WO2019049617A1 - Conductive film, touch panel sensor and touch panel - Google Patents

Conductive film, touch panel sensor and touch panel Download PDF

Info

Publication number
WO2019049617A1
WO2019049617A1 PCT/JP2018/030305 JP2018030305W WO2019049617A1 WO 2019049617 A1 WO2019049617 A1 WO 2019049617A1 JP 2018030305 W JP2018030305 W JP 2018030305W WO 2019049617 A1 WO2019049617 A1 WO 2019049617A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
conductive
layer
substrate
Prior art date
Application number
PCT/JP2018/030305
Other languages
French (fr)
Japanese (ja)
Inventor
孝彦 一木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019049617A1 publication Critical patent/WO2019049617A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a conductive film, a touch panel sensor, and a touch panel.
  • substrate is used for various uses. For example, in recent years, with the increase in the loading rate of touch panels on mobile phones, portable game devices, etc., the demand for conductive films for capacitive touch panel sensors capable of multipoint detection is rapidly expanding.
  • the user looks at the display from a distance of several tens of centimeters from the display.
  • it is required to further narrow the line width of the thin metal wire.
  • thin metal wires having a narrow line width have poor adhesion to the substrate.
  • a conductive film provided with a layer having a function of further improving the adhesion between the substrate and the fine metal wire.
  • Patent Document 1 discloses a transparent conductive film provided with a transparent electrode layer having a fine metal wire pattern on at least one surface of a transparent film substrate, and the fine metal wire is A second metal layer in contact with the first metal layer and the first metal layer from the transparent film substrate side in this order, and a Ni base metal layer is mainly provided between the transparent film substrate and the first metal layer A transparent conductive film is described, wherein the base metal layer and the first metal layer are in contact with each other.
  • Patent Document 1 The inventor examined the transparent conductive film described in Patent Document 1.
  • the line width of the metal fine wire is 2.0 ⁇ m or less, the metal fine wire becomes the base metal when exposed to the atmosphere for a long time It has been found that the problem of peeling from the substrate as a whole and the problem of peeling between the first metal layer and the base metal layer tend to occur.
  • this invention makes it a subject to provide the conductive film containing a metal fine wire whose line
  • Another object of the present invention is to provide a touch panel sensor and a touch panel including the above-mentioned conductive film.
  • the present inventors have found that the above problems can be solved by the conductive film in which the side surface portion of the base layer mainly composed of nickel alone is covered with a predetermined film.
  • the present invention has been completed. That is, it discovered that the said objective could be achieved by the following structures.
  • a conductive film comprising: a substrate; and a conductive portion composed of fine metal wires disposed on at least one of the main surfaces of the substrate,
  • the metal fine wire includes an underlayer and a conductive layer disposed in this order from the substrate side, and a film covering the side surface of the underlayer, and the line width is 2.0 ⁇ m or less.
  • the base layer contains nickel alone as a main component
  • the conductive layer contains copper as a main component
  • the conductive film, wherein the film contains a metal selected from metals which are electrochemically nobler than nickel, and whose thickness is less than 100 nm.
  • the conductive film according to [1] wherein the film contains a metal selected from metals electrochemically nobler than silver.
  • [3] The conductive film according to [1] or [2], wherein the film contains palladium.
  • [4] The conductive film according to any one of [1] to [3], wherein the line width of the fine metal wire is 1.2 ⁇ m or less.
  • [5] The conductive film according to any one of [1] to [4], wherein the conductive layer contains copper in an amount of 90% by mass or more based on the total mass of the layer.
  • a touch panel sensor comprising the conductive film according to any one of [1] to [5].
  • [7] A touch panel including the touch panel sensor according to [6].
  • a conductive film including a metal fine wire having a line width of 2.0 ⁇ m or less and excellent in adhesion to a substrate over a long period of time it is possible to provide a touch panel sensor and a touch panel including the above-mentioned conductive film.
  • FIG. 3 is a cross-sectional view taken along the line AA of the conductive film shown in FIG. 2A. It is a partially expanded view of the electroconductive part in FIG. 2A. It is a fragmentary sectional view of 1st Embodiment of the electroconductive film of this invention (it is sectional drawing in the BB cross section in FIG. 2C). It is a fragmentary sectional view of a 2nd embodiment of a conductive film of the present invention. It is a fragmentary sectional view of a substrate with a foundation film obtained by performing a foundation film formation process.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • active light or “radiation” in the present specification means, for example, a bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet (EUV: extreme ultraviolet lithography) light, X-rays, and Means electron beam etc.
  • light means actinic rays and radiation.
  • the "exposure” in the present specification means not only exposure by far ultraviolet rays represented by a mercury lamp and an excimer laser, X-rays and EUV light but also particle beams such as electron beams and ion beams unless otherwise specified. Also includes drawing by.
  • the feature of the conductive film of the present invention is that the side portion of the base layer containing a single nickel as a main component is covered with a predetermined film.
  • Patent Document 1 As shown in FIG. 1, a metal thin wire 108 provided with a substrate 100, a base metal layer 102 disposed on the substrate 100, a first metal layer 104, and a second metal layer 106. And a transparent conductive film 110 is disclosed.
  • the base metal layer 102 contains nickel as a main component.
  • the metal fine wire 108 peels off from the substrate 100 together with the base metal layer 102 when exposed to the atmosphere for a long time.
  • the metal fine wire 108 peels off from the substrate 100 together with the base metal layer 102 when exposed to the atmosphere for a long time.
  • the inventor found that the above problem is that nickel, which is the main component of the base metal layer 102, is easily corroded in the presence of oxygen and water in the atmosphere, starting from the side surface portion 102a exposed to the atmosphere. I speculated that it was the cause.
  • the corrosion of the base metal layer 102 mainly composed of nickel proceeds to the inside of the base metal layer 102 depending on the time of exposure to the atmosphere.
  • the adhesion of the base metal layer 102 to the substrate 100 is lowered and the adhesion of the base metal layer 102 to the first metal layer 104 is lowered.
  • the line width L1 of the metal thin wire 108 is an ultra thin wire having a width of 2.0 ⁇ m or less, the influence of corrosion starting from the side surface portion 102a of the base metal layer 102 becomes relatively large. Becomes more prominent.
  • the present invention which solved the above-mentioned problem is explained, taking the specific embodiment as an example.
  • the feature of the conductive film of the present invention is that the side portion of the base layer containing nickel alone as the main component is covered with a predetermined film.
  • the fine metal wires 12 disposed on the substrate 10 are the underlayer 14 disposed in this order from the substrate 10 side.
  • the line width L2 of the thin metal wire 12 is 2.0 ⁇ m or less.
  • the underlayer 14 contains a single nickel as a main component, and the film 18 contains a metal selected from metals which are electrochemically nobler than nickel.
  • electrochemically noble metal than nickel intends metal whose ionization tendency is lower than that of nickel, for example, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, iridium, Platinum and gold can be mentioned. That is, the side layer portion 14a of the underlayer 14 is covered with a metal material which is less susceptible to corrosion than nickel in the presence of oxygen and water in the atmosphere, whereby the underlayer 14 is made in the presence of oxygen and water in the atmosphere. The corrosion that occurs is suppressed.
  • the thickness L3 of the film 18 needs to be less than 100 nm.
  • the thickness L3 of the film 18 is 100 nm or more, the contact surface of the underlayer 14 with the substrate 10 becomes relatively smaller, and the adhesion of the underlayer 14 to the substrate 10 is lowered.
  • the line width of the thin metal wire is relatively large (for example, about 3 to 10 ⁇ m), the decrease in adhesion depending on the thickness of the film is not observed.
  • the fine metal wires 32 disposed on the substrate 10 are the underlayer 34 disposed in this order from the substrate 10 side. And the conductive layer 36, and the film 38 covering the side portion 34a of the base layer 34.
  • the conductive layer 36 is disposed on the surface 34b formed of the base layer 34 and the film 38 covering the side surface portion 34a.
  • the metal thin line 32 has a line width L4 of 2.0 ⁇ m or less.
  • the base layer 34 contains a simple substance of nickel as a main component
  • the film 38 contains a metal selected from metals which are electrochemically nobler than nickel.
  • the base layer 34 is inhibited from being corroded in the presence of oxygen and water in the air.
  • the thickness L5 of the film 38 is less than 100 nm.
  • the contact surface of the underlayer 34 with the substrate 10 becomes relatively small, and the adhesion of the underlayer 34 to the substrate 10 is lowered. It has been confirmed that when the line width of the thin metal wire is relatively large (for example, about 3 to 10 ⁇ m), the decrease in adhesion depending on the thickness of the film is not observed.
  • FIG. 2A is a top view of the first embodiment of the conductive film of the present invention
  • FIG. 2B is a cross-sectional view of the conductive film shown in FIG. 2A, taken along the line AA.
  • FIG. 2C is a partially enlarged view of the conductive portion in FIG. 2A.
  • the conductive film 20 of the present invention includes a substrate 10 and a conductive portion 13 disposed on at least one of the main surfaces of the substrate 10 as shown in FIGS. 2A and 2B.
  • the type of the substrate 10 is not particularly limited as long as the substrate 10 has a main surface and supports the conductive portion 13.
  • a flexible substrate preferably an insulating substrate
  • a resin substrate is more preferable.
  • the substrate 10 preferably transmits 60% or more of visible light (wavelength 400 to 800 nm) light, more preferably transmits 80% or more, still more preferably 90% or more, and transmits 95% or more. Is particularly preferred.
  • the material constituting the resin substrate examples include polyether sulfone resins, polyacrylic resins, polyurethane resins, polyester resins (polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate resins, polysulfone resins, polyamide resins Examples thereof include resins, polyarylate resins, polyolefin resins, cellulose resins, polyvinyl chloride resins, and cycloolefin resins. Among them, cycloolefin resins are preferable in that they have more excellent optical properties.
  • the thickness of the substrate 10 is not particularly limited, but is preferably 0.01 to 0.5 mm, more preferably 0.03 to 0.2 mm, from the viewpoint of balance between handleability and thinning.
  • the substrate 10 may have a multilayer structure, and may include, for example, a functional film as one of its layers. The substrate itself may be a functional film.
  • the conductive film may have a three-dimensional shape (three-dimensional shape).
  • the three-dimensional shape include a three-dimensional shape including a curved surface, and more specifically, a hemispherical shape, a semicylindrical shape, a corrugated shape, a convex-concave shape, and a cylindrical shape.
  • the electroconductive part 13 is arrange
  • the conductive portions 13 may be disposed on both main surfaces of the substrate 10.
  • the conductive part 13 is arrange
  • positioning pattern may be sufficient.
  • FIG. 2C is a partially enlarged top view of the conductive portion 13.
  • the conductive portion 13 is formed of a plurality of thin metal wires 12 and includes a mesh-like pattern including a plurality of openings T formed by the crossing thin metal wires 12.
  • the line width of the thin metal wire 12 is 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and still more preferably 1.2 ⁇ m or less.
  • the lower limit of the line width of the thin metal wire 12 is not particularly limited, but generally 0.2 ⁇ m or more is preferable. For example, when the conductive film is applied to a touch panel sensor, if the line width of the metal thin wire 12 is 2.0 ⁇ m or less, it is more difficult for the user of the touch panel to visually recognize the metal thin wire.
  • the thickness of the thin metal wire 12 is not particularly limited, but generally 0.1 to 5.0 ⁇ m is preferable, and 0.2 to 2.0 ⁇ m is more preferable from the viewpoint of conductivity.
  • the length X of one side of the opening T is preferably 20 to 250 ⁇ m.
  • the opening T has a substantially rhombus shape.
  • polygonal shapes for example, triangles, quadrangles, hexagons, and random polygons.
  • the shape of one side may be a curved shape or an arc shape other than a linear shape.
  • the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inward convex arc shape.
  • the shape of each side may be a wavy line shape in which an outward convex arc and an inward convex arc are continuous.
  • the shape of each side may be a sine curve.
  • the electroconductive part 13 has a mesh-like pattern, it is not restrict
  • FIG. 3 is a partial cross-sectional view of the conductive film 20 (corresponding to a cross-sectional view taken along a line BB in FIG. 2C).
  • the metal thin wire 12 includes the base layer 14 and the conductive layer 16 disposed in this order from the substrate 10 side, and the film 18 covering the periphery of the base layer 14 and the conductive layer 16. Further, as described above, the line width L2 of the thin metal wire 12 is 2.0 ⁇ m or less.
  • the line width of the thin metal wire 12 can be obtained by embedding the thin metal wire 12 together with the substrate 10 in a resin and cutting it with an ultramicrotome in the width direction (direction orthogonal to the extending direction of the thin metal wire 12). After depositing carbon on the cross section, a line width measured by observing with a scanning electron microscope (S-5500 manufactured by Hitachi High-Technologies Corporation) is intended. When the line width differs in the height direction, the largest measurement width is defined as the line width.
  • the underlayer 14 contains a single nickel as a main component.
  • the said main component intends the component with largest content (mass) among the components contained in the base layer 14.
  • unit in the foundation layer 14 Generally 60 mass% or more is preferable with respect to the foundation layer total mass, and 70 mass% or more is more preferable.
  • the upper limit is not particularly limited, but is 100% by mass.
  • the underlayer 14 has a conductive property and also has a function of improving the adhesion between the substrate 10 and the conductive layer 16. It does not restrict
  • the thickness of the underlayer 14 is not particularly limited, but is preferably 5 nm or more. When the thickness of the base layer 14 is in the above numerical range, the metal thin wire 12 is more excellent in adhesion to the substrate 10.
  • the upper limit of the thickness of the underlayer 14 is not particularly limited, and is, for example, 50 nm or less.
  • the conductive layer 16 contains copper as a main component.
  • the conductive layer 16 functions as a conductive portion of the thin metal wire 12.
  • the conductive layer 16 contains copper or an alloy thereof, but the main component is copper, and it is preferable that the content of copper is 90% by mass or more with respect to the total mass of the conductive layer in that the conductivity is more excellent.
  • the main component is intended to mean the metal having the largest content (mass) of the metals contained in the conductive layer 16.
  • the upper limit of the content of copper in the conductive layer 16 is not particularly limited, and is, for example, 100% by mass with respect to the total mass of the conductive layer.
  • the thickness of the conductive layer 16 is preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, and still more preferably 1.0 ⁇ m or less.
  • the lower limit of the thickness of the conductive layer 16 is not particularly limited, but in general, 0.1 ⁇ m or more is preferable.
  • the conductive layer 16 may be a single layer or multiple layers. When the conductive layer 16 is a single layer, it can be formed, for example, by sputtering or vapor deposition. Still, when the conductive layer 16 is a multilayer, the conductive layer 16 is, for example, a seed layer formed by a sputtering method, a vapor deposition method, or an electroless plating method in that the conductivity of the metal fine wire 12 is more excellent; It is preferable to have the plating layer arrange
  • the thickness of the seed layer is not particularly limited, but in general, 300 nm or less is preferable.
  • the lower limit of the thickness of the seed layer is not particularly limited, but generally 30 nm or more is preferable.
  • the thickness of the plating layer is not particularly limited, but generally 3.0 ⁇ m or less is preferable, 2.0 ⁇ m or less is more preferable, and 1.0 ⁇ m or less is still more preferable.
  • the lower limit of the thickness of the plating layer is not particularly limited, but in general, 0.1 ⁇ m or more is preferable.
  • the seed layer may include, for example, metals such as copper, nickel, chromium, lead, gold, silver, tin, and zinc, and alloys of these metals.
  • the main component (so-called, main metal) contained in the seed layer is preferably a metal other than nickel, and examples thereof include copper, chromium, lead, gold, silver, tin and zinc.
  • the said main component intends metal whose content (mass) is the largest among metals contained in the said seed layer.
  • the seed layer preferably contains copper or an alloy thereof, in that the seed layer is superior in affinity to the plating layer and / or in that the function as a seed layer is more excellent.
  • the main component of the seed layer is preferably copper.
  • the content of the metal constituting the main component in the seed layer is not particularly limited, but generally, the content of the metal is preferably 80% by mass or more, and more preferably 85% by mass or more based on the total mass of the seed layer. .
  • the said plating layer As a metal contained in the said plating layer, copper or its alloy is preferable. As a main component (so-called, main metal) contained in the said plating layer, copper is preferable. In addition, the said main component intends the metal with largest content (mass) among the metals contained in the said plating layer.
  • the content of copper constituting the main component in the plating layer is not particularly limited, but generally, the content of the metal is preferably 80% by mass or more, more preferably 90% by mass or more based on the total mass of the plating layer. Preferably, 100% by mass is more preferable.
  • the film 18 contains a metal selected from metals which are electrochemically nobler than nickel, and has a thickness L3 of less than 100 nm.
  • the metal selected from metals which are electrochemically more noble than nickel is intended to be a metal whose ionization tendency is lower than that of nickel, for example, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, iridium, platinum , And gold.
  • the film 18 preferably contains a metal selected from metals which are electrochemically nobler than silver, in that the adhesion of the fine metal wire 12 to the substrate 10 is excellent over a long period of time, and the visibility is further improved by blackening. It is more preferable to contain palladium in that the effect is also obtained.
  • the film 18 contains a metal selected from metals which are more electrochemically noble than nickel.
  • the main component is intended to be the component having the largest content (mass) among the components contained in the film 18.
  • the content of the metal selected from the metals which are electrochemically more noble than nickel in the film 18 is not particularly limited, but generally, the content of the metal is 80% by mass or more based on the total mass of the film 18 Is preferable, 90 mass% or more is more preferable, and 100 mass% is still more preferable.
  • the film 18 preferably contains a metal other than silver.
  • the thickness L3 (see FIG. 3) of the film 18 is less than 100 nm.
  • the metal selected from metals electrochemically nobler than nickel contained in the film 18 has poor adhesion to the substrate 10 as compared to nickel.
  • the thickness L3 of the film 18 is 100 nm or more, the contact surface of the underlayer 14 with the substrate 10 is relatively reduced, and the adhesion of the underlayer 14 to the substrate 10 is reduced. 70 nm or less is preferable and 50 nm or less is more preferable at the point which the adhesiveness of the base layer 14 with respect to the board
  • the lower limit of the thickness L3 of the film 18 is, for example, 10 nm or more.
  • the thickness L3 of the film 18 is preferably 20 nm or more, in that the adhesion of the thin metal wire 12 to the substrate 10 is excellent over a long period of time.
  • the thickness L3 of the film 18 is intended to be a thickness obtained by elemental mapping using an EDS (Energy dispersive X-ray spectrometry) detector. Specifically, the thickness L3 of the film 18 is measured by the following method.
  • C (carbon) vapor deposition and Pt coating are performed on the conductive portion of the conductive film to impart conductivity and protect the surface.
  • the metal thin wire is cut in the width direction (direction orthogonal to the extending direction of the metal thin wire) using a Helios 400 type FIB-SEM (FIB: Focused Ion Beam, SEM: Scanning Electron Microscope) composite machine manufactured by FEI.
  • FIB-SEM Focused Ion Beam
  • SEM Scanning Electron Microscope
  • the formation method of the film 18 is not particularly limited, and a known formation method can be used, and among them, the substitution blackening treatment method is preferable.
  • the substitutional blackening treatment is a reaction utilizing the difference in ionization tendency among metals. According to the substitutional blackening treatment method, it is possible to form a film of a metal which is more electrochemically noble than nickel (in other words, a metal having a smaller ionization tendency) than the nickel.
  • the thickness of a film can be suitably adjusted with the processing time etc. of a substitution blackening treatment method. As a result, the film 18 can be disposed on the side surface portion 14 a of the underlayer 14.
  • FIG. 4 shows a partial cross-sectional view of a second embodiment of the conductive film of the present invention. Note that FIG. 4 corresponds to a cross-sectional view taken along the line BB in FIG. 2C.
  • the fine metal wires 32 in the conductive film 40 have a base layer 34 and a conductive layer 36 disposed in this order from the substrate 10 side, and a film 38 for covering the side surface portion 34 a of the base layer 34; including.
  • the conductive layer 36 is disposed on the surface 34b formed of the base layer 34 and the film 38 covering the side surface portion 34a of the base layer 34. That is, in the metal thin wire 32, the film 38 is not disposed so as to cover the periphery of the underlayer 34 and the conductive layer 36, and the film 38 is disposed only on the side surface portion 34a of the underlayer 34.
  • the line width L4 is 2.0 ⁇ m or less.
  • the thickness L5 of the film 38 is less than 100 nm. The measurement method of the line width L4 and the thickness L5 is measured by the same method as the line width L2 and the thickness L3, respectively.
  • Method of producing conductive film The manufacturing method in particular of the electroconductive film mentioned above is not restrict
  • a step of forming a base film on at least one of the main surfaces of a substrate (2) Step of forming a second metal film on the above-mentioned base film (second metal film forming step) (3) A step of forming a resist film having an opening in a region where a metal fine wire is formed on the second metal film (resist film formation step) (4) Step of forming a first metal film on the second metal film in the opening by plating (first metal film forming step) (5) Step of removing resist film (resist film removing step) (6) A step of removing a part of the second metal film and the base film by using the first metal film as a mask (a step of removing the second metal film and the base film) (7) Process of forming a film by substitution blackening treatment (film forming process)
  • the procedure of each of the above steps will be described in detail with reference to FIGS. 5A to 5G.
  • the base film forming step is a step of forming a base film on at least one main surface of the substrate. Specifically, as shown in FIG. 5A, the base film 44 is formed on the substrate 10 by performing this process. As described later, the base film 44 becomes the base layer 14 shown in FIG. 3 after predetermined processing.
  • the method for forming the underlayer 44 is not particularly limited, and any known method can be used. Among them, the sputtering method or the vapor deposition method is preferable in that a layer having a more dense structure can be easily formed.
  • the substrate 10 is as described above.
  • the base film 44 is a film to be the base layer 14 and is a film mainly composed of nickel.
  • the definition of the main component is as described for the base layer 14.
  • the second metal film forming step is a step of forming a second metal film on the base film. Specifically, as shown in FIG. 5B, the second metal film 46a is formed on the base film 44 by performing this process. As described later, the second metal film 46a functions as a seed layer in the plating method. As the metal contained in the second metal film 46a, a conductive layer having a predetermined composition may be formed, and examples thereof include the metals contained in the above-described seed layer.
  • the method of forming the second metal film 46a is not particularly limited, and any known method may be used, among which sputtering, vapor deposition, or electroless plating is preferable in that it is easy to form a layer having a more dense structure. The method is preferred.
  • the resist film forming step is a step of forming a resist film having an opening in a region where a metal thin wire is to be formed. Specifically, as shown in FIG. 5C, by performing this process, a resist film 47 is formed on the second metal film 46a.
  • the resist film 47 has an opening 49 in the region where the metal thin wire is to be formed.
  • the region of the opening 49 in the resist film 47 can be appropriately adjusted in accordance with the region in which the thin metal wire is to be disposed.
  • a resist film having openings in a mesh is formed in the case of forming metal thin wires arranged in a mesh.
  • the opening is formed in a thin wire shape in accordance with the thin metal wire.
  • the line width W of the opening is 2.0 ⁇ m or less.
  • the line width W is preferably 1.5 ⁇ m or less, and more preferably 1.2 ⁇ m or less. By setting the line width W of the opening to 2.0 ⁇ m or less, thin metal wires having a line width can be obtained.
  • the line width W of the opening when the line width W of the opening is 1.2 ⁇ m or less, the line width of the obtained metal thin line becomes narrower, and when the conductive film is applied to a touch panel sensor, for example, the metal thin line It is hard to see.
  • the lower limit of the line width W of the opening is not particularly limited, but is often 0.2 ⁇ m or more.
  • the width of the opening means the size of the thin line portion in the direction orthogonal to the extending direction of the thin line portion of the opening. Through each process described later, fine metal wires having a line width corresponding to the line width of the opening are formed.
  • the method of forming the resist film 47 on the second metal film 46a is not particularly limited, and a known resist film forming method can be used. For example, there is a method including the following steps.
  • C developing the resist film-forming composition after exposure to obtain a resist film.
  • the composition layer for resist film formation and / or a resist film are heated. The process may be further included.
  • Step (a) It does not restrict
  • a well-known composition for resist film formation can be used.
  • a composition for resist film formation a positive or negative radiation sensitive composition is mentioned, for example.
  • the composition layer for forming a resist film may be heated. By heating, the unnecessary solvent remaining in the composition layer for forming a resist film is removed, and the composition layer for forming a resist film can be made uniform in the plane.
  • limit especially as a method to heat the composition layer for resist film formation, For example, the method to heat a board
  • the temperature of the heating is not particularly limited, but generally 40 to 160 ° C. is preferable.
  • the thickness of the composition layer for forming a resist film is not particularly limited, but in general, the thickness after drying is preferably 0.5 to 2.5 ⁇ m.
  • Step (b) It does not restrict
  • a method of exposing the composition layer for forming a resist film for example, a method of irradiating the composition layer for forming a resist film with an actinic ray or radiation through a photomask provided with a pattern-like opening can be mentioned.
  • the exposure dose is not particularly limited, but in general, irradiation at 1 to 100 mW / cm 2 for 0.1 to 10 seconds is preferable.
  • the line width W of the pattern opening provided in the photomask used in the step (b) is generally preferably 2.0 ⁇ m or less, and 1.5 ⁇ m or less Is more preferable, and 1.2 ⁇ m or less is more preferable.
  • the composition layer for forming a resist film after exposure may be heated.
  • the heating temperature is not particularly limited, but generally 40 to 160 ° C. is preferable.
  • Step (c) It does not restrict
  • known development methods include methods using a developer containing an organic solvent or an alkali developer.
  • the development method include a dip method, a paddle method, a spray method, and a dynamic dispensing method.
  • the resist film after development may be washed using a rinse solution.
  • the rinse solution is not particularly limited, and known rinse solutions can be used. Examples of the rinse solution include organic solvents and water.
  • the first metal forming step is a step of forming the first metal film on the second metal film by the plating method in the opening of the resist film. Specifically, as shown in FIG. 5D, by performing this process, the first metal film 46b is formed on the second metal film 46a so as to fill the opening 49 in FIG. 5C.
  • the first metal film 46 b is formed by plating.
  • a well-known plating method can be used as a plating method. Specifically, electrolytic plating and electroless plating may be mentioned, and electrolytic plating is preferred from the viewpoint of productivity.
  • a metal contained in the first metal film 46b a conductive layer having a predetermined composition may be formed, and examples thereof include the metals contained in the above-described plating layer.
  • the resist film removing step is a step of removing the resist film 47. Specifically, as shown in FIG. 5E, by carrying out the present step, a stack including the substrate 10 and the base film 44, the second metal film 46a, and the first metal film 46b on the substrate 10 is provided. Get the body.
  • the method for removing the resist film 47 is not particularly limited, and a known method for removing the resist film 47 using a resist film removing solution may be mentioned.
  • Examples of the resist film removing solution include organic solvents and alkaline solutions.
  • the method for contacting the resist film removing solution with the resist film is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, and a dynamic dispensing method.
  • the second metal film and the underlayer film removing step is a step of removing a part of the second metal film and the underlayer film using the first metal film as a mask. Specifically, as shown in FIG. 5F, by performing this process, the base film 44 and the second metal film 46a corresponding to the area where the first metal film 46b is not formed are removed.
  • etching solution there is no particular limitation on the method of removing a part of the base film 44 and the second metal film 46a, but a known etching solution can be used.
  • known etching solutions include ferric chloride solution, cupric chloride solution, alkaline ammonia solution, sulfuric acid-hydrogen peroxide mixed solution, and phosphoric acid-hydrogen peroxide mixed solution.
  • an etching solution which does not easily dissolve the first metal film 46 b and easily dissolves the base film 44 and the second metal film 46 a may be selected appropriately.
  • the etching solution may be changed for each layer of the base film 44 and the second metal film 46a to perform multi-step etching.
  • the film forming step is a step of forming a film in a region including at least the side surface portion of the base film by substitution blackening treatment. Specifically, by carrying out this step, a region including at least the side surface portion of the base film 44 (in the method of manufacturing the conductive film 20, the base film 44, the second metal film 46a, and the first metal film 46b) Side surface portion is blackened, and as shown in FIG. 5G, on the substrate 10, the base layer 14, the conductive layer 16 including the second metal film 46a and the first metal film 46b, and the base layer A coating 18 covering the periphery of the conductive layer 14 and the conductive layer 16 is formed.
  • the conductive layer 16 and the film 18 in FIG. 5G correspond to the conductive layer 16 and the film 18 in FIG. 3, respectively. That is, the thin metal wires 12 shown in FIG. 3 are obtained through the film forming step.
  • the substitutional blackening treatment is a reaction utilizing the difference in ionization tendency among metals.
  • nickel on the side portion of the underlayer can be replaced with a metal that is more electrochemically noble than nickel (in other words, a metal having a smaller ionization tendency).
  • the substitutional blackening treatment method the above-mentioned laminate obtained through the second metal film and the base film removing step is immersed in an aqueous solution containing metal ions having a smaller ionization tendency than nickel.
  • the nickel constituting the layer is dissolved to form nickel ions to emit electrons.
  • the electrons reduce a metal having a small ionization tendency contained in the aqueous solution, whereby a metal having a small ionization tendency is deposited on the side portion of the base film 44.
  • the film 18 can be disposed on the side surface of the base layer 14.
  • the nickel contained in the base layer 14 is mainly contained in the first metal film 46b.
  • the metal as the main component of the first metal film 46 b and the metal as the main component of the second metal film 46 a are preferably both copper, and in this case, as the metal ion, it is preferable to use silver. Also, metal ions having a smaller ionization tendency are preferable, and palladium ions are more preferable.
  • the liquid temperature of the solution at the time of immersion is not particularly limited, but usually 10 to 90 ° C., preferably 20 to 60 ° C.
  • the pH of the solution at the time of immersion is not particularly limited, but it is preferably 0 to 13, and more preferably 0 to 8.
  • the immersion time is not particularly limited, but is usually 1 to 8 minutes.
  • substitution blackening treatment method is not restrict
  • the composition for blackening treatment described in patent publication 586 2916 can be used.
  • the conductive film 20 can be formed through the above steps.
  • the conductive film 40 shown in FIG. 4 can also be manufactured by the same method.
  • a coating is not formed around the conductive layer 36 as in the thin metal wire 32 shown in FIG. 4 and only the side surface portion 34 a of the base layer 34 is covered with the coating 38, the ionization tendency is lower in the coating forming step.
  • the metal as the main component of the first metal film 46b and the metal as the main component of the second metal film 46a are both copper, and in this case, tin, as the metal ion, is used. Lead, antimony, bismuth and the like can be mentioned.
  • the conductive film of the present invention can be used in various applications.
  • various electrode films, heat generating sheets, and printed wiring boards can be mentioned.
  • the conductive film is preferably used for a touch panel sensor, and more preferably used for a capacitive touch panel sensor.
  • the touch panel including the conductive film as a touch panel sensor it is difficult for a thin metal wire to be visible.
  • Examples of the configuration of the touch panel include the touch panel module described in paragraphs 0020 to 0027 of JP-A-2015-195004, and the above contents are incorporated in the present specification.
  • Example 1 On a PET (polyethylene terephthalate) film, a Ni film having a thickness of 20 nm was formed as a base film using a sputtering apparatus. Next, using a sputtering apparatus, a Cu film (second metal film) having a thickness of 50 nm was formed as a seed film on the Ni film. Next, on the second metal film, a positive resist (MCP R 124 MG manufactured by Rohm and Haas Electronic Materials Co., Ltd.) was applied by a spin coater so as to have a thickness of 1 ⁇ m, and dried at 90 ° C. for 10 minutes.
  • MCP R 124 MG manufactured by Rohm and Haas Electronic Materials Co., Ltd.
  • the resist film After irradiating a light of 365 nm wavelength (exposure amount: 16 mw / cm 2 ) for 2 seconds using a parallel exposure machine through a photomask, the resist film is developed by developing with a 0.10 M sodium hydroxide aqueous solution. Obtained (line width of the opening of the resist film: 1.5 ⁇ m ⁇ 0.1 ⁇ m). Next, the entire surface of the resist was exposed (3 seconds at an exposure amount of 16 mW / cm 2 ) for later peeling.
  • electroplating is performed at a current density of 3 A / dm 2 using a copper sulfate high-throw bath (including Top Lucina HT-A and Top Lucina HT-B as additives, each of which is manufactured by Okuno Pharmaceutical Industry Co., Ltd.)
  • the Cu plating film (1st metal film) formed so that a part was filled was obtained.
  • the resist was peeled off with a 0.15 M aqueous solution of sodium hydroxide, and then the second metal film in the opening was removed with a Cu etching solution (Cu etchant manufactured by Wako Pure Chemical Industries, Ltd.).
  • the underlayer was etched with a Ni etching solution (NC-A and NC-B manufactured by Nippon Chemical Industrial Co., Ltd.). Finally, a surface treatment is carried out with a Pd solution (example 1 of Patent No. 586 2916, prepared with reference to blackening solution No. 2) at room temperature for 3 minutes to form a film (Pd layer), whereby the conductivity is achieved. A film was obtained (line width of 1 ⁇ m ⁇ 0.1 ⁇ m of fine metal wire). The thickness of the film (corresponding to L3 in FIG. 3) in this example was 40 nm.
  • the metal thin wires formed on the substrate are the base layer and the conductive layer disposed in this order from the substrate side, and the periphery of the base layer and the conductive layer. And a coating to be coated.
  • the conductive layer contains copper as a main component (the content of copper is specifically 90% by mass or more with respect to the entire conductive layer).
  • the conductive layer is composed of the first metal film and the second metal film.
  • the underlayer is made of Ni alone. Also, the film contains palladium.
  • the line width of the thin metal wire in the produced conductive film was measured by the following method. First, the above conductive film is embedded in a resin together with the substrate, cut with an ultramicrotome in the width direction (direction orthogonal to the extending direction of the metal fine wire), and carbon is deposited on the obtained cross section , And was observed using a scanning electron microscope (S-5500 manufactured by Hitachi High-Technologies Corporation). When the line width differs in the height direction, the largest measurement width is defined as the line width.
  • the thickness of the film of the metal fine wire in the produced conductive film was measured by the following method. First, C deposition and Pt coating were performed on the conductive part of the conductive film for conductivity imparting and surface protection. Subsequently, the metal thin wire was cut in the width direction (direction orthogonal to the extending direction of the metal thin wire) using a Helios 400 type FIB-SEM (FIB: Focused Ion Beam, SEM: Scanning Electron Microscope) composite machine manufactured by FEI. Then, using the obtained section, EDS analysis was performed at an acceleration voltage of 200 kV with an EDS detector (HD2300 type FE-STEM manufactured by Hitachi High-Technologies Corporation). In element mapping obtained by EDS analysis, the thickness of the distribution region of Pd atoms was measured one by one for each of the films disposed at both ends of the section, and the average value was taken as the thickness of the film.
  • FIB-SEM Focused Ion Beam
  • SEM Scanning Electro
  • the obtained conductive film was exposed to 85 ° C. and 85% Rh conditions for 168 hours.
  • the tape adhesion test shown below was implemented with respect to the conductive film after exposing to the conditions of 85 degreeC 85% Rh for 168 hours. As a result, peeling of the thin metal wires arranged in a mesh was not seen.
  • the adhesion of the metal thin line to the substrate was evaluated by a tape adhesion test.
  • a cellophane tape film ("CT24" manufactured by Nichiban Co., Ltd.) is pressed against the main surface of the substrate provided with metal fine wires using a conductive film produced by the above method and then adhered with a finger pad, and then cellophane tape Peeled off. Thereafter, the peeled area (%) of the metal thin wire on the substrate (area of peeled metal thin wire / area of metal thin wire in test piece ⁇ 100) was visually confirmed.
  • Example 2 The procedure was carried out in the same manner as in Example 1 except that a COP (cycloolefin polymer) film was used as a substrate. That is, the second embodiment is different from the first embodiment only in the type of the substrate. Moreover, the tape adhesion test was implemented with respect to the electroconductive film after 168 hours of exposure conditions of 85 degreeC 85% Rh similarly to Example 1. FIG. As a result, peeling of the thin metal wires arranged in a mesh was not seen. The thickness of the film (corresponding to L3 in FIG. 3) in this example was 40 nm.
  • Example 3 Everything was carried out in the same manner as in Example 1 except that the surface treatment was carried out for 5 minutes. In other words, Example 3 is different from Example 1 only in the thickness of the film. Moreover, the tape adhesion test was implemented with respect to the electroconductive film after 168 hours of exposure conditions of 85 degreeC 85% Rh similarly to Example 1. FIG. As a result, peeling of the thin metal wires arranged in a mesh was not seen. The thickness of the film (corresponding to L3 in FIG. 3) in this example was 80 nm.
  • Example 4 The second metal film was performed in the same manner as in Example 1 except that a Cu—Zn alloy film (component ratio 85: 15 (mass ratio) of a sputtering target) was used instead of the Cu film.
  • a Cu—Zn alloy film component ratio 85: 15 (mass ratio) of a sputtering target
  • the fourth embodiment is different from the first embodiment only in the type of the second metal film.
  • the conductive layer contains copper as a main component (the content of copper is specifically 90% by mass or more with respect to the entire conductive layer). is there).
  • the conductive layer is composed of the first metal film and the second metal film.
  • the tape adhesion test was implemented with respect to the electroconductive film after exposing to the conditions of 85 degreeC 85% Rh for 168 hours similarly to Example 1.
  • FIG. As a result, peeling of the thin metal wires arranged in a mesh was not seen.
  • the thickness of the film (corresponding to L3 in FIG. 3) in this example was 40 nm.
  • Example 5 The procedure was carried out in the same manner as in Example 4 except that a COP film was used as a substrate. That is, the fifth embodiment is different from the fourth embodiment only in the type of the substrate. Moreover, the tape adhesion test was implemented with respect to the electroconductive film after exposing to the conditions of 85 degreeC 85% Rh for 168 hours similarly to Example 1. FIG. As a result, peeling of the thin metal wires arranged in a mesh was not seen. The thickness of the film (corresponding to L3 in FIG. 3) in this example was 40 nm.
  • Comparative Example 1 It carried out like Example 1 except not having implemented surface treatment by Pd solution. That is, the conductive film of the comparative example 1 is a structure which does not have a film. Moreover, the tape adhesion test was implemented with respect to the electroconductive film after exposing to the conditions of 85 degreeC 85% Rh for 168 hours similarly to Example 1. FIG. As a result, 50% or more of the metal thin wires arranged in a mesh were peeled off.
  • Comparative Example 2 Everything was carried out in the same manner as in Example 1 except that the surface treatment was carried out for 10 minutes. That is, the conductive film of Comparative Example 1 has the same configuration as the conductive film of Example 1 except that the thickness of the film is 100 nm.
  • the above-mentioned tape adhesion test was conducted, and peeling was observed in an area range of 3% or less of the metal thin wires arranged in a mesh shape.
  • the tape adhesion test was implemented with respect to the electroconductive film after 168 hours of exposure to 85 degreeC 85% Rh conditions similarly to Example 1, it arrange
  • the thickness of the film (corresponding to L3 in FIG. 3) in this example was 100 nm.
  • the conductive film of the example had excellent adhesion to the substrate over a long period of time while the line width was 2.0 ⁇ m or less.

Abstract

The present invention addresses the problem of providing a conductive film which comprises a metal thin wire that has a line width of 2.0 μm or less and exhibits excellent adhesion to a substrate for a long period of time. The present invention also addresses the problem of providing a touch panel sensor and a touch panel, each of which comprises this conductive film. A conductive film according to the present invention comprises a substrate and a conductive part that is arranged on at least one main surface of the substrate and is composed of a metal thin wire. The metal thin wire comprises a base layer and a conductive layer, which are sequentially arranged in this order from the substrate side, and a coating film that covers a lateral surface part of the base layer; and the metal thin wire has a line width of 2.0 μm or less. The base layer contains elemental nickel as a main component; the conductive layer contains copper as a main component; and the coating film has a thickness of less than 100 nm and contains a metal which is selected from among metals that are electrochemically more noble than nickel.

Description

導電性フィルム、タッチパネルセンサー、及びタッチパネルConductive film, touch panel sensor, and touch panel
 本発明は、導電性フィルム、タッチパネルセンサー、及びタッチパネルに関する。 The present invention relates to a conductive film, a touch panel sensor, and a touch panel.
 基板上に金属細線からなる導電部が配置された導電性フィルムは、種々の用途に使用されている。例えば、近年、携帯電話又は携帯ゲーム機器等へのタッチパネルの搭載率の上昇に伴い、多点検出が可能な静電容量方式のタッチパネルセンサー用として導電性フィルムの需要が急速に拡大している。 DESCRIPTION OF RELATED ART The electroconductive film by which the electroconductive part which consists of a metal fine wire is arrange | positioned on a board | substrate is used for various uses. For example, in recent years, with the increase in the loading rate of touch panels on mobile phones, portable game devices, etc., the demand for conductive films for capacitive touch panel sensors capable of multipoint detection is rapidly expanding.
 例えば、タッチパネルを備えるディスプレイを使用する場合、使用者は、ディスプレイから数十cmの距離からディスプレイを見ることになる。このとき、金属細線が使用者から視認されないようにするため、金属細線の線幅をより細くすることが求められている。
 一般に、線幅の細い金属細線は、基板との密着性が劣る。このため、昨今においては、これを改善するために、基板と金属細線との間に、更に両者の密着性を向上する作用を有する層を設けた導電性フィルムが提案されている。
For example, when using a display with a touch panel, the user looks at the display from a distance of several tens of centimeters from the display. At this time, in order to prevent the thin metal wire from being visually recognized by the user, it is required to further narrow the line width of the thin metal wire.
In general, thin metal wires having a narrow line width have poor adhesion to the substrate. For this reason, in recent years, in order to improve this, there has been proposed a conductive film provided with a layer having a function of further improving the adhesion between the substrate and the fine metal wire.
 上記のような導電性フィルムとしては、例えば、特許文献1には、透明フィルム基板の少なくとも一方の面上に、金属細線パターンからなる透明電極層を備える透明導電性フィルムであって、金属細線が、透明フィルム基板側から第一金属層、及び第一金属層に接する第二金属層をこの順に備え、透明フィルム基板と第一金属層との間に、Niを主成分とする下地金属層を備え、下地金属層と第一金属層とが接している、透明導電性フィルム、が記載されている。 As the conductive film as described above, for example, Patent Document 1 discloses a transparent conductive film provided with a transparent electrode layer having a fine metal wire pattern on at least one surface of a transparent film substrate, and the fine metal wire is A second metal layer in contact with the first metal layer and the first metal layer from the transparent film substrate side in this order, and a Ni base metal layer is mainly provided between the transparent film substrate and the first metal layer A transparent conductive film is described, wherein the base metal layer and the first metal layer are in contact with each other.
国際公開第2014/156489号International Publication No. 2014/156489
 本発明者は、特許文献1に記載された透明導電性フィルムについて検討したところ、金属細線の線幅が2.0μm以下である場合、大気下に長期間曝されると、金属細線が下地金属層ごと基板から剥離する問題、及び第一金属層と下地金属層との間で剥離する問題が生じやすいことを知見した。 The inventor examined the transparent conductive film described in Patent Document 1. When the line width of the metal fine wire is 2.0 μm or less, the metal fine wire becomes the base metal when exposed to the atmosphere for a long time It has been found that the problem of peeling from the substrate as a whole and the problem of peeling between the first metal layer and the base metal layer tend to occur.
 そこで、本発明は、線幅が2.0μm以下であり、且つ、長期間にわたって基板への密着性に優れた金属細線を含む導電性フィルムを提供することを課題とする。
 また、本発明は、上記導電性フィルムを含む、タッチパネルセンサー、及びタッチパネルを提供することも課題とする。
Then, this invention makes it a subject to provide the conductive film containing a metal fine wire whose line | wire width is 2.0 micrometers or less and excellent in the adhesiveness to a board | substrate over a long period of time.
Another object of the present invention is to provide a touch panel sensor and a touch panel including the above-mentioned conductive film.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、ニッケル単体を主成分とする下地層の側面部を所定の皮膜で被覆した導電性フィルムによれば上記課題が解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成できることを見出した。
As a result of intensive studies to achieve the above problems, the present inventors have found that the above problems can be solved by the conductive film in which the side surface portion of the base layer mainly composed of nickel alone is covered with a predetermined film. The present invention has been completed.
That is, it discovered that the said objective could be achieved by the following structures.
 〔1〕 基板と、上記基板の少なくとも一方の主面上に配置された、金属細線から構成された導電部と、を含む導電性フィルムであって、
 上記金属細線は、上記基板側からこの順に配置された下地層及び導電層と、上記下地層の側面部を被覆する皮膜と、を含み、且つ、線幅が2.0μm以下であり、
 上記下地層は、ニッケル単体を主成分として含み、
 上記導電層は、銅を主成分として含み、
 上記皮膜は、ニッケルよりも電気化学的に貴な金属から選ばれる金属を含み、且つ、厚みが100nm未満である、導電性フィルム。
 〔2〕 上記皮膜は、銀よりも電気化学的に貴な金属から選ばれる金属を含む、〔1〕に記載の導電性フィルム。
 〔3〕 上記皮膜は、パラジウムを含む、〔1〕又は〔2〕に記載の導電性フィルム。
 〔4〕 上記金属細線の線幅が1.2μm以下である、〔1〕~〔3〕のいずれかに記載の導電性フィルム。
 〔5〕 上記導電層は、銅を層全質量に対して90質量%以上含む、〔1〕~〔4〕のいずれかに記載の導電性フィルム。
 〔6〕 〔1〕~〔5〕のいずれかに記載の導電性フィルムを含む、タッチパネルセンサー。
 〔7〕 〔6〕に記載のタッチパネルセンサーを含む、タッチパネル。
[1] A conductive film comprising: a substrate; and a conductive portion composed of fine metal wires disposed on at least one of the main surfaces of the substrate,
The metal fine wire includes an underlayer and a conductive layer disposed in this order from the substrate side, and a film covering the side surface of the underlayer, and the line width is 2.0 μm or less.
The base layer contains nickel alone as a main component,
The conductive layer contains copper as a main component,
The conductive film, wherein the film contains a metal selected from metals which are electrochemically nobler than nickel, and whose thickness is less than 100 nm.
[2] The conductive film according to [1], wherein the film contains a metal selected from metals electrochemically nobler than silver.
[3] The conductive film according to [1] or [2], wherein the film contains palladium.
[4] The conductive film according to any one of [1] to [3], wherein the line width of the fine metal wire is 1.2 μm or less.
[5] The conductive film according to any one of [1] to [4], wherein the conductive layer contains copper in an amount of 90% by mass or more based on the total mass of the layer.
[6] A touch panel sensor comprising the conductive film according to any one of [1] to [5].
[7] A touch panel including the touch panel sensor according to [6].
 本発明によれば、線幅が2.0μm以下であり、且つ、長期間にわたって基板への密着性に優れた金属細線を含む導電性フィルムを提供できる。
 また、本発明によれば、上記導電性フィルムを含む、タッチパネルセンサー、及びタッチパネルを提供できる。
According to the present invention, it is possible to provide a conductive film including a metal fine wire having a line width of 2.0 μm or less and excellent in adhesion to a substrate over a long period of time.
Further, according to the present invention, it is possible to provide a touch panel sensor and a touch panel including the above-mentioned conductive film.
従来技術の問題点を表す概念図である。It is a conceptual diagram showing the problem of a prior art. 本発明の導電性フィルムの第1実施形態の上面図である。It is a top view of 1st Embodiment of the conductive film of this invention. 図2Aに示す導電性フィルムのA-A断面における断面図である。FIG. 3 is a cross-sectional view taken along the line AA of the conductive film shown in FIG. 2A. 図2A中の導電部の一部拡大図である。It is a partially expanded view of the electroconductive part in FIG. 2A. 本発明の導電性フィルムの第1実施形態の部分断面図である(図2C中のB-B断面における断面図である)。It is a fragmentary sectional view of 1st Embodiment of the electroconductive film of this invention (it is sectional drawing in the BB cross section in FIG. 2C). 本発明の導電性フィルムの第2実施形態の部分断面図である。It is a fragmentary sectional view of a 2nd embodiment of a conductive film of the present invention. 下地膜形成工程を実施して得られる下地膜付き基板の部分断面図である。It is a fragmentary sectional view of a substrate with a foundation film obtained by performing a foundation film formation process. 第二金属膜形成工程を実施して得られる第二金属膜付き基板の部分断面図である。It is a fragmentary sectional view of a substrate with a 2nd metal film obtained by implementing a 2nd metal film formation process. レジスト膜形成工程を実施して得られるレジスト膜付き基板の部分断面図である。It is a fragmentary sectional view of a substrate with a resist film obtained by performing a resist film formation process. 第一金属膜形成工程を実施して得られる第一金属膜付き基板の部分断面図である。It is a fragmentary sectional view of a substrate with a first metal film obtained by performing a first metal film formation process. レジスト膜除去工程を実施して得られる積層体の部分断面図である。It is a fragmentary sectional view of the laminated body obtained by implementing a resist film removal process. 下地膜及び第二金属膜除去工程を実施して得られる積層体の部分断面図である。It is a fragmentary sectional view of a layered product obtained by carrying out a foundation film and the 2nd metal film removal process. 皮膜形成工程を実施して得られる導電性フィルムの部分断面図である。It is a fragmentary sectional view of the electroconductive film obtained by implementing a film formation process.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、及びエキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme ultraviolet lithography光)、X線、並びに電子線等を意味する。また本明細書において光とは、活性光線及び放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯、及びエキシマレーザーに代表される遠紫外線、X線、並びにEUV光等による露光のみならず、電子線及びイオンビーム等の粒子線による描画も包含する。
Hereinafter, the present invention will be described in detail.
The description of the configuration requirements described below may be made based on a representative embodiment of the present invention, but the present invention is not limited to such an embodiment.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
In addition, “active light” or “radiation” in the present specification means, for example, a bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet (EUV: extreme ultraviolet lithography) light, X-rays, and Means electron beam etc. In the present specification, light means actinic rays and radiation. Unless otherwise specified, the "exposure" in the present specification means not only exposure by far ultraviolet rays represented by a mercury lamp and an excimer laser, X-rays and EUV light but also particle beams such as electron beams and ion beams unless otherwise specified. Also includes drawing by.
 [導電性フィルム]
 本発明の導電性フィルムの特徴点としては、ニッケル単体を主成分として含む下地層の側面部が、所定の皮膜で被覆されている点が挙げられる。
[Conductive film]
The feature of the conductive film of the present invention is that the side portion of the base layer containing a single nickel as a main component is covered with a predetermined film.
 以下では、まず、従来技術の問題点について詳述する。
 特許文献1においては、図1に示すように、基板100と、基板100上に配置された、下地金属層102と、第一金属層104と、第二金属層106とを備えた金属細線108と、を備えた透明導電フィルム110が開示されている。また、下地金属層102は、ニッケルを主成分として含む。
First, the problems of the prior art will be described in detail.
In Patent Document 1, as shown in FIG. 1, a metal thin wire 108 provided with a substrate 100, a base metal layer 102 disposed on the substrate 100, a first metal layer 104, and a second metal layer 106. And a transparent conductive film 110 is disclosed. The base metal layer 102 contains nickel as a main component.
 上述したとおり、透明導電フィルム110は、金属細線108の線幅L1が2.0μm以下である場合、大気下に長期間曝されると、金属細線108が下地金属層102ごと基板100から剥離しやすいという問題、及び第一金属層104と下地金属層102との間で剥離しやすいという問題がある。
 本発明者は、上記問題は、大気下に露出している側面部102aを起点として、下地金属層102の主成分であるニッケルが、大気中の酸素及び水の存在下で腐食され易いことが原因であると推測した。
 例えば、第一金属層104及び第二金属層106の材料として好適に用いられる銅は、大気下に曝されるとその表面に不動態(酸化被膜)形成し、内部に至る腐食が抑制される。一方、ニッケルは不動態を形成しないため、ニッケルを主成分とする下地金属層102は、大気下に曝された時間に応じて腐食が進行し、下地金属層102の内部まで腐食が進行する。この結果として、下地金属層102の基板100に対する密着性の低下、及び下地金属層102の第一金属層104に対する密着性の低下が生じると考えられる。
 特に、金属細線108の線幅L1が2.0μm以下の極細線である場合、下地金属層102の側面部102aを起点とする腐食の影響が相対的に大きくなるため、密着性の低下の問題がより顕著となる。
As described above, in the transparent conductive film 110, when the line width L1 of the metal fine wire 108 is 2.0 μm or less, the metal fine wire 108 peels off from the substrate 100 together with the base metal layer 102 when exposed to the atmosphere for a long time. There is a problem of being easy and a problem of being easy to exfoliate between the first metal layer 104 and the base metal layer 102.
The inventor found that the above problem is that nickel, which is the main component of the base metal layer 102, is easily corroded in the presence of oxygen and water in the atmosphere, starting from the side surface portion 102a exposed to the atmosphere. I speculated that it was the cause.
For example, copper suitably used as a material of the first metal layer 104 and the second metal layer 106 forms a passivity (oxide film) on the surface when exposed to the atmosphere, and the corrosion to the inside is suppressed . On the other hand, since nickel does not form a passive state, the corrosion of the base metal layer 102 mainly composed of nickel proceeds to the inside of the base metal layer 102 depending on the time of exposure to the atmosphere. As a result, it is considered that the adhesion of the base metal layer 102 to the substrate 100 is lowered and the adhesion of the base metal layer 102 to the first metal layer 104 is lowered.
In particular, when the line width L1 of the metal thin wire 108 is an ultra thin wire having a width of 2.0 μm or less, the influence of corrosion starting from the side surface portion 102a of the base metal layer 102 becomes relatively large. Becomes more prominent.
 以下、上記問題を解決した本発明について、その具体的な実施形態を例に挙げて説明する。上述したとおり、本発明の導電性フィルムの特徴点としては、ニッケル単体を主成分として含む下地層の側面部が、所定の皮膜で被覆されている点が挙げられる。
 まず、後述する、本発明の導電性フィルムの第1の実施形態では、図3に示すように、基板10上に配置される金属細線12は、基板10側からこの順に配置された下地層14及び導電層16と、下地層14及び導電層16の周囲を被覆する皮膜18と、を含む。また、金属細線12の線幅L2は、2.0μm以下である。
 金属細線12において、下地層14は、ニッケル単体を主成分として含み、皮膜18は、ニッケルよりも電気化学的に貴な金属から選ばれる金属を含む。ここで、「ニッケルよりも電気化学的に貴な金属」とは、イオン化傾向がニッケルよりも低い金属を意図し、例えば、錫、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、イリジウム、白金、及び金が挙げられる。
 つまり、下地層14の側面部14aが、大気中の酸素及び水の存在下においてニッケルよりも腐食されにくい金属材料で覆われることで、下地層14は、大気中の酸素及び水の存在下で生じる腐食が抑制されている。
 また、本発明者は、金属細線12において、皮膜18の厚みL3を100nm未満とする必要があることを確認している。皮膜18の厚みL3を100nm以上とすると、相対的に下地層14の基板10との接触面がより小さくなるため、基板10に対する下地層14の密着性が下がってしまう。なお、金属細線の線幅が比較的大きい場合(例えば3~10μm程度)、皮膜の厚みに依存した密着性の低下は観測されないことを確認している。
Hereinafter, the present invention which solved the above-mentioned problem is explained, taking the specific embodiment as an example. As described above, the feature of the conductive film of the present invention is that the side portion of the base layer containing nickel alone as the main component is covered with a predetermined film.
First, in the first embodiment of the conductive film of the present invention, which will be described later, as shown in FIG. 3, the fine metal wires 12 disposed on the substrate 10 are the underlayer 14 disposed in this order from the substrate 10 side. And the conductive layer 16 and the film 18 covering the base layer 14 and the periphery of the conductive layer 16. Further, the line width L2 of the thin metal wire 12 is 2.0 μm or less.
In the metal thin wire 12, the underlayer 14 contains a single nickel as a main component, and the film 18 contains a metal selected from metals which are electrochemically nobler than nickel. Here, "electrochemically noble metal than nickel" intends metal whose ionization tendency is lower than that of nickel, for example, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, iridium, Platinum and gold can be mentioned.
That is, the side layer portion 14a of the underlayer 14 is covered with a metal material which is less susceptible to corrosion than nickel in the presence of oxygen and water in the atmosphere, whereby the underlayer 14 is made in the presence of oxygen and water in the atmosphere. The corrosion that occurs is suppressed.
The inventor has also confirmed that in the metal thin wire 12, the thickness L3 of the film 18 needs to be less than 100 nm. When the thickness L3 of the film 18 is 100 nm or more, the contact surface of the underlayer 14 with the substrate 10 becomes relatively smaller, and the adhesion of the underlayer 14 to the substrate 10 is lowered. It has been confirmed that when the line width of the thin metal wire is relatively large (for example, about 3 to 10 μm), the decrease in adhesion depending on the thickness of the film is not observed.
 また、後述する、本発明の導電性フィルムの第2の実施形態では、図4に示すように、基板10上に配置される金属細線32は、基板10側からこの順に配置された下地層34及び導電層36と、下地層34の側面部34aを被覆する皮膜38と、を含む。具体的には、金属細線32において、導電層36は、下地層34とその側面部34aを被覆する皮膜38とから形成される面34b上に配置される。また、金属細線32は、線幅L4が2.0μm以下である。
 金属細線32において、下地層34は、ニッケル単体を主成分として含み、皮膜38は、ニッケルよりも電気化学的に貴な金属から選ばれる金属を含む。
 つまり、下地層34の側面部34aが、ニッケルよりも腐食されにくい金属材料で覆われることで、下地層34は、大気中の酸素及び水の存在下で生じる腐食が抑制されている。
 また、金属細線32において、皮膜38の厚みL5は100nm未満である。皮膜38の厚みL5を100nm以上とすると、相対的に下地層34の基板10との接触面が小さくなるため、基板10に対する下地層34の密着性が下がってしまう。なお、金属細線の線幅が比較的大きい場合(例えば3~10μm程度)、皮膜の厚みに依存した密着性の低下は観測されないことを確認している。
Further, in the second embodiment of the conductive film of the present invention, which will be described later, as shown in FIG. 4, the fine metal wires 32 disposed on the substrate 10 are the underlayer 34 disposed in this order from the substrate 10 side. And the conductive layer 36, and the film 38 covering the side portion 34a of the base layer 34. Specifically, in the metal fine wire 32, the conductive layer 36 is disposed on the surface 34b formed of the base layer 34 and the film 38 covering the side surface portion 34a. The metal thin line 32 has a line width L4 of 2.0 μm or less.
In the metal thin wires 32, the base layer 34 contains a simple substance of nickel as a main component, and the film 38 contains a metal selected from metals which are electrochemically nobler than nickel.
That is, by covering the side surface portion 34a of the base layer 34 with a metal material that is less likely to be corroded than nickel, the base layer 34 is inhibited from being corroded in the presence of oxygen and water in the air.
Further, in the thin metal wire 32, the thickness L5 of the film 38 is less than 100 nm. When the thickness L5 of the film 38 is 100 nm or more, the contact surface of the underlayer 34 with the substrate 10 becomes relatively small, and the adhesion of the underlayer 34 to the substrate 10 is lowered. It has been confirmed that when the line width of the thin metal wire is relatively large (for example, about 3 to 10 μm), the decrease in adhesion depending on the thickness of the film is not observed.
<<第1の実施形態>>
 以下に、本発明の導電性フィルムの第1実施形態について説明する。図2Aは、本発明の導電性フィルムの第1実施形態の上面図であり、図2Bは、図2Aに示す導電性フィルムのA-A断面における断面図である。図2Cは、図2A中の導電部の一部拡大図である。
<< First Embodiment >>
Hereinafter, a first embodiment of the conductive film of the present invention will be described. FIG. 2A is a top view of the first embodiment of the conductive film of the present invention, and FIG. 2B is a cross-sectional view of the conductive film shown in FIG. 2A, taken along the line AA. FIG. 2C is a partially enlarged view of the conductive portion in FIG. 2A.
 本発明の導電性フィルム20は、図2A及び図2Bに示すように、基板10と、基板10の少なくとも一方の主面上に配置された、導電部13と、を含む。 The conductive film 20 of the present invention includes a substrate 10 and a conductive portion 13 disposed on at least one of the main surfaces of the substrate 10 as shown in FIGS. 2A and 2B.
〔基板10〕
 基板10は、主面を有し、導電部13を支持するものであれば、その種類は特に制限されない。基板10としては、可撓性を有する基板(好ましくは絶縁基板)が好ましく、樹脂基板がより好ましい。
[Substrate 10]
The type of the substrate 10 is not particularly limited as long as the substrate 10 has a main surface and supports the conductive portion 13. As the substrate 10, a flexible substrate (preferably an insulating substrate) is preferable, and a resin substrate is more preferable.
 基板10は、可視光(波長400~800nm)の光を60%以上透過することが好ましく、80%以上透過することがより好ましく、90%以上透過することが更に好ましく、95%以上透過することが特に好ましい。 The substrate 10 preferably transmits 60% or more of visible light (wavelength 400 to 800 nm) light, more preferably transmits 80% or more, still more preferably 90% or more, and transmits 95% or more. Is particularly preferred.
 樹脂基板を構成する材料としては、例えば、ポリエーテルスルホン系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、及びポリエチレンナフタレート等)、ポリカーボネート系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリオレフィン系樹脂、セルロース系樹脂、ポリ塩化ビニル系樹脂、及びシクロオレフィン系樹脂等が挙げられる。なかでも、より優れた光学特性を有する点で、シクロオレフィン系樹脂が好ましい。
 基板10の厚みとしては、特に制限されないが、取り扱い性及び薄型化のバランスの点から、0.01~0.5mmが好ましく、0.03~0.2mmがより好ましい。
 また、基板10は複層構造であってもよく、例えば、その一つの層として機能性フィルムを含んでいてもよい。なお、基板自体が機能性フィルムであってもよい。
Examples of the material constituting the resin substrate include polyether sulfone resins, polyacrylic resins, polyurethane resins, polyester resins (polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate resins, polysulfone resins, polyamide resins Examples thereof include resins, polyarylate resins, polyolefin resins, cellulose resins, polyvinyl chloride resins, and cycloolefin resins. Among them, cycloolefin resins are preferable in that they have more excellent optical properties.
The thickness of the substrate 10 is not particularly limited, but is preferably 0.01 to 0.5 mm, more preferably 0.03 to 0.2 mm, from the viewpoint of balance between handleability and thinning.
Also, the substrate 10 may have a multilayer structure, and may include, for example, a functional film as one of its layers. The substrate itself may be a functional film.
〔導電部13〕
 図2A及び図2Bにおいては、平面状の形状を有する導電性フィルムの形態を示したが、導電性フィルムとしては上記に制限されない。導電性フィルムは3次元形状(立体形状)を有していてもよい。3次元形状としては、例えば、曲面を含む3次元形状が挙げられ、より具体的には、半球状、かまぼこ形状、波形形状、凸凹形状、及び円柱状等が挙げられる。
 また、図2A及び図2Bにおいては、導電部13は基板10の一方の主面上に配置されているが、この形態には制限されない。例えば、基板10の両方の主面上に導電部13が配置されていてもよい。
 また、図2A及び図2Bにおいては、導電部13は、6本ストライプ状に配置されているが、この形態には制限されず、どのような配置パターンであってもよい。
[Conductive part 13]
Although the form of the conductive film which has planar shape was shown in FIG. 2A and FIG. 2B, it is not restrict | limited as above as a conductive film. The conductive film may have a three-dimensional shape (three-dimensional shape). Examples of the three-dimensional shape include a three-dimensional shape including a curved surface, and more specifically, a hemispherical shape, a semicylindrical shape, a corrugated shape, a convex-concave shape, and a cylindrical shape.
Moreover, in FIG. 2A and 2B, although the electroconductive part 13 is arrange | positioned on one main surface of the board | substrate 10, it is not restrict | limited to this form. For example, the conductive portions 13 may be disposed on both main surfaces of the substrate 10.
Moreover, in FIG. 2A and FIG. 2B, although the conductive part 13 is arrange | positioned at six stripe form, it is not restrict | limited to this form, What kind of arrangement | positioning pattern may be sufficient.
 図2Cは、導電部13の一部拡大上面図である。導電部13は、複数の金属細線12により構成され、交差する金属細線12による複数の開口部Tを含むメッシュ状のパターンを含む。
 金属細線12の線幅は、2.0μm以下であり、1.5μm以下がより好ましく、1.2μm以下が更に好ましい。
 金属細線12の線幅の下限値としては特に制限されないが、一般に0.2μm以上が好ましい。
 金属細線12の線幅が2.0μm以下であると、例えば、導電性フィルムをタッチパネルセンサーに適用した際、タッチパネルの使用者が、金属細線をより視認しにくい。
FIG. 2C is a partially enlarged top view of the conductive portion 13. The conductive portion 13 is formed of a plurality of thin metal wires 12 and includes a mesh-like pattern including a plurality of openings T formed by the crossing thin metal wires 12.
The line width of the thin metal wire 12 is 2.0 μm or less, more preferably 1.5 μm or less, and still more preferably 1.2 μm or less.
The lower limit of the line width of the thin metal wire 12 is not particularly limited, but generally 0.2 μm or more is preferable.
For example, when the conductive film is applied to a touch panel sensor, if the line width of the metal thin wire 12 is 2.0 μm or less, it is more difficult for the user of the touch panel to visually recognize the metal thin wire.
 金属細線12の厚みとしては、特に制限されないが、一般に0.1~5.0μmが好ましく、導電性の観点から、0.2~2.0μmがより好ましい。
 開口部Tの一辺の長さXは、20~250μmが好ましい。
The thickness of the thin metal wire 12 is not particularly limited, but generally 0.1 to 5.0 μm is preferable, and 0.2 to 2.0 μm is more preferable from the viewpoint of conductivity.
The length X of one side of the opening T is preferably 20 to 250 μm.
 なお、図2Cにおいては、開口部Tは、略ひし形の形状を有している。但し、その他、多角形状(例えば、三角形、四角形、六角形、及びランダムな多角形)としてもよい。また、一辺の形状を直線状の他、湾曲形状にしてもよいし、円弧状にしてもよい。円弧状とする場合は、例えば、対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 なお、図2Cにおいては、導電部13はメッシュ状のパターンを有するが、この形態には制限されない。
In FIG. 2C, the opening T has a substantially rhombus shape. However, it is also possible to use polygonal shapes (for example, triangles, quadrangles, hexagons, and random polygons). Further, the shape of one side may be a curved shape or an arc shape other than a linear shape. In the case of the arc shape, for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inward convex arc shape. Further, the shape of each side may be a wavy line shape in which an outward convex arc and an inward convex arc are continuous. Of course, the shape of each side may be a sine curve.
In addition, in FIG. 2C, although the electroconductive part 13 has a mesh-like pattern, it is not restrict | limited to this form.
<金属細線12>
 図3は、導電性フィルム20の部分断面図である(図2C中のB-B断面における断面図に該当する)。
 図3に示すように、金属細線12は、基板10側からこの順に配置された下地層14及び導電層16と、下地層14及び導電層16の周囲を被覆する皮膜18とを含む。
 また、金属細線12の線幅L2は、上述したように2.0μm以下である。
<Metal fine wire 12>
FIG. 3 is a partial cross-sectional view of the conductive film 20 (corresponding to a cross-sectional view taken along a line BB in FIG. 2C).
As shown in FIG. 3, the metal thin wire 12 includes the base layer 14 and the conductive layer 16 disposed in this order from the substrate 10 side, and the film 18 covering the periphery of the base layer 14 and the conductive layer 16.
Further, as described above, the line width L2 of the thin metal wire 12 is 2.0 μm or less.
 なお、金属細線12の線幅は、金属細線12を基板10ごと樹脂に包埋し、幅方向(金属細線12の延在方向と直交する方向)で、ウルトラミクロトームを用いて切断し、得られた断面に炭素を蒸着した後、走査型電子顕微鏡(日立ハイテクノロジーズ社製 S-5500型)を用いて観察して、測定される線幅を意図する。なお、線幅が高さ方向で異なる場合、最も大きな測定幅を線幅と定義する。 The line width of the thin metal wire 12 can be obtained by embedding the thin metal wire 12 together with the substrate 10 in a resin and cutting it with an ultramicrotome in the width direction (direction orthogonal to the extending direction of the thin metal wire 12). After depositing carbon on the cross section, a line width measured by observing with a scanning electron microscope (S-5500 manufactured by Hitachi High-Technologies Corporation) is intended. When the line width differs in the height direction, the largest measurement width is defined as the line width.
 (下地層14)
 下地層14は、ニッケル単体を主成分として含む。なお、上記主成分とは、下地層14中に含まれる成分のうち、最も含有量(質量)が大きい成分を意図する。下地層14中のニッケル単体の含有量としては特に制限されないが、一般に、下地層全質量に対して、60質量%以上が好ましく、70質量%以上がより好ましい。なお、その上限は特に制限されないが、100質量%である。下地層14は、導電特性を有するとともに、基板10と導電層16との密着性を向上させる機能を有する。
 下地層14の形成方法としては特に制限されず、公知の形成方法を使用できる。なかでも、より緻密な構造を有する層を形成し易い点で、スパッタリング法、又は蒸着法が好ましい。
(Base layer 14)
The underlayer 14 contains a single nickel as a main component. In addition, the said main component intends the component with largest content (mass) among the components contained in the base layer 14. As shown in FIG. Although it does not restrict | limit especially as content of the nickel single-piece | unit in the foundation layer 14, Generally 60 mass% or more is preferable with respect to the foundation layer total mass, and 70 mass% or more is more preferable. The upper limit is not particularly limited, but is 100% by mass. The underlayer 14 has a conductive property and also has a function of improving the adhesion between the substrate 10 and the conductive layer 16.
It does not restrict | limit especially as a formation method of the base layer 14, A well-known formation method can be used. Among them, the sputtering method or the vapor deposition method is preferable in that a layer having a more dense structure can be easily formed.
 下地層14の厚みとしては特に制限されないが、5nm以上が好ましい。下地層14の厚みを上記数値範囲とした場合、金属細線12は、基板10に対する密着性がより優れる。下地層14の厚みの上限は特に制限されないが、例えば、50nm以下である。 The thickness of the underlayer 14 is not particularly limited, but is preferably 5 nm or more. When the thickness of the base layer 14 is in the above numerical range, the metal thin wire 12 is more excellent in adhesion to the substrate 10. The upper limit of the thickness of the underlayer 14 is not particularly limited, and is, for example, 50 nm or less.
 (導電層16)
 導電層16は、銅を主成分として含む。導電層16は、金属細線12の導通部として機能する。
 導電層16は、銅又はその合金を含むが、その主成分は銅であり、導電性がより優れる点で、銅の含有量が導電層全質量に対して90質量%以上であることが好ましい。なお、上記主成分とは、上記導電層16中に含まれる金属のうち、最も含有量(質量)が大きい金属を意図する。また、導電層16中の銅の含有量の上限は特に制限されないが、例えば、導電層全質量に対して100質量%である。
(Conductive layer 16)
The conductive layer 16 contains copper as a main component. The conductive layer 16 functions as a conductive portion of the thin metal wire 12.
The conductive layer 16 contains copper or an alloy thereof, but the main component is copper, and it is preferable that the content of copper is 90% by mass or more with respect to the total mass of the conductive layer in that the conductivity is more excellent. . The main component is intended to mean the metal having the largest content (mass) of the metals contained in the conductive layer 16. Further, the upper limit of the content of copper in the conductive layer 16 is not particularly limited, and is, for example, 100% by mass with respect to the total mass of the conductive layer.
 導電層16の厚みは、一般に、3.0μm以下が好ましく、2.0μm以下がより好ましく、1.0μm以下が更に好ましい。導電層16の厚みの下限値としては特に制限されないが、一般に0.1μm以上が好ましい。 In general, the thickness of the conductive layer 16 is preferably 3.0 μm or less, more preferably 2.0 μm or less, and still more preferably 1.0 μm or less. The lower limit of the thickness of the conductive layer 16 is not particularly limited, but in general, 0.1 μm or more is preferable.
 また、導電層16は、単層であっても複層であってもよい。
 導電層16が単層である場合、例えば、スパッタリング法、又は蒸着法により形成できる。
 まだ、導電層16が複層である場合、金属細線12の導電性がより優れる点で、導電層16は、例えば、スパッタリング法、蒸着法、又は無電解めっき法により形成されたシード層と、上記シード層上に、めっき法により配置されためっき層とを有することが好ましい。
 なお、めっき法としては、電解めっき法及び無電解めっき法が挙げられ、生産性の点から、電解めっき法が好ましい。
The conductive layer 16 may be a single layer or multiple layers.
When the conductive layer 16 is a single layer, it can be formed, for example, by sputtering or vapor deposition.
Still, when the conductive layer 16 is a multilayer, the conductive layer 16 is, for example, a seed layer formed by a sputtering method, a vapor deposition method, or an electroless plating method in that the conductivity of the metal fine wire 12 is more excellent; It is preferable to have the plating layer arrange | positioned by the plating method on the said seed layer.
In addition, an electroplating method and an electroless plating method are mentioned as a plating method, The electrolytic plating method is preferable from the point of productivity.
 上記シード層の厚みとしては特に制限されないが、一般に、300nm以下が好ましい。上記シード層の厚みの下限値としては特に制限されないが、一般に30nm以上が好ましい。
 また、上記めっき層の厚みとしては特に制限されないが、一般に、3.0μm以下が好ましく、2.0μm以下がより好ましく、1.0μm以下が更に好ましい。上記めっき層の厚みの下限値としては特に制限されないが、一般に0.1μm以上が好ましい。
The thickness of the seed layer is not particularly limited, but in general, 300 nm or less is preferable. The lower limit of the thickness of the seed layer is not particularly limited, but generally 30 nm or more is preferable.
The thickness of the plating layer is not particularly limited, but generally 3.0 μm or less is preferable, 2.0 μm or less is more preferable, and 1.0 μm or less is still more preferable. The lower limit of the thickness of the plating layer is not particularly limited, but in general, 0.1 μm or more is preferable.
 上記シード層に含まれる金属としては特に制限されず、公知の金属を用いることができる。
 上記シード層としては、例えば、銅、ニッケル、クロム、鉛、金、銀、錫、及び亜鉛等の金属、並びに、これらの金属の合金を含んでいてもよい。
 上記シード層に含まれる主成分(いわゆる、主金属)としては、ニッケル以外の金属が好ましく、例えば、銅、クロム、鉛、金、銀、錫、及び亜鉛が挙げられる。なお、上記主成分とは、上記シード層中に含まれる金属のうち、最も含有量(質量)が大きい金属を意図する。
 なかでも、上記めっき層との親和性により優れる点、及び/又はシード層としての機能がより優れる点で、上記シード層は、銅又はその合金を含むことが好ましい。また、上記シード層の主成分は、銅であることが好ましい。
It does not restrict | limit especially as a metal contained in the said seed layer, A well-known metal can be used.
The seed layer may include, for example, metals such as copper, nickel, chromium, lead, gold, silver, tin, and zinc, and alloys of these metals.
The main component (so-called, main metal) contained in the seed layer is preferably a metal other than nickel, and examples thereof include copper, chromium, lead, gold, silver, tin and zinc. In addition, the said main component intends metal whose content (mass) is the largest among metals contained in the said seed layer.
Among them, the seed layer preferably contains copper or an alloy thereof, in that the seed layer is superior in affinity to the plating layer and / or in that the function as a seed layer is more excellent. The main component of the seed layer is preferably copper.
 上記シード層中の主成分を構成する金属の含有量としては特に制限されないが、一般に、上記金属の含有量がシード層全質量に対して80質量%以上が好ましく、85質量%以上がより好ましい。 The content of the metal constituting the main component in the seed layer is not particularly limited, but generally, the content of the metal is preferably 80% by mass or more, and more preferably 85% by mass or more based on the total mass of the seed layer. .
 上記めっき層に含まれる金属としては、銅又はその合金が好ましい。
 上記めっき層に含まれる主成分(いわゆる、主金属)としては、銅が好ましい。なお、上記主成分とは、上記めっき層中に含まれる金属のうち、最も含有量(質量)が大きい金属を意図する。
As a metal contained in the said plating layer, copper or its alloy is preferable.
As a main component (so-called, main metal) contained in the said plating layer, copper is preferable. In addition, the said main component intends the metal with largest content (mass) among the metals contained in the said plating layer.
 上記めっき層中の主成分を構成する銅の含有量としては特に制限されないが、一般に、上記金属の含有量が上記めっき層全質量に対して80質量%以上が好ましく、90質量%以上がより好ましく、100質量%が更に好ましい。 The content of copper constituting the main component in the plating layer is not particularly limited, but generally, the content of the metal is preferably 80% by mass or more, more preferably 90% by mass or more based on the total mass of the plating layer. Preferably, 100% by mass is more preferable.
 (皮膜18)
 皮膜18は、ニッケルよりも電気化学的に貴な金属から選ばれる金属を含み、且つ、厚みL3が100nm未満である。
 ニッケルよりも電気化学的に貴な金属から選ばれる金属とは、イオン化傾向がニッケルよりも低い金属を意図し、例えば、錫、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、イリジウム、白金、及び金が挙げられる。
 基板10に対する金属細線12の密着性がより長期間にわたって優れる点で、皮膜18は、銀よりも電気化学的に貴な金属から選ばれる金属を含むことが好ましく、更に黒化による視認性の改善効果も得られる点で、パラジウムを含むことがより好ましい。なお、皮膜18中、ニッケルよりも電気化学的に貴な金属から選ばれる金属は主成分として含まれることが好ましい。上記主成分とは、皮膜18中に含まれる成分のうち、最も含有量(質量)が大きい成分を意図する。
 なお、皮膜18中のニッケルよりも電気化学的に貴な金属から選ばれる金属の含有量としては特に制限されないが、一般に、上記金属の含有量が上記皮膜18全質量に対して80質量%以上が好ましく、90質量%以上がより好ましく、100質量%が更に好ましい。
 また、皮膜18がニッケルよりも電気化学的に貴な金属から選ばれる金属として銀を含む場合、金属細線12にマイグレーションが発生する場合がある。このため、皮膜18は、銀以外の金属を含むことが好ましい。
(Coating 18)
The film 18 contains a metal selected from metals which are electrochemically nobler than nickel, and has a thickness L3 of less than 100 nm.
The metal selected from metals which are electrochemically more noble than nickel is intended to be a metal whose ionization tendency is lower than that of nickel, for example, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, iridium, platinum , And gold.
The film 18 preferably contains a metal selected from metals which are electrochemically nobler than silver, in that the adhesion of the fine metal wire 12 to the substrate 10 is excellent over a long period of time, and the visibility is further improved by blackening. It is more preferable to contain palladium in that the effect is also obtained. Preferably, the film 18 contains a metal selected from metals which are more electrochemically noble than nickel. The main component is intended to be the component having the largest content (mass) among the components contained in the film 18.
The content of the metal selected from the metals which are electrochemically more noble than nickel in the film 18 is not particularly limited, but generally, the content of the metal is 80% by mass or more based on the total mass of the film 18 Is preferable, 90 mass% or more is more preferable, and 100 mass% is still more preferable.
In addition, when the film 18 contains silver as a metal selected from metals that are electrochemically nobler than nickel, migration may occur in the metal thin wire 12. Therefore, the film 18 preferably contains a metal other than silver.
 また、皮膜18の厚みL3(図3参照)は、100nm未満である。皮膜18に含まれるニッケルよりも電気化学的に貴な金属から選ばれる金属は、ニッケルと比較すると、基板10に対する密着性に劣る。皮膜18の厚みL3を100nm以上とすると、相対的に下地層14の基板10との接触面が小さくなるため、基板10に対する下地層14の密着性が下がってしまう。
 皮膜18の厚みL3は、なかでも、基板10に対する下地層14の密着性がより優れる点で、70nm以下が好ましく、50nm以下がより好ましい。
 なお、皮膜18の厚みL3の下限値は、例えば、10nm以上である。基板10に対する金属細線12の密着性がより長期間にわたって優れる点で、皮膜18の厚みL3は、20nm以上が好ましい。
The thickness L3 (see FIG. 3) of the film 18 is less than 100 nm. The metal selected from metals electrochemically nobler than nickel contained in the film 18 has poor adhesion to the substrate 10 as compared to nickel. When the thickness L3 of the film 18 is 100 nm or more, the contact surface of the underlayer 14 with the substrate 10 is relatively reduced, and the adhesion of the underlayer 14 to the substrate 10 is reduced.
70 nm or less is preferable and 50 nm or less is more preferable at the point which the adhesiveness of the base layer 14 with respect to the board | substrate 10 is more excellent especially in thickness L 3 of the film | membrane 18.
The lower limit of the thickness L3 of the film 18 is, for example, 10 nm or more. The thickness L3 of the film 18 is preferably 20 nm or more, in that the adhesion of the thin metal wire 12 to the substrate 10 is excellent over a long period of time.
 ここで、皮膜18の厚みL3は、EDS(Energy dispersive X-ray spectrometry)検出器を用いた元素マッピングにより得られる厚みを意図する。皮膜18の厚みL3は、具体的には、下記の方法により測定される。 Here, the thickness L3 of the film 18 is intended to be a thickness obtained by elemental mapping using an EDS (Energy dispersive X-ray spectrometry) detector. Specifically, the thickness L3 of the film 18 is measured by the following method.
 まず、導電性付与及び表面保護のため、導電性フィルムの導電部に対して、C(炭素)蒸着及びPtコートを実施する。次いで、FEI製Helios400型FIB-SEM(FIB:Focused Ion Beam、SEM:Scanning Electron Microscope)複合機により、金属細線を、幅方向(金属細線の延在方向と直交する方向)で切断する。
 次いで、得られる切片を用い、EDS検出器(日立ハイテクノロジーズ社製 HD2300型FE-STEM)により、加速電圧200kVでEDS分析を行う。EDS分析により得られる元素マッピングにおいて、ニッケルよりも電気化学的に貴な金属から選ばれる金属原子の分布領域の厚みを、上記切片の両端部に配置された皮膜のそれぞれについて1箇所ずつ測定し、その平均値を皮膜の厚みとする。
First, C (carbon) vapor deposition and Pt coating are performed on the conductive portion of the conductive film to impart conductivity and protect the surface. Next, the metal thin wire is cut in the width direction (direction orthogonal to the extending direction of the metal thin wire) using a Helios 400 type FIB-SEM (FIB: Focused Ion Beam, SEM: Scanning Electron Microscope) composite machine manufactured by FEI.
Then, using the obtained section, EDS analysis is performed at an acceleration voltage of 200 kV with an EDS detector (HD2300 type FE-STEM manufactured by Hitachi High-Technologies Corporation). In the element mapping obtained by EDS analysis, the thickness of the distribution region of a metal atom selected from metals which are electrochemically more noble than nickel is measured for each of the films disposed at both ends of the section, The average value is taken as the thickness of the film.
 皮膜18の形成方法は特に制限されず、公知の形成方法を使用できるが、なかでも、置換黒化処理法が好ましい。
 置換黒化処理法は、金属間のイオン化傾向の差を利用した反応である。置換黒化処理法によれば、下地層14の側面部に、ニッケルよりも電気化学的に貴である金属(言い換えると、イオン化傾向がより小さい金属)の皮膜を形成できる。なお、皮膜の厚みは、置換黒化処理法の処理時間等により適宜調整できる。
 この結果として、下地層14の側面部14aに皮膜18を配置できる。
The formation method of the film 18 is not particularly limited, and a known formation method can be used, and among them, the substitution blackening treatment method is preferable.
The substitutional blackening treatment is a reaction utilizing the difference in ionization tendency among metals. According to the substitutional blackening treatment method, it is possible to form a film of a metal which is more electrochemically noble than nickel (in other words, a metal having a smaller ionization tendency) than the nickel. In addition, the thickness of a film can be suitably adjusted with the processing time etc. of a substitution blackening treatment method.
As a result, the film 18 can be disposed on the side surface portion 14 a of the underlayer 14.
<<第2の実施形態>>
 以下に、本発明の導電性フィルムの第2実施形態について説明する。なお、本発明の導電性フィルムの第2実施形態は、本発明の導電性フィルムの第1実施形態と、皮膜が配置される位置のみが異なる。したがって、本発明の導電性フィルムの第2実施形態については、金属細線の構成のみについて説明し、それ以外の説明については省略する。
 図4に、本発明の導電性フィルムの第2実施形態の部分断面図を示す。なお、図4は、図2C中のB-B断面における断面図に該当する。
<< Second Embodiment >>
Below, 2nd Embodiment of the electroconductive film of this invention is described. In addition, 2nd Embodiment of the electroconductive film of this invention differs from 1st Embodiment of the electroconductive film of this invention only in the position where a film | membrane is arrange | positioned. Therefore, about 2nd Embodiment of the electroconductive film of this invention, only the structure of a metal fine wire is demonstrated and it abbreviate | omits about description other than that.
FIG. 4 shows a partial cross-sectional view of a second embodiment of the conductive film of the present invention. Note that FIG. 4 corresponds to a cross-sectional view taken along the line BB in FIG. 2C.
 図4に示すように、導電性フィルム40中の金属細線32は、基板10側からこの順に配置された下地層34及び導電層36と、下地層34の側面部34aを被覆する皮膜38と、を含む。具体的には、金属細線32において、導電層36は、下地層34と下地層34の側面部34aを被覆する皮膜38とから形成される面34b上に配置される。つまり、金属細線32においては、下地層34及び導電層36の周囲を被覆するように皮膜38を配置せず、下地層34の側面部34aのみに皮膜38を配置している。また、金属細線32において、線幅L4は、2.0μm以下である。また、皮膜38の厚みL5は、100nm未満である。線幅L4及び厚みL5の測定方法については、それぞれ、線幅L2及び厚みL3と同様の方法により測定される。 As shown in FIG. 4, the fine metal wires 32 in the conductive film 40 have a base layer 34 and a conductive layer 36 disposed in this order from the substrate 10 side, and a film 38 for covering the side surface portion 34 a of the base layer 34; including. Specifically, in the metal thin wire 32, the conductive layer 36 is disposed on the surface 34b formed of the base layer 34 and the film 38 covering the side surface portion 34a of the base layer 34. That is, in the metal thin wire 32, the film 38 is not disposed so as to cover the periphery of the underlayer 34 and the conductive layer 36, and the film 38 is disposed only on the side surface portion 34a of the underlayer 34. Further, in the metal thin wire 32, the line width L4 is 2.0 μm or less. Further, the thickness L5 of the film 38 is less than 100 nm. The measurement method of the line width L4 and the thickness L5 is measured by the same method as the line width L2 and the thickness L3, respectively.
[導電性フィルムの製造方法]
 上述した導電性フィルムの製造方法は特に制限されず、公知の方法を採用できる。
 以下に、図3に示す導電性フィルム20の製造方法を一例に挙げて、本発明の導電性フィルムの製造方法について説明する。
 導電性フィルム20の製造方法は、以下の工程をこの順に含む。
(1)基板の少なくとも一方の主面上に、下地膜を形成する工程(下地膜形成工程)
(2)上記下地膜上に、第二金属膜を形成する工程(第二金属膜形成工程)
(3)第二金属膜上に、金属細線が形成される領域に開口部を備えるレジスト膜を形成する工程(レジスト膜形成工程)
(4)めっき法により、開口部内であって、第二金属膜上に、第一金属膜を形成する工程(第一金属膜形成工程)
(5)レジスト膜を除去する工程(レジスト膜除去工程)
(6)上記第一金属膜をマスクとして、上記第二金属膜及び上記下地膜の一部を除去する工程(第二金属膜及び下地膜除去工程)
(7)置換黒化処理によって皮膜を形成する工程(皮膜形成工程)
 以下、上記各工程の手順について、図5A~図5Gを参照しながら詳述する。
[Method of producing conductive film]
The manufacturing method in particular of the electroconductive film mentioned above is not restrict | limited, A well-known method is employable.
Below, the manufacturing method of the conductive film 20 shown in FIG. 3 is mentioned as an example, and the manufacturing method of the conductive film of this invention is demonstrated.
The method of manufacturing the conductive film 20 includes the following steps in this order.
(1) A step of forming a base film on at least one of the main surfaces of a substrate (base film forming step)
(2) Step of forming a second metal film on the above-mentioned base film (second metal film forming step)
(3) A step of forming a resist film having an opening in a region where a metal fine wire is formed on the second metal film (resist film formation step)
(4) Step of forming a first metal film on the second metal film in the opening by plating (first metal film forming step)
(5) Step of removing resist film (resist film removing step)
(6) A step of removing a part of the second metal film and the base film by using the first metal film as a mask (a step of removing the second metal film and the base film)
(7) Process of forming a film by substitution blackening treatment (film forming process)
Hereinafter, the procedure of each of the above steps will be described in detail with reference to FIGS. 5A to 5G.
<<下地膜形成工程>>
 下地膜形成工程は、基板の少なくとも一方の主面上に、下地膜を形成する工程である。具体的には、図5Aに示すように、本工程を実施することにより、基板10上に下地膜44が形成される。
 後述するように、下地膜44は、所定の処理後、図3に示す下地層14となる。
 下地膜44の形成方法としては特に制限されず、公知の形成方法を使用できる。なかでも、より緻密な構造を有する層を形成し易い点で、スパッタリング法、又は蒸着法が好ましい。
 基板10は、上述した通りである。
 下地膜44は、下地層14となる膜であり、ニッケル単体を主成分とする膜である。主成分の定義は、下地層14で説明した通りである。
<< Base film formation process >>
The base film forming step is a step of forming a base film on at least one main surface of the substrate. Specifically, as shown in FIG. 5A, the base film 44 is formed on the substrate 10 by performing this process.
As described later, the base film 44 becomes the base layer 14 shown in FIG. 3 after predetermined processing.
The method for forming the underlayer 44 is not particularly limited, and any known method can be used. Among them, the sputtering method or the vapor deposition method is preferable in that a layer having a more dense structure can be easily formed.
The substrate 10 is as described above.
The base film 44 is a film to be the base layer 14 and is a film mainly composed of nickel. The definition of the main component is as described for the base layer 14.
<<第二金属膜形成工程>>
 第二金属膜形成工程は、下地膜上に、第二金属膜を形成する工程である。
 具体的には、図5Bに示すように、本工程を実施することにより、下地膜44上に第二金属膜46aが形成される。
 後述するように、第二金属膜46aは、めっき法の際のシード層として機能する。
 第二金属膜46aに含まれる金属としては、所定の組成の導電層が形成されればよく、例えば、上述したシード層に含まれる金属が挙げられる。
<< Second metal film formation process >>
The second metal film forming step is a step of forming a second metal film on the base film.
Specifically, as shown in FIG. 5B, the second metal film 46a is formed on the base film 44 by performing this process.
As described later, the second metal film 46a functions as a seed layer in the plating method.
As the metal contained in the second metal film 46a, a conductive layer having a predetermined composition may be formed, and examples thereof include the metals contained in the above-described seed layer.
 第二金属膜46aの形成方法としては特に制限されず、公知の形成方法を使用できるが、なかでもより緻密な構造を有する層を形成し易い点で、スパッタリング法、蒸着法、又は無電解めっき法が好ましい。 The method of forming the second metal film 46a is not particularly limited, and any known method may be used, among which sputtering, vapor deposition, or electroless plating is preferable in that it is easy to form a layer having a more dense structure. The method is preferred.
<<レジスト膜形成工程>>
 レジスト膜形成工程は、金属細線が形成される領域に開口部を備えるレジスト膜を形成する工程である。具体的には、図5Cに示すように、本工程を実施することにより、第二金属膜46a上にレジスト膜47が形成される。
<< Resist film formation process >>
The resist film forming step is a step of forming a resist film having an opening in a region where a metal thin wire is to be formed. Specifically, as shown in FIG. 5C, by performing this process, a resist film 47 is formed on the second metal film 46a.
 レジスト膜47は、金属細線が形成される領域に開口部49を備える。
 レジスト膜47中における開口部49の領域は、金属細線を配置したい領域に合わせて適宜調整できる。例えば、メッシュ状に配置された金属細線を形成しようとする場合、メッシュ状の開口部を有するレジスト膜が形成される。なお、通常、開口部は、金属細線に合わせて細線状に形成される。
 上記開口部の線幅Wは、2.0μm以下である。上記線幅Wは、1.5μm以下が好ましく、1.2μm以下がより好ましい。開口部の線幅Wを2.0μm以下とすることにより、線幅の細い金属細線が得られる。特に、開口部の線幅Wが1.2μm以下の場合、得られる金属細線の線幅がより細くなり、導電性フィルムを、例えば、タッチパネルセンサー等に適用した際、使用者から金属細線がより視認されにくい。なお、上記開口部の線幅Wの下限は特に制限されないが、0.2μm以上の場合が多い。
 なお、本明細書において開口部の幅とは、開口部の細線部分の延在方向に直交する方向での細線部の大きさを意図する。後述する各工程を経て、開口部の線幅に対応した線幅を有する金属細線が形成される。
The resist film 47 has an opening 49 in the region where the metal thin wire is to be formed.
The region of the opening 49 in the resist film 47 can be appropriately adjusted in accordance with the region in which the thin metal wire is to be disposed. For example, in the case of forming metal thin wires arranged in a mesh, a resist film having openings in a mesh is formed. In addition, normally, the opening is formed in a thin wire shape in accordance with the thin metal wire.
The line width W of the opening is 2.0 μm or less. The line width W is preferably 1.5 μm or less, and more preferably 1.2 μm or less. By setting the line width W of the opening to 2.0 μm or less, thin metal wires having a line width can be obtained. In particular, when the line width W of the opening is 1.2 μm or less, the line width of the obtained metal thin line becomes narrower, and when the conductive film is applied to a touch panel sensor, for example, the metal thin line It is hard to see. The lower limit of the line width W of the opening is not particularly limited, but is often 0.2 μm or more.
In the present specification, the width of the opening means the size of the thin line portion in the direction orthogonal to the extending direction of the thin line portion of the opening. Through each process described later, fine metal wires having a line width corresponding to the line width of the opening are formed.
 第二金属膜46a上にレジスト膜47を形成する方法としては特に制限されず、公知のレジスト膜形成方法を使用できる。例えば、以下の工程を含む方法が挙げられる。
(a)第二金属膜46a上にレジスト膜形成用組成物を塗布し、レジスト膜形成用組成物層を形成する工程。
(b)パターン状の開口部を備えるフォトマスクを介して、レジスト膜形成用組成物を露光する工程。
(c)露光後のレジスト膜形成用組成物を現像し、レジスト膜を得る工程。
 なお、上記工程(a)と(b)の間、(b)と(c)の間、及び/又は(c)の後には、レジスト膜形成用組成物層、及び/又はレジスト膜を加熱する工程を更に含んでいてもよい。
The method of forming the resist film 47 on the second metal film 46a is not particularly limited, and a known resist film forming method can be used. For example, there is a method including the following steps.
(A) A step of applying a composition for forming a resist film on the second metal film 46 a to form a composition layer for forming a resist film.
(B) exposing the resist film-forming composition through a photomask provided with a pattern-like opening;
(C) developing the resist film-forming composition after exposure to obtain a resist film.
In addition, between the said process (a) and (b), between (b) and (c), and / or after (c), the composition layer for resist film formation and / or a resist film are heated. The process may be further included.
・工程(a)
 上記工程(a)において使用できるレジスト膜形成用組成物としては特に制限されず、公知のレジスト膜形成用組成物を使用できる。
 レジスト膜形成用組成物の具体例としては、例えば、ポジ型、又はネガ型の感放射線性組成物が挙げられる。
Step (a)
It does not restrict | limit especially as a composition for resist film formation which can be used in the said process (a), A well-known composition for resist film formation can be used.
As a specific example of a composition for resist film formation, a positive or negative radiation sensitive composition is mentioned, for example.
 第二金属膜46a上にレジスト膜形成用組成物を塗布する方法としては特に制限されず、公知の塗布方法を使用できる。
 レジスト膜形成用組成物の塗布方法としては、例えば、スピンコート法、スプレー法、ローラーコート法、及び浸漬法等が挙げられる。
It does not restrict | limit especially as a method to apply | coat the composition for resist film formation on the 2nd metal film 46a, A well-known application method can be used.
As a coating method of the composition for resist film formation, a spin coat method, a spray method, a roller coat method, an immersion method etc. are mentioned, for example.
 第二金属膜46a上にレジスト膜形成用組成物層を形成後、レジスト膜形成用組成物層を加熱してもよい。加熱により、レジスト膜形成用組成物層に残留する不要な溶剤が除去され、レジスト膜形成用組成物層を面内において均一な状態にできる。
 レジスト膜形成用組成物層を加熱する方法としては特に制限されないが、例えば、基板を加熱する方法が挙げられる。
 上記加熱の温度としては特に制限されないが、一般に40~160℃が好ましい。
After forming the composition layer for forming a resist film on the second metal film 46a, the composition layer for forming a resist film may be heated. By heating, the unnecessary solvent remaining in the composition layer for forming a resist film is removed, and the composition layer for forming a resist film can be made uniform in the plane.
Although it does not restrict | limit especially as a method to heat the composition layer for resist film formation, For example, the method to heat a board | substrate is mentioned.
The temperature of the heating is not particularly limited, but generally 40 to 160 ° C. is preferable.
 レジスト膜形成用組成物層の厚みとしては特に制限されないが、乾燥後の厚みとして、一般に0.5~2.5μmが好ましい。 The thickness of the composition layer for forming a resist film is not particularly limited, but in general, the thickness after drying is preferably 0.5 to 2.5 μm.
・工程(b)
 レジスト膜形成用組成物層を露光する方法としては特に制限されず、公知の露光方法を使用できる。
 レジスト膜形成用組成物層を露光する方法としては、例えば、パターン状の開口部を備えるフォトマスクを介して、レジスト膜形成用組成物層に、活性光線、又は放射線を照射する方法が挙げられる。露光量としては特に制限されないが、一般に1~100mW/cmで、0.1~10秒間照射することが好ましい。
・ Step (b)
It does not restrict | limit especially as a method to expose the composition layer for resist film formation, A well-known exposure method can be used.
As a method of exposing the composition layer for forming a resist film, for example, a method of irradiating the composition layer for forming a resist film with an actinic ray or radiation through a photomask provided with a pattern-like opening can be mentioned. . The exposure dose is not particularly limited, but in general, irradiation at 1 to 100 mW / cm 2 for 0.1 to 10 seconds is preferable.
 例えば、レジスト膜形成用組成物がポジ型である場合、工程(b)中で用いられるフォトマスクが備えるパターン状の開口部の線幅Wは、一般に2.0μm以下が好ましく、1.5μm以下がより好ましく、1.2μm以下が更に好ましい。 For example, when the composition for forming a resist film is a positive type, the line width W of the pattern opening provided in the photomask used in the step (b) is generally preferably 2.0 μm or less, and 1.5 μm or less Is more preferable, and 1.2 μm or less is more preferable.
 露光後のレジスト膜形成用組成物層を加熱してもよい。加熱の温度としては特に制限されないが、一般に40~160℃が好ましい。 The composition layer for forming a resist film after exposure may be heated. The heating temperature is not particularly limited, but generally 40 to 160 ° C. is preferable.
・工程(c)
 露光後のレジスト膜形成用組成物層を現像する方法としては特に制限されず、公知の現像方法を使用できる。
 公知の現像方法としては、例えば、有機溶剤を含む現像液、又はアルカリ現像液を用いる方法が挙げられる。
 現像方法としては、例えば、ディップ法、パドル法、スプレー法、及びダイナミックディスペンス法等が挙げられる。
・ Step (c)
It does not restrict | limit especially as a method to develop the composition layer for resist film formation after exposure, A well-known developing method can be used.
Examples of known development methods include methods using a developer containing an organic solvent or an alkali developer.
Examples of the development method include a dip method, a paddle method, a spray method, and a dynamic dispensing method.
 また、現像後のレジスト膜を、リンス液を用いて洗浄してもよい。リンス液としては特に制限されず、公知のリンス液を使用できる。リンス液としては、有機溶剤、及び水等が挙げられる。 In addition, the resist film after development may be washed using a rinse solution. The rinse solution is not particularly limited, and known rinse solutions can be used. Examples of the rinse solution include organic solvents and water.
<<第一金属膜形成工程>>
 第一金属形成工程は、上記レジスト膜の開口部内であって、第二金属膜上に、めっき法により、第一金属膜を形成する工程である。具体的には、図5Dに示すように、本工程を実施することにより、図5C中の開口部49を埋めるように、第二金属膜46a上に第一金属膜46bが形成される。
<< First metal film formation process >>
The first metal forming step is a step of forming the first metal film on the second metal film by the plating method in the opening of the resist film. Specifically, as shown in FIG. 5D, by performing this process, the first metal film 46b is formed on the second metal film 46a so as to fill the opening 49 in FIG. 5C.
 第一金属膜46bは、めっき法により形成される。
 めっき法としては、公知のめっき法を使用できる。具体的には、電解めっき法及び無電解めっき法が挙げられ、生産性の点から、電解めっき法が好ましい。
 第一金属膜46bに含まれる金属としては、所定の組成の導電層が形成されればよく、例えば、上述しためっき層に含まれる金属が挙げられる。
The first metal film 46 b is formed by plating.
A well-known plating method can be used as a plating method. Specifically, electrolytic plating and electroless plating may be mentioned, and electrolytic plating is preferred from the viewpoint of productivity.
As a metal contained in the first metal film 46b, a conductive layer having a predetermined composition may be formed, and examples thereof include the metals contained in the above-described plating layer.
<<レジスト膜除去工程>>
 レジスト膜除去工程は、レジスト膜47を除去する工程である。具体的には、図5Eに示すように、本工程を実施することにより、基板10と、基板10上に、下地膜44、第二金属膜46a、及び第一金属膜46bと、を含む積層体が得られる。
<< Resist film removal process >>
The resist film removing step is a step of removing the resist film 47. Specifically, as shown in FIG. 5E, by carrying out the present step, a stack including the substrate 10 and the base film 44, the second metal film 46a, and the first metal film 46b on the substrate 10 is provided. Get the body.
 レジスト膜47を除去する方法としては特に制限されず、公知のレジスト膜除去液を用いてレジスト膜47を除去する方法が挙げられる。
 レジスト膜除去液としては例えば、有機溶剤、及びアルカリ溶液等が挙げられる。
 レジスト膜除去液をレジスト膜に接触させる方法としては特に制限されないが、例えば、ディップ法、パドル法、スプレー法、及びダイナミックディスペンス法等が挙げられる。
The method for removing the resist film 47 is not particularly limited, and a known method for removing the resist film 47 using a resist film removing solution may be mentioned.
Examples of the resist film removing solution include organic solvents and alkaline solutions.
The method for contacting the resist film removing solution with the resist film is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, and a dynamic dispensing method.
<<第二金属膜及び下地膜除去工程>>
 第二金属膜及び下地膜除去工程は、第一金属膜をマスクとして、上記第二金属膜及び上記下地膜の一部を除去する工程である。具体的には、図5Fに示すように、本工程を実施することにより、第一金属膜46bが形成されていない領域に該当する下地膜44及び第二金属膜46aが除去される。
<< Second metal film and underlayer removal process >>
The second metal film and the underlayer film removing step is a step of removing a part of the second metal film and the underlayer film using the first metal film as a mask. Specifically, as shown in FIG. 5F, by performing this process, the base film 44 and the second metal film 46a corresponding to the area where the first metal film 46b is not formed are removed.
 下地膜44及び第二金属膜46aの一部を除去する方法としては、特に限定されないが、公知のエッチング液を使用できる。
 公知のエッチング液としては、例えば、塩化第二鉄溶液、塩化第二銅溶液、アンモニアアルカリ溶液、硫酸-過酸化水素混合液、及びリン酸-過酸化水素混合液等が挙げられる。これらの中から、第一金属膜46bを溶解しにくく、下地膜44及び第二金属膜46aを溶解しやすいエッチング液を適宜選択すればよい。また、下地膜44及び第二金属膜46aの各層毎にエッチング液を変えて、多段階のエッチングを行ってもよい。
There is no particular limitation on the method of removing a part of the base film 44 and the second metal film 46a, but a known etching solution can be used.
Examples of known etching solutions include ferric chloride solution, cupric chloride solution, alkaline ammonia solution, sulfuric acid-hydrogen peroxide mixed solution, and phosphoric acid-hydrogen peroxide mixed solution. Among these, an etching solution which does not easily dissolve the first metal film 46 b and easily dissolves the base film 44 and the second metal film 46 a may be selected appropriately. In addition, the etching solution may be changed for each layer of the base film 44 and the second metal film 46a to perform multi-step etching.
<<皮膜形成工程>>
 皮膜形成工程は、置換黒化処理によって、下地膜の側面部を少なくとも含む領域に皮膜を形成する工程である。具体的には、本工程を実施することにより、少なくとも下地膜44の側面部を含む領域(導電性フィルム20の製造方法においては、下地膜44、第二金属膜46a、及び第一金属膜46bの側面部)が置換黒化処理され、図5Gに示すように、基板10上に、下地層14と、第二金属膜46a及び第一金属膜46bから構成される導電層16と、下地層14及び導電層16の周囲を被覆する皮膜18とが形成される。なお、図5G中の導電層16及び皮膜18は、図3中の導電層16及び皮膜18にそれぞれ該当する。つまり、皮膜形成工程を経て、図3に示す金属細線12が得られる。
<< Coating formation process >>
The film forming step is a step of forming a film in a region including at least the side surface portion of the base film by substitution blackening treatment. Specifically, by carrying out this step, a region including at least the side surface portion of the base film 44 (in the method of manufacturing the conductive film 20, the base film 44, the second metal film 46a, and the first metal film 46b) Side surface portion is blackened, and as shown in FIG. 5G, on the substrate 10, the base layer 14, the conductive layer 16 including the second metal film 46a and the first metal film 46b, and the base layer A coating 18 covering the periphery of the conductive layer 14 and the conductive layer 16 is formed. The conductive layer 16 and the film 18 in FIG. 5G correspond to the conductive layer 16 and the film 18 in FIG. 3, respectively. That is, the thin metal wires 12 shown in FIG. 3 are obtained through the film forming step.
 置換黒化処理法は、金属間のイオン化傾向の差を利用した反応である。置換黒化処理法によれば、下地層の側面部のニッケルを、ニッケルよりも電気化学的に貴である金属(言い換えると、イオン化傾向がより小さい金属)に置換できる。
 置換黒化処理法の具体的な方法としては、ニッケルよりもイオン化傾向がより小さい金属イオンを含む水溶液に、第二金属膜及び下地膜除去工程を経て得られた上記積層体を浸漬する。この結果、下地膜44中の側面部(下地膜44の上記水溶液に接触した表面領域に該当する。)では、層を構成していたニッケルが溶解して、ニッケルイオンとなり、電子を放出する。この電子が、水溶液が含むイオン化傾向の小さな金属を還元することによって、イオン化傾向の小さな金属が下地膜44の側面部に析出する。この結果として、図5Gに示すように、下地層14の側面部に皮膜18を配置できる。
 なお、図3に示す金属細線12の如く、下地層14の側面部14aだけでなく、導電層16の周囲も皮膜18で覆う場合、下地層14に含まれるニッケル、第一金属膜46bの主成分である金属、及び第二金属膜46aの主成分である金属よりもイオン化傾向がより小さい金属イオンを含む水溶液に、第二金属膜及び下地膜除去工程を経て得られた上記積層体を浸漬すればよい。なお、第一金属膜46bの主成分である金属、及び第二金属膜46aの主成分である金属は、いずれも銅であることが好ましく、この場合においては、上記金属イオンとしては、銀よりもイオン化傾向がより小さい金属イオンが好ましく、パラジウムイオンがより好ましい。
 浸漬の際の溶液の液温は特に制限されないが、通常、10~90℃であり、20~60℃が好ましい。
 浸漬の際の溶液のpHは特に制限されないが、0~13が好ましく、0~8がより好ましい。
 浸漬時間は特に制限されないが、通常、1~8分である。
The substitutional blackening treatment is a reaction utilizing the difference in ionization tendency among metals. According to the substitution blackening treatment method, nickel on the side portion of the underlayer can be replaced with a metal that is more electrochemically noble than nickel (in other words, a metal having a smaller ionization tendency).
As a specific method of the substitutional blackening treatment method, the above-mentioned laminate obtained through the second metal film and the base film removing step is immersed in an aqueous solution containing metal ions having a smaller ionization tendency than nickel. As a result, in the side surface portion in the base film 44 (corresponding to the surface area of the base film 44 in contact with the above aqueous solution), the nickel constituting the layer is dissolved to form nickel ions to emit electrons. The electrons reduce a metal having a small ionization tendency contained in the aqueous solution, whereby a metal having a small ionization tendency is deposited on the side portion of the base film 44. As a result, as shown in FIG. 5G, the film 18 can be disposed on the side surface of the base layer 14.
When the thin film 12 covers the periphery of the conductive layer 16 as well as the side surface portion 14a of the base layer 14 as in the metal thin wire 12 shown in FIG. 3, the nickel contained in the base layer 14 is mainly contained in the first metal film 46b. The laminate obtained through the second metal film and the base film removing step in an aqueous solution containing a metal ion as a component and a metal ion whose ionization tendency is smaller than that of the metal as the main component of the second metal film 46a. do it. The metal as the main component of the first metal film 46 b and the metal as the main component of the second metal film 46 a are preferably both copper, and in this case, as the metal ion, it is preferable to use silver. Also, metal ions having a smaller ionization tendency are preferable, and palladium ions are more preferable.
The liquid temperature of the solution at the time of immersion is not particularly limited, but usually 10 to 90 ° C., preferably 20 to 60 ° C.
The pH of the solution at the time of immersion is not particularly limited, but it is preferably 0 to 13, and more preferably 0 to 8.
The immersion time is not particularly limited, but is usually 1 to 8 minutes.
 なお、置換黒化処理法の具体的な方法は特に制限されず、公知の方法、及び処理液を使用できる。例えば、特許公開5862916号明細書に記載の黒化処理用組成物等を使用できる。 In addition, the specific method in particular of a substitution blackening treatment method is not restrict | limited, A well-known method and a process liquid can be used. For example, the composition for blackening treatment described in patent publication 586 2916 can be used.
 上記工程を経ることにより、導電性フィルム20を形成できる。
 なお、図4に示す導電性フィルム40についても同様の方法で製造できる。
 図4に示す金属細線32の如く、導電層36の周囲には皮膜を形成せず、下地層34の側面部34aのみを皮膜38で被覆する場合、皮膜形成工程において、イオン化傾向が、下地層14に含まれるニッケルよりも小さく、且つ、第一金属膜46bの主成分である金属及び第二金属膜46aの主成分である金属よりも大きい金属イオンを含む水溶液に、第二金属膜及び下地膜除去工程を経て得られた上記積層体を浸漬すればよい。なお、第一金属膜46bの主成分である金属、及び第二金属膜46aの主成分である金属は、いずれも銅であることが好ましく、この場合においては、上記金属イオンとしては、錫、鉛、アンチモン、及びビスマス等が挙げられる。
The conductive film 20 can be formed through the above steps.
The conductive film 40 shown in FIG. 4 can also be manufactured by the same method.
When a coating is not formed around the conductive layer 36 as in the thin metal wire 32 shown in FIG. 4 and only the side surface portion 34 a of the base layer 34 is covered with the coating 38, the ionization tendency is lower in the coating forming step. A second metal film and an aqueous solution containing a metal ion smaller than nickel contained in 14 and larger than the metal main component of the first metal film 46 b and the metal main component of the second metal film 46 a What is necessary is just to immerse the said laminated body obtained through the formation film removal process. Preferably, the metal as the main component of the first metal film 46b and the metal as the main component of the second metal film 46a are both copper, and in this case, tin, as the metal ion, is used. Lead, antimony, bismuth and the like can be mentioned.
[用途]
 本発明の導電性フィルムは、種々の用途に使用できる。例えば、各種電極フィルム、発熱シート、及びプリント配線基板が挙げられる。なかでも、導電性フィルムは、タッチパネルセンサーに用いられることが好ましく、静電容量方式のタッチパネルセンサーに用いられることがより好ましい。上記導電性フィルムをタッチパネルセンサーとして含むタッチパネルでは、金属細線が視認しづらい。
 なお、タッチパネルの構成としては、例えば、特開2015-195004号公報の0020~0027段落に記載のタッチパネルモジュール等が挙げられ、上記内容は本明細書に組み込まれる。
[Use]
The conductive film of the present invention can be used in various applications. For example, various electrode films, heat generating sheets, and printed wiring boards can be mentioned. Among them, the conductive film is preferably used for a touch panel sensor, and more preferably used for a capacitive touch panel sensor. In the touch panel including the conductive film as a touch panel sensor, it is difficult for a thin metal wire to be visible.
Examples of the configuration of the touch panel include the touch panel module described in paragraphs 0020 to 0027 of JP-A-2015-195004, and the above contents are incorporated in the present specification.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, proportions, treatment contents, treatment procedures and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the following examples.
〔実施例1〕
 PET(ポリエチレンテレフタラート)フィルム上に、スパッタ装置を用いて下地膜として厚み20nmのNi膜を形成した。次いで、スパッタ装置を用いて、Ni膜上に、シード膜として、厚み50nmのCu膜(第二金属膜)を形成した。
 次に、第二金属膜上に、ポジレジスト(ローム・アンド・ハース電子材料株式会社製 MCPR124MG)を1μmの厚みとなるようにスピンコーターにて塗布し、90℃にて10分間乾燥させた。フォトマスクを介して平行露光機を用いて365nmの波長の光(露光量 16mw/cm)を2秒間照射したのち、0.10M水酸化ナトリウム水溶液で現像処理を行ってパターン状のレジスト膜を得た(レジスト膜の開口部の線幅1.5μm±0.1μm)。次に、後の剥離のためにレジスト全面を露光した(露光量16mW/cmで3秒間)。
 次に硫酸銅ハイスロー浴(添加剤としてトップルチナHT-AとトップルチナHT-Bを含む。いずれも奥野製薬工業株式会社製)を用いて電気めっきを電流密度3A/dmで行い、レジスト膜の開口部を充填するように形成されたCuめっき膜(第一金属膜)を得た。0.15M水酸化ナトリウム水溶液にてレジストを剥離し、その後Cuエッチング液(和光純薬工業株式会社製 Cuエッチャント)にて開口部の第二金属膜を除去した。Niエッチング液(日本化学産業株式会社製 NC-A及びNC-B)にて下地膜をエッチングした。
 最後にPd溶液(特許第5862916号の実施例1、黒化処理液No.2を参考に調液)にて室温3分間表面処理を行って皮膜(Pd層)を形成することにより、導電性フィルムを得た(金属細線の線幅1μm±0.1μm)。なお、本実施例での皮膜の厚み(図3のL3に相当する)は40nmであった。
Example 1
On a PET (polyethylene terephthalate) film, a Ni film having a thickness of 20 nm was formed as a base film using a sputtering apparatus. Next, using a sputtering apparatus, a Cu film (second metal film) having a thickness of 50 nm was formed as a seed film on the Ni film.
Next, on the second metal film, a positive resist (MCP R 124 MG manufactured by Rohm and Haas Electronic Materials Co., Ltd.) was applied by a spin coater so as to have a thickness of 1 μm, and dried at 90 ° C. for 10 minutes. After irradiating a light of 365 nm wavelength (exposure amount: 16 mw / cm 2 ) for 2 seconds using a parallel exposure machine through a photomask, the resist film is developed by developing with a 0.10 M sodium hydroxide aqueous solution. Obtained (line width of the opening of the resist film: 1.5 μm ± 0.1 μm). Next, the entire surface of the resist was exposed (3 seconds at an exposure amount of 16 mW / cm 2 ) for later peeling.
Next, electroplating is performed at a current density of 3 A / dm 2 using a copper sulfate high-throw bath (including Top Lucina HT-A and Top Lucina HT-B as additives, each of which is manufactured by Okuno Pharmaceutical Industry Co., Ltd.) The Cu plating film (1st metal film) formed so that a part was filled was obtained. The resist was peeled off with a 0.15 M aqueous solution of sodium hydroxide, and then the second metal film in the opening was removed with a Cu etching solution (Cu etchant manufactured by Wako Pure Chemical Industries, Ltd.). The underlayer was etched with a Ni etching solution (NC-A and NC-B manufactured by Nippon Chemical Industrial Co., Ltd.).
Finally, a surface treatment is carried out with a Pd solution (example 1 of Patent No. 586 2916, prepared with reference to blackening solution No. 2) at room temperature for 3 minutes to form a film (Pd layer), whereby the conductivity is achieved. A film was obtained (line width of 1 μm ± 0.1 μm of fine metal wire). The thickness of the film (corresponding to L3 in FIG. 3) in this example was 40 nm.
 つまり、上記工程により得られた実施例1の導電性フィルムにおいて、基板上に形成された金属細線は、基板側からこの順に配置された下地層及び導電層と、下地層及び導電層の周囲を被覆する皮膜と、を含む。
 また、導電層は、銅を主成分として含む(銅の含有量は、具体的には、導電層全体に対して90質量%以上である)。なお、導電層は、上記第一金属膜と上記第二金属膜とから構成される。
 また、下地層は、Ni単体からなる。
 また、皮膜は、パラジウムを含む。
That is, in the conductive film of Example 1 obtained by the above steps, the metal thin wires formed on the substrate are the base layer and the conductive layer disposed in this order from the substrate side, and the periphery of the base layer and the conductive layer. And a coating to be coated.
In addition, the conductive layer contains copper as a main component (the content of copper is specifically 90% by mass or more with respect to the entire conductive layer). The conductive layer is composed of the first metal film and the second metal film.
The underlayer is made of Ni alone.
Also, the film contains palladium.
(金属細線の線幅)
 作製した導電性フィルム中の金属細線の線幅は下記の方法により測定した。
 まず、上記導電性フィルムを、基板ごと樹脂に包埋し、幅方向(金属細線の延在方向と直交する方向)で、ウルトラミクロトームを用いて切断し、得られた断面に炭素を蒸着した後、走査型電子顕微鏡(日立ハイテクノロジーズ社製 S-5500型)を用いて観察した。なお、線幅が高さ方向で異なる場合、最も大きな測定幅を線幅と定義する。
(Line width of thin metal wire)
The line width of the thin metal wire in the produced conductive film was measured by the following method.
First, the above conductive film is embedded in a resin together with the substrate, cut with an ultramicrotome in the width direction (direction orthogonal to the extending direction of the metal fine wire), and carbon is deposited on the obtained cross section , And was observed using a scanning electron microscope (S-5500 manufactured by Hitachi High-Technologies Corporation). When the line width differs in the height direction, the largest measurement width is defined as the line width.
(皮膜の厚み)
 作製した導電性フィルム中の金属細線の皮膜の厚みは下記の方法により測定した。
 まず、導電性付与及び表面保護のため、導電性フィルムの導電部に対して、C蒸着及びPtコートを実施した。次いで、FEI製Helios400型FIB-SEM(FIB:Focused Ion Beam、SEM:Scanning Electron Microscope)複合機により、金属細線を、幅方向(金属細線の延在方向と直交する方向)で切断した。
 次いで、得られた切片を用い、EDS検出器(日立ハイテクノロジーズ社製 HD2300型FE-STEM)により、加速電圧200kVでEDS分析を行った。EDS分析により得られた元素マッピングにおいて、Pd原子の分布領域の厚みを、上記切片の両端部に配置された皮膜のそれぞれについて1箇所ずつ測定し、その平均値を皮膜の厚みとした。
(Thickness of film)
The thickness of the film of the metal fine wire in the produced conductive film was measured by the following method.
First, C deposition and Pt coating were performed on the conductive part of the conductive film for conductivity imparting and surface protection. Subsequently, the metal thin wire was cut in the width direction (direction orthogonal to the extending direction of the metal thin wire) using a Helios 400 type FIB-SEM (FIB: Focused Ion Beam, SEM: Scanning Electron Microscope) composite machine manufactured by FEI.
Then, using the obtained section, EDS analysis was performed at an acceleration voltage of 200 kV with an EDS detector (HD2300 type FE-STEM manufactured by Hitachi High-Technologies Corporation). In element mapping obtained by EDS analysis, the thickness of the distribution region of Pd atoms was measured one by one for each of the films disposed at both ends of the section, and the average value was taken as the thickness of the film.
 得られた導電性フィルムについて、85℃85%Rhの条件に168時間曝した。
 次に、85℃85%Rhの条件に168時間曝した後の導電性フィルムに対して、下記に示すテープ密着試験を実施した。
 結果、メッシュ状に配置された金属細線の剥がれは見られなかった。
The obtained conductive film was exposed to 85 ° C. and 85% Rh conditions for 168 hours.
Next, the tape adhesion test shown below was implemented with respect to the conductive film after exposing to the conditions of 85 degreeC 85% Rh for 168 hours.
As a result, peeling of the thin metal wires arranged in a mesh was not seen.
(テープ密着試験(基板への密着性評価))
 金属細線の基板への密着性は、テープ密着試験により評価した。
 上記の方法で作製した導電性フィルムを用い、金属細線を備える側の基板主面に対し、セロハンテープフィルム(「CT24」ニチバン社製)を指の腹で押圧して密着させた後、セロハンテープを剥離した。その後、基板上の金属細線の剥離面積(%)(剥離した金属細線の面積/試験片における金属細線の面積×100)を目視で確認した。
(Tape adhesion test (adhesion evaluation to substrate))
The adhesion of the metal thin line to the substrate was evaluated by a tape adhesion test.
A cellophane tape film ("CT24" manufactured by Nichiban Co., Ltd.) is pressed against the main surface of the substrate provided with metal fine wires using a conductive film produced by the above method and then adhered with a finger pad, and then cellophane tape Peeled off. Thereafter, the peeled area (%) of the metal thin wire on the substrate (area of peeled metal thin wire / area of metal thin wire in test piece × 100) was visually confirmed.
〔実施例2〕
 基板としてCOP(シクロオレフィンポリマー)フィルムを用いた以外はすべて実施例1と同様にして行った。つまり、実施例2は、実施例1と基板の種類のみ異なる構成である。
 また、実施例1と同様に、85℃85%Rhの条件に168時間曝した後の導電性フィルムに対してテープ密着試験を実施した。
 結果、メッシュ状に配置された金属細線の剥がれは見られなかった。なお、本実施例での皮膜の厚み(図3のL3に相当する)は40nmであった。
Example 2
The procedure was carried out in the same manner as in Example 1 except that a COP (cycloolefin polymer) film was used as a substrate. That is, the second embodiment is different from the first embodiment only in the type of the substrate.
Moreover, the tape adhesion test was implemented with respect to the electroconductive film after 168 hours of exposure conditions of 85 degreeC 85% Rh similarly to Example 1. FIG.
As a result, peeling of the thin metal wires arranged in a mesh was not seen. The thickness of the film (corresponding to L3 in FIG. 3) in this example was 40 nm.
〔実施例3〕
 表面処理を5分間とした以外はすべて実施例1と同様にして行った。つまり、実施例3は、実施例1と皮膜の厚みのみ異なる構成である。
 また、実施例1と同様に、85℃85%Rhの条件に168時間曝した後の導電性フィルムに対してテープ密着試験を実施した。
 結果、メッシュ状に配置された金属細線の剥がれは見られなかった。なお、本実施例での皮膜の厚み(図3のL3に相当する)は80nmであった。
[Example 3]
Everything was carried out in the same manner as in Example 1 except that the surface treatment was carried out for 5 minutes. In other words, Example 3 is different from Example 1 only in the thickness of the film.
Moreover, the tape adhesion test was implemented with respect to the electroconductive film after 168 hours of exposure conditions of 85 degreeC 85% Rh similarly to Example 1. FIG.
As a result, peeling of the thin metal wires arranged in a mesh was not seen. The thickness of the film (corresponding to L3 in FIG. 3) in this example was 80 nm.
〔実施例4〕
 第二金属膜を、Cu膜の代わりにCu-Zn合金膜(スパッタターゲットの成分比85:15(質量比))を用いた以外はすべて実施例1と同様にして行った。つまり、実施例4は、実施例1と第二金属膜の種類のみ異なる構成である。
Example 4
The second metal film was performed in the same manner as in Example 1 except that a Cu—Zn alloy film (component ratio 85: 15 (mass ratio) of a sputtering target) was used instead of the Cu film. In other words, the fourth embodiment is different from the first embodiment only in the type of the second metal film.
 なお、上記工程により得られた実施例4の導電性フィルムにおいて、導電層は、銅を主成分として含む(銅の含有量は、具体的には、導電層全体に対して90質量%以上である)。導電層は、上記第一金属膜と上記第二金属膜とから構成される。 In the conductive film of Example 4 obtained by the above steps, the conductive layer contains copper as a main component (the content of copper is specifically 90% by mass or more with respect to the entire conductive layer). is there). The conductive layer is composed of the first metal film and the second metal film.
 また、実施例1と同様に、85℃85%Rhの条件に168時間曝した後の導電性フィルムに対して、テープ密着試験を実施した。
 結果、メッシュ状に配置された金属細線の剥がれは見られなかった。なお、本実施例での皮膜の厚み(図3のL3に相当する)は40nmであった。
Moreover, the tape adhesion test was implemented with respect to the electroconductive film after exposing to the conditions of 85 degreeC 85% Rh for 168 hours similarly to Example 1. FIG.
As a result, peeling of the thin metal wires arranged in a mesh was not seen. The thickness of the film (corresponding to L3 in FIG. 3) in this example was 40 nm.
〔実施例5〕
 基板としてCOPフィルムを用いた以外はすべて実施例4と同様にして行った。つまり、実施例5は、実施例4と基板の種類のみ異なる構成である。
 また、実施例1と同様に、85℃85%Rhの条件に168時間曝した後の導電性フィルムに対して、テープ密着試験を実施した。
 結果、メッシュ状に配置された金属細線の剥がれは見られなかった。なお、本実施例での皮膜の厚み(図3のL3に相当する)は40nmであった。
[Example 5]
The procedure was carried out in the same manner as in Example 4 except that a COP film was used as a substrate. That is, the fifth embodiment is different from the fourth embodiment only in the type of the substrate.
Moreover, the tape adhesion test was implemented with respect to the electroconductive film after exposing to the conditions of 85 degreeC 85% Rh for 168 hours similarly to Example 1. FIG.
As a result, peeling of the thin metal wires arranged in a mesh was not seen. The thickness of the film (corresponding to L3 in FIG. 3) in this example was 40 nm.
〔比較例1〕
 Pd溶液による表面処理を実施しなかった以外は実施例1と同様にして実施した。
 つまり、比較例1の導電性フィルムは、皮膜を有さない構成である。
 また、実施例1と同様に、85℃85%Rhの条件に168時間曝した後の導電性フィルムに対して、テープ密着試験を実施した。
 結果、メッシュ状に配置された金属細線の50%以上が剥離した。
Comparative Example 1
It carried out like Example 1 except not having implemented surface treatment by Pd solution.
That is, the conductive film of the comparative example 1 is a structure which does not have a film.
Moreover, the tape adhesion test was implemented with respect to the electroconductive film after exposing to the conditions of 85 degreeC 85% Rh for 168 hours similarly to Example 1. FIG.
As a result, 50% or more of the metal thin wires arranged in a mesh were peeled off.
〔比較例2〕
 表面処理を10分間とした以外はすべて実施例1と同様にして行った。
 つまり、比較例1の導電性フィルムは、皮膜の厚さが100nmである点以外においては、実施例1の導電性フィルムとその構成は同じである。
 作製直後に上記テープ密着試験を実施したところ、メッシュ状に配置された金属細線の3%以下の面積範囲で剥がれが見られた。
 また、実施例1と同様に、85℃85%Rhの条件に168時間曝した後の導電性フィルムに対して、テープ密着試験を実施したところ、作製直後と同様に、メッシュ状に配置された金属細線の3%以下の面積範囲で剥がれが見られた。
 なお、本実施例での皮膜の厚み(図3のL3に相当する)の厚みは100nmであった。
Comparative Example 2
Everything was carried out in the same manner as in Example 1 except that the surface treatment was carried out for 10 minutes.
That is, the conductive film of Comparative Example 1 has the same configuration as the conductive film of Example 1 except that the thickness of the film is 100 nm.
Immediately after preparation, the above-mentioned tape adhesion test was conducted, and peeling was observed in an area range of 3% or less of the metal thin wires arranged in a mesh shape.
Moreover, when the tape adhesion test was implemented with respect to the electroconductive film after 168 hours of exposure to 85 degreeC 85% Rh conditions similarly to Example 1, it arrange | positioned in mesh shape similarly to immediately after preparation. Peeling was observed in the area range of 3% or less of the metal thin wire.
The thickness of the film (corresponding to L3 in FIG. 3) in this example was 100 nm.
 上記の結果から、実施例の導電性フィルムは、線幅が2.0μm以下でありながら、長期間にわたって基板への密着性に優れることが確認された。 From the above results, it was confirmed that the conductive film of the example had excellent adhesion to the substrate over a long period of time while the line width was 2.0 μm or less.
 10、100、 基板
 102 下地金属層
 104 第一金属層
 106 第二金属層
 110 透明導電フィルム
 L1、L2、L4 金属細線の線幅
 102a 下地金属層102の側面部
 12、32、108 金属細線
 13 導電部
 14、34 下地層
 16、36 導電層
 18、38 皮膜
 20、40 導電性フィルム
 14a 下地層14の側面部
 34a 下地層34の側面部
 34b 面
 L3 皮膜18の厚み
 L5 皮膜38の厚み
 T 開口部
 X 開口部Tの一辺の長さ
 44 下地膜
 46a 第一金属膜
 46b 第二金属膜
 47 レジスト膜
 49 開口部
 W 開口部の線幅
10, 100, substrate 102 base metal layer 104 first metal layer 106 second metal layer 110 transparent conductive film L1, L2, L4 line width of metal fine wire 102a side portion of base metal layer 102 12, 32, 108 metal fine wire 13 conductive Part 14, 34 Base layer 16, 36 Conductive layer 18, 38 Coating 20, 40 Conductive film 14a Side layer of base layer 14 34a Side layer of base layer 34b Surface L3 Thickness of coating 18 Thickness L of coating 38 T opening X length of one side of opening T 44 base film 46 a first metal film 46 b second metal film 47 resist film 49 opening W line width of opening

Claims (7)

  1.  基板と、前記基板の少なくとも一方の主面上に配置された、金属細線から構成された導電部と、を含む導電性フィルムであって、
     前記金属細線は、前記基板側からこの順に配置された下地層及び導電層と、前記下地層の側面部を被覆する皮膜と、を含み、且つ、線幅が2.0μm以下であり、
     前記下地層は、ニッケル単体を主成分として含み、
     前記導電層は、銅を主成分として含み、
     前記皮膜は、ニッケルよりも電気化学的に貴な金属から選ばれる金属を含み、且つ、厚みが100nm未満である、導電性フィルム。
    A conductive film comprising: a substrate; and a conductive portion disposed on at least one of the main surfaces of the substrate, the conductive portion being composed of fine metal wires,
    The metal fine wire includes an underlayer and a conductive layer disposed in this order from the substrate side, and a film covering the side surface of the underlayer, and the line width is 2.0 μm or less.
    The underlayer contains a simple substance of nickel as a main component,
    The conductive layer contains copper as a main component,
    The conductive film, wherein the film contains a metal selected from metals which are electrochemically nobler than nickel, and has a thickness of less than 100 nm.
  2.  前記皮膜は、銀よりも電気化学的に貴な金属から選ばれる金属を含む、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the film contains a metal selected from metals that are electrochemically nobler than silver.
  3.  前記皮膜は、パラジウムを含む、請求項1又は2に記載の導電性フィルム。 The conductive film according to claim 1, wherein the film contains palladium.
  4.  前記金属細線の線幅が1.2μm以下である、請求項1~3のいずれか1項に記載の導電性フィルム。 The conductive film according to any one of claims 1 to 3, wherein the line width of the fine metal wire is 1.2 μm or less.
  5.  前記導電層は、銅を層全質量に対して90質量%以上含む、請求項1~4のいずれか1項に記載の導電性フィルム。 The conductive film according to any one of claims 1 to 4, wherein the conductive layer contains 90% by mass or more of copper based on the total mass of the layer.
  6.  請求項1~5のいずれか1項に記載の導電性フィルムを含む、タッチパネルセンサー。 A touch panel sensor comprising the conductive film according to any one of claims 1 to 5.
  7.  請求項6に記載のタッチパネルセンサーを含む、タッチパネル。 A touch panel comprising the touch panel sensor according to claim 6.
PCT/JP2018/030305 2017-09-05 2018-08-14 Conductive film, touch panel sensor and touch panel WO2019049617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-170398 2017-09-05
JP2017170398 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049617A1 true WO2019049617A1 (en) 2019-03-14

Family

ID=65634009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030305 WO2019049617A1 (en) 2017-09-05 2018-08-14 Conductive film, touch panel sensor and touch panel

Country Status (1)

Country Link
WO (1) WO2019049617A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089689A (en) * 2012-10-29 2014-05-15 Samsung Electro-Mechanics Co Ltd Touch panel and method of manufacturing the same
JP5862916B1 (en) * 2014-06-24 2016-02-16 奥野製薬工業株式会社 Composition for blackening treatment of copper metal or silver metal
JP2016540304A (en) * 2013-12-13 2016-12-22 エルジー・ケム・リミテッド TOUCH SENSOR AND METHOD FOR MANUFACTURING THE SAME {TOUCH SENSOR AND METHOD THE FOR MANUFACTURING SAME}
JP2017027446A (en) * 2015-07-24 2017-02-02 住友金属鉱山株式会社 Conductive substrate, and method for producing conductive substrate
JP2017059171A (en) * 2015-09-18 2017-03-23 日立化成株式会社 Electrostatic capacitance type touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089689A (en) * 2012-10-29 2014-05-15 Samsung Electro-Mechanics Co Ltd Touch panel and method of manufacturing the same
JP2016540304A (en) * 2013-12-13 2016-12-22 エルジー・ケム・リミテッド TOUCH SENSOR AND METHOD FOR MANUFACTURING THE SAME {TOUCH SENSOR AND METHOD THE FOR MANUFACTURING SAME}
JP5862916B1 (en) * 2014-06-24 2016-02-16 奥野製薬工業株式会社 Composition for blackening treatment of copper metal or silver metal
JP2017027446A (en) * 2015-07-24 2017-02-02 住友金属鉱山株式会社 Conductive substrate, and method for producing conductive substrate
JP2017059171A (en) * 2015-09-18 2017-03-23 日立化成株式会社 Electrostatic capacitance type touch panel

Similar Documents

Publication Publication Date Title
WO1999034658A1 (en) Transparent member for shielding electromagnetic waves and method of producing the same
WO2018221183A1 (en) Method for manufacturing transparent electroconductive substrate, and transparent electroconductive substrate
US20190333656A1 (en) Method of manufacturing conductive film and conductive film
JP2020074114A (en) Conductive film, touch panel sensor, and touch panel
WO2019065782A1 (en) Conductive film, touch panel sensor, touch panel, and method for producing conductive film
JP3502979B2 (en) Transparent member for electromagnetic wave shielding and method of manufacturing the same
WO2019049617A1 (en) Conductive film, touch panel sensor and touch panel
WO2018047608A1 (en) Conductive film production method, conductive film, touch panel sensor, antenna, fingerprint authentication, and touch panel
JP7031663B2 (en) Conductive substrate
JP6722291B2 (en) Conductive film, touch panel, photomask, imprint template, conductive film forming laminate, conductive film manufacturing method, and electronic device manufacturing method
JPWO2017130865A1 (en) Blackening plating solution, manufacturing method of conductive substrate
JP2018139018A (en) Conductive substrate, method for producing conductive substrate
WO2018042979A1 (en) Method for producing conductive film, conductive film, touch panel sensor and touch panel
JP6432684B2 (en) Conductive substrate, method for manufacturing conductive substrate
JP6791172B2 (en) Conductive substrate
JP6365422B2 (en) Method for manufacturing conductive substrate
JP6164145B2 (en) Conductive substrate, method for manufacturing conductive substrate
JPWO2017130869A1 (en) Blackening plating solution, manufacturing method of conductive substrate
JP6848243B2 (en) Manufacturing method of conductive substrate
JPWO2017022543A1 (en) Conductive substrate, method for manufacturing conductive substrate
JP6439628B2 (en) Method for manufacturing conductive substrate
JP2009054670A (en) Light-transmissive electromagnetic wave shield member and manufacturing method thereof, filter using same, and display
JPWO2017130866A1 (en) Blackening plating solution, manufacturing method of conductive substrate
JP2017182271A (en) Conductive film, manufacturing method therefor, touch panel, electronic device, transparent antenna, and window glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP