WO2018042979A1 - Method for producing conductive film, conductive film, touch panel sensor and touch panel - Google Patents

Method for producing conductive film, conductive film, touch panel sensor and touch panel Download PDF

Info

Publication number
WO2018042979A1
WO2018042979A1 PCT/JP2017/027456 JP2017027456W WO2018042979A1 WO 2018042979 A1 WO2018042979 A1 WO 2018042979A1 JP 2017027456 W JP2017027456 W JP 2017027456W WO 2018042979 A1 WO2018042979 A1 WO 2018042979A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
film
metal film
conductive film
substrate
Prior art date
Application number
PCT/JP2017/027456
Other languages
French (fr)
Japanese (ja)
Inventor
孝彦 一木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018537045A priority Critical patent/JPWO2018042979A1/en
Publication of WO2018042979A1 publication Critical patent/WO2018042979A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a method for producing a conductive film, a conductive film, a touch panel sensor, and a touch panel.
  • a conductive film in which a conductive portion made of a fine metal wire is arranged on a substrate is used for various purposes.
  • the demand for conductive films for capacitive touch panel sensors capable of multipoint detection is rapidly expanding.
  • the user views the display from a distance of several tens of centimeters from the display.
  • it is required to further narrow the width of the fine metal wires.
  • a fine metal wire having a narrow line width is inferior in adhesion to the substrate, and in order to improve this, a conductive layer provided with a layer having an effect of further improving the adhesion between the substrate and the fine metal wire is provided. Sex films have been proposed.
  • Patent Document 1 discloses a transparent conductive film including a transparent electrode layer composed of a fine metal wire pattern on at least one surface of a transparent film substrate, and the fine metal wire is transparent. A first metal layer and a second metal layer in contact with the first metal layer are provided in this order from the film substrate side, and a base metal layer mainly composed of Ni is provided between the transparent film substrate and the first metal layer. A transparent conductive film in which the base metal layer and the first metal layer are in contact with each other is described. Patent Document 1 also describes a method for producing a transparent conductive film.
  • the present inventor has examined the method for producing a transparent conductive film described in Patent Document 1, and when trying to form a fine metal wire having a narrower line width, the formed fine metal wire is easily peeled off from the substrate. Or, it has been clarified that there arises a problem that the metal film that becomes the metal fine wire disappears in the etching performed at the time of forming the metal fine wire.
  • this invention makes it a subject to provide the manufacturing method of the electroconductive film which can manufacture easily the electroconductive film provided with the metal thin wire
  • Another object of the present invention is to provide a conductive film, a touch panel sensor, and a touch panel.
  • a method for producing a conductive film comprising: a substrate; and a conductive portion made of a thin metal wire disposed on at least one main surface of the substrate, wherein the conductive film is formed on at least one main surface of the substrate.
  • a step of forming a first metal film, a step of forming a second metal film containing as a main component a component different from the main component of the first metal film on the first metal film, and on the second metal film A step of forming a resist film having an opening in a region where a fine metal wire is formed, a step of forming a third metal film on the two-metal film in the opening by plating, and a resist film Removing the The step of removing the second metal film using the second metal etchant using the third metal film as a mask, and the step of using the first etchant different from the second etchant using the third metal film as a mask, And a step of removing one metal film in this order, wherein the line width of the opening is
  • [2] The method for producing a conductive film according to [1], wherein the second metal film contains copper or an alloy thereof.
  • [3] The method for producing a conductive film according to [1] or [2], wherein the first metal film contains chromium or an alloy thereof.
  • [4] The method for producing a conductive film according to any one of [1] to [3], wherein the third metal film contains copper or an alloy thereof.
  • [5] The method for producing a conductive film according to any one of [1] to [4], wherein the thickness of the first metal film is less than 20 nm.
  • [6] The method for producing a conductive film according to any one of [1] to [5], wherein the line width of the opening is 1.5 ⁇ m or less.
  • a conductive film comprising a substrate and a conductive portion made of a thin metal wire disposed on at least one main surface of the substrate, wherein the thin metal wire includes a first metal layer, a first metal layer, and a first metal layer.
  • a second metal layer containing a component different from the main component of the metal layer as a main component and a third metal layer are provided in this order from the substrate side, and the line width of the thin metal wire is 2.0 ⁇ m or less,
  • the conductive film in which the ratio of the line width of the second metal layer to the line width of the one metal layer is more than 1.0 and less than 1.3.
  • the conductive film according to [10] wherein the second metal layer contains copper or an alloy thereof.
  • the manufacturing method of the electroconductive film which can manufacture simply the electroconductive film provided with the metal thin wire excellent in the adhesiveness to a board
  • a conductive film, a touch panel sensor, and a touch panel can also be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • active light or “radiation” means, for example, the emission line spectrum of a mercury lamp, and far ultraviolet rays, extreme ultraviolet rays (EUV) represented by excimer lasers, X-rays, and electrons. Means a line.
  • EUV extreme ultraviolet rays
  • light means actinic rays and radiation.
  • exposure in this specification includes not only exposure by mercury lamp, excimer laser, deep ultraviolet ray, X-ray, EUV, but also drawing by particle beam such as electron beam and ion beam. To do.
  • a predetermined metal film (first metal film and second metal film) is used by using two kinds of etching solutions. The point which is removed.
  • a thin metal wire having a narrow line width is formed using the method of removing the base metal layer and the first metal film described in Patent Document 1 with one etching solution, the metal thin wire is etched during the etching. Peeling and / or disappearance of the metal film occurs, and a desired fine metal wire cannot be obtained. Therefore, a desired metal thin wire can be easily manufactured by removing a predetermined metal film stepwise using two kinds of etching solutions.
  • the manufacturing method of an electroconductive film has the following processes in this order.
  • first metal film removal step the procedure of each said process is explained in full detail.
  • the first metal film forming step is a step of forming the first metal film on at least one main surface of the substrate. Specifically, as shown in FIG. 1A, the first metal film 11 is formed on the substrate 101 by performing this step. As will be described later, the first metal layer 11 is obtained by etching the first metal film 11.
  • the first metal layer functions as a base metal layer (base adhesion layer).
  • substrate 101 has a main surface and supports an electroconductive part, the kind in particular will not be restrict
  • the substrate 101 a flexible substrate is preferable, and a flexible insulating substrate is more preferable. Specifically, a resin substrate is preferable.
  • the substrate 101 has a visible light (wavelength of 400 to 800 nm) light transmittance of preferably 60% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more.
  • the material constituting the resin substrate examples include polyethersulfone resin, polyacrylic resin, polyurethane resin, polyester resin (polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate resin, polysulfone resin, polyamide. Resin, polyarylate resin, polyolefin resin, cellulose resin, polyvinyl chloride resin, cycloolefin resin and the like. Of these, cycloolefin resins are preferred because they have more excellent optical properties.
  • the thickness of the substrate 101 is not particularly limited, but is preferably 0.05 to 2 mm, more preferably 0.1 to 1 mm, from the viewpoint of the balance between handleability and thinning.
  • the substrate 101 may have a multilayer structure, and for example, may include a functional film as one layer.
  • the substrate itself may be a functional film.
  • the metal contained in the first metal film 11 is not particularly limited, and a known metal can be used.
  • the first metal film 11 may contain, for example, metals such as copper, chromium, lead, nickel, gold, silver, tin, and zinc, and alloys of these metals.
  • the main component contained in the first metal film 11 include copper, chromium, lead, nickel, gold, silver, tin, and zinc.
  • the main component means a metal having the largest content (mass) among the metals contained in the first metal film 11.
  • the 1st metal film 11 contains chromium or its alloy from the point which the function as a base metal layer of a 1st metal layer is more excellent.
  • the main component of the first metal film 11 is preferably chromium in that the function of the first metal layer as the base metal layer is more excellent.
  • the content of the metal constituting the main component in the first metal film 11 is not particularly limited, but is generally preferably 55% by mass or more, and more preferably 70% by mass or more.
  • the thickness of the first metal film 11 is not particularly limited, but is generally preferably 50 nm or less, more preferably less than 20 nm, and more preferably 15 nm or less. Although it does not restrict
  • the formation method of the first metal film 11 is not particularly limited, and a known formation method can be used. Among these, the sputtering method or the vapor deposition method is preferable because a layer having a denser structure can be easily formed.
  • the second metal film forming step is a step of forming a second metal film containing as a main component a component different from the main component of the first metal film on the first metal film. Specifically, as shown in FIG. 1B, the second metal film 12 is formed on the first metal film 11 by performing this step. As will be described later, the second metal film 12 functions as a seed layer in the plating method. In addition, the second metal layer is obtained by etching the second metal film 12.
  • the second metal film 12 contains a component different from the main component of the first metal film 11 as a main component
  • a known metal can be used.
  • the 1st metal film 11 contains chromium as a main component
  • the 2nd metal film 12 contains components (for example, copper) other than chromium as a main component.
  • the second metal film 12 may contain, for example, metals such as copper, chromium, lead, nickel, gold, silver, tin, and zinc, and alloys of these metals.
  • the main component contained in the second metal film 12 include copper, chromium, lead, nickel, gold, silver, tin, and zinc.
  • the said main component intends the metal with the largest content (mass) among the metals contained in the 2nd metal film 12.
  • the main component of the 2nd metal film 12 is the same as the main component of the 3rd metal film mentioned later by the point which is excellent by affinity with the material which comprises the 3rd metal layer mentioned later.
  • the second metal film 12 preferably contains copper or an alloy thereof in that the function of the second metal film 12 as a seed layer is more excellent.
  • the main component of the second metal film 12 is preferably copper in that the function of the second metal film 12 as a seed layer is more excellent.
  • the content of the metal constituting the main component in the second metal film 12 is not particularly limited, but is generally preferably 80% by mass or more, and more preferably 90% by mass or more.
  • the thickness of the second metal film 12 is not particularly limited, but is generally preferably 300 nm or less. Although it does not restrict
  • the formation method of the second metal film 12 is not particularly limited, and a known formation method can be used. Among them, a sputtering method or a vapor deposition method is preferable because a layer having a denser structure can be easily formed.
  • the resist film forming step is a step of forming a resist film having an opening in a region where a fine metal wire is formed. Specifically, as shown in FIG. 1C, a resist film 20 is formed on the second metal film 12 by performing this step.
  • the resist film 20 includes an opening 21 in a region where a fine metal wire is formed.
  • the region of the opening 21 in the resist film 20 can be appropriately adjusted according to the region where the metal fine wire is to be disposed.
  • a resist film having a mesh-shaped opening is formed.
  • an opening part is formed in a thin wire shape according to a metal fine wire.
  • the line width W of the opening is 2.0 ⁇ m or less.
  • the line width W is preferably 1.5 ⁇ m or less, and more preferably 1.0 ⁇ m or less. By setting the line width W of the opening to 2.0 ⁇ m or less, it is possible to obtain a fine metal line with a narrow line width.
  • the line width W of the opening when the line width W of the opening is 1.5 ⁇ m or less, the line width of the obtained fine metal wire becomes thinner, and when the conductive film is applied to, for example, a touch panel sensor, the metal fine wire is more Hard to see.
  • the lower limit of the line width W of the opening is not particularly limited, but is preferably 0.3 ⁇ m or more.
  • the width of the opening means the size of the thin line portion in a direction orthogonal to the extending direction of the thin line portion of the opening. Through each process described later, a fine metal wire having a line width corresponding to the line width of the opening is formed.
  • the method for forming the resist film 20 on the second metal film 12 is not particularly limited, and a known resist film forming method can be used. Examples thereof include a method having the following steps.
  • a well-known resist film formation composition can be used.
  • the resist film forming composition include a positive-type or negative-type radiation-sensitive composition.
  • the method for coating the resist film forming composition on the second metal film is not particularly limited, and a known coating method can be used.
  • Examples of the method for applying the composition for forming a resist film include a spin coating method, a spray method, a roller coating method, and an immersion method.
  • the resist film forming composition layer may be heated. By heating, an unnecessary solvent remaining in the resist film-forming composition layer is removed, and the resist film-forming composition layer can be made uniform.
  • the method for heating the composition layer for forming a resist film is not particularly limited, and examples thereof include a method for heating the substrate.
  • the heating temperature is not particularly limited, but generally 40 to 160 ° C. is preferable.
  • the thickness of the resist film-forming composition layer is not particularly limited, but the thickness after drying is generally preferably 0.5 to 2.5 ⁇ m.
  • ⁇ Process (b) It does not restrict
  • the line width W of the patterned opening provided in the photomask used in the step (b) is generally preferably 2.0 ⁇ m or less, and 1.5 ⁇ m or less. Is more preferable, and 1.0 ⁇ m or less is still more preferable.
  • the resist film-forming composition layer after exposure may be heated.
  • the heating temperature is not particularly limited, but generally 40 to 160 ° C. is preferable.
  • a method for developing the composition layer for forming a resist film after exposure is not particularly limited, and a known developing method can be used.
  • known development methods include a method using a developer containing an organic solvent or an alkali developer.
  • the developing method include a dipping method, a paddle method, a spray method, and a dynamic dispensing method.
  • the resist film after development may be washed using a rinse solution.
  • the rinse solution is not particularly limited, and a known rinse solution can be used.
  • Examples of the rinse liquid include an organic solvent and water.
  • the third metal film forming step is a step of forming a third metal film on the second metal film in the opening of the resist film by plating. Specifically, as shown in FIG. 1D, by performing this process, the third metal film 13 is formed on the second metal film 12 so as to fill the opening 21 in FIG. 1C. As will be described later, the third metal film 13 becomes a third metal layer in the thin metal wire after a predetermined treatment.
  • the third metal film 13 is formed by a plating method.
  • a plating method a known plating method can be used. Specific examples include an electrolytic plating method and an electroless plating method, and the electrolytic plating method is preferable from the viewpoint of productivity.
  • the metal contained in the third metal film 13 is not particularly limited, and a known metal can be used.
  • the third metal film 13 may contain, for example, metals such as copper, chromium, lead, nickel, gold, silver, tin, and zinc, and alloys of these metals.
  • the main component of the third metal film 13 and the main component of the first metal film 11 are preferably different from each other in that the solubility in the etching solution is different.
  • the 3rd metal film 13 contains copper or its alloy by the point which the electroconductivity of a 3rd metal layer is more excellent.
  • the main component of the third metal film 13 is preferably copper in that the conductivity of the third metal layer is more excellent.
  • the main component means a metal having the largest content (mass) among the metals contained in the third metal film 13.
  • the content of the metal constituting the main component in the third metal film 13 is not particularly limited, but is generally preferably 80% by mass or more, and more preferably 90% by mass or more.
  • the thickness of the third metal film 13 is not particularly limited, but is generally preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and most preferably 1 ⁇ m or less. Although it does not restrict
  • the resist film removing step is a step of removing the resist film. Specifically, as shown in FIG. 1E, by performing this step, a laminate including the first metal film 11, the second metal film 12, and the third metal film 13 on the substrate 101 is obtained. It is done.
  • the method for removing the resist film is not particularly limited, and examples thereof include a method for removing the resist film using a known resist film removing solution.
  • the resist film removing liquid include an organic solvent and an alkaline solution.
  • the method for bringing the resist film removing solution into contact with the resist film is not particularly limited, and examples thereof include a dipping method, a paddle method, a spray method, and a dynamic dispensing method.
  • the second metal film removing step is a step of removing the second metal film using the second metal etchant using the third metal film as a mask. By performing this step, the second metal film in the region where the third metal film is not disposed is removed.
  • 1F shows the conductive film 30 obtained after performing the second metal film removal step and the first metal film removal step described later, and the conductive film 30 includes a substrate 101 and a thin metal wire 103. .
  • the thin metal wire 103 includes a first metal layer 201, a second metal layer 202, and a third metal layer 203 in order from the substrate 101 side.
  • the present inventor when forming a thin metal wire having a narrow line width, in the step of removing the second metal film, as in the transparent conductive film manufacturing method (semi-additive method) described in paragraph 0087 of Patent Document 1. It has been found that if the first metal film is also removed together, a desired fine metal wire cannot be obtained. The reason is that the second metal film (and the third metal film) is not intended compared to the first metal film due to the difference in solubility in the etchant between the first metal film and the second metal film. It is presumed that this is because a large amount of the first metal film is unintentionally removed compared to the second metal film.
  • the line width of the first metal layer 201A is larger than the line width of the second metal layer 202A and the third metal layer 203A.
  • the first metal film is disposed on the substrate 101 as shown in FIG. 6 (cross-sectional view in the width direction of the fine metal wire).
  • the line width of the first metal layer 201B is smaller than the line widths of the second metal layer 202B and the third metal layer 203B.
  • the line width of the second metal film (and the third metal film) becomes thin, and the electrical resistivity of the metal thin line becomes large, and / or during etching. In addition, the second metal film (and the third metal film) is likely to fail.
  • the adhesion between the fine metal wire and the substrate tends to be insufficient. If the adhesion between the fine metal wires and the substrate is insufficient, the fine metal wires are easily peeled from the substrate. When the fine metal wires are peeled off from the substrate, the fine metal wires are likely to be disconnected at that portion.
  • the manufacturing method of the conductive film which concerns on embodiment of this invention removes the 2nd metal film using a 2nd etching liquid (2nd metal film removal process), and 1st using a 1st etching liquid.
  • a step of removing the metal film (second metal film removal step) is provided in this order.
  • the first etching solution and the second etching solution mean different etching solutions.
  • the different etching liquids mean etching liquids having different kinds of components, ratios (compositions) of the components to be contained, component contents, and / or temperatures, and the like. It is preferable that the type, the ratio of components to be contained, and / or the content of components are different.
  • the second metal film removal step removes the “second metal film in the region where the third metal film is not laminated”, in other words, “the second metal film in the region where the resist film is laminated”. Is preferably removed in the first metal film removal step, in other words, “the first metal film in the region where the second metal film is not laminated”, in other words, “the first metal film removed in the second metal film removal step”.
  • the “first metal film in the region where the two metal films have been laminated” is preferable.
  • FIG. It is presumed that a problem such as 6 is not likely to occur due to the removal of the first metal film and the second metal film using a single etching solution.
  • the second etching solution is not particularly limited as long as the second metal film can be dissolved and removed, and a known etching solution can be used.
  • Known etching solutions include, for example, ferric chloride solution, cupric chloride solution, ammonia alkali solution, sulfuric acid-hydrogen peroxide mixture, phosphoric acid-hydrogen peroxide mixture, and the like.
  • the point of a 2nd etching liquid is a point with which the electroconductive film provided with the metal fine wire which was more excellent in the adhesiveness to a board
  • the etching rate for the second metal film is preferably 300 nm / min (hereinafter, “Anm is expressed as“ Anm / min ”per minute”) or less, more preferably 200 nm / min or less.
  • the lower limit of the etching rate for the second metal film is not particularly limited, but is generally preferably 30 nm / min or more.
  • the etching rate of the second etching solution with respect to the second metal film can be adjusted by adjusting the concentration and temperature of the second etching solution.
  • the etching rate of each metal film of each etching liquid means the etching rate measured by the following method.
  • the measurement of the etching rate with respect to the metal film by the etching liquid in this specification shall be performed by the following method.
  • a model substrate is prepared in which a target metal film is formed with a thickness of 10 ⁇ m on a silicon wafer.
  • the thickness of the metal film was measured after the model substrate was immersed in the target etching solution for 5 minutes, and the thickness of the metal film decreased before and after the immersion was calculated, and this was divided by 5 (minutes).
  • a surface shape measuring device Dektak 6M manufactured by Veeco
  • the ratio of the etching rate for the first metal film (ER1) of the second etching solution to the “etching rate for the second metal film (ER2)” of the second etching solution is not particularly limited, but the second etching solution is difficult to dissolve the first metal film, in other words, the second metal film is selectively dissolved.
  • 0.01 or less is preferable, 0.002 or less is more preferable, and less than 0.0005 is even more preferable.
  • limit especially as a lower limit of ER1 / ER2 of a 2nd etching liquid Generally 0 or more is preferable.
  • ER1 / ER2 of the second etching solution is 0 means a case where the second etching solution does not substantially dissolve the first metal film.
  • the ER1 / ER2 of the second etching solution is less than 0.0005, a conductive film including a fine metal wire that is more excellent in adhesion to the substrate can be obtained more easily.
  • the method for etching the second metal film using the second etching solution is not particularly limited, and a known method can be used.
  • the first metal film removal step is a step of removing the first metal film using the first etching solution. By performing this step, the first metal film in the region where the third metal film is not disposed is removed.
  • the first etching solution is not particularly limited as long as the first metal film can be dissolved and removed, and a known etching solution can be used. Examples of known etching solutions include cerium diammonium nitrate (ammonium cerium nitrate) -perchloric acid-water mixture, ammonium cerium nitrate-nitric acid-water mixture, and the like.
  • the point of a 1st etching liquid is a point by which the electroconductive film provided with the metal fine wire excellent by the adhesiveness to a board
  • the etching rate for the first metal film is preferably 400 nm / min or less, more preferably 200 nm / min or less, and still more preferably 100 nm / min.
  • the lower limit of the etching rate for the first metal film is not particularly limited, but generally 10 nm / min is preferable.
  • the etching rate of the first etching solution with respect to the first metal film can be adjusted by adjusting the concentration and temperature of the first etching solution.
  • the ratio of the etching rate of the first etching solution to the second metal film (ER2) to the etching rate of the first etching solution to the first metal film (ER1) (etching rate of the second metal film / first
  • the etching rate for one metal film, ER2 / ER1) is not particularly limited, but is 0.01 in that the first etching solution hardly dissolves the second metal film (selectively dissolves the first metal film).
  • the following is preferable, and 0.002 or less is more preferable. Although it does not restrict
  • the case where ER2 / ER1 of the first etching solution is 0 is intended when the first etching solution does not substantially dissolve the second metal film.
  • the method for etching the first metal film using the first etching solution is not particularly limited, and a known method can be used.
  • the conductive film of the present invention includes a substrate and a conductive portion made of a fine metal wire disposed on at least one main surface of the substrate.
  • the conductive portion is usually composed of a plurality of fine metal wires.
  • the main surface means a surface having the largest area facing each other among the surfaces constituting the substrate, and corresponds to a surface facing the thickness direction of the substrate.
  • FIG. 2A is a top view of one embodiment of the conductive film
  • FIG. 2B is a cross-sectional view taken along the line AA.
  • FIG. 3 is a partially enlarged view of a conductive portion in the conductive film.
  • the conductive film 100 includes a substrate 101 and a conductive portion 102 disposed on one main surface of the substrate 101.
  • the conductive film may have a three-dimensional shape (three-dimensional shape).
  • the three-dimensional shape include a three-dimensional shape containing a curved surface, and more specifically, a hemispherical shape, a kamaboko shape, a wavy shape, an uneven shape, and a cylindrical shape.
  • the conductive portion 102 is disposed on one main surface of the substrate 101, but the embodiment is not limited thereto.
  • the conductive portion 102 may be disposed on both main surfaces of the substrate 101.
  • the conductive portions 102 are arranged in the form of six stripes, but the present invention is not limited to this configuration, and other arrangements may be used.
  • FIG. 3 is a partially enlarged top view of the conductive portion 102, and the conductive portion 102 includes a mesh pattern including a plurality of fine metal wires 103 and a plurality of openings 104 formed by intersecting metal fine wires 103.
  • the line width of the fine metal wire 103 is 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and still more preferably 1.0 ⁇ m or less.
  • the lower limit of the line width of the fine metal wire 103 is not particularly limited, but generally 0.2 ⁇ m or more is preferable.
  • the line width of the thin metal wire 103 is 2.0 ⁇ m or less, for example, when a conductive film is applied to the touch panel sensor, the user of the touch panel is less likely to visually recognize the thin metal wire.
  • the line width of the fine metal wire 103 refers to a first metal layer and a second metal layer, which will be described later, in a cross section in the width direction of the fine metal wire 103 (cross section orthogonal to the extending direction of the fine metal wire).
  • the maximum line width among the line widths of the third metal layer is intended. That is, the line widths of the first metal layer, the second metal layer, and the third metal layer are equal to or smaller than the line width of the metal thin wire 103.
  • the form of the first to third metal layers and the method for measuring the line width will be described later.
  • the thickness of the fine metal wire 103 is not particularly limited, but is generally preferably 0.1 to 5.0 ⁇ m, and preferably 0.2 to 2.0 ⁇ m from the viewpoint of conductivity.
  • the length X of one side of the opening 104 is preferably 20 to 250 ⁇ m.
  • the opening 104 has a substantially rhombus shape.
  • other polygonal shapes for example, a triangle, a quadrangle, a hexagon, and a random polygon
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • the arc shape for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inwardly convex arc shape.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
  • the conductive portion 102 has a mesh pattern, but is not limited to this form.
  • FIG. 4 is a cross-sectional view of the fine metal wire 103.
  • the thin metal wire 103 includes a first metal layer 201, a second metal layer 202, and a third metal layer 203 in order from the substrate 101 side.
  • the shapes of the first metal layer 201, the second metal layer 202, and the third metal layer 203 are all thin wires corresponding to the shape of the metal thin wires 103.
  • the first metal layer 201 has conductivity, and has an action (adhesion improving action) for holding the second metal layer 202 disposed thereon on the substrate. That is, the first metal layer 201 functions as a base metal layer. As described above, the first metal layer 201 is formed by performing an etching process on the first metal film.
  • the kind of metal contained in the first metal layer 201 is the same as the kind of metal contained in the first metal film described above.
  • the suitable range of the thickness of the 1st metal layer 201 is the same as the suitable range of the thickness of the 1st metal film mentioned above.
  • the thickness of the 1st metal layer in an electroconductive film can also be measured in the case of the measurement of the line
  • the line width of the first metal layer 201 is 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the line width of the first metal layer 201 is obtained by embedding the metal thin wire 103 together with the substrate 101 in a resin and cutting it with an ultramicrotome in the width direction (direction perpendicular to the extending direction of the metal thin wire). It means the line width measured by observing with a scanning electron microscope (S-5500, manufactured by Hitachi High-Technologies Corporation) after depositing carbon on the obtained cross section. The same applies to the line widths of the second metal layer 202 and the third metal layer 203 described later.
  • the relationship between the first metal layer 201 and the line width of the second metal layer 202 described later is the ratio of the line width of the second metal layer 202 to the line width of the first metal layer 201 (the line of the second metal layer).
  • Width / line width of the first metal layer is preferably more than 1.0, more preferably 1.01 or more, preferably less than 1.3, and less than 1.25. Is more preferable and 1.2 or less is more preferable.
  • the line width of the second metal layer / the line width of the first metal layer is greater than 1.0, the fine metal wire included in the conductive film has better visibility.
  • the second metal layer 202 has a function of improving the adhesion of the third metal layer 203 and a seed layer when the third metal layer 203 is formed. As described above, the second metal layer 202 is formed by etching the second metal film. The kind of metal contained in the second metal layer 202 is the same as the kind of metal contained in the second metal film described above.
  • the main component of the second metal layer 202 is preferably the same as the main component of the third metal layer 203 described later in that it is more excellent in affinity with the material constituting the third metal layer 203 described later.
  • the suitable range of the thickness of the 2nd metal layer 202 is the same as the suitable range of the thickness of the 2nd metal film mentioned above.
  • the thickness of the 2nd metal layer in an electroconductive film can also be measured in the case of the measurement of the line
  • the line width of the second metal layer 202 is 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the line width of the second metal layer 202 preferably satisfies the relationship with the line width of the first metal layer 201 already described.
  • the third metal layer 203 has conductivity and has an action of ensuring the conduction of the fine metal wires.
  • the kind of metal contained in the third metal layer 203 is the same as the kind of metal contained in the third metal film described above.
  • the preferred range of the thickness of the third metal layer 203 is the same as the preferred range of the thickness of the third metal film described above.
  • the thickness of the 3rd metal layer in an electroconductive film can also be measured in the case of the measurement of the line
  • the line width of the third metal layer 203 is 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the conductive film manufactured by the above manufacturing method can be used for various applications. Applications include, for example, various electrode films, heat generating sheets, and printed wiring boards. Especially, it is preferable to use an electroconductive film for a touch panel sensor, and it is more preferable to use it for a capacitive touch panel sensor. In a touch panel including the conductive film as a touch panel sensor, it is difficult to visually recognize a fine metal wire. Note that examples of the configuration of the touch panel include a touch panel module described in paragraphs 0020 to 0027 of JP-A-2015-195004, and the above contents are incorporated in this specification.
  • Example 1 On the COP film (cycloolefin polymer film, thickness 80 ⁇ m), Cr was formed to a thickness of 10 nm using a sputtering apparatus to obtain a first metal film. Subsequently, Cu was formed to a thickness of 50 nm on the first metal film to obtain a second metal film. Next, a resist film forming composition (“FHi-622BC”, manufactured by Fuji Film Co., Ltd., viscosity 11 mPa ⁇ s) is adjusted by adjusting the rotation speed of the spin coater so that the thickness after drying becomes 1 ⁇ m. It apply
  • FHi-622BC manufactured by Fuji Film Co., Ltd., viscosity 11 mPa ⁇ s
  • the resist film forming composition layer is irradiated with light having a wavelength of 365 nm (exposure amount: 16 mW / cm 2 ) using a parallel light exposure machine through a photomask having a linear opening with a line width of 0.8 ⁇ m. Irradiation was performed for 2 seconds, and heating was performed at 100 ° C. for 1 minute (post-baking) to obtain a composition layer for forming a resist film after exposure. Next, the resist film-forming composition after exposure was developed with a 0.5 M aqueous sodium hydroxide solution to obtain a patterned resist film. The patterned opening of the resist film had a line width of 1.0 ⁇ m ⁇ 0.1 ⁇ m.
  • a copper sulfate high-throw bath (Top Lucina as an additive) Electroplating was performed using HT-A and Top Lucina HT-B (both manufactured by Okuno Pharmaceutical Co., Ltd.). As electroplating conditions, the current density was 3 A / dm 2 and the conduction time was 20 seconds. A third metal film was formed on the second metal film in the pattern-shaped opening by electroplating. That is, a patterned third metal film was obtained. At this time, the thickness of the third metal film was 300 nm.
  • the resist film was peeled off using 1M sodium hydroxide aqueous solution.
  • the second metal film was prepared using a second etching solution (Cu etching solution, “Cu etchant” manufactured by Wako Pure Chemical Industries, Ltd.) whose concentration was adjusted so that the etching rate for the second metal film was 200 nm / min. Was etched.
  • the first etching solution manufactured by Nippon Chemical Industry Co., Ltd .; Cr etching solution; “alkaline chromium etching solution”; the stock solution was used; the etching rate for the first metal film was 100 nm / min
  • the metal film was etched, and the electroconductive film 1 provided with a board
  • Example 2 A conductive film 2 was obtained in the same manner as in Example 1 except that the thickness of the first metal film was 20 nm.
  • Example 3 The concentration of the second etching solution was adjusted so that the etching rate for the second metal film was 500 nm / min, and the concentration of the first etching solution was set so that the etching rate for the first metal film was 100 nm / min. Except having adjusted, the conductive film 3 was obtained by the same operation as Example 1. FIG. Compared to the conductive film 1, the line width and thickness of the fine metal wires were uneven. Moreover, although disconnection was confirmed in part, it was within a practical range.
  • Example 4 The concentration of the second etching solution is adjusted so that the etching rate for the second metal film is 200 nm / min, and the concentration of the first etching solution is 400 nm / min for the etching rate for the first metal film. Except having adjusted so, the electroconductive film 4 was obtained by operation similar to Example 1. FIG. Compared with the conductive film 1, the adhesion was reduced, but was within the practical range.
  • the first metal film was formed using a copper alloy so as to have a thickness of 15 nm, and the second etching liquid (manufactured by Wako Pure Chemical Industries, Ltd.) whose concentration was adjusted so that the etching rate for the second metal film was 200 nm / min.
  • the first metal film and the second metal film were etched using only a Cu etching solution, “Cu etchant”), and the same operation as in Example 1 was performed.
  • the metal color derived from the second metal film indicates that the second metal film of the part other than the part where the third metal film is laminated (the part covered with the resist film) is completely removed. It went until it could confirm visually that disappeared. As a result, the fine metal wires were peeled in the etching solution.
  • the main component of the copper alloy was copper, and the copper content was 70% by mass of the entire copper alloy.
  • the first metal film was formed to have a thickness of 15 nm using a copper alloy (similar to that used in Comparative Example 1), and the etching rate for the second metal film was 200 nm / min as the second etching solution.
  • ferric chloride manufactured by Wako Pure Chemical Industries, Ltd.
  • aqueous solution with adjusted concentration and etching the first metal film and the second metal film using only the second etching solution. Except for this, the same operation as in Example 1 was performed.
  • the second metal film of the portion other than the portion where the third metal film is laminated is completely removed, it can be visually confirmed that the metal color derived from the second metal film has disappeared. went. As a result, the metal color derived from the third metal film in the thin metal wire also disappeared.
  • Comparative Example 3 The same operation as in Comparative Example 1 was performed except that the first metal film was formed to have a thickness of 35 nm using a copper alloy (similar to that used in Comparative Example 1). As a result, the fine metal wires were peeled in the etching solution.
  • Comparative Example 4 The same operation as in Comparative Example 2 was performed except that the first metal film was formed to have a thickness of 35 nm using a copper alloy (similar to that used in Comparative Example 1). As a result, the metal color derived from the third metal film in the thin metal wire also disappeared.
  • Comparative Example 5 The same operation as in Comparative Example 1 was performed except that the first metal film was not formed. As a result, the third metal film after etching maintained the shape of the third metal film before etching. However, in the tape peeling test carried out by the method described later, the fine metal wires were largely peeled off.
  • the first metal film is formed using Cr so as to have a thickness of 10 nm, and the second metal film is used only with a second etching solution whose concentration is adjusted to an etching rate of 200 nm / min.
  • the same operation as in Example 1 was performed except that the second metal film was etched.
  • the 2nd etching liquid used what mixed ammonium cerium (IV) nitrate and nitric acid, and diluted with the pure water. In Table 1, it described as "ammonium cerium nitrate liquid.” All reagents are manufactured by Tokyo Chemical Industry Co., Ltd.
  • the metal color derived from the second metal film indicates that the second metal film of the part other than the part where the third metal film is laminated (the part covered with the resist film) is completely removed. It went until it could confirm visually that disappeared. As a result, the metal color derived from the third metal film in the thin metal wire also disappeared.
  • the etching rate with respect to the 1st metal film of the 1st etching liquid used in the above was measured with the following method. Other etching rates were also measured by the same method as described below. The measurement results are also shown in Table 1.
  • a model substrate in which a first metal film was formed with a thickness of 10 ⁇ m on a silicon wafer was prepared.
  • the thickness of the first metal film after the model substrate was immersed in the first etching solution for 5 minutes was measured, and the thickness of the first metal film decreased before and after the immersion was calculated.
  • the etching rate was calculated.
  • the surface shape measuring apparatus Dektak6M (made by Veeco) was used for the measurement of thickness.
  • A Peeling of the fine metal wire was not observed.
  • B Peeling of the fine metal wire was observed, but the peeled area was less than 1%.
  • C Peeling of fine metal wires was observed, and the peeled area was 1% or more.
  • D The tape peeling test could not be performed because the fine metal wires had already peeled and / or the fine metal wires had disappeared.
  • Table 1 shows the conditions in the metal film forming steps according to the examples and comparative examples, the type and etching rate of the etching solution used, the line width of the obtained conductive film, and the evaluation (Part 1). It was described in each line over (No. 4).
  • the first metal film is made of Cr and has a thickness of 10 nm
  • the second metal film is made of Cu and has a thickness of 50 nm
  • the third metal film is made of Cu and has a thickness of 300 nm. .
  • the type of the second etching solution is a Cu etching solution
  • the etching rate (ER2) of the second etching solution to the second metal film is 200 nm / min
  • the etching rate (ER1) of the second etching solution to the first metal film Is less than 0.1 nm / min, and as a result, the ER1 / ER2 of the second etchant is less than 0.0005.
  • the first etching solution is a Cr etching solution
  • the etching rate (ER1) of the first etching solution to the first metal film is 100 nm / min
  • the etching rate (ER2) of the first etching solution to the second metal film is As a result, the ER2 / ER1 of the first etching solution is less than 0.01.
  • the line width of the thin metal wire in the obtained conductive film is 1 ⁇ m
  • the line width of the first metal layer is 0.9 ⁇ m
  • the line width of the second metal layer is 1 ⁇ m
  • the line width of the third metal layer is 1 ⁇ m.
  • the line width of the second metal layer / the line width of the first metal layer was 1.11.
  • the formability of the fine metal wire was “A”
  • the adhesion of the fine metal wire to the substrate was “A”.
  • Other examples and comparative examples were also described in the same manner as described above.
  • the manufacturing method of the conductive film of Example 1 whose etching rate with respect to the 2nd metal film of a 2nd etching liquid is 300 nm or less per minute was more excellent compared with the manufacturing method of the conductive film of Example 3. It turned out that the electroconductive film which has the metal fine wire which has a shape can be manufactured.
  • the manufacturing method of the conductive film of Example 1 whose etching rate with respect to the 1st metal film of a 1st etching liquid is 200 nm or less per minute is compared with the manufacturing method of the conductive film of Example 4, to a board
  • the ratio of the etching rate of the second etching solution to the first metal film with respect to the etching rate of the second etching solution to the second metal film is 0.0005 or less.

Abstract

The present invention addresses the problem of easily producing a conductive film which is provided with a thin metal wire that has a narrow line width, while exhibiting excellent adhesion to a substrate. A method for producing a conductive film according to the present invention sequentially comprises, in the following order: a step for forming a first metal film on at least one main surface of a substrate; a step for forming a second metal film, which contains a main component that is different from the main component of the first metal film, on the first metal film; a step for forming a resist film, which is provided with an opening part having a line width of 2.0 μm or less, in a region on the second metal film, where a thin metal wire is to be formed; a step for forming a third metal film; a step for removing the resist film; a step for removing the second metal film with use of a second etching liquid, while using the third metal film as a mask; and a step for removing the first metal film with use of a first etching liquid, while using the third metal film as a mask.

Description

導電性フィルムの製造方法、導電性フィルム、タッチパネルセンサー、及び、タッチパネルManufacturing method of conductive film, conductive film, touch panel sensor, and touch panel
 本発明は、導電性フィルムの製造方法、導電性フィルム、タッチパネルセンサー、及び、タッチパネルに関する。 The present invention relates to a method for producing a conductive film, a conductive film, a touch panel sensor, and a touch panel.
 基板上に金属細線からなる導電部が配置された導電性フィルムは、種々の用途に使用されている。例えば、近年、携帯電話又は携帯ゲーム機器等へのタッチパネルの搭載率の上昇に伴い、多点検出が可能な静電容量方式のタッチパネルセンサー用として導電性フィルムの需要が急速に拡大している。 A conductive film in which a conductive portion made of a fine metal wire is arranged on a substrate is used for various purposes. For example, in recent years, with the increase in the mounting rate of touch panels on mobile phones or portable game devices, the demand for conductive films for capacitive touch panel sensors capable of multipoint detection is rapidly expanding.
 タッチパネルを備えるディスプレイを使用する場合、使用者は、ディスプレイから数十cmの距離からディスプレイを見ることになる。このとき、金属細線が使用者から視認されないようにするため、金属細線の線幅をより細くすることが求められている。
 一般に、線幅の細い金属細線は、基板との密着性が劣り、これを改善するために、基板と金属細線との間に、更に両者の密着性を向上する作用を有する層を設けた導電性フィルムが提案されている。
When using a display having a touch panel, the user views the display from a distance of several tens of centimeters from the display. At this time, in order to prevent the fine metal wires from being visually recognized by the user, it is required to further narrow the width of the fine metal wires.
In general, a fine metal wire having a narrow line width is inferior in adhesion to the substrate, and in order to improve this, a conductive layer provided with a layer having an effect of further improving the adhesion between the substrate and the fine metal wire is provided. Sex films have been proposed.
 上記のような導電性フィルムとしては、特許文献1には、透明フィルム基板の少なくとも一方の面上に、金属細線パターンからなる透明電極層を備える透明導電性フィルムであって、金属細線が、透明フィルム基板側から第一金属層、及び、第一金属層に接する第二金属層をこの順に備え、透明フィルム基板と第一金属層との間に、Niを主成分とする下地金属層を備え、下地金属層と第一金属層とが接している、透明導電性フィルム、が記載されている。また、特許文献1には、透明導電性フィルムの製造方法も記載されている。 As the conductive film as described above, Patent Document 1 discloses a transparent conductive film including a transparent electrode layer composed of a fine metal wire pattern on at least one surface of a transparent film substrate, and the fine metal wire is transparent. A first metal layer and a second metal layer in contact with the first metal layer are provided in this order from the film substrate side, and a base metal layer mainly composed of Ni is provided between the transparent film substrate and the first metal layer. A transparent conductive film in which the base metal layer and the first metal layer are in contact with each other is described. Patent Document 1 also describes a method for producing a transparent conductive film.
国際公開第2014/156489号International Publication No. 2014/156489
 本発明者は、特許文献1に記載された透明導電性フィルムの製造方法について検討したところ、より線幅が細い金属細線を形成しようとすると、形成された金属細線が基板から剥離しやすいという問題、又は、金属細線の形成時に実施するエッチングの際に金属細線となる金属膜が消失するという問題が生じることを明らかとした。 The present inventor has examined the method for producing a transparent conductive film described in Patent Document 1, and when trying to form a fine metal wire having a narrower line width, the formed fine metal wire is easily peeled off from the substrate. Or, it has been clarified that there arises a problem that the metal film that becomes the metal fine wire disappears in the etching performed at the time of forming the metal fine wire.
 そこで、本発明は、線幅が細く、基板への密着性に優れた金属細線を備える導電性フィルムを簡便に製造できる、導電性フィルムの製造方法の提供を課題とする。
 また、本発明は、導電性フィルム、タッチパネルセンサー、及び、タッチパネルの提供も課題とする。
Then, this invention makes it a subject to provide the manufacturing method of the electroconductive film which can manufacture easily the electroconductive film provided with the metal thin wire | line with the narrow line | wire width and excellent adhesiveness to a board | substrate.
Another object of the present invention is to provide a conductive film, a touch panel sensor, and a touch panel.
 本発明者は、上記課題を達成すべく鋭意検討した結果、以下の構成により上記課題を達成することができることを見出した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that the above-mentioned problems can be achieved by the following configuration.
 [1] 基板と、基板の少なくとも一方の主面上に配置された、金属細線から構成された導電部と、を備える導電性フィルムの製造方法であって、基板の少なくとも一方の主面上に、第一金属膜を形成する工程と、第一金属膜上に、第一金属膜の主成分とは異なる成分を主成分として含有する第二金属膜を形成する工程と、第二金属膜上に、金属細線が形成される領域に開口部を備えるレジスト膜を形成する工程と、めっき法により、開口部内であって、二金属膜上に、第三金属膜を形成する工程と、レジスト膜を除去する工程と、
 第三金属膜をマスクとして、第二エッチング液を用いて、第二金属膜を除去する工程と、第三金属膜をマスクとして、第二エッチング液とは異なる第一エッチング液を用いて、第一金属膜を除去する工程と、をこの順に有し、開口部の線幅が、2.0μm以下である、導電性フィルムの製造方法。
 [2] 第二金属膜が銅又はその合金を含有する、[1]に記載の導電性フィルムの製造方法。
 [3] 第一金属膜がクロム又はその合金を含有する、[1]又は[2]に記載の導電性フィルムの製造方法。
 [4] 第三金属膜が銅又はその合金を含有する、[1]~[3]のいずれかに記載の導電性フィルムの製造方法。
 [5] 第一金属膜の厚みが20nm未満である、[1]~[4]のいずれかに記載の導電性フィルムの製造方法。
 [6] 開口部の線幅が1.5μm以下である、[1]~[5]のいずれかに記載の導電性フィルムの製造方法。
 [7] 第二エッチング液の第二金属膜に対するエッチングレートが、毎分300nm以下である、[1]~[6]のいずれかに記載の導電性フィルムの製造方法。
 [8] 第一エッチング液の第一金属膜に対するエッチングレートが、毎分200nm以下である、[1]~[7]のいずれかに記載の導電性フィルムの製造方法。
 [9] 第二エッチング液の第二金属膜に対するエッチングレートに対する、第二エッチング液の第一金属膜に対するエッチングレートの比が、0.0005以下である、[1]~[8]のいずれかに記載の導電性フィルムの製造方法。
 [10] 基板と、基板の少なくとも一方の主面上に配置された、金属細線から構成された導電部と、を備える導電性フィルムであって、金属細線が、第一金属層と、第一金属層の主成分とは異なる成分を主成分として含有する第二金属層と、第三金属層と、を基板側からこの順に備え、金属細線の線幅が、2.0μm以下であり、第一金属層の線幅に対する、第二金属層の線幅の比が、1.0超、1.3未満である、導電性フィルム。
 [11] 第二金属層が銅又はその合金を含有する、[10]に記載の導電性フィルム。
 [12] 第一金属層がクロム又はその合金を含有する、[10]又は[11]に記載の導電性フィルム。
 [13] 第三金属層が銅又はその合金を含有する、[10]~[12]のいずれかに記載の導電性フィルム。
 [14] 第一金属層の厚みが20nm以下である、[10]~[13]のいずれかに記載の導電性フィルム。
 [15] 金属細線の線幅が1.5μm以下である、[10]~[14]のいずれかに記載の導電性フィルム。
 [16] [10]~[15]のいずれかに記載の導電性フィルムを含有する、タッチパネルセンサー。
 [17] [16]に記載のタッチパネルセンサーを含有する、タッチパネル。
[1] A method for producing a conductive film, comprising: a substrate; and a conductive portion made of a thin metal wire disposed on at least one main surface of the substrate, wherein the conductive film is formed on at least one main surface of the substrate. A step of forming a first metal film, a step of forming a second metal film containing as a main component a component different from the main component of the first metal film on the first metal film, and on the second metal film A step of forming a resist film having an opening in a region where a fine metal wire is formed, a step of forming a third metal film on the two-metal film in the opening by plating, and a resist film Removing the
The step of removing the second metal film using the second metal etchant using the third metal film as a mask, and the step of using the first etchant different from the second etchant using the third metal film as a mask, And a step of removing one metal film in this order, wherein the line width of the opening is 2.0 μm or less.
[2] The method for producing a conductive film according to [1], wherein the second metal film contains copper or an alloy thereof.
[3] The method for producing a conductive film according to [1] or [2], wherein the first metal film contains chromium or an alloy thereof.
[4] The method for producing a conductive film according to any one of [1] to [3], wherein the third metal film contains copper or an alloy thereof.
[5] The method for producing a conductive film according to any one of [1] to [4], wherein the thickness of the first metal film is less than 20 nm.
[6] The method for producing a conductive film according to any one of [1] to [5], wherein the line width of the opening is 1.5 μm or less.
[7] The method for producing a conductive film according to any one of [1] to [6], wherein an etching rate of the second etching liquid with respect to the second metal film is 300 nm or less per minute.
[8] The method for producing a conductive film according to any one of [1] to [7], wherein an etching rate of the first etching solution with respect to the first metal film is 200 nm or less per minute.
[9] Any of [1] to [8], wherein a ratio of an etching rate of the second etching solution to the first metal film to an etching rate of the second etching solution to the second metal film is 0.0005 or less. The manufacturing method of the electroconductive film of description.
[10] A conductive film comprising a substrate and a conductive portion made of a thin metal wire disposed on at least one main surface of the substrate, wherein the thin metal wire includes a first metal layer, a first metal layer, and a first metal layer. A second metal layer containing a component different from the main component of the metal layer as a main component and a third metal layer are provided in this order from the substrate side, and the line width of the thin metal wire is 2.0 μm or less, The conductive film in which the ratio of the line width of the second metal layer to the line width of the one metal layer is more than 1.0 and less than 1.3.
[11] The conductive film according to [10], wherein the second metal layer contains copper or an alloy thereof.
[12] The conductive film according to [10] or [11], wherein the first metal layer contains chromium or an alloy thereof.
[13] The conductive film according to any one of [10] to [12], wherein the third metal layer contains copper or an alloy thereof.
[14] The conductive film according to any one of [10] to [13], wherein the thickness of the first metal layer is 20 nm or less.
[15] The conductive film according to any one of [10] to [14], wherein the thin metal wire has a line width of 1.5 μm or less.
[16] A touch panel sensor comprising the conductive film according to any one of [10] to [15].
[17] A touch panel containing the touch panel sensor according to [16].
 本発明によれば、線幅が細く、基板への密着性に優れた金属細線を備える導電性フィルムを簡便に製造できる、導電性フィルムの製造方法を提供できる。
 また、本発明によれば、導電性フィルム、タッチパネルセンサー、及び、タッチパネルも提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electroconductive film which can manufacture simply the electroconductive film provided with the metal thin wire excellent in the adhesiveness to a board | substrate with a narrow line | wire width can be provided.
Moreover, according to this invention, a conductive film, a touch panel sensor, and a touch panel can also be provided.
第一金属膜形成工程を実施して得られる第一金属膜付き基板の断面図である。It is sectional drawing of the board | substrate with a 1st metal film obtained by implementing a 1st metal film formation process. 第二金属膜形成工程を実施して得られる第二金属膜付き基板の断面図である。It is sectional drawing of the board | substrate with a 2nd metal film obtained by implementing a 2nd metal film formation process. レジスト膜形成工程を実施して得られるレジスト膜付き基板の断面図である。It is sectional drawing of the board | substrate with a resist film obtained by implementing a resist film formation process. 第三金属膜形成工程を実施して得られる第三金属膜付き基板の断面図である。It is sectional drawing of the board | substrate with a 3rd metal film obtained by implementing a 3rd metal film formation process. レジスト膜除去工程を実施して得られる積層体の断面図である。It is sectional drawing of the laminated body obtained by implementing a resist film removal process. 第二金属膜除去工程及び第一金属膜除去工程を実施して得られる導電性フィルムの断面図である。It is sectional drawing of the electroconductive film obtained by implementing a 2nd metal film removal process and a 1st metal film removal process. 導電性フィルムの一実施形態の上面図である。It is a top view of one embodiment of a conductive film. 図2A中のA-A断面における断面図である。It is sectional drawing in the AA cross section in FIG. 2A. 導電性フィルム中の導電部の一部拡大図である。It is a partial enlarged view of the electroconductive part in an electroconductive film. 金属細線の一部拡大断面図である。It is a partially expanded sectional view of a metal fine wire. 従来方法により製造される導電性フィルムの一実施形態の断面図である。It is sectional drawing of one Embodiment of the electroconductive film manufactured by the conventional method. 従来方法により製造される導電性フィルムの他の実施形態の断面図である。It is sectional drawing of other embodiment of the electroconductive film manufactured by the conventional method.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、及びエキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme ultraviolet)、X線、及び、電子線等を意味する。また本明細書において光とは、活性光線及び放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザー、遠紫外線、X線、及び、EUV等による露光のみならず、電子線及びイオンビーム等の粒子線による描画も包含する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
Further, in the present specification, “active light” or “radiation” means, for example, the emission line spectrum of a mercury lamp, and far ultraviolet rays, extreme ultraviolet rays (EUV) represented by excimer lasers, X-rays, and electrons. Means a line. In the present specification, light means actinic rays and radiation. Unless otherwise specified, “exposure” in this specification includes not only exposure by mercury lamp, excimer laser, deep ultraviolet ray, X-ray, EUV, but also drawing by particle beam such as electron beam and ion beam. To do.
 本発明の導電性フィルムの製造方法の特徴点としては、線幅の細い金属細線を製造する際に、2種のエッチング液を用いて所定の金属膜(第一金属膜及び第二金属膜)を除去している点が挙げられる。後述するように、特許文献1に記載される下地金属層と第一金属膜とを一つのエッチング液で除去する方法を用いて線幅の細い金属細線を形成しようとすると、エッチング中に金属細線の剥離、及び/又は、金属膜の消失が生じてしまい、所望の金属細線が得られない。そこで、2種のエッチング液を用いて段階的に所定の金属膜を除去することで、所望の金属細線を簡便に製造できる。 As a feature of the method for producing a conductive film of the present invention, when producing a thin metal wire having a narrow line width, a predetermined metal film (first metal film and second metal film) is used by using two kinds of etching solutions. The point which is removed. As will be described later, when a thin metal wire having a narrow line width is formed using the method of removing the base metal layer and the first metal film described in Patent Document 1 with one etching solution, the metal thin wire is etched during the etching. Peeling and / or disappearance of the metal film occurs, and a desired fine metal wire cannot be obtained. Therefore, a desired metal thin wire can be easily manufactured by removing a predetermined metal film stepwise using two kinds of etching solutions.
 以下では、まず、本発明の実施形態に係る導電性フィルムの製造方法について説明し、その後、本発明の実施形態に係る導電性フィルムについて説明する。 Hereinafter, first, a method for producing a conductive film according to an embodiment of the present invention will be described, and then a conductive film according to an embodiment of the present invention will be described.
[導電性フィルムの製造方法]
 導電性フィルムの製造方法は、以下の工程をこの順に有する。
(1)基板の少なくとも一方の主面上に、第一金属膜を形成する工程(第一金属膜形成工程)
(2)第一金属膜上に、第二金属膜を形成する工程(第二金属膜形成工程)
(3)第二金属膜上に、金属細線が形成される領域に開口部を備えるレジスト膜を形成する工程(レジスト膜形成工程)
(4)めっき法により、開口部内であって、第二金属膜上に、第三金属膜を形成する工程(第三金属膜形成工程)
(5)レジスト膜を除去する工程(レジスト膜除去工程)
(6)第三金属膜をマスクとして、第二エッチング液を用いて、第二金属膜を除去する工程(第二金属膜除去工程)
(7)第三金属膜をマスクとして、第一エッチング液を用いて、第一金属膜を除去する工程(第一金属膜除去工程)
 以下、上記各工程の手順について詳述する。
[Method for producing conductive film]
The manufacturing method of an electroconductive film has the following processes in this order.
(1) Step of forming a first metal film on at least one main surface of the substrate (first metal film forming step)
(2) Step of forming a second metal film on the first metal film (second metal film forming step)
(3) Step of forming a resist film having an opening in a region where a fine metal wire is formed on the second metal film (resist film forming step)
(4) Step of forming a third metal film on the second metal film in the opening by plating (third metal film forming step)
(5) Step of removing resist film (resist film removing step)
(6) Step of removing the second metal film using the second metal etchant with the third metal film as a mask (second metal film removing step)
(7) Step of removing the first metal film using the first metal etchant with the third metal film as a mask (first metal film removal step)
Hereafter, the procedure of each said process is explained in full detail.
〔第一金属膜形成工程〕
 第一金属膜形成工程は、基板の少なくとも一方の主面上に、第一金属膜を形成する工程である。具体的には、図1Aに示すように、本工程を実施することにより、基板101上に第一金属膜11が形成される。
 後述するように、第一金属膜11にエッチング処理を施すことにより、第一金属層が得られる。第一金属層は、下地金属層(下地密着層)として機能する。
[First metal film formation process]
The first metal film forming step is a step of forming the first metal film on at least one main surface of the substrate. Specifically, as shown in FIG. 1A, the first metal film 11 is formed on the substrate 101 by performing this step.
As will be described later, the first metal layer 11 is obtained by etching the first metal film 11. The first metal layer functions as a base metal layer (base adhesion layer).
〔基板〕
 基板101は、主面を有し、導電部を支持するものであれば、その種類は特に制限されない。基板101としては、可撓性を有する基板が好ましく、可撓性を有する絶縁基板がより好ましい。具体的には、樹脂基板が好ましい。
〔substrate〕
If the board | substrate 101 has a main surface and supports an electroconductive part, the kind in particular will not be restrict | limited. As the substrate 101, a flexible substrate is preferable, and a flexible insulating substrate is more preferable. Specifically, a resin substrate is preferable.
 基板101としては、可視光(波長400~800nm)の光の透過率が、60%以上が好ましく、80%以上がより好ましく、90%以上が更に好ましく、95%以上が特に好ましい。 The substrate 101 has a visible light (wavelength of 400 to 800 nm) light transmittance of preferably 60% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more.
 樹脂基板を構成する材料としては、例えば、ポリエーテルスルホン系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、及び、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリオレフィン系樹脂、セルロース系樹脂、ポリ塩化ビニル系樹脂、及び、シクロオレフィン系樹脂等が挙げられる。なかでも、より優れた光学特性を有する点で、シクロオレフィン系樹脂が好ましい。
 基板101の厚みとしては、特に制限されないが、取り扱い性及び薄型化のバランスの点から、0.05~2mmが好ましく、0.1~1mmがより好ましい。
 また、基板101は複層構造であってもよく、例えば、その一つの層として機能性フィルムを含有してもよい。なお、基板自体が機能性フィルムであってもよい。
Examples of the material constituting the resin substrate include polyethersulfone resin, polyacrylic resin, polyurethane resin, polyester resin (polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate resin, polysulfone resin, polyamide. Resin, polyarylate resin, polyolefin resin, cellulose resin, polyvinyl chloride resin, cycloolefin resin and the like. Of these, cycloolefin resins are preferred because they have more excellent optical properties.
The thickness of the substrate 101 is not particularly limited, but is preferably 0.05 to 2 mm, more preferably 0.1 to 1 mm, from the viewpoint of the balance between handleability and thinning.
In addition, the substrate 101 may have a multilayer structure, and for example, may include a functional film as one layer. The substrate itself may be a functional film.
〔第一金属膜〕
 第一金属膜11に含有される金属としては特に制限されず、公知の金属を使用できる。
 第一金属膜11は、例えば、銅、クロム、鉛、ニッケル、金、銀、すず、及び、亜鉛等の金属、並びに、これらの金属の合金を含有していてもよい。
 第一金属膜11に含まれる主成分としては、例えば、銅、クロム、鉛、ニッケル、金、銀、すず、及び、亜鉛等が挙げられる。なお、上記主成分とは、第一金属膜11中に含まれる金属のうち、最も含有量(質量)が大きい金属を意味する。
 なかでも、第一金属層の下地金属層としての機能がより優れる点で、第一金属膜11はクロム又はその合金を含有することが好ましい。また、第一金属層の下地金属層としての機能がより優れる点で、第一金属膜11の主成分はクロムが好ましい。
[First metal film]
The metal contained in the first metal film 11 is not particularly limited, and a known metal can be used.
The first metal film 11 may contain, for example, metals such as copper, chromium, lead, nickel, gold, silver, tin, and zinc, and alloys of these metals.
Examples of the main component contained in the first metal film 11 include copper, chromium, lead, nickel, gold, silver, tin, and zinc. The main component means a metal having the largest content (mass) among the metals contained in the first metal film 11.
Especially, it is preferable that the 1st metal film 11 contains chromium or its alloy from the point which the function as a base metal layer of a 1st metal layer is more excellent. Moreover, the main component of the first metal film 11 is preferably chromium in that the function of the first metal layer as the base metal layer is more excellent.
 第一金属膜11中の主成分を構成する金属の含有量としては特に制限されないが、一般に、55質量%以上が好ましく、70質量%以上がより好ましい。 The content of the metal constituting the main component in the first metal film 11 is not particularly limited, but is generally preferably 55% by mass or more, and more preferably 70% by mass or more.
 第一金属膜11の厚みとしては特に制限されないが、一般に、50nm以下が好ましく、20nm未満がより好ましく、15nm以下がより好ましい。
 第一金属膜11の厚みの下限値としては特に制限されないが、一般に、3nm以上が好ましい。
 第一金属膜11の厚みが、20nm未満であると、導電性フィルムが備える金属細線は、より優れた基板への密着性を有する。
The thickness of the first metal film 11 is not particularly limited, but is generally preferably 50 nm or less, more preferably less than 20 nm, and more preferably 15 nm or less.
Although it does not restrict | limit especially as a lower limit of the thickness of the 1st metal film 11, Generally 3 nm or more is preferable.
When the thickness of the first metal film 11 is less than 20 nm, the fine metal wire provided in the conductive film has better adhesion to the substrate.
 第一金属膜11の形成方法としては特に制限されず、公知の形成方法を使用できる。なかでも、より緻密な構造を有する層を形成し易い点で、スパッタリング法、又は、蒸着法が好ましい。 The formation method of the first metal film 11 is not particularly limited, and a known formation method can be used. Among these, the sputtering method or the vapor deposition method is preferable because a layer having a denser structure can be easily formed.
〔第二金属膜形成工程〕
 第二金属膜形成工程は、第一金属膜上に、第一金属膜の主成分とは異なる成分を主成分として含有する第二金属膜を形成する工程である。具体的には、図1Bに示すように、本工程を実施することにより、第一金属膜11上に第二金属膜12が形成される。
 後述するように、第二金属膜12は、めっき法の際のシード層として機能する。また、第二金属膜12にエッチング処理を施すことにより、第二金属層が得られる。
[Second metal film forming step]
The second metal film forming step is a step of forming a second metal film containing as a main component a component different from the main component of the first metal film on the first metal film. Specifically, as shown in FIG. 1B, the second metal film 12 is formed on the first metal film 11 by performing this step.
As will be described later, the second metal film 12 functions as a seed layer in the plating method. In addition, the second metal layer is obtained by etching the second metal film 12.
 第二金属膜12は、第一金属膜11の主成分とは異なる成分を主成分として含有していれば、公知の金属が使用できる。例えば、第一金属膜11がクロムを主成分として含有する場合、第二金属膜12はクロム以外の成分(例えば、銅)を主成分として含有する。
 第二金属膜12は、例えば、銅、クロム、鉛、ニッケル、金、銀、すず、及び、亜鉛等の金属、並びに、これらの金属の合金を含有していてもよい。
 第二金属膜12に含まれる主成分としては、例えば、銅、クロム、鉛、ニッケル、金、銀、すず、及び、亜鉛等が挙げられる。なお、上記主成分とは、第二金属膜12中に含まれる金属のうち、最も含有量(質量)が大きい金属を意図する。
 なかでも、後述する第三金属層を構成する材料との親和性により優れる点で、第二金属膜12の主成分は、後述する第三金属膜の主成分と同一であることが好ましい。
 第二金属膜12のシード層としての機能がより優れる点で、第二金属膜12は銅又はその合金を含有することが好ましい。また、第二金属膜12のシード層としての機能がより優れる点で、第二金属膜12の主成分は銅が好ましい。
As long as the second metal film 12 contains a component different from the main component of the first metal film 11 as a main component, a known metal can be used. For example, when the 1st metal film 11 contains chromium as a main component, the 2nd metal film 12 contains components (for example, copper) other than chromium as a main component.
The second metal film 12 may contain, for example, metals such as copper, chromium, lead, nickel, gold, silver, tin, and zinc, and alloys of these metals.
Examples of the main component contained in the second metal film 12 include copper, chromium, lead, nickel, gold, silver, tin, and zinc. In addition, the said main component intends the metal with the largest content (mass) among the metals contained in the 2nd metal film 12. FIG.
Especially, it is preferable that the main component of the 2nd metal film 12 is the same as the main component of the 3rd metal film mentioned later by the point which is excellent by affinity with the material which comprises the 3rd metal layer mentioned later.
The second metal film 12 preferably contains copper or an alloy thereof in that the function of the second metal film 12 as a seed layer is more excellent. Moreover, the main component of the second metal film 12 is preferably copper in that the function of the second metal film 12 as a seed layer is more excellent.
 第二金属膜12中の主成分を構成する金属の含有量としては特に制限されないが、一般に、80質量%以上が好ましく、90質量%以上がより好ましい。 The content of the metal constituting the main component in the second metal film 12 is not particularly limited, but is generally preferably 80% by mass or more, and more preferably 90% by mass or more.
 第二金属膜12の厚みとしては特に制限されないが、一般に、300nm以下が好ましい。第二金属膜12の厚みの下限値としては特に制限されないが、一般に30nm以上が好ましい。 The thickness of the second metal film 12 is not particularly limited, but is generally preferably 300 nm or less. Although it does not restrict | limit especially as a lower limit of the thickness of the 2nd metal film 12, Generally 30 nm or more is preferable.
 第二金属膜12の形成方法としては特に制限されず、公知の形成方法が使用できるが、なかでもより緻密な構造を有する層を形成し易い点で、スパッタリング法、又は、蒸着法が好ましい。 The formation method of the second metal film 12 is not particularly limited, and a known formation method can be used. Among them, a sputtering method or a vapor deposition method is preferable because a layer having a denser structure can be easily formed.
〔レジスト膜形成工程〕
 レジスト膜形成工程は、金属細線が形成される領域に開口部を備えるレジスト膜を形成する工程である。具体的には、図1Cに示すように、本工程を実施することにより、第二金属膜12上にレジスト膜20が形成される。
[Resist film formation process]
The resist film forming step is a step of forming a resist film having an opening in a region where a fine metal wire is formed. Specifically, as shown in FIG. 1C, a resist film 20 is formed on the second metal film 12 by performing this step.
 レジスト膜20は、金属細線が形成される領域に開口部21を備える。
 レジスト膜20中における開口部21の領域は、金属細線を配置したい領域に合わせて適宜調整できる。例えば、メッシュ状に配置された金属細線を形成しようとする場合、メッシュ状の開口部を有するレジスト膜が形成される。なお、通常、開口部は、金属細線に合わせて細線状に形成される。
 上記開口部の線幅Wは、2.0μm以下である。上記線幅Wは、1.5μm以下が好ましく、1.0μm以下がより好ましい。開口部の線幅Wを2.0μm以下とすることにより、線幅の細い金属細線を得ることができる。特に、開口部の線幅Wが1.5μm以下の場合、得られる金属細線の線幅がより細くなり、導電性フィルムを、例えば、タッチパネルセンサー等に適用した際、使用者から金属細線がより視認されにくい。なお、上記開口部の線幅Wの下限は特に制限されないが、0.3μm以上が好ましい。
 なお、本明細書において開口部の幅とは、開口部の細線部分の延在方向に直交する方向での細線部の大きさを意味する。後述する各工程を経て、開口部の線幅に対応した線幅を有する金属細線が形成される。
The resist film 20 includes an opening 21 in a region where a fine metal wire is formed.
The region of the opening 21 in the resist film 20 can be appropriately adjusted according to the region where the metal fine wire is to be disposed. For example, when forming metal fine wires arranged in a mesh shape, a resist film having a mesh-shaped opening is formed. In addition, normally, an opening part is formed in a thin wire shape according to a metal fine wire.
The line width W of the opening is 2.0 μm or less. The line width W is preferably 1.5 μm or less, and more preferably 1.0 μm or less. By setting the line width W of the opening to 2.0 μm or less, it is possible to obtain a fine metal line with a narrow line width. In particular, when the line width W of the opening is 1.5 μm or less, the line width of the obtained fine metal wire becomes thinner, and when the conductive film is applied to, for example, a touch panel sensor, the metal fine wire is more Hard to see. The lower limit of the line width W of the opening is not particularly limited, but is preferably 0.3 μm or more.
In the present specification, the width of the opening means the size of the thin line portion in a direction orthogonal to the extending direction of the thin line portion of the opening. Through each process described later, a fine metal wire having a line width corresponding to the line width of the opening is formed.
 第二金属膜12上にレジスト膜20を形成する方法としては特に制限されず、公知のレジスト膜形成方法が使用でき、例えば、以下の工程を有する方法が挙げられる。
(a)第二金属膜上にレジスト膜形成用組成物を塗布し、レジスト膜形成用組成物層を形成する工程。
(b)パターン状の開口部を備えるフォトマスクを介して、レジスト膜形成用組成物を露光する工程。
(c)露光後のレジスト膜形成用組成物を現像し、レジスト膜を得る工程。
 なお、上記工程(a)と(b)の間、(b)と(c)の間、及び/又は、(c)の後には、レジスト膜形成用組成物層、及び/又は、レジスト膜を加熱する工程を更に有してもよい。
The method for forming the resist film 20 on the second metal film 12 is not particularly limited, and a known resist film forming method can be used. Examples thereof include a method having the following steps.
(A) The process of apply | coating the composition for resist film formation on a 2nd metal film, and forming the composition layer for resist film formation.
(B) The process of exposing the composition for resist film formation through a photomask provided with a pattern-form opening part.
(C) The process of developing the resist film formation composition after exposure, and obtaining a resist film.
In addition, between the said process (a) and (b), between (b) and (c), and / or after (c), the composition layer for resist film formation and / or a resist film are used. You may further have the process of heating.
・工程(a)
 上記工程(a)において使用できるレジスト膜形成用組成物としては特に制限されず、公知のレジスト膜形成用組成物が使用できる。
 レジスト膜形成用組成物としては、例えば、ポジ型、又は、ネガ型の感放射線性組成物が挙げられる。
・ Process (a)
It does not restrict | limit especially as a composition for resist film formation which can be used in the said process (a), A well-known resist film formation composition can be used.
Examples of the resist film forming composition include a positive-type or negative-type radiation-sensitive composition.
 第二金属膜上にレジスト膜形成用組成物を塗布する方法としては特に制限されず、公知の塗布方法が使用できる。
 レジスト膜形成用組成物の塗布方法としては、例えば、スピンコート法、スプレー法、ローラーコート法、及び、浸漬法等が挙げられる。
The method for coating the resist film forming composition on the second metal film is not particularly limited, and a known coating method can be used.
Examples of the method for applying the composition for forming a resist film include a spin coating method, a spray method, a roller coating method, and an immersion method.
 第二金属膜上にレジスト膜形成用組成物層を形成後、レジスト膜形成用組成物層を加熱してもよい。加熱により、レジスト膜形成用組成物層に残留する不要な溶剤を除去し、レジスト膜形成用組成物層を均一な状態にできる。
 レジスト膜形成用組成物層を加熱する方法としては特に制限されないが、例えば、基板を加熱する方法が挙げられる。
 上記加熱の温度としては特に制限されないが、一般に40~160℃が好ましい。
After forming the resist film forming composition layer on the second metal film, the resist film forming composition layer may be heated. By heating, an unnecessary solvent remaining in the resist film-forming composition layer is removed, and the resist film-forming composition layer can be made uniform.
The method for heating the composition layer for forming a resist film is not particularly limited, and examples thereof include a method for heating the substrate.
The heating temperature is not particularly limited, but generally 40 to 160 ° C. is preferable.
 レジスト膜形成用組成物層の厚みとしては特に制限されないが、乾燥後の厚みとして、一般に0.5~2.5μmが好ましい。 The thickness of the resist film-forming composition layer is not particularly limited, but the thickness after drying is generally preferably 0.5 to 2.5 μm.
・工程(b)
 レジスト膜形成用組成物層を露光する方法としては特に制限されず、公知の露光方法が使用できる。
 レジスト膜形成用組成物層を露光する方法としては、例えば、パターン状の開口部を備えるフォトマスクを介して、レジスト膜形成用組成物層に、活性光線、又は、放射線を照射する方法が挙げられる。露光量としては特に制限されないが、一般に1~100mW/cmで、0.1~10秒間照射することが好ましい。
・ Process (b)
It does not restrict | limit especially as a method of exposing the composition layer for resist film formation, A well-known exposure method can be used.
Examples of the method of exposing the resist film forming composition layer include a method of irradiating the resist film forming composition layer with actinic rays or radiation through a photomask having a patterned opening. It is done. The amount of exposure is not particularly limited, but it is generally preferable to irradiate at 1 to 100 mW / cm 2 for 0.1 to 10 seconds.
 例えば、レジスト膜形成用組成物がポジ型である場合、工程(b)中で用いられるフォトマスクが備えるパターン状の開口部の線幅Wは、一般に2.0μm以下が好ましく、1.5μm以下がより好ましく、1.0μm以下が更に好ましい。 For example, when the resist film forming composition is a positive type, the line width W of the patterned opening provided in the photomask used in the step (b) is generally preferably 2.0 μm or less, and 1.5 μm or less. Is more preferable, and 1.0 μm or less is still more preferable.
 露光後のレジスト膜形成用組成物層を加熱してもよい。加熱の温度としては特に制限されないが、一般に40~160℃が好ましい。 The resist film-forming composition layer after exposure may be heated. The heating temperature is not particularly limited, but generally 40 to 160 ° C. is preferable.
・工程(c)
 露光後のレジスト膜形成用組成物層を現像する方法としては特に制限されず、公知の現像方法が使用できる。
 公知の現像方法としては、例えば、有機溶剤を含有する現像液、又は、アルカリ現像液を用いる方法が挙げられる。
 現像方法としては、例えば、ディップ法、パドル法、スプレー法、及び、ダイナミックディスペンス法等が挙げられる。
・ Process (c)
A method for developing the composition layer for forming a resist film after exposure is not particularly limited, and a known developing method can be used.
Examples of known development methods include a method using a developer containing an organic solvent or an alkali developer.
Examples of the developing method include a dipping method, a paddle method, a spray method, and a dynamic dispensing method.
 また、現像後のレジスト膜を、リンス液を用いて洗浄してもよい。リンス液としては特に制限されず、公知のリンス液が使用できる。リンス液としては、有機溶剤、及び、水等が挙げられる。 Further, the resist film after development may be washed using a rinse solution. The rinse solution is not particularly limited, and a known rinse solution can be used. Examples of the rinse liquid include an organic solvent and water.
〔第三金属膜形成工程〕
 第三金属膜形成工程は、めっき法により、上記レジスト膜の開口部内であって、第二金属膜上に、第三金属膜を形成する工程である。具体的には、図1Dに示すように、本工程を実施することにより、図1C中の開口部21を埋めるように、第二金属膜12上に第三金属膜13が形成される。
 後述するように、第三金属膜13は、所定の処理後、金属細線中の第三金属層となる。
[Third metal film formation process]
The third metal film forming step is a step of forming a third metal film on the second metal film in the opening of the resist film by plating. Specifically, as shown in FIG. 1D, by performing this process, the third metal film 13 is formed on the second metal film 12 so as to fill the opening 21 in FIG. 1C.
As will be described later, the third metal film 13 becomes a third metal layer in the thin metal wire after a predetermined treatment.
 第三金属膜13は、めっき法により形成される。
 めっき法としては、公知のめっき法が使用できる。具体的には、電解めっき法及び無電解めっき法が挙げられ、生産性の点から、電解めっき法が好ましい。
The third metal film 13 is formed by a plating method.
As a plating method, a known plating method can be used. Specific examples include an electrolytic plating method and an electroless plating method, and the electrolytic plating method is preferable from the viewpoint of productivity.
 第三金属膜13に含有される金属としては特に制限されず、公知の金属が使用できる。
 第三金属膜13は、例えば、銅、クロム、鉛、ニッケル、金、銀、すず、及び、亜鉛等の金属、並びに、これらの金属の合金を含有していてもよい。
 また、エッチング液に対する溶解性が異なる点で、第三金属膜13の主成分と、第一金属膜11の主成分とは異なることが好ましい。
 なかでも、第三金属層の導電性がより優れる点で、第三金属膜13は銅又はその合金を含有することが好ましい。また、第三金属層の導電性がより優れる点で、第三金属膜13の主成分は銅が好ましい。
 なお、上記主成分とは、第三金属膜13中に含まれる金属のうち、最も含有量(質量)が大きい金属を意味する。
The metal contained in the third metal film 13 is not particularly limited, and a known metal can be used.
The third metal film 13 may contain, for example, metals such as copper, chromium, lead, nickel, gold, silver, tin, and zinc, and alloys of these metals.
In addition, the main component of the third metal film 13 and the main component of the first metal film 11 are preferably different from each other in that the solubility in the etching solution is different.
Especially, it is preferable that the 3rd metal film 13 contains copper or its alloy by the point which the electroconductivity of a 3rd metal layer is more excellent. Moreover, the main component of the third metal film 13 is preferably copper in that the conductivity of the third metal layer is more excellent.
The main component means a metal having the largest content (mass) among the metals contained in the third metal film 13.
 第三金属膜13中の主成分を構成する金属の含有量としては特に制限されないが、一般に、80質量%以上が好ましく、90質量%以上がより好ましい。 The content of the metal constituting the main component in the third metal film 13 is not particularly limited, but is generally preferably 80% by mass or more, and more preferably 90% by mass or more.
 第三金属膜13の厚みとしては特に制限されないが、一般に、3μm以下が好ましく、2μm以下がより好ましく、1μm以下が最も好ましい。第三金属膜13の厚みの下限値としては特に制限されないが、一般に0.1μm以上が好ましい The thickness of the third metal film 13 is not particularly limited, but is generally preferably 3 μm or less, more preferably 2 μm or less, and most preferably 1 μm or less. Although it does not restrict | limit especially as a lower limit of the thickness of the 3rd metal film 13, Generally 0.1 micrometer or more is preferable.
〔レジスト膜除去工程〕
 レジスト膜除去工程は、レジスト膜を除去する工程である。具体的には、図1Eに示すように、本工程を実施することにより、基板101上に、第一金属膜11、第二金属膜12、及び、第三金属膜13を備える積層体が得られる。
[Resist film removal process]
The resist film removing step is a step of removing the resist film. Specifically, as shown in FIG. 1E, by performing this step, a laminate including the first metal film 11, the second metal film 12, and the third metal film 13 on the substrate 101 is obtained. It is done.
 レジスト膜を除去する方法としては特に制限されず、公知のレジスト膜除去液を用いてレジスト膜を除去する方法が挙げられる。
 レジスト膜除去液としては例えば、有機溶剤、及び、アルカリ溶液等が挙げられる。
 レジスト膜除去液をレジスト膜に接触させる方法としては特に制限されないが、例えば、ディップ法、パドル法、スプレー法、及び、ダイナミックディスペンス法等が挙げられる。
The method for removing the resist film is not particularly limited, and examples thereof include a method for removing the resist film using a known resist film removing solution.
Examples of the resist film removing liquid include an organic solvent and an alkaline solution.
The method for bringing the resist film removing solution into contact with the resist film is not particularly limited, and examples thereof include a dipping method, a paddle method, a spray method, and a dynamic dispensing method.
〔第二金属膜除去工程〕
 第二金属膜除去工程は、第三金属膜をマスクとして、第二エッチング液を用いて、第二金属膜を除去する工程である。本工程を実施することにより、第三金属膜が配置されていない領域の第二金属膜が除去される。
 なお、図1Fでは、第二金属膜除去工程及び後述する第一金属膜除去工程を実施した後に得られる導電性フィルム30を示し、導電性フィルム30は、基板101と、金属細線103とを備える。金属細線103は、基板101が側から順に、第一金属層201、第二金属層202、及び、第三金属層203を備える。
[Second metal film removal step]
The second metal film removing step is a step of removing the second metal film using the second metal etchant using the third metal film as a mask. By performing this step, the second metal film in the region where the third metal film is not disposed is removed.
1F shows the conductive film 30 obtained after performing the second metal film removal step and the first metal film removal step described later, and the conductive film 30 includes a substrate 101 and a thin metal wire 103. . The thin metal wire 103 includes a first metal layer 201, a second metal layer 202, and a third metal layer 203 in order from the substrate 101 side.
 本発明者は、線幅の細い金属細線を形成する際に、特許文献1の0087段落に記載の透明導電性フィルムの製造方法(セミアディティブ法)のように、第二金属膜の除去工程において第一金属膜も合わせて除去しようとすると、所望の金属細線が得られないことを知見している。その理由としては、第一金属膜と第二金属膜とのエッチング液に対する溶解性の違いにより、第一金属膜と比較して、第二金属膜(及び、第三金属膜)が意図せず多く除去されてしまうこと、又は、第二金属膜と比較して、第一金属膜が意図せず多く除去されてしまうことが発生するためであると推測される。第一金属膜と比較して、第二金属膜(及び、第三金属膜)が意図せず多く除去されてしまう場合、図5(金属細線の線幅方向の断面図)に示すように、基板101上に配置される金属細線103Aにおいて、第一金属層201Aの線幅が、第二金属層202A及び第三金属層203Aの線幅よりも大きくなる。また、第二金属膜と比較して、第一金属膜が意図せず多く除去されてしまう場合、図6(金属細線の幅方向の断面図)に示すように、基板101上に配置される金属細線103Bにおいて、第一金属層201Bの線幅が、第二金属層202B及び第三金属層203Bの線幅よりも小さくなる。 The present inventor, when forming a thin metal wire having a narrow line width, in the step of removing the second metal film, as in the transparent conductive film manufacturing method (semi-additive method) described in paragraph 0087 of Patent Document 1. It has been found that if the first metal film is also removed together, a desired fine metal wire cannot be obtained. The reason is that the second metal film (and the third metal film) is not intended compared to the first metal film due to the difference in solubility in the etchant between the first metal film and the second metal film. It is presumed that this is because a large amount of the first metal film is unintentionally removed compared to the second metal film. When the second metal film (and the third metal film) is unintentionally removed in comparison with the first metal film, as shown in FIG. 5 (cross-sectional view in the line width direction of the thin metal wire), In the thin metal wire 103A disposed on the substrate 101, the line width of the first metal layer 201A is larger than the line width of the second metal layer 202A and the third metal layer 203A. Further, when the first metal film is unintentionally removed more than the second metal film, the first metal film is disposed on the substrate 101 as shown in FIG. 6 (cross-sectional view in the width direction of the fine metal wire). In the thin metal wire 103B, the line width of the first metal layer 201B is smaller than the line widths of the second metal layer 202B and the third metal layer 203B.
 図5に示すような現象が発生すれば、第二金属膜(及び、第三金属膜)の線幅が薄くなり、金属細線の電気抵抗率が大きくなってしまう、及び/又は、エッチングの際に第二金属膜(及び、第三金属膜)が消失してしまう等の不具合が生じやすい。
 一方で、図6に示すような現象が発生すれば、金属細線と、基板との密着性が不十分となりやすい。金属細線と基板との密着性が不十分となると、金属細線が基板から剥離しやすい。金属細線が基板から剥離すると、その部分に金属細線の断線が生じやすくなる。
If the phenomenon shown in FIG. 5 occurs, the line width of the second metal film (and the third metal film) becomes thin, and the electrical resistivity of the metal thin line becomes large, and / or during etching. In addition, the second metal film (and the third metal film) is likely to fail.
On the other hand, if the phenomenon shown in FIG. 6 occurs, the adhesion between the fine metal wire and the substrate tends to be insufficient. If the adhesion between the fine metal wires and the substrate is insufficient, the fine metal wires are easily peeled from the substrate. When the fine metal wires are peeled off from the substrate, the fine metal wires are likely to be disconnected at that portion.
 本発明の実施形態に係る導電性フィルムの製造方法は、第二エッチング液を用いて第二金属膜を除去する工程(第二金属膜除去工程)、及び、第一エッチング液を用いて第一金属膜を除去する工程(第二金属膜除去工程)をこの順に有する。
 ここで、第一エッチング液と、第二エッチング液とは、互いに異なるエッチング液を意味する。なお、異なるエッチング液、とは、含有する成分の種類、含有する成分同士の比率(組成)、成分の含有量、及び/又は、温度等が異なるエッチング液を意味し、中でも、含有する成分の種類、含有する成分同士の比率、及び/又は、成分の含有量が異なることが好ましい。
The manufacturing method of the conductive film which concerns on embodiment of this invention removes the 2nd metal film using a 2nd etching liquid (2nd metal film removal process), and 1st using a 1st etching liquid. A step of removing the metal film (second metal film removal step) is provided in this order.
Here, the first etching solution and the second etching solution mean different etching solutions. The different etching liquids mean etching liquids having different kinds of components, ratios (compositions) of the components to be contained, component contents, and / or temperatures, and the like. It is preferable that the type, the ratio of components to be contained, and / or the content of components are different.
 また、第二金属膜除去工程において除去されるのは、「第三金属膜が積層されていない領域の第二金属膜」、言い換えれば、「レジスト膜が積層されていた領域の第二金属膜」が好ましく、第一金属膜除去工程において除去されるのは、「第二金属膜が積層されていない領域の第一金属膜」、言い換えれば、「第二金属膜除去工程で除去された第二金属膜が積層されていた領域の第一金属膜」が好ましい。 The second metal film removal step removes the “second metal film in the region where the third metal film is not laminated”, in other words, “the second metal film in the region where the resist film is laminated”. Is preferably removed in the first metal film removal step, in other words, “the first metal film in the region where the second metal film is not laminated”, in other words, “the first metal film removed in the second metal film removal step”. The “first metal film in the region where the two metal films have been laminated” is preferable.
 本発明の実施形態に係る導電性フィルムの製造方法は、上記のとおり異なるエッチング液を用いて、第二金属膜、及び、第一金属膜を除去する工程を有するため、図5、及び、図6のような不具合、すなわち、単一のエッチング液を用いて第一金属膜、及び、第二金属膜を除去することによる不具合が生じにくいものと推測される。 Since the manufacturing method of the electroconductive film which concerns on embodiment of this invention has the process of removing a 2nd metal film and a 1st metal film using different etching liquid as above-mentioned, FIG. It is presumed that a problem such as 6 is not likely to occur due to the removal of the first metal film and the second metal film using a single etching solution.
 第二エッチング液としては、第二金属膜を溶解して除去することができれば特に制限されず、公知のエッチング液を用いることができる。
 公知のエッチング液としては、例えば、塩化第二鉄溶液、塩化第二銅溶液、アンモニアアルカリ溶液、硫酸-過酸化水素混合液、及び、リン酸-過酸化水素混合液等が挙げられる。
The second etching solution is not particularly limited as long as the second metal film can be dissolved and removed, and a known etching solution can be used.
Known etching solutions include, for example, ferric chloride solution, cupric chloride solution, ammonia alkali solution, sulfuric acid-hydrogen peroxide mixture, phosphoric acid-hydrogen peroxide mixture, and the like.
 第二エッチング液の、第二金属膜に対するエッチングレートとしては特に制限されないが、基板への密着性がより優れた金属細線を備える導電性フィルムがより簡便に得られる点で、第二エッチング液の、第二金属膜に対するエッチングレートとしては、毎分300nm(以降、毎分Anmは「Anm/min」と表記する。)以下が好ましく、200nm/min以下がより好ましい。
 第二金属膜に対するエッチングレートの下限値としては特に制限されないが、一般に30nm/min以上が好ましい。
 第二エッチング液の第二金属膜に対するエッチングレートは、第二エッチング液の濃度、及び、温度等を調整することにより、調整することができる。
 なお、本明細書において、各エッチング液の各金属膜のエッチングレートとは、以下の方法により測定したエッチングレートを意味する。
Although it does not restrict | limit especially as an etching rate with respect to a 2nd metal film of a 2nd etching liquid, The point of a 2nd etching liquid is a point with which the electroconductive film provided with the metal fine wire which was more excellent in the adhesiveness to a board | substrate is obtained more easily. The etching rate for the second metal film is preferably 300 nm / min (hereinafter, “Anm is expressed as“ Anm / min ”per minute”) or less, more preferably 200 nm / min or less.
The lower limit of the etching rate for the second metal film is not particularly limited, but is generally preferably 30 nm / min or more.
The etching rate of the second etching solution with respect to the second metal film can be adjusted by adjusting the concentration and temperature of the second etching solution.
In addition, in this specification, the etching rate of each metal film of each etching liquid means the etching rate measured by the following method.
(エッチングレート測定方法)
 本明細書におけるエッチング液による金属膜に対するエッチングレートの測定は、以下の方法により行うものとする。
 まず、シリコンウェハ上に10μmの厚みで対象とする金属膜を形成したモデル基板を準備する。次に、上記モデル基板を、対象とするエッチング液に5分間浸漬した後の金属膜の厚みを測定し、浸漬前後で減少した金属膜の厚みを算出し、これを5(分)で除して、エッチングレートを算出する。
 なお、厚みの測定には、表面形状測定装置Dektak6M(Veeco社製)を用いる。
(Etching rate measurement method)
The measurement of the etching rate with respect to the metal film by the etching liquid in this specification shall be performed by the following method.
First, a model substrate is prepared in which a target metal film is formed with a thickness of 10 μm on a silicon wafer. Next, the thickness of the metal film was measured after the model substrate was immersed in the target etching solution for 5 minutes, and the thickness of the metal film decreased before and after the immersion was calculated, and this was divided by 5 (minutes). To calculate the etching rate.
For measuring the thickness, a surface shape measuring device Dektak 6M (manufactured by Veeco) is used.
 第二エッチング液の、「第二金属膜に対するエッチングレート(ER2)」に対する、第二エッチング液の、「第一金属膜に対するエッチングレート(ER1)」の比(すなわち、第一金属膜に対するエッチングレート/第二金属膜に対するエッチングレート、ER1/ER2)としては、特に制限されないが、第二エッチング液が第一金属膜を溶解しにくい点で、言い換えれば、選択的に第二金属膜を溶解する点で、0.01以下が好ましく、0.002以下がより好ましく、0.0005未満が更に好ましい。
 第二エッチング液の、ER1/ER2の下限値としては特に制限されないが、一般に0以上が好ましい。
 なお、第二エッチング液の、ER1/ER2が0である場合とは、第二エッチング液が第一金属膜を実質的に溶解しない場合を意味する。
 第二エッチング液の、ER1/ER2が0.0005未満であると、基板への密着性により優れた金属細線を備える導電性フィルムがより簡便に得られる。
The ratio of the etching rate for the first metal film (ER1) of the second etching solution to the “etching rate for the second metal film (ER2)” of the second etching solution (ie, the etching rate for the first metal film) / Etching rate with respect to the second metal film, ER1 / ER2) is not particularly limited, but the second etching solution is difficult to dissolve the first metal film, in other words, the second metal film is selectively dissolved. In this respect, 0.01 or less is preferable, 0.002 or less is more preferable, and less than 0.0005 is even more preferable.
Although it does not restrict | limit especially as a lower limit of ER1 / ER2 of a 2nd etching liquid, Generally 0 or more is preferable.
The case where ER1 / ER2 of the second etching solution is 0 means a case where the second etching solution does not substantially dissolve the first metal film.
When the ER1 / ER2 of the second etching solution is less than 0.0005, a conductive film including a fine metal wire that is more excellent in adhesion to the substrate can be obtained more easily.
 第二エッチング液を用いて第二金属膜をエッチングする方法としては特に制限されず、公知の方法を使用できる。 The method for etching the second metal film using the second etching solution is not particularly limited, and a known method can be used.
〔第一金属膜除去工程〕
 第一金属膜除去工程は、第一エッチング液を用いて第一金属膜を除去する工程である。本工程を実施することにより、第三金属膜が配置されていない領域の第一金属膜が除去される。
 第一エッチング液としては、第一金属膜を溶解して除去することができれば特に制限されず、公知のエッチング液を使用できる。
 公知のエッチング液としては、例えば、硝酸セリウム第二アンモニウム(硝酸アンモニウムセリウム)-過塩素酸-水混合液、又は硝酸アンモニウムセリウム-硝酸-水混合液等が挙げられる。
[First metal film removal step]
The first metal film removal step is a step of removing the first metal film using the first etching solution. By performing this step, the first metal film in the region where the third metal film is not disposed is removed.
The first etching solution is not particularly limited as long as the first metal film can be dissolved and removed, and a known etching solution can be used.
Examples of known etching solutions include cerium diammonium nitrate (ammonium cerium nitrate) -perchloric acid-water mixture, ammonium cerium nitrate-nitric acid-water mixture, and the like.
 第一エッチング液の、第一金属膜に対するエッチングレートとしては特に制限されないが、基板への密着性により優れた金属細線を備える導電性フィルムがより簡便に得られる点で、第一エッチング液の、第一金属膜に対するエッチングレートとしては、400nm/min以下が好ましく、200nm/min以下がより好ましく、100nm/minが更に好ましい。
 第一金属膜に対するエッチングレートの下限値としては特に制限されないが、一般に10nm/minが好ましい。
 第一エッチング液の、第一金属膜に対するエッチングレートは、第一エッチング液の濃度、及び、温度等を調整することにより、調整することができる。
Although it does not restrict | limit especially as an etching rate with respect to a 1st metal film of a 1st etching liquid, The point of a 1st etching liquid is a point by which the electroconductive film provided with the metal fine wire excellent by the adhesiveness to a board | substrate is obtained more simply. The etching rate for the first metal film is preferably 400 nm / min or less, more preferably 200 nm / min or less, and still more preferably 100 nm / min.
The lower limit of the etching rate for the first metal film is not particularly limited, but generally 10 nm / min is preferable.
The etching rate of the first etching solution with respect to the first metal film can be adjusted by adjusting the concentration and temperature of the first etching solution.
 第一エッチング液の、「第一金属膜に対するエッチングレート(ER1)」に対する、第一エッチング液の、「第二金属膜に対するエッチングレート(ER2)」の比(第二金属膜に対するエッチングレート/第一金属膜に対するエッチングレート、ER2/ER1)としては、特に制限されないが、第一エッチング液が第二金属膜を溶解しにくい(選択的に第一金属膜を溶解する)点で、0.01以下が好ましく、0.002以下がより好ましい。
 第一エッチング液の、ER2/ER1の下限値としては特に制限されないが、一般に、0以上が好ましい。
 なお、第一エッチング液の、ER2/ER1が0である場合とは、第一エッチング液が第二金属膜を実質的に溶解しない場合を意図する。
The ratio of the etching rate of the first etching solution to the second metal film (ER2) to the etching rate of the first etching solution to the first metal film (ER1) (etching rate of the second metal film / first The etching rate for one metal film, ER2 / ER1) is not particularly limited, but is 0.01 in that the first etching solution hardly dissolves the second metal film (selectively dissolves the first metal film). The following is preferable, and 0.002 or less is more preferable.
Although it does not restrict | limit especially as a lower limit of ER2 / ER1 of a 1st etching liquid, Generally 0 or more are preferable.
The case where ER2 / ER1 of the first etching solution is 0 is intended when the first etching solution does not substantially dissolve the second metal film.
 第一エッチング液を用いて第一金属膜をエッチングする方法としては特に制限されず、公知の方法が使用できる。 The method for etching the first metal film using the first etching solution is not particularly limited, and a known method can be used.
[導電性フィルム]
 上述した手順によって、所定の導電性フィルムが製造される。
 本発明の導電性フィルムは、基板と、基板の少なくとも一方の主面上に配置された金属細線から構成された導電部とを備える。導電性フィルムにおいて、導電部は、通常、複数の金属細線により構成される。なお、例えば、導電性フィルムをタッチパネルセンサー用として用いる場合には、導電部を透明電極及び/又は引き出し配線として使用できる。
 本明細書において、主面とは、上記基板を構成する面のうち、互いに向かい合う最も面積が大きい面を意味し、基板の厚み方向に対向する面に該当する。
[Conductive film]
A predetermined conductive film is manufactured by the procedure described above.
The conductive film of the present invention includes a substrate and a conductive portion made of a fine metal wire disposed on at least one main surface of the substrate. In the conductive film, the conductive portion is usually composed of a plurality of fine metal wires. For example, when a conductive film is used for a touch panel sensor, the conductive portion can be used as a transparent electrode and / or a lead wiring.
In the present specification, the main surface means a surface having the largest area facing each other among the surfaces constituting the substrate, and corresponds to a surface facing the thickness direction of the substrate.
 図2Aは、上記導電性フィルムの一実施形態の上面図であり、図2BはそのA-A断面における断面図である。図3は、導電性フィルム中の導電部の一部拡大図である。
 図2A、及び、図2Bに示すように、導電性フィルム100は、基板101、及び、基板101の一方の主面上に配置された導電部102を含有する。
FIG. 2A is a top view of one embodiment of the conductive film, and FIG. 2B is a cross-sectional view taken along the line AA. FIG. 3 is a partially enlarged view of a conductive portion in the conductive film.
2A and 2B, the conductive film 100 includes a substrate 101 and a conductive portion 102 disposed on one main surface of the substrate 101.
 なお、図2A、及び、図2Bにおいては、平面状の形状を有する導電性フィルムの形態を示したが、導電性フィルムとしては上記に制限されない。導電性フィルムは3次元形状(立体形状)を有していてもよい。3次元形状としては、例えば、曲面を含有する3次元形状が挙げられ、より具体的には、半球状、かまぼこ形状、波形形状、凸凹形状、及び、円柱状等が挙げられる。
 また、図2A、及び、図2Bには、導電部102は基板101の一方の主面上に配置されているが、この形態には制限されない。例えば、基板101の両方の主面上に導電部102が配置されていてもよい。
 また、図2A、及び、図2Bには、導電部102は、6本ストライプ状に配置されているが、この形態には制限されず、他の配置であってもよい。
2A and 2B show the form of the conductive film having a planar shape, the conductive film is not limited to the above. The conductive film may have a three-dimensional shape (three-dimensional shape). Examples of the three-dimensional shape include a three-dimensional shape containing a curved surface, and more specifically, a hemispherical shape, a kamaboko shape, a wavy shape, an uneven shape, and a cylindrical shape.
In FIGS. 2A and 2B, the conductive portion 102 is disposed on one main surface of the substrate 101, but the embodiment is not limited thereto. For example, the conductive portion 102 may be disposed on both main surfaces of the substrate 101.
2A and 2B, the conductive portions 102 are arranged in the form of six stripes, but the present invention is not limited to this configuration, and other arrangements may be used.
 図3は、導電部102の一部拡大上面図であり、導電部102は、複数の金属細線103により構成され、交差する金属細線103による複数の開口部104を含有するメッシュ状のパターンを含有する。
 金属細線103の線幅は、2.0μm以下であり、1.5μm以下がより好ましく、1.0μm以下が更に好ましい。
 金属細線103の線幅の下限値としては特に制限されないが、一般に0.2μm以上が好ましい。
 金属細線103の線幅が2.0μm以下であると、例えば、導電性フィルムをタッチパネルセンサーに適用した際、タッチパネルの使用者が、金属細線をより視認しにくい。
FIG. 3 is a partially enlarged top view of the conductive portion 102, and the conductive portion 102 includes a mesh pattern including a plurality of fine metal wires 103 and a plurality of openings 104 formed by intersecting metal fine wires 103. To do.
The line width of the fine metal wire 103 is 2.0 μm or less, more preferably 1.5 μm or less, and still more preferably 1.0 μm or less.
The lower limit of the line width of the fine metal wire 103 is not particularly limited, but generally 0.2 μm or more is preferable.
When the line width of the thin metal wire 103 is 2.0 μm or less, for example, when a conductive film is applied to the touch panel sensor, the user of the touch panel is less likely to visually recognize the thin metal wire.
 なお、本明細書において、金属細線103の線幅とは、金属細線103の幅方向の断面(金属細線の延在方向と直交する断面)において、後述する、第一金属層、第二金属層、及び、第三金属層の線幅のうち最大の線幅を意図する。すなわち、第一金属層、第二金属層、及び、第三金属層の線幅は、金属細線103の線幅以下となる。
 なお、第一~第三金属層の形態、及び、線幅の測定方法については後述する。
In the present specification, the line width of the fine metal wire 103 refers to a first metal layer and a second metal layer, which will be described later, in a cross section in the width direction of the fine metal wire 103 (cross section orthogonal to the extending direction of the fine metal wire). And the maximum line width among the line widths of the third metal layer is intended. That is, the line widths of the first metal layer, the second metal layer, and the third metal layer are equal to or smaller than the line width of the metal thin wire 103.
The form of the first to third metal layers and the method for measuring the line width will be described later.
 金属細線103の厚みとしては、特に制限されないが、一般に0.1~5.0μmが好ましく、導電性の観点から、0.2~2.0μmが好ましい。
 開口部104の一辺の長さXは、20~250μmが好ましい。
The thickness of the fine metal wire 103 is not particularly limited, but is generally preferably 0.1 to 5.0 μm, and preferably 0.2 to 2.0 μm from the viewpoint of conductivity.
The length X of one side of the opening 104 is preferably 20 to 250 μm.
 なお、図3においては、開口部104は、略ひし形の形状を有している。但し、その他、多角形状(例えば、三角形、四角形、六角形、及び、ランダムな多角形)としてもよい。また、一辺の形状を直線状の他、湾曲形状にしてもよいし、円弧状にしてもよい。円弧状とする場合は、例えば、対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 なお、図3においては、導電部102はメッシュ状のパターンを有するが、この形態には制限されない。
In FIG. 3, the opening 104 has a substantially rhombus shape. However, other polygonal shapes (for example, a triangle, a quadrangle, a hexagon, and a random polygon) may be used. Further, the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape. In the case of the arc shape, for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inwardly convex arc shape. The shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
In FIG. 3, the conductive portion 102 has a mesh pattern, but is not limited to this form.
 図4は、金属細線103の断面図である。金属細線103は、基板101が側から順に、第一金属層201、第二金属層202、及び、第三金属層203を備える。なお、第一金属層201、第二金属層202、及び、第三金属層203の形状はいずれも、金属細線103の形状に対応した細線状である。 FIG. 4 is a cross-sectional view of the fine metal wire 103. The thin metal wire 103 includes a first metal layer 201, a second metal layer 202, and a third metal layer 203 in order from the substrate 101 side. The shapes of the first metal layer 201, the second metal layer 202, and the third metal layer 203 are all thin wires corresponding to the shape of the metal thin wires 103.
〔第一金属層〕
 第一金属層201は、導電性を有すると共に、その上に配置される第二金属層202を基板上に保持する作用(密着性向上作用)を有する。つまり、第一金属層201は、下地金属層として機能する。
 上述したように、第一金属層201は、第一金属膜にエッチング処理を施すことにより形成される。
 第一金属層201に含まれる金属の種類は、上述した第一金属膜に含まれる金属の種類と同じである。
 また、第一金属層201の厚みの好適範囲は、上述した第一金属膜の厚みの好適範囲と同じである。なお、導電性フィルム中の第一金属層の厚みは、後述する、第一金属層の線幅の測定の際に、合わせて測定することもできる。
[First metal layer]
The first metal layer 201 has conductivity, and has an action (adhesion improving action) for holding the second metal layer 202 disposed thereon on the substrate. That is, the first metal layer 201 functions as a base metal layer.
As described above, the first metal layer 201 is formed by performing an etching process on the first metal film.
The kind of metal contained in the first metal layer 201 is the same as the kind of metal contained in the first metal film described above.
Moreover, the suitable range of the thickness of the 1st metal layer 201 is the same as the suitable range of the thickness of the 1st metal film mentioned above. In addition, the thickness of the 1st metal layer in an electroconductive film can also be measured in the case of the measurement of the line | wire width of a 1st metal layer mentioned later.
 第一金属層201の線幅としては、2.0μm以下であり、1.5μm以下が好ましく、1.0μm以下がより好ましい。
 なお、第一金属層201の線幅は、金属細線103を基板101ごと樹脂に包埋し、幅方向(金属細線の延在方向と直交する方向)で、ウルトラミクロトームを用いて切断し、得られた断面に炭素を蒸着した後、走査型電子顕微鏡(日立ハイテクノロジーズ社製 S-5500型)を用いて観察して、測定される線幅を意味する。また、後述する第二金属層202、及び、第三金属層203の線幅も同様である。
The line width of the first metal layer 201 is 2.0 μm or less, preferably 1.5 μm or less, and more preferably 1.0 μm or less.
The line width of the first metal layer 201 is obtained by embedding the metal thin wire 103 together with the substrate 101 in a resin and cutting it with an ultramicrotome in the width direction (direction perpendicular to the extending direction of the metal thin wire). It means the line width measured by observing with a scanning electron microscope (S-5500, manufactured by Hitachi High-Technologies Corporation) after depositing carbon on the obtained cross section. The same applies to the line widths of the second metal layer 202 and the third metal layer 203 described later.
 第一金属層201と、後述する第二金属層202の線幅との関係としては、第一金属層201の線幅に対する、第二金属層202の線幅の比(第二金属層の線幅/第一金属層の線幅)が、1.0超であることが好ましく、1.01以上であることがより好ましく、1.3未満であることが好ましく、1.25未満であることが好ましく、1.2以下であることがより好ましい。
 第二金属層の線幅/第一金属層の線幅が1.0超であると、導電性フィルムが備える金属細線は、より優れた視認性を有する。
 一方、第二金属層の線幅/第一金属層の線幅が1.3未満であると、導電性フィルムが備える金属細線は、より優れた基板への密着性を有する。
〔第二金属層〕
 第二金属層202は、第三金属層203の密着性向上、及び、第三金属層203を形成する際のシード層としての機能を有する。
 上述したように、第二金属層202は、第二金属膜にエッチング処理を施すことにより形成される。
 第二金属層202に含有される金属の種類は、上述した第二金属膜に含有される金属の種類と同じである。なかでも、後述する第三金属層203を構成する材料との親和性により優れる点で、第二金属層202の主成分は、後述する第三金属層203の主成分と同一であることが好ましい。
 また、第二金属層202の厚みの好適範囲は、上述した第二金属膜の厚みの好適範囲と同じである。なお、導電性フィルム中の第二金属層の厚みは、上述した、第一金属層の線幅の測定の際に、合わせて測定することもできる。
The relationship between the first metal layer 201 and the line width of the second metal layer 202 described later is the ratio of the line width of the second metal layer 202 to the line width of the first metal layer 201 (the line of the second metal layer). Width / line width of the first metal layer) is preferably more than 1.0, more preferably 1.01 or more, preferably less than 1.3, and less than 1.25. Is more preferable and 1.2 or less is more preferable.
When the line width of the second metal layer / the line width of the first metal layer is greater than 1.0, the fine metal wire included in the conductive film has better visibility.
On the other hand, when the line width of the second metal layer / the line width of the first metal layer is less than 1.3, the fine metal wire included in the conductive film has better adhesion to the substrate.
[Second metal layer]
The second metal layer 202 has a function of improving the adhesion of the third metal layer 203 and a seed layer when the third metal layer 203 is formed.
As described above, the second metal layer 202 is formed by etching the second metal film.
The kind of metal contained in the second metal layer 202 is the same as the kind of metal contained in the second metal film described above. Among these, the main component of the second metal layer 202 is preferably the same as the main component of the third metal layer 203 described later in that it is more excellent in affinity with the material constituting the third metal layer 203 described later. .
Moreover, the suitable range of the thickness of the 2nd metal layer 202 is the same as the suitable range of the thickness of the 2nd metal film mentioned above. In addition, the thickness of the 2nd metal layer in an electroconductive film can also be measured in the case of the measurement of the line | wire width of a 1st metal layer mentioned above.
 第二金属層202の線幅としては、2.0μm以下であり、1.5μm以下が好ましく、1.0μm以下がより好ましい。
 なお、第二金属層202の線幅としては、すでに説明した第一金属層201の線幅との関係を満たすことが好ましい。
The line width of the second metal layer 202 is 2.0 μm or less, preferably 1.5 μm or less, and more preferably 1.0 μm or less.
The line width of the second metal layer 202 preferably satisfies the relationship with the line width of the first metal layer 201 already described.
〔第三金属層〕
 第三金属層203は、導電性を有し、金属細線の導通を確保する作用を有する。
 第三金属層203に含有される金属の種類は、上述した第三金属膜に含有される金属の種類と同じである。
 また、第三金属層203の厚みの好適範囲は、上述した第三金属膜の厚みの好適範囲と同じである。なお、導電性フィルム中の第三金属層の厚みは、上述した、第一金属層の線幅の測定の際に、合わせて測定することもできる。
[Third metal layer]
The third metal layer 203 has conductivity and has an action of ensuring the conduction of the fine metal wires.
The kind of metal contained in the third metal layer 203 is the same as the kind of metal contained in the third metal film described above.
The preferred range of the thickness of the third metal layer 203 is the same as the preferred range of the thickness of the third metal film described above. In addition, the thickness of the 3rd metal layer in an electroconductive film can also be measured in the case of the measurement of the line | wire width of a 1st metal layer mentioned above.
 第三金属層203の線幅としては、2.0μm以下であり、1.5μm以下が好ましく、1.0μm以下がより好ましい。 The line width of the third metal layer 203 is 2.0 μm or less, preferably 1.5 μm or less, and more preferably 1.0 μm or less.
 上記の製造方法により製造された導電性フィルムは、種々の用途に使用できる。用途としては、例えば、各種電極フィルム、発熱シート、及び、プリント配線基板等が挙げられる。なかでも、導電性フィルムは、タッチパネルセンサーに使用されるのが好ましく、静電容量方式のタッチパネルセンサーに使用されるのがより好ましい。上記導電性フィルムをタッチパネルセンサーとして含むタッチパネルでは、金属細線が視認しづらい。
 なお、タッチパネルの構成としては、例えば、特開2015-195004号公報の0020~0027段落に記載のタッチパネルモジュール等が挙げられ、上記内容は本明細書に組み込まれる。
The conductive film manufactured by the above manufacturing method can be used for various applications. Applications include, for example, various electrode films, heat generating sheets, and printed wiring boards. Especially, it is preferable to use an electroconductive film for a touch panel sensor, and it is more preferable to use it for a capacitive touch panel sensor. In a touch panel including the conductive film as a touch panel sensor, it is difficult to visually recognize a fine metal wire.
Note that examples of the configuration of the touch panel include a touch panel module described in paragraphs 0020 to 0027 of JP-A-2015-195004, and the above contents are incorporated in this specification.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例に制限されない。
 また、特に断らない限り、部、及び、%は質量基準を意図する。
Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the examples shown below.
Unless otherwise specified, parts and% are based on mass.
[実施例1]
 COPフィルム(シクロオレフィンポリマーフィルム、厚み80μm)上に、スパッタリング装置を用いて、Crを10nmの厚みになるよう成膜し第一金属膜を得た。引き続き、第一金属膜上に、Cuを50nmの厚みになるよう成膜し第二金属膜を得た。次にレジスト膜形成用組成物(富士フイルム社製、「FHi-622BC」、粘度11mPa・s)を、乾燥後の厚みが1μmとなるように、スピンコーターの回転数を調整して、第二金属膜上に塗布し、100℃で1分間乾燥させて、レジスト膜形成用組成物層を得た。上記レジスト膜形成用組成物層に対し、線幅0.8μmの直線状の開口部を備えるフォトマスクを介し、平行光露光機を用いて365nmの波長の光(露光量 16mW/cm)を2秒間照射し、100℃で1分間加熱(ポストベーク)して、露光後のレジスト膜形成用組成物層を得た。次に、露光後のレジスト膜形成用組成物を、0.5M水酸化ナトリウム水溶液で現像し、パターン状のレジスト膜を得た。上記レジスト膜のパターン状の開口部は、線幅1.0μm±0.1μmであった。
 上記手順により作製した、基板と、第一金属膜と、第二金属膜と、パターン状の開口部を備えるレジスト膜とをこの順に備える積層体に対して、硫酸銅ハイスロー浴(添加剤としてトップルチナHT-AとトップルチナHT-Bとを含有する。いずれも奥野製薬工業社製)を用いて、電気めっきを施した。電気めっきの条件としては、電流密度は3A/dm、導通時間は20秒間とした。電気めっきにより、パターン状の開口部内であって、第二金属膜上に、第三金属膜を形成した。すなわち、パターン状の第三金属膜を得た。このとき、第三金属膜の厚みは300nmであった。次に、1M水酸化ナトリウム水溶液を用いてレジスト膜を剥離した。次に、第二金属膜に対するエッチングレートが200nm/minとなるよう濃度を調整した第二エッチング液(和光純薬工業社製、Cuエッチング液、「Cuエッチャント」)を用いて、第二金属膜をエッチングした。
 次に、第一エッチング液(日本化学産業社製;Crエッチング液;「アルカリ性クロムエッチング液」;原液を使用した;第一金属膜に対するエッチングレートは100nm/minだった。)を用いて第一金属膜をエッチングし、基板と、金属細線とを備える導電性フィルム1を得た。
[Example 1]
On the COP film (cycloolefin polymer film, thickness 80 μm), Cr was formed to a thickness of 10 nm using a sputtering apparatus to obtain a first metal film. Subsequently, Cu was formed to a thickness of 50 nm on the first metal film to obtain a second metal film. Next, a resist film forming composition (“FHi-622BC”, manufactured by Fuji Film Co., Ltd., viscosity 11 mPa · s) is adjusted by adjusting the rotation speed of the spin coater so that the thickness after drying becomes 1 μm. It apply | coated on the metal film and it was made to dry at 100 degreeC for 1 minute, and the composition layer for resist film formation was obtained. The resist film forming composition layer is irradiated with light having a wavelength of 365 nm (exposure amount: 16 mW / cm 2 ) using a parallel light exposure machine through a photomask having a linear opening with a line width of 0.8 μm. Irradiation was performed for 2 seconds, and heating was performed at 100 ° C. for 1 minute (post-baking) to obtain a composition layer for forming a resist film after exposure. Next, the resist film-forming composition after exposure was developed with a 0.5 M aqueous sodium hydroxide solution to obtain a patterned resist film. The patterned opening of the resist film had a line width of 1.0 μm ± 0.1 μm.
For the laminate comprising the substrate, the first metal film, the second metal film, and the resist film having a patterned opening in this order, produced by the above procedure, a copper sulfate high-throw bath (Top Lucina as an additive) Electroplating was performed using HT-A and Top Lucina HT-B (both manufactured by Okuno Pharmaceutical Co., Ltd.). As electroplating conditions, the current density was 3 A / dm 2 and the conduction time was 20 seconds. A third metal film was formed on the second metal film in the pattern-shaped opening by electroplating. That is, a patterned third metal film was obtained. At this time, the thickness of the third metal film was 300 nm. Next, the resist film was peeled off using 1M sodium hydroxide aqueous solution. Next, the second metal film was prepared using a second etching solution (Cu etching solution, “Cu etchant” manufactured by Wako Pure Chemical Industries, Ltd.) whose concentration was adjusted so that the etching rate for the second metal film was 200 nm / min. Was etched.
Next, the first etching solution (manufactured by Nippon Chemical Industry Co., Ltd .; Cr etching solution; “alkaline chromium etching solution”; the stock solution was used; the etching rate for the first metal film was 100 nm / min) was used. The metal film was etched, and the electroconductive film 1 provided with a board | substrate and a metal fine wire was obtained.
[実施例2]
 第一金属膜の厚みを20nmとしたこと、を除いては実施例1と同様の操作により、導電性フィルム2を得た。
[Example 2]
A conductive film 2 was obtained in the same manner as in Example 1 except that the thickness of the first metal film was 20 nm.
[実施例3]
 第二エッチング液の濃度を、第二金属膜に対するエッチングレートが500nm/minとなるよう調整したこと、及び、第一エッチング液の濃度を、第一金属膜に対するエッチングレートが100nm/minとなるよう調整したこと、を除いては、実施例1と同様の操作により、導電性フィルム3を得た。導電性フィルム1と比較すると、金属細線の線幅、及び、厚みにムラが生じた。また、一部に断線も確認されたが、実用範囲内であった。
[Example 3]
The concentration of the second etching solution was adjusted so that the etching rate for the second metal film was 500 nm / min, and the concentration of the first etching solution was set so that the etching rate for the first metal film was 100 nm / min. Except having adjusted, the conductive film 3 was obtained by the same operation as Example 1. FIG. Compared to the conductive film 1, the line width and thickness of the fine metal wires were uneven. Moreover, although disconnection was confirmed in part, it was within a practical range.
[実施例4]
 第二エッチング液の濃度を、第二金属膜に対するエッチングレートが200nm/minとなるよう調整したこと、及び、第一のエッチング液の濃度を、第一金属膜に対するエッチングレートが400nm/minとなるよう調整したこと、を除いては、実施例1と同様の操作により、導電性フィルム4を得た。導電性フィルム1と比較すると密着力が低下したが、実用範囲内であった。
[Example 4]
The concentration of the second etching solution is adjusted so that the etching rate for the second metal film is 200 nm / min, and the concentration of the first etching solution is 400 nm / min for the etching rate for the first metal film. Except having adjusted so, the electroconductive film 4 was obtained by operation similar to Example 1. FIG. Compared with the conductive film 1, the adhesion was reduced, but was within the practical range.
[比較例1]
 第一金属膜を銅合金を用いて厚み15nmとなるよう形成したこと、並びに、第二金属膜に対するエッチングレートが200nm/minとなるよう濃度を調製した第二エッチング液(和光純薬工業社製、Cuエッチング液、「Cuエッチャント」)のみを用いて、第一金属膜、及び、第二金属膜をエッチングしたこと、を除いては、実施例1と同様に操作した。なお、エッチングは、第三金属膜が積層された部分以外の部分(レジスト膜に被覆されていた部分)の第二金属膜が完全に除去されたことを、第二金属膜に由来する金属色が消失したのを目視で確認できるまで行った。その結果、金属細線が、エッチング液中で剥離した。
 なお、銅合金の主成分は銅であり、銅の含有量は銅合金全体の70質量%であった。
[Comparative Example 1]
The first metal film was formed using a copper alloy so as to have a thickness of 15 nm, and the second etching liquid (manufactured by Wako Pure Chemical Industries, Ltd.) whose concentration was adjusted so that the etching rate for the second metal film was 200 nm / min. The first metal film and the second metal film were etched using only a Cu etching solution, “Cu etchant”), and the same operation as in Example 1 was performed. In addition, the metal color derived from the second metal film indicates that the second metal film of the part other than the part where the third metal film is laminated (the part covered with the resist film) is completely removed. It went until it could confirm visually that disappeared. As a result, the fine metal wires were peeled in the etching solution.
The main component of the copper alloy was copper, and the copper content was 70% by mass of the entire copper alloy.
[比較例2]
 第一金属膜を銅合金(比較例1で用いたものと同様)を用いて厚み15nmとなるよう形成したこと、第二エッチング液として、第二金属膜に対するエッチングレートが200nm/minとなるよう濃度を調整した塩化第二鉄(和光純薬工業社製)水溶液を用いたこと、並びに、第二エッチング液のみを用いて、第一金属膜、及び、第二金属膜をエッチングしたこと、を除いては、実施例1と同様に操作した。なお、エッチングは、第三金属膜が積層された部分以外の部分の第二金属膜が完全に除去されたことを、第二金属膜に由来する金属色が消失したのを目視で確認できるまで行った。その結果、金属細線における第三金属膜に由来する金属色も消失した。
[Comparative Example 2]
The first metal film was formed to have a thickness of 15 nm using a copper alloy (similar to that used in Comparative Example 1), and the etching rate for the second metal film was 200 nm / min as the second etching solution. Using ferric chloride (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution with adjusted concentration, and etching the first metal film and the second metal film using only the second etching solution. Except for this, the same operation as in Example 1 was performed. In addition, until the second metal film of the portion other than the portion where the third metal film is laminated is completely removed, it can be visually confirmed that the metal color derived from the second metal film has disappeared. went. As a result, the metal color derived from the third metal film in the thin metal wire also disappeared.
[比較例3]
 第一金属膜を銅合金(比較例1で用いたものと同様)を用いて厚み35nmとなるよう形成したことを除いては、比較例1と同様に操作した。その結果、金属細線がエッチング液中で剥離した。
[Comparative Example 3]
The same operation as in Comparative Example 1 was performed except that the first metal film was formed to have a thickness of 35 nm using a copper alloy (similar to that used in Comparative Example 1). As a result, the fine metal wires were peeled in the etching solution.
[比較例4]
 第一金属膜を銅合金(比較例1で用いたものと同様)を用いて厚み35nmとなるよう形成したことを除いては、比較例2と同様に操作した。その結果、金属細線における第三金属膜に由来する金属色も消失した。
[Comparative Example 4]
The same operation as in Comparative Example 2 was performed except that the first metal film was formed to have a thickness of 35 nm using a copper alloy (similar to that used in Comparative Example 1). As a result, the metal color derived from the third metal film in the thin metal wire also disappeared.
[比較例5]
 第一金属膜を形成しなかったこと以外は比較例1と同様に操作した。その結果、エッチング後の第三金属膜は、エッチング前の第三金属膜が有していた形状を維持した。しかし、後述する方法により実施したテープ剥離試験では、金属細線が大きく剥離した。
[Comparative Example 5]
The same operation as in Comparative Example 1 was performed except that the first metal film was not formed. As a result, the third metal film after etching maintained the shape of the third metal film before etching. However, in the tape peeling test carried out by the method described later, the fine metal wires were largely peeled off.
[比較例6]
 第一金属膜をCrを用いて厚み10nmとなるよう形成し、第二金属膜に対するエッチングレートが200nm/minとなるよう濃度を調製した第二エッチング液のみを用いて、第一金属膜、及び、第二金属膜をエッチングしたこと、を除いては、実施例1と同様に操作した。
 なお、第二エッチング液は、硝酸アンモニウムセリウム(IV)及び硝酸を混合し純水で希釈したものを用い、表1中では「硝酸アンモニウムセリウム液」と記載した。試薬はいずれも東京化成工業社製である。
 なお、エッチングは、第三金属膜が積層された部分以外の部分(レジスト膜に被覆されていた部分)の第二金属膜が完全に除去されたことを、第二金属膜に由来する金属色が消失したのを目視で確認できるまで行った。その結果、金属細線における第三金属膜に由来する金属色も消失した。
[Comparative Example 6]
The first metal film is formed using Cr so as to have a thickness of 10 nm, and the second metal film is used only with a second etching solution whose concentration is adjusted to an etching rate of 200 nm / min. The same operation as in Example 1 was performed except that the second metal film was etched.
In addition, the 2nd etching liquid used what mixed ammonium cerium (IV) nitrate and nitric acid, and diluted with the pure water. In Table 1, it described as "ammonium cerium nitrate liquid." All reagents are manufactured by Tokyo Chemical Industry Co., Ltd.
In addition, the metal color derived from the second metal film indicates that the second metal film of the part other than the part where the third metal film is laminated (the part covered with the resist film) is completely removed. It went until it could confirm visually that disappeared. As a result, the metal color derived from the third metal film in the thin metal wire also disappeared.
 なお、上記において使用した第一エッチング液の、第一金属膜に対するエッチングレートは、以下の方法により測定した。また、その他のエッチングレートも以下と同様の方法で測定した。測定結果をあわせて表1に示した。
 まず、シリコンウェハ上に10μmの厚みで第一金属膜を形成したモデル基板を準備した。次に、上記モデル基板を、第一エッチング液に5分間浸漬した後の第一金属膜の厚みを測定し、浸漬前後で減少した第一金属膜の厚みを算出し、これを5(分)で除して、エッチングレートを算出した。
 なお、厚みの測定には、表面形状測定装置Dektak6M(Veeco社製)を用いた。
In addition, the etching rate with respect to the 1st metal film of the 1st etching liquid used in the above was measured with the following method. Other etching rates were also measured by the same method as described below. The measurement results are also shown in Table 1.
First, a model substrate in which a first metal film was formed with a thickness of 10 μm on a silicon wafer was prepared. Next, the thickness of the first metal film after the model substrate was immersed in the first etching solution for 5 minutes was measured, and the thickness of the first metal film decreased before and after the immersion was calculated. Then, the etching rate was calculated.
In addition, the surface shape measuring apparatus Dektak6M (made by Veeco) was used for the measurement of thickness.
[評価]
〔金属細線の形成性〕
 金属細線の形状は、目視で確認した。結果は以下の基準により評価し、評価結果を表1に示した。実用上「B」以上が好ましい。
A:金属細線の線幅、及び、厚みにムラがなく、断線も確認されなかった。
B:金属細線の線幅、及び、厚みにムラが生じた。また、一部に断線も確認されたが、導電性フィルムとしては実用範囲内だった。
C:金属細線が剥離していた、及び/又は、金属細線が消失していた。
[Evaluation]
[Formability of fine metal wires]
The shape of the fine metal wire was confirmed visually. The results were evaluated according to the following criteria, and the evaluation results are shown in Table 1. Practically “B” or more is preferable.
A: There was no unevenness in the line width and thickness of the fine metal wires, and no disconnection was confirmed.
B: Unevenness occurred in the line width and thickness of the fine metal wires. Moreover, although disconnection was also confirmed in part, it was in a practical range as a conductive film.
C: The fine metal wire was peeled off and / or the fine metal wire disappeared.
〔基板への密着性〕
 金属細線の基板への密着性は、テープ剥離試験により評価した。
 上記の方法で作製した各導電性フィルムを用い、金属細線を備える側の基材主面に対し、セロハンテープフィルム(「CT24」ニチバン社製)を指の腹で押圧して密着させた後、セロハンテープを剥離した。その後、基材上の金属細線の剥離面積(%)(剥離した金属細線の面積/試験片における金属細線の面積×100)を目視で確認した。
 結果は以下の基準により評価し、評価結果を表1に示した。実用上「B」以上が好ましい。
A:金属細線の剥離は観察されなかった。
B:金属細線の剥離は観察されたが、剥離面積は1%未満だった。
C:金属細線の剥離が観察され、剥離面積は1%以上だった。
D:すでに金属細線が剥離していた、及び/又は、金属細線が消失していたため、テープ剥離試験が実施できなかった。
[Adhesion to substrate]
The adhesion of the fine metal wire to the substrate was evaluated by a tape peeling test.
After each cellulosic film produced by the above method was used, the cellophane tape film (“CT24” manufactured by Nichiban Co., Ltd.) was pressed and adhered to the base material main surface on the side provided with the fine metal wires, The cellophane tape was peeled off. Thereafter, the peeled area (%) of the fine metal wire on the substrate (area of the peeled fine metal wire / area of the fine metal wire in the test piece × 100) was visually confirmed.
The results were evaluated according to the following criteria, and the evaluation results are shown in Table 1. Practically “B” or more is preferable.
A: Peeling of the fine metal wire was not observed.
B: Peeling of the fine metal wire was observed, but the peeled area was less than 1%.
C: Peeling of fine metal wires was observed, and the peeled area was 1% or more.
D: The tape peeling test could not be performed because the fine metal wires had already peeled and / or the fine metal wires had disappeared.
〔金属細線の線幅〕
 上記の方法により作製した導電性フィルムが備える金属細線の線幅、及び、各金属層の線幅を以下の方法により測定した。結果は表1にまとめて示した。
 まず、上記導電性フィルムを、基板ごと樹脂に包埋し、幅方向(金属細線の延在方向と直交する方向)で、ウルトラミクロトームを用いて切断し、得られた断面に炭素を蒸着した後、走査型電子顕微鏡(日立ハイテクノロジーズ社製 S-5500型)を用いて観察した。第一金属層、第二金属層、及び、第三金属層のそれぞれの線幅を測定し、最大の線幅を金属細線の線幅(μm)として表1に記載した。
[Line width of fine metal wires]
The line width of the metal fine wire with which the electroconductive film produced by said method is equipped, and the line width of each metal layer were measured with the following method. The results are summarized in Table 1.
First, the conductive film is embedded in a resin together with the substrate, cut in the width direction (direction perpendicular to the extending direction of the fine metal wires) using an ultramicrotome, and carbon is deposited on the obtained cross section This was observed using a scanning electron microscope (S-5500, manufactured by Hitachi High-Technologies Corporation). The respective line widths of the first metal layer, the second metal layer, and the third metal layer were measured, and the maximum line width was listed in Table 1 as the line width (μm) of the thin metal wire.
 なお、表1には、実施例及び比較例に係る金属膜形成工程における条件、使用したエッチング液の種類とエッチングレート、得られた導電性フィルムの線幅、及び、評価を、(その1)~(その4)にわたって、それぞれ各行に記載した。例えば、実施例1であれば、第一金属膜はCrからなり、厚み10nmであり、第二金属膜はCuからなり、厚み50nmであり、第三金属膜はCuからなり、厚み300nmである。第二エッチング液の種類はCuエッチング液であり、第二エッチング液の第二金属膜に対するエッチングレート(ER2)は200nm/minであり、第二エッチング液の第一金属膜に対するエッチングレート(ER1)は0.1nm/min未満であり、結果として、第二エッチング液のER1/ER2は0.0005未満である。第一エッチング液は、Crエッチング液であり、第一エッチング液の第一金属膜に対するエッチングレート(ER1)は100nm/minであり、第一エッチング液の第二金属膜に対するエッチングレート(ER2)は1nm/min未満であり、結果として、第一エッチング液のER2/ER1は0.01未満である。そして、得られた導電性フィルムにおける金属細線の線幅は1μmであり、第一金属層の線幅は0.9μm、第二金属層の線幅は1μm、第三金属層の線幅は1μm、結果として第二金属層の線幅/第一金属層の線幅は1.11だった。そして、評価は、金属細線の形成性が「A」であり、金属細線の基板への密着性が「A」だった。その他の実施例及び比較例についても上記と同様に記載した。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the conditions in the metal film forming steps according to the examples and comparative examples, the type and etching rate of the etching solution used, the line width of the obtained conductive film, and the evaluation (Part 1). It was described in each line over (No. 4). For example, in Example 1, the first metal film is made of Cr and has a thickness of 10 nm, the second metal film is made of Cu and has a thickness of 50 nm, and the third metal film is made of Cu and has a thickness of 300 nm. . The type of the second etching solution is a Cu etching solution, the etching rate (ER2) of the second etching solution to the second metal film is 200 nm / min, and the etching rate (ER1) of the second etching solution to the first metal film. Is less than 0.1 nm / min, and as a result, the ER1 / ER2 of the second etchant is less than 0.0005. The first etching solution is a Cr etching solution, the etching rate (ER1) of the first etching solution to the first metal film is 100 nm / min, and the etching rate (ER2) of the first etching solution to the second metal film is As a result, the ER2 / ER1 of the first etching solution is less than 0.01. And the line width of the thin metal wire in the obtained conductive film is 1 μm, the line width of the first metal layer is 0.9 μm, the line width of the second metal layer is 1 μm, and the line width of the third metal layer is 1 μm. As a result, the line width of the second metal layer / the line width of the first metal layer was 1.11. In the evaluation, the formability of the fine metal wire was “A”, and the adhesion of the fine metal wire to the substrate was “A”. Other examples and comparative examples were also described in the same manner as described above.
Figure JPOXMLDOC01-appb-T000001
 上記表中、「なし」とは、第一金属膜を形成しなかったことを表し、「-」とは、第一金属膜を形成しなかたっため、該当する厚みがないことを表す。 In the above table, “None” means that the first metal film was not formed, and “−” means that the first metal film was not formed, and therefore there was no corresponding thickness.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表中、「なし」は、第一エッチング液を用いなかったことを表し、「-」は該当する測定結果、又は、計算結果がないことを表す。また、「<」は、測定値又は計算値がその数値未満であることを表す。 In the above table, “None” represents that the first etching solution was not used, and “−” represents that there was no corresponding measurement result or calculation result. Further, “<” represents that the measured value or the calculated value is less than the numerical value.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表中、比較例1~4の導電性フィルムの製造方法は、所望の導電性フィルムが得られず、線幅を測定することができなかったため、該当する欄には「測定不可」と表示した。また、「-」は、該当する測定結果、又は、計算結果がないことを表す。 In the above table, the methods for producing conductive films of Comparative Examples 1 to 4 did not provide the desired conductive film, and the line width could not be measured. did. “-” Indicates that there is no corresponding measurement result or calculation result.
 表1に示した結果から、実施例1~4の導電性フィルムの製造方法によれば、線幅が細く、基板への密着性に優れた金属細線を備える導電性フィルムを簡便に製造することができることがわかった。一方、比較例1~6の導電性フィルムの製造方法は、所望の導電性フィルムを製造することができなかった。
 第一金属層の厚みが20nm未満である実施例1の導電性フィルムの製造方法は、実施例2の導電性フィルムの製造方法と比較して、基板への密着性により優れた金属細線を備える導電性フィルムを簡便に製造することができることがわかった。
 第二エッチング液の第二金属膜に対するエッチングレートが、毎分300nm以下である実施例1の導電性フィルムの製造方法は、実施例3の導電性フィルムの製造方法と比較して、より優れた形状を有する金属細線を有する導電性フィルムを製造することができることがわかった。
 第一エッチング液の第一金属膜に対するエッチングレートが、毎分200nm以下である実施例1の導電性フィルムの製造方法は、実施例4の導電性フィルムの製造方法と比較して、基板への密着性により優れた金属細線を備える導電性フィルムを簡便に製造することができることがわかった。
 第二エッチング液の第二金属膜に対するエッチングレートに対する、第二エッチング液の第一金属膜に対するエッチングレートの比が、0.0005以下である実施例1の導電性フィルムの製造方法は、実施例4の導電性フィルムの製造方法と比較して、基板への密着性により優れた金属細線を備える導電性フィルムを簡便に製造することができることがわかった。
From the results shown in Table 1, according to the method for producing conductive films of Examples 1 to 4, a conductive film including a thin metal wire having a narrow line width and excellent adhesion to a substrate can be easily produced. I found out that On the other hand, the methods for producing conductive films of Comparative Examples 1 to 6 could not produce a desired conductive film.
The method for producing a conductive film of Example 1 in which the thickness of the first metal layer is less than 20 nm includes a fine metal wire that is superior in adhesion to the substrate as compared with the method for producing a conductive film of Example 2. It turned out that an electroconductive film can be manufactured simply.
The manufacturing method of the conductive film of Example 1 whose etching rate with respect to the 2nd metal film of a 2nd etching liquid is 300 nm or less per minute was more excellent compared with the manufacturing method of the conductive film of Example 3. It turned out that the electroconductive film which has the metal fine wire which has a shape can be manufactured.
The manufacturing method of the conductive film of Example 1 whose etching rate with respect to the 1st metal film of a 1st etching liquid is 200 nm or less per minute is compared with the manufacturing method of the conductive film of Example 4, to a board | substrate. It turned out that an electroconductive film provided with the metal fine wire excellent in adhesiveness can be manufactured simply.
The ratio of the etching rate of the second etching solution to the first metal film with respect to the etching rate of the second etching solution to the second metal film is 0.0005 or less. Compared with the manufacturing method of 4 electroconductive films, it turned out that the electroconductive film provided with the metal fine wire excellent in the adhesiveness to a board | substrate can be manufactured simply.
11 第一金属膜
12 第二金属膜
13 第三金属膜
20 レジスト膜
21 開口部
30,100 導電性フィルム
101 基板
102 導電部
103 金属細線
104 開口部
201 第一金属層
202 第二金属層
203 第三金属層
DESCRIPTION OF SYMBOLS 11 1st metal film 12 2nd metal film 13 3rd metal film 20 Resist film 21 Opening part 30,100 Conductive film 101 Substrate 102 Conductive part 103 Metal fine wire 104 Opening part 201 First metal layer 202 Second metal layer 203 1st Three metal layers

Claims (17)

  1.  基板と、
     前記基板の少なくとも一方の主面上に配置された、金属細線から構成された導電部と、を備える導電性フィルムの製造方法であって、
     前記基板の少なくとも一方の主面上に、第一金属膜を形成する工程と、
     前記第一金属膜上に、前記第一金属膜の主成分とは異なる成分を主成分として含有する第二金属膜を形成する工程と、
     前記第二金属膜上に、前記金属細線が形成される領域に開口部を備えるレジスト膜を形成する工程と、
     めっき法により、前記開口部内であって、前記二金属膜上に、第三金属膜を形成する工程と、
     前記レジスト膜を除去する工程と、
     前記第三金属膜をマスクとして、第二エッチング液を用いて、前記第二金属膜を除去する工程と、
     前記第三金属膜をマスクとして、前記第二エッチング液とは異なる第一エッチング液を用いて、前記第一金属膜を除去する工程と、
    をこの順に有し、
     前記開口部の線幅が、2.0μm以下である、導電性フィルムの製造方法。
    A substrate,
    A conductive part that is disposed on at least one main surface of the substrate and is composed of a thin metal wire;
    Forming a first metal film on at least one main surface of the substrate;
    Forming a second metal film containing as a main component a component different from the main component of the first metal film on the first metal film;
    Forming a resist film having an opening in a region where the thin metal wire is formed on the second metal film;
    Forming a third metal film on the second metal film in the opening by plating;
    Removing the resist film;
    Using the second metal film as a mask and removing the second metal film using a second etching solution;
    Using the first metal film as a mask and removing the first metal film using a first etchant different from the second etchant;
    In this order,
    The manufacturing method of the electroconductive film whose line width of the said opening part is 2.0 micrometers or less.
  2.  前記第二金属膜が銅又はその合金を含有する、請求項1に記載の導電性フィルムの製造方法。 The method for producing a conductive film according to claim 1, wherein the second metal film contains copper or an alloy thereof.
  3.  前記第一金属膜がクロム又はその合金を含有する、請求項1又は2に記載の導電性フィルムの製造方法。 The method for producing a conductive film according to claim 1 or 2, wherein the first metal film contains chromium or an alloy thereof.
  4.  前記第三金属膜が銅又はその合金を含有する、請求項1~3のいずれか一項に記載の導電性フィルムの製造方法。 The method for producing a conductive film according to any one of claims 1 to 3, wherein the third metal film contains copper or an alloy thereof.
  5.  前記第一金属膜の厚みが20nm未満である、請求項1~4のいずれか一項に記載の導電性フィルムの製造方法。 The method for producing a conductive film according to any one of claims 1 to 4, wherein the thickness of the first metal film is less than 20 nm.
  6.  前記開口部の線幅が1.5μm以下である、請求項1~5のいずれか一項に記載の導電性フィルムの製造方法。 The method for producing a conductive film according to any one of claims 1 to 5, wherein a line width of the opening is 1.5 µm or less.
  7.  前記第二エッチング液の前記第二金属膜に対するエッチングレートが、毎分300nm以下である、請求項1~6のいずれか一項に記載の導電性フィルムの製造方法。 The method for producing a conductive film according to any one of claims 1 to 6, wherein an etching rate of the second etching liquid with respect to the second metal film is 300 nm or less per minute.
  8.  前記第一エッチング液の前記第一金属膜に対するエッチングレートが、毎分200nm以下である、請求項1~7のいずれか一項に記載の導電性フィルムの製造方法。 The method for producing a conductive film according to any one of claims 1 to 7, wherein an etching rate of the first etching liquid with respect to the first metal film is 200 nm or less per minute.
  9.  前記第二エッチング液の前記第二金属膜に対するエッチングレートに対する、前記第二エッチング液の前記第一金属膜に対するエッチングレートの比が、0.0005以下である、請求項1~8のいずれか一項に記載の導電性フィルムの製造方法。 The ratio of the etching rate of the second etching solution to the first metal film to the etching rate of the second etching solution to the second metal film is 0.0005 or less. The manufacturing method of the electroconductive film as described in a term.
  10.  基板と、
     前記基板の少なくとも一方の主面上に配置された、金属細線から構成された導電部と、を備える導電性フィルムであって、
     前記金属細線が、
     第一金属層と、
     前記第一金属層の主成分とは異なる成分を主成分として含有する第二金属層と、
     第三金属層と、を前記基板側からこの順に備え、
     前記金属細線の線幅が、2.0μm以下であり、
     前記第一金属層の線幅に対する、前記第二金属層の線幅の比が、1.0超、1.3未満である、導電性フィルム。
    A substrate,
    A conductive film that is disposed on at least one main surface of the substrate and is composed of a thin metal wire;
    The thin metal wire is
    A first metal layer;
    A second metal layer containing as a main component a component different from the main component of the first metal layer,
    A third metal layer, and in this order from the substrate side,
    The metal thin wire has a line width of 2.0 μm or less,
    The conductive film in which the ratio of the line width of the second metal layer to the line width of the first metal layer is more than 1.0 and less than 1.3.
  11.  前記第二金属層が銅又はその合金を含有する、請求項10に記載の導電性フィルム。 The conductive film according to claim 10, wherein the second metal layer contains copper or an alloy thereof.
  12.  前記第一金属層がクロム又はその合金を含有する、請求項10又は11に記載の導電性フィルム。 The conductive film according to claim 10 or 11, wherein the first metal layer contains chromium or an alloy thereof.
  13.  前記第三金属層が銅又はその合金を含有する、請求項10~12のいずれか一項に記載の導電性フィルム。 The conductive film according to any one of claims 10 to 12, wherein the third metal layer contains copper or an alloy thereof.
  14.  前記第一金属層の厚みが20nm以下である、請求項10~13のいずれか一項に記載の導電性フィルム。 The conductive film according to any one of claims 10 to 13, wherein the thickness of the first metal layer is 20 nm or less.
  15.  前記金属細線の線幅が1.5μm以下である、請求項10~14のいずれか一項に記載の導電性フィルム。 The conductive film according to any one of claims 10 to 14, wherein a line width of the thin metal wire is 1.5 µm or less.
  16.  請求項10~15のいずれか一項に記載の導電性フィルムを含有する、タッチパネルセンサー。 A touch panel sensor comprising the conductive film according to any one of claims 10 to 15.
  17.  請求項16に記載のタッチパネルセンサーを含有する、タッチパネル。
     
    A touch panel comprising the touch panel sensor according to claim 16.
PCT/JP2017/027456 2016-09-05 2017-07-28 Method for producing conductive film, conductive film, touch panel sensor and touch panel WO2018042979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537045A JPWO2018042979A1 (en) 2016-09-05 2017-07-28 Manufacturing method of conductive film, conductive film, touch panel sensor, and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016172629 2016-09-05
JP2016-172629 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018042979A1 true WO2018042979A1 (en) 2018-03-08

Family

ID=61300695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027456 WO2018042979A1 (en) 2016-09-05 2017-07-28 Method for producing conductive film, conductive film, touch panel sensor and touch panel

Country Status (3)

Country Link
JP (1) JPWO2018042979A1 (en)
TW (1) TW201812797A (en)
WO (1) WO2018042979A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329559A (en) * 2004-05-18 2005-12-02 Toray Ind Inc Laminate
WO2014156489A1 (en) * 2013-03-26 2014-10-02 株式会社カネカ Conductive film substrate, transparent conductive film, method for producing transparent conductive film, and touch panel
JP2016126674A (en) * 2015-01-08 2016-07-11 三菱製紙株式会社 Conductive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329559A (en) * 2004-05-18 2005-12-02 Toray Ind Inc Laminate
WO2014156489A1 (en) * 2013-03-26 2014-10-02 株式会社カネカ Conductive film substrate, transparent conductive film, method for producing transparent conductive film, and touch panel
JP2016126674A (en) * 2015-01-08 2016-07-11 三菱製紙株式会社 Conductive sheet

Also Published As

Publication number Publication date
JPWO2018042979A1 (en) 2019-09-12
TW201812797A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
WO2019102701A1 (en) Electronic component manufacturing method and electronic component
US20210149509A1 (en) Conductive film, touch panel sensor, and touch panel
US20190333656A1 (en) Method of manufacturing conductive film and conductive film
US20150289384A1 (en) Conductive film and method for manufacturing same, and resin article with plating layer and method for manufacturing same
TW201901701A (en) Method for producing transparent conductive substrate, transparent conductive substrate
JP3502979B2 (en) Transparent member for electromagnetic wave shielding and method of manufacturing the same
WO2018042979A1 (en) Method for producing conductive film, conductive film, touch panel sensor and touch panel
WO2018047608A1 (en) Conductive film production method, conductive film, touch panel sensor, antenna, fingerprint authentication, and touch panel
TWI791428B (en) Manufacturing method of blackening plating solution and conductive substrate
JP6597139B2 (en) Blackening plating solution, conductive substrate
JP6722291B2 (en) Conductive film, touch panel, photomask, imprint template, conductive film forming laminate, conductive film manufacturing method, and electronic device manufacturing method
WO2019065782A1 (en) Conductive film, touch panel sensor, touch panel, and method for producing conductive film
WO2018193940A1 (en) Conductive substrate
WO2017130869A1 (en) Blackening plating solution and method for manufacturing conductive substrate
TWI791427B (en) Blackening plating solution and method of manufacturing conductive substrate
JP6432684B2 (en) Conductive substrate, method for manufacturing conductive substrate
WO2019049617A1 (en) Conductive film, touch panel sensor and touch panel
JPWO2017130867A1 (en) Conductive substrate
JPH10126057A (en) Manufacture of multilayer interconnection board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845988

Country of ref document: EP

Kind code of ref document: A1