用いて確実性高く検出可能である。
次に、地図データベース122は、地図データを格納したデータベースである。地図データには、絶対位置情報がひも付けされており、車両側では、絶対位置情報を利用して自車周辺の地図データを取得可能である。さらに、地図データベース122には、自動車専用道路や一般道等の走行路の種別情報や、曲率半径や車幅などの走行路の形状を表す情報を含む経路情報が、絶対位置情報をひも付けて格納されている。車両側では、絶対位置情報を利用して自車が走行中の走行路の経路情報を特定可能である。なお、地図データベース122は、自車周辺の地図をディスプレイに表示し目的値までの経路案内等を実施する車載ナビゲーションシステム(図示略)と共用されるデータベースであっても良い。
制御ユニット12は、図1~図3のごとく、車両5が装備する操舵角センサ181(計測センサ)の中立点学習のタイミングを教示する学習信号を出力するユニットである。制御ユニット12には、センサユニット11及び地図データベース122のほか、GPS(Global Positioning System)アンテナ120や車両ECU15等が電気的に接続されている。制御ユニット12が出力する学習信号は、操舵角センサ181等が出力するセンサ信号に関する信号処理を実行する車両ECUに入力される。車両ECU15は、学習信号を受信中のとき、計測センサの一例をなす操舵角センサ181について中立点学習を実行する。
制御ユニット12は、各種の演算を実行するCPUのほか、GPSによる測位演算を実行するGPSモジュール、ROMやRAMなどのメモリ素子等が実装された電子基板(図示略)を備えている。制御ユニット12は、センサユニット11からの取得情報(検出結果、横ずれ量)、及び地図データベース122から取得した走行路の形状を表す経路情報に基づき、中立点学習に適したタイミングか否かを判断する。そして、中立点学習に適したタイミングであれば、その旨を表す学習信号を外部出力する。なお、図2及び図3では、車両ECU15、操舵角センサ181の図示を省略してある。
制御ユニット12は、以下の各機能を備えている。
(a)車両進路判定部:磁気マーカ10に対する車両5の横ずれ量の時間的な変化に基づき、車両5が走行路に沿って走行中であるか否かを判定する。
(b)測位部:車両5が位置する地点の絶対位置情報を演算するという上記のGPSモジュールが実現する。
(c)経路情報取得部:地図データベース122を参照して、絶対位置情報がひも付けされた経路情報を取得する。経路情報には、走行路の形状を表す曲率半径等のデータが含まれている。
(d)学習判断部:中立点学習の可否の判断条件である学習条件が充足されているか否かを判定する。学習条件としては、隣り合って敷設された2つの磁気マーカ10に対する車両5の横ずれ量の差分である変動量に関する条件等が設定されている。
(a)車両進路判定部:磁気マーカ10に対する車両5の横ずれ量の時間的な変化に基づき、車両5が走行路に沿って走行中であるか否かを判定する。
(b)測位部:車両5が位置する地点の絶対位置情報を演算するという上記のGPSモジュールが実現する。
(c)経路情報取得部:地図データベース122を参照して、絶対位置情報がひも付けされた経路情報を取得する。経路情報には、走行路の形状を表す曲率半径等のデータが含まれている。
(d)学習判断部:中立点学習の可否の判断条件である学習条件が充足されているか否かを判定する。学習条件としては、隣り合って敷設された2つの磁気マーカ10に対する車両5の横ずれ量の差分である変動量に関する条件等が設定されている。
次に、センサユニット11が磁気マーカ10を検出し横ずれ量を計測するための(1)マーカ検出処理について説明し、続いて(2)車両用の学習システム1の動作の流れを説明する。
(1)マーカ検出処理
センサユニット11は、3kHzの周期でマーカ検出処理を実行する。センサユニット11は、マーカ検出処理の実行周期(p1~p7)毎に、15個の磁気センサCnのセンサ信号が表す磁気計測値をサンプリングして車幅方向の磁気分布を得る(図5参照。)。この車幅方向の磁気分布のうちのピーク値の大きさは、同図のごとく時間的に変化する一方、磁気マーカ10を通過するタイミングで最大となる(図5中のp4の周期)。
(1)マーカ検出処理
センサユニット11は、3kHzの周期でマーカ検出処理を実行する。センサユニット11は、マーカ検出処理の実行周期(p1~p7)毎に、15個の磁気センサCnのセンサ信号が表す磁気計測値をサンプリングして車幅方向の磁気分布を得る(図5参照。)。この車幅方向の磁気分布のうちのピーク値の大きさは、同図のごとく時間的に変化する一方、磁気マーカ10を通過するタイミングで最大となる(図5中のp4の周期)。
磁気マーカ10が連続して敷設された車線100(図3)に沿って車両5が走行する際には、上記の車幅方向の磁気分布のピーク値が、図6のように磁気マーカ10を通過する毎に大きくなる。マーカ検出処理では、このピーク値に関する閾値判断が実行され、所定の閾値以上であったときに磁気マーカ10を検出したと判断される。
センサユニット11は、磁気マーカ10を検出したとき、磁気センサCnの磁気計測値の分布である車幅方向の磁気分布のピーク値の車幅方向の位置を特定する。このピーク値の車幅方向の位置を利用すれば、磁気マーカ10に対する車両5の横ずれ量を演算できる。車両5では中央の磁気センサC8が車両5の中心線上に位置するようにセンサユニット11が取り付けられているため、磁気センサC8に対する上記のピーク値の車幅方向の位置の偏差が、磁気マーカ10に対する車両5の横ずれ量となる。
特に、センサユニット11は、図7のごとく、磁気センサCnの磁気計測値の分布である車幅方向の磁気分布について曲線近似(2次近似)を実行し、近似曲線のピーク値の車幅方向の位置を特定している。近似曲線を利用すれば、15個の磁気センサの間隔よりも細かい精度でピーク値の位置を特定でき、磁気マーカ10に対する車両5の横ずれ量を精度高く計測できる。
(2)学習システム1の全体動作
学習システム1の全体動作について、制御ユニット12(図1)の制御を中心にして図8のフロー図を用いて説明する。
制御ユニット12は、GPSアンテナ120を介して受信した衛星電波を利用して絶対位置情報を演算する(S101)。そして、自車の位置を表す絶対位置情報を利用して地図データベース122を参照し、走行路の形状を表す曲率半径を含む経路情報を取得する(S102)。制御ユニット12は、経路情報に含まれる曲率半径について閾値判断を実行して直線路であるか否かの判断を実行する(S103)。なお、曲率半径に対する閾値としては、直線路の曲率半径に対応する十分に大きな値が設定されており、経路情報に含まれる曲率半径が閾値以上であるときに直線路と判断される。
学習システム1の全体動作について、制御ユニット12(図1)の制御を中心にして図8のフロー図を用いて説明する。
制御ユニット12は、GPSアンテナ120を介して受信した衛星電波を利用して絶対位置情報を演算する(S101)。そして、自車の位置を表す絶対位置情報を利用して地図データベース122を参照し、走行路の形状を表す曲率半径を含む経路情報を取得する(S102)。制御ユニット12は、経路情報に含まれる曲率半径について閾値判断を実行して直線路であるか否かの判断を実行する(S103)。なお、曲率半径に対する閾値としては、直線路の曲率半径に対応する十分に大きな値が設定されており、経路情報に含まれる曲率半径が閾値以上であるときに直線路と判断される。
走行路が学習路として利用可能な直線路であれば(S103:YES)、制御ユニット12は、磁気マーカ10(図3)を連続して2個検出し、それぞれについて横ずれ量を計測できるまで、上記のマーカ検出処理を繰り返し実行する(S104:NO)。制御ユニット12は、走行路に沿って隣り合って敷設された2個の磁気マーカ10について、横ずれ量を計測できると(S104:YES)、横ずれ量の差分である変動量を演算する(S105)。
制御ユニット12は、この横ずれ量の変動量について閾値判断を実行する(S106)。制御ユニット12は、横ずれ量の変動量が所定の閾値以下であれば(S106:YES)、車両5が走行路に沿って直進して走行していると判断し、中立点学習の学習条件が充足されたとして学習信号を出力する(S107)。
一方、制御ユニット12は、横ずれ量の変動量が所定の閾値を超えていれば(S106:NO)、車両5が走行路に沿わずに走行していると判断し、上記のステップS101~S106の処理を繰り返す。なお、横ずれ量の変動量についての閾値としては、走行路である直進路に沿って直進していると判断できる程度の閾値を設定すると良い。なお、例えば3個以上の磁気マーカについての横ずれ量の変動幅について閾値処理を実行する等、3個以上の磁気マーカについての横ずれ量を利用し、走行路に沿って走行中か否かを判断しても良い。
車両ECU15は、制御ユニット12の学習信号を受信している状態のとき、操舵角センサ181の中立点学習を実施する。具体的には、学習信号を受信中の操舵角を直進に対応するゼロ度とみなし、そのときに操舵角センサ181が出力するセンサ信号が表すセンサ計測値を中立点(ゼロ点)として学習する。このように車両ECU15が操舵角センサ181の中立点学習を実行すれば、操舵角センサ181のセンサ信号が表すセンサ計測値に基づく操舵角の精度が向上する。
以上のような学習システム1による車両用の学習方法は、中立点学習に適した走行状況を精度高く特定し、この走行状況下での中立点学習により計測センサによる高精度な計測を可能とする有用な方法である。特に、この学習方法では、磁気マーカ10を利用して車幅方向の横ずれ量が計測され、中立点学習に適した走行状況が確実性高く特定される。
例えば、レーザレーダセンサで先行車両までの距離を計測して追従制御(アダプティブクルーズコントロール)を実行する車両5であれば、図9のごとく、レーザレーダセンサが検出した先行車両51、52のうち、操舵角に基づく自車の予測進路R上の追従対象の先行車両51を確実性高く特定でき、高精度な追従制御を実現できる。
中立点の学習対象の計測センサとしては、操舵角センサ181のほか、ヨーレイトセンサであっても良い。ヨーレイトセンサについては、本例の学習信号を利用して中立点学習が可能である。さらに、ヨーレイトセンサについては、一定曲率の曲線路を学習路に含めることもできる。地図データベース122から読み出す経路情報に含まれる曲率半径を利用すれば一定曲率の曲線路であるか否かの判断が可能になる。ヨーレイトセンサの中立点を精度高く学習すれば、車両の旋回方向の回転角の変化速度を精度高く計測できるようになる。正確なヨーレイトは、ブレーキ制御やスロットル制御など、車両の挙動を反映した各種の車両制御の精度を確保するために有効である。
本例では、センサユニット11がマーカ検出処理を実行し、横ずれ量を含む検出結果を制御ユニット12に入力する構成を例示した。これに代えて、磁気センサCnのセンサ信号を取り込んだ制御ユニット12が上記のマーカ検出処理を実行する構成を採用しても良い。
センサユニット11には、地磁気のほか、例えば鉄橋や他の車両などのサイズ的に大きな磁気発生源に由来して、各磁気センサCnには一様に近い磁気的なノイズであるコモンノイズが作用している。このようなコモンノイズは、センサユニット11の各磁気センサCnに対して一様に近く作用する可能性が高い。そこで、車幅方向に配列された各磁気センサCnの磁気計測値の差分値を利用して磁気マーカ10を検出することも良い。車幅方向の磁気勾配を表すこの差分値では、各磁気センサCnに一様に近く作用するコモンノイズを効果的に抑制できる。
本例では、鉛直方向に感度を持つ磁気センサCnを採用したが、進行方向に感度を持つ磁気センサであっても良く、車幅方向に感度を持つ磁気センサであっても良い。さらに、例えば車幅方向と進行方向の2軸方向や、車幅方向と鉛直方向の2軸方向や、進行方向と鉛直方向の2軸方向に感度を持つ磁気センサを採用しても良く、例えば車幅方向と進行方向と鉛直方向の3軸方向に感度を持つ磁気センサを採用しても良い。複数の軸方向に感度を持つ磁気センサを利用すれば、磁気の大きさと共に磁気の作用方向を計測でき、磁気ベクトルを生成できる。磁気ベクトルの差分や、その差分の進行方向の変化率を利用して、磁気マーカ10の磁気と外乱磁気との区別を行なうことも良い。
本例では、フェライトプラスチックマグネットの磁気マーカを例示したが、フェライトラバーマグネットの磁気マーカであっても良い。
本例では、走行路の形状を表す経路情報の一例として曲率半径を例示している。これに代えて、直線路、(一定曲率の)曲線路、等の属性情報を、走行路の形状を表す経路情報として利用することも良い。
本例では、走行路の形状を表す経路情報の一例として曲率半径を例示している。これに代えて、直線路、(一定曲率の)曲線路、等の属性情報を、走行路の形状を表す経路情報として利用することも良い。
(実施例2)
本例は、実施例1に基づき、車両の前後にセンサユニット11を設けた車両用の学習システム1の例である。この内容について、図10を参照して説明する。
本例の操舵角センサの中立点学習では、車両5が直線路を走行しているときの横ずれ量の変動量が閾値以下であるという学習条件に加えて、車両5に不安定な挙動が発生していないという学習条件が追加されている。
本例は、実施例1に基づき、車両の前後にセンサユニット11を設けた車両用の学習システム1の例である。この内容について、図10を参照して説明する。
本例の操舵角センサの中立点学習では、車両5が直線路を走行しているときの横ずれ量の変動量が閾値以下であるという学習条件に加えて、車両5に不安定な挙動が発生していないという学習条件が追加されている。
本例の車両用の学習システム1では、不安定な車両5の挙動の有無を、前後のセンサユニット11を利用して判断している。具体的には、前側のセンサユニット11が計測した横ずれ量と、後ろ側のセンサユニット11が計測した横ずれ量と、の差分値に着目し、この差分値が閾値よりも大きいとき、オーバーステアやアンダーステア等の挙動が発生している可能性があると判断する。そして、このような不安定な挙動が発生している可能性がある状況での中立点学習を回避することで、操舵角の高精度な検出を可能としている。
本例で追加設定した学習条件によれば、車両5にアンダーステア等の挙動が発生している状況下での中立点学習の実行を未然に回避でき、計測センサの精度が損なわれるおそれを未然に回避できる。
なお、その他の構成及び作用効果については実施例1と同様である。
なお、その他の構成及び作用効果については実施例1と同様である。
(実施例3)
本例は、実施例1の車両用の学習システムに基づいて、走行路の経路情報を取得する方法を変更した例である。本例の学習システムの経路情報取得部は、磁気マーカ10側から経路情報を取得するように構成されている。この内容について図11及び12を参照して説明する。
本例は、実施例1の車両用の学習システムに基づいて、走行路の経路情報を取得する方法を変更した例である。本例の学習システムの経路情報取得部は、磁気マーカ10側から経路情報を取得するように構成されている。この内容について図11及び12を参照して説明する。
走行路に敷設された磁気マーカ10は、図11のごとく、計測センサの中立点学習に適した直線路または曲線路であるか、それ以外であるかに応じて極性が異なっている。
直線路では、S極を上面にした磁気マーカ(適宜、S極の磁気マーカという。)10Sと、N極を上面にした磁気マーカ(適宜、N極の磁気マーカという。)10Nと、が交互に配置されている。曲率一定の曲線路では、S極の磁気マーカ10Sが2個連続した後にN極の磁気マーカ10Nが1個現れるという3個の磁気マーカ10の組み合わせが繰り返すように磁気マーカ10が敷設されている。それ以外の走行路では、N極の磁気マーカ10Nが敷設されている。
車両側の経路情報取得部は、検出した磁気マーカ10の極性を検出することで、直線路、曲線路、それ以外の走行路といった経路情報を取得する。
直線路では、S極を上面にした磁気マーカ(適宜、S極の磁気マーカという。)10Sと、N極を上面にした磁気マーカ(適宜、N極の磁気マーカという。)10Nと、が交互に配置されている。曲率一定の曲線路では、S極の磁気マーカ10Sが2個連続した後にN極の磁気マーカ10Nが1個現れるという3個の磁気マーカ10の組み合わせが繰り返すように磁気マーカ10が敷設されている。それ以外の走行路では、N極の磁気マーカ10Nが敷設されている。
車両側の経路情報取得部は、検出した磁気マーカ10の極性を検出することで、直線路、曲線路、それ以外の走行路といった経路情報を取得する。
上記の構成に代えて、図12のごとく、走行路の磁気マーカ10にRFIDタグ(無線タグ)101を付設することも良い。例えば、磁気マーカ10の地中側の端面にシート状のRFIDタグ(無線タグ)101を積層することも良い。車両側の経路情報取得部については、RFIDタグ101が無線送信する情報を受信するタグリーダを含めて構成すれば良い。タグリーダは、無線給電によりRFIDタグ101を動作させ、RFIDタグ101が送信する情報を受信する。RFIDタグ101が送信する情報に、走行路の形状を表す曲率半径や曲率などの経路情報を含めると良い。
また、直進路や(一定曲率の)曲線路等の学習路として利用可能な走行路の始点と終点に、特定のパターンで磁気マーカを配置することも良い。例えば、始点や終点では、車幅方向に複数個の磁気マーカ10を配置することも良い。例えば、直線路の始点等では車幅方向に2個、曲線路の始点等では車幅方向に3個の磁気マーカを配置することも良い。さらに、走行路の長手方向の磁気マーカ10の配置間隔を異ならせることも良い。例えば、磁気マーカの基準となる間隔に対して、直線路の始点等では間隔を1/2、曲線路の始点等では間隔を1/3としても良い。
なお、その他の構成及び作用効果については、実施例1と同様である。
なお、その他の構成及び作用効果については、実施例1と同様である。
以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して上記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。
1 学習システム
10 磁気マーカ
101 RFIDタグ(無線タグ)
100 車線
11 センサユニット(マーカ検出部)
110 検出処理回路
12 制御ユニット(車両進路判定部、測位部、経路情報取得部、学習判断部)
181 操舵角センサ(計測センサ)
21 MI素子
5 車両
10 磁気マーカ
101 RFIDタグ(無線タグ)
100 車線
11 センサユニット(マーカ検出部)
110 検出処理回路
12 制御ユニット(車両進路判定部、測位部、経路情報取得部、学習判断部)
181 操舵角センサ(計測センサ)
21 MI素子
5 車両
Claims (6)
- 走行路に配設された磁気マーカを利用して車両が装備する計測センサの中立点を学習するための車両用のシステムであって
前記磁気マーカを検出し、該磁気マーカに対する車両の横ずれ量を計測するマーカ検出部と、
前記走行路の形状を表す経路情報を取得する経路情報取得部と、
前記計測センサの中立点の学習を実行するための条件である学習条件の成否を判断する学習判断部と、を有し、
前記学習条件としては、少なくとも、形状が一定の走行路である学習路を車両が走行しているときに前記マーカ検出部が計測した横ずれ量の変動幅が所定の閾値以下であること、が設定されている車両用の学習システム。 - 請求項1において、前記マーカ検出部は、車両の前後方向に離隔した少なくとも2箇所に配置され、前後方向の位置が異なる2つのマーカ検出部が同じ磁気マーカについて計測した横ずれ量の差分が所定の閾値以下であることが、前記学習条件のひとつとして設定されている車両用の学習システム。
- 請求項1又は2において、前記計測センサは、車両の旋回方向の回転角の変化速度を計測するためのヨーレイトセンサであり、前記学習路は、直線路あるいは一定曲率の曲線路である車両用の学習システム。
- 請求項1~3のいずれか1項において、前記計測センサは、車両の操舵輪の操舵角を計測する操舵角センサであり、前記学習路は直線路である車両用の学習システム。
- 請求項1~4のいずれか1項において、前記経路情報取得部は、前記磁気マーカから前記経路情報を取得する車両用の学習システム。
- 走行路に配設された磁気マーカを利用して車両が装備する計測センサの中立点を学習するための方法であって、
磁気マーカを検出し、該磁気マーカに対する横ずれ量を計測するステップと、
走行路の形状を表す経路情報を取得するステップと、
前記計測センサの中立点の学習を実行するための条件である学習条件の成否を判断するステップと、を含み、
前記学習条件としては、少なくとも、形状が一定の走行路である学習路を車両が走行しているときに計測された横ずれ量の変動幅が所定の閾値以下であること、が設定されている車両用の学習方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/326,221 US11175159B2 (en) | 2016-08-30 | 2017-08-24 | Learning system and learning method for vehicles |
EP17846272.7A EP3508822B1 (en) | 2016-08-30 | 2017-08-24 | Learning system and learning method for vehicle |
SG11201901454YA SG11201901454YA (en) | 2016-08-30 | 2017-08-24 | Learning system and learning method for vehicles |
CN201780051100.9A CN109642798B (zh) | 2016-08-30 | 2017-08-24 | 车辆用的学习系统及学习方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-168473 | 2016-08-30 | ||
JP2016168473A JP6828314B2 (ja) | 2016-08-30 | 2016-08-30 | 車両用の学習システム及び学習方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043267A1 true WO2018043267A1 (ja) | 2018-03-08 |
Family
ID=61300884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/030258 WO2018043267A1 (ja) | 2016-08-30 | 2017-08-24 | 車両用の学習システム及び学習方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11175159B2 (ja) |
EP (1) | EP3508822B1 (ja) |
JP (1) | JP6828314B2 (ja) |
CN (1) | CN109642798B (ja) |
SG (1) | SG11201901454YA (ja) |
WO (1) | WO2018043267A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220068129A1 (en) * | 2018-12-28 | 2022-03-03 | Aichi Steel Corporation | Vehicle and vehicular diagnostic system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6928307B2 (ja) * | 2017-03-28 | 2021-09-01 | 愛知製鋼株式会社 | マーカ検出システム及びマーカ検出方法 |
JP6965815B2 (ja) * | 2018-04-12 | 2021-11-10 | 愛知製鋼株式会社 | マーカ検出システム、及びマーカ検出システムの運用方法 |
JP7147275B2 (ja) * | 2018-06-04 | 2022-10-05 | 愛知製鋼株式会社 | ジャイロセンサの較正方法 |
JP7268498B2 (ja) * | 2019-06-24 | 2023-05-08 | 愛知製鋼株式会社 | 磁気マーカ及び磁気マーカの利用方法 |
CN114761963A (zh) * | 2019-11-26 | 2022-07-15 | 爱知制钢株式会社 | 磁标识器以及磁标识器的制作方法 |
JP7377154B2 (ja) * | 2020-04-14 | 2023-11-09 | カヤバ株式会社 | 路面性状判定装置 |
CN112504265B (zh) * | 2020-11-16 | 2023-02-28 | 中国科学院空天信息创新研究院 | 一种用于室内车辆地磁匹配定位的地磁基准库构建方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08314540A (ja) * | 1995-03-14 | 1996-11-29 | Toyota Motor Corp | 車両走行誘導システム |
JPH10160486A (ja) * | 1996-11-28 | 1998-06-19 | Sumitomo Electric Ind Ltd | 車両の位置検出装置 |
JPH10213446A (ja) * | 1997-01-29 | 1998-08-11 | Omron Corp | 車両走行システム |
JP2000306195A (ja) * | 1999-04-22 | 2000-11-02 | Matsushita Electric Ind Co Ltd | レーンマーカを利用した車両挙動検出装置 |
JP2006199242A (ja) * | 2005-01-24 | 2006-08-03 | Toyota Motor Corp | 車両の挙動制御装置 |
JP2007004711A (ja) | 2005-06-27 | 2007-01-11 | Denso Corp | 車両用進路推定装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3574235B2 (ja) * | 1995-08-31 | 2004-10-06 | 本田技研工業株式会社 | 車両の操舵力補正装置 |
US5913376A (en) * | 1995-10-31 | 1999-06-22 | Honda Giken Kogyo Kabushiki Kaisha | Automatic steering control apparatus |
DE69810797T2 (de) * | 1997-09-29 | 2003-06-12 | Aichi Steel Works, Ltd. | Magnetische vorrichtung zum erfassen einer fahrzeugposition |
JP4038944B2 (ja) * | 1999-08-30 | 2008-01-30 | 株式会社デンソー | 車両用障害物検出装置の中心軸偏向量算出装置及び中心軸偏向量補正装置、操舵角中立学習装置並びに車間制御装置 |
AU2002351358A1 (en) * | 2001-12-12 | 2003-06-23 | Jervis B. Webb Company | Driverless vehicle guidance system and method |
WO2011104846A1 (ja) * | 2010-02-25 | 2011-09-01 | トヨタ自動車株式会社 | 操舵制御装置 |
JP5601224B2 (ja) * | 2010-03-04 | 2014-10-08 | 株式会社デンソー | 道路形状学習装置 |
JP5516754B2 (ja) * | 2010-12-01 | 2014-06-11 | トヨタ自動車株式会社 | 車両の操舵制御装置 |
JP5900659B2 (ja) * | 2013-01-11 | 2016-04-06 | 日産自動車株式会社 | 車両用走行制御装置、車両用走行制御方法 |
US20150247719A1 (en) * | 2014-03-03 | 2015-09-03 | Tomorrow's Transportation Today | Position sensing system for intelligent vehicle guidance |
US20150294430A1 (en) * | 2014-04-15 | 2015-10-15 | Tomorrow's Transportation Today | Dynamic dispatching and schedule management methods for an intelligent transit system with electronic guided buses |
US20150294566A1 (en) * | 2014-04-15 | 2015-10-15 | Tomorrow's Transportation Today | Trip planning and management methods for an intelligent transit system with electronic guided buses |
CN104149782A (zh) * | 2014-07-31 | 2014-11-19 | 同济大学 | 一种基于磁导航的多传感器融合智能车的自动驾驶系统 |
-
2016
- 2016-08-30 JP JP2016168473A patent/JP6828314B2/ja active Active
-
2017
- 2017-08-24 SG SG11201901454YA patent/SG11201901454YA/en unknown
- 2017-08-24 EP EP17846272.7A patent/EP3508822B1/en active Active
- 2017-08-24 CN CN201780051100.9A patent/CN109642798B/zh active Active
- 2017-08-24 WO PCT/JP2017/030258 patent/WO2018043267A1/ja unknown
- 2017-08-24 US US16/326,221 patent/US11175159B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08314540A (ja) * | 1995-03-14 | 1996-11-29 | Toyota Motor Corp | 車両走行誘導システム |
JPH10160486A (ja) * | 1996-11-28 | 1998-06-19 | Sumitomo Electric Ind Ltd | 車両の位置検出装置 |
JPH10213446A (ja) * | 1997-01-29 | 1998-08-11 | Omron Corp | 車両走行システム |
JP2000306195A (ja) * | 1999-04-22 | 2000-11-02 | Matsushita Electric Ind Co Ltd | レーンマーカを利用した車両挙動検出装置 |
JP2006199242A (ja) * | 2005-01-24 | 2006-08-03 | Toyota Motor Corp | 車両の挙動制御装置 |
JP2007004711A (ja) | 2005-06-27 | 2007-01-11 | Denso Corp | 車両用進路推定装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220068129A1 (en) * | 2018-12-28 | 2022-03-03 | Aichi Steel Corporation | Vehicle and vehicular diagnostic system |
US11875675B2 (en) * | 2018-12-28 | 2024-01-16 | Aichi Steel Corporation | Vehicle and vehicular diagnostic system |
Also Published As
Publication number | Publication date |
---|---|
EP3508822B1 (en) | 2023-10-11 |
US20190212169A1 (en) | 2019-07-11 |
US11175159B2 (en) | 2021-11-16 |
EP3508822A4 (en) | 2020-04-22 |
EP3508822A1 (en) | 2019-07-10 |
CN109642798A (zh) | 2019-04-16 |
SG11201901454YA (en) | 2019-03-28 |
JP2018036114A (ja) | 2018-03-08 |
JP6828314B2 (ja) | 2021-02-10 |
CN109642798B (zh) | 2023-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018043267A1 (ja) | 車両用の学習システム及び学習方法 | |
CN109643486B (zh) | 车辆用系统及前进道路推定方法 | |
EP3904188B1 (en) | Travel control method for vehicle and vehicle control system | |
WO2017209112A1 (ja) | 位置捕捉方法及びシステム | |
CN110419067B (zh) | 标识器系统 | |
EP3683547B1 (en) | Position capturing system and position capturing method | |
CN112204352B (zh) | 陀螺仪传感器的校正方法 | |
CN110741285B (zh) | 标识器检测方法及车辆用系统 | |
CN110709906B (zh) | 标识器系统及运用方法 | |
CN109416545B (zh) | 磁性标记检测系统以及磁性标记检测方法 | |
EP3508811B1 (en) | Vehicular orientation detection system | |
EP3989199A1 (en) | Control method and control system for vehicle | |
JP7151747B2 (ja) | 車両用システム及び進路推定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846272 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017846272 Country of ref document: EP Effective date: 20190401 |